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ABSTRACT 

Simulation-Based Optimization of Energy Consumption and Occupants Comfort in 

Open-Plan Office Buildings Using Probabilistic Occupancy Prediction Model 

Shide Salimi, Ph.D. 

Concordia University, 2019 

Considering the ever-growing increase in the world energy consumption and the fact that 

buildings contribute a large portion of the global energy consumption arises a need for detailed 

investigation towards more effective energy performance of buildings. Thus, monitoring, 

estimating, and reducing buildings’ energy consumption have always been important concerns for 

researchers and practitioners in the field of energy management. Since more than 80% of energy 

consumption happens during the operation phase of a building’s life cycle, efficient management 

of building operation is a promising way to reduce energy usage in buildings. Among the 

parameters influencing the total building energy consumption, building occupants’ presence and 

preferences could have high impacts on the energy usage of a building. To consider the effect of 

occupancy on building energy performance, different occupancy models, which aim to estimate 

the space utilization patterns, have been developed by researches. However, providing a 

comprehensive occupancy model, which could capture all important occupancy features, is still 

under development. Moreover, researchers investigated the effect of the application of occupancy-

centered control strategies on the efficiency of the energy-consuming systems. However, there are 

still many challenges in this area of research mainly related to collecting, processing, and analyzing 

the occupancy data and the application of intelligent control strategies. In addition, generally, there 

is an inverse relationship between the energy consumption of operational systems and the comfort 

level of occupants using these systems. As a result, finding a balance between these two important 

concepts is crucial to improve the building operation. The optimal operation of building energy-

consuming systems is a complex procedure for decision-makers, especially in terms of minimizing 

the energy cost and the occupants’ discomfort.  

On this premise, this research aims to develop a new simulation-based multi-objective 

optimization model of the energy consumption in open-plan offices based on occupancy dynamic 

profiles and occupants’ preferences and has the following objectives: (1) developing a method for 
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extracting detailed occupancy information with varying time-steps from collected Real-Time 

Locating System (RTLS) occupancy data. This method captures different resolution levels 

required for the application of intelligent, occupancy-centered local control strategies of different 

building systems; (2) developing a new time-dependent inhomogeneous Markov chain occupancy 

prediction model based on the derived occupancy information, which distinguishes the temporal 

behavior of different occupants within an open-plan office; (3) improving the performance of the 

developed occupancy prediction model by determining the near-optimum length of the data 

collection period, selecting the near-optimum training dataset, and finding the most satisfying 

temporal resolution level for analyzing the occupancy data; (4) developing local control algorithms 

for building energy-consuming systems; and (5) integrating the energy simulation model of an 

open-plan office with an optimization algorithm to optimally control the building energy-

consuming systems and to analyze the trade-off between building energy consumption and 

occupants’ comfort. It is found that the occupancy perdition model is able to estimate occupancy 

patterns of the open-plan office with 92% and 86% accuracy at occupant and zone levels, 

respectively. Also, the proposed integrated model improves the thermal condition by 50% along 

with 2% savings in energy consumption by developing intelligent, optimal, and occupancy-

centered local control strategies. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

It is estimated that world energy consumption will increase by 56% from 2010 through 2040 

(SUSRIS, 2013). In 2018, buildings were reported to be responsible for around 40% of the total 

energy consumption in the United States (21% for residential buildings and 18% for commercial 

buildings) and assumingly this share will increase around 6% by 2050 based on the AEO2019 

Reference case (U.S. EIA, 2019). Similar data are announced by the European Union in terms of 

energy use in the building sector (26% for residential buildings and 14% for commercial buildings) 

(EU, 2018). Canada also reported the smaller share for its building sector as 17% for residential 

buildings and 11% for commercial buildings in 2016 (NRCAN, 2018). Without energy efficiency 

efforts, this energy use will dramatically increase. Furthermore, more than 80% of energy 

consumption happens during the operation phase of a building’s life cycle (Zhao et al., 2004; 

Mustapa et al., 2016). Thus, the optimal management of building operations is a promising way to 

reduce energy usage in buildings (Liang et al., 2016). To provide better building operation and 

decrease energy consumption, different methods have been studied to make buildings more 

energy-efficient. This includes implementing intelligent control strategies in building energy-

consuming systems, maintaining equipment for achieving maximum efficiency, and increasing the 

environmental awareness of the occupants. Heating, Ventilation, and Air Conditioning (HVAC) 

and lighting systems are the prime targets for applying control strategies and energy consumption 

optimization as these systems account for 71% of the total energy use in commercial and 

institutional buildings in Canada and almost the same amount in the US (NRCAN, 2016; Wang et 

al., 2017; Zhu et al., 2017). 

