
Dynamic Dependability Analysis using HOL

Theorem Proving with Application in

Multiprocessor Systems

Yassmeen Elderhalli

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

October 2019

c© Yassmeen Elderhalli, 2019

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Yassmeen Farouk Said Elderhalli

 Entitled: Dynamic Dependability Analysis using HOL Theorem Proving with
Application in Multiprocessor Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

 Chair
 Dr. Rene Witte

 External Examiner
 Dr. William M. Farmer

 External to Program
 Dr. Rajagopalan Jayakumar

 Examiner
 Dr. Yan Liu

 Examiner
 Dr. Mohammed Reza Soleymani

 Thesis Supervisor
 Dr. Sofiène Tahar

Approved by

 Dr. Rastko Selmic, Graduate Program Director

 December 9, 2019
 Dr. Amir Asif, Dean
 Gina Cody School of Engineering & Computer Science

ABSTRACT

Dynamic Dependability Analysis using HOL Theorem Proving with

Application in Multiprocessor Systems

Yassmeen Elderhalli, Ph.D.

Concordia University, 2019

Dynamic dependability analysis has become an essential step in the design pro-

cess of safety-critical systems to ensure the delivery of a trusted service without fail-

ures. Dependability usually encompasses several attributes, such as reliability and

availability. A dynamic dependability model is created using one of the dependability

modeling techniques, such as Dynamic Fault Trees (DFTs) and Dynamic Reliability

Block Diagrams (DRBDs). Several analysis methods, including paper-and-pencil or

simulation, exist for analyzing these models to ascertain various dependability related

parameters. However, their results cannot be always trusted since they may involve

some approximations, truncations or even errors. Formal methods, such as model

checking and theorem proving, can be used to overcome these inaccuracy limitations

due to their inherent soundness and completeness. However, model checking suffers

from state-space explosion if the state space is large. While, theorem proving was used

only for the static dependability analysis without considering the system dynamics.

In order to conduct the formal dependability analysis of systems that exhibit

dynamic failure behaviors within a theorem prover, these models need to be captured

formally, where their structures, operators and properties are properly formalized. In

this thesis, we provide a complete framework for the formal dependability analysis

of systems modeled as DFTs and DRBDs in the HOL4 higher-order logic theorem

iii

prover. We provide the formalization of DFT gates and verify important simplifica-

tion theorems based on well-known DFT algebra. In addition, our framework allows

both qualitative and quantitative DFT analyses to be conducted using theorem prov-

ing. We use this formalization to formally verify the DFT rewrite rules, that are used

by automated DFT analysis tools, to ascertain their correctness. Due to the lack

of a DRBD algebra that allows the analysis using a theorem prover, in this thesis,

we develop and formalize a novel algebra that includes operators and simplification

theorems to formalize traditional RBD structures, such as the series and parallel,

besides the DRBD spare construct. We formally verify their reliability expressions,

which allows conducting both the qualitative and quantitative analyses of a given sys-

tem. Leveraging upon the complementary nature of DFTs and DRBDs, our proposed

framework provides the possibility of formally converting one model to the other,

which allows reasoning about both the success and failure of a given system. Our

framework provides generic expressions of probability of failure and reliability that

are independent of the failure distribution of an arbitrary number of system compo-

nents, which cannot be obtained using other formal tools, such as model checking. In

order to demonstrate the usefulness of the proposed framework, we formally model

and analyze the dependability of the terminal, broadcast and network reliability of

shuffle-exchange networks, which are multistage interconnections networks that are

used to connect the elements of multiprocessor systems. Conducting a sound analysis

with generic expressions is essential in these systems, where it is required to accurately

capture and analyze the failure behavior.

iv

To my father, my mother, my sister and brothers

v

ACKNOWLEDGEMENTS

First of all, I am profoundly grateful to my supervisor, Dr. Sofiène Tahar,

for his guidance, support and encouragement throughout my Ph.D. studies. His deep

expertise in the field of formal methods has greatly boosted my Ph.D. He showed deep

confidence in my work and never hesitated to travel and present it when I could not.

I am indebted to Dr. Osman Hasan for providing me with his support, technical

feedback, encouragement and advice. I have learned a lot from his deep knowledge

and immense experience. His valuable comments and our discussions have helped

strengthen this work. Many thanks to Muhammed Qasim for his valuable comments

about his HOL4 theories and Muhammad Umair Siddique for his suggestions.

I would like to express my gratitude to Dr. William Farmer for accepting to be

my external Ph.D. thesis examiner. I am also grateful to Dr. Rajagopalan Jayakumar,

Dr. Reza Soleymani and Dr. Yan Liu for serving on my advisory thesis committee.

I am very thankful to Dr. Asim Al-Khalili for his continuous encouragement

and support. He was always available when I needed his advice. Many thanks to my

friends and colleagues at the Hardware Verification Group (HVG), specially Hassnaa

El-derhalli, Mbarka Soualhia, Mahmoud Masadeh and Saif Najmeddin, for being kind,

supportive and helpful. Their company has made my journey at HVG unforgettable.

I am eternally grateful to my father, my sister, Hassnaa, my brothers, Omar

and Mohamed, for their unconditional love and support. I would not have been able

to reach this stage of my life without them.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xiv

LIST OF ACRONYMS . xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Dynamic Fault Trees . 5

1.3 Dynamic Reliability Block Diagrams 9

1.4 Framework for Formal Dynamic Dependability Analysis 13

1.5 Thesis Contributions . 16

1.6 Thesis Organization . 18

2 Preliminaries 20

2.1 HOL4 Theorem Proving . 20

2.2 Probability Theory . 21

2.3 Lebesgue Integral . 29

3 Formal Qualitative Analysis of Dynamic Fault Trees 31

3.1 Methodology . 31

3.2 Identity Elements and Temporal Operators 33

3.3 Formalization of FT Gates . 35

3.3.1 AND and OR Gates . 36

3.3.2 Priority AND Gate (PAND) . 37

3.3.3 Functional DEPendency Gate (FDEP) 38

3.3.4 Spare Gates . 39

vii

3.4 Formal Verification of the Simplification Theorems 42

3.5 Formal Qualitative Analysis of DFT Examples 43

3.6 Formal Qualitative Analysis Case Studies 46

3.6.1 Qualitative Analysis of DBW 47

3.6.2 Qualitative Analysis of CAS . 49

3.7 Summary . 52

4 Formal Quantitative Analysis of Dynamic Fault Trees 53

4.1 Methodology . 53

4.2 Probabilistic Model of DFT Gates . 55

4.2.1 Probabilistic Model of AND Gate 57

4.2.2 Probabilistic Model of OR and FDEP Gates 58

4.2.3 Probabilistic Model of PAND Gate and Before Operator 60

4.2.4 Probabilistic Model of Spare Gates 69

Cold Spare Gate . 70

Warm Spare Gate . 75

Spare Gates with a Shared Spare 78

4.3 Formal Quantitative Analysis of DFT Examples 82

4.4 Formal Quantitative Analysis Case Studies 84

4.4.1 Formal Quantitative Analysis of DBW 87

4.4.2 Formal Quantitative Analysis of CAS 90

4.5 Summary . 94

5 Formal Verification of DFT Rewrite Rules 97

5.1 DFT Rewrite Rules . 98

5.1.1 Rewrite Framework . 99

viii

5.1.2 Rewrite Rules . 100

General Rewrite Rules . 101

Rewrite Rules for PAND gates 102

5.1.3 Non-structural Rules . 103

Removing BEs . 103

Merging BEs . 104

5.2 HOL Formalization of n-ary DFT Gates 104

5.3 Verification of Rewrite Rules . 107

5.3.1 General Rewrite Rules . 107

5.3.2 Rewrite Rules for PAND Gates 115

5.3.3 Non-Structural Rules . 118

5.4 Summary . 119

6 Formal Analysis of Dynamic Reliability Block Diagrams 120

6.1 Methodology . 121

6.2 DRBD Event . 122

6.3 Identity Elements and Operators . 124

6.4 Simplification Theorems . 131

6.5 Spare Construct . 131

6.6 DRBD Structures . 136

6.7 Formal DBW DRBD Analysis . 145

6.8 Formal Equivalence of DFT-DRBD Algebras 146

6.9 Summary . 151

7 Formal Dependability Analysis of Shuffle-exchange Networks 153

7.1 Overview . 153

ix

7.2 Terminal Reliability Analysis of Shuffle-exchange Networks 158

7.2.1 DFT Analysis of SEN and SEN+ 158

7.2.2 DRBD Analysis of SEN and SEN+ 166

7.3 Broadcast Reliability Analysis of Shuffle-exchange Networks 171

7.3.1 DFT Analysis of SEN and SEN+ 172

7.3.2 DRBD Analysis of SEN and SEN+ 174

7.4 Network Reliability Analysis of Shuffle-exchange Networks 177

7.4.1 DFT Analysis of SEN and SEN+ 178

7.4.2 DRBD Analysis of SEN and SEN+ 187

7.5 Equivalence of SEN DFT and DRBD Models 196

7.6 Summary . 199

8 Conclusions and Future Work 200

8.1 Conclusions . 200

8.2 Future Work . 203

Bibliography 205

Biography 215

x

List of Tables

2.1 Some HOL Symbols . 22

3.1 DFT Gates Mathematical Expressions 36

3.2 Examples of Formally Verified Simplification Theorems 43

4.1 Failure Rates for the DBW System (×10−7) 89

4.2 Failure Rates of CAS (×10−6) . 93

6.1 Formally Verified DRBD Simplification Theorems 132

6.2 Mathematical and Reliability Expressions of DRBD Structures 138

6.3 Verified Equivalence of DFT and DRBD Algebras 149

6.4 Comparison of Formal Analysis Efforts of DBW 151

xi

List of Figures

1.1 Some DFT Elements . 6

1.2 Dynamic DRBD Constructs . 10

1.3 Overview of the Proposed Framework 14

3.1 Formal DFT Qualitative Analysis Methodology 32

3.2 DFT Examples . 44

3.3 DFT of Drive-by-wire System . 47

3.4 DFT of Cardiac Assist System . 49

4.1 Formal DFT Quantitative Analysis Methodology 54

4.2 Probability of Failure of CPAND, AND-FDEP and WSP-OR 85

4.3 Probability of Failure of the Drive-by-wire System 89

4.4 Probability of Failure of the Cardiac Assist System 93

5.1 Subsumption of OR Gates by AND Gates [66, Rewrite Rule 8] 99

5.2 Example Application of Rewrite Rule 100

5.3 Left-flattening of Gates [66, Rewrite Rule 5] 101

5.4 AND/PAND Gate with CONST(⊥) Successor [66, Rewrite Rule 13] . . 102

5.5 Conflicting PAND Gates with Independent Successors [66, Rewrite

Rule 19] . 102

xii

5.6 Example Application of Non-structural Rules 103

6.1 Formal DRBD Analysis Methodology 122

6.2 Two-Block Series and Parallel DRBDs 126

6.3 Spare Construct . 133

6.4 DRBD Structures . 137

6.5 DRBD of Drive-by-Wire System . 145

6.6 Reliability of DBW System . 147

6.7 Integrated Framework for Formal DFT-DRBD Analysis using HOL4 . . 147

7.1 Overview of Multiprocessor System Architecture 154

7.2 An 8× 8 SEN . 156

7.3 An 8× 8 SEN+ . 156

7.4 DFT of SEN . 158

7.5 DFT of SEN+ Terminal Connection . 162

7.6 Probability of Failure of the Terminal Connection of a 128×128 SEN+

with and without Spares . 165

7.7 DRBD of SEN . 166

7.8 Terminal Reliability DRBD of SEN+ 168

7.9 Terminal Reliability of 128× 128 SEN+ with and without Spares . . . 171

7.10 DFT of Broadcast SEN+ . 172

7.11 Probability of Failure of the Broadcast of a 128× 128 SEN+ 175

7.12 Broadcast DRBD Model of SEN+ . 175

7.13 Broadcast Reliability of a 128× 128 SEN+ 177

7.14 DFT of SEN Network with Multiple Spares 178

7.15 DFT of SEN+ Network . 180

7.16 DFT of SEN+ with Multiple Spares . 185

xiii

7.17 The Probability of Failure of the Network of a 128× 128 SEN+ 188

7.18 DRBD of SEN Network . 188

7.19 DRBD of SEN+ Network . 190

7.20 DRBD of SEN+ Network with Multiple Spares 193

7.21 The Network Reliability of a 128× 128 SEN+ 196

xiv

LIST OF ACRONYMS

AE Almost Everywhere

BC Brake Control

BDD Binary Decision Diagram

BE Basic Event

BS Brake Sensor

CAS Cardiac Assist System

CDF Cumulative Distribution Function

CPAND Cascaded PAND

CPN Colored Petri Nets

CPU Central Processing Unit

CS Crossbar Switch

CSP Cold SPare

CTMC Continuous Time Markov Chain

DAG Directed Acyclic Graph

DBW Drive-by-wire

DFT Dynamic Fault Tree

DRBD Dynamic Reliability Block Diagram

EF Engine Failure

ET Event Tree

FDEP Functional DEPendency

FT Fault Tree

FTA Fault Tree Analysis

HOL Higher-order Logic

xv

HSP Hot SPare

LSH Load SHaring

MC Markov Chain

MIN Multi-stage Interconnection Network

MTTF Mean-Time-To-Failure

PAND Priority-AND

PDF Probability Density Function

PIE Principle of Inclusion and Exclusion

PMC Probabilistic Model Checker

RBD Reliability Block Diagram

SDEP State DEPendency

SEN Shuffle-exchange Network

SFT Static Fault Tree

SS System Supervisor

SSD Solid State Drive

TF Throttle Failure

TS Throttle Sensor

VOT Voting

WSP Warm SPare

xvi

Chapter 1

Introduction

1.1 Motivation

A man who lacks reliability is utterly useless.

- Confucius (551–479 BC)

The recent decades witnessed huge technological advancements, which took part

in almost all aspects of our lives. While some of the applications that are related to

technology can somehow tolerate errors in their results, there are other applications

where errors can lead to financial losses, disasters and in the worst case losses in

human lives. Crises such as the Toyota global recall [1] increased and necessitated the

need to measure system dependability, which is the ability of a system to provide a

trusted service [2]. Dependability analysis is also required in other types of systems,

such as data centers, where the loss of financial or personal information cannot be

tolerated.

1

Dependability generally consists of several attributes such as reliability, avail-

ability, maintainability, safety and confidentiality. Some of these concepts can be

quantified and measured such as reliability and availability. Reliability can be defined

as the probability that a certain system when subject to specific conditions will de-

liver its correct function in a given period of time. This means that the probability

that a system will not encounter any failure for a specific period can be calculated

and analyzed based on certain requirements. On the other hand, availability is the

probability that the system or a component of a system will provide its service at a

certain moment of time [2]. Dependability is commonly modeled using combinatorial

models, such as fault trees (FTs) [3], reliability block diagrams (RBDs) [4] and event

trees (ETs) [5]. However, these traditional modeling techniques cannot capture the

dynamic failure behavior of systems and thus cannot truly model many real-world

systems that exhibit sequential failures and dependencies among system components.

A dynamic dependability, on the other hand, generally captures the dependent

failure and repair sequences that the regular combinatorial dependability models

cannot represent. Dynamic dependability analysis is considered as an important step

in the design process of any system that possesses a dynamic behavior, especially

safety-critical systems. The appropriate modeling technique is chosen to estimate

the system dynamic dependability. These modeling techniques include Dynamic

Fault Trees [3] and Dynamic Reliability Block Diagrams [6]. A Dynamic Fault Tree

(DFT) is a graphical representation of the sources of faults that cause the failure of a

system represented as the top event of the DFT. It utilizes dynamic gates to model

the failure dependencies of the basic events. Dynamic Reliability Block Diagrams

(DRBDs) have been introduced as an extension to traditional RBDs to capture the

dynamic success paths of a given system.

2

Traditionally, dependability models are analyzed using paper-and-pencil based

proof methods or using simulation. The former provides a flexible way to model and

analyze systems. However, it is prone to human error. On the other hand, simulation

provides an easy and automated method to conduct the analysis, which justifies its

common use in analyzing a wide range of applications. For example, in [7], the relia-

bility of Solid State Drives (SSDs) of two different configurations are compared using

simulation. However, due to the high computational cost of simulation, only part of

the space could be analyzed, and thus the results cannot be termed as accurate or

complete.

Formal methods, such as model checking [8] and theorem proving [9] have been

used for the analysis of dependability models to overcome the inaccuracy limitations

of the above-mentioned techniques. For example, the PRISM model checker [10] has

been used in the reliability analysis of many applications, such as defect-tolerant sys-

tems [11]. More recently, the STORM model checker [12] has been used in the safety

analysis of a vehicle guidance system [13] using DFTs. Although probabilistic model

checkers provide an automatic way to conduct the analysis of dependability models,

the state space explosion problem often limits its scope especially when analyzing

complex systems. Moreover, the reduction algorithms embedded in these tools are

usually not formally verified, which questions the accuracy of the reduced models.

More importantly, probabilistic model checkers inherently assume the failures to be

exponentially distributed for system components [14], and thus cannot capture, for

example, the aging factor of these components.

Since the formalization of the probability theory in higher-order logic (HOL) [15,

3

16, 17, 18], theorem proving has also been used for dependability analysis. For exam-

ple, some properties for continuous random variables were employed to formally reason

about some system reliability properties, such as Mean-Time-To-Failure (MTTF) [19].

Moreover, some reliability theory elements were formally verified and used in the for-

mal analysis of a reconfigurable memory array with stuck-at and coupling faults [20].

In [21] and [22], two frameworks for the analysis of FTs and RBDs, respectively, using

theorem proving were proposed and used to formally analyze some real-world appli-

cations, like an air traffic management system [22] and a solar array for a satellite

system [23]. However, this HOL formalization cannot handle or be extended to verify

the dynamic properties of DFTs and DRBDs. Generally, using a theorem prover in

the analysis allows having verified generic expressions of dependability that are inde-

pendent of the distribution of system components. Accordingly, the results are not

limited to exponential distributions.

Taking into account the concerns mentioned above about dynamic dependability

analysis of systems, in particular safety-critical ones, there is a dire need to have an

accurate framework for modeling and analysis of dynamic dependability models. In

this thesis, we aim to provide a formal framework for the accurate dynamic depend-

ability analysis of systems modeled as DFTs and DRBDs. Mainly, the idea is to build

a mathematical model for the dynamic dependability of the system using either DFTs

or DRBDs based on the system description and requirements, and then to utilize the

expressiveness and sound nature of HOL theorem proving to perform the analysis of

such models to provide generic expressions of dependability. It is worth mentioning

that such generic expressions cannot be provided using model checking, which adds to

the importance of the proposed framework as the first of its kind in providing sound

generic expressions of dynamic dependability models that are formally verified. As

4

an illustration of the usefulness of the proposed framework, we apply it in verifying

some rewrite rules that are used in automatic DFT analysis tools, like the STORM

model checker, to reduce DFT models, which demonstrates the soundness of these

rules. Furthermore, we utilize this framework to conduct the formal dependability

analysis of two safety-critical systems from the medical and automotive domains to

reason about their dynamic failure behaviors. Furthermore, we apply our framework

for the dependability analysis of real-world systems, namely multiprocessor networks,

where the increased number of processing elements requires having a sophisticated

interconnection network that must be on one hand efficient with low cost and on

the other hand more reliable [24]. In particular, we propose to formally model and

conduct the dynamic dependability analysis of shuffle-exchange networks (SENs) [25]

using DFTs and DRBDs to reason about their behaviors. SENs are multistage inter-

connection networks (MINs) [26], which are widely used in multiprocessor systems to

establish communication between system nodes, including processors, memories and

I/O peripherals.

In this thesis, we use the HOL4 theorem prover [27] to formalize DFTs and

DRBDs and perform the above-mentioned analysis. We choose HOL4 as we are using

existing theories (libraries), such as probability [17] and Lebesgue integral [28], to

build and verify the underlying foundations of these dependability models.

1.2 Dynamic Fault Trees

Dynamic fault trees (DFTs) [3] are introduced to model the failure dependencies

among system components that cannot be captured using traditional FTs, i.e., static

fault tress (SFTs). A DFT is a graphical representation of the sources of failure of

a given system. The modeling starts with an undesired top event that represents

5

(a) BE (b) CONST(�) (c) CONST(⊥) (d) AND (e) OR (f) PAND

Figure 1.1: Some DFT Elements

the failure of the whole system or a subsystem. Inputs of the DFT represent basic

events that contribute to the occurrence (failure) of the top event. The relationships

and dependencies among these basic events are modeled using DFT gates, such as

Priority-AND (PAND) gate.

DFTs are directed acyclic graphs (DAG) with typed nodes (AND, OR, etc.).

Successors of a node v in the DAG are inputs of v. Some commonly used DFT elements

are shown in Figure 1.1. Nodes without inputs are basic events (BE, Figure 1.1(a))

that represent atomic components, which can fail according to a failure distribution.

Special cases of BEs are constant failed elements (CONST(�), Figure 1.1(b)) that

always fail and constant fail-safe elements (CONST(⊥), Figure 1.1(c)), that can never

fail. DFT gates are nodes with inputs and are used to model the state dependen-

cies and redundancies among system components. Some commonly used DFT gates

include SFT gates (AND, OR) as well as the PAND DFT gate. The output event

of the AND gate (Figure 1.1(d)) fails when both input events fail. The OR gate

(Figure 1.1(e)) requires that at least one of its input events fails for the output event

to fail. The PAND gate (Figure 1.1(f)) acts in a similar way to the AND gate, i.e.,

it requires that both input events fail. However, an additional condition is needed,

where the inputs should fail in sequence, usually from left to right. There are also

other DFT gates that are used to model the dynamic behavior in systems, like the

Functional-DEPendency (FDEP) and spare gates.

6

Fault tree analysis (FTA) can be generally carried out qualitatively or quan-

titatively [29]. In the qualitative analysis, the combinations and sequences of basic

events that contribute to the occurrence of the top event (failure of the system) are

identified. The sets that include these combinations are called cut sets, while the

cut sequences determine the required sequences of failure of the basic events. These

combinations and sequences represent the cut sets and cut sequences [3], respectively.

In the quantitative analysis, attributes, such as the MTTF and the probability of fail-

ure, can be evaluated based on the failure distribution of the basic events and their

relationships. Dynamic FTA has been commonly conducted using a DFT algebra [30]

or by analyzing the corresponding Continuous Time Markov Chain (CTMC) of the

given DFT [29]. In the former method, an algebra similar to the ordinary Boolean

algebra is defined with some temporal operators and simplification properties that

allow the structure function of the top event to be reduced. Based on this structure

function, both the qualitative and quantitative analyses can be carried out, where the

probability of failure of the DFT’s top event can be expressed based on the failure

distribution of the basic events. On the other hand, the given DFT can be converted

into its equivalent CTMC and then this CTMC is analyzed to find the probability

of failure of the top event [29]. Complex systems can generate CTMCs with a large

state space. This can be handled by applying a modularization approach, where the

DFT is divided into static and dynamic parts. The static FT can be analyzed using

one of the conventional methods, such as binary decision diagrams (BDDs) [3]. The

dynamic part can then be analyzed by converting it to its corresponding CTMC. This

kind of modulerization is implemented in the Galileo tool [31].

Dynamic FTA can be conducted analytically to manually generate probability of

failure expressions. The cut sets and sequences are identified and then the probabilistic

7

principle of inclusion and exclusion (PIE) is applied to provide the probability of

failure expression [30]. However, the results of this manual manipulation are prone to

human error. Simulation, on the other hand, can provide a scalable and automated

alternative to conduct the FTA. For example, in [32], DFT analysis is performed by

combining the DFT algebra of [33] and Monte Carlo Simulation [34]. There also exist

other tools for DFT analysis, such as BlockSim [35], Möbius [36] and isograph [37];

however, as mentioned earlier, their analysis results cannot be termed as complete

nor accurate due to the sampling nature of their simulation method.

In order to overcome the limitations of simulation in terms of inaccuracies

and completeness, formal methods can be used in the dynamic FTA. The DFTCalc

tool [38] analyzes DFTs using an Input/Output Interactive Markov Chain, an exten-

sion of CTMCs, which is built based on a compositional aggregation technique [39].

Probabilistic model checking (PMCs) has been utilized to perform the analysis of

DFTs. For example, the STORM model checker is used to conduct the quantitative

analysis of DFTs in the form of probability of failure and MTTF [40]. However, generic

expressions of probability of failure cannot be obtained based on this kind of analysis.

Moreover, the failure distributions of the inputs are assumed to be exponential due

to the state based nature of PMCs.

On the other hand, HOL theorem proving has been used in [21] to formalize SFTs

and reason about their properties. However, this formalization cannot handle the

dynamic aspects of real-world systems that are captured using DFTs. Furthermore,

it cannot be extended to model and analyze the dynamic behavior of systems, and

thus a new formalization is needed.

Due to the high expressive nature of HOL, in [41], we proposed a methodology to

8

conduct the DFT’s qualitative analysis using the HOL theorem prover and the quan-

titative analysis using the STORM model checker. We provided the formalization of

DFTs based on the algebraic approach [30]. In the algebraic approach, identity ele-

ments and temporal operators are defined to express the structure function of a DFT

event. Several simplification properties are introduced that facilitate the reduction of

this function. However, the arithmetic foundation of this approach was not formally

verified, which puts a question mark on the soundness of the reported results. In [41],

we provided the formalization of the DFT gates, operators and their simplification

theorems. This allows the qualitative analysis to be performed within the sound core

of a HOL theorem prover. In addition, we proposed to use the STORM model checker

to find the probability of failure of the formally verified reduced DFT structure func-

tion. However, we cannot obtain generic expressions of probability of failure based

on this methodology as a PMC is involved in the quantitative analysis. Moreover,

our definitions in [41] cannot handle the DFT probabilistic analysis. Therefore, in

this thesis, we propose new definitions of DFT gates and temporal operators, which

allow us to conduct qualitative as well as quantitative analyses of DFTs in the form

of generic expressions of probability of failure in a theorem prover.

1.3 Dynamic Reliability Block Diagrams

A dynamic reliability block diagram (DRBD) models the paths of success in a given

system using system components as blocks that are connected in the traditional series,

parallel, series-parallel and parallel-series structures. The connections between system

blocks are modeled using connectors (lines) to create one or more paths from the

DRBD input to its output. These paths represent the required working blocks (system

components) for the system to have a successful operation. The modeled system fails

9

(a) Series (b) Parallel

(c) Spare (d) State Dependency (e) Load Sharing

Figure 1.2: Dynamic DRBD Constructs

when components fail in such a manner that leads to the disconnection of all the

paths between the input and the output. Additional constructs are used to model the

dynamic dependencies among system blocks.

The main dynamic DRBD structures and constructs are shown in Figure 1.2 [42].

In DRBDs, the blocks can be connected in series, parallel or deeper nested structures.

For the series structure, shown in Figure 1.2(a), all system blocks should function

properly in order to maintain a successful behavior. On the other hand, at least one

of the blocks of the parallel structure in Figure 1.2(b) must work to have a successful

system behavior. These two structures can be connected in a hierarchical manner

to model complex systems. The spare construct (Figure 1.2(c)) is used to model

spare parts in systems, similar to the DFT spare gate. The state dependencies (Fig-

ure 1.2(d)) are used to model the effect of activation(A)/deactivation(D)/failure(F)

among system components. In Figure 1.2(d), the A/D/F of the trigger will cause

the state dependency controller (SDEP) to signal the A/D/F of components X1...Xn.

Finally, the load sharing (LSH) construct is used to model the effect of sharing the

10

same load among several components on the failure effect of the overall system. For

example, the LSH in Figure 1.2(e) models a load that is shared among n components.

It is required that at least k out of these n components to be working in order for

the functionality of the system to be successful. Therefore, the D/F of some of these

components may cause the D/F of the rest of the components. The last two con-

structs enable modeling more realistic scenarios in system reliability that include the

effect of A/D of one component on the rest of the components. This behavior cannot

be captured using DFTs [43] as they can only capture the failure effect of one system

component on the rest of the components without considering the A/D effect.

Due to the dynamic nature of DRBDs, they can be analyzed by converting them

into a state-space model, i.e, a Markov chain. Then, the resultant Markov chain can

be analyzed using one the of the traditional techniques, including analytical methods

or simulation, such as Monte Carlo simulation. There exist some tools that provide

the DRBD analysis, such as Möbius [36], isograph [37] and BlockSim [35], which

provide a graphical user interface to model DRBDs and conduct the analysis either

analytically or using discrete event simulation. As mentioned previously, complex

systems can generate Markov chains with a large number of states, which hinders the

analysis process. Decomposition can be applied to divide the DRBD into a dynamic

part that can be solved using Markov chains and a static part that can be analyzed

using static RBD analysis techniques [44]. This decomposition would reduce the

state space, but such simulation based analysis cannot provide accurate and complete

results. The formal semantics of DRBDs have been introduced in [45] using the

Object-Z formalism [46]. Then, this DRBD is converted into a Colored Petri net

(CPN) [47], where it can be analyzed using existing Petri net tools. An algorithm

to automatically convert a DRBD into a CPN is also proposed in [48]. However,

11

since the given DRBD is converted into a CPN, only state-based properties can be

analyzed. In addition, generic expressions of reliability cannot be obtained, which

represents our target in this thesis. HOL theorem proving has been used for the

analysis of traditional RBDs [22]. However, there is no support for DRBD analysis

using a HOL theorem prover that can handle the analysis of real-world systems that

exhibit dynamic behavior.

In system engineering, it is important to be able to analyze DRBDs qualitatively

in order to identify the sources of system vulnerability, and quantitatively in order to

evaluate the system reliability. However, to the best of our knowledge, so far there

exists no algebra that mathematically models a given DRBD and enables expressing

its function based on basic components like the DFT algebra [30]. Using such alge-

bra in the reliability analysis will result in simpler and fewer proof steps than the

DFT-based algebraic analysis [30], since the probabilistic PIE will not be invoked. In

this PhD thesis, we propose a new algebraic approach for DRBD analysis that allows

a DRBD expression to be used for both qualitative and quantitative analyses. We

introduce new operators to mathematically model the dynamic behavior in DRBD

structures and constructs. In particular, we use these operators to model a DRBD

spare construct as well as traditional series, parallel, series-parallel and parallel-series

structures. Moreover, we provide simplification theorems that allow the structure of

a given DRBD to be reduced. This DRBD structure can be then analyzed to obtain

a generic expression of the system reliability. The reliability expressions obtained

using this approach are generic and independent of the distribution and density func-

tions that represent the system components. Although basic operators, such as OR

and AND, were introduced in [44], they are only useful to model parallel and series

constructs of dependent components. Moreover, there is no general mathematical

12

expression that would allow reasoning about the behavior of DRBDs. In addition,

the DRBD constructs of [44] are quite complex, which complicates modeling large

systems. Therefore, in this thesis, we use the constructs proposed in [45] as they are

much simpler, which facilitates defining the new algebra to model various new DRBD

constructs. Leveraging upon the expressive nature of HOL, we formally verify the

soundness of the proposed DRBD algebra using HOL theorem proving. Although the

formalization development can be conducted using many theorem provers, we choose

the HOL4 theorem prover, as our existing formalization of DFT algebra can be useful

since our proposed DRBD algebra is compatible with the DFT’s.

It is worth mentioning that a given DFT can be converted into its equivalent

DRBD and vice-versa, which allows reasoning about both the success and failure of

a given system using one model. This requires the conversion of each DFT gate into

its equivalent DRBD construct or structure. For example, the DFT spare gate can

be modeled using the DRBD spare construct [43].

1.4 Framework for Formal Dynamic

Dependability Analysis

As mentioned earlier, there exist many techniques that can be invoked to analyze

the dynamic dependability of systems. However, none of them provides an accurate,

scalable and expressive framework for dynamic dependability modeling and analysis,

which represents important features in analyzing the dynamic failure behavior of

systems, specially safety critical ones. Therefore, the objective of this thesis is to

provide a framework for the dynamic dependability analysis of systems modeled as

DFTs and DRBDs. The proposed framework is depicted in Figure 1.3.

13

Figure 1.3: Overview of the Proposed Framework

.

This framework provides verified generic expressions of dependability using

HOL4 theorem prover of DFTs and DRBDs. The analysis starts by having a system

description, which is assumed to be correct, with some dependability requirements,

such as a certain expression of reliability. This system can be modeled either us-

ing a DFT or DRBD model according to its description. We create formal DFT or

DRBD models utilizing our library of formalized DFT gates and DRBD constructs.

This library also includes the DFT and DRBD simplification theorems and verified

probabilistic behavior as well as the reliability expressions. The formal DFT and

DRBD models can then be analyzed qualitatively or quantitatively. In the former,

the sources of vulnerabilities of the system are verified by identifying the cut sets

and cut sequences. In the latter, we prove generic failure and reliability expressions

14

of DFT and DRBD based systems, respectively. It is worth mentioning that un-

like model checking approaches, the formally verified generic expressions of DFT and

DRBD are independent of the probability distributions of the system components.

HOL4 was used in the development of the formalization of static dependability mod-

els, i.e., FTs [21] and RBDs [22]. Therefore, in this thesis, we choose to follow the same

path and use HOL4 as this would facilitate using some of the developed work, such as

the probabilistic PIE theory [23]. In addition, we build our theories utilizing some of

the existing theories in HOL4 such as the theories on measure, Lebesgue integral [49]

and probability [28]. This proposed framework allows conducting the dynamic de-

pendability analysis of many real-world systems to provide generic expressions. It is

important to note that the DFT part of the proposed framework is primarily based on

the formalization of the algebraic approach presented in [30]. However, a distinguish-

ing feature of our formalization is that it allows us to conduct computer based proofs

of the probability of failure expressions for DFT gates within the sound environment

of a theorem prover software. These proofs are either unavailable in [30], or we are

able to conduct them in a simpler manner. In addition, we explicitly define DFT

events that are used to provide the set of time to perform the probabilistic analysis.

Moreover, as we are providing the formalization in a theorem prover, datatypes should

be carefully handled to capture both the behavior of DFT gates and the probability

of their failure. These details are not provided in [30], which signifies the importance

of the proposed methodology. Since this framework integrates both DFT and DRBD

algebras, it provides the capability of formally converting one dependability model to

another based on the equivalence proof of both algebras. This means that the DRBD

model can be converted to a DFT to model the failure instead of the success, then this

model is analyzed using the DFT algebra. Similarly, the DFT model can be analyzed

15

by converting it to its counterpart DRBD model. It is worth noting that based on the

system description, the analysis can be conducted at different levels of abstraction in

a hierarchical (modular) manner.

As an application of the formalized DFT algebra, we formally verify within HOL

the DFT rewrite rules that are used in other DFT analysis tool, such as STORM. This

demonstrates the applicability and generality of our DFT formalization. Furthermore,

we apply our framework in the formal DFT analysis of two safety-critical systems:

a cardiac assist system (CAS), and a drive-by-wire (DBW) system. Similarly, we

perform the analysis of the DRBD of the DBW. Finally, we illustrate the usefulness

of the entire framework by conducting the formal dependability analysis of shuffle-

exchange networks, which are widely used in multiprocessor systems. We use both

DFT and DRBD models to perform the analysis and utilize their equivalence to show

the possibility of conducting the analysis in both directions.

1.5 Thesis Contributions

The main contribution of this thesis is to develop a framework for the formal dynamic

dependability analysis of DFT and DRBD models using HOL theorem proving. This

framework represents an alternative approach to other less rigorous ones, such as

simulation and paper-and-pencil. To accomplish this objective, we develop libraries for

each dependability model. Each library has the formalized mathematical foundations

for each algebra, including the DFT gates definitions and the DRBD structures. In

addition, these libraries include the formally verified probabilistic behavior of each

model besides the equivalence proof of both algebras. Below, we provide the list

of contributions of this work along with the related publications available in the

Biography section at the end of the thesis:

16

• Formalization of a DFT algebra in HOL, which includes operators and gates

definitions in addition to the verification of the simplification theorems. The

gates and operators are defined based on the time-of-failure of the inputs and the

outputs, which are modeled as random variables of failure that return extended-

real numbers. We verify the simplification theorems based on these definitions

and using the properties of extended-real numbers [Bio-Jr2, Bio-Tr3].

• Formal qualitative analysis of DFTs in HOL. We use the simplification theorems

to reduce the structure function of a given DFT. Then, using the HOL4 theorem

prover, we formally verify the cut sets and cut sequences. Moreover, we formally

conduct the qualitative analysis of the DBW and CAS systems [Bio-Jr1].

• Formal verification of the probabilistic failure behavior of the DFT gates using

HOL theorem proving, which allows conducting the formal quantitative analysis

of a given DFT in HOL. Building this theory requires using the properties of

the Lebesgue integral and the probability theory. We perform the probabilistic

analysis of the DBW and CAS systems to provide generic expressions of prob-

ability of failure that are independent of the failure distributions of the input

events [Bio-Jr2, Bio-Tr4].

• Formal verification of DFT rewrite rules that are useful in reducing a given

DFT. These rewrite rules are used in automated DFT analysis tools, such as

the STORM model checker, which represents the first step towards the formal

verification of these tools. We extend the definitions of DFT gates to n-ary

gates, which are required to formalize these rewrite rules [Bio-Cf2].

• Development of a novel DRBD algebra that allows expressing the structure of a

DRBD with spare constructs. We introduce DRBD operators and simplification

17

theorems, similar to the DFT algebra, to enable reducing a given DRBD [Bio-

Cf1, Bio-Tr3].

• The formalization of the new DRBD algebra besides modeling the spare con-

struct and several DRBD structures, such as series and parallel structures. We

formally verify the reliability expressions of the DRBD structures and the spare

construct to allow conducting the reliability analysis of a given DRBD in a

theorem prover [Bio-Cf1, Bio-Tr3].

• Formal verification of the equivalence of DFT and DRBD that allows the bidi-

rectional path between both models. This enables formally analyzing the success

and failure behaviors of systems modeled using either model [Bio-Tr2].

• Formal verification of the terminal, broadcast and network reliability analysis of

several versions of generic shuffle-exchange networks, which are widely used in

the interconnection of multiprocessor systems. We perform the formal analysis

using both DFT and DRBD dependability models and illustrate the utilization

of their equivalence [Bio-Tr1].

1.6 Thesis Organization

The rest of the thesis is structured as follows: In Chapter 2, we provide some prelimi-

naries that are required for the understanding of the rest of this thesis. This includes

an overview of theorem proving and the HOL4 theorem prover. In addition, we pro-

vide a summary of the required theories that are needed to develop the proposed

framework.

In Chapter 3, we present the formalization of DFT operators and gates based

on the algebraic approach. Then, we formally verify a set of simplification theorems

18

that are used to conduct the formal qualitative analysis.

In Chapter 4, we provide the verification details of the probabilistic failure anal-

ysis of each DFT gate. Furthermore, we present the formal quantitative analysis of

the CAS and DBW systems in the form of generic expressions of probability of failure.

As an application to our DFT formalization, in Chapter 5, we provide the for-

malization of the rewrite rules of DFTs, which enable the reduction of DFT models in

automated DFT analysis tools. Moreover, we present the HOL formalization of n-ary

gates that are required to model the rewrite rules.

In Chapter 6, we introduce the proposed DRBD algebra including DRBD op-

erators, spare construct and structures. Furthermore, we provide the simplification

theorems that are used to simplify the structure of a given DRBD. We present the

formalization details of the DRBD algebra and the verified reliability expressions. Fi-

nally, we verify the equivalence of the DFT and DRBD algebras, which enables the

analysis of a given system using both models.

We use the proposed framework in Chapter 7 to provide the dynamic dependabil-

ity analysis of MINs of multiprocessor systems, particularly the terminal, broadcast

and network reliability of shuffle-exchange networks. We provide DFT and DRBD

models of these systems and verify generic expressions of probability of failure and

reliability for different system scenarios. Finally, we conclude the thesis in Chapter 8

and provide some future work directions.

19

Chapter 2

Preliminaries

In this chapter, we provide some preliminaries that are required for the understanding

of the rest of the thesis. We describe the HOL4 theorem prover and its probability

and Lebesgue integral theories. In addition, we introduce some definitions in HOL4

that are required for the formalization of DFTs and DRBDs.

2.1 HOL4 Theorem Proving

Theorem proving is one of the formal methods techniques that uses a computerized

program, i.e., a theorem prover, to carry out mathematical proofs of theorems based

on deductive reasoning. The level of expressiveness of these theorems depends on

the type of logic used, like first-order logic and higher-order logic (HOL). There are

several HOL theorem provers that are available, such as HOL4 [27], Isabelle [50] and

Coq [51], which vary in the availability of the supported libraries.

HOL4 is an interactive theorem prover, which is capable of verifying a wide range

of hardware and software systems as well as mathematical expressions constructed

20

in HOL. Being an interactive tool, HOL4 requires the guidance of the verification

engineer to complete the verification process. In order to verify certain properties of

a system, a mathematical model for this system should be created first, then based

on this model, HOL4 can be used to verify several system properties in the form of

theorems. This makes HOL4 an expressive platform for the verification of any system

that can be described mathematically. The main characteristic of HOL theorem

proving is its soundness, i.e., only valid proof goals can be proved. The core of HOL4

consists only of four axioms and eight inference rules. Soundness is assured as any new

theorem should be verified based on these axioms and rules, or based on previously

proven theorems. In addition, no approximation is involved in the models, as their

behavior, such as the failure in the case of DFTs, is captured in mathematical terms.

These features make HOL4 suitable for carrying out the DFT based analysis of safety-

critical systems that require sound verification results. The term formalization means

to mathematically model the behavior of a system in an appropriate logic. A proof

goal consists of a list of assumptions of type Boolean and a conclusion. For example,

“∀ (x:real). 0 < x ⇒ 0 < x-1” is a proof goal, which can be formally verified as

a theorem in HOL4. A theory in HOL4 is a collection of definitions, constants and

theorems that can be included in the working environment to be used in verifying

other proof goals. Table 2.1, lists some of the used symbols in HOL.

2.2 Probability Theory

The probability theory is formalized based on the measure theory in HOL4 [28]. A

measurable space is represented as a pair (X ,A), where X represents a space and

A a set of measurable sets. The functions space and subsets are defined in HOL

to return the X and A, respectively, of a measurable space (X ,A). A measure is

21

Table 2.1: Some HOL Symbols

HOL Symbol Meaning

∧ Logical and
∨ Logical or
:: Appends a new element to a list
++ Joins two lists
HD L Head of a list L
TL L Tail of list L
(a, b) A pair with elements a and b
FST First element of a pair
SND Second element of a pair

λx. f x Lamda abstracted function f
{x | P x} Set of elements x that satisfy P (x)
FINITE s set s is finite
A DIFF B A− B

e INSERT s insert element e in set s
s DELETE e A set that has all elements of s except e

DISJOINT A B sets A and B are disjoint

generally a function that designates a certain number to a set, which represents the

size of this set [17]. It is defined as the triplet (X ,A, μ), where X represents the

space, A represents the measurable sets and finally μ represents the measure. Three

functions, m space, measurable sets and measure, are defined in HOL to return

the space (X), measurable sets (A) and measure (μ) of a measure space, respectively

[52]. A probability space is defined as a measure space, with the added condition that

the probability measure for the entire space is equal to 1.

Random variables are formalized as measurable functions that map events from

the probability space to some other σ- algebra space s. For a collection of subsets of a

space (X), (A) is a σ- algebra on (X) if it contains the empty set, and is closed under

countable unions and complements within the space (X) [17]. Random variables are

defined in HOL4 as in [17]:

22

Definition 2.1.

	 ∀ X p s. random variable X p s ⇔
prob space p ∧ X ∈ measurable (p space p, events p) s

where prob space p ensures that p is a probability space with p space as its space and

events as its measurable sets. X ∈ measurable (p space p, events p) s ensures

that X belongs to the set of measurable functions from the probability space p to the

σ-algebra space s [52]. Measurable spaces s and (p space p, events p) are ensured

to be σ-algebra spaces using the measurable function.

The probability distribution of a random variable X represents the probability

that the random variable X belongs to a set A. This is equivalent to finding the

probability of the event {X ∈ A}, which can also be represented using the preimage

as X−1(A). The probability distribution is defined in HOL4 as in [17]:

Definition 2.2.

	 ∀ p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p))

where s is a set of elements of the space that the random variable X maps to. For a

random variable that maps the probability space (p) into another measurable space,

the push forward measure is a measure that uses the space and subsets of the measur-

able space as its space and measurable sets and uses the distribution of the random

variable as its measure part [18]. In general, the push forward measure for any mea-

surable function X from measure M to measure N can be expressed as:

Definition 2.3.

	 ∀ M N f. distr M N f =

(m space N, measurable sets N,

λA. measure M (PREIMAGE f A ∩ m space M))

23

A density measure is used to define a density function, f , over the measure space

M as in [53]:

Definition 2.4.

	 ∀ M f. density M f =

(m space M, measurable sets M,

λA. pos fn integral M (λ x. f x * indicator fn A x))

where pos fn integral represents the Lebesgue integral of positive functions as will

be described in the following section.

The cumulative distribution function (CDF) of a random variable X is usually

used when we are interested in finding the probability that the random variable is less

than or equal to a certain value. It is formally defined for real values as in [23]:

Definition 2.5.

	 ∀ p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

It is worth mentioning that the CDF can be defined for extended-real (extreal)

random variables as well, where extreal is a HOL data-type containing the real

numbers plus ±∞. However, in our formalization we will use the CDF of real random

variables, as it is required to integrate their density functions over the real line.

When dealing with multiple random variables, the probabilistic Principle of

Inclusion and Exclusion (PIE) provides a very interesting relationship between the

probability of the union of different events. It can be expressed as:

Pr(
n⋃

i=1

Ai) =
∑

t �={},t⊆{1,2,...,m}
(−1)|t|+1Pr(

⋂
j∈t

Aj) (2.1)

It has been formally verified in HOL4 as follows [23]:

24

Theorem 2.1.

	 ∀ p L.

prob space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union list L = sum set {t | t ⊆ set L ∧ t �= {}}
(λt. -1 pow (CARD t+1) * prob p (BIGINTER t))

where L is the list of events that we are interested in expressing the probability of

their union.

In order to be able to handle multiple random variables, a pair measure (often

called binary product measure) is required to be able to model joint distribution

measures. This pair measure can be also used in a nested way to model the joint

distribution measure of multiple random variables. The pair measure is defined as

the product of two measures. It was initially formalized in Isabelle/HOL [18] and was

then ported to HOL4 [53]. The space and the measurable sets of this pair measure are

generated using the Cartesian product of the spaces and the measurable sets of the

participating measures, while the measure part is defined using the Lebesgue integral.

Since there are real and extended-real data-types in HOL4, there exist two

Borel spaces, one over the real line (borel) [54] and the second over the extended-real

line (Borel) [49]. The Lebesgue-Borel measure is required to integrate over the real

line. In particular, we need the Lebesgue-Borel measure in this work to integrate

the density functions of the random variables over the real line. The Lebesgue-Borel

measure is a measure defined over the real line, which uses the real line as its space

and the Borel sets as its measurable sets. The Lebesgue-Borel measure is defined in

HOL4 as lborel, which uses the real borel sigma algebra (borel) generated by the

open sets of the real line as well as the Lebesgue measure [54].

25

The independence of random variables is an important property when dealing

with multiple random variables. In general, for any two random variables X and Y ,

the probability of the intersection of their events is equal to the multiplication of the

probability of the individual events. The independence of random variables is defined

as indep vars [53]:

Definition 2.6.

	 indep vars p M X ii =

(∀ i. i ∈ ii ⇒
random variable (X i) p

(m space (M i), measurable sets (M i))) ∧
indep sets p

(λi. {PREIMAGE f A ∩ p space p |

(f = X i) ∧ A ∈ measurable sets (M i)}) ii

where p is the probability space and M is the measure space that the random variable X

maps to. In this case, M and X are indexed by a number from the set of numbers ii,

which gives the possibility of defining the independence for multiple random variables

that map from the probability space to different spaces. The function indep vars

defines the independence by first ensuring that the group of input functions X are

random variables and that their event sets are independent using indep sets. Using

indep sets, the probability of the intersection of any sub-group of events of the

random variables is equal to the multiplication of the probability of the individual

events.

Using indep vars, the independence of two random variables is defined as

in [53]:

26

Definition 2.7.

	 indep var p M x X M y Y =

indep vars p (λi. if i = 0 then M x else M y)

(λi. if i = 0 then X else Y) {x | (x = 0) ∨ (x = 1)}

We define several functions that facilitate handling our formalization. The first

function is measurable CDF, which is defined as:

Definition 2.8.

	 ∀ p X. measurable CDF p X =

(λx. CDF p X x) ∈ measurable borel Borel

This function ensures that the CDF of random variable X is measurable from

the borel space to the Borel space. In other words, it ensures that the CDF is

measurable from the real line to the extended-real line. This implies that the domain

for this CDF is the real line and the range is the extended-real line.

We define another function, cont CDF, which ensures that the CDF is continu-

ous. It is formally defined as:

Definition 2.9.

	 ∀ p X. cont CDF p X = ∀ z. (λx. real (CDF p X x)) contl z

where the function real typecasts the value of CDF from extended-real to real data-

type, and contl ascertains that the function is continuous over all values in its domain.

It is worth mentioning that X is a real valued random variable. However, the CDF

returns extended-real. As the continuity of functions is defined in HOL4 for real valued

functions, it is required to typecast the value of the CDF from extended-real to real. In

addition, since the values of the CDF range from 0 to 1, as it represents a probability,

this function is the same in both cases but with different datatypes. Therefore, if

27

the function is continuous in the extended-real, then it is continuous using the real

data-type. Furthermore, later we will use extended-real random variables, therefore,

it is required to typecast their values using the real function.

Next, we define a function, rv gt0 ninfinity, to ensure that the input random

variables of a DFT can only have the range [0,+∞):

Definition 2.10.

	 (rv gt0 ninfinity [] = T) ∧
(rv gt0 ninfinity (h::t) = (∀ s. 0 ≤ h s ∧ h s �= PosInf) ∧
(rv gt0 ninfinity t))

Finally, we define a function, den gt0 ninfinity to ensure the proper values

for the marginal, joint and conditional density functions:

Definition 2.11.

	 ∀ f xy f y f cond.

den gt0 ninfinity f xy f y f cond ⇔
∀ x y.

0 ≤ f xy (x,y) ∧ 0 < f y y ∧ f y y �= PosInf ∧ 0 ≤ f cond y x

where f xy is the joint density function, f y is the marginal density function, and

finally f cond is the conditional density function of X given Y. This function can be

used to assign the mentioned conditions to other functions and not necessarily only

the density functions.

28

2.3 Lebesgue Integral

The Lebesgue integral is defined in HOL4 using positive simple functions, which are

measurable functions defined as a linear combinations of indicator functions of mea-

surable sets representing a partition of the space X [28]. A positive simple function,

g, can be represented using the triplet (s, a, x) as [28]:

∀t ∈ X, g(t) =
∑
i∈s

xi1ai(t), xi ≥ 0 (2.2)

where s is a finite set of partition tags, xi is a sequence of positive extreal numbers,

ai is a sequence of measurable sets and 1ai is the indicator function of measurable set

ai and is defined as in [28]:

Definition 2.12.

	 ∀ A. indicator fn A = (λx. if x ∈ A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then ex-

tended for positive functions for measure M as pos fn integral M (λx. f x) [28],

where f is the positive function that we are integrating. In this work, we are integrat-

ing the density functions over the real line. Therefore, we will use the Lebesgue- Borel

measure with the Lebesgue integral. The Lebesgue-Borel (lborel) measure is a mea-

sure defined over the real line. As with any measure, lborel should have a space and

measurable sets. For lborel, the real line represents its space and the borel sets repre-

sent the lborel measurable sets [54]. For example, the Lebesgue integral of the posi-

tive function f from 0 to t (
∫ t

0
f(x) dx) can be expressed formally as: pos fn integral

lborel (λx. f x * indicator fn {x’| 0 ≤ x’ ∧ x’ ≤ t} x), where the indi-

cator function is used here to set the interval that we are integrating over. Throughout

29

this thesis, we will use a mix of standard and HOL math notation to facilitate the

readability of the text.

It is usually required that the probability of an event for a random variable to be

expressed using the integration of the random variable’s distribution. This is verified

in HOL4 as [17]:

Theorem 2.2.

	 ∀ X p s A.

random variable X p s ∧ A ∈ subsets s ⇒
(distribution p X A =

integral (space s, subsets s, distribution p X)(indicator fn A))

In the above theorem, X can be a continuous or a discrete random variable.

However, in our DFT formalization, we are only interested in continuous random

variables as they represent the time of failure of system components.

30

Chapter 3

Formal Qualitative Analysis of

Dynamic Fault Trees

In this chapter, we present our formalization of DFT gates and operators based on

the algebraic approach, which are required in conducting the formal DFT qualitative

analysis. We apply this formalization to qualitatively analyze two case studies to

obtain formally reduced cut sets and cut sequences.

3.1 Methodology

The proposed methodology for conducting the formal qualitative analysis of DFTs

in HOL is depicted in Figure 3.1. The analysis starts by a system description that

can be used to build a DFT model with some dependability requirements, which

are related to the qualitative assessments of DFTs. A formal DFT model of the

given system is developed in HOL, which requires the formal definitions of DFT

gates. These gates include the AND, OR, FDEP, PAND and spare gates with shared

31

Figure 3.1: Formal DFT Qualitative Analysis Methodology

spares. Then, the structure function of the DFT’s top event has to be reduced and

we propose to formally verify this reduction based on a library of generic formally

verified simplification theorems. This ensures that the reduced formal DFT model

corresponds to the original DFT model. This verified reduced structure function is

then used in the qualitative analysis to produce a reduced form of the cut sets and

cut sequences that satisfy the requirements. The cut sets can be defined as a group of

sets, where each set has the inputs that their combined failure leads to the occurrence

of the top event. The cut sequences, on the other hand, is a group of lists, where each

list has a certain sequence of inputs that their failure in this particular sequence leads

to the failure of the top event.

It is worth mentioning again that this methodology formalizes the mathematical

foundations of the algebraic approach presented in [30], where the DFT events are

treated based on their time of occurrence (failure of corresponding components d).

This allows us to conduct the qualitative analysis using the sound core of HOL theorem

32

prover. Therefore, it is required first to have a library of formalized DFT operators,

gates and simplification theorems to be used in the formal DFT qualitative analysis.

In [30], it is assumed that system components are non-repairable, i.e., the components

are not repaired after failure.

3.2 Identity Elements and Temporal Operators

Similar to ordinary Boolean algebra, the DFT algebraic approach defines identity el-

ements that are important in the simplification process of the DFT [30]. The DFT

identity elements are: the ALWAYS element representing an event that always oc-

curs from time 0 (constant failed element CONST(�)), i.e., ALWAYS= 0, and the

NEVER element, which describes an event that never occurs (constant fail-safe ele-

ment CONST(⊥)), i.e., NEVER= +∞. We formally define these elements as:

Definition 3.1. Always Element

	 ALWAYS = (λs. (0:extreal))

Definition 3.2. Never Element

	 NEVER = (λs. PosInf)

where PosInf represents +∞ in HOL4. We define the time of failure of the events

as lambda abstracted functions that accept an arbitrary data-type that represents an

element from the probability space and return the time. So that they can be later

treated as random variables. For example, the time of failure of a component is a

random variable X and can be expressed in lambda abstraction form as (λs. X s).

Temporal operators are also required to model the DFT gates in the algebraic

approach [30]. These operators are: Before (�), Simultaneous (Δ) and Inclusive

Before (�). Each one of these operators accepts two inputs, which can be subtrees

33

or basic events that represent faults of system components. The time of occurrence

of the output event of each operator equals the time of occurrence of the first input

event if a certain condition is satisfied, otherwise the output can never occur. The

output event of the Before operator occurs (fails) when the first input event (left) is

less than the time of occurrence of the second input (right), otherwise it can never

occur. It is mathematically expressed as [30]:

d(X � Y) =

⎧⎪⎪⎨
⎪⎪⎩
d(X), d(X) < d(Y)

+∞, d(X) ≥ d(Y)

(3.1)

We formally define the Before operator in HOL as lamda abstracted function:

Definition 3.3. Before Operator

	 ∀ X Y.

D BEFORE X Y = (λs. if X s < Y s then X s else PosInf)

where X and Y represent the time of occurrence of events X and Y, respectively.

The time of failure of the Simultaneous operator is equal to the time of occur-

rence of one of the events, only if their time of failure is equal, otherwise, it can never

occur. It can be expressed as [30]:

d(XΔY) =

⎧⎪⎪⎨
⎪⎪⎩
d(X), d(X) = d(Y)

+∞, d(X) �= d(Y)

(3.2)

It is worth mentioning that if the inputs of the Simultaneous operator are basic

events with continuous failure distributions, then the output of this operator can never

fail [30]. This is because the time of failure is continuous, and the possibility that

two system components fail at the same time is negligible. As a consequence, it is

assumed in the algebraic approach that any two different basic events can never fail

34

at the same time. This can be expressed for basic failure events of the inputs of the

given DFT as in [30]:

d(XΔY) = NEV ER (3.3)

We formally define the Simultaneous operator as:

Definition 3.4. Simultaneous Operator

	 ∀ X Y.

D SIMULT X Y = (λs. if X s = Y s then X s else PosInf)

Finally, the Inclusive Before combines the behavior of both the Simultaneous

and the Before operators, i.e., if the first input event (left) occurs before or at the

same time as the second input event (right), then the output event occurs with a time

equals to the time of occurrence of the first input event. This is expressed as [30]:

d(X � Y) =

⎧⎪⎪⎨
⎪⎪⎩
d(X), d(X) ≤ d(Y)

+∞, d(X) > d(Y)

(3.4)

We formally define this operator in HOL as:

Definition 3.5. Inclusive Before Operator

	 ∀ X Y.

D INCLUSIVE BEFORE X Y = (λs. if X s ≤ Y s then X s else PosInf)

3.3 Formalization of FT Gates

The mathematical expressions of the FT gates; static and dynamic, are listed in

Table 3.1. In [30], the DFT gates are defined using the temporal operators and the

definitions of the AND and OR. However, in this work, we present mathematical

35

definitions for the gates based on the time of failure of the output event, then we

verify the equivalence of these definitions with the definitions presented in [30].

Table 3.1: DFT Gates Mathematical Expressions

Gates Mathematical Expressions

d(X · Y) = max(d(X), d(Y))

AND

d(X + Y) = min(d(X), d(Y))

OR

d(QPAND) =

{
d(Y), d(X) ≤ d(Y)

+∞, d(X) > d(Y)PAND

d(XTr) = min(d(X), d(Tr))

FDEP

d(QCSP) =

{
d(X), d(Y) < d(X)

+∞, d(Y) ≥ d(X)

d(QHSP) = max(d(Y), d(X))

Spare

d(QWSP) = d(Y · (Xd � Y) +Xa · (Y �Xa) + YΔXa + YΔXd

d(Q1) = d(X · (Zd �X)+Za · (X � Za)+X · (Y �X))

Shared
Spare

3.3.1 AND and OR Gates

The AND (·) and OR (+) are considered as operators and as static gates as well.

They can be modeled based on the time of occurrence of their output events. For the

AND gate, the output occurs when both of its input events occur and the time of

36

occurrence of the output is modeled as the maximum time of occurrence of both input

events [30]. For the OR gate, the output occurs once one of its input events occurs.

Therefore, we formalize it as the minimum time of occurrence of the inputs [30]. We

formally define the AND and OR in HOL as:

Definition 3.6. AND Gate/Operator

	 ∀ X Y. D AND X Y = (λs. max (X s)(Y s))

Definition 3.7. OR Gate/Operator

	 ∀ X Y. D OR X Y = (λs. min (X s)(Y s))

where max and min are the HOL4 functions that return the maximum and the mini-

mum of their input arguments, respectively. It is important to notice that we define

the AND and OR gates as lambda abstracted functions that accept two inputs that

are also functions. This enables defining the inputs later as random variables to rep-

resent the time of failure function of system components. This also applies to the

formal definitions of the rest of DFT gates.

3.3.2 Priority AND Gate (PAND)

The PAND gate, shown in Table 3.1, captures the sequence of occurrence (failure)

of its inputs. The output event of this gate occurs if all input events occur in a

certain sequence (conventionally from left to right). In Table 3.1, we provide the

mathematical definition of the PAND gate. We formalize this expression in HOL as:

Definition 3.8. PAND Gate

	 ∀ X Y. PAND X Y = (λs. if X s ≤ Y s then Y s else PosInf)

The behavior of the PAND gate can also be represented using the temporal

operators as defined in [30]:

37

Q = Y · (X � Y) (3.5)

We verify the above relationship in HOL4 as follows:

Theorem 3.1.

	 ∀ X Y. PAND X Y = D AND Y (D INCLUSIVE BEFORE X Y)

This result ascertains that the behavior of PAND gate is correctly captured in our

formal definition.

3.3.3 Functional DEPendency Gate (FDEP)

The FDEP is used to model the dependencies in the failure behavior between the

system components. In other words, it is used when the failure of one component

triggers the failure of another. For the FDEP gate, shown in Table 3.1, event X can

occur if it is triggered by the failure of Tr or if it occurs by itself. As a result, the

occurrence time of XTr (triggered X) equals the minimum time of occurrence of Tr

and X. From the FDEP definition, we can notice that its behavior is equivalent to the

behavior of the OR gate, which is similar to what is proposed in [55, 56] We formally

define the FDEP as:

Definition 3.9. FDEP Gate

	 ∀ X Tr. FDEP X Tr = (λs. min (X s)(Tr s))

In [30], the behavior of the FDEP gate is represented using the temporal oper-

ators as:

XTr = Tr + (X � Tr) (3.6)

We verify the above relationship in HOL4 as follows:

38

Theorem 3.2.

	 ∀ X Tr. FDEP X Tr = D OR Tr (D INCLUSIVE BEFORE X Tr)

3.3.4 Spare Gates

Modeling spare parts in real systems is necessary when analyzing the probability of

failure of the overall system, as these spares are used to replace the main parts after

their failure. The main part Y of the spare gate, shown in Table 3.1, is replaced by

the spare part X after a failure occurs. The spare gate has three variants depending

on the type of the spare:

• Cold SPare Gate (CSP): The spare part can only fail while it is active.

• Hot SPare Gate (HSP): The spare part can fail in both the active and the

dormant states with the same probability.

• Warm SPare Gate (WSP): The spare part can fail in both the dormant and

active states with different probabilities.

While manipulating the structure function of the DFT, it is required to distinguish

between the two states of the spare part, i.e., the active state and the dormant state.

Therefore a different variable is assigned to each state. For example, for the spare gate

in Table 3.1, the variable X is assigned Xd and Xa for the dormant and active states,

respectively [30]. This is required in case of a WSP gate, where the spare part has

two different states. Recall that in the case of a CSP gate, it is not necessary to use

these subscripts, since the spare part in the CSP gate does not work in the dormant

state. Therefore, the active state only affects the DFT behavior and is included in the

expressions. In the HSP gate, the spare part has the same behavior for both states

and no subscript is required to distinguish between these two.

39

It can be noticed from the definition of the WSP gate that the output of the

spare occurs in two cases: if the spare fails in its dormant state, then the main part

fails or the main part fails then the spare is activated and then it fails in its active

state. The last two terms in the WSP definition cover the possibility that the spare

and the main part fail at the same time. This can happen if the main part and

the spare are functionally dependent on the same trigger. The WSP represents the

general case for the spare gates, while the CSP and HSP represent special cases of the

WSP, where the spare cannot fail or is fully functioning in its dormant state. We have

defined mathematical expressions for both the CSP gate for basic events and the HSP

gate to facilitate using their expressions in DFT analysis. However, as will be seen

shortly, we have verified that the behavior of our expressions is equivalent to a WSP

under certain conditions. For the CSP gate, the output occurs if the main part fails

then the spare is activated and then the spare fails while it is active. Since the spare

part of the HSP has the same failure distribution in both of its states, the output of

the HSP occurs when both inputs (main and spare) fail. Therefore, its behavior is

equivalent to an AND gate.

We formally define in HOL the three variants of the spare gate as:

Definition 3.10. CSP Gate

	 ∀ X Y. CSP Y X = (λs. if Y s < X s then X s else PosInf)

Definition 3.11. HSP Gate

	 ∀ X Y. HSP Y X = (λs. max (Y s)(X s))

40

Definition 3.12. WSP Gate

	 ∀ Y Xa Xd.

WSP Y Xa Xd =

D OR

(D OR

(D OR (D AND Y (D BEFORE Xd Y))

(D AND Xa (D BEFORE Y Xa)))

(D SIMULT Y Xa))(D SIMULT Y Xd)

Then, we formally verify that the WSP gate is equivalent to an HSP gate when

the spare part in its dormant state is equal to its active state.

Theorem 3.3. 	 ∀ X Y. WSP Y X X = HSP Y X

Moreover, we formally verify that the WSP gate is equivalent to a CSP gate, if

the spare part cannot fail in its dormant state. We formally verify this as:

Theorem 3.4.

	 ∀ Xa Xd Y. (Xd = NEVER) ∧
(∀ s. ALL DISTINCT [Y s; Xa s]) ⇒ WSP Y Xa Xd = CSP Y Xa

where Xd = NEVER indicates that the spare part cannot fail in its dormant state, and

ALL DISTINCT ensures that the inputs cannot fail at the same time. This is because

we defined the CSP gate for basic events. As can be seen from the above theorem,

the CSP gate only deals with the active state of the spare, therefore, when dealing

with a CSP there is no need to use the subscript.

In some real-world applications, a spare part can replace one of two main parts.

This case is represented using shared spare gates, as shown in Table 3.1 [41]. The

expression of the output Q1 of the first gate is listed in Table 3.1 [30]. This expression

41

implies that the output Q1 of this gate occurs in three different situations: (i) if the

main part Y fails, then the spare fails while it is active (Xa), (ii) if the spare part

fails in its dormant state Xd, then the main part fails, or (iii) if the second main part

(of the other gate) Z fails before Y , and thus the spare is not available to replace Y

when it fails. We use the DFT operators to formally model the behavior of this gate:

Definition 3.13. Shared Spare

	 ∀ Y Z Xa Xd.

shared spare Y Z Xa Xd =

D OR

(D OR (D AND Y (D BEFORE Xd Y))

(D AND Xa (D BEFORE Y Xa)))

(D AND Y (D BEFORE Z Y)))

3.4 Formal Verification of the Simplification

Theorems

In the DFT algebraic approach, many simplification theorems exist and are used to

reduce the structure function of the top event [30]. In [41], we verified over 80 sim-

plification theorems. However, these theorems were based on our old definitions of

the DFT gates and operators that do not support probabilistic analysis. We verify

all these theorems for the new definitions, presented in this work. These simplifica-

tion theorems range from simple ones, such as commutativity of the AND, OR and

Simultaneous operator, to more complex ones that include combinations of all the op-

erators. Table 3.2 includes some of these verified properties. The verification details

of these theorems as well as the gates definitions are available at [57].

42

Table 3.2: Examples of Formally Verified Simplification Theorems

DFT Algebra Theorems HOL Theorems

X + Y = Y +X 	 ∀ X Y. D OR X Y = D OR Y X

X ·NEV ER = NEV ER 	 ∀ X. D AND X NEVER = NEVER

X � (Y + Z) = (X � Y) · (X � Z)
	 ∀ X Y Z. D BEFORE X (D OR Y Z) =
D AND (D BEFORE X Y)(D BEFORE X Z)

X � (Y + Z) = (X � Y) · (X � Z)

	 ∀ X Y Z.

D INCLUSIVE BEFORE X (D OR Y Z) =

D AND (D INCLUSIVE BEFORE X Y)

(D INCLUSIVE BEFORE X Z)

(X � Y) + (XΔY) = X � Y
	 ∀ X Y. D OR (D INCLUSIVE BEFORE X Y)
(D SIMULT X Y) = D INCLUSIVE BEFORE X Y

3.5 Formal Qualitative Analysis of DFT

Examples

In this section, we illustrate, using three small DFT examples (Figure 3.2), the appli-

cation of the proposed framework to qualitatively analyze a given DFT.

Using our proposed methodology, we are able to build a HOL formal DFT

model and formally verify the reduction of the given DFT examples as expressed in

the following three theorems. We assume that all inputs are basic events, i.e., they

cannot fail at the same time. This condition can be relaxed if we are modeling a

system with a common cause of failure for the inputs.

Theorem 3.5. Reduced CPAND

	 ∀ X Y Z. (∀ s. ALL DISTINCT [X s; Y s; Z s]) ⇒
(PAND (PAND Z Y) X =

D AND X (D AND (D BEFORE Z Y) (D BEFORE Y X))

43

(a) CPAND (b) AND-FDEP (c) WSP-OR

Figure 3.2: DFT Examples

Theorem 3.6. Reduced AND-FDEP

	 ∀ X Y Z. X·(FDEP Y Z) = D OR (D AND X Y)(D AND X Z)

Theorem 3.7. Reduced WSP-OR

	 ∀ Y Xa Xd Z.

(∀ s. ALL DISTINCT [Y s; Xa s; Xd s; Z s])⇒
(D OR (WSP Y Xa Xd) Z =

D OR (D AND Xa (D BEFORE Y Xa))(D OR (D AND Y (D BEFORE Xd Y)) Z)

As mentioned previously, each theorem can have a list of required conditions

and a conclusion. For Theorem 3.5, the condition ensures that all random variables

that represent system components are not equal, i.e., these random variables rep-

resent basic events. This is accomplished using the HOL4 function ALL DISTINCT.

The left hand side of the conclusion of this theorem represents the formal DFT ex-

pression for the given DFT, while the right hand side represents the verified reduced

structure function. This also applies to Theorems 3.6 and 3.7. Using these verified

reduced expressions, one can determine the cut sets and cut sequences to conduct the

qualitative analysis. For example, the CPAND has only one sequence that can cause

44

the occurrence of the top event which is [Z;Y ;X]. Similarly, the AND-FDEP DFT

has only two cut sets {X;Y } and {X;Z}. Finally, the WSP-OR DFT has two cut

sequences [Y ;Xa] and [Xd;Y] and one cut set represented by the single element {Z}.
This indicates that using our proposed methodology, we have been able to formally

conduct the qualitative analysis and determine the cut sets and cut sequences of a

given DFT.

In order to emphasize on the importance of formally verifying the underlying

math of the algebraic approach and the significance of knowing the required conditions

for the analysis results to be valid, we provide more details regarding a flaw in one

of the algebraic approaches. In [58], a simple algebra is introduced that provides

definitions and simplification theorems for DFTs. We have been able to identify an

error in one of the simplification theorems, which is the distributivity property of the

sequence operator over the OR operator, i.e.,:

A.(B + C) = A.B + A.C (3.7)

where . and + represent the sequence and OR operators, respectively. The sequence

operator indicates that its output occurs if the input events occur in sequence from

left to right, i.e., the time of occurrence of the left input event is less than that of

the right input event. While the OR operator is represented by the minimum time

of occurrence for the input events. Now, assuming that the time of occurrence of

the input events A, B, and C are dA, dB and dC , respectively, the left hand side

of Equation (3.7) occurs only if dA < min(dB, dC). While, the right hand side of

the same equation occurs if dA < dB or dA < dC . This property fails to hold when

dA > min(dB, dC) but at the same time dA < max(dB, dC), i.e., dA falls in the middle

between dB and dC . In this particular case, the left hand side of Equation (3.7) will

45

not occur because dA is not less than the minimum of dB and dC , however, one of

the terms of the right hand side occurs. For this property to hold, it is required to

have the condition dA < min(dB, dC). We have been able to identify this flaw using

theorem proving, as the property was not verifiable for the aforementioned case unless

this particular condition is added. As a consequence, using this property without the

required condition in any application, including the application part of the mentioned

paper [58], would lead to erroneous results, which is serious specially for safety-critical

systems that cannot tolerate any error in the analysis. These findings emphasize on the

importance of having a rigorous formal framework for DFT analysis, which is essential

for safety-critical systems. In the next section, we will apply our methodology on two

real-world case studies.