The International Energy Agency (IEA), Energy in the Buildings and Communities Program 

(EBC), Annex 53 recognized the following parameters as the most influential for energy 

consumption in buildings: (1) climate, (2) building envelope, (3) building energy and service 

systems, (4) indoor design criteria, (5) building operation and maintenance, and (6) occupant 

behavior (Annex 53, 2016). Some of these parameters are easy to determine, being related to the 

physical characteristics of the building (e.g., building size, orientation, construction materials, 

HVAC system size and type, etc.). On the other hand, some parameters that vary with time are 
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difficult to predict, such as weather and occupancy inputs. The former has been addressed in 

different research works using reliable data gathered by weather stations and meteorology centers. 

However, a comprehensive occupancy model is still under development. In addition, it has been 

proven that since energy-related behavior by occupants has a high impact on all phases of a 

building’s life cycle, consideration of improvements for only the other influential parameters is 

insufficient to guarantee efficient building energy performance (Pfafferott and Herkel, 2007; 

Tanimoto et al., 2008). This emphasizes the importance of understanding and considering occupant 

behavior through proper occupancy modeling.  

Occupancy-related information is useful for energy management as well as other areas, such as 

safety, security, and emergency response. This information includes, but is not limited to, the 

number, identities, and location of the occupants. According to (Feng et al., 2015), there are four 

levels of occupancy modeling, which are highly context-dependent. These levels should be 

determined according to the required granularity of the occupancy models used for different 

purposes. For instance, a finer level of granularity is needed to apply lighting control strategies, 

which improve comfort level, since low-resolution occupancy detection can cause occupants’ 

dissatisfaction. Given that HVAC systems need some time to adjust the indoor temperature to a 

specified target set-point, less accuracy in occupancy detection does not lead to a significant 

thermal discomfort (Shen et al., 2017). Therefore, four levels of occupancy modeling are defined 

based on the provided level of detail of occupancy detection as follows: (1) occupancy modeling 

at the building level considering the number of occupants. This model shows the number of 

occupants in a building at each time step; (2) occupancy modeling at the space level. This model 

is defined based on the space state (i.e., occupied or unoccupied) at each time step and is mainly 

used to control the energy-consuming systems (e.g., lighting) that are not dependent on the number 

of occupants; (3) occupancy modeling at the space level considering the number of occupants. 

This model is mainly used to control the HVAC system, which operates based on demand. In this 

case, the control strategy depends on the number of occupants present in the space at each time 

step, regardless of who they are; and (4) occupancy modeling at the occupant level. This model 

tracks each individual; thus, it has the highest level of detail and provides the answers to the 

following questions: (1) who is in which space? (2) when is that occupant present in the specified 

space? And (3) what is the occupant doing in the space? Furthermore, post-occupancy evaluation 
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(POE) is widely used to investigate the effect of occupants’ behavior on building performance and 

energy-saving potentials while maintaining or increasing the occupants’ comfort level (Hong and 

Lin, 2014).  

1.2 Problem Definition 

As mentioned in Section 1.1, applying intelligent control strategies is one of the methods widely 

used to make buildings more energy-efficient. Efforts are being made to apply different control 

strategies improving the buildings’ energy consumption while maintaining or increasing the 

occupants’ comfort level. These requirements link the control strategies to the presence of the 

occupants and their interactions with the building’s systems. Hence, evaluating the impact of 

occupancy-centered control strategies on the buildings’ energy-consuming systems is dependent 

on the occupancy models, which are derived based on the space utilization patterns due to the 

occupants’ behavior. This shows a direct relationship between the space occupancy pattern and 

the functionality of the building systems. For instance, internal heat gains should be precisely 

accounted for load calculation and performance analysis of the buildings’ HVAC system. 

Occupancy, use of lights, and other equipment are the main contributions in the internal heat gains, 

especially in large commercial buildings. However, the uncertainty associated with the internal 

heat gains that comes from the stochastic nature of the occupancy models leads to overcooling or 

overheating the space during HVAC systems’ operation (Wang et al., 2011). Thus, the optimal 

control strategies of these systems should be based on the occupancy information in order to meet 

the needs of the occupants and building energy efficiency simultaneously (Azar and Menassa, 

2012). Researchers investigated the effect of the application of different kinds of control strategies 

on the energy usage of these systems considering the effect of occupancy. However, there are still 

many challenges in this area of research, mainly related to collecting, processing, and analyzing 

the occupancy data and the application of intelligent local control strategies, which combine the 

spatiotemporal variations of the space usage and the occupants’ preferences. 