3.6 Formal Qualitative Analysis Case Studies

In this section, we apply our methodology for conducting the qualitative analysis of

two safety-critical systems, i.e., a drive-by-wire (DBW) system to control the brakes

and throttle systems of modern vehicles [59] and a cardiac assist system (CAS) that

provides care to patients with heart failure [60]. The analysis of these systems should

be carefully conducted as any error may lead to the loss of life in extreme cases.

In order to conduct the formal qualitative analysis using our framework, we

provide generic steps that can be followed:

1. Express the structure function of the top event of the DFT using the DFT

algebra.

2. Simplify the structure function and formally verify that the simplified and orig-

inal functions are equal using the simplification theorems.

46

Figure 3.3: DFT of Drive-by-wire System

3. Obtain a reduced form of the cut sets and cut sequences.

We demonstrate the utilization of these steps in the formal qualitative analysis

of the DBW and CAS systems.

3.6.1 Qualitative Analysis of DBW

The DFT of the drive-by-wire (DBW) system is shown in Figure 3.3 [59]. We chose to

analyze the brake and the throttle parts of this system, which consists of the following

parts: the brakes control unit (BC), the throttle failure (TF), two sensors; the brake

sensor (BS) and the throttle sensor (TS), the engine failure (EF) and finally the

primary central control (PC) unit with its spare part (SCd and SCa for both the

dormant and active states, respectively). We model the spare part of the central

control unit as a warm spare, as this is the general case for the spare. In addition,

this is the most convenient way to model it as the spare control unit can be working

in the sleep mode, and it will only be activated after the main unit fails.

We proceed with the analysis of the DBW system following the steps outlined in

47

our proposed methodology. We first start by verifying the reduction of the structure

function. The reduced structure is:

QDBW = TF +EF +BC + SCa · (PC � SCa) +PC · (SCd �PC) + TS +BS (3.8)

We formally verify this reduced form as:

Theorem 3.8. Reduced DBW

	 ∀ BS TS PC SCa SCd BC EF TF.

(∀ s. ALL DISTINCT

[BS s; TS s; PC s; SCa s; SCd s; BC s; EF s; TF s]) ⇒
(D OR

(D OR (D OR (D OR TF EF) (WSP PC SCa SCd)) BC)

(D OR TS BS)) =

D OR

(D OR

(D OR

(D OR

(D OR (D OR TF EF) BC)

(D AND SCa (D BEFORE PC SCa)))

(D AND PC (D BEFORE SCd PC))) TS) BS)

From this expression, we can find a reduced form of the cut sequences :

[PC, SCa] , [SCd, PC]

which means that the top event can fail due to two different sequences of input failures.

The first one is the failure of the main control unit (PC) followed by the failure of

48

Figure 3.4: DFT of Cardiac Assist System

the spare in its active state (SCa). The second sequence is when the spare part fails

in its dormant state (SCd) followed by the failure of the main control unit.

In a similar way, a reduced form of the cut sets can be extracted from the

reduced top event expression as:

{TF}, {EF}, {BC}, {TS}, {BS}

3.6.2 Qualitative Analysis of CAS

The DFT for the cardiac assist system (CAS) is shown in Figure 3.4 [60]. The system

consists of three sub-systems: pumps, motors and CPUs. There are two main pumps

PA and PB. After the failure of one of these pumps, a shared spare PS replaces

the failed one. There are two motors MA and the spare MB and a switch MS. The

motor sub-system fails if MS then MA fail in sequence or if MA and the spare MB

fail. Finally, there is one main CPU P and its spare B. Both CPUs are functionally

dependent on the union of a crossbar switch (CS) and the system supervisor (SS).

49

We consider here different variations of spare gates, to make this case study

more general and inclusive to all the formalized gates, as shown in Figure 3.4. A

simplified version of this DFT, where we assumed that all spare gates are HSPs gates,

was verified in [61]. However, the variations that we assume here for the spares

allow modeling and verifying the probability of failure of the given system, while the

independence of some of the events does not hold anymore, which makes it a more

general case.

We start first by verifying a reduced version of the structure function of the top

event to enable us to perform the qualitative analyses on a reduced function. The

reduced form of the structure function can be expressed as:

QCAS =CS + SS +MA · (MS �MA) +MB · (MA�MB)+

Ba · (P � Ba) + P · (Bd � P) + PA · PB · PS

(3.9)

We formally verify this reduction in HOL4 as:

Theorem 3.9. Reduced CAS

	 ∀ PA PB PS MS MA MB Ba Bd CS SS P.

(∀ s. ALL DISTINCT

[MA s; MS s; PA s; PB s; PS s; MB s; P s; Bd s; Ba s; CS s; SS s] ∧
(D BEFORE Ba P = NEVER) ⇒(
D OR

(D AND (shared spare PA PB PS PS)

(shared spare PB PA PS PS))

(D OR

(D OR (PAND MS MA) (CSP MA MB))

50

(WSP (FDEP (D OR CS SS) P)(FDEP (D OR CS SS) Ba)

(FDEP (D OR CS SS) Bd))) =

D OR

(D OR

(D OR

(D OR

(D OR

(D OR CS SS)(D AND MA (D BEFORE MS MA)))

(D AND MB (D BEFORE MA MB)))

(D AND Ba (D BEFORE P Ba)))

(D AND P (D BEFORE Bd P)))(D AND Pa (D AND PB PS))
)

where ALL DISTINCT ensures that the inputs do not occur at the same time, and

(D BEFORE Ba P = NEVER) ascertains that the spare part B in its active state cannot

fail before P . This ensures the proper behavior of the WSP gate. It is worth mention-

ing that such a condition is not required for the HSP gate as the spare part exhibits

the same failure behavior in both of its states.

It is important to mention that since the inputs of the WSP gate are functionally

dependent on the union of CS and SS, we use (FDEP (CS+SS) P), (FDEP (D OR CS

SS) Ba) and (FDEP (D OR CS SS) Bd) for the main, the spare in its active state and

the spare in its dormant state, respectively.

From the verified reduced top event, we can conclude a reduced form of cut

sequences as follows:

[MS;MA], [MA;MB], [P ;Ba], [Bd;P]

Moreover, a reduced form of the cut sets is deducted as:

{CS}, {SS}, {PA, PB, PS}

51

3.7 Summary

In this chapter, we provided the formalization of the DFT operators and gates based on

the DFT algebraic approach. Furthermore, we formally verified several simplification

theorems that are utilized to reduce the structure function of a given DFT. We used

this reduced format to conduct the qualitative analysis and obtain a reduced form

of the cut sets and cut sequences. We provided the details of a flaw in a published

DFT algebra, which further highlights the importance of our formalization. Finally,

we conducted the formal qualitative analysis of two case studies. One of the main

challenges faced during our formalization is choosing the proper data-type that can be

used to capture the behavior of each gate and at the same time allows the verification of

the simplification theorems. In the next chapter, we provide the verification details of

the probabilistic behavior of each gate to enable performing the quantitative analysis

formally within a theorem prover.

52

Chapter 4

Formal Quantitative Analysis of

Dynamic Fault Trees

In this chapter, we introduce a methodology for the formal DFT quantitative analysis.

We provide the verification details of the probabilistic failure expressions of DFT gates.

Based on these verified expressions and the proposed methodology, we perform the

quantitative analysis of two case studies to verify generic expressions of probability of

failure that are independent of the failure distributions of systems components.

4.1 Methodology

The DFT formal quantitative analysis methodology is depicted in Figure 4.1. The

analysis starts with a system description that is used to create a DFT model. Based

on the formalized DFT gates, a formal DFT model is created. Then we use the

simplification theorems to verify a reduced DFT model, i.e., a reduced structure

function. The quantitative analysis is conducted by utilizing this reduced structure

53

Figure 4.1: Formal DFT Quantitative Analysis Methodology

function to generate formally verified generic expressions of probability of failure.

This last step requires having a library of verified probabilistic failure expressions of

DFT gates and operators, like AND and PAND gates. Creating this library requires

some existing HOL4 libraries, such as the measure, Lebesgue integral, probability

and probabilistic PIE theories. We provide probability of failure expressions that are

generic by using universally quantified probability density and distribution functions.

The distribution and density functions and the variables in these generic expressions

can be instantiated and evaluated in any other tool, such as MATLAB [62], to evaluate

the probability of failure of a given system. A set of probabilistic expressions for

the gates and operators was proposed in [30]. However, these expressions were not

formally verified, and thus they cannot be fully trusted for the formal DFT analysis

as such. Furthermore, there are some missing gaps in the paper-and-pencil proofs

available in [30] that we were able to fill using our formalization, which is built on top

of the Lebesgue integral and probability theories. In [30], there is no direct description

54

on how to build the DFT analysis based on the above-mentioned theories. Besides

this, we also had to use different strategies for some proofs. All these differences will

be highlighted throughout this chapter. We present a summary of the challenges that

we faced during the formalization of the probabilistic failure behavior of DFT gates

at the end of this chapter.

4.2 Probabilistic Model of DFT Gates

The foremost requirement for formally conducting the probabilistic analysis of DFTs

in a HOL theorem prover is to have verified expressions for the probability of failure

of DFT gates. Therefore, it is required to formally model and verify the probability

of failure expression for each DFT gate. We assume that the basic events of the DFT

are independent. However, in some cases these events can be dependent; in particular

in the case of CSP and WSP, where the failure of the main part affects the operation

and failure of the spare part. We handle this by first introducing the probabilistic

behavior of the gates for independent events, and then we present the probabilistic

behavior of the WSP and the CSP gates, which deal with dependent events.

Assuming that we are interested in finding the probability of failure until time

t, the following four expressions can be used to express the probability of any DFT

gate with independent basic events [30]:

55

Pr{X · Y }(t) = FX(t)× FY (t) (4.1a)

Pr{X + Y }(t) = FX(t) + FY (t)− FX(t)× FY (t) (4.1b)

Pr{Y · (X � Y)}(t) =
∫ t

0

fY (y) FX(y) dy (4.1c)

Pr{X � Y }(t) =
∫ t

0

fX(x)(1− FY (x)) dx (4.1d)

where FX and FY represent the CDFs of the random variables X and Y , respectively,

and fX and fY represent their corresponding probability density functions (PDFs).

Equation (4.1a) represents the probability of the AND and HSP gates, which

results from the probability of intersection of two independent events. Equation (4.1b)

describes the probability of the OR and FDEP gates, which corresponds to the prob-

ability of union of two independent events. Equation (4.1c) represents the probability

of having two basic events occurring in sequence one after the other until time t, i.e.,

Pr(X < Y) until time t or Pr(X < Y ∧Y ≤ t), which is the failure probability of the

PAND for basic events. Finally, the probability of the Before operator is represented

by Equation (4.1d), which is the probability of having event X occurring before event

Y until time t, i.e., Pr(X < Y ∧X ≤ t). The difference between the last two events

(before and after) is that in the before event, we are just interested in finding the

probability of failure of X until time t with the condition that X fails before Y . So,

it is not necessary that Y fails. While in the after event, we find the probability of

failure of Y until time t with the condition that Y fails after X. So, it is required

that both X and Y fail in sequence.

Since the probability is applied for sets that belong to the events of the proba-

bility space, we define a DFT event that satisfies the condition that the input function

56

is less than or equal to time t, which represents the moment of time until which we

are interested in finding the probability of failure. Without this DFT event, there

is no possible way to apply the probability directly to DFT gates. We first need to

create the DFT event for the time-to-failure function of the output event of any gate

or DFT, then apply the probability to it.

Definition 4.1. DFT Event

	 ∀ p X t. DFT event p X t = {s | X s ≤ Normal t} ∩ p space p

where Normal typecasts the type of t from real to extreal, p represents the proba-

bility space and X represents the time-to-failure function.

We formally verify the equivalence between the probability of the DFT event of

an extended real function and its equivalent CDF of the real version of the function as:

Theorem 4.1.

	 ∀ X p t. (∀ s. X s �= PosInf ∧ 0 ≤ X s) ⇒
(CDF p (real o X) t = prob p (DFT event p X t))

where real is the mirror opposite to the typecasting Normal operator. This type-

casting is required as the DFT event is defined for extreal data-type, and the CDF

is defined for real random variables only. Therefore, it is required to ensure that the

input function does not equal +∞ and is greater than or equal to 0 since it represents

the time of failure of a system component.

4.2.1 Probabilistic Model of AND Gate

To formally verify Equation (4.1a), we verify the equivalence of the DFT event of the

AND gate to the intersection of two events:

57

Lemma 4.1.

	 ∀ p t X Y.

DFT event p (D AND X Y) t = DFT event p X t ∩ DFT event p Y t

Based on the independence of random variables and using Theorem 4.1, we

formally verify Equation (4.1a) in HOL4 as:

Theorem 4.2.

	 ∀ p t X Y. rv gt0 ninfinity [X; Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(prob p (DFT event p (D AND X Y) t) =

CDF p (real o X) t * CDF p (real o Y) t

where indep var ensures the independence of the random variables, X and Y , over

the Lebesgue-Borel (lborel) measure [53]. rv gt0 ninfinity is required since we are

dealing with the real versions of the random variables. It is a logical condition, since

any real-world component will eventually fail, so we are interested only in dealing

with the time of failure that is not +∞.

In Theorem 4.2, the random variables are typecasted as real-valued, using the

operator real, to function over the Lebesgue-Borel (lborel) measure. lborel is

purposely used here to facilitate the Lebesgue integration over the real line when

expressing the probabilities of the before and after events. Theorem 4.2 represents

the probability of the AND gate and the HSP gate, since the behavior of the HSP

is equivalent to the behavior of the AND gate.

4.2.2 Probabilistic Model of OR and FDEP Gates

To formally verify Equation (4.1b), we verify the equivalence of the DFT event of the

OR as the union of two events:

58

Lemma 4.2.

	 ∀ p t X Y.

DFT event p (D OR X Y) t = DFT event p X t ∪ DFT event p Y t

We formally verify Equation (4.1b) based on the probabilistic PIE, the indepen-

dence of random variables and using Theorem 4.1 as:

Theorem 4.3.

	 ∀ p t X Y. rv gt0 ninfinity [X; Y] ∧
All distinct events p [X;Y] t ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(prob p (DFT event p (D OR X Y) t) =

CDF p (real o X) t + CDF p (real o X) t -

CDF p (real o X) t × CDF p (real o Y) t)

where All distinct events asserts that the event sets are not equal. We formally

define it as:

Definition 4.2.

	 All distinct events p L t =

ALL DISTINCT (MAP (λx. DFT event p x t) L

where ALL DISTINCT is a HOL4 predicate, which ensures that the elements of its

input list are not equal and MAP is a function that applies the input function (λx.

DFT event p x t) to all the elements in the list L and returns a list. This condition

is required for the probabilistic PIE.

Theorem 4.3 provides the probability of the OR gate as well as the FDEP gate,

since the behavior of the FDEP is equivalent to the OR gate.

59

It is worth noting that in [30], Equations (4.1a) and (4.1b) were just presented

without any information on how to link them to the definitions of the AND and OR

gates. We should recall that the AND and OR gates are defined as the maximum and

minimum of their operands. Looking at these definitions does not give any knowledge

about how the probability of the AND gate is equivalent to the probability of the

intersection or how the probability of the OR gate is equal to the probability of

the union. However, using our formalization and utilizing our formal definition of

DFT event, we are able to verify that the DFT event of the AND gate is equal to the

intersection of the input events and that the DFT event of the OR gate is equal to the

union of the input events. Based on this, we can ensure that the probability of the

AND and OR gates are represented using Equations (4.1a) and (4.1b), respectively.

4.2.3 Probabilistic Model of PAND Gate and Before

Operator

In this section, we present the formalization details of the probabilistic model of the

PAND gate and the before operator.

We verify Equations (4.1c) and (4.1d) as Theorems 4.4 and 4.5, respectively.

Theorem 4.4.

	 ∀ X Y p fy t.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧ prob space p ∧
indep var p lborel (real o X) lborel (real o Y) ∧
distributed p lborel (real o Y) fy ∧ (∀ y. 0 ≤ fy y) ∧
cont CDF p (real o X) ∧
measurable CDF p (real o X) ⇒
(prob p (DFT event p (Y·(X�Y)) t) =

60

pos fn integral lborel

(λy. fy y *

(indicator fn {w | 0 ≤ w ∧ w ≤ t} y *

CDF p (real o X) y)))

Theorem 4.5.

	 ∀ X Y p fy t.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧ prob space p ∧
indep var p lborel (real o X) lborel (real o Y) ∧
distributed p lborel (real o X) fx ∧ (∀ x. 0 ≤ fx x) ∧
measurable CDF p (real o Y) ⇒
(prob p (DFT event p (X � Y) t) =

pos fn integral lborel

(λx. fx x *

(indicator fn {u | 0 ≤ u ∧ u ≤ t} x *

(1- CDF p (real o Y) x)))

where pos fn integral is the Lebesgue integral for positive functions [28], fy and

fx are the PDF of random variables of the real version of the functions Y and X,

respectively. cont CDF is required in Theorem 4.4 as we need to prove that Pr(X ≤ t)

and Pr(X < t) are equal, and this is not valid unless the CDF function is continuous

(cont).

Verifying Theorems 4.4 and 4.5 is not a straightforward task due to the involve-

ment of Lebesgue integration. To the best of our knowledge, this is the first time that

these proofs are formally verified in a theorem prover, where we are able to identify

the exact steps to reach the final form of Theorems 4.4 and 4.5. In addition, in [30],

Equation (4.1c) is presented without any proof, while a proof is presented for Equation

61

(4.1d) that is based mainly on the probability of disjoint events and utilizes deriva-

tives to reach the final expression. However, we have been able to verify the same

expression of Equation (4.1d), but following a different and simpler proof, which is

similar to the proof of Equation (4.1c) to reach the final form of Theorem 4.5 without

using derivatives. We first prove the probability of sets of real random variables in

the form of integration before extending the proofs to extended real functions.

Proof Strategy for Theorem 4.4

To verify Theorem 4.4, we first express the event set that corresponds to the integra-

tion in Equation (4.1c) as:

(X, Y)−1{(u, w) | u < w ∧ 0 ≤ w ∧ w ≤ t} (4.2)

Then, we verify that the probability of this set can be written using integration as in

Equation (4.1c). Therefore, we verify the relationship between the distribution and

the integration of positive functions using the push forward measure (distr):

Theorem 4.6.

	 ∀ X p M A.

measure space M ∧
random variable X p (m space M, measurable sets M) ∧
A ∈ measurable sets M ⇒
(distribution p X A =

pos fn integral (distr p M X) (indicator fn A))

It is worth mentioning that this theorem can be used in the verification process

of other applications and not only for DFT analysis. We use Theorem 4.6 to verify

62

the relationship between the probability and the integration of the joint distribution

FXY of two independent random variables as:

Pr(X, Y)−1(A) =
∫

1A dFXY (4.3)

We formalize this relationship in HOL4 and use a property, which converts

the distribution of a pair measure of independent measures into the pair measure of

the individual distributions [53], to split the integral of joint distributions into two

integrals of the individual distributions (
∫ ∫

1AdFXdFY). In order to reach the final

form of Equation (4.1c), we express it in the form of two integrals:

∫ t

0

fY (y)× FX(y) dy =

∫ t

0

∫ y

−∞
fY (y)× fX(x) dx dy (4.4a)

=

∫ t

0

fY (y)
(∫ y

−∞
fX(x) dx

)
dy (4.4b)

The problem in Equations (4.4a) and (4.4b) lies in the fact that the outer integral

is a function of the inner integral, i.e., for the inner integral we are integrating until

y which is the variable of the outer integral. To be able to handle this formally, we

verify that the indicator function of the set in Equation (4.2) can be written in the

form of the multiplication of two indicator functions, where one is a function of the

other.

Lemma 4.3.

	 ∀ x y t.

indicator fn {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}(x,y) =

indicator fn {w| 0 ≤ w ∧ w ≤ t} y * indicator fn {u|u < y} x

63

In order to use the above-mentioned lemma and the set on the left hand side, we

need to verify that this set is measurable in the two dimensional borel space, i.e., the

set belongs to the measurable sets of pair measure lborel lborel. This property

can be verified based on the fact that a countable union of measurable sets is also

measurable. We verify this fact on the rational numbers Q as follows:

Theorem 4.7.

	 ∀ m s.

measure space m ∧ (∀ n. n ∈ Q set ⇒ s n ∈ measurable sets m) ⇒
BIGUNION (IMAGE s Q set) ∈ measurable sets m

where m in our case is pair measure lborel lborel. This theorem is generic and

can be used in other contexts than DFTs.

The purpose of using the set of rational numbers is that we need a countable

set that can be used to express the set in Lemma 4.3 as the union of borel rectangles.

We verify this in HOL4 as:

Lemma 4.4.

	 ∀ t. BIGUNION

{{u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} |

q ∈ Q set} =

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t}

Besides this, we also verify a lemma that the sets in the union of Lemma 4.4 are

measurable sets in the pair measure lborel lborel as:

Lemma 4.5.

	 ∀ t q. {u | u < real q} × {w | real q < w ∧ 0 ≤ w ∧ w ≤ t} ∈
measurable sets (pair measure lborel lborel)

64

We can use the proof steps of the previous lemmas to verify the same properties

for similar sets, which is essential for other gates expressions. This facilitates dealing

with other events in the future, by following the steps in our proof.

By using the above lemmas, we can verify that the original set is a measurable

set in the pair measure lborel lborel as:

Lemma 4.6.

	 ∀ t. {(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∈
measurable sets (pair measure lborel lborel)

We use Lemmas 4.3 and 4.6 to verify that the expression given in Equation (4.4b)

is equal to
∫
A
dFXdFY , where A is the set that specifies the boundaries of the integral.

We verify this in HOL4 using the push forward measure as:

Lemma 4.7.

	 ∀ X Y p t.

prob space p ∧ indep var p lborel X lborel Y ⇒
(pos fn integral

(pair measure (distr p lborel X)(distr p lborel Y))

(λ(x,y). indicator fn{(u,w) |u < w ∧ 0 ≤ w ∧ w ≤ t }(x,y) =

pos fn integral (distr p lborel Y)

(λy. indicator fn {w|0 ≤ w ∧ w ≤ t} y *

pos fn integral(distr p lborel X)

(λx. indicator fn {u | u < y} x)))

where pair measure (distr p lborel X) (distr p lborel Y) represents the

joint distribution of the push forward measures of random variables X and Y over

the borel space.

65

We verify several essential properties for CDF in order to prove that the inner

integral of Lemma 4.7 is equal to FX(y) or formally to (CDF p X y). In order to have

the PDF of random variable Y in the integral, we assume that the random variable Y

has a PDF by defining a density measure for Y . We ported the following definition,

distributed, from Isabelle/HOL[18], where f in this definition is the PDF of random

variable X, and the measure part of the density measure is the integral of this PDF.

Using this definition, the integral of f is equal to the distribution of the random

variable X.

Definition 4.3. distributed

	 ∀ p M X f.

distributed p M X f ⇔
X ∈
measurable(m space p,measurable sets p)

(m space M,measurable sets M) ∧
f ∈ measurable(m space M,measurable sets M) Borel ∧
AE M {x | 0 ≤ f x} ∧ (distr p M X = density M f)

where density is the density measure, and AE M {x | 0 ≤ f x } ensures that the

PDF f is almost everywhere (AE) positive over the measure M. We also use a theorem

that replaces the integration with respect to the density measure by the PDF with

respect to the original measure (lborel in our case) [18]. In addition to the previously

verified theorems, we also prove some additional properties, such as a sigma finite

measure for the push forward measure over the borel space (sigma finite measure

(distr p lborel X)). We also verify that the space generated by the pair measure of

two distributions over the borel space is a sigma algebra (sigma algebra (m space

(pair measure (distr p lborel X)(distr p lborel Y)), measurable sets

66

(pair measure (distr p lborel X)(distr p lborel Y)))). Moreover, we verify

that the space generated by the space and the measurable sets of the pair measure of

lborel is also a sigma algebra (sigma algebra (m space (pair measure lborel

lborel), measurable sets (pair measure lborel lborel))). Finally, we prove

that the set of the left-hand side of Equation (4.1c) is equal to the set that corresponds

to the integration of the right-hand side of the same equation as:

Lemma 4.8.

	 ∀ p t X Y.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT event p (Y·(X�Y)) t =

PREIMAGE (λx. (real (X x), real (Y x)))

{(u,w) | u < w ∧ 0 ≤ w ∧ w ≤ t} ∩ p space p

Based on all the above mentioned lemmas, we are able to verify the original goal

for Equation (4.1c) as in Theorem 4.4.

Proof Strategy for Theorem 4.5

For the verification of Theorem 4.5, we follow almost the same steps for the previous

proof. We start by first writing the event set for the integration as:

(X, Y)−1{(u, w) | 0 ≤ u ∧ u ≤ t ∧ u < w } (4.5)

Then, we describe the indicator function of this set as the multiplication of two

indicator functions as:

67

Lemma 4.9.

	 ∀ x y t.

indicator fn {(u,w) | 0 ≤ u ∧ u ≤ t ∧ u < w}(x,y) =

indicator fn {u | 0 ≤ u ∧ u ≤ t} x * indicator fn {w | x < w} y

Similar to the procedure explained previously for the set of the after event in

Lemmas 4.4, 4.5 and 4.6, we verify that the set of the before event is a measurable

set in the pair measure lborel lborel.

Finally, we rewrite Equation (4.1d) as:

Pr{X � Y }(t) =
∫ t

0

∫ ∞

x

fX(x) fY (y) dy dx

=

∫ t

0

fX(x)
(∫ ∞

x

fY (y) dy
)
dx

(4.6)

We verify some additional properties for the CDF in order to complete the proof.

For example, we verify that
∫∞
x

fY (y) dy is equal to 1 − FY (x). Similarly, we also

formally verify that the event of the left-hand side of Equation (4.1d) is equal to the

set that corresponds to the integration of the right-hand side of the same equation.

We use the set in Equation (4.5) to verify this as:

Lemma 4.10.

	 ∀ p t X Y.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ⇒
(DFT event p (X�Y) t =

PREIMAGE (λs. (real (X s),real (Y s)))

{(u,w) | 0 ≤ u ∧ u < w ∧ u ≤ t} ∩ p space p

Based on all these verified theorems, we are able to formally verify Theorem 4.5.

68

So far, we presented the formal verification of the probabilistic behavior of:

• The AND gate using Theorem 4.2.

• The probability of the OR and FDEP gates using Theorem 4.3 (since they are

equivalent).

• The probability of the PAND gate for basic events using Theorem 4.4.

• The probability of the Before operator using Theorem 4.5.

There is no probability of failure for the Simultaneous operator as it is eliminated

for basic events according to Equation (3.3). This implies that the probability of the

Inclusive Before operator is equal to the probability of the Before operator for basic

events.

It is worth mentioning that the inputs of these gates can be dependent in case of

having a common cause of failure. In this case the probability of intersection should

be handled using conditional probabilities, in a similar manner to the spare gate as

will be explained in the sequel.

4.2.4 Probabilistic Model of Spare Gates

As mentioned in Chapter 3, the behavior of the HSP gate is equal to the behavior of

the AND gate. Therefore, Theorem 4.2 can be used to express the probability of the

HSP as long as the main and spare parts are independent. The CSP and WSP gates

require different strategies to handle their probability of failure, as will be explained

in this section.

69

Cold Spare Gate

The probabilistic behavior of the CSP requires dealing with dependent events, as the

failure of the main part affects the behavior of the spare part. Therefore, it is required

to approach the proof in a different manner.

The failure distribution of the spare part of a CSP gate is affected by the failure

time of the main part, as the cold spare starts working after the failure of the main

part. Hence, the failure distribution of the spare part is dependent on the failure of

the main part. The probability of failure for the output event of a CSP with Y as the

main part and X as the spare part is given by [30]:

Pr(QCSP)(t) =

∫ t

0

(∫ t

v

f(Xa|Y=v)(u)du
)
fY (v)dv (4.7)

where f(Xa|Y=v) is the conditional probability density function for the spare part in

its active state (Xa) given that the main part (Y) has failed at time v. As mentioned

previously, the subscript of Xa can be omitted, since the spare part of the CSP gate

does not work in its dormant state and we are only concerned with the active state,

so using X directly with CSP means that we are dealing with the active state and

not the dormant one. It can be seen from Equation (4.7) that the failure distribution

of the spare part is affected by the failure of the main part. Hence, these two input

events are not independent, and we cannot utilize the previously verified relationships

to verify the probabilistic behavior of the CSP gate.

We verify Equation (4.7) as:

Theorem 4.8.

	 ∀ p X Y f xy f y f cond t.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧

70

(∀ y.

cond density lborel lborel p

(real o X) (real o Y) y f xy f y f cond) ∧
prob space p ∧ den gt0 ninfinity f xy f y f cond ⇒
(prob p (DFT event p (CSP Y X) t) =

pos fn integral lborel

(λy.

indicator fn {u | 0 ≤ u ∧ u ≤ t} y * f y y *

pos fn integral lborel

(λx. indicator fn {w | y < w ∧ w ≤ t} x * f cond y x)))

where p is the probability space, f xy is the joint density function for X and Y , f y

is the marginal density function for Y , cond density defines the conditional density

function (f cond) for X given that (Y = y) and den gt0 ninfinity ensures the

proper values for the density functions as mentioned in Section 2.2.

Notice that the spare part in the CSP is used without any subscript, i.e., it is

used as X, since the spare has only one state in the CSP, which is the active state.

Therefore, there is no need to use any subscript to distinguish between the dormant

and the active states. As with the previous theorems, we need to use the typecast

operator real with the random variables, since the random variables are of type

extreal and the integral over the lborel requires real random variables.

In [30], a proof has been introduced for the above expression, which is based

mainly on the total expectation theorem [63]. However, we have been able to conduct

the same proof in a simpler manner based on conditional density functions as explained

below.

71

Proof Strategy for Theorem 4.8 (CSP Gate)

In order to verify Theorem 4.8, we formalize the conditional density function as [64]:

Definition 4.4.

	 ∀ M1 M2 p X Y y f xy f y f cond.

cond density M1 M2 p X Y y f xy f y f cond ⇔
random variable X p (m space M1, measurable sets M1) ∧
random variable Y p (m space M2, measurable sets M2) ∧
distributed p (pair measure M1 M2) (λx. (X x, Y x)) f xy ∧
distributed p M2 Y f y ∧ (f cond y = (λx. f(x,y) / f y y))

where p is the probability space, M1 and M2 are the measure spaces that the random

variables X and Y map to, respectively (we will use lborel in our case), f xy is the

joint density function for X and Y , f y is the marginal density function of Y and

finally, f cond is the conditional density function of X given (Y = y).

The conditional density function definition ensures that X and Y are random

variables with the joint density function f xy and the marginal density function f y.

It is noticed from the definition of the conditional density function f cond that it is

a function of x only, and it can have different variants depending on the value of Y

that we are conditioning at, i.e., y. This is why f cond takes y as a parameter.

From Definition 4.4, we formally verify the following relationship between the

conditional density, the joint density and the marginal density functions, given that

fY (y) �= 0:

fXY (x, y) = fX|Y=y(x)× fY (y) (4.8)

The above equation can be formalized in HOL4 as:

72

Theorem 4.9.

	 ∀ M1 M2 p X Y f cond x y f xy f y.

(∀ y. f y y �= 0 ∧ f y y �= PosInf ∧ f y y �= NegInf) ∧
cond density M1 M2 p X Y y f xy f y f cond ⇒
(f xy (x,y) = f cond y x * f y y)

The condition f y y �= 0 is required, as this function will be used in the de-

nominator of the conditional density and it cannot equal to 0. In addition, since we

are dealing with extended-real numbers, f y y cannot equal infinity. This theorem is

applicable to any conditional density function that satisfies the given conditions.

The second step in verifying the expression of the CSP is by verifying that the

probability of the joint random variables is equal to the iterated integrals of the joint

density function. This can be expressed as:

Pr(X, Y)−1(A) =
∫ ∫

1A × fXY (x, y) dx dy (4.9)

We use Theorem 4.6 to verify this in HOL4 as:

Theorem 4.10.

	 ∀ p X Y f xy A.

distributed p (pair measure lborel lborel) (λx. (X x, Y x)) f xy ∧
prob space p ∧ (∀ x. 0 ≤ f xy x) ∧
A ∈ measurable sets (pair measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p space p) =

pos fn integral lborel

(λy. pos fn integral lborel

(λx. indicator fn A (x,y) * f xy (x,y))))

73

Then, we express the probability of the joint random variables using the conditional

density function as:

Pr(X, Y)−1(A) =
∫ ∫

1A × f(X|Y=y)(x)× fY (y) dx dy (4.10)

which we verify in HOL4, using Theorems 4.9 and 4.10, as:

Theorem 4.11.

	 ∀ p X Y f xy f y f cond A.

(∀ y. cond density lborel lborel p X Y y f xy f y f cond) ∧
prob space p ∧ (∀ x. 0 ≤ f xy x) ∧
(∀ y. 0 < f y y ∧ f y y �= PosInf) ∧
A ∈ measurable sets (pair measure lborel lborel)⇒
(prob p (PREIMAGE (λx. (X x, Y x)) A ∩ p space p) =

pos fn integral lborel

(λy.

pos fn integral lborel

(λx. indicator fn A (x,y) * f cond y x * f y y)))

In order to be able to reach the final form of Equation (4.7), we need first to

express the event set that corresponds to the integration in Equation (4.7) as:

(X, Y)−1{(x, y) | y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} (4.11)

We verify in HOL4 that this set corresponds to the DFT event of the CSP gate as:

Lemma 4.11.

	 ∀ X Y p t.

rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ⇒

74

(DFT event p (CSP Y X) t =

PREIMAGE (λs. (real (X s), real (Y s)))

{(x,y)| y < x ∧ x ≤ t ∧ 0 ≤ y ∧ y ≤ t} ∩ p space p)

In addition, we verify that the event set in Lemma 4.11 is measurable in

pair measure lborel lborel. Finally, we verify that the indicator function of the

set in Lemma 4.11 can be expressed as the multiplication of two indicator functions

to determine the boundaries of the iterated integrals in Equation (4.7) as:

Lemma 4.12.

	 ∀ x y t.

indicator fn {(w,u) | u < w ∧ w ≤ t ∧ 0 ≤ u ∧ u ≤ t} (x,y) =

indicator fn {w | y < w ∧ w ≤ t} x *

indicator fn {u | 0 ≤ u ∧ u ≤ t} y

Using all these verified theorems and lemmas, we formally verify Theorem 4.8.

Warm Spare Gate

Similar to the CSP, the failure of the main part of the WSP gate affects the behavior

of the spare part. Thus, we need to deal with dependent events.

For the WSP gate with two basic events, the output fails in two cases. Case 1

is when the main part fails, then the spare fails in its active state (this case is similar

to the CSP case). Case 2 is when the spare part fails in its dormant state, then the

main part fails with no spare to replace it. In the latter case, the failure distribution

of the spare part in its dormant state is independent of the main part. Hence, we can

use the previously verified expressions for this case. The probability expression for a

WSP with X as the spare part (Xa for the active state and Xd for the dormant state)

and Y as the main part is expressed as [30]:

75

Pr(QWSP)(t) =

∫ t

0

(∫ t

v

f(Xa|Y=v)(u)du
)
fY (v)dv +

∫ t

0

fY (u)FXd
(u)du (4.12)

where FXd
is the CDF of X in its dormant state. The first part of Equation (4.12)

represents the probability of a CSP and the second part represents the probability

when the spare fails before the main part. For the second part, Y and Xd are consid-

ered to be independent as the failure of one of them does not affect the failure of the

second and hence we can use Equation (4.1c) for this case.

We verify Equation (4.12) as:

Theorem 4.12.

	 ∀ p Y Xa Xd t f y f xy f cond.

prob space p ∧ (∀ s. ALL DISTINCT [Xa s; Xd s; Y s]) ∧
DISJOINT WSP Y Xa Xd t ∧ rv gt0 ninfinity [Xa; Xd; Y] ∧ 0 ≤ t ∧
(∀ y.

cond density lborel lborel p

(real o Xa)(real o Y) y f xy f y f cond) ∧
den gt0 ninfinity f xy f y f cond ∧
indep var p lborel (real o Xd) lborel (real o Y) ∧
cont CDF p (real o Xd) ∧
measurable CDF p (real o Xd) ⇒
(prob p (DFT event p (WSP Y Xa Xd) t) =

pos fn integral lborel

(λy.

indicator fn {u | 0 ≤ u ∧ u ≤ t} y * f y y *

pos fn integral lborel

76

(λx. indicator fn {w | y < w ∧ w ≤ t} x * f cond y x))+

pos fn integral lborel

(λy. f y y *

(indicator fn {u | 0 ≤ u ∧ u ≤ t} y *

CDF p (real o Xd) y)))

In the WSP, we need to distinguish between the two states, i.e., active and

dormant, hence the usage of Xa and Xd. The condition DISJOINT WSP Y Xa Xd t

indicates that until time t, the spare part X can only fail in one of its states. It is

assumed that the spare part in the dormant (Xd) state is independent of the main

part Y since the failure of the spare part in its dormant state is not affected by the

failure of the main part.

Proof Strategy for Theorem 4.12 (WSP Gate)

For the verification of Theorem 4.12, it is evident that the probability expression

involves the probability of the CSP gate in addition to the probability of the after

expression of Theorem 4.4. Therefore, we choose to verify that the event of the WSP

for basic events is equivalent to the union of two sets as:

Lemma 4.13.

	 ∀ p Y Xa Xd t.

(∀ s. 0 ≤ Y s) ∧
(∀ s. ALL DISTINCT [Xa s; Xd s; Y s]) ⇒
(DFT event p (WSP Y Xa Xd) t =

{s | Y s < Xa s ∧ Xa s ≤ Normal t ∧
0 ≤ Y s ∧ Y s ≤ t} ∩ p space p ∪

{s | Xd s < Y s ∧ Y s ≤ Normal t } ∩ p space p)

77

Then, we verify that the above two sets are disjoint. As a consequence, the probability

of the original set is equivalent to the sum of the probabilities of the disjoint sets.

Based on this, we verify that the probability of the first set ({s | Y s < Xa s ∧ Xa

s ≤ Normal t ∧ 0 ≤ Y s ∧ Y s ≤ t} ∩ p space p) is equal to the probability

of the CSP gate, which will result in the first term in the addition of the conclusion of

Theorem 4.12. We also verify that the probability of the second set in Lemma 4.13 ({s
| Xd s < Y s ∧ Y s ≤ Normal t} ∩ p space p)) is expressed using Theorem 4.4,

which will result in the second term of the addition of the conclusion of Theorem 4.12.

As a result, we have the probability of the WSP as in Theorem 4.12.

In this section, we formally verified the probabilistic behavior of the DFT gates:

AND, OR, HSP, FDEP, PAND, CSP andWSP besides the formalization of expressions

for Pr(X < Y ∧Y ≤ t) and Pr(X < Y ∧X ≤ t). These verified properties are generic,

i.e., universally quantified for all distribution and density functions, and can be used

to formally verify the probability of failure expression of any DFT. The HOL4 proof

script for this verification as well as the gate definitions is available at [57].

Spare Gates with a Shared Spare

The spare gate with shared spare is formally defined in Chapter 3. It is worth men-

tioning that the definition in [30] does not allow the simultaneous failures of the main

parts and thus we use the same constraint.

Q1 of the spare gate with a shared spare, shown in Table 3.1, is represented as

a sum of disjoint products in order to express its probability. This is accomplished by

introducing the complement of an input event to be able to create the disjoint events.

Thus Q1 can be expressed as [65]:

78

Q1 = Xa · (Y � Z) · (Z �Xa) + Z · (Y �Xa) · (Xa � Z) + Xa · (Y �Xa) ·��Z +

Z · (Xd � Y) · (Y � Z) + Y · (Xd � Y) ·��Z + Y · (Z � Y)

(4.13)

where��Z indicates the event when Z cannot happen. We formally verify this as:

Theorem 4.13.

	 ∀ Xa Xd Y Z p t.

rv gt0 ninfinity [Xa; Xd; Y; Z] ∧
(∀ s. ALL DISTINCT [Y s; Xa s; Xd s; Z s]) ∧
DISJOINT WSP Y Xa Xd t ∧
DISJOINT WSP Z Xa Xd t ∧
(∀ s. ((Z � Xd)·(Xd � Y)) s = NEVER s) ∧
(∀ s. ((Y � Xd)·(Xd � Z)) s = NEVER s)∧
(∀ s. ((Xa � Y)·(Xa � Z)) s = NEVER s) ⇒
(DFT event p Q1 t =

DFT event p (Xa·(Y � Z)·(Z � Xa)) t ∪
DFT event p (Z·(Y � Xa)·(Xa � Z)) t ∪
DFT event p (Xa·(Y � Xa)) t ∩
(p space p DIFF DFT event p Z t) ∪
DFT event p (Z·(Xd � Y)·(Y � Z)) t ∪
DFT event p (Y·(Xd � Y)) t ∩
(p space p DIFF DFT event p Z t) ∪
DFT event p (Y·(Z � Y)) t)

79

The first two conditions ensure that the time of occurrence of any event is al-

ways greater than or equal to 0 but not equal to +∞ and are not equal. While the

remaining conditions are required to ensure the proper behavior of the spare gates.

For instance, the first two conditions mean that until time t, the spare part can fail

in either the active or the dormant state. While the last two conditions indicate that

the spare part cannot fail after any of the main parts while it is dormant. Since after

the failure of one of the main parts, the spare part will be activated (working in the

active state) and in case it fails it will be in the active state and not the dormant

state. Similarly, the spare part cannot fail in its active state before the failure of both

main parts, as it will be in its dormant state.

The difference between the expression in Equation (4.13) and the verified ex-

pression in Theorem 4.13 is that we formally verified the DFT event of Equation (4.13)

based on the DFT event of the inputs. We decided to deal with the sets of the in-

put events as there is no gate that can exhibit the behavior of ��Z in the algebraic

approach. This is due to the fact that in the algebraic approach, we are dealing

with extended-real numbers and it is impossible to implement a NOT gate using

extended-reals. This means that instead of ANDing with ��Z, we intersect with the

complement of DFT event p Z t, i.e., space - DFT event p Z t or more formally

p space p DIFF DFT event p Z t. As a result, instead of verifying Equation (4.13),

we verified that the event of the left hand side is equal to the union of the events of

the six products on the right hand side, and whenever we encounter (· ��Z) we use (∩
p space p DIFF DFT event p Z t).

Since Q1 is represented as the sum of disjoint products, the probability of Q1

is expressed as the sum of the probabilities of the individual products as given in

Equation (4.14) [65].

80

Pr(Q1)(t) =

∫ t

0

(∫ t

y

(∫ x

y

fZ(z) dz

)
f(Xa|Y=y)(x) dx

)
fY (y) dy +

∫ t

0

(∫ z

0

(∫ z

y

f(Xa|Y=y)(x) dx

)
fY (y) dy

)
fZ(z) dz +

(1− FZ(t))

∫ t

0

(∫ t

y

f(Xa|Y=y)(x) dx

)
fY (y) dy +

∫ t

0

(∫ z

0

fY (y)FXd
(y) dy

)
fZ(z) dz +

(1− FZ(t))

∫ t

0

fY (y)FXd
(y) dy +

∫ t

0

fY (y)FZ(y) dy

(4.14)

We verified that these products are disjoint to be able to sum the individual

probabilities. Some of these probabilistic expressions utilize our existing verified ex-

pressions for DFT gates, while the rest requires handling three iterated integrals when

dealing with conditional density functions in addition to verifying the probability of

a complement of a DFT event.

We have been able to verify Equation (4.14), but as the final form of our verified

theorem for Equation (4.14) is quite long, we will explain some details about the proof

and the theorem here; the complete theorem can be accessed from [57]. Since this

theorem combines many previous formalized expressions, it requires the conditions

for those expressions, such as having a conditional density of Xa given Y = y, having

a density function for Y and Z. Also, the CDF of Z is measurable and continuous,

besides the obvious conditions such as 0 ≤ t. The proof of the first of the six terms

in Equation (4.14) is quite similar to the proof of the CSP gate. However, in this

case, we are dealing with three iterated integrals which makes things a bit complex,

since each time we need to prove that the single integral and the double iterated in-

tegrals are measurable. In addition, the independence of the random variables that

correspond to the input events should be handled appropriately, i.e., Z should be

81

independent of the joint random variables of (Y,Xa). The proof of the second term

is conducted in a similar way to the first term since it consists of three iterated inte-

grals with conditional density function. However, the density function lies this time

in the inner integral. The proof of the third term is primarily based on proving that

Pr(p space p DIFF DFT event p Z t) = 1−FZ(t). The proof of the fifth term also

requires the same result. The fourth term corresponds to finding the probability of a

cascaded PAND gate for three inputs (this will be explained in a following section).

Finally, the last term corresponds to the probability of the after event.

4.3 Formal Quantitative Analysis of DFT

Examples

In this section, we conduct the quantitative analysis of the DFT examples presented in

Section 3.5. We verify the probability of failure for the CPAND as in Theorem 4.14.

The verification steps are similar to the after event. However, we are dealing now

with three inputs instead of two. Hence, X is assumed to be independent of the joint

random variable (Y, Z) using indep CPAND in Theorem 4.14, where it is defined for X

over the lborel measure and (Y, Z) over the two dimensional lborel.

Theorem 4.14. Probability of CPAND

	 ∀ p X Y Z t fy fx.

prob space p ∧ 0 ≤ t ∧ indep CPAND X Y Z p ∧
rv gt0 ninfinity [X; Y; Z] ∧ (∀ s. ALL DISTINCT [X s; Y s; Z s]) ∧
distributed p lborel (λx. real (X x)) fx ∧
distributed p lborel (λx. real (Y x)) fy ∧
(∀ y. 0 ≤ fy(y)) ∧

82

(∀ x. 0 ≤ fx(x)) ∧ cont CDF p (λx. real (Z x)) x)) ⇒
(prob p (DFT event p (Q1) t) =

∫ t

0

(∫ x

0
fY(y) FZ(y) dy

)
fX(x) dx)

We verify the probability of failure of AND-FDEP DFT as:

Theorem 4.15. Probability of AND-FDEP

	 ∀ X Y Z p t.

rv gt0 ninfinity [X; Y; Z] ∧ All distinct events p [X·Y; X·Z] t ∧
indep vars3 X Y Z p ⇒
(prob p (DFT event p (Q2) t) =

FX(t)×FY(t)+FX(t)×FZ(t) - FX(t)×FY(t)×FZ(t)

The main idea of this proof is to replace the FDEP gate by an OR gate as they

are equivalent. Then, the probability of the union of two events, each of which is

the intersection of two basic events, {X;Y } and {X;Z} is verified. These two events

represent the cut sets of the AND-FDEP DFT. For this proof, it is required to ensure

that the random variables are independent using indep vars3 and that the events of

the two cut sets of the DFT are not equal using All distinct events.

Finally, we verify the probability of the top event of the WSP-OR DFT as in

Theorem 4.16. The top event is composed of the union of the WSP event and the

basic event Z. Hence, the final form of the probability is the probability of the union

of two events; the WSP and Z. Therefore, it is required to include the conditions

needed for expressing the probability of the WSP event in the list of assumptions,

and ensure that the WSP event is independent of event Z using indep var set WOR.

Theorem 4.16. Probability of WSP-OR

	 ∀ Y Xa Xd Z p t fxy fy fXa|Y.

DISJOINT WSP Y Xa Xd t ∧

83

(∀ s. ALL DISTINCT [Y s; Xa s; Xd s; Z s]) ∧
All distinct events p [WSP Y Xa Xd; Z] t ∧
rv gt0 ninfinity [Y; Xd; Xa; Z] ∧ 0 ≤ t ∧
(∀ y. cond density lborel lborel p

(real o Xa) (real o Y) y fxy fy fXa|Y) ∧
den gt0 ninfinity fxy fy fXa|Y ∧ cont CDF p (real o Xd) ∧
measurable CDF p (real o Xd) ∧
indep var set WOR Y Xa Xd Z p t ⇒
(prob p (DFT event p (Q3) t) =∫ t

0

(∫ t

y
f(Xa|Y=y)(x) dx

)
fY(y) dy +

∫ t

0
fY(y) FXd(y) dy + FZ(t) -(∫ t

0

(∫ t

y
f(Xa|Y=y)(x) dx

)
fY(y) dy +

∫ t

0
fY(y) FXd(y) dy

)
× FZ(t)

After having the verified generic expressions for the probability of failure of the

three examples, these expressions can be used to evaluate the probability of failure

for any integrable distribution functions that represent the failure distribution of the

system components. For example, assuming exponential distributions for the inputs

with failure rates: 2× 10−2, 3× 10−3, and 1× 10−2 for X, Y and Z, respectively, we

can evaluate the probability of failure using MATLAB [62] until 400 working hours

with a dormancy factor of 0.1. The results are shown in Figure 4.2.

4.4 Formal Quantitative Analysis Case Studies

In this section, we present the verification details of the formal quantitative analysis

of the DBW and CAS systems.

We provide generic steps that can be followed in order to use our DFT formal-

ization to conduct the formal quantitative analysis of DFTs in the form of generic

expressions of failure probabilities. These steps are:

84

Figure 4.2: Probability of Failure of CPAND, AND-FDEP and WSP-OR

1. Determine the structure function of the top event of the DFT.

2. Simplify the structure function and formally verify that the simplified version

is equal to the original function obtained in step (1).

3. Create the DFT event of the structure function.

4. Express the DFT event of the top event as the union of multiple input events.

5. Apply the probabilistic PIE to the union of events generated in the previous step,

then simplify the result of the PIE. This will result in having the summation of

the probabilities of the intersection of the different events that contribute to the

failure of the top event of the DFT.

6. Replace each term in the result of the PIE by its probabilistic expression based

on the verified expressions in Section 4.2 for each gate and operator.

Step (5) requires proving many lemmas that are necessary for manipulating the

result of the PIE. In order to facilitate the analysis, we verified several generic proper-

ties that can be used to reduce the manual interaction of the reliability engineer in the

theorem proving related tasks. For example, for any group of independent random

variables, we verified that the probability of the preimage of any two random variables

out of the original set equals to the multiplication of the individual probabilities as:

85

Theorem 4.17.

	 ∀ p M X ii A s t. s �= t ∧ prob space p ∧
indep vars p M X ii ∧ {s; t} ⊂ ii ∧
(∀ i. i ∈ {s; t} ⇒ A i ∈ measurable sets (M i))⇒
(prob p

(PREIMAGE (X s) (A s) ∩ p space p ∩
(PREIMAGE (X t) (A t) ∩ p space p)) =

prob p (PREIMAGE (X s) (A s) ∩ p space p) *

prob p (PREIMAGE (X t) (A t) ∩ p space p))

The formal DFT analysis now requires proving the required conditions for this

property to hold only. As an example, consider that we have a group of 10 random

variables, and we need to prove that the probability of the preimages of the 6th and

the 8th random variables equals the multiplication of their individual probabilities.

Therefore, in Theorem 4.17, s = 6, t = 8 and ii equals the set of numbers from 0− 9.

We just need to verify the following properties for this proof:

• 6 �= 8.

• {6; 8} ⊂ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

• The sets of the preimages are measurable.

These requirements can be easily verified using various built-in arithmetic tactics

in HOL4. Similarly, we verified the same property for up to 10 random variables out

of a group of independent random variables. These properties are very helpful in the

verification process of the probabilistic analysis of DFTs, in particular when applying

the probabilistic PIE. We also verified several additional properties that allow the

direct usage of the PIE in its final form with a system that can be represented as

86

the union of six elements as the behavior of both case studies can be represented as

the union of six events. However, our formalization can be extended easily to verify

larger systems, as the flow of the proofs will remain the same but will extend to a

larger number of inputs. We illustrate the utilization of the previous steps to perform

the formal DFT analysis of the DBW and CAS to provide generic expressions for the

probability of failure of the top events.

4.4.1 Formal Quantitative Analysis of DBW

In order to perform the formal quantitative analysis of the DBW system, we use the

verified reduced DFT model of this system of Section 3.6.1 We choose to use a single

event for the WSP as this will reduce the intermediate steps required to reach our

final goal for the probabilistic expression and would result in expressing the top event

as the union of six events. We verify that the DFT event of the DBW is equal to the

union of six events as:

Lemma 4.14. DBW Union of Events

	 ∀ BS TS PC SCa SCd BC EF TF p t.

DFT event p ((TF + EF) + WSP PC SCa SCd + BC + (TS + BS)) t =

union list

[DFT event p TF t; DFT event p EF t; DFT event p (WSP PC SCa SCd) t;

DFT event p BC t; DFT event p TS t; DFT event p BS t]

We apply the probabilistic PIE to perform the formal quantitative analysis of the

top event, by incorporating the existing verified properties. We verify the probabilistic

failure expression of the DBW as Theorem 4.18. In the following, we are presenting

the formalization in mixed formal and standard math notations to make the results

more readable.

87

Theorem 4.18. Probability of Failure of DBW

	 ∀ BS TS PC SCa SCd BC EF TF p t

fPC f(SCa|PC) fSCaPC. 0 ≤ t ∧
All distinct events p [TF; EF; BC; WSP PC SCa SCd; BS; TS] t ∧
rv gt0 ninfinity [BS; TS; PC; SCa; SCd; BC; EF; TF] ∧
DISJOINT WSP PC SCa SCd t ∧
(∀ y. cond density lborel lborel p

(real o SCa) (real o PC) y fSCaPC fPC f(SCa|PC)) ∧
den gt0 ninfinity fSCaPC fPC f(SCa|PC) ∧ cont CDF p (real o SCd) ∧
measurable CDF p (real o SCd) ∧
indep vars sets drive [BS; TS; PC; SCa; SCd; BC; EF; TF] p t ⇒
(prob p (DFT event p QDBW t) =

FTF(t) + FEF(t) + FBC(t) +

∫ t

0

fPC (pc) ×
∫ t

pc

f(SCa|PC=pc) (sca) dsca dpc +

∫ t

0

fPC(pc) × FSCd(pc) dpc + FBS(t) + FTS(t) - ... + ... -

FTF(t) × FEF(t) × FBC(t) ×[(∫ t

0

fPC(pc)×
(∫ t

pc

f(SCa|PC=pc) (sca) dsca

)
dpc

)
+

∫ t

0

fPC(pc) × FSCd(pc) dpc

]
×FBS(t)×FTS(t))

where All distinct events ensures that all event sets are distinct. As listed earlier,

since the events of the WSP are disjoint, we used the WSP event directly to reduce

the proof steps. It is necessary that all random variables representing the input events

to be positive or equal to 0, since they represent the time of failure. This condition is

added by rv gt0 ninfinity. It is also required to ensure the proper behavior of the

WSP by adding the condition DISJOINT WSP PC SCa SCd t, which ascertains that

the events of the WSP are disjoint, i.e., until time t, the spare part can fail in one of

88

Table 4.1: Failure Rates for the DBW System (×10−7)

TF EF BCPC SCTS BS

1 4 5 2 3 1 2

Figure 4.3: Probability of Failure of the Drive-by-wire System

its states only. A conditional density f(SCa|PC) of SCa given that PC = pc is defined

using cond density. The function indep vars sets drive adds the condition that

the input events and their sets are independent, and finally we need to ensure that

the CDF of SCd is continuous and measurable. It is worth mentioning that since

the union list of the DBW system has six events, applying the PIE results in the

generation of 63 different terms, and a truncated version of the final expression is

given above.

The reliability engineer working on the analysis of the DBW system just needs

to ensure that the mentioned conditions hold in order to use the results of the anal-

ysis. After formally ensuring that the probability of failure expression is correct, this

expression can be used to evaluate the probability of failure using any tool with any

distribution and density functions that satisfy the listed conditions. Assuming ex-

ponential distributions for the inputs with failure rates as listed in Table 4.1 [59],

we evaluated the probability of failure using MATLAB until 1,000,000 working hours

with dormancy factor of 0.5, as shown in Figure 4.3. The proof script for the DBW

system is around 4950 lines long.

89

4.4.2 Formal Quantitative Analysis of CAS

In a similar way to the DBW system, we use the formally verified reduced DFT model

of the CAS in Section 3.6.2 to perform the probabilistic analysis. We verify that the

DFT event of the CAS equals the union of events as:

Lemma 4.15. CAS Union of Events

	 ∀ PA PB PS MS MA MB CS SS P Ba Bd p t.

DFT event p

(CS + SS + MA · (MS � MA) + MB · (MA � MB) +

Ba · (P � Ba) + P · (Bd � P) + PA · PB · PS) t =

union list

[DFT event p CS t; DFT event p SS t; DFT event p (MA · (MS � MA)) t;

DFT event p (MB · (MA � MB)) t;

DFT event p (Ba · (P � Ba) + P · (Bd � P)) t;

DFT event p (PA · PB · PS) t]

Verifying a generic expression of the probability of failure for the CAS requires

dealing with different conditions of independence for the input events, where we con-

sidered different configurations for the spare gates in the CAS from [61]. In particular,

the outputs of the PAND and the CSP gates are no longer independent because of

having MA in common. Therefore, it is required to use conditional probabilities to

verify the probability of intersection that results from applying the probabilistic PIE.

We verify the probability of failure of this system in HOL4:

Theorem 4.19. Probability of Failure of CAS

	 ∀ CS SS MA MS MB P Ba Bd PA PB PS p t fMA fBaP fP fBa|P fMBMA fMB|MA fMS.

0 ≤ t ∧ prob space p ∧ (Ba � P = NEVER) ∧ DISJOINT WSP P Ba Bd t ∧

90

ALL DISTINCT RVg [PA; PB; PS; MS; MA; MB; CS; SS; P; Ba; Bd] p t ∧
indep vars setsg [PA; PB; PS; MS; MA; MB; CS; SS; P; Ba; Bd] p t ∧
(∀ y. cond density lborel lborel p

(real o Ba) (real o P) y fBaP fP fBa|P) ∧
(∀ y. cond density lborel lborel p

(real o MB) (real o MA) y fMBMA fMA fMB|MA ∧
den gt0 ninfinity fBaP fP fBa|P ∧ den gt0 ninfinity fMBMA fMA fMB|MA ∧
cont CDF p (real o Bd) ∧ measurable CDF p (real o Bd) ∧
(∀ z. 0 ≤ fMS(z)) ∧ (∀ x. fMBMA(x) �= PosInf) ∧
distributed p lborel (λx. real (MS x)) fMS ∧
cont CDF p (real o MS) ∧ measurable CDF p (real o MS) ⇒
(prob p (DFT event p QCAS t)=

FCS(t) + FSS(t) +

∫ t

0

fMA(ma) × FMS(ma)dma +∫ t

0

fMA(ma) ×
(∫ t

ma

fMB|MA=ma(mb) dmb

)
dma +(∫ t

0

fP(pp)×
(∫ t

pp

fBa|P=pp(ba) dba

)
dpp +

∫ t

0

fP(pp) × FBd(pp) dpp

)
+

FPA(t) × FPB(t) × FPS(t) - ... + ... -

FCS × FSS ×
∫ t

0

fMA(ma) × FMS(ma) ×
(∫ t

ma

fMB|MA=ma(mb) dmb

)
×[∫ t

0

fP(pp)×
(∫ t

pp

fBa|P=pp(ba) dba

)
dpp +

∫ t

0

fP(pp) × FBd(pp) dpp

]
×

FPA(t) × FPB(t) × FPS(t)

where (Ba � P = NEVER) ∧ DISJOINT WSP P Ba Bd t are required to ensure that

the spare part Ba cannot fail before the main part P and that the events of the WSP

are disjoint, i.e., until time t, the spare part can fail in either the dormant or the active

states. ALL DISTINCT RVg is a predicate required to assert that the inputs and their

91

event sets are not equal and that the inputs are greater than or equal to 0 but not

equal to +∞. indep vars setsg ensures the independence of the random variables

and the event sets. It is also required to define conditional density functions for fBa|P

and fMB|MA using cond density. den gt0 ninfinity ensures the proper values for the

joint, marginal and conditional density functions that are used with cond density.

For example, the conditional density functions cannot be equal to 0. In addition,

the density functions cannot equal +∞. It is also required to ensure that the CDFs

of random variables Bd and MS are continuous and measurable using cont CDF and

measurable CDF, respectively. distributed p lborel (λx. real (MS x)) fMS is

used to indicate that MS has a density function fMS. It is worth mentioning again

that the usage of the function real is required here as the random variables return

extreal, while they need to be used with the Lebesgue-Borel measure, which is

defined over the real line. The first six elements of the conclusion of Theorem 4.19

represent the probability of the individual terms of the union list of Lemma 4.15, which

result from applying the probabilistic PIE. While the rest of the elements represent

the probability of the intersection of all combinations of the events. The last term

represents the probability of the intersection of the six elements of the CAS.

As with the DBW system, we assume exponential distributions for the inputs of

the cardiac assist system with the failure rates listed in Table 4.2 [65]. We evaluated

the probability of failure for this generic expression using MATLAB with a dormancy

factor of 0.5 for the spare partMB until 400,000 working hours, as shown in Figure 4.4.

We have illustrated in this section the application of our proposed methodology

to conduct the formal failure analysis of the DBW and the CAS systems. We have

created the HOL formal DFT models for these systems and verified a reduced form

of the structure functions utilizing the verified simplification theorems. We then

92

Table 4.2: Failure Rates of CAS (×10−6)

CS SS P B MS MA MB PA PS PB

1 2 4 4 1 5 5 5 5 5

Figure 4.4: Probability of Failure of the Cardiac Assist System

conducted the qualitative and the probabilistic analyses to generate formally verified

expressions of probability of failure. Building upon the expressive and sound nature

of HOL theorem proving, generic intermediate lemmas are verified that are valid

for the analysis of systems similar to the DBW and the CAS systems. Leveraging

upon the current formalization of DFTs, the existing lemmas and theorems can be

extended to analyze more complex systems. In addition, the results obtained using

our methodology, in particular the generic expressions, cannot be obtained formally

using a PMC. Moreover, our proposed methodology overcomes the vulnerability of the

paper-and-pencil analysis results due to human errors, as it inherits the soundness of

HOL theorem proving. Although, providing the formalization of this methodology

is costly in terms of time and lines of script, the results obtained are usable by the

reliability engineer without the need to go through all the steps of the formalization.

The reliability engineer only needs to use the results of the theorems after ensuring

that all the required conditions hold, which provides him/her with a formal proof that

the analysis results can apply to his system if the conditions are met.

93

4.5 Summary

In this chapter, we provided a methodology to conduct the formal quantitative analysis

of DFTs within a theorem prover. Furthermore, we explained the verification steps

of the probabilistic failure expressions of DFT gates that are required in the analysis

process. We applied our methodology to perform the quantitative analysis of the

DBW and CAS systems to obtain generic expressions of probability of failure.

In the following, we summarize the main challenges that we faced during our

formalization of the DFT gates, which allows us to formally analyze DFTs in a theorem

prover.

The first challenge is resolving the data-types issue. The problem in the data-

types is that the gates and operators are defined as functions that return extreal.

This is mainly required because we need to model +∞ that represents the NEVER

condition. However, this data-type cannot be used to represent random variables over

the lborel measure. Any random variable defined from a probability space to the

lborel measure should return real data-type. This is required because we need to

integrate the density and distribution functions over the real line. Therefore, we need

random variables that return extreal to model the gates but at the same return real

to be used with lborel. We resolved this issue by using extreal to model the gates,

but when conducting the probabilistic analysis, we use the real version of the random

variable (real o X)).

Secondly, after modeling the DFT and expressing the structure function of the

top event using the DFT gates and operators, it is required to conduct the probabilistic

failure analysis of the top event. However, the structure function cannot be used

directly since it is a time-to-failure function, not a set. Furthermore, in [30], there is no

94

clear information on how to create the DFT event and link it to the structure function

of the DFT top event or any other event in the fault tree. Using our formalization,

we have been able to clearly and formally define a DFT event that is used to create

the set of moments of time until the time of failure t, as explained in Definition 4.1.

Thirdly, the probabilities of the AND and OR gates are directly presented in [30]

as the probability of the intersection and union (Equations (4.1a) and (4.1b), respec-

tively). However, the AND and the OR gates are defined using the maximum and

minimum of their input operands, respectively. There is no information in [30] on

how the AND and OR gates are related to the intersection and union of the input

events. Using our formalization, we have been able to verify the relationship between

the AND and the interaction of the input events utilizing our defined DFT event. In

a similar way, we verified the relationship between the OR gate and the union of the

input events.

Another contribution is represented by introducing a formal proof in a theorem

prover for the probability of failure of the PAND and Before operator, which are

represented by Pr(X < Y) in both forms, i.e., Pr(X < Y ∧ Y ≤ t) and Pr(X <

Y ∧X ≤ t). As mentioned earlier, the first proof of these (Pr(X < Y ∧Y ≤ t)) is not

provided in [30], while the second one (Pr(X < Y ∧X ≤ t)) is presented in a different

manner that involves derivatives. In our formalization, we presented, for the first time,

the formal proof for Pr(X < Y) in both its formats, i.e., Pr(X < Y ∧ Y ≤ t) that

represents the probability of the PAND gate for basic events; and Pr(X < Y ∧X ≤ t)

that represents the probability of the before operator. In addition, we presented a

formal proof for the probability of the WSP and CSP gates based on conditional

density functions, which we defined, while the proof of these gates is presented in [30]

based on the law of total expectation.

95

Finally, while performing all of these formalizations and proofs in HOL, we

identified several missing assumptions or conditions that were required to ensure the

correctness of the theorems. For example, ensuring the proper values for the input ran-

dom variables that represent the time-to-failure functions of the system components.

These important assumptions were either unavailable in [30] or are not explicitly

presented as a requirement in the final form of the theorems in [30].

It is important to highlight that the main benefit of having the formalization

of DFT in higher-order logic is that it enables conducting the formal DFT analysis

within the sound environment of a theorem prover, which is very useful in the context

of safety-critical systems.

96

Chapter 5

Formal Verification of DFT

Rewrite Rules

As mentioned in Chapter 1, probabilistic model checkers, such as STORM, have been

widely used for the probabilistic analysis of DFTs via Markov chains. For example,

STORM supports the analysis of DFTs, among other probabilistic models, and allows

the verification of the probability of failure and the MTTF of the top event of a given

DFT. The scalability of this analysis can be significantly improved by using efficient

DFT rewriting rules, as presented by Junges et al. [66], that facilitate simplifying a

DFT before analysis. The simplification of the DFT is achieved by transforming the

underlying graph of the DFT according to the rewrite rules. Experimental evaluation

in [66] showed that rewriting heavily improves the performance of the DFT analysis.

For example, while originally 68% of the 183 DFTs in [66] could be solved within

2 hours, applying the rewriting beforehand allowed one to solve 95% of the DFTs.

Moreover, the total analysis time was reduced from 41 to 18 hours when using rewrit-

ing. Simplifying DFTs by rewriting enables the analysis of DFTs that could not be

97

analyzed before, and can lead to speed-ups and memory savings of up to two orders

of magnitude [66].

The rewrite rules are generic for n-ary gates and can be implemented in any

tool that supports DFT analysis. Proving the correctness of the rewrite rules as

done in [67] is a manual and error-prone process. To the best of our knowledge,

a rigorous, mechanically checkable proof of correctness of these rewriting rules has

not been done. Thus, their usage in a formal analysis raises soundness concerns

especially when dealing with the analysis of safety-critical systems, like transportation

or healthcare.

In this chapter, we propose to use our HOL DFT formalization presented in

Chapter 3, including the simplification theorems, to verify the DFT rewriting rules

of [66] using the HOL4 theorem prover. This requires extending the DFT gates

definitions for an arbitrary number of inputs and defining the VOT gate. Verifying

these rewrite rules provides the assurance of their correctness and thus adds the

confidence to tools that exploit these rules in their DFT analysis.

5.1 DFT Rewrite Rules

In the following, we recap the rewrite rules for DFTs as in [66]. The simplification

of DFTs is performed by graph rewriting [68] on the underlying graph of the DFT.

We represent a DFT as a labeled graph by extending the induced graph with labels

encoding the type of the DFT element and the ordering of the inputs. The graph

transformation on the labeled graph is performed by applying a chain of rewrite rules.

98

Figure 5.1: Subsumption of OR Gates by AND Gates [66, Rewrite Rule 8]

5.1.1 Rewrite Framework

A rewrite rule is specified by two (sub-) DFTs: the left-hand side capturing the (sub-)

DFT before applying the rewrite rule and the right-hand side depicting the resulting

(sub-)DFT after the graph rewrite. An example of a rewrite rule is given in Figure 5.1.

The rule depicts the subsumption of OR gates by AND gates.

A rewrite rule can be applied whenever a (sub-)DFT can be matched with the

left-hand side of the rule. Elements represented by a triangle in the rewrite rule match

every gate type. Matched elements might have additional ingoing and outgoing edges

not matched by the rewrite rule. These edges are retained during the rewriting step.

Applying a rewrite rule replaces the matched part with the right-hand side of the

rule. All non-matched parts remain unchanged during the rewriting step. Note that

in general, rewrite rules might lead to inconsistent graphs with dangling edges or

DFTs that are no longer well-formed (e.g., cyclic DFTs). In these cases, the rewrite

rule cannot be applied. It is important to note also that most of the rewrite rules can

also be applied from right to left.

An example application of the given subsumption rule is depicted in Figure 5.2.

Figure 5.2(a) depicts the original DFT used as input. The subsumption rule from

99

(a) Original DFT (b) DFT after rewrite step (c) Final DFT

Figure 5.2: Example Application of Rewrite Rule

Figure 5.1 can be applied and the matched sub-DFT is highlighted in blue. Applying

the rule removes the connection between AND gate A and OR gate B and yields the

rewritten DFT in Figure 5.2(b). Further simplification by applying additional rewrite

rules results in the final DFT in Figure 5.2(c). Using the rewrite rules leads to a

simpler DFT, which is considerably smaller—and easier to understand.

During rewriting multiple rules might be applicable for the current DFT or

different sub-DFTs match the left-hand side of a rewrite rule. The sequence of rewrite

steps is chosen by a rewrite strategy. As the rewrite framework is not confluent, the

strategy heavily influences the size of the resulting DFTs and a heuristic approach is

used.

5.1.2 Rewrite Rules

In the following, we consider 22 rules of the 29 rewrite rules given in [66]. Of the

remaining 7 rules, one rule gives the Shannon expansion for VOTk gates, which deals

100

Figure 5.3: Left-flattening of Gates [66, Rewrite Rule 5]

with variables as Boolean, whereas generally DFTs, as formalized in HOL, treat vari-

ables as real numbers representing time-to-failure functions. The other 6 rules apply

to FDEPs and spares; both gate types are not considered in this chapter. We recap a

selection of the rewrite rules and use the same rule enumeration as in [66, Sect. 5.3].

General Rewrite Rules

The first rewrite rules 1-7 consider structural identities such as commutativity of static

gates, removal of gates with a single successor or no predecessor, and left-flattening of

gates. As an example, the rewrite rule for left-flattening is given in Figure 5.3. The

rule can only be applied if the top element of the (sub-)DFT is an AND, OR or PAND

gate, and the first input is of the same gate type as the top element (Tp(B) = Tp(A)).

Applying the left-flattening rule adds the inputs of B as first inputs of A. Gate B is

not removed as it might still have connections to other parts of the DFT.

Rules 8-10 capture standard axioms from Boolean algebra on the static gates

such as subsumption of OR gates by AND gates (cf. Figure 5.1).

DFTs containing constant failed CONST(�) or constant fail-safe CONST(⊥)

events can lead to large simplifications as often complete sub-DFTs can be evaluated

to constant. Rules 11-14 specifically consider constant elements and as an example, we

present the rewrite rule for AND/PAND gates with CONST(⊥) inputs in Figure 5.4.