Based on the above discussion, the research concerning the energy efficiency of buildings based 

on the occupant behavior involves the following dimensions as illustrated in Figure 1-1: (1) 

selecting of the proper type of sensing and monitoring systems including new technologies, such 

as the Internet of Things (IoT); (2) utilizing a proper occupancy modelling technique to derive 

deterministic or probabilistic occupancy profiles; (3) applying simulation; (4) using optimization 
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to minimize energy consumption and simultaneously maximize the occupant satisfaction; and (5) 

applying control strategies to energy-consuming systems.  

Monitoring and data collection are the primary steps to develop a detailed occupancy model. 

However, most of the occupancy detection systems cannot provide the number of occupants and 

the specific location for each occupant (i.e., the x and y coordinates of the occupant) when they are 

used for multi-occupied offices. Therefore, their practicality reduces for open-plan offices that 

consist of multiple thermal zones (Li et al., 2012). Most of the research works that consider shared 

multi-occupied offices did not distinguish between different individuals. In addition, all of them 

lack detailed investigation of the effect of the individual preferences of occupants sharing the same 

area on the energy consumption of the building. Therefore, there is a need to use proper sensing 

techniques to distinguish between different occupants in multi-occupied offices and apply their 

preferences. Post-processing procedures are then used to cleanse the raw data and model the 

occupancy patterns using different statistical, stochastic, or machine learning (ML) methods. A 

good occupancy model captures important features pertinent to the occupants and provides a 

realistic representation of the occupant schedules and behavior (i.e., occupant profiles).  

Finally, occupancy models are imported to the energy simulation software to apply control 

strategies, and ultimately predict building energy consumption (Wang et al., 2011). Energy 

simulation software requires building parameters and occupancy information as inputs to model 

the energy performance of buildings. Building energy simulation tools are mature in terms of 

incorporating building parameters in energy analysis. Some shortcomings are, however, observed 

regarding occupancy data, which cause large discrepancies in energy usage even between similar 

buildings with the same characteristics. In order to improve the performance of energy simulation 

models, the sources of errors regarding the occupancy input data should be investigated. To this 

aim, the sensitivity of the occupancy prediction models to their input occupancy data needs to be 

evaluated. The data collection period and the resolution level used to analyze the collected data 

are two crucial factors for developing accurate occupancy prediction models.
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Figure 1-1 Different dimensions of building energy efficiency research related to the occupants’ behavior
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From the optimization point of view, a limited number of research studies have been conducted 

that used optimization algorithms to improve the performance of energy conservation methods. 

Customized occupancy profiles, however, were not included in most of those studies. The studies 

which used occupancy profiles did not investigate the impact of changes in these profiles on the 

operation of the building’s systems. The effect of occupants’ interactions in open-plan offices is 

also missing in the literature. Therefore, there is a need to integrate the optimization algorithm 

with building simulation on the basis of dynamic occupancy patterns for open-plan offices.  

1.3 Research Objectives  

Given the problem definition in Section 1.2, the main objectives of this research are defined as 

follows: 

1. Developing a method for extracting detailed occupancy information with varying time-

steps from collected RTLS occupancy data. This method captures different resolution 

levels required for the application of intelligent, occupancy-centered local control 

strategies of different building systems.  

2. Developing a new time-dependent inhomogeneous Markov chain occupancy prediction 

model based on the derived occupancy information, which distinguishes the temporal 

behavior of different occupants within an open-plan office.  

3. Improving the performance of the developed occupancy prediction model by determining 

the near-optimum length of the data collection period, selecting the near-optimum training 

dataset, and finding the most satisfying temporal resolution level for analyzing the 

occupancy data. 

4. Developing local control algorithms for building energy-consuming systems. 

5. Integrating the energy simulation model of an open-plan office with an optimization 

algorithm to optimally control the building energy-consuming systems and to analyze the 

trade-off between building energy consumption and occupants’ comfort. 

These objectives aim at assisting decision-makers in evaluating optimized occupancy-centered 

building operations and investigating the effect of their application on building energy 

performance.  
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1.4 Thesis Organization  

The structure of the thesis is as follows: 

Chapter 2 Literature Review: In this chapter, a critical review is provided to (1) review different 

monitoring techniques used to collect occupancy data; (2) identify the detailed aspects of 

occupancy modelling and the research gaps in each aspect; (3) encapsulate the effect of different 

occupancy information on the application of integrated building systems control strategies; (4) 

recognize the research gaps in each; and (5) propose a roadmap regarding the advances in different 

dimensions of BEMS, including reliable monitoring and data collection techniques, occupancy 

modeling, and building operational systems control strategies in cognitive buildings. 

Chapter 3 Research Framework: The overview of this research and the overall proposed 

framework are discussed briefly in this chapter. It includes the explanation of the two main 

modules that are used in the research. 