101

Figure 5.4: AND/PAND Gate with CONST(⊥) Successor [66, Rewrite Rule 13]

If at least one of the inputs of an AND/PAND gate is fail-safe, it is impossible for the

gate to fail and therefore it can be set to fail-safe as well.

Encoding of VOT gates by OR/AND gates is given in the rewrite rules 15-16.

Rewrite Rules for PAND gates

So far, the rewrite rules mostly captured simplifications of static gates, which are

based on the corresponding properties in Boolean algebra. The remaining rules 18-23

consider PAND gates where the order of failures is crucial. As an example, consider

the rewrite rule for conflicting PAND gates with independent successors in Figure 5.5.

PAND gate D1 requires that input B fails strictly before C or simultaneously with C.

If C fails strictly before B, D1 becomes fail-safe. D2 requires the opposite behavior.

If both elements B and C are independent, they will not fail simultaneously. Thus,

Figure 5.5: Conflicting PAND Gates with Independent Successors [66, Rewrite Rule
19]

102

(a) Original DFT (b) DFT after removal of BE C (c) DFT after merging of BEs

Figure 5.6: Example Application of Non-structural Rules

either PAND gate D1 or D2 will become fail-safe. As the PAND gates can never both

fail, A is fail-safe and can be replaced by CONST(⊥).

Note that the rewrite rule can only be applied if B and C are independent—and

at most one input is CONST(�). Otherwise, a common cause failure can let both B

and C fail simultaneously, both PAND gates fail and A fails as well. The independence

assumption in this rewrite rule is a context restriction, which prevents the application

of the rule for certain DFTs.

5.1.3 Non-structural Rules

There are two additional rules that are not present in the rewrite framework as they

go beyond structural rules and are not captured by graph transformations.

Removing BEs The BEs that have no connection to other DFT elements (and are

not the top level element) are called dispensable. Dispensable BEs can be removed

from the DFT as they do not influence the analysis results. An example is given in

Figure 5.6. In the original DFT in Figure 5.6(a), BE C is dispensable and can be

removed yielding the DFT in Figure 5.6(b).

103

Merging BEs In our analysis, we are only interested in the reliability of the top

level element. The state of other elements is not important for this analysis. Thus, we

can simplify a DFT by merging multiple BEs into a single BE. Consider the example

DFT in Figure 5.6(b). Both BEs A and B have an exponential failure distribution

with failure rates λA and λB, respectively. The failure distribution of an OR gate is

the minimum over its inputs and is exponentially distributed as well. Thus, we can

replace multiple BEs A1, . . . , An under an OR gate by a single BE A′ with failure

rate λA′ =
∑n

i=1 λAi
. In our example, merging both BEs leads to the final DFT in

Figure 5.6(c). The resulting OR gate with a single input can be simplified further by

applying the rewrite framework.

After presenting the details of DFT rewrite rules, in the sequel, we present our

efforts in formally verifying them using HOL theorem proving. For some of these rules,

such as Rule 5, it is necessary to formally model DFT gates for an arbitrary number

of inputs. Therefore, in the next section, we introduce the new HOL definitions of

n-ary gates.

5.2 HOL Formalization of n-ary DFT Gates

In order to handle DFT gates with an arbitrary number of inputs, we extend the

definitions of DFT gates of Chapter 3 by utilizing lists to represent the arbitrary

number of inputs. In other words, the input of an n-ary gate is a list of arbitrary size

of time-to-failure functions that represent inputs of a DFT gate.

We formally hence define the n-ary AND gate as:

Definition 5.1. n AND

	 ∀ L. n AND L = FOLDR (λ a b. D AND a b) ALWAYS L

104

where FOLDR is used to apply a binary (2-input) function over a list from right to left.

The function in our case here is the binary D AND that accepts two inputs and returns

their result of the DFT AND operation between them. FOLDR requires including an

element that is used to apply the function to the last element of the input list. We

use ALWAYS in this case as it is the identity element of the AND and does not affect

its behavior. L represents the list of inputs to be ANDed. For example, n AND [X;

Y; Z] equals D AND X (D AND Y (D AND Z ALWAYS)).

In a similar manner, we formally define the n-ary OR as:

Definition 5.2. n OR

	 ∀ L. n OR L = FOLDR (λ a b. D OR a b) NEVER L

D OR is the function used with FOLDR in this definition. We use NEVER in this

case as it is the identity element for the OR, i.e., NEVER will not affect the behavior of

the OR gate. It is worth mentioning that FOLDL can be used with these definitions as

well, since the order of applying the OR and AND gates does not matter if it starts

from the left or from the right.

We formally define the n-ary PAND gate as:

Definition 5.3. n PAND

	 ∀ L. n PAND L = FOLDL (λ a b. P AND a b) ALWAYS L

This is similar to the previous definitions. However, since the PAND gate re-

quires that the input events fail from left to right, we use FOLDL in this case. We use

ALWAYS as it does not affect the behavior of the PAND gate, i.e., for any input X that

is greater than or equal to 0, PAND ALWAYS X = X.

The VOTk (k out of n) gate can be defined using the n OR and n AND gates.

Firstly, we need to get the combinations that lead to the failure of the VOT gate. For

105

example, a (2/3) VOT gate requires having all possible pairs out of the three inputs.

Therefore, we first need to get all the possible k elements of the input list. We define

k out that accepts a list and a number k, which identifies the number of elements to

be retrieved from the input list.

Definition 5.4. k out

	 ∀ k L. k out k L = {s| s ⊆ (set L) ∧ (CARD s = k)}

where set L returns a set with the elements in list L, and CARD is a HOL function that

returns the cardinality (number of elements) of a given set. This definition basically

returns a set of sets, where the inner sets are subsets of set L. This means that these

inner subsets contain elements from the input list L. The added condition is that the

cardinality of each of these sets equals k. As a result, we get all possible combinations

of the input list that have k elements.

We use k out to define the VOT gate by ANDing the elements of each inner

set, then ORing the result of this ANDing. We need to recall that the n AND and n OR

accept inputs as lists not sets. Therefore, we apply a function that converts a set into

a list (SET TO LIST). We formally define the VOT gate as:

Definition 5.5. VOT

	 ∀ k L. k out n gate k L =

n OR (MAP (λa. n AND (SET TO LIST a)) (SET TO LIST (k out k L)))

where SET TO LIST is a HOL4 function that accepts a set and returns a list of the

elements of this set. MAP is used to map a function over a list and returns a list of the

mapped elements. In this definition, we first convert the outer set of k out to a list

using SET TO LIST (k out k L). Then, we apply n AND to each element of this list

using MAP and convert each inner set to a list. Finally, the n OR is applied to the result

106

of the MAP, i.e., the result will be the OR of ANDs and each AND has only k elements

of the input list. We verify several properties for k out and the VOT gate, such as the

finiteness of the inner and outer sets, besides other properties that are useful in the

verification of the DFT rewriting rules. The HOL4 script can be accessed from [69].

5.3 Verification of Rewrite Rules

We list the verification details of some of the rewrite rules described in Section 5.1.

The details of verifying the rest of the rules can be accessed from [69].

5.3.1 General Rewrite Rules

The structural rewrite rules 1-5 and 7 are verified based on the definitions of n-

ary gates and some list and extreal number theories properties, whereas rule 6 is

implemented implicitly in the DFT formalization.

Commutativity of Static Gates (Rule 1)

Theorem 5.1.

	 ∀ L1 L2. PERM L1 L2 ⇒ (n AND L1 = n AND L2)

Theorem 5.2.

	 ∀ L1 L2. PERM L1 L2 ⇒ (n OR L1 = n OR L2)

Theorem 5.3.

	 ∀ L1 L2 k. PERM L1 L2 ⇒ (k out n gate k L1 = k out n gate k L2)

The commutativity property indicates that the order of the inputs of any static

gate will not affect its behavior, i.e., the time of failure for the output of the gate

107

remains the same. We use the permutation of two lists (PERM L1 L2) to add the

condition that L1 and L2 have the same inputs but with different orders. We verify

the commutativity of the n AND and n OR gates using induction, FOLDR definition and

some properties of the 2-input AND and OR gates, defined in Chapter 3, such as

associativity and commutativity. The proof of the commutativity property for the

VOT gate is mainly based on the following lemma:

Lemma 5.1.

	 ∀ L1 L2 k. PERM L1 L2 ⇒ (k out k L1 = k out k L2)

which states that the sets returned by k out are the same for two lists that have the

same elements with different orders.

Gate with a Single Successor (Rule 3)

Theorem 5.4.

	 ∀ x. rv gt0 [x] ⇒ (n AND [x] = x)

Theorem 5.5.

	 ∀ x. n OR [x] = x

Theorem 5.6.

	 ∀ x. rv gt0 [x] ⇒ (k out n gate 1 [x] = x)

Theorem 5.7. 	 ∀ x. rv gt0 [x] ⇒ (n PAND [x] = x)

For the static gates and the n PAND gate, if the input list consists of only one

element, then the output fails once the single input fails. The function rv gt0 ensures

that the inputs of the gates are greater than or equal to 0, which is valid as we are

dealing with time-to-failure functions. We recursively define rv gt0 as:

108

Definition 5.6. rv gt0

(rv gt0 [] = T) ∧ (∀ h t. rv gt0 (h::t) = (∀ s. 0 ≤ h s) ∧ rv gt0 t)

For n AND and n OR, rule 3 is verified based on some properties of the D AND

and D OR gates. For VOT gate, we use the VOT (1/n) property (Theorem 5.25) that

replaces the VOT gate with the n OR gate. Finally, we verify rule 3 for n PAND using

its definition and some list and extreal numbers properties.

Left Flattening of AND/OR/PAND Gates (Rule 5)

Theorem 5.8.

	 ∀ L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (n AND L2::L1) = n AND (L2 ++ L1))

Theorem 5.9.

	 ∀ L1 L2. n OR (n OR L2::L1) = n OR (L2 ++ L1)

Theorem 5.10.

	 ∀ L1 L2.

rv gt0 (L1 ++ L2) ⇒(n PAND (n PAND L2::L1) = n PAND (L2 ++ L1))

In order to verify Theorem 5.8, we first verify the n AND append property that

would split the AND of two appended lists as:

Lemma 5.2.

	 ∀ L1 L2.

rv gt0 (L1 ++ L2) ⇒ (n AND (L1 ++ L2) = D AND (n AND L1)(n AND L2))

where ++ is a list operator used to append two lists. We verify Theorem 5.8 by first

rewriting n AND L2::L1 as [n AND L2]++L1, where :: is a list operator used to add an

109

element to a list, which in the considered case is n AND L2. Then, we use Lemma 5.2

to rewrite the left hand side of Theorem 5.8 to D AND (n AND [n AND L2])(n AND L1)

and use Theorem 5.4 to verify Theorem 5.8. In a similar way, we verify Theorem 5.9

by verifying a lemma for appending two lists with n OR as:

Lemma 5.3.

	 ∀ L1 L2. n OR (L1 ++ L2) = D OR (n OR L1)(n OR L2)

For the left-flattening property of the n PAND gate, we first verify a lemma that

rv gt0 L ⇒ ∀ s. 0 ≤ n PAND L s, which states that the output of the n PAND

gate is greater than or equal to 0 if the inputs follow the same condition. Theorem 5.10

is then verified based on the previous lemma, induction on the list argument and some

P AND and list properties.

Identical Leftmost Successors of AND, OR or PAND Gates (Rule 7)

Theorem 5.11.

	 ∀ x L. n AND (x::x::L) = n AND (x::L)

Theorem 5.12.

	 ∀ x L. n OR (x::x::L) = n OR (x::L)

Theorem 5.13.

	 ∀ x L. rv gt0 [x] ⇒ (n PAND (x::x::L) = n PAND (x::L))

Theorems 5.11 and 5.12 are verified based on the definitions of n AND and n OR

with the associativity and idempotence of D AND and D OR gates. Theorem 5.13 re-

quires verifying that the output of a 2-input PAND gate (P AND defined in Chapter 3)

with an input that already failed (ALWAYS) as the left input fails with the failure of

the second (right) input.

110

Lemma 5.4.

	 ∀ X. (∀ s. 0 ≤ X s) ⇒ (P AND ALWAYS X = X)

Finally, we verify the idempotence property of the P AND gate.

Lemma 5.5.

	 ∀ X. P AND X X = X

Subsumption of OR Gates by AND Gates (Rule 8)

Theorem 5.14.

	 ∀ X Y. D AND X (D OR X Y) = X

Subsumption of AND Gates by OR Gates (Rule 9)

Theorem 5.15.

	 ∀ X Y. D OR X (D AND X Y) = X

Distributing OR Gates over AND Gates (Rule 10)

Theorem 5.16.

	 ∀ X Y Z. D OR (D AND X Y)(D AND Y Z) = D AND (D OR X Z) Y

We verify rules 8-10 that are concerned with the standard axioms of Boolean

algebra based on basic properties of D AND and D OR gates, such as the commutativity

and distributivity of the AND over the OR.

111

OR Gates with Fail-Safe (NEVER) Successors (Rule 11)

Theorem 5.17.

	 ∀ L1 L2. n OR (L1 ++ [NEVER] ++ L2) = n OR (L1 ++ L2)

OR Gates with Already Failed (ALWAYS) Successors (Rule 12)

Theorem 5.18.

	 ∀ L1 L2. rv gt0 (L1 ++ L2) ⇒ (n OR (L1 ++ [ALWAYS] ++ L2) = ALWAYS)

Rewrite rules 11-14 deal with scenarios that include fail-safe (NEVER) or

CONST(⊥), and failed (ALWAYS) or CONST(�).

For Theorem 5.17, we use Lemma 5.3 and the definition of n OR with the

property stating that ∀ X. D OR X NEVER = X. We verify Theorem 5.18 based on

Lemma 5.3 and the definition of n OR along with the following lemma:

Lemma 5.6.

	 ∀ X. (∀ s. 0 ≤ X s) ⇒ (D OR X ALWAYS = ALWAYS)

Then, we verify that the output of the n OR is greater than or equal to 0 if the inputs

are all greater than or equal to 0. Theorem 5.18 is then verified using the previous

lemmas and some properties of the D OR gate.

AND Gate with a Fail-Safe (NEVER) Successor (Rule 13)

Theorem 5.19.

	 ∀ L1 L2. rv gt0 (L1 ++ L2) ⇒(n AND (L1 ++ [NEVER] ++ L2) = NEVER)

Theorem 5.20.

	 ∀ L. rv gt0 L ⇒ (n PAND (L ++ [NEVER]) = NEVER)

112

Theorem 5.21.

	 ∀ L. rv gt0 L ⇒ (n PAND (NEVER::L) = NEVER)

Theorem 5.22.

	 ∀ L1 L2. rv gt0 (L1 ++ L2) ⇒(n PAND (L1 ++ [NEVER] ++ L2) = NEVER)

We verify Theorem 5.19 using Lemma 5.2 and some properties for the D AND,

such as the commutativity property and ANDing with NEVER.

We verify this rule for the PAND gate by verifying two cases. Firstly, we verify

that the output of the PAND cannot fail if the NEVER input is the rightmost input

(Theorem 5.20). This is mainly verified based on some list properties to manipulate

rv gt0 along with the left flattening property of the PAND (Theorem 5.10). Simi-

larly, we verify the second case when the left most input of the PAND gate is fail-safe

(Theorem 5.21). Finally, we verify a generic property, where the fail-safe input can

be at any position (Theorem 5.22).

AND Gate with a Failed (ALWAYS) Element as Successor (Rule 14)

Theorem 5.23.

	 ∀ L. rv gt0 L ⇒ (n AND (ALWAYS::L) = n AND L)

Theorem 5.24.

	 ∀ L. rv gt0 L ⇒ (n PAND (ALWAYS::L) = n PAND L)

Theorem 5.23 is verified using the definition of the n AND gate with the property

that the output of the gate is greater than or equal to 0 if the inputs satisfy the same

condition. We verify Theorem 5.24 based on the definition of the n PAND and the

idempotence property of the PAND gate.

113

The VOT gate can behave as an OR gate, when k = 1 (Rule 15), and as an

AND gate, when k equals the number of its inputs (Rule 16). The verification details

of these rules are listed below.

Voting (1/n) is an OR Gate (Rule 15)

Theorem 5.25.

	 ∀ L. ALL DISTINCT L ∧ rv gt0 L ⇒ (k out n gate 1 L = n OR L)

As mentioned previously, the voting gate is defined as the OR of a list and

each element in the list is the AND of another list of k elements. In order to verify

Theorem 5.25, we need to use the commutativity property of the n OR gate (Theorem

5.2), i.e., we need to verify that the list of the n OR in the voting gate definition (MAP

(λa. n AND (SET TO LIST a))(MAP (λa. {a}) L)) and the input list L possess the

permutation property when k = 1. Therefore, we first verify that the list generated

from k out 1 L is the permutation of the list MAP (λa. {a}) L. We need to recall

that MAP (λa. {a}) L generates another list that has all elements from the input list

L but as sets. Then, we verify that the list generated from applying the n AND to the

list of k out 1 L is the permutation of applying n AND to MAP (λa. {a}) L. We also

verify the following property:

Lemma 5.7.

	 ∀ L. rv gt0 L ⇒
PERM (MAP (λa. n AND (SET TO LIST a)) (MAP (λa. {a}) L)) L

Finally, we use these verified properties of permutation and the commutativity

property of n OR to verify Theorem 5.25.

114

Voting (n/n) is an AND Gate (Rule 16)

Theorem 5.26.

	 ∀ L. ALL DISTINCT L ⇒ (k out n gate (LENGTH L) L = n AND L)

Theorem 5.26 is used when k equals the length of the input list (LENGTH L),

i.e., VOT (n/n), and n is the number of inputs of the gate. In this case, the VOT

gate acts as an AND gate. We verify this by first rewriting using the VOT gate and

k out definitions. Then, we verify that {s| s ⊆ set L ∧ (CARD s = LENGTH L)}
= {set L}. This way the original expression of the VOT gate can be reduced to

n OR [n AND (SET TO LIST (set L))]. Then, we verify that PERM L (SET TO LIST

(set L)), which means that the original list and the list generated from the set of

the original list are the permutation of each other. This is a consequence of using

set L in the formal definition of the VOT gate, which requires the added condition

that the elements in the original list are distinct, i.e., they are not equal or repeated.

This condition is added using the HOL predicate ALL DISTINCT L. Finally, we verify

Theorem 5.26 using the commutativity property of the AND (Theorem 5.1) and the

definition of n OR.

5.3.2 Rewrite Rules for PAND Gates

Rules 18-23 deal with PAND gates that require considering the order of the inputs.

Representing AND Gate using OR and PAND Gates (Rule 18)

Theorem 5.27.

	 ∀ X Y. D AND X Y = D OR (P AND X Y) (P AND Y X)

115

Conflicting PAND Gates with Independent Successors (Rule 19)

Theorem 5.28.

	 ∀ X Y. (∀ s. ALL DISTINCT [X s; Y s]) ⇒
(D AND (P AND X Y) (P AND Y X) = NEVER)

We verify Theorems 5.27 and 5.28 based on the definitions of D AND, D OR and

P AND gates and some properties of extreal numbers. Note that the added condition

for rule 19 is that the inputs are distinct (ALL DISTINCT), i.e., they cannot fail si-

multaneously. This results from the fact that the inputs are independent (there is no

common cause of failure) and they possess continuous failure distributions. There-

fore, rule 19 cannot be applied unless this context restriction is ensured using this

assumption.

PAND Gate with a PAND Successor (Rule 20)

Theorem 5.29.

	 ∀ B C1 C2 L. rv gt0 (L ++ [B; C1; C2])⇒
(n PAND ([B; P AND C1 C2] ++ L) =

D AND (P AND C1 C2) (n PAND ([B; C2] ++ L)))

We verify Theorem 5.29 based on manipulating the input lists and the PAND

appended with a single element lemma, which we verify as:

Lemma 5.8.

	 ∀ x L. rv gt0 L ⇒ (n PAND (L ++ [x]) = P AND (n PAND L) x)

Based on Lemma 5.8 and list induction and manipulation, we verify that

the left-hand-side of Theorem 5.29 equals: P AND(D AND(P AND C1 C2)(n PAND

(B::C2::L))) x, where x is the additional element generated through induction.

116

Then, we verify a property stating that the time of failure of the PAND gate should

be greater than or equal to the failure time of any of its inputs, since it is required

that the failure occurs from left to right.

PAND Gate with a First OR Successor (Rule 21)

Theorem 5.30.

	 ∀ X Y L. rv gt0 [X; Y] ⇒
(n PAND (D OR X Y::L) = D OR (n PAND (X::L)) (n PAND (Y::L))

To verify Theorem 5.30, we first apply induction to the input argument and

rewrite using the rule of n PAND with a single successor. Then, we use the definitions

of the P AND, n PAND and some simplification theorems, such as P AND ALWAYS X =

X. Using some list properties, such as applying a function to two appended lists using

FOLDL (we need to recall that the definition of n PAND is based on FOLDL), we reach a

point where the whole goal can be verified using the following lemma:

Lemma 5.9. 	 ∀ X Y Z. P AND (D OR X Y) Z = D OR (P AND X Z)(P AND Y Z)

PAND Gate with ALWAYS as Non-First Successor (Rule 23)

Theorem 5.31.

	 ∀ L1. L1 �= [] ∧ (∀ x. MEM x L1 ⇒ ∀ s. 0 < x s) ⇒
∀ L2. n PAND (L1 ++ [ALWAYS] ++ L2) = NEVER

Theorem 5.31 shows that if the inputs to the left of the input that already failed

(ALWAYS) do not fail from the beginning, i.e., their time of failure is greater than 0,

then the output of the n PAND can never fail. Therefore, we add the condition that

the inputs to the left (list L1) are greater than 0 using ∀ x. MEM x L1 ⇒ ∀ s. 0

117

< x s. We verify Theorem 5.31 using induction over list L1. After some basic list and

extreal theory based reasoning, we reach the step for the left-hand-side:

FOLDL (λa b. P AND a b)

(P AND (FOLDL(λa b. P AND a b) h L1) ALWAYS) L2

where h is the appended element that results from induction. We verify that P AND

(FOLDL(λa b. P AND a b) h L1) ALWAYS = NEVER, which can be done if the first

input of the P AND is greater than 0. We verify the following property:

Lemma 5.10.

	 ∀ s L. (∀ x. MEM x L ⇒ ∀ s. 0 < x s) ⇒
∀ h. 0 < h s ⇒ 0 < FOLDL (λa b. P AND a b) h L s

This lemma basically means that if we have a list of inputs and an additional

element, h, that are greater than 0, then the result of applying P AND using FOLDL

is also greater than 0. Using this lemma, the left hand side is reduced to FOLDL

(λa b. P AND a b) NEVER L2. Finally, we use the following lemma to verify the

Theorem 5.31.

Lemma 5.11.

	 ∀ L. FOLDL (λa b. P AND a b) NEVER L = NEVER

This lemma indicates that if we apply P AND to a list of inputs with an element

NEVER at the beginning, then the output equals NEVER.

5.3.3 Non-Structural Rules

The BEs that are not connected to the given DFT can be safely removed. This is

already implicitly embedded in the current DFT formalization, as we are verifying the

rewrite rules by proving that the time of failure before and after rewriting remains

118

the same. Therefore, if the BEs are not connected to the DFT, this means that they

are not affecting the time of failure of the top element and thus they can be removed

in the verification process. Since DFT gates are modeled as time-to-failure functions,

merging BEs is also already embedded in the DFT formalization. For example, the

OR gate is modeled using the min function. This means that the inputs of the OR

gate are merged and the output of the OR gate can be replaced with the min function.

We illustrate the usage of the verified rules on the example of Figure 5.2:

Theorem 5.32.

	 ∀ c d f. P AND (D AND c (D OR c d))(D AND d f) = P AND c (D AND d f)

5.4 Summary

As an application of our DFT formalization and analysis framework, in this chapter,

we presented the formal definitions and proofs of the rewriting rules in [66], which we

believe is a novel contribution as details about how to mathematically conduct these

proofs are not available in [66]. In fact, in [66], the correctness of the rewrite rules is

described implicitly based on the behavior of DFT gates rather than on their formal

mathematical models as presented in this work. It is worth noting that our formal

definitions and verified lemmas allowed verifying several DFT rewriting rules that can

be used with tools that simplify DFTs prior to the analysis. In addition, verifying

these rules represent the first step towards formally verifying other DFT tools, such

as STORM.

119

Chapter 6

Formal Analysis of Dynamic

Reliability Block Diagrams

In this chapter, we introduce our novel DRBD algebra that allows conducting both

the qualitative and quantitative analyses based on the structure of the DRBD. We

propose new DRBD operators, similar to the DFT algebra, to capture the dynamic

dependencies among system components. We use these operators to model the three

variants of the spare construct, i.e., hot spare HSP, cold spare CSP, and warms spare

WSP. Furthermore, we model the series, parallel, series-parallel and parallel-series

structures using our newly introduced operators. We propose several simplification

theorems to enable reducing the structure function of a given DRBD. We express the

reliability of the DRBD spare construct and structures to provide generic expressions

of distribution and density functions. We formalize this algebra to ensure its soundness

and allow the analysis within a theorem proving environment. Our ultimate goal is to

develop a formally verified algebra that follows the traditional reliability expressions

of the series and parallel structures in an easily extensible manner and at the same

120

time can capture the dynamic behavior of real-world systems. Our formalization

differs from and overcomes the formalization of traditional RBDs presented in [22] in

the sense that it can formally express the structure function of a DRBD using the

introduced DRBD operators. In addition, it can formally model and analyze DRBD

spare constructs. Furthermore, we model the traditional RBD structures, i.e., series,

parallel and deeper structures in a way similar to the mathematical models available in

the literature, which makes it easily understood and followed by reliability engineers

that are not familiar with HOL theorem proving. We illustrate the usefulness of

the proposed developments in conducting the formal analysis of the DBW system.

Finally, we verify the equivalence of both DFT and DRBD algebras, which enables

the analysis in both directions.

6.1 Methodology

Figure 6.1 depicts the proposed methodology to formally conduct the DRBD qualita-

tive and quantitative analyses using HOL4. Similar to the DFT analysis, the formal

DRBD analysis starts with a system description that is interpreted into a DRBD

model and some reliability requirements that should be met. A formal model is

created using the DRBD structures and constructs, such as the series, parallel and

spares. Then, based on the simplification theorems, the DRBD structure is reduced

to enable the qualitative analysis in the form of cut sets and cut sequences. The quan-

titative analysis of the DRBD is performed using the verified reliability expressions

of the DRBD structures. As a result, a generic reliability expression of the modeled

system is formally verified using HOL4. Since the DFT and the DRBD encompass

complementary behavior, we utilize our DFT library to formalize DRBDs, i.e., the

DFT theory is the parent of the DRBD, besides the measure, Lebesgue integral and

121

probability theories.

Figure 6.1: Formal DRBD Analysis Methodology

6.2 DRBD Event

Throughout this work, we assume that system components or blocks are represented

by random variables that in turn represent their time-to-failures. In addition, we

assume that system components are non-repairable, i.e., we are interested in express-

ing the reliability of the system considering that the failed components will not be

repaired. It is worth mentioning that our proposed algebra follows the general lines

for the DFT algebra [30], which allows DFTs conversion into DRBDs for conducting

their analysis as well.

The reliability of a single component, which time-to-failure function is repre-

sented by random variable X, is mathematically defined as [4]:

RX(t) = Pr{s | X(s) > t} = 1− Pr{s | X(s) ≤ t} = 1− FX(t) (6.1)

122

where FX(t) is the CDF of X.

We call {s | X(s) > t} a DRBD event as it represents the set that we are

interested in finding the probability of until time t:

event (X, t) = {s | X(s) > t} (6.2)

In our formalization, we define the inputs, or the random variables representing

the time to failure of system components, as lambda abstracted functions with a

return datatype of extended-real, which represents real numbers besides ±∞.

We formally define the DRBD event of Equation (6.2) as:

Definition 6.1. DRBD Event

	 ∀ p X t. DRBD event p X t = {s | Normal t < X s} ∩ p space p

where Normal typecasts the real value of t from real to extended-real. This type

conversion is required since we need real-valued random variables. However, we need

to deal with the extended-real data-type to model the NEVER element. Therefore, we

define the time-to-failure functions to return extended-real and typecast the values

from extended-real to real using the function real and vice versa using Normal. This

is similar to our approach of the DFT formalization.

We formally define the reliability as the probability of the DRBD event according

to Equation (6.1):

Definition 6.2. Reliability

	 ∀ p X t. Rel p X t = prob p (DRBD event p X t)

We verify the relationship between the reliability and the CDF of Equation (6.1) as:

123

Theorem 6.1.

	 ∀ p X t. rv gt0 ninfinity [X] ∧
random variable (real o X) p borel ⇒
(Rel p X t = 1- CDF p (real o X) t)

where real typecasts the values of the random variable from extended-real to real as

the CDF is defined for real-valued random variables, random variable (real o X)

p borel ensures that (real o X) is a random variable over the real line represented

by the borel space, and rv gt0 ninfinity ensures that the random variable is greater

than or equal to 0 and not equal to +∞, which means that the time of failure of any

component cannot be negative or +∞. Theorem 6.1 is verified based on the fact that

the DRBD event and the set of the CDF are the complement of each other. Therefore,

the probability of one of them equals one minus the other. For the rest of the work,

we will denote CDF p (real o X) t by FX(t) to facilitate the understanding of the

theorems.

6.3 Identity Elements and Operators

Similar to the identity elements of ordinary Boolean algebra and DFT algebra [30],

we introduce two identity elements, i.e., ALWAYS and NEVER, that represent two

states of any system block. The ALWAYS element represents a system component

that always fails, i.e., it fails from time 0. While the NEVER element represents a

component that never fails, i.e., the time of its failure is +∞. These identity elements

play an important role in the reduction process of the structure functions of DRBDs,

as will be introduced in the following sections.

ALWAYS = 0 (6.3)

124

NEV ER = +∞ (6.4)

We formally define these elements as:

Definition 6.3. DRBD ALWAYS

	 R ALWAYS = (λs. (0:extreal))

Definition 6.4. DRBD NEVER

	 R NEVER = (λs. PosInf)

We introduce operators to model the relationship between the various blocks in

a DRBD. These operators can be divided into two categories: 1) The AND and OR

operators that are not concerned with the dependencies among system components.

2) Temporal operators, i.e., After, Simultaneous and Inclusive After, that can capture

the dependencies between system components. It is worth mentioning that DRBDs

are concerned with modeling the several paths of success of a given system. Therefore,

if we are concerned in knowing the success behavior of a DRBD until time t, it means

that we are interested in knowing how the system would not fail until time t. As a

result, we can use the time-to-failure random variables in modeling the time-to-failure

of a given DRBD, i.e., its structure function. It is assumed that for any two system

components that possess continuous failure distribution functions, the possibility that

these components fail at the same time can be neglected.

In [44], AND and OR operators were introduced to model the parallel and series

constructs between dependent components only without providing any mathematical

model to these operators. We propose to use the AND (·) and OR (+) operators to

model series and parallel blocks in a DRBD, respectively without any restriction. We

provide a mathematical model for each operator based on the time of failure of its input

to be used in the proposed algebra. The AND operator models the series connection

125

(a) Series DRBD (b) Parallel DRBD

Figure 6.2: Two-Block Series and Parallel DRBDs

between two or more system blocks, as shown in Figure 6.2(a). For example, the

DRBD in Figure 6.2(a) will continue to work only if component X and component Y

are working. Once one of these blocks stops working, then there will be no connection

between the input and the output of the DRBD and thus the system will no longer

work. We model the AND operator as the minimum time of its input arguments.

Similarly, the OR operator models the connection between parallel components in a

DRBD. For example, the DRBD in Figure 6.2(b) will continue to work if X is working

or Y is working. All the components in a parallel structure should fail for this DRBD

to fail. Therefore, we model the OR operator as the maximum time of failure of its

input arguments, which represents the time of failure of basic system blocks or sub-

DRBDs. This approach facilitates using these operators to model even more complex

structures.

We define the AND and OR operators as:

X · Y = min (X, Y) (6.5)

X + Y = max (X, Y) (6.6)

We formally define these operators as:

Definition 6.5. DRBD AND

	 ∀ X Y. R AND X Y =(λs. min (X s) (Y s))

126

Definition 6.6. DRBD OR

	 ∀ X Y. R OR X Y =(λs. max (X s) (Y s))

If X and Y are independent, then the reliability of the systems, shown in Fig-

ure 6.2, can be expressed as:

R(X·Y)(t) = RX(t) × RY (t) (6.7)

R(X+Y)(t) = 1− ((1−RX(t))× (1−RY (t))) (6.8)

To reach these expressions, it is required first to express the DRBD events as

the intersection and union for the AND and OR operators, respectively, as:

event ((X · Y), t) = event (X, t) ∩ event (Y, t) (6.9)

event ((X + Y), t) = event (X, t) ∪ event (Y, t) (6.10)

We verify their reliability expressions as in Theorems 6.2 and 6.3, respectively.

Theorem 6.2.

	 ∀ p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X·Y) t = Rel p X t * Rel p Y t)

Theorem 6.3.

	 ∀ p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X + Y) t = 1 - (1 - Rel p X t) * (1 - Rel p Y t))

We verify Theorem 6.2 by first rewriting using Definition 6.2. Then, we prove

that DRBD event of the AND operator equals the intersection of the individual events,

127

as in Equation (6.9). Utilizing the independence of the real-valued random variables

real o X and real o Y, the probability of intersection of their events equals the

product of the probability of the individual events. Since X and Y are greater than 0

and are not equal to +∞, based on the function rv gt0 ninfinity, the events in the

probability space that correspond to X and Y are equal to the ones that correspond

to real o X and real o Y. As a result, the DRBD events of X and Y are independent.

Hence, the probability of their intersection equals the product of the probability of

the individual events, i.e., their reliability. Theorem 6.3 is verified in a similar way.

However, we prove that the DRBD event of the OR operator equals the union of the

individual events, as in Equation (6.10). We verify that this union of events equals to

the complement of the intersection of the complements of the individual events. Now,

Theorem 6.3 can be proven using the independence of random variables.

We extend the definition of the AND and OR operators to n-ary operators,

nR AND and nR OR, that can be used to represent the relationship between an arbitrary

number of elements. We formally define n-ary AND (nR AND) as:

Definition 6.7. nR AND

	 ∀ X s. nR AND X s = ITSET (λe acc. R AND (X e) acc) s R NEVER

where ITSET is the HOL function to iterate over sets. This definition applies the

R AND over the elements of X indexed by the numbers in s. R NEVER is the identity

element of the R AND operator.

Similarly, we formally define n-ary OR (nR OR) as:

Definition 6.8. nR OR

	 ∀ X s. nR OR X s = ITSET (λe acc. R OR (X e) acc) s R ALWAYS

where R ALWAYS is the identity element of the R OR operator. The reliability of these

128

two operators would be similar to the reliability of the series and parallel structures,

respectively, as will be described in the following section.

In order to model the dynamic behavior of systems in DRBDs, we introduce

new temporal operators: after (�), simultaneous (Δ), and inclusive after(�). The

after operator represents a situation where it is required to model a component that

continues to work after the failure of another. The time of failure of the after operator

equals the time of failure of the last component, which is required to fail. However, if

the required sequence does not occur, then the output can never fail, i.e., the time of

failure equals +∞.

X � Y =

⎧⎪⎪⎨
⎪⎪⎩
X, X > Y

+∞, X ≤ Y

(6.11)

The behavior of the simultaneous operator is similar to the one introduced in

the DFT algebra [30]. The output of this operator fails if both its inputs fail at the

same time, otherwise it can never fail.

XΔY =

⎧⎪⎪⎨
⎪⎪⎩
X, X = Y

+∞, X �= Y

(6.12)

Finally, the inclusive after operator encompasses the behavior of both the after

and simultaneous operators, i.e., it models a situation where it is required that one

component continues to work after another one or fail at the same time, otherwise it

can never fail.