Chapter 4 Probabilistic Occupancy Prediction Model: In this chapter, the occupancy modeling 

(i.e., occupants’ profiles) has been further enhanced using an inhomogeneous Markov chain 

prediction model, which differentiates the temporal behavior of occupants within an open-plan 

office based on occupancy space utilization patterns data. Moreover, the required inputs to the 

model are identified. To provide the validation of the applicability of the proposed model, the 

building’s real occupancy is compared with the results obtained from the prediction model. 

Chapter 5 Sensitivity Analyses of the Occupancy Prediction Model: The performance of the 

proposed prediction model is evaluated in this chapter to find the most effective data collection 

period and resolution level, which helps the prediction model to produce reliable occupancy 

information. 

Chapter 6 Simulation-based Multi-objective Optimization: This chapter discusses the research 

methodology employed to produce local control strategies. To do so, a simulation-based multi-

objective optimization model is proposed. After creating a simulation model, an optimization 

algorithm is designed to satisfy the two objective functions of minimizing the office building’s 

energy consumption and occupants’ discomfort. The implementation and applicability of the 

proposed framework are demonstrated through a case study.  
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Chapter 7 Summary, Conclusions, and Future Work: In this chapter, a summary of this research 

study is presented and its contributions are highlighted. Moreover, the limitations of the current 

work are investigated and finally, the recommendations for future research are suggested. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

The fact that buildings contribute a large portion of the global energy consumption arises a need 

for detailed investigation towards more effective energy performance of buildings. Thus, 

monitoring, estimating, and reducing buildings’ energy consumption have always been important 

concerns for researchers and practitioners in the field of energy management. Therefore, the 

intelligent use of energy within buildings is a recent trend of research studies and is the target of 

Building Energy and Comfort Management (BECM) systems (Nguyen and Aiello, 2013). Figure 

2-1 shows the breakdown of energy-consuming systems in commercial/institutional buildings in 

Canada. With accounting for 71% of total energy use for space heating-cooling and lighting, these 

systems are the prime targets for energy consumption optimization in order to have a more realistic 

estimation of buildings’ operational energy consumption (NRCAN, 2016).  

 

Figure 2-1 Commercial and institutional building energy use, 2014 (NRCAN, 2016) 

Many research studies investigated the most important factors affecting the buildings’ energy 

consumption. According to Yu et al. (2011), the factors influencing the total building energy 

consumption can be divided into seven categories: 

(1) Climate (e.g., outdoor air temperature, solar radiation, wind velocity, etc.), 

(2) Building-related characteristics (e.g., type, area, orientation, etc.) 

(3) User-related characteristics, except for social and economic factors (e.g., user presence, etc.), 
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(4) Building services systems and operation (e.g., space cooling/ heating, hot water supplying, 

etc.), 

(5) Building occupants’ behavior and activities, 

(6) Social and economic factors (e.g., degree of education, energy cost, etc.), and 

(7) Indoor environmental quality required. 

Among these factors, the last two categories represent occupants’ influences that affect building 

energy consumption indirectly and their effect is considered within the study of the fifth category. 

Occupants’ interactions include settings of indoor thermal, acoustic, and visual comfort criteria, 

opening/closing windows, turning on/off or dimming lights, turning on/off office equipment, and 

turning on/off the HVAC system. Therefore, building occupants’ preferences and activities could 

have high positive or negative impacts on energy conservation (Yu et al., 2011). These effects are 

driving factors causing large discrepancies in building energy usage even between similar 

buildings with the same characteristics and located at similar locations.  

There are basically three main sectors investigated by researchers from the energy efficiency point 

of view including commercial, residential, and other sectors. Offices constitute the largest portion 

of the commercial sector and are the focus of this research, which is limited to offices within 

university buildings. The main energy-consuming systems in offices are the HVAC and lighting 

systems, which are responsible for 33% and 25% of the total energy consumption, respectively 

(Nguyen and Aiello, 2013). Further, since the application of occupancy detection systems and 

occupancy-based control strategies differ based on the nature of the building (e.g., residential vs. 

commercial buildings), the focus of this dissertation is only on office buildings especially open-

plan offices. 

As a result of improper usage of buildings’ devices and systems by their occupants, many buildings 

actually spend more on energy than is necessary. Computers are kept on while disabling the power 

saving mode all day long even when occupants left their offices, lights are often left on 

to illuminate unoccupied rooms, or set to produce more light than necessary. HVAC systems are 

drift from their ideal settings for efficient performance to satisfy occupants’ preferences and are 

set based on the peak occupancy regardless of actual room usage. Therefore, occupants’ presence 

and preferences have an important effect on the buildings’ energy consumption, which should be 

considered as accurate as possible when dealing with the buildings’ energy usage models.  
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This chapter aims to provide a critical review and a research roadmap of office building energy 

management based on occupancy monitoring. The main objectives of this chapter are: (1) 

reviewing different monitoring techniques used to collect occupancy data; (2) identifying the 

detailed aspects of occupancy modelling; (3) encapsulating the effect of different occupancy 

information on the application of integrated building systems control strategies; (4) recognizing 

the research gaps in each dimension and providing linkage between these dimensions and adding 

structure to them; and (5) proposing a roadmap regarding the advances in different dimensions of 

BEMS, including reliable monitoring and data collection techniques, occupancy modeling, and 

building operational systems control strategies in cognitive buildings. The objective of the 

proposed roadmap is to develop an insight towards the future of Information and Communication 

Technologies (ICT) in the building sector. The proposed roadmap focuses on emerging ICT and 

opportunities for the building industry. 

2.2 Occupancy Monitoring 

To analyze and predict occupants’ profiles, occupants should be monitored over a long period of 

time and occupancy data should be collected. In this context, the occupancy data are mainly 

categorized into two groups including the data related to the occupants’ presence and location and 

the data regarding the occupants’ preferences and their interactions with various energy-related 

systems within buildings. To collect the first type of data, presence detection systems, such as 

motion sensors, are used to determine if an occupant is present in a space. However, the exact 

position of the occupant is still unknown. To find the location of an occupant (i.e., the x and y 

coordinates), a Real-time Location System (RTLS) can be utilized. These are wireless tracking 

systems that automatically identify and track the location of objects or people in a defined space 

in near-real-time (Ward, 2007). Examples of RTLSs are vision-based systems (e.g., cameras), and 

radiofrequency (RF)-based systems (Hightower and Borriello, 2001).  

On the other hand, surveys are usually used to identify the occupants’ preferences and the most 

influential factors that affect the way occupants interact with building systems, such as windows, 

HVAC, lighting, blinds, and electrical equipment. Using surveys helps to collect information about 

the occupants’ preferences related to the settings of these systems, the occupants’ energy-related 

decisions and their interactions with building systems. Internal personal visual surveys, such as 

building walkthroughs, are also used to gather data about the building occupants.  



 

12 

These technologies and methods are discussed in more detail in Sections 2.2.1-2.2.6. Furthermore, 

Table 2-1 summarizes the main research papers related to occupancy monitoring methods, along 

with different types of sensors used by these methods. 

2.2.1 Motion Sensors 

Motion sensors are widely used to detect the movement of occupants and to obtain binary 

occupancy data (i.e., whether an occupant is present in a specific space or not). Ultrasonic 

detectors, vibration, and infrared (e.g., passive infrared (PIR)) systems, pressure sensors attached 

to chairs, and magnetic-based approaches (e.g., inertial measurement units (IMUs)) are some 

examples of motion sensors.  

Labeodan et al. (2015, 2016) compared the performance of mechanical-switch sensors (called 

“chair sensors”) with those of strain and vibration sensors in detecting occupancy in open-plan 

offices. They collected the occupancy data for three days and found that mechanical-switch sensors 

have the best performance with 99% accuracy followed by the strain and vibration sensors with 

95% and 87% accuracy, respectively. 

Despite the popularity of motion sensors, they suffer from some fundamental drawbacks especially 

when it comes to detecting occupancy in a shared space. The first shortcoming is regarding the 

tracking technique used by motion sensors to collect the occupancy data. For instance, PIR sensors 

work based on the change in the temperature pattern across the field of view of the sensor, which 

indicates the presence of an object. Thus, in order to get reliable occupancy information, occupants 

should be in the field of view of the sensors (Guo et al., 2010). Other types of motion sensors that 

do not require a field of view to detect occupancy, such as ultrasonic detectors, are prone to be 

triggered by false movements, such as an occupant moving in an adjacent room. These systems 

emit ultrasound pulses to detect occupants’ movement and any interruption in the transmitted pulse 

indicates the presence of an occupant. Thus, any false movement can cause errors in detecting 

occupants. These errors are called false-positive errors and result in conditioning space while it is 

unoccupied (Harris and Cahill, 2005). Furthermore, professional tuning and commissioning are 

required to reach a good performance of motion sensors; otherwise, a big percentage of these 

sensors (more than half) may not work according to the manufacturers’ claims regarding their 
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coverage capacity (NLPIP, 1998). Professional tuning and commissioning include changing the 

positions of sensors, adjusting their angles, and sensitivity tuning (Guo et al., 2010). 

Based on the above discussion, motion sensors detect occupancy in single-occupied offices with 

high accuracy if installed in the right position. However, when they are used in open-plan offices, 

they are unable to provide detailed occupancy data, such as the number of occupants, their 

identities, and their activities (i.e., working at their stations, working in other parts of the space, 

and leaving the space). In addition, the need for a large number of sensors to cover large spaces 

makes their implementation very costly compared to RF-based systems (Hightower and Borriello, 

2001; Pradhan et al., 2009). 