X � Y =

⎧⎪⎪⎨
⎪⎪⎩
X, X ≥ Y

+∞, X < Y

(6.13)

129

We formally define these temporal operators as:

Definition 6.9. DRBD After

	 ∀ X Y. R AFTER X Y = (λs. if Y s < X s then X s else PosInf)

Definition 6.10. DRBD Simultaneous

	 ∀ X Y. R SIMULT X Y = (λs. if X s = Y s then X s else PosInf)

Definition 6.11. DRBD Inclusive After

	 ∀ X Y.

R INCLUSIVE AFTER X Y = (λs. if Y s ≤ X s then X s else PosInf)

In the case of dealing with basic components, the inclusive after will behave in

a similar way as the after operator. Therefore, their probabilities can be expressed

for independent random variables in the same way as:

R(X�Y)(t) = 1−
∫ t

0

fX(x)× FY (x) dx (6.14)

where fX is the PDF of X and FY is the CDF of Y .

Finally, we verify this expression utilizing our formalization in Section 4.2.3:

Theorem 6.4.

	 ∀ X Y p fx t. rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧
indep var p lborel (real o X) lborel (real o Y) ∧
distributed p lborel (real o X) fx ∧ (∀ x. 0 ≤ fx x) ∧
cont CDF p (real o Y) ∧ measurable CDF p (real o Y) ⇒
(Rel p (X�Y) t = 1-

∫ t

0
fX(x) × FY(x) dx)

The proof of this theorem is based on Pr(Y < X < t) =
∫ t

0
fX(x) × FY (x) dx,

which has been verified in Section 4.2.3 using the properties of the Lebesgue inte-

gral and independence of random variables. The DRBD after operator represents a

130

situation where the system continues to work until two components fail in sequence.

Thus, the above expressions allow us to verify the reliability expression of the after

operator, as the DRBD and DFT events complement one another.

6.4 Simplification Theorems

We introduce several simplification properties to reduce the structure function of a

DRBD. These simplification properties range from simple ones, such as the associativ-

ity and idempotence of the operators, to more complex theorems. The idea of these

properties is to reduce the algebraic expressions based on the time of failure. For

example, X· ALWAYS = ALWAYS means that if a component in a series structure

is not working, i.e., always fails, then the series structure is not working as well. Sim-

ilarly, X + NEV ER = NEV ER means that if a component in a parallel structure

cannot fail, then the whole parallel structure cannot fail as well. X + Y = Y + X,

X · Y = Y · X and XΔY = YΔX represent the commutativity property for the

OR, AND and simultaneous operators, respectively. An example of a more complex

theorem is X � (Y · Z) = (X � Y) · (X � Z). We formally verify these theorems

in order to perform the reduction of a given DRBD using HOL. Table 6.1 lists these

simplification theorems that we developed and verified using the proposed algebra.

6.5 Spare Construct

The spare construct, shown in Figure 6.3 [45], is introduced in DRBDs to model

situations where a spare part is activated and replaces the main part, after its failure,

by introducing a spare controller to activate the spare [45]. Depending on the failure

behavior of the spare part, we can have three variants, i.e., hot, warm and cold

131

Table 6.1: Formally Verified DRBD Simplification Theorems

Simplification Theorems

	 ∀ X. (∀ s. 0 ≤ X s) ⇒ (X · R ALWAYS = R ALWAYS)

	 ∀ X Y Z. (X · Y) · Z = X · (Y · Z)

	 ∀ X Y. X · Y = Y · X

	 ∀ X. X · X = X

	 ∀ X. X · R NEVER = X

	 ∀ X. (∀ s. 0 ≤ X s) ⇒ (X + R ALWAYS = X)

	 ∀ X Y Z. (X + Y) + Z = X + (Y + Z)

	 ∀ X Y. X + Y = Y + X

	 ∀ X. X + X = X

	 ∀ X. X + R NEVER = R NEVER

	 ∀ X Y. X + (X · Y) =X

	 ∀ X Y Z. X rhd (Y � Z) = ((X � Y) + (X � Z)) (Y � Z)

	 ∀ X Y. (X � Y) + (Y � X) = R NEVER

	 ∀ X Y Z. X � (Y · Z) = (X � Y) · (X � Z)

	 ∀ X Y Z. X · (Y + Z) = (X · Y) + (X · Z)

	 ∀ X Y Z. X + (Y · Z) = (X + Y) · (X + Z)

	 ∀ X Y. X � Y = (X � Y) · (X Δ Y)

	 ∀ X Y Z. X � (Y + Z) = (X � Y) + (X � Z)

	 ∀ X Y. X Δ Y = Y Δ X

(H|W |C) spares. The hot spare possesses the same failure behavior in both its active

and dormant states. The cold spare cannot fail in its dormant state and is only

activated after the failure of the main part. The failure behavior of the warm spare

in the dormant state is attenuated by a dormancy factor from the active state. In

order to distinguish between the dormant and active states of the spare, just like the

DFT algebra [30], we use two different symbols to model the spare part of the DRBD

spare construct, one for the dormant state and the other for the active one. For the

132

Figure 6.3: Spare Construct

spare construct of Figure 6.3, the spare X is represented by Xa and Xd for the active

and dormant states, respectively. After the failure (F) of the main part Y , X will be

activated (A) by the spare controller. We model the structure function of the spare

construct (Qspare) using the DRBD operators based on the description of its behavior:

Qspare = (Xa � Y) · (Y �Xd) (6.15)

Thus, we need two conditions to be satisfied in order for the spare to work. The first

one is that the active state of the spare will continue to work after the failure of the

main part (Xa�Y). The second condition is that the main part will continue to work

after the failure of the spare in its dormant state (Y �Xd). However, since the spare

part can only fail in one of its states (Xa, Xd) but not both as it is non-repairable,

only one of the terms in Equation (6.15) affects the behavior and the other term can

never fail, i.e., it fails at +∞.

We formally define the warm spare (WSP) as:

Definition 6.12. DRBD WSP

	 ∀ Y Xa Xd. R WSP Y Xa Xd = (Xa � Y) · (Y � Xd)

Since the spare construct of the DRBD and the spare gate of the DFT exhibit

complementary behavior, i.e., the DRBDs consider the success and the DFTs consider

the failure, we can use the probability of failure of the spare DFT gate [30] to find the

reliability of the spare DRBD construct. It is assumed that the dormant spare and

133

the main part are independent since the failure of one does not affect the failure of

the other. However, the failure of the active spare is affected by the time of failure of

the main part, since it will be activated after the failure of the main part. We express

the reliability of the spare as:

Rspare(t) = 1−
∫ t

0

∫ t

y

f(Xa|Y=y)(x) fY (y)dxdy −
∫ t

0

fY (y)FXd
(y)dy (6.16)

where f(Xa|Y=y) is the conditional density function of Xa given that Y failed at time y.

We use our formalization of the probability of failure of the warm spare gate of

Section 4.2.4 to verify the reliability of the WSP construct:

Theorem 6.5.

	 ∀ p Y Xa Xd t fY fXaY fXa|Y. 0 ≤ t ∧
(∀ s. ALL DISTINCT [Xa s; Xd s; Y s]) ∧ DISJOINT WSP Y Xa Xd t ∧
rv gt0 ninfinity [Xa; Xd; Y] ∧ den gt0 ninfinity fXaY fY fXa|Y ∧
(∀ y. cond density lborel lborel p

(real o Xa)(real o Y) y fXaY fY fXa|Y) ∧
indep var p lborel (real o Xd) lborel (real o Y) ∧
cont CDF p (real o Xd) ∧ measurable CDF p (real o Xd) ⇒(
Rel p (R WSP Y Xa Xd) t) =

1 - (
∫ t

0
f Y(y) ∗ (

∫ t

y
f(Xa|Y=y)(x) dx) dy +

∫ t

0
fY(y)FXd(y)dy)

)
where ALL DISTINCT ensures that the main and spare parts cannot fail at the same

time, DISJOINT WSP Y Xa Xd t ensures that until time t, the spare can only fail in

one of its states and den gt0 ninfinity ascertains the proper values of the density

functions; joint (fXY), marginal (fY) and conditional (fXa|Y). Theorem 6.5 is verified

by first defining a conditional density function fXa|Y for random variables (real o Xa)

134

and (real o Y). This is required as the failure of the spare part is affected by the

time of failure of the main part. Therefore, we need to define this conditional density

function then prove the expression based on the probability of failure of the DFT

spare gate, which is verified based on the properties of the Lebesgue integral.

Equations (6.15) and (6.16) represent the general behavior of the spare, i.e., the

warm spare. The cold and hot spares represent special cases of the warm spare and

can be expressed as:

Qcoldspare = Xa � Y (6.17)

Qhotspare = X + Y (6.18)

In Equation (6.18), the spare part X has the same behavior in both states and thus

there is no need to use any subscript to distinguish both states.

We formally define the DRBD CSP as:

Definition 6.13. DRBD CSP

	 ∀ Y X. R CSP Y X = (λs. if Y s < X s then X s else PosInf)

This definition means that the CSP construct will continue to work until the

main part fails then the spare part is activated and fails in its active state. It is worth

noting that since the spare part has only one state that affects the behavior of the

CSP, which is the active state, we do not use any subscript with the active state, as

the dormant state has no effect here in the behavior.

Finally, we define the hot spare construct (HSP) as:

Definition 6.14. DRBD HSP

	 ∀ Y X. R HSP Y X = (λs. max (Y s) (X s))

The reliability expression of Equation (6.18) can be expressed using the reliabil-

ity of the OR operator. Therefore, we can use Theorem 6.2 to express the reliability

135

of the HSP construct. The reliability of the cold spare construct can be expressed as:

Rcold spare(t) = 1−
∫ t

0

∫ t

y

f(Xa|Y=y)(x) fY (y) dx dy (6.19)

We verify the reliability of the CSP construct based on the probability of failure

of the CSP gate as:

Theorem 6.6.

	 ∀ p X Y fXY fY fX|Y t. 0 ≤ t ∧
rv gt0 ninfinity [X; Y] ∧ den gt0 ninfinity fXY fY fX|Y ∧
(∀ y. cond density lborel lborel p

(real o X)(real o Y) y fXY fY fX|Y) ∧(
Rel p (R CSP Y X) t) = 1 - (

∫ t

0
f Y(y) ∗ (

∫ t

y
f(X|Y=y)(x) dx) dy

)
The conditions required for this theorem are similar to the ones of Theorem 6.5,

as the WSP exhibits the behavior of the CSP if the main part fails before the spare.

6.6 DRBD Structures

Beside the dynamic DRBD constructs, system components are represented as blocks

that can be connected in series, parallel, series-parallel and parallel-series fashion, as

shown in Figure 6.4 [4]. Each block in Figure 6.4 represents either a simple system

component or one of the DRBD dynamic constructs.

The series structure (Figure 6.4(a)) represents a collection of blocks that are

connected in series. The system continues to work until the failure of one of these

blocks. We define a series structure that represents the intersection of all events of

the blocks in this structure as in Table 6.2, where Xi represents the ith block in

the series structure and n is the number of blocks. Interestingly, any block in our

136

(a) Series (b) Parallel

(c) Series-Parallel (d) Parallel-Series

Figure 6.4: DRBD Structures

proposed algebra can represent a basic system component or a complex structure,

such as a spare construct. Moreover, since we are dealing with the events, we can use

the ordinary reliability expressions for the series structure assuming the independence

of the individual blocks. The parallel structure (Figure 6.4(b)) represents a system

that continues to work until the failure of the last block in the structure. The

behavior of the parallel structure can be expressed using the OR operator. We

represent the parallel structure as the union of the individual events of the blocks.

The series-parallel structure (Figure 6.4(c)) represents a series structure, where the

blocks of the series structure are parallel structures. The structure function of this

structure can be expressed using and AND of OR operators. Table 6.2 lists the model

for this structure with its reliability expression, where n is the number of blocks in

the parallel structure and m is the number of parallel structures that are connected

in series. The parallel-series structure (Figure 6.4(d)) represents a group of series

structures that are connected in parallel. Its structure function can be expressed

using an OR of AND operators.

137

Table 6.2: Mathematical and Reliability Expressions of DRBD Structures

Structure Math. Model Reliability Expression

Series
⋂n

i=1(event (Xi, t))
∏n

i=1 RXi
(t)

Parallel
⋃n

i=1(event (Xi, t)) 1−∏n
1=1(1−RXi

(t))

Series-Parallel
⋂m

i=1

⋃n
j=1(event (X(i,j), t))

∏m
i=1(1−

∏n
j=1(1−RX(i,j)

(t)))

Parallel-Series
⋃n

i=1

⋂m
j=1(event (X(i,j), t)) 1− (

∏n
i=1(1−

∏m
j=1(RX(i,j)

(t))))

We formally define the series structure as:

Definition 6.15. DRBD Series Structure

	 ∀ Y s. DRBD series Y s =
⋂
i∈s

(Y i)

We define the series structure as a function that accepts a group of sets, Y, that

are indexed by the numbers in set s and returns the intersection of these sets.

The parallel structure is defined in a similar way but it returns the union of the

sets rather than the intersection. We formally define it as:

Definition 6.16. DRBD Parallel Structure

	 ∀ Y s. DRBD parallel Y s =
⋃
i∈s

(Y i)

The group of sets, Y, in both structures, represents a family of events, i.e., Y will

be instantiated later with DRBD events. The reliability expressions of the series and

parallel structures are given in Table 6.2. We verify these expressions as:

Theorem 6.7.

	 ∀ p X t s. s �= {} ∧ FINITE s ∧
indep sets p (λi. {rv to event p X t i}) s ⇒
(prob p (DRBD series (rv to event p X t) s) =

Normal (
∏
i∈s

(real (Rel p (X i) t))))

138

Theorem 6.8.

	 ∀ p X t s. s �= {} ∧ FINITE s ∧
indep sets p (λi. {rv to event p X t i}) s ⇒
(prob p (DRBD parallel (rv to event p X t) s) =

1 - Normal (
∏
i∈s

(real (1 - Rel p (X i) t))))

where s �={} ∧ FINITE s ensures that the set of indices, s, is nonempty and finite.

The reliability of the series structure is verified based on the independence of the

input events using indep sets, which ensures that for the probability space p, the

given group of sets ((λi. {rv to event p X t i}) indexed by the numbers in set s

are independent. The family of sets ((λi. {rv to event p X t i}) represents the

DRBD events of the group of time-to-failure functions, X. This is defined as:

Definition 6.17. rv to event

	 ∀ p X t. rv to event p X t = (λi. DRBD event p (X i) t)

The function rv to event enables us to create the group of DRBD event of

time-to-failure functions of system blocks (X). Based on the independence of these

sets and the definition of the series structure (intersection of sets), we verify that

the probability of the series structure is equal to the product of the reliability of the

individual blocks (Rel p (X i) t), where i∈s. The product function (∏) in HOL4

returns a real value and the probability returns extreal, therefore, it is required

to typecast the product function to extreal using Normal. Similarly, the product

function finds the product of real-valued functions, therefore, it is required to typecast

the reliability function (Rel) to real using the real function. The parallel structure

is verified in a similar way. We replace the parallel structure (the union of events)

with the complement of the intersection of the complements of the events. Then, we

verify that the probability of this complement equals one minus the probability of the

139

intersection of the complements. This requires the added condition that all DRBD

events created using rv to event belong to the events of the probability space p,

which is an embedded condition in indep sets definition.

In order to express the series and parallel structures using DRBD operators, we

verify that these structures are equal to the DRBD events of the nR AND and nR OR,

respectively:

Theorem 6.9.

	 ∀ p X t s. FINITE s ∧ s �= {} ⇒
(DRBD event p (nR AND X s) t = DRBD series (rv to event p X t) s)

Theorem 6.10.

	 ∀ p X t s. FINITE s ∧ 0 ≤ t ⇒
(DRBD event p (nR OR X s) t = DRBD parallel (rv to event p X t) s)

We verify Theorems 6.9 and 6.10 by inducting on set s using SET INDUCT TAC that will

create two subgoals to be solved; one for the empty set and another one for inserting

an element to a finite set. Furthermore, we use the fact that the DRBD events of the

AND and OR operators equal the intersection and the union of the individual events,

respectively. For Theorem 6.10, an additional condition is required, 0≤t, to be able

to manipulate the sets and reach the final form of the theorem.

Interestingly, these structures can be easily extended to model and verify more

complex structures, such as two-level structures, i.e., series-parallel and parallel series

structures. We formally verify the reliability of the series-parallel structure as:

Theorem 6.11.

	 ∀ p X t s J.

indep sets p (λi. {rv to event p X t i}) (
⋃
j∈J

(s j)) ∧

140

(∀ i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧ disjoint family on s J ⇒

(prob p

(DRBD series

(λj. DRBD parallel (rv to event p X t) (s j)) J) =

Normal

(
∏
j∈J

(1 -
∏

i∈(s j)

(real (1 - Rel p (X i) t)))))

We formally verify the reliability of the parallel-series structure as:

Theorem 6.12.

	 ∀ p X t s J.

indep sets p (λi. {rv to event p X t i}) (
⋃
j∈J

(s j)) ∧

(∀ i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧ disjoint family on s J ⇒
(prob p

(DRBD parallel (λj. DRBD series (rv to event p X t) (s j)) J) =

1 - Normal (
∏
j∈J

(1 -
∏

i∈(s j)

(real (Rel p (X i) t)))))

The main idea in building these two-level structures is to partition the family

of blocks into distinct groups, where we use a set, J, to index these partitions, i.e., it

includes the number of groups in the first top level. Then, for each group in this top

level, we have another set, {s j | j ∈ J}, that includes the indices of the blocks

in the second level, i.e. the subgroups. For example, consider the parallel-series

structure of Figure 6.4(d), if n = m = 1, then the outer parallel structure has two

series structures, where each series structure has two blocks. Thus, J = {0;1}. For

each j∈J, we have a certain set s j that has the indices of the blocks in the inner

141

series structure. Thus, s = (λj. if j = 0 then {0;1} else {2;3}). The same

concept is applied to the series-parallel structure. Therefore, the structure of the

DRBD can be determined based on the given sets of indices.

We verify Theorems 6.11 and 6.12 by extending the proofs of the series and

parallel structures. However, it is required to deal with the intersection of unions in

case of the series-parallel structure and the union of intersections in case of parallel-

series structure. Therefore, we need to extend the independence of sets properties to

include the independence of union and intersection of partitions of the events. We

verify these properties as:

Theorem 6.13.

	 ∀ p s J Y. indep sets p (λi. {Y i}) ⋃
j∈J (s j) ∧ J �= {} ∧

(∀ i. i ∈ J ⇒ countable (s i)) ∧ FINITE J ∧
disjoint family on s J ⇒
indep sets p (λj. {⋃i∈s j (Y i)}) J

Theorem 6.14.

	 ∀ p s J Y. indep sets p (λi. {Y i}) ⋃
j∈J (s j) ∧ J �= {} ∧

(∀ i. i ∈ J ⇒ countable (s i) ∧ s i �= {}) ∧ FINITE J ∧
disjoint family on s J ∧ (∀ i. i ∈ ⋃

i∈J (s j) ⇒ Y i ⊂ m space p) ⇒
indep sets p (λj. {⋂i∈s j (Y i)}) J

where set J includes the indices of the partitions and s has the indices of the individual

blocks of each partition, disjoint family on ensures that the indices of the blocks in

different partitions are disjoint and indep sets p (λi. {Y i}) ⋃
j∈J (s j) ensures

the independence of the family of blocks {Y i} where the indices of the individual

blocks are given by the union of s. In order to verify Theorems 6.13 and 6.14, we

need the fact that the σ-algebras generated by (λj.
⋃

i∈s j{Y i}) with index set J

142

are independent. Then, we verify that ∀ j. j ∈ J, set {⋃i∈s j {Y i}} is a subset

of the σ-algebra generated by
⋃

i∈s j{Y i} . Finally, based on these intermediate

verified steps and the definition of indep sets, we are able to verify these theorems.

In order to verify the reliability of the series-parallel structure, we need to ensure

the independence of the individual blocks. Therefore it is required to combine the

indices of all blocks into a single set using
⋃

j∈J (s j) to be used with indep sets. To

be able to use the reliability of the series structure in this proof, we use Theorem 6.13

to verify the independence of the unions of partitions of events. This means verifying

that the parallel structures are independent, i.e., the probability of intersection of

these parallel structures equals the product of the reliability of the parallel structures.

Finally, several assumptions related to sets {s i| i ∈ J} and J are required, which

include that these sets are finite and nonempty. Finally, it is required that every block

has a unique index, which is ensured using disjoint family on. The reliability of

the parallel-series structure is verified in a similar manner based on the reliability of

the parallel structure. We verify the independence of the intersection of partitions of

events rather than the union using Theorem 6.14. In addition, it is required that all

DRBD events belong to the events of the probability space.

We extend the reliability of the two-level series-parallel structure to verify the

reliability of a more nested structure, i.e., series-parallel-series-parallel, as:

Theorem 6.15.

	 ∀ p X t s L A J.

indep sets p (λi. {rv to event p X t i}) (nested BIGUNION s L A J) ∧
sets finite not empty s L A J ⇒
(prob p

(DRBD series (λj.

143

DRBD parallel (λa.

DRBD series (λl.

DRBD parallel (rv to event p X t) (s l)) (L a)) (A j)) J) =

Normal

(
∏

j∈J

(1 -
∏

a∈(A j)(1 -
∏

l∈(L a) (1 -
∏

i∈(s l)(real (1 - Rel p (X i) t)))))))

For this four-level nested structure, we have four sets (indexed sets) that de-

termine the structure of the DRBD, which are: J, A, L and s. This is similar to the

two-level nested structure but with a deeper hierarchy. Therefore, in order to com-

bine the indices of all the individual blocks in the DRBD in a single set, we define

nested BIGUNION s L A J to union the elements of all s i, where i∈ L a, a∈ A j

and j∈J. This is done in a hierarchical manner and can be extended easily to deeper

levels. We use the previously mentioned function to ensure that all the individual

events belong to the probability events and are independent as well. Moreover, it

is required to ensure that the sets are finite, disjoint and nonempty, just like the

series-parallel structure. We combine these set-related conditions using the function

sets finite not empty. Finally, we verify Theorem 6.15 within two main steps. The

first step is to verify the reliability of the outer series-parallel, which requires verifying

the independence of the intersection of union of partition of the DRBD blocks, i.e.,

the inner series-parallel structures are independent. The second step is to verify the

reliability of the inner series-parallel structures, which can be done based on some

set manipulation. This theorem can be used to verify even deeper structures, which

would require verifying the independence of more nested structures. We use Theo-

rem 6.15 to verify the reliability of the series-parallel-series structure as it represents a

special case of the series-parallel-series-parallel, where each of the innermost parallel

144

structures has only one block. Our formalization follows the natural definitions of

parallel and series structures. Moreover, our verified lemmas of independence allow

verifying deeper structures, which makes our formalization flexible and applicable to

model the most complex systems. The proof script of the DRBD algebra is available

at [70]. In the following section, we utilize our formalization in the verification of the

reliability of the DBW system.

6.7 Formal DBW DRBD Analysis

To demonstrate the applicability of our proposed DRBD algebra, we present the

formal reliability analysis of the DBW system [59] to verify generic expressions that

are independent of the failure distribution of the system components, i.e., we can use

different types of distributions to model the failure of system components as long as

they satisfy the required conditions, such as the continuity.

The DRBD of the DBW system, shown in Figure 6.5, models the successful

behavior. Similar to our DFT analysis of the DBW, we provide the analysis of the

throttle and brake subsystems. The throttle subsystem continues to work as long as

the throttle (TF) and the engine (EF) are working. In addition, the system successful

Figure 6.5: DRBD of Drive-by-Wire System

145

operation requires the operation of the brake control unit (BCU). The system includes

a primary control unit (PC) with a warm spare (SC) that replaces the main part after

failure. Finally, the system needs the operation of the throttle sensor (TS) and the

brake sensor (BS). The DRBD of this system is modeled as a series structure with a

spare construct. We express the structure function of this DRBD using our operators:

QDBW = TF · EF · BCU · (R WSP PC SCa SCd) · TS · BS

Since this is a series DRBD, then the cut sets and cut sequences are easily

determined using all the blocks of the system.

Then, we verify the DBW reliability as:

Theorem 6.16.

	 ∀ p TF EF BCU PC SCa SCd TS BS t.

DBW set req p TF EF BCU PC SCa SCd TS BS t ⇒
(prob p (DRBD event p QDBW t) =

Rel p TF t * Rel p EF t * Rel p BCU t * Rel p (R WSP PC SCa SCd) t *

Rel p TS t * Rel p BS t)

where DBW set req ensures the proper conditions for the independence of the blocks

in the DBW system.

In Figure 6.6, we evaluate, using MATLAB, the reliability of the DBW system

assuming exponential distributions for the system components with failure rates as

given in the figure and a dormancy factor of 0.5.

6.8 Formal Equivalence of DFT-DRBD Algebras

The proposed framework integrating DFT and DRBD algebras is depicted in Fig-

ure 6.7. As mentioned in Section 1.4, the proposed methodology can be utilized to

146

Figure 6.6: Reliability of DBW System

Figure 6.7: Integrated Framework for Formal DFT-DRBD Analysis using HOL4

conduct both DFT and DRBD analyses using the HOL formalized algebras and allows

formally converting a DFT model into its corresponding DRBD based on the equiva-

lence of both algebras. The analysis starts by a given system description that can be

modeled as a DFT or DRBD. Formal models of the given system can be created based

on the HOL formalized algebras. The DRBD model can be analyzed as described in

this chapter, where a DRBD event is created and its reliability is verified based on

the available verified theorems of DRBD algebra. On the other hand, a DFT model

can be analyzed using the formalized DFT algebra presented in Chapters 3 and 4.

147

Furthermore, the DRBD model can be converted to a DFT to model the failure in-

stead of the success, then this model is analyzed using the DFT algebra. Similarly,

the DFT model can be analyzed by converting it to its counterpart DRBD model to

analyze the success.

In order to handle the DFT analysis using DRBD algebra and the DRBD anal-

ysis using the DFT algebra, it is required to be able to represent the DRBD of the

corresponding DFT gates using the DRBD algebra and vice-versa (the equivalence

proof in Figure 6.7). According to [43], the OR, AND and FDEP gates can be rep-

resented using series, parallel and series RBDs, respectively. Therefore, they can be

modeled using AND and OR operators, while the spare gate corresponds to the spare

construct. Finally, the PAND gate can be expressed using the inclusive after operator

(Y �X). However, we need to formally verify this equivalence to ensure its correct-

ness. In Table 6.3, we provide the theorems of equivalence of DFT gates and DRBD

operators and constructs, where D AND, D OR, n OR, n AND FDEP, P AND and WSP are the

names of the AND, OR, n-ary OR, n-ary AND, FDEP, PAND and spare DFT gates in

our HOL formalization, respectively. R WSP, nR OR, nR AND are the names of the spare

DRBD construct, n-ary DRBD OR and n-ary DRBD AND operators, respectively, in

our formalized DRBD. ALL DISTINCT [Y Xa Xd] ensures that the inputs cannot fail

at the same time. The proof script of these verified theorems is available at [71].

We need to recall that the DFT n-ary gates accept lists of random variables.

Whereas the DRBD n-ary operators accept an indexed group of random variables

with their indices in another set. Therefore, we use (MAP X (SET TO LIST s)) to

create a list of random variables from the group of indexed random variables.

In order to use these verified expressions in Table 6.3, we need to verify that the

DRBD event and the DFT event possess complementary sets in the probability space.

148

Table 6.3: Verified Equivalence of DFT and DRBD Algebras

DFT Gate DRBD Operator/Construct Verified Theorem

AND OR 	 ∀ X Y. D AND X Y = R OR X Y

OR AND 	 ∀ X Y. D OR X Y = R AND X Y

n AND nR OR
	 ∀ X s. FINITE s ⇒
(n AND (MAP X (SET TO LIST s)) =
nR OR X s)

n OR nR AND
	 ∀ X s. FINITE s ⇒
(n OR (MAP X (SET TO LIST s)) =
nR AND X s)

FDEP AND 	 ∀ X Y. FDEP X Y = R AND X Y

PAND Inclusive After 	 ∀ X Y. P AND X Y =
R INCLUSIVE AFTER Y X

Spare Spare
	 ∀ Xa Xd Y.(∀ s.
ALL DISTINCT [Y s;Xa s;Xd s]) ⇒
(WSP Y Xa Xd = R WSP Y Xa Xd)

We formally verify this as:

Theorem 6.17.

	 ∀ p X t. prob space p ∧ (DFT event p X t) ∈ events p ⇒
(prob p (DRBD event p X t) = 1 - prob p (DFT event p X t))

where the conditions ensure that p is a probability space and that the DFT event

belongs to the events of the probability space. This theorem can be verified also

if we ensure that the DRBD event belongs to the probability space. This theorem

means that for the same time-to-failure function, the DRBD and DFT events are the

complements of each other. This way, we can analyze DFTs using the DRBD algebra

and vice-versa.

149

Based on the verification results obtained in Table 6.3, DFT gates can be for-

mally represented using DRBDs. We show that the amount of effort required by the

reliability engineer to formally analyze DFTs by analyzing its counterpart DRBD is

less than that of analyzing the original DFT model. In Chapter 4, a DFT is formally

analyzed using the DFT algebra by expressing the DFT event of the structure func-

tion as the union of the individual DFT events. Then, the probabilistic PIE is utilized

to formally verify the probability of failure of the top event. The number of terms in

the final result equals 2n − 1, where n is the number of individual events in the union

of the structure function. Therefore, in the verification process, it is required to verify

at least 2n − 1 expressions if the PIE is to be used. On the other hand, verifying a

DRBD would require verifying a single expression for each nested structure.

As an example, consider the reliability analysis of the DBW system. Analyzing

the DFT of this system required verifying 63 subgoals as the top event is composed

of the union of six different events. While analyzing the DRBD of the DBW system

required verifying only one main subgoal to be manipulated to reach the final goal.

Table 6.4 provides a comparison of the size of the script, the required time to develop

it and the number of goals to be verified. Based on these observations, analyzing

the reliability of the DBW using the DRBD required 1/24 of the time needed by the

DFT based on the probabilistic PIE. These results show that it is more convenient to

analyze the DRBD of a system rather than its DFT if the algebraic approach and the

probabilistic PIE are to be used. The only added step will be to formally verify that

the DFT and DRBD are the complements of each other, which is straightforward

utilizing the theorems in Table 6.3. Therefore, we verify this as:

150

Table 6.4: Comparison of Formal Analysis Efforts of DBW

of subgoals # of lines in the script required time

DFT 63 4850 24 hours
DRBD 1 150 1 hour

Theorem 6.18.

	 ∀ p TF EF BCU PC SCa SCd TS BS t.

prob space p ∧ DBW events p p TF EF BCU PC SCa SCd TS BS t ⇒.

(prob p (DRBD event p FDBW t) = 1- prob p (DFT event p QDBW t))

where DBW events p ensures that the DBW DFT events are in the events of the

probability space. Thus, we can use the DRBD reliability expression (Theorem 6.16)

to verify the probability of failure of the DFT, which results in a reduction in the

analysis efforts.

6.9 Summary

In this chapter, we proposed a new algebra to analyze DRBDs. We developed the

HOL formalization of this algebra in HOL4, which ensures its correctness and allows

conducting the analysis within a theorem prover. Furthermore, this algebra provides

formalized generic expressions of reliability that cannot be verified using other formal

tools. This HOL formalization is the first of its kind that takes into account the

system dynamics by providing the HOL formal model of spare constructs and temporal

operators. The proposed algebra is compatible with the reliability expressions of

traditional RBDs as demonstrated by the reliability expressions of the series and

parallel structures. It also facilitates extending the verified reliability expressions to

model complex systems using nested structures. We demonstrated the usefulness

of this formalized algebra by formally conducting the analysis of the DBW system

151

to verify a generic expression of its reliability, which is independent of the failure

probability distribution of system components. Finally, we verified the equivalence of

the DFT and DRBD algebras and their gates and constructs, which allows verifying

DFT models using the DRBD algebra and vice-versa.

One of the main challenges that we faced is the lack of a DRBD algebra that

enables the analysis based on the structure function of the DRBD. Having this alge-

bra and the reliability expressions of the DRBD structures and constructs enables the

development of a framework, using a theorem prover, to formally conduct the analy-

sis. Thus, we proposed this novel DRBD algebra, including the temporal operators,

simplification theorems, which allows expressing the structure of the DRBD based on

system blocks. Another challenge is the formalization of this algebra in HOL, partic-

ularly the traditional structures. We needed to formally define these structures in a

manner that is easily understood by users that are not familiar with theorem proving,

but at the same time to be compatible with the dynamic aspects that are captured

using the rest of the definitions, like the spare construct. Furthermore, we needed

to create these formal definitions to be compatible with existing theories in HOL4,

such as the probability and the Lebesgue integral, in particular the independence of

random variables that is of great importance to be able to extend these structures to

model more nested ones and verify their reliability expressions.

152

Chapter 7

Formal Dependability Analysis of

Shuffle-exchange Networks

7.1 Overview

With the ongoing demands for intensive processing applications, multiprocessor sys-

tems represent one of the solutions that satisfies such demand. Nowadays, such sys-

tems are feasible due to their reduced cost and thus it is possible to have systems

of hundreds of processors. Multiprocessor systems allow parallel computing, where

tasks are executed in parallel with the possibility of interacting with one another when

required. This parallel execution highly impacts the overall system performance, such

as throughput. However, memory and I/O peripheral resources are shared among

processors and thus an efficient data routing among system nodes is necessary to

maintain high system performance, reliability and low cost. This is of a great im-

portance, particularly with scientific applications, where a huge number of processors

153

are used, i.e., large-scale multiprocessor systems [72]. Therefore, a dedicated inter-

connection network is used to connect processors and memory modules, as depicted

in Figure 7.1 [72].

Figure 7.1: Overview of Multiprocessor System Architecture

The complexity of interconnection networks ranges from simple networks, such

as time-shared bus to crossbar switching. The former has a negative impact on the

system performance, while the latter has much higher cost as there exists a separate

link between each pair of nodes in the systems. For example, for a system of N nodes,

i.e., N inputs and N outputs, it is required to have N2 links or switching elements

between each input and output.

Multistage interconnection networks (MINs) are introduced to reduce the num-

ber of required switching elements and hence, reduce the cost while providing better

performance than shared-bus networks. The main idea of MINs is to have multiple

small stages of crossbar switches that are connected between sources (inputs) and

destinations (outputs), which results in a much reduced number of used switching

elements. The number of paths available between each input and output determines

the category of the MIN. A single-path MIN has only one path to route information

154

between each source-destination pair. A shuffle-exchange network (SEN) is an exam-

ple of such type of networks. Each stage has N/2 switching elements, where N is the

number of inputs and outputs of the network. Usually the switching elements are of

size 2 × 2 to reduce the cost. The number of stages required to establish the single-

path MIN is log2N , which is lower than crossbar networks. An 8× 8 SEN is shown in

Figure 7.2, where only a single path is available for each input-output pair. However,

the reliability of single-path MINs and SENs depends on the switching elements and

thus a fault in any of these switches cannot be tolerated.

Enhancing the reliability of MINs is of great importance in order to maintain

high system performance. Therefore, redundant switching elements are used to ensure

that the network is able to provide the required switching even after the failure of

some of these elements [73, 74]. Multiple-path MINs are used to increase the fault

tolerance and hence the network reliability. SEN+ is a SEN, where an additional stage

is added to provide two paths between each input-output pair, as shown in Figure 7.3.

However, even with the additional path, the failure of some switches can lead to the

failure of the connection in some situations. Spare parts have been used in [75] to

replace switches after failure. However, the analysis was not conducted formally to

ensure its correctness.

Studying the reliability of SENs has been an active research area [76, 77, 78, 79].

The reliability of MINs are commonly analyzed using simulation or analytically. For

example, in [80], Monte Carlo simulation is used to analyze the reliability of SENs.