Table 2-1 Categorization of research works based on different occupancy monitoring systems (77 papers) 

Monitoring 

Method 
Types of Sensors Example References 

Motion 

sensor 

NS* Wang et al. (2005); Page et al. (2008); Yu (2010) 

PIR Dodier et al. (2006); Duarte et al. (2013) 

Lighting-switch sensors 
Jazizadeh and Becerik-Gerber (2012); Chang 

and Hong (2013) 

Pressure sensors Labeodan et al. (2015, 2016) 

Ultrasonic sensors Harle and Hopper (2008) 

Vision-

based 

technology 

Camera 
Benezeth et al. (2011); Shih (2014); Wang and 

Ding (2015); Chen et al. (2015) 

Image-processing occupancy sensor Brackney et al. (2012) 

RF-based 

technology 

RFID Zhen et al. (2008); Li et al. (2012)  

Bluetooth Harris and Cahill (2005); Conte et al. (2014) 

Wi-Fi 

Balaji et al. (2013); Chen and Ahn (2014); Jain 

and Madamopoulos (2016); Wang and Shao 

(2017a); Wang and Shao (2017b); Wang et al. 

(2017); Çiftler et al. (2017); Wang et al. (2018); 

Yang et al. (2018)  

Multi-

sensor 

Networks 

Cameras, PIR, and CO2 sensors Meyn et al. (2009) 

Wired CO2 and indoor air quality sensing network, wireless 

ambient sensing network 
Lam et al. (2009); Dong et al. (2010) 

Smart camera networks 
Erickson and Cerpa (2010); Erickson et al. 

(2010, 2011); Cho et al. (2010) 

Contact closure, PIR, and CO2 sensors Newsham and Birt (2010); Dedesko et al. (2015) 

PIR, CO2, sound, light, and power use sensors Hailemariam et al. (2011) 

PIR, CO2, RH, light, and temperature sensors Attar et al. (2011) 

RFID, RH, light, and temperature sensors Augello et al. (2011) 

PIR, CO2, sound, light, and temperature sensors Yang et al. (2012) 

PIR, CO2, RH, temperature, air velocity and globe 

thermometer  
Han et al. (2012) 

PIR, pressure mats, personal computers, CO2, VOC, 

temperature, RH, acoustics, light dependent resistor (LDR) 
Ekwevugbe et al. (2012) 

PIR, pressure, and acoustic sensors Nguyen and Aiello (2012) 

PIR, ultrasound sensors and power plug meters Milenkovic and Amft (2013) 

*NS: Not specified in paper 
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Table 2-1 Categorization of research works based on different occupancy monitoring systems (Cont.) 

Monitoring 

Method 
Types of Sensors Example References 

 RH, temperature, CO2, VOC, motion, and light sensors Fabi et al. (2014) 

Multi-

sensor 

Networks 

Light, temperature, humidity, audio level, PIR sensors, 

meeting schedules, and computer activity 
Khan et al. (2014) 

Ultrasound, pressure sensors, Wi-Fi, and power meters Jin et al. (2014) 

PIR, CO2, temperature, RH, air-velocity sensors, global 

thermometer, and reed switches 
Ai et al. (2014) 

Camera, light, temperature, RH, PIR, door contact, CO2, and 

power meters 
Arora et al. (2015) 

Smart Door (LDR and ultrasonic Sensors) Nasir et al. (2015) 

Wi-Fi and light sensors Mohammadmoradi et al. (2017) 

PIR, CO2, VOC, temperature, RH, acoustics, and light 

sensors, and camera) 
Ekwevugbe et al. (2017) 

Keyboard and mouse activity, webcam, microphone, PIR, 

temperature, RH, light, proximity sensors, and pressure mat 
Newsham et al. (2017) 

Temperature, humidity, light, and CO2 sensors Nesa and Banerjee (2017) 

CO2, magnetic reed switches, and PIR sensors Javed et al. (2016) 

IMU, Wi-Fi, humidity, and illuminance sensors Zhao et al. (2017) 

Wi-Fi and BLE Mashuk et al. (2018) 

Virtual 

sensors 

PIR, pressure, and keyboard and mouse sensors, GPS 

location and Wi-Fi connection from Wi-Fi hotspots 
Zhao et al. (2015); Jin and Spanos (2017) 

Survey  

Brager et al. (2004); Karjalainen (2007); Tabak 

(2008); Tabak and de Vries (2010); Liao and 

Barooah (2010); Wei et al. (2010); Goldstein et 

al. (2010a, 2010b); Goldstein et al. (2011); Haldi 

and Robinson (2008, 2011); Kavulya and 

Becerik-Gerber (2012); Balaji et al. (2013); 

Purdon et al. (2013); Humphreys et al. (2013); 

Fabi et al. (2014); Sun et al. (2014); West et al. 

(2014); Day and Gunderson (2015); Wang and 

Ding (2015); Hong et al. (2015a, 2015b) 

*NS: Not specified in the paper 

2.2.2 Vision-Based Localization Technologies  

To alleviate the shortcomings of motion sensors, vision, and RF-based localization technologies 

were introduced to distinguish between different occupants and track them according to their 

identities. This information provides better insight into the usage pattern of shared spaces. 

Benezeth et al. (2011) presented a vision-based algorithm to capture detailed occupancy 

information by combining background subtraction, tracking, and recognition. They utilized static 

cameras to acquire information regarding occupant presence, location, number, and types of 

activities. The proposed method provided information on the presence or absence of occupants 

with 97% accuracy. Although vision-based systems have a high detection rate, the privacy concern 

(an area of increasing interest) and the heavy image processing steps (required to extract occupancy 

data) restrict their wide implementation. 
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2.2.3 RF-Based Localization Technologies  

RF-based localization technologies use radio frequency to position an object and include ultra-

wideband (UWB), radio-frequency identification (RFID), Wireless Local Area Network (WLAN) 

or Wi-Fi, Global System for Mobile communication (GSM), Bluetooth, and ZigBee. Recently, 

these systems became more popular due to their deployment flexibility, communication range and 

ability to work without a line of sight (Soltani et al., 2015). A system of multiple active RFID 

readers was implemented by Zhen et al. (2008) to determine the occupant location in an indoor 

environment. They also used multiple readers to handle the multipath effect of RFID. Therefore, 

instead of having received signal strength indicator (RSSI) by one reader, the system recorded an 

RSSI vector that represents the RSSI by multiple readers. The proposed localization system 

showed lower accuracy for stationary occupants compared to mobile ones due to the usage of 

multiple readers and the RSSI vector.  

Li et al. (2012) proposed an RFID based occupancy detection system to control the operation of 

HVAC systems. The system detects and tracks stationary and mobile occupants in multiple single- 

and multi-occupied spaces. Thus, it detects the location of each occupant and the number of 

occupants in each thermal zone. The system can detect occupants at the zone level with an accuracy 

of 88% for stationary occupants and 62% for mobile occupants. By testing the operation methods 

and determining the major energy consumers in HVAC systems, they proposed eight energy-

saving strategies. However, they did not test the efficiency of the proposed strategies in the field 

study. Their research showed that using RFID in small spaces does not result in promising 

occupancy detection due to the signal interference of occupants’ tags. In addition, reference tags’ 

locations are another important factor affecting occupancy detection accuracy. Unlike Zhen et al. 

(2008), they found that the proposed occupancy detection system using RFID worked better for 

stationary occupants rather than mobile ones.  

The usage of wireless sensing technologies, such as Wi-Fi, has increased in recent years. Almost 

all modern buildings are equipped with Wi-Fi access points (APs) and wireless devices, making 

occupancy detection more efficient, affordable, and convenient (Wang et al., 2017). Wi-Fi enabled 

devices (e.g., laptops, smartphones, and tablets) allow occupants to connect to Wi-Fi networks. 

This connection then can be used as an occupancy indicator of space. Many studies tracked 

occupancy using Wi-Fi networks and used the results of occupancy detection for demand-driven 
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control of building systems (Mashuk et al., 2018; Wang et al., 2018). Wang and Shao (2017b) used 

a Wi-Fi-based indoor positioning system and created occupancy profiles based on the measured 

Wi-Fi devices’ number and locations in a university library building. By assessing the implication 

of the occupancy patterns for lighting system energy efficiency, they reached 26.1% decrease in 

the total energy consumption. Wang et al. (2017) determined occupancy with 80% accuracy. Wang 

et al. (2018) proposed a ventilation strategy based on the detected occupancy profiles using a Wi-

Fi probe that enabled an occupancy sensing system. Conducting a two-day experiment in a 

graduate students’ office resulted in ventilation energy consumption savings of 44.26% (weekday) 

and 55.5% (weekend day) when compared to the fixed-rate ventilation strategy.  