However, as mentioned previously, simulation cannot provide accurate results due to

its sampling based nature. Although CTMCs can analytically solve the reliability

of MINs [24], they cannot be used with large-scale systems since the state space

grows exponentially with the increase in the number of system components. On the

155

Figure 7.2: An 8× 8 SEN

Figure 7.3: An 8× 8 SEN+

156

other hand, when the complexity of the network increases, reliability bounds provides

estimate values for the MIN reliability [81, 82]. RBDs have been also used in the

analysis of MINs with single and multiple paths. For example, in [25], the reliability

of SEN, SEN+ and SEN+2 (a SEN with two additional stages) is modeled using

traditional RBDs. Generic expressions of success rates of the switching elements are

provided analytically assuming that all these elements have the same failure rates.

However, these generic expressions are not formally verified, which may raise questions

about its accuracy. Furthermore, dynamic dependencies among system components,

like warm spares, are not considered or modeled.

Based on the previous discussion, accurate modeling and analysis of these net-

works is necessary to capture the dynamic behavior as this will provide the design

engineers with some measures that can help enhancing the performance of the entire

multiprocessor system. To the best of our knowledge, dynamic dependability analysis

using formal methods has not been used with MINs. Therefore, we propose to add

spare switches to replace the critical ones after failure and conduct the analysis of

MINs, particularly SENs using our formal dependability framework.

Since the reliability of MINs affects the performance of the overall multiprocessor

system, it is required to accurately model and analyze their reliability. In this thesis,

we use both DRBDs and DFTs to model the dynamic reliability of these networks,

particularly SEN and SEN+, and conduct the analysis using our framework. In this

chapter, we formally verify the terminal, broadcast and network reliability of SEN

and SEN+ in HOL and provide generic expressions of reliability and probability of

failure.

157

7.2 Terminal Reliability Analysis of

Shuffle-exchange Networks

The terminal reliability is the reliability of the connection between a given source and

destination, i.e., the probability of having a reliable connection between one source-

destination pair. We analyze the terminal reliability of the SEN and SEN+ using

both DFT and DRBD models.

7.2.1 DFT Analysis of SEN and SEN+

We model the sources of failure of both SEN and SEN+ using DFTs. We use n-

ary gates, which enable verifying expressions of the probability of failure for generic

number of system components.

Figure 7.4: DFT of SEN

Figure 7.4 shows the DFT model of the SEN system. Since SENs are single

path MINs, the failure of any of the switches in the path between a given source and

destination leads to losing the connection. Therefore, adding spare parts will lower

the probability of failure. For illustration purposes, we use a spare part to replace the

158

main switch Y after failure. The DFT consists of an n-ary OR gate, which means

that the failure of any of the switches, interrupts the connection between the source

and the destination.

Since the top event is an n-ary OR gate, we need first to verify that the

DFT event of the n-ary OR is equal to the union of the individual events, as:

Theorem 7.1.

	 ∀ p X t s. FINITE s ⇒
(DFT event p (n OR (MAP X (SET TO LIST s))) t =⋃

i∈s {rv to devent p X t i})

where s is a set of numbers that has the indices of the system components. X is a

group of random variables that represent the time-to-failure of the switches in the

system. We need to recall that n OR accepts a list of random variables as an argu-

ment. Therefore, we create this list using MAP X (SET TO LIST s). rv to devent, in

Theorem 7.1, is similar to the rv to event of the DRBD, but it creates DFT events.

It is defined as:

Definition 7.1. rv to devent

	 ∀ p X t. rv to devent p X t = (λi. DFT event p (X i) t)

This way, we can use this function to create a group of DFT events for a set of

indexed random variables. Then, we verify the probability of the n-ary OR gate in

a way similar to the probability of the DRBD parallel structure, which is defined as

the union of events.

Theorem 7.2.

	 ∀ p X t s. s �= {} ∧ FINITE s

indep sets p (λi. {rv to devent p X t i}) s ∧

159

(∀ i. i ∈ s ⇒ rv gt0 ninfinity [X i]) ⇒
(prob p (DFT event p (n OR (MAP X (SET TO LIST s))) t) =

1 - Normal (
∏

i∈s (real (1 - FXi(t)))))

In Theorem 7.2, it is required that the set of indices, s, to be nonempty and to

be finite, which is a realistic condition as in any system the number of components is

finite. The last condition of Theorem 7.3, ensures that the random variables of X are

greater than or equal to 0 and not equal to +∞, which is required to be able to use

the CDF of the random variable using Theorem 4.1.

We express the structure function of the DFT of SEN as:

QdSEN Terminal = n OR (MAP (λi. if i = 0 then WSP Y Ysa Ysd

else X i) (SET TO LIST {0} ∪ L))

(7.1)

We notice that the structure of the DFT is defined using the indices in {0} ∪
L. 0 is the index of the spare gate and L has the indices of the rest of the switches in

the system.

Finally, we verify the probability of failure of this top event as:

Theorem 7.3.

	 ∀ p X Y Ysa Ysd t L.

DISJOINT {0} L ∧ FINITE L ∧ L �= {} ∧
indep sets p (λi. {event set [(DFT event p (WSP Y Ysa Ysd) t, 0)]

(rv to devent p X t) i}) ({0} ∪ L) ∧
(∀ i. i ∈ L ⇒ rv gt0 ninfinity [X i]) ∧
(prob p (DFT event p QdSEN Terminal t) =

160

1-

(1- prob p (DFT event p (WSP Y Ysa Ysd) t)) *

Normal (
∏

i∈L (real(1-FXi(t))))

where DISJOINT {0} L ensures that the indices of the elements are unique. While

FINITE L ∧ L �= {} ascertain that set L, which has the indices, is finite and not

empty. Finally, the independence of the events is added using indep sets. Theo-

rem 7.3 can be further rewritten using Theorem 4.12. However, the required con-

ditions of the latter should be satisfied, such as the continuity of the distributions.

Since we need a group of indexed sets in indep sets, we define a function event set

that accepts a list of pairs each of which is composed of a DFT event with its index.

This function also accepts the remaining blocks of the DFT that have their indices

embedded in a set (that can be generic of any size).

In SEN+, an additional path is added to increase the redundancy in the system.

Therefore, for the connection between a given source and a destination to be broken,

it is required that these two paths must be disconnected. The DFT of the SEN+ is

shown in Figure 7.5, where two spares are added to replace the main switches Y and

Z after failure. Switch Y is the input switch connected to the source and switch Z is

connected to the destination. This DFT is composed of three levels of OR of AND

of OR gates. Therefore, in order to verify the probability of the top event, we need

first to verify that the DFT event of the n-ary AND gate is equal to the intersection

of the input events. We formally verify this in HOL as:

Theorem 7.4.

	 ∀ p X t s. FINITE s ∧ s �= {} ∧ 0 ≤ t ⇒
(DFT event p

(n AND (MAP X (SET TO LIST s))) t =
⋂

i∈s {rv to devent p X t i})

161

Figure 7.5: DFT of SEN+ Terminal Connection

Then, we verify the probability of failure of the top event of the AND gate as:

Theorem 7.5.

	 ∀ p X t s. FINITE s ∧ s �= {} ∧ 0 ≤ t ∧
indep sets p (λi. {rv to devent p X t i}) s

(∀ i. i ∈ s ⇒ rv gt0 ninfinity [X i]) ⇒
(prob p

(DFT event p

(n AND (MAP X (SET TO LIST s))) t) =

Normal (
∏

i∈s (real (FXi(t)))))

The first three conditions are needed to be able to use Theorem 7.4, while

indep sets ensures the independence of the events.

We use Theorems 7.2 and 7.5 to verify the probability of OR of AND of OR,

which is required for the probability of the top event. We express the top event of the

162

DFT of Figure 7.5, QdSEN+ as:

QdSEN+ Terminal = n OR (MAP (λi. if i = 0 then WSP Y Ysa Ysd

else if i = 1 then(
(n OR (MAP X (SET TO LIST L1))) ·

(n OR (MAP X (SET TO LIST L2)))
)

else WSP Z Zsa Zsd) (SET TO LIST {0; 1; 2}))
(7.2)

where {0; 1; 2} indicates that the OR gate has three inputs with indices 0 for the first

spare, 1 for the AND of ORs, and 2 for the second spare. L1 and L2 has the indices

of the switches in the two redundant paths (for the two lower ORs).

The DFT top event can be expressed using union and intersection of events,

which can be quite useful in reusing the existing theorems of probability of union of

intersections and intersection of unions. We verify this relationship as:

Theorem 7.6.

	 ∀ p Y Ysa Ysd Z Zsa Zsd X L1 L2 t.

FINITE L1 ∧ FINITE L2 ∧
disjoint family on (ind set [{0}; L1; L2; {3}]) {0; 1; 2; 3} ⇒
(DFT event p (QdSEN+ Terminal) t =

BIGUNION

{BIGINTER
{BIGUNION

{event set

[(DFT event p (WSP Y Ysa Ysd) t,0);

163

(DFT event p (WSP Z Zsa Zsd) t,3)]

(rv to devent p X t) i |

i ∈ ind set [{0}; L1; L2; {3}] a} |

a ∈ ind set [{0}; {1; 2}; {3}] j} |

j ∈ {0; 1; 2}})

Finally, we verify the probability of failure of QdSEN+:

Theorem 7.7.

	 ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2. 0 ≤ t ∧
SEN set req p L1 L2 (ind set [{0}; L1; L2; {3}])

(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}
(event set [(DFT event p (WSP Y Ysa Ysd) t,0);

(DFT event p (WSP Z Zsa Zsd) t,3)]

(rv to devent p X t)) ∧
(∀ i. i ∈ (L1 ∪ L2) ⇒ rv gt0 ninfinity [X i]) ⇒
(prob p (DFT event p QdSEN+ Terminal t) =

1 -

(1 -

prob p (DFT event p (WSP Y Ysa Ysd) t)) *

(Normal

(1 -

(1 -
∏

i∈L1 (real (1 - FXi(t)))) *

(1 -
∏

i∈L2 (real (1 - FXi(t))))) *

(1 - prob p (DFT event p (WSP Z Zsa Zsd) t))))

where SEN set req ensures the required conditions of the input sets including that

the sets are finite and nonempty. It also ensures the independence of the input events

164

over the probability space. We also define ind set that accepts a list of sets and

returns a group of indexed sets. This is required to be able to create the hierarchy of

the DFT using sets.

Figure 7.6: Probability of Failure of the Terminal Connection of a 128 × 128 SEN+
with and without Spares

In order to use the above generic probability of failure expressions on a concrete

instance of SEN+, we evaluate the probability of failure of the terminal connection of

a 128 × 128 SEN+, where each OR gate of the first level of Figure 7.5 has 6 inputs.

We assume that the failure rate of each switching element is 1 × 10−5. We evaluate

the probability of failure for the SEN+ system without and with spare parts with a

dormancy factor of 0.1, as shown in Figure 7.6. This result shows that considering

the spares in the analysis leads to having more reliable and realistic system than the

traditional FTs.

165

7.2.2 DRBD Analysis of SEN and SEN+

For SENs (single-path MIN), the terminal reliability is modeled as a series RBD. For

illustration purposes, we use a spare part to replace the first input switch, and thus

increase the reliability. The DRBD of the modified SEN is shown in Figure 7.7, where

Y is the main switch that will be replaced by Y s after failure and the series structure

has m+ 1 elements.

Figure 7.7: DRBD of SEN

Using the proposed algebra in Chapter 6, we express the structure function of

the SEN DRBD as:

QSEN Terminal = nR AND (λi. if i = 0 then R WSP Y Ysa Ysd

else X i) {0} ∪ L

(7.3)

where X is a group of indexed time-to-failure functions that represent the blocks of

the series structure and L is a set with their indices. L can be instantiated with any

group of numbers, which makes this function generic to represent the reliability model

of any SEN with any size.

Then, we verify that the DRBD event of QSEN can be represented using the series

parallel structures as:

166

Theorem 7.8.

	 ∀ p X Y Ysa Ysd t L.

DISJOINT {0} L ∧ FINITE L ∧ L �= {} ⇒
(DRBD event p QSEN Terminal t =

DRBD series

(λi. event set

[(DRBD event p (R WSP Y Ysa Ysd) t,0)]

(rv to event p X t) i) ({0} ∪ L))

where DISJOINT ensures that all sets are disjoint. We use event set and ind set to

create the events, similar to the DFTs. Since we are dealing with a series structure,

we only need to specify the hierarchy of the architecture in one direction using {0}∪L.
We verify Theorem 7.8 using Theorem 6.9 and some set-related theorems.

Based on Theorem 7.8, we verify a generic expression for the reliability of the

SEN system:

Theorem 7.9.

	 ∀ p X Y Ysa Ysd t L.

DISJOINT {0} L ∧ FINITE L ∧ L �= {} ∧
indep sets p (λi. {event set [(DRBD event p (R WSP Y Ysa Ysd) t, 0)]

(rv to event p X t) i}) ({0} ∪ L)⇒
(prob p (DRBD event p QSEN Terminal t) =

Rel p (R WSP Y Ysa Ysd) t * Normal (
∏

l∈L (real (Rel p (X l) t))))

In a similar manner, the SEN+ is modeled as a series-parallel-series struc-

ture [25]. To further enhance the reliability, we use spare constructs as shown in

Figure 7.8, where Y and Z are the main single switches that are connected to the

167

source and destination with their spares Y s and Zs, respectively. The parallel struc-

ture in the middle represents the reliability model of the two alternative paths between

the source and the destination. Therefore, this DRBD consists of a series of two spare

constructs and one parallel structure that consists of two series structures.

Figure 7.8: Terminal Reliability DRBD of SEN+

Using our DRBD operators, we formally express the structure function of this

DRBD as:

QSEN+ Terminal = nR AND (λi. if i = 0 then R WSP Y Ysa Ysd

else if i = 1 then
(
(nR AND X L1) + (nR AND X L2)

)
else R WSP Z Zsa Zsd) {0; 1; 2}

(7.4)

Thus, the outer series structure is expressed using the nR AND operator over the

set {0; 1; 2} as this structure has three different structures; i.e., two spare constructs

and one parallel structure. In order to re-utilize the verified expressions of reliability,

it is required to express this DRBD using the series and parallel structures. Therefore,

we verify that the DRBD event of the QSEN+ is equal to a nested series-parallel-series

structure as:

168

Theorem 7.10.

	 ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.

disjoint family on (ind set [{0; 3}; L1; L2]) {0;1;2} ∧
FINITE L1 ∧ FINITE L2 ∧ L1 �= {} ∧ L2 �= {} ⇒
(DRBD event p QSEN+ Terminal t =

DRBD series (λj.

DRBD parallel (λa.

DRBD series (λi.

event set

[(DRBD event p (R WSP Y Ysa Ysd) t,0);

(DRBD event p (R WSP Z Zsa Zsd) t,3)]

(rv to event p X t) i)

ind set [{0}; L1; L2; {3}] a))

(ind set [{0}; {1; 2}; {3}] j)) {0; 1; 2})

where disjoint family on (ind set [{0; 3}; L1; L2]) {0;1;2} ensures that

the sets {0; 3}, L1 and L2 are disjoint, i.e., each switch has a unique index. Since

we are dealing with a series-parallel-series structure, we need three sets to identify

the hierarchy of this nested structure. Set {0; 1; 2} in Theorem 7.10 indicates that

the outer series structure has three elements, i.e., three parallel structures. ind set

[{0}; {1;2}; {3}] indicates that the first parallel structure has only one series struc-
ture with index 0, the second parallel structure has two series structures with indices

1 and 2, and the third parallel structure has only one series structure with index 3.

Finally, ind set [{0}; L1; L2; {3}] implies that the first series structure has only

one element with index 0, the second and third series structures have an arbitrary

number of blocks indexed by L1 and L2. The last series structure has one element

169

with index 3. We verify Theorem 7.10 using Theorem 6.9 and the equivalence of the

event of the OR with the union of events besides some set-related theorems.

Based on Theorem 7.10, we verify a generic expression for the reliability of the

SEN+ system:

Theorem 7.11.

	 ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.

SEN set req p L1 L2 (ind set [{0}; L1; L2; {3}])
(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}
(event set [(DRBD event p (R WSP Y Ysa Ysd) t,0);

(DRBD event p (R WSP Z Zsa Zsd) t,3)]

(rv to event p X t)) ⇒
(prob p (DRBD event p QSEN Terminal t) =

Rel p (R WSP Y Ysa Ysd) t * Rel p (R WSP Z Zsa Zsd) t *

(1 -

(1 - Normal (
∏

l∈L1 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t))))))

where SEN set req is the same function that we use with DFTs. We first rewrite

the goal using Theorem 7.10, then we use the reliability of the series-parallel-series

to verify the final expression. The reliability of the spare constructs can be further

rewritten using Theorem 6.5 given that the required conditions are ensured, such as

the continuity of the CDFs. It can be noticed that the DRBD and the DFT models

possess the same hierarchy represented by the sets of indices, which makes it easy to

be used when going from one model to the other.

Similar to the DFT analysis, we evaluate the terminal reliability of a 128× 128

SEN+, where each inner series structure of Figure 7.8 has 6 blocks. We assume that

170

the failure rate of each switching element is 1× 10−5. We evaluate the reliability for

the SEN+ system without and with spare parts with a dormancy factor of 0.1, as

shown in Figure 7.9.

Figure 7.9: Terminal Reliability of 128× 128 SEN+ with and without Spares

7.3 Broadcast Reliability Analysis of

Shuffle-exchange Networks

The broadcast reliability represents the probability of having a working connection

between one source and all destinations. This is required when one of the processors

in the system needs to transmit information to all destinations in the network. We

present in this section, the broadcast reliability of the SEN and SEN+ using both

DFT and DRBD models.

171

7.3.1 DFT Analysis of SEN and SEN+

Since in SENs there exists a single path between each source and destination, it

is required to have a successful transmission through all these paths for a proper

broadcast. Therefore, the DFT can be modeled using an OR gate. We further lower

the probability of failure by adding an additional spare gate, as shown in Figure 7.4.

However, the number of DFT inputs, which represent the switches, varies between

the terminal and broadcast reliability models. For example, consider an 8 × 8 SEN.

The number of inputs for the terminal DFT is 3, i.e., log28, while the broadcast DFT

requires seven inputs, i.e.,
∑log28

i=1 (8
2i
) [25]. Therefore, we can also use Theorem 7.3

for the broadcast, since this theorem is verified for any number of system blocks with

their indices in the set s . This highlights the importance of having generic verified

expressions for any number of system blocks, which enables the re-utilization of the

theorems in different contexts.

Figure 7.10: DFT of Broadcast SEN+

172

The DFT model of the broadcast SEN+ is shown in Figure 7.10. Its top event

is modeled using an OR gate that is connected to a spare gate for the input switch,

AND of OR to model the two alternative paths and finally, the rest of the destination

switches in order to have a proper broadcast transmission.

We formally express the structure function of the top event as:

QdSEN+ Broadcast = n OR (MAP (λi. if i = 0 then WSP Y Ysa Ysd

else if i = 1 then(
(n OR (MAP X (SET TO LIST L1))) ·

(n OR (MAP X (SET TO LIST L2)))
)

else (n OR (MAP X (SET TO LIST L3))))

(SET TO LIST {0; 1; 2}))

(7.5)

The hierarchy of the DFT is divided using the sets of indices. We need to recall

that MAP X (SET TO LIST L1), MAP X (SET TO LIST L2) and MAP X (SET TO LIST

L3) are used to create the lists of the group of random variables for the n-ary gates.

L1 and L2 has the indices of the switches in the two alternative paths, i.e., the inputs

of the two lower OR gates in the DFT of Figure 7.10, while L3 has the indices of the

remaining inputs of the top OR gate. The set {0; 1; 2} indicates that the top OR gate

has three inputs, which is similar to the terminal DFT model.

We use this structure function to verify the probability of failure of the top

event:

Theorem 7.12.

	 ∀ p X Y Ysa Ysd t L1 L2 L3 s.

SEN broad set req p L1 L2 L3 (ind set [{0}; L1; L2; L3])

(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}

173

(event set [(DFT event p (WSP Y Ysa Ysd) t,0);

(rv to devent p X t)) ∧ 0 ≤ t ∧
(∀ i. i ∈ (L1 ∪ L2 ∪ L3) ⇒ rv gt0 ninfinity [X i]) ⇒
(prob p (DFT event p QdSEN+ Broadcast t) =

1 -

(1 -

prob p (DFT event p (WSP Y Ysa Ysd t)) *

(Normal

(1 -

(1 -
∏

i∈L1 (real (1 - FXi(t)))) *

(1 -
∏

i∈L2 (real (1 - FXi(t))))) *

Normal (
∏

i∈L3 (real (1 - FXi(t))))))

where SEN broad set req ascertains the conditions required for the sets such as finite-

ness. It also ensures the independence of the events.

Figure 7.11 shows the evaluation results of the probability of failure of the DFT

of Figure 7.10 for a 128 × 128 SEN+. This SEN+ has 63 inputs for each first level

OR gate and the top level OR gate has 66 inputs. As with the terminal SEN+, we

assume that the failure rate of each switching element is 1 × 10−5 with a dormancy

factor of 0.1.

7.3.2 DRBD Analysis of SEN and SEN+

Similar to the DFT SEN broadcast model, we can use the model in Figure 7.7. How-

ever, as mentioned previously, the number of the blocks is different. Therefore, we

can also use Theorem 7.9 for the broadcast reliability, since this theorem is verified

for any number of system blocks using set s.

174

Figure 7.11: Probability of Failure of the Broadcast of a 128× 128 SEN+

The DRBD of the SEN+ is depicted in Figure 7.12. The first block (with the

spare) represents the input switch that is connected directly to the source. The failure

of this switch will interrupt the broadcast transmission. Therefore, we add a spare

part to replace it after failure.

Figure 7.12: Broadcast DRBD Model of SEN+

The series structure on the right side of the figure models the switches of all

destinations, as they are all receiving the transmission. Finally, the parallel-series

structure in the middle, represents the two alternative paths that are available for

each broadcast transmission. For example, for the SEN+ shown in Figure 7.3, the

175

number of switches connected to the destinations are four, while each one of the

alternative paths has three switches.

In order to formally verify the reliability of the broadcast of the SEN+, we first

express it using our operators as:

QSEN+ Broadcast = nR AND (λi. if i = 0 then R WSP Y Ysa Ysd

else if i = 1 then
(
(nR AND X L1) +

(nR AND X L2)
)

else (nR AND X L3)) ({0; 1 2})

(7.6)

where L1 and L2 are the sets that have the indices of the inner series structures of the

parallel-series structure in the middle. The set {0; 1; 2} indicates that the outer series

structure consists of three main components. The first spare construct has index 0,

while the parallel-series structure has index 1. Finally, the series structure on the left

side of Figure 7.12 has index 2, and L3 has the indices of the blocks in this series

structure. We verify the reliability of this DRBD as:

Theorem 7.13.

	 ∀ p X Y Ysa Ysd t L1 L2 L3.

SEN broad set req p L1 L2 (ind set [{0}; L1; L2; L3])

(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}
(event set [(DRBD event p (R WSP Y Ysa Ysd) t,0);

(rv to event p X t)) ⇒
(prob p (DRBD event p QSEN+ Broadcast t) =

Rel p (R WSP Y Ysa Ysd) t * Normal (
∏

i∈L3 (real (Rel p (X l) t))) *

(1 - (1 - Normal (
∏

l∈L1 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t))))))

176

We evaluate the broadcast reliability, in Figure 7.13, of a 128×128 SEN+, where

each inner series structure of Figure 7.12 has 63 blocks and the series structure on the

right hand side of the figure has 64 blocks. We use the same failure rates of 1× 10−5

for each switching element with a dormancy factor of 0.1.

Figure 7.13: Broadcast Reliability of a 128× 128 SEN+

7.4 Network Reliability Analysis of

Shuffle-exchange Networks

According to [25], the network reliability of SENs can be defined as the reliability of

all connections between sources (inputs) and destinations (outputs). In other words,

we are looking at the reliability of the overall network. This is usually modeled using

RBDs. In this section, we use both DFT and DRBD models in different scenarios to

model the reliability of the network.

177

7.4.1 DFT Analysis of SEN and SEN+

In the SEN, it is required that all switching elements must work properly in order to

maintain a successful behavior of the network. Thus, the system fails with the failure

of any of the switching elements. The behavior can be further enhanced by using

spares. The DFT of the SEN network can be modeled as in Figure 7.4. However, to

further enhance the system reliability, the reliability engineer may suggest to use more

spares to replace the switching elements. Therefore, we present a generic model, where

the number of switching elements that have spares is generic, as shown in Figure 7.14.

This model can be also used with both the terminal and broadcast models, when more

spares are required.

Figure 7.14: DFT of SEN Network with Multiple Spares

We express the DFT top event of Figure 7.14 using the DFT operators as:

QdsSEN Network = n OR (MAP (λi. if i ∈ L1 then WSP (Y i) (Ysa i) (Ysd i)

else X i) (SET TO LIST (L1 ∪ L2)))

(7.7)

178

We verify the probability of failure of the top event in a similar way to Theo-

rem 7.3, as:

Theorem 7.14.

	 ∀ p X Y Ysa Ysd t L1 L2.

DISJOINT L1 L2 ∧ FINITE L1 ∧ L1 �= {} ∧
FINITE L2 ∧ L2 �= {} ∧
(∀ i. i ∈ L2 ⇒ rv gt0 ninfinity [X i]) ∧
indep sets p

(λi.

{rv to devent p

(λi. i ∈ L1 then WSP (Y i) (Ysa i) (Ysd i) else X i)

t i})(L1 ∪ L2) ⇒
(prob p (DFT event p QdSEN Network t) =

1-

Normal

(
∏

i∈L1

(real(1- prob p (DFT event p (WSP (Y i) (Ysa i) (Ysd i)) t)))) *

Normal (
∏

i∈L2 (real(1 - FXi(t)))))

where Y, Ysa and Ysd are groups of indexed random variables that represent the main

and spare switches. Theorem 7.14 provides a generic scenario for the SEN, where L1

and L2 can be instantiated with any number of distinct indices that represent the

system switches, with and without spares.

The DFT model of the SEN+ network is shown in Figure 7.15. It consists of a

spare gate for one of the switches in the input stage. The rest of the input switches

(X1,0 - X1,r) are connected directly to the n-OR gate of the top event. Therefore, the

179

failure of any of these switches leads to the failure of the network. The series of ANDs

and ANDs of ORs are used to model the two available paths. Finally, all destination

switches (X4,0 -X4,k) are required to function and thus they are all connected to the

output OR gate. This DFT is composed of three levels; OR of ANDs of ORs, and thus

we can use the theorems of union of intersections of unions to verify its probability of

failure if the sets of indices are handled properly.

Figure 7.15: DFT of SEN+ Network

We first express the top event using the DFT operators as:

180

QdSEN Network =

n OR

(MAP

(λi. if i = 0 then WSP Y Ysa Ysd

else if i = 1 then n OR (MAP X (SET TO LIST L1))

else if i = 3 then (n OR (MAP X (SET TO LIST L2))) ·

(n OR (MAP X (SET TO LIST L3)))

else if i = 4 then n OR (MAP X (SET TO LIST L4))

else (X (2 * i)) · (X (2 * i + 1)))

(SET TO LIST ({0; 1; 3; 4} ∪ L)))

(7.8)

where the spare gate is assigned index 0. The second group of switches has index

1, while the indices of these switches, X1,0 - X1,r, are in set L1. They are repre-

sented as n OR (MAP X (SET TO LIST L1)). The output of the AND of ORs is as-

signed index 3 and is modeled as (n OR (MAP X (SET TO LIST L2))) · (n OR (MAP

X (SET TO LIST L3))), which is similar to both the terminal and broadcast models.

The group of switches, X4,0 -X4,k, has index 4 and is represented using n OR (MAP X

(SET TO LIST L4)). Thus, we have the indices {0; 1; 3; 4} for the outer groups in the

DFT. However, the last part of the DFT, which is the series of ANDs in the middle

of Figure 7.15, has a generic number of AND gates and cannot be assigned a specific

index. Therefore, we use set L to get a unique index for the output of each AND gate.

We use this unique number to create the indices of the inputs of each AND gate. For

example, for an index j in set L, we create two indices for the inputs of the AND gate

181

as (2*j) and (2*j+1). This is modeled as (X (2 * i)) · (X (2 * i + 1))) and

set L is used with the set of indices in the outer level as (SET TO LIST ({0; 1; 3;

4} ∪ L)). It is important to highlight that the indices of the individual inputs should

be unique.

We then verify that the DFT event of QdSEN Network is equal to the union of inter-

section of union of events as in the following theorem:

Theorem 7.15.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

FINITE L1 ∧ L1 �= {} ∧ FINITE L2 ∧ L2 �= {} ∧ FINITE L3 ∧
L3 �= {} ∧ FINITE L4 ∧ L4 �= {} ∧ FINITE L ∧
DISJOINT {0; 1; 3; 4} L ∧
(∀ i. i ∈ L ⇒ DISJOINT {2 * i; 2 * i + 1} {0; 1; 2; 3; 4}) ∧
disjoint family on

(ind set

[{0}; L1; L2; L3; L4; {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L}])
{0; 1; 2; 3; 4; 5} ⇒

(DFT event p (QdSEN Network) t =

BIGUNION

{BIGINTER
{BIGUNION

{event set [(DFT event p (WSP Y Ysa Ysd) t,0)]

(rv to devent p X t) i |

i ∈ if a ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {a}
else ind set [{0}; L1; L2; L3; L4] a} |

a ∈ if j ∈ L then {2 * j; 2 * j + 1}

182

else ind set [{0}; {1}; {}; {2; 3}; {4}] j} |

j ∈ {0; 1; 3; 4} ∪ L}

where the conditions are required to ensure that the sets are finite, nonempty and that

at each level of the DFT the indices are unique. It is clear from the theorem how the hi-

erarchy of the DFT is structured using the sets. For example, “if j ∈ L then {2 *

j; 2 * j + 1} else ind set [{0}; {1}; {}; {2; 3}; {4}] j” determines the

indices of the second level of the DFT (the ORs) based on the value of j in the

outer level. The first part “if j ∈ L then {2 * j; 2 * j + 1}” is for the series

of ANDs, while “else ind set [{0}; {1}; {}; {2; 3}; {4}] j” is for the rest of

the parts in the second level. Although some of the parts of the DFT have no inter-

mediate OR gates, like the spare, we implicitly assume that there are OR gates with

single inputs to maintain the consistency. The indices of the second level indicates

the indices of the output of these gates. This can be obvious for the AND of ORs in

Figure 7.15, where the OR gates have indices 2 and 3. We use an empty set ({}) in
the indices of the second level due to the fact that there is no index 2 in the outer

level, and thus we assigned an empty set in the second level for this index.

We verify the probability of failure of QdSEN Network as:

Theorem 7.16.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

SEN network set req p L1 L2 L3 L4 L

(λi.

if i ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {i}
else ind set [{0}; L1; L2; L3; L4] i)

(λj.

if j ∈ L then {2 * j; 2 * j + 1}

183

else ind set [{0}; {1}; {}; {2; 3}; {4}] j)

({0; 1; 3; 4} ∪ L)

(event set [(DFT event p (WSP Y Ysa Ysd) t,0)]

(rv to devent p X t)) ∧
(∀ i.

i ∈ L1 ∪ L2 ∪ L3 ∪ L4 ∪
{2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} ⇒

rv gt0 ninfinity [X i]) ⇒
(prob p

(DFT event p (QdSEN Network) t) =

1 -

(1 - prob p (DFT event p (WSP Y Ysa Ysd) t)) *

Normal (
∏

l∈L1 (real (1 - FXl(t)))) *

(1 -

(1 - Normal (
∏

l∈L2 (real (1 - FXl(t))))) *

(1 - Normal (
∏

l∈L3 (real (1 - FXl(t)))))) *

Normal (
∏

l∈L4 (real (1 - FXl(t)))) *

Normal (
∏

j∈L (1 - real (FX2*j(t) * FX2*j+1(t)))))

where SEN network set req ensures all the required conditions for the sets to be finite,

nonempty and distinct. It also ensures the independence of the input events. It accepts

all the sets of the indices of the three levels. The second condition (rv gt0 ninfinity

[X i]) ascertains that each element in the group of random variables of X that

have their indices in L1 ∪ L2 ∪ L3 ∪ L4 ∪ {2 * i | i ∈ L} ∪ {2 * i + 1 | i

∈ L} are greater than or equal to 0 but not equal +∞. This condition is required

to be able to use the CDF of the random variables.

184

Figure 7.16: DFT of SEN+ with Multiple Spares

In a similar manner to the SEN network, we provide a generic model where any

number of spares can be used for the input switches. The modified DFT is shown in

Figure 7.16. We express the top event using the DFT operators as:

QdSEN Network2 =

n OR

(MAP

(λi. if i = 0 then WSP (Y 0) (Ysa 0) (Ysd 0)

else if i = 1 then

(n OR (MAP X (SET TO LIST L1)))

else if i = 3 then (n OR (MAP X (SET TO LIST L2))) ·

(n OR (MAP X (SET TO LIST L3)))

else if i = 4 then n OR (MAP X (SET TO LIST L4))

else (X (2 * i)) · (X (2 * i + 1)))

(SET TO LIST ({0; 1; 3; 4} UNION L)))

(7.9)

185

where Y, Ysa and Ysd are indexed random variables that represent the main and spare

parts for each spare gate. We choose to use the same hierarchy of Figure 7.15, where

we assign index 0 for the first spare and the rest of the spares have their indices in

set L1. In addition, the model of these additional spares is embedded within X as will

be explained shortly.

We verify the probability of failure of the top event as:

Theorem 7.17.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

SEN network set req p L1 L2 L3 L4 L

(λi.

if i ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {i}
else ind set [{0}; L1; L2; L3; L4] i)

(λj.

if j ∈ L then {2 * j; 2 * j + 1}
else ind set [{0}; {1}; {}; {2; 3}; {4}] j)

({0; 1; 3; 4} ∪ L)

(λi.

event set [(DFT event p (WSP (Y 0) (Ysa 0) (Ysd 0)) t,0)]

(rv to devent p X t) i) ∧
(∀ i.

i ∈ L1 ∪ L2 ∪ L3 ∪ L4 ∪ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} ⇒
rv gt0 ninfinity [X i]) ∧

(∀ i. i ∈ L1 ⇒ (X i = WSP (Y i) (Ysa i) (Ysd i))⇒
(prob p

(DFT event p (QdSEN Network2) t) =

186

1 -

Normal

(
∏

l∈({0}∪L1

(real (1 - prob p (DFT event p (WSP (Y l) (Ysa l) (Ysd l)) t))) *

(1 -

(1 - Normal (
∏

l∈L2 (real (1 - FXl(t))))) *

(1 - Normal (
∏

l∈L3 (real (1 - FXl(t)))))) *

Normal (
∏

l∈L4 (real (1 - FXl(t)))) *

Normal (
∏

j∈L (1 - real (FX2*j(t) * FX2*j+1(t)))))

where the conditions are similar to Theorem 7.16. However, we add the condition

that (∀ i. i ∈ L1 ⇒ (X i = WSP (Y i) (Ysa i) (Ysd i)), which adds the ad-

ditional spare gates. This way, we can use Theorem 7.16 to verify Theorem 7.17. Set

{0} ∪ L1 is used to provide the indices of the spares, including the first one with

index 0.

We evaluate the probability of failure of the network DFT, shown in Figure 7.16,

for a 128 × 128 SEN+. The DFT of this SEN has 32 AND gates in the first level.

Each OR gate in the first level has 160 inputs. Furthermore, we assume that all the 64

input switches have spares. Figure 7.17 shows the evaluated result of the probability

of failure, where the failure rates of each switching element is 1×10−5 with a dormancy

factor of 0.1.

7.4.2 DRBD Analysis of SEN and SEN+

Similar to the DFT models, we start first with the network reliability model of the

SEN. Since it is a single path, it can be modeled using the series DRBD of Figure 7.7.

Thus, we can use Theorem 7.9 to provide a generic expression for its reliability. We

187

Figure 7.17: The Probability of Failure of the Network of a 128× 128 SEN+

provide a generic model in Figure 7.18, where additional spares are used. This provides

a general case where we can choose how many switches can be replaced with spares.

Figure 7.18: DRBD of SEN Network

We express the structure function of this DRBD using our DRBD operators as:

QsSEN Network = nR AND (λi. if i ∈ L1 then R WSP (Y i) (Ysa i) (Ysd i)

else X i) (L1 ∪ L2)

(7.10)

where L1 and L2 provide the indices of the blocks in the series structure for the spare

188

constructs and the remaining blocks, respectively.

Similar to the proof steps of Theorem 7.11, we verify the reliability of the SEN

network as:

Theorem 7.18.

	 ∀ p X Y Ysa Ysd t L1 L2.

DISJOINT L1 L2 ∧ FINITE L1 ∧ L1 �= {} ∧
FINITE L2 ∧ L2 �= {} ∧
indep sets p

(λi. {if i ∈ L1 then DRBD event p (R WSP (Y i) (Ysa i) (Ysd i)) t

else (rv to event p X t) i}) (L1 ∪ L2)⇒
(prob p (DRBD event p QSEN Network t) =

Normal

(
∏

i∈L1

(real (Rel p (R WSP (Y i) (Ysa i) (Ysd i)) t))) *

Normal (
∏

i∈L2 (real (Rel p (X i) t))))

The DRBD of the SEN+ network is modeled in Figure 7.19, where only one of

the switches of the input stage can be replaced by a spare. This DRBD is composed of

a series-parallel-series structure. The indices of each level can be treated in a similar

manner to the DFT.

We express the structure function using the operators with the same sets of

indices of the DFT as:

189

Figure 7.19: DRBD of SEN+ Network

QSEN Network = nR AND

(λi.

if i = 0 then R WSP Y Ysa Ysd

else if i = 1 then nR AND X L1

else if i = 3 then (nR AND X L2) + (nR AND X L3)

else if i = 4 then nR AND X L4

else (X (2 * i)) + (X (2 * i + 1)))

({0; 1; 3; 4} ∪ L))

(7.11)

Then, we verify that the DRBD event of this structure can be expressed as a

series-parallel-series structure as:

Theorem 7.19.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

FINITE L1 ∧ L1 �= {} ∧ FINITE L2 ∧ L2 �= {} ∧ FINITE L3 ∧
L3 �= {} ∧ FINITE L4 ∧ L4 �= {} ∧ FINITE L ∧
DISJOINT {0; 1; 3; 4} L ∧
(∀ i. i ∈ L ⇒ DISJOINT {2 * i; 2 * i + 1} {0; 1; 2; 3; 4}) ∧

190

disjoint family on

(ind set

[{0}; L1; L2; L3; L4;

{2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L}])
{0; 1; 2; 3; 4; 5} ⇒

(DRBD event p

(QSEN Network) t =

DRBD series

(λj.

DRBD parallel

(λa.

DRBD series

(λi.

event set

[(DRBD event p (R WSP Y Ysa Ysd t,0)]

(rv to event p X t) i)

((λi.

if i ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {i}
else ind set [{0}; L1; L2; L3; L4] i) a))

((λj.

if j ∈ L then {2 * j; 2 * j + 1}
else ind set [{0}; {1}; {}; {2; 3}; {4}] j) j))

({0; 1; 3; 4} ∪ L))

191

Finally, we verify the reliability of the DRBD as:

Theorem 7.20.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

SEN network set req p L1 L2 L3 L4 L

(λi.

if i ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {i}
else ind set [{0}; L1; L2; L3; L4] i)

(λj.

if j ∈ L then {2 * j; 2 * j + 1}
else ind set [{0}; {1}; {}; {2; 3}; {4}] j)

({0; 1; 3; 4} ∪ L)

(event set [(DRBD event p (R WSP Y Ysa Ysd) t,0)]

(rv to event p X t)) ⇒
(prob p

(DRBD event p (QSEN Network) t) =

Rel p (R WSP Y Ysa Ysd) t *

Normal (
∏

l∈L1 (real (Rel p (X l) t))) *

(1 -

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L3 (real (Rel p (X l) t))))) *

Normal (
∏

l∈L4(real (Rel p (X l) t))) *

Normal

(
∏

j∈L

(1 -

192

real

((1 - Rel p (X (2 * j)) t) *

(1 - Rel p (X (2 * j + 1)) t)))))

It is worth mentioning that the conditions of the sets are similar to Theorem 7.16

of the DFT.

Finally, we provide a generic model to have any number of spares that can

replace the input switches as shown in Figure 7.20. We choose to use the same indices

of Figure 7.19 in order to reutilize the verified theorems.

Figure 7.20: DRBD of SEN+ Network with Multiple Spares

We express the structure of the DRBD of Figure 7.20 as:

193

QSEN Network2 = nR AND

(λi.

if i = 0 then R WSP (Y 0) (Ysa 0) (Ysd 0)

else if i = 1 then nR AND X L1

else if i = 3 then (nR AND X L2) + (nR AND X L3)

else if i = 4 then nR AND X L4

else (X (2 * i)) + (X (2 * i + 1)))

({0; 1; 3; 4} ∪ L))

(7.12)

where (Y 0), (Ysa 0) and (Ysd 0) are indexed groups of random variables that

represent the main parts and their spares.

Finally, we use Theorem 7.20 to verify the reliability of this DRBD as:

Theorem 7.21.

	 ∀ p L1 L2 L3 L4 L X Y Ysa Ysd t.

SEN network set req p L1 L2 L3 L4 L

(λi.

if i ∈ {2 * i | i ∈ L} ∪ {2 * i + 1 | i ∈ L} then {i}
else ind set [{0}; L1; L2; L3; L4] i)

(λj.

if j ∈ L then {2 * j; 2 * j + 1}
else ind set [{0}; {1}; {}; {2; 3}; {4}] j)

({0; 1; 3; 4} ∪ L)

(event set [(DRBD event p (R WSP (Y 0) (Ysa 0) (Ysd 0)) t,0)]

194

(rv to event p X t)) ∧
(∀ i. i ∈ L1 ⇒ (X i = R WSP (Y i) (Ysa i) (Ysd i))) ⇒

(prob p

(DRBD event p (QSEN Network2) t) =

Normal

(
∏

l∈({0}∪L1

(real (Rel p (R WSP (Y l) (Ysa l) (Ysd l)) t))) * (1 -

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L3 (real (Rel p (X l) t))))) *

Normal (
∏

l∈L4(real (Rel p (X l) t))) *

Normal

(
∏

j∈L

(1 -

real

((1 - Rel p (X (2 * j)) t) *

(1 - Rel p (X (2 * j + 1)) t)))))

We evaluate the network reliability of a 128×128 SEN+ as shown in Figure 7.21.

In Figure 7.20, there are 32 parallel structures that are connected in series. The DRBD

has 64 spare constructs, while there are 160 blocks in the inner series structures.

Finally, the series structure on the right hand side of Figure 7.20 has 64 blocks. We

assume that the failure rates of each switching element is 1 × 10−5 with a dormancy

factor of 0.1.

195

Figure 7.21: The Network Reliability of a 128× 128 SEN+

7.5 Equivalence of SEN DFT and DRBD Models

To illustrate the utilization of the DFT-DRBD equivalence part of the proposed thesis

methodology, we formally verify the equivalence of the DRBD and the complement of

the DFT events for both terminal and broadcast reliability of SEN and SEN+. The

equivalence of the network models can be conducted in a similar manner. Proving

this equivalence allows verifying the probability of one model and directly use the

equivalence proof to provide the probability of the other model.

We verify the equivalence of the DRBD and DFT models of the terminal relia-

bility of both SEN and SEN+ as:

Theorem 7.22. Terminal/Broadcast SEN

	 ∀ p X Y Ysa Ysd t L.

FINITE L ∧ (∀ s. ALL DISTINCT [Y s; Ysa s; Ysd s]) ⇒
(DRBD event p

(nR AND

196

(λi.

if i = 0 then R WSP Y Ysa Ysd

else X i) {0} ∪ L) t =

p space p DIFF

DFT event p

(n OR

(MAP

(λi.

if i = 0 then WSP Y Ysa Ysd

else X i)

(SET TO LIST ({0} ∪ L)))) t)

Theorem 7.23. Terminal SEN+

	 ∀ p X Y Ysa Ysd Z Zsa Zsd t L1 L2.

FINITE L1 ∧ FINITE L2 ∧
(∀ s. ALL DISTINCT [Y s; Ysa s; Ysd s; Z s; Zsa s; Zsd s]) ⇒
(DRBD event p

(nR AND

(λi.

if i = 0 then R WSP Y Ysa Ysd

else if i = 1 then
(
(nR AND X L1) + (nR AND X L2)

)
else R WSP Z Zsa Zsd) {0; 1; 2}) t =

p space p DIFF

DFT event p

(n OR

197

(MAP

(λi.

if i = 0 then WSP Y Ysa Ysd

else if i = 1 then(
(n OR (MAP X (SET TO LIST L1))) ·
(n OR (MAP X (SET TO LIST L2)))

)
else WSP Z Zsa Zsd) (SET TO LIST {0; 1; 2}))) t)

In a similar manner, we verify the equivalence of the DRBD and DFT models

of the SEN+ broadcast reliability as:

Theorem 7.24. Broadcast SEN+

	 ∀ p X Y Ysa Ysd t L1 L2 s.

FINITE L1 ∧ FINITE L2 ∧ FINITE L3 ∧
(∀ s. ALL DISTINCT [Y s; Ysa s; Ysd s]) ⇒
(DRBD event p

(nR AND

(λi.

if i = 0 then R WSP Y Ysa Ysd

else if i = 1 then
(
(nR AND X L1) + (nR AND X L2)

)
else (nR AND X L3)) ({0; 1 2}) t =

p space p DIFF

DFT event p

(n OR

(MAP

(λi.

198

if i = 0 then WSP Y Ysa Ysd

else if i = 1 then(
(n OR (MAP X (SET TO LIST L1))) ·
(n OR (MAP X (SET TO LIST L2)))

)
else (n OR (MAP X (SET TO LIST L3))))

({0; 1 2}))) t)

It is worth mentioning that Theorem 7.22 can be used for the equivalence of the

DRBD-DFT models of the SEN in both the terminal and broadcast since they both

share the same structure.

Based on these theorems, we can use one model to verify the probability of the

other model using the probability of the complement.

7.6 Summary

In this chapter, we presented the formal dynamic dependability analysis of SEN and

SEN+ MINs that form a critical part in the routing process of multiprocessor sys-

tems. We provided generic expressions of reliability and probability of failure that are

independent of the failure distributions. Furthermore, we verified these expressions

for an arbitrary number of system blocks that can be instantiated later to a certain

number without the need to repeat the verification process. For instance, we evalu-

ated the reliability and probability of failure using MATLAB for a specific number of

system components based on these generic expressions. It is worth mentioning that

such sound generic results cannot be obtained using simulation or model checking as

the state space should be defined in advance. The proof script of the verification of

SEN and SEN+ is available at [83] and it took around 80 hours to be developed.

199

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we proposed a framework to formally conduct the dynamic dependability

analysis of systems modeled as dynamic fault trees (DFTs) and dynamic reliability

block diagrams (DRBDs) using HOL theorem proving. This framework overcomes the

limitations of existing techniques, such as simulation and model checking, in terms of

soundness and scalability, which allows reasoning about generic properties of a system

without specifying particular models.

We provided the formalization of a well-known DFT algebra to ensure the sound-

ness of its mathematical foundations. We formalized the DFT gates and operators

and verified several simplification theorems based on the properties of extended-real

numbers. This allows obtaining a reduced form of the structure function of a given

DFT, which enables having formally verified cut sets and cut sequences to qualita-

tively analyze a given DFT. We reported our findings of a flaw in one of the published

DFT algebras, which further emphasize on the importance of formally validating the

200

correctness of the mathematical foundations of such algebras, specially if they are to

be used in the context of safety-critical systems analysis. Furthermore, we formally

verified several probabilistic expressions, based on the HOL4 probability and Lebesgue

integral theories, that allow reasoning about the probabilistic behavior of DFT gates

and thus performing the DFT quantitative analysis. Furthermore, based on our DFT

formalization, we formally verified, using the HOL4 theorem prover, the DFT rewrite

rules that are utilized within other DFT analysis tools, such as the STORM model

checker. These rewrite rules cover general n-ary OR, AND and Voting gates, as well

as the PAND gate.

On the other hand, we developed a novel DRBD algebra, similar to the DFT’s,

and introduced several operators and simplification theorems to mathematically model

traditional RBD structures as well as the dynamic spare construct. We provided the

formalization of this novel algebra in HOL and verified the reliability expressions of

its structures. Our formalization allows modeling and verifying the most complex

structures thanks to its scalable definitions and theorems. For example, we verified

several theorems that are concerned with the independence of union and intersection

of events in order to verify the reliability of nested structures. Furthermore, our

formalization overcomes and outperforms the existing formalization of the static RBD

as it allows reasoning about the dynamic behavior of the system that the previous

formalization cannot perform.

Due to the complementary modeling nature of DFTs and DRBDs, i.e., DFTs

model the failure and DRBDs model the success, our framework allows formally con-

ducting DFT analysis of a system modeled as a DRBD and vice-versa. This means

that we are able to reason about both failure and success of a system represented

using only one of the models.

201

The framework developed in this thesis provides generic expressions of probabil-

ity of failure and reliability that are independent of the failure distribution of system

component. This is of great importance as it overcomes the limitation of other for-

mal tools, such as model checking, where the analysis is only limited to exponential

distributions that cannot properly capture the dynamic behavior, such as aging. Fur-

thermore, our expressions are verified for an arbitrary number of system components,

which is useful in modeling a generic form of the system without the need to specify

instances of it, such as multistage interconnection networks (MINs) of multiprocessor

systems.

We demonstrated the strengths of our framework by formally conducting the

dynamic dependability analysis of multistage interconnection networks (MINs), par-

ticularly shuffle-exchange networks (SEN) and SEN+ (an SEN with an additional

stage). These SENs connect the processing, memory, and peripherals elements of

multiprocessor systems. In particular, we provided the formal dynamic terminal re-

liability analysis of SEN and SEN+ using both DFT and DRBD models. Moreover,

we formally verified the broadcast and network reliability analysis of both types of

networks using DRBDs and DFTs. We verified generic expressions for arbitrary num-

ber of switching elements that can be instantiated later according to the size of the

network without the need to repeat the entire verification process. This highlights

the importance and the applicability of our framework in modeling and verifying

large-scale systems.

202

8.2 Future Work

Dynamic dependability analysis is gaining a growing interest as it is able to model

more realistic properties of real-world systems. Building a formal framework that uti-

lizes HOL theorem proving is necessary to obtain sound modeling and analysis results.

The framework proposed in this thesis represents the foundation of a more general

and complete one that allows the analysis of various dependability properties. Based

on the formalizations presented in this thesis work, we propose several extensions that

can further enrich the available formalization:

• Our proposed framework allows having generic expressions of probability of fail-

ure and reliability that can be instantiated using any distribution and density

functions that satisfies the required conditions. However, evaluating these ex-

pressions when dealing with the Lebesgue integral requires verifying the equiv-

alence of the Lebesgue and Riemann integrals in HOL4. This will further

strengthen the proposed framework by adding the possibility of performing and

evaluating the expressions based on specific instances of the given system.

• In the current formalization, we have been able to deal with iterated (multiple)

integrals with a predetermined number, i.e., the number of integrals is specific

and known. For example, we have been able to deal with two iterated integrals

that require integrating over a pair measure. However, sometime it is required

to have an undetermined number of iterated integrals, i.e., n iterated integrals

that require the product of n measures. This can be useful in verifying the prob-

ability of failure of n-ary PAND gate and similar expressions. Extending the

measure and integral theories in HOL4 to support product measures and iter-

ated integrals will be quite helpful not only within the context of dependability

203

analysis, but also in reasoning about other probabilistic systems.

• Since HOL4 is an interactive HOL theorem prover, the verification process re-

quires providing interactively most of the proof steps. Furthermore, many proofs

have a common pattern and the same steps had to be repeated for each of these

proofs, making the verification process tedious. Machine learning can be quite

helpful in speeding up and automating the verification process. In [Bio-Cf3],

we proposed a road map for conducting the DFT based analysis with the help

of machine learning techniques. Particularity, we proposed using TacticToe ap-

proach implemented in [84] that automates the selection of the proper tactics

to prove a goal in HOL4. This will allow end-users that are unfamiliar with

theorem proving to benefit from our DFT and DRBD formalization to provide

sound analysis.

• In our proposed DRBD algebra, we have modeled the behavior of the spare

construct. However, DRBDs also have other constructs such as load sharing

that model the effect of sharing a load among system components on the system

reliability and state dependencies that take into consideration the activation

and deactivation effect on system reliability. Another open direction for our

framework is to develop mathematical models for these constructs and formally

verify their reliability expressions, which enables analyzing various systems.

• Dynamic dependability can be modeled and analyzed using CTMCs that cap-

ture the dynamic behavior as state machines. Formalizing CTMCs in HOL4 to

conduct both the transient and steady state analysis represents another future

direction that can be used in the context of dynamic dependability analysis,

specially verifying properties, such as the system reliability and availability.

204

Bibliography

[1] A Chronology of How the World’s Largest and Most Profitable Au-

tomaker Drove into a PR Disaster. http://www.motortrend.com/news/

toyota-recall-crisis/, 2010.

[2] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Tax-

onomy of Dependable and Secure Computing. IEEE Transactions on Dependable

and Secure Computing, 1(1):11–33, 2004.

[3] E. Ruijters and M. Stoelinga. Fault Tree Analysis: A Survey of the State-of-the-

art in Modeling, Analysis and Tools. Computer Science Review, 15-16:29 – 62,

2015.

[4] O. Hasan, W. Ahmed, S. Tahar, and M. S. Hamdi. Reliability Block Diagrams

based Analysis: A Survey. In International Conference of Numerical Analysis

and Applied Maths, volume 1648, page 850129. AIP, 2015.

[5] I. A. Papazoglou. Mathematical Foundations of Event Trees. Reliability Engi-

neering & System Safety, 61(3):169–183, 1998.

[6] S. Distefano and L. Xing. A New Approach to Modeling the System Reliability:

Dynamic Reliability Block Diagrams. In Reliability and Maintainability Sympo-

sium, pages 189–195. IEEE, 2006.

205

[7] Y. Li, P. P. C. Lee, and J. C. S. Lui. Stochastic Analysis on RAID Reliability

for Solid-State Drives. In IEEE International Symposium on Reliable Distributed

Systems, pages 71–80, 2013.

[8] C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.

[9] M. J. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-order Logic. Cambridge University Press, 1993.

[10] PRISM. http://www.prismmodelchecker.org/, 2019.

[11] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the Reliabil-

ity of NAND Multiplexing with PRISM. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 24(10):1629–1637, 2005.

[12] C. Dehnert, S. Junges, J.P. Katoen, and M. Volk. A Storm is Coming: A Modern

Probabilistic Model Checker. In Computer Aided Verification, LNCS 10427, pages

592–600. Springer, 2017.

[13] M. Ghadhab, S. Junges, J.P. Katoen, M. Kuntz, and M. Volk. Model-based

Safety Analysis for Vehicle Guidance Systems. In Computer Safety, Reliability,

and Security, LNCS 10488, pages 3–19. Springer, 2017.

[14] M. Kwiatkowska, G. Norman, and D. Parker. Quantitative Analysis with the

Probabilistic Model Checker PRISM. Electronic Notes in Theoretical Computer

Science, 153(2):5–31, 2006.

[15] J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University

of Cambridge, UK, 2002.

206

[16] O. Hasan. Formal Probabilistic Analysis using Theorem Proving. PhD thesis,

Concordia University, Montreal, QC, Canada, 2008.

[17] T. Mhamdi. Information-theoretic Analysis using Theorem Proving. PhD thesis,

Concordia University, Montreal, QC, Canada, 2012.

[18] J. Hölzl. Construction and Stochastic Applications of Measure Spaces in Higher-

Order Logic. PhD thesis, Technische Universität München, Germany, 2012.

[19] N. Abbasi, O. Hasan, and S. Tahar. Formal Lifetime Reliability Analysis using

Continuous Random Variables. In International Workshop on Logic, Language,

Information, and Computation, pages 84–97. Springer, 2010.

[20] O. Hasan, S. Tahar, and N. Abbasi. Formal Reliability Analysis using Theorem

Proving. IEEE Transactions on Computers, 59(5):579–592, 2010.

[21] W. Ahmed and O. Hasan. Formalization of Fault Trees in Higher-order Logic:

A Deep Embedding Approach. In Dependable Software Engineering: Theories,

Tools, and Applications, LNCS 9984, pages 264–279. Springer, 2016.

[22] W. Ahmed, O. Hasan, and S. Tahar. Formalization of Reliability Block Diagrams

in Higher-order Logic. Journal of Applied Logic, 18:19–41, 2016.

[23] W. Ahmed and O. Hasan. Towards Formal Fault Tree Analysis using Theorem

Proving. In Intelligent Computer Maths., LNCS 9150, pages 39–54. Springer,

2015.

[24] S. Rajkumar and N.K. Goyal. Review of Multistage Interconnection Networks

Reliability and Fault-tolerance. IETE Technical Review, 33(3):223–230, 2016.

207

[25] F. Bistouni and M. Jahanshahi. Analyzing the Reliability of Shuffle-exchange

Networks using Reliability Block Diagrams. Reliability Engineering & System

Safety, 132:97–106, 2014.

[26] S.C. Kothari. Multistage Interconnection Networks for Multiprocessor Systems.

In Advances in computers, volume 26, pages 155–199. Elsevier, 1987.

[27] HOL4. https://hol-theorem-prover.org/, 2019.

[28] T. Mhamdi, O. Hasan, and S. Tahar. Formalization of Entropy Measures in HOL.

In Interactive Theorem Proving, LNCS 6898, pages 233–248. Springer, 2011.

[29] M. Stamatelatos, W. Vesely, J.B. Dugan, J. Fragola, J. Minarick, and J. Rails-

back. Fault Tree Handbook with Aerospace Applications. NASA Office of Safety

and Mission Assurance, 2002.

[30] G. Merle. Algebraic Modelling of Dynamic Fault Trees, Contribution to Qualita-

tive and Quantitative Analysis. PhD thesis, ENS, France, 2010.

[31] K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo Fault Tree Analysis

Tool. In IEEE Symposium on Fault-Tolerant Computing, pages 232–235, 1999.

[32] G. Merle, J.M. Roussel, J.J. Lesage, V. Perchet, and N. Vayatis. Quantitative

Analysis of Dynamic Fault Trees Based on the Coupling of Structure Functions

and Monte Carlo Simulation. Quality and Reliability Engineering International,

32(1):7–18, 2016.

[33] G. Merle, J. M. Roussel, J. J. Lesage, and A. Bobbio. Probabilistic Algebraic

Analysis of Fault Trees with Priority Dynamic Gates and Repeated Events. IEEE

Transactions on Reliability, 59(1):250–261, 2010.

208

[34] C.Z. Mooney. Monte Carlo Simulation. Sage, 1997.

[35] BlockSim. https://www.reliasoft.com/products/reliability-analysis/blocksim,

2019.

[36] Möbius. https://www.mobius.illinois.edu/, 2019.

[37] isograph. https://www.isograph.com/, 2019.

[38] F. Arnold, A. Belinfante, F. Van der Berg, D. Guck, and M. Stoelinga. DFTCalc:

A Tool for Efficient Fault Tree Analysis. In Computer Safety, Reliability, and

Security, LNCS 8153, pages 293–301. Springer, 2013.

[39] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic Fault Tree Analysis using

Input/Output Interactive Markov Chains. In IEEE Dependable Systems and

Networks, pages 708–717, 2007.

[40] M. Volk, S. Junges, and J.P. Katoen. Fast Dynamic Fault Tree Analysis by Model

Checking Techniques. IEEE Transactions on Industrial Informatics, 14(1):370–

379, 2018.

[41] Y. Elderhalli, O. Hasan, W. Ahmad, and S. Tahar. Formal Dynamic Fault

Trees Analysis Using an Integration of Theorem Proving and Model Checking.

In NASA Formal Methods, LNCS 10811, pages 139–156. Springer, 2018.

[42] H. Xu, L. Xing, and R. Robidoux. Drbd: Dynamic Reliability Block Diagrams

for System Reliability Modelling. International Journal of Computers and Ap-

plications, 31(2):132–141, 2009.

209

[43] S. Distefano and A. Puliafito. Dynamic Reliability Block Diagrams vs Dynamic

Fault Trees. In Reliability and Maintainability Symposium, pages 71–76. IEEE,

2007.

[44] S. Distefano. System Dependability and Performances: Techniques, Methodolo-

gies and Tools . PhD thesis, University of Messina,, Italy, 2005.

[45] H. Xu and L. Xing. Formal Semantics and Verification of Dynamic Reliability

Block Diagrams for System Reliability Modeling. In Software Engineering and

Applications, pages 155–162, 2007.

[46] G. Smith. The Object-Z Specification Language, volume 1. Springer Science &

Business Media, 2012.

[47] K. Jensen. A Brief Introduction to Coloured Petri Nets. In International Work-

shop on Tools and Algorithms for the Construction and Analysis of Systems,

pages 203–208. Springer, 1997.

[48] R. Robidoux, H. Xu, L. Xing, and M. Zhou. Automated Modeling of Dynamic

Reliability Block Diagrams using Colored Petri Nets. IEEE Transactions On

Systems, Man and Cybernetics, 40(2):337, 2010.

[49] T. Mhamdi, O. Hasan, and S. Tahar. On the Formalization of the Lebesgue

Integration Theory in HOL. In Interactive Theorem Proving, LNCS 6172, pages

387–402. Springer, 2010.

[50] Isabelle. https://isabelle.in.tum.de/, 2019.

[51] Coq. https://coq.inria.fr/, 2019.

210

[52] T. Mhamdi, O. Hasan, and S. Tahar. Formalization of Measure Theory and

Lebesgue Integration for Probabilistic Analysis in HOL. ACM Transactions on

Embedded Computing Systems, 12(1):13, 2013.

[53] M. Qasim. Formalization of Normal Random Variables. Master’s thesis, Concor-

dia University, Montreal, QC, Canada, 2016.

[54] M. Qasim, O. Hasan, M. Elleuch, and S. Tahar. Formalization of Normal Random

Variables in HOL. In Intelligent Computer Mathematics, LNCS 9791, pages 44–

59. Springer, 2016.

[55] H. Boudali and J.B. Dugan. A Continuous-time Bayesian Network Reliability

Modeling, and Analysis Framework. IEEE Transactions on Reliability, 55(1):86–

97, 2006.

[56] G. Merle, J.M. Roussel, and J.J. Lesage. Improving the Efficiency of Dynamic

Fault Tree Analysis by Considering Gate FDEP as Static. In European Safety

and Reliability Conference, pages pp–845. Taylor & Francis, 2010.

[57] Y. Elderhalli. DFT Formal Analysis: HOL4 Script, Concordia University,

Canada, http://hvg.ece.concordia.ca/code/hol/DFT method/index.php (2019).

[58] J. Ni, W. Tang, and Y. Xing. A Simple Algebra for Fault Tree Analysis of Static

and Dynamic Systems. IEEE Transactions on Reliability, 62(4):846–861, 2013.

[59] A. Altby and D. Majdandzic. Design and implementation of a fault-tolerant drive-

by-wire system. Master’s thesis, Chalmers University of Technology, Sweden,

2014.

211

[60] H. Boudali, P. Crouzen, and M. Stoelinga. A Rigorous, Compositional, and

Extensible Framework for Dynamic Fault Tree Analysis. IEEE Transactions on

Dependable and Secure Computing, 7:128–143, 2010.

[61] Y. Elderhalli, W. Ahmad, O. Hasan, and S. Tahar. Probabilistic Analysis of

Dynamic Fault Trees using HOL Theorem Proving. Journal of Applied Logics,

2631(3):469, 2019.

[62] MATLAB 2017a, The MathWorks, Natick, 2017.

[63] P. Billingsley. Probability and Measure. John Wiley & Sons, 2012.

[64] H. Bauer. Probability Theory. Walter de Gruyter, 1996.

[65] G. Merle, J.M. Roussel, and J.J Lesage. Quantitative Analysis of Dynamic Fault

Ttrees based on the Structure Function. Quality and Reliability Engineering

International, 30(1):143–156, 2014.

[66] S. Junges, D. Guck, J.P. Katoen, A. Rensink, and M. Stoelinga. Fault Trees on a

Diet: Automated Reduction by Graph Rewriting. Formal Aspects of Computing,

29(4):651–703, 2017.

[67] Sebastian Junges. Simplifying Dynamic Fault Trees by Graph Rewriting, 2015.

Master Thesis, RWTH Aachen University.

[68] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. An EATCS Se-

ries. Springer, 2006.

[69] Y. Elderhalli. DFT Rewriting Rules: HOL4 Script, Concordia University,

Canada, http://hvg.ece.concordia.ca/code/hol/DFT-rewrite/index.php, 2019.

212

[70] Y. Elderhalli. DRBD Formal Analysis: HOL4 Script, Concordia University,

Canada, http://hvg.ece.concordia.ca/code/hol/DRBD/index.php, 2019.

[71] Y. Elderhalli. DFT-DRBD Formal Equivalence: HOL4 Script, Concordia Univer-

sity, Canada, http://hvg.ece.concordia.ca/code/hol/DFT-DRBD-eq.zip, (2019).

[72] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Elsevier, 2011.

[73] R. Aggarwal and L. Kaur. On Reliability Analysis of Fault-tolerant Multistage

Interconnection Networks. International Journal of Computer Science and Secu-

rity, 2(4):01–08, 2008.

[74] V.P Kumar and S.M Reddy. Fault-tolerant Multistage Interconnection Net-

works for Multiprocessor Systems. In Concurrent Computations, pages 495–523.

Springer, 1988.

[75] M. Jeng and H.J. Siegel. A Fault-Tolerant Multistage Interconnection Network

for Multiprocessor Systems Using Dynamic Redundancy. In International Con-

ference on Distributed Computing Systems, pages 70–77. IEEE, 1986.

[76] N.A.M. Yunus and M. Othman. Reliability Evaluation for Shuffle Exchange

Interconnection Network. Procedia Computer Science, 59:162–170, 2015.

[77] F. Bistouni and M. Jahanshahi. Determining the Reliability Importance of

Switching Elements in the Shuffle-exchange Networks. International Journal of

Parallel, Emergent and Distributed Systems, 34(4):448–476, 2019.

[78] N.A.M. Yunus, M. Othman, Z.M. Hanapi, and Y.L. Kweh. Evaluation of Replica-

tion Method in Shuffle-Exchange Network Reliability Performance. In Advances

in Data and Information Sciences, pages 271–281. Springer, 2019.

213

[79] D.K. Panda, R.K. Dash, A.K. Mishra, and S.K. Mohapatra. Reliability Evalua-

tion and Analysis of Multistage Interconnection Networks. International Journal

of Pure and Applied Mathematics, 119(14):1729–1737, 2018.

[80] I. Gunawan. Reliability Prediction of Distributed Systems using Monte Carlo

Method. International Journal of Reliability and Safety, 7(3):235–248, 2013.

[81] I. Gunawan. Redundant Paths and Reliability Bounds in Gamma Networks.

Applied Mathematical Modelling, 32(4):588–594, 2008.

[82] N.A.M. Yunus, M. Othman, Z.M. Hanapi, and K.Y. Lun. Reliability Review of

Interconnection Networks. IETE Technical Review, 33(6):596–606, 2016.

[83] Y. Elderhalli. Shuffle-exchange Network Formal Dependabil-

ity Analysis: HOL4 Script, Concordia University, Canada,

http://hvg.ece.concordia.ca/code/hol/SEN/index.php, (2019).

[84] T. Gauthier, C. Kaliszyk, and J. Urban. TacticToe: Learning to reason with

HOL4 Tactics. In Logic for Programming, Artificial Intelligence and Reasoning,

volume 46, pages 125–143, 2017.

214

Biography

Education

• Concordia University: Montreal, Quebec, Canada

Ph.D., Electrical & Computer Engineering, (Jan. 2017 - Dec. 2019)

• New York Institute of Technology: Amman, Jordan

M.Sc, Electrical and Computer Engineering, (Aug. 2007 - Oct. 2008)

• Al Ahliyya Amman University: Amman, Jordan

B.Sc, Computer Engineering (Oct. 2002 - Feb. 2007)

Work History

• Concordia University: Montreal, Quebec, Canada

Research Assistant, Electrical and Computer Engineering (2017-2019)

• Al Ahliyya Amman University: Amman, Jordan

Lecturer, Computer Engineering (2009-2015)

• Al Ahliyya Amman University: Amman, Jordan

Lab Engineer, Computer Engineering (2007-2009)

215

Publications

• Journal Papers

– Bio-Jr1 Y. Elderhalli, O. Hasan, and S. Tahar. “A Methodology for the

Formal Verification of Dynamic Fault Trees Using HOL Theorem Proving”,

IEEE Access, Vol. 7, No. 1, December 2019, pp. 136176-136192.

– Bio-Jr2 Y. Elderhalli, W. Ahmad, O. Hasan, and S. Tahar. “Proba-

bilistic Analysis of Dynamic Fault Trees using HOL Theorem Proving”,

Journal of Applied Logics, Vol. 6, No. 3, May 2019, pp. 467-509.

• Refereed Conference Papers

– Bio-Cf1 Y. Elderhalli, O. Hasan, and S. Tahar. “A Formally Verified

Algebraic Approach for Dynamic Reliability Block Diagrams”, In Inter-

national Conference on Formal Engineering Methods., LNCS 11852, pages

253-269. Springer, 2019.

– Bio-Cf2 Y. Elderhalli, M. Volk, O. Hasan, J.P. Katoen and S. Tahar:

“Formal Verification of Rewriting Rules for Dynamic Fault Trees” In:

Software Engineering and Formal Methods, LNCS 11724, pages 513-531.

Springer, 2019.

– Bio-Cf3 Y. Elderhalli, O. Hasan and S. Tahar. “Using Machine Learning

to Minimize User Intervention in Theorem Proving based Dynamic Fault

Tree Analysis”; In: Artificial Intelligence and Theorem Proving, 2019.

– Bio-Cf4 Y. Elderhalli, O. Hasan, W. Ahmad, and S. Tahar. “Formal

Dynamic Fault Trees Analysis Using an Integration of Theorem Proving

216

and Model Checking”. In NASA Formal Methods, LNCS 10811, pages

139-156. Springer, 2018.

• Technical Reports

– Bio-Tr1 Y. Elderhalli, O. Hasan, and S. Tahar, Dynamic Dependabil-

ity Analysis of Shuffle-exchange Networks using HOL Theorem Proving,

Technical Report, Department of Electrical and Computer Engineering,

Concordia University, October 2019. https://arxiv.org/abs/1910.11203

– Bio-Tr2 Y. Elderhalli, O. Hasan, and S. Tahar, Integrating DFT and

DRBD Formalizations in HOL4, Technical Report, Department of Elec-

trical and Computer Engineering, Concordia University, October 2019.

https://arxiv.org/abs/1910.08875

– Bio-Tr3 Y. Elderhalli, O. Hasan, and S. Tahar, A Formally Verified

HOL Algebra for Dynamic Reliability Block Diagrams, Technical Report,

Department of Electrical and Computer Engineering, Concordia University,

August 2019. https://arxiv.org/abs/1908.01930

– Bio-Tr4 Y. Elderhalli, W. Ahmad, O. Hasan, and S. Tahar. Formal

Probabilistic Analysis of Dynamic Fault Trees in HOL4, Technical Report,

Department of Electrical and Computer Engineering, Concordia University,

July 2018. https://arxiv.org/abs/1807.11576

– Bio-Tr5 Y. Elderhalli, O. Hasan, W. Ahmad and S. Tahar. Dy-

namic Fault Trees Analysis Using an Integration of Theorem Prov-

ing and Model Checking, Technical Report, Department of Electri-

cal and Computer Engineering, Concordia University, December 2017.

https://arxiv.org/abs/1712.02872

217