In 1998, Bluetooth Special Interest Group (SIG) formalized one of the first standardized wireless 

technologies using Bluetooth. However, the high energy consumption of transceiver ships, long 

connection latency, large memory allocation due to a complex protocol stack, and overhead due 

to large data packets restricted the application of Bluetooth. To resolve these drawbacks, Bluetooth 

Low Energy (BLE) (or Bluetooth Smart) was launched in 2010 as one of the protocols in the 

Bluetooth Core Specification version 4.0. The main advantage of BLE is the reduction in energy 

consumption (up to three years on a single coin battery) and cost (i.e., 60-80% cheaper) while 

providing a higher communication range than traditional Bluetooth (Mackensen et al., 2012). The 

broadcast range of BLE is up to 100 meters, which is much further than the classic Bluetooth (10 

meters), making BLE perfect for indoor location tracking and awareness (IndustryARC, 2016; 

Bluetooth, 2016). Considering the wide range of BLE applicability, it is predicted that the BLE-

enabled device shipments will increase from 1.8 billion units in 2014 to 8.4 billion units by 2020 

(a compound annual growth rate (CAGR) of 29%). Smartphones, tablets, BLE-enabled sensors or 

any device implementing the BLE standard can be used as a BLE hub. The ability to track multiple 

moving objects in real-time makes BLE systems optimal RTLSs for different applications, such as 

building energy efficiency, sport, and healthcare applications, optimizing store layout, security, 

and emergency situations (Quuppa, 2017). 

Harris and Cahill (2005) introduced a context-aware power management (CAPM) system to 

minimize the electricity consumption of desktop computers. After conducting experimental trials 

using Bluetooth-enabled mobile phones to detect the occupants’ location, they found that location 

alone is insufficient for effective power management. Thus, they used a Bayesian network to add 

acoustic sensor data and time of day to the location data. These data provide much information 
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pertinent to occupant behavior, such as the sound of opening/closing doors. Although they 

mentioned that the proposed model is reliable in personal and shared spaces, no real-world 

experiments were conducted to show the effectiveness of the method. The proposed method may 

not efficiently respond to other control strategies, such as lighting controls since it was hard for 

the BLE system to entirely cover a space. Not considering occupants’ identities as well as not 

associating occupants with rooms may also result in false-positive errors. As mentioned in Section 

2.2.1, activating the lighting system for the condition when an occupant is in an adjacent room is 

an example of the false-positive errors.  

After releasing a technology called iBeacon by Apple in 2013, this protocol was modified by Conte 

et al. (2014) based on BLE to be used as an occupancy detection system. They proposed a solution 

called BLUE-SENTINEL to determine the number of occupants, their location and identities using 

occupants’ mobile devices as the data collection system. Implementing the proposed approach in 

three laboratory rooms showed 83% accuracy.  

2.2.4 Multi-sensor Networks 

The information coming from only one source of data may be unreliable for occupancy detection. 

For instance, most of the current sensing technologies (e.g., motion sensors) are unable to 

determine detailed occupancy information, such as the number of occupants taking up space. To 

solve this problem, sensor networks are used by many researchers. These networks combine 

different monitoring technologies to take full advantage of the strong points of their integration 

and to overcome their limitations when used alone. In multi-sensor networks, occupancy and 

environmental data are collected from different types of sensors. The data fusion techniques are 

then applied to fuse the redundant data, select the important features indicating the occupancy in 

space, and derive the parameters of importance (Krishnamachari et al., 2002). For instance, 

Ekwevugbe et al. (2012) used a sensor fusion model based on the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) algorithm to estimate a reliable occupancy profile using data collected from a 

multi-sensors network. 

Meyn et al. (2009) introduced the sensor-utility-network (SUN) system in their experiments using 

multiple sensors from three classes: (1) 10 digital video cameras; (2) 12 PIR sensors; and (3) 15 

CO2 sensors. This strategy provides more informative data for occupancy estimation at zone and 
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building levels. Compared to the ground truth occupancy obtained manually by analyzing 

individual video frames, the SUN system estimates the number of occupants at the building level 

with the estimation error of 11%. The necessity of more accurate occupancy estimations is felt 

when optimizing the operation of HVAC and lighting systems. Ground truth obtained manually 

by analyzing individual video frames and correcting them. 

A wireless sensor network comprising of contact closure, PIR, and CO2 sensors were used in the 

research of Newsham and Birt (2010). They conducted a test in an office building including 

laboratories and individual workspaces to count the number of occupants. The power demand of 

the building can then be forecasted using the gathered data. They found that using other types of 

sensors other than motion sensors increased the accuracy of the prediction model.  

Diaz et al. (2011) used wireless sensor networks to monitor the energy consumption of all devices 

in an intelligent building. Temperature, humidity, luminosity, electrical consumption, and 

presence sensors were used in the ECoSence project. Their goal was to use the obtained data to 

improve energy consumption and render the buildings environmentally sustainable. 

To detect indoor occupants’ activities in a single-occupied office, Nguyen and Aiello (2012) used 

a simple sensor wireless network (i.e., infrared, pressure, and acoustic). Five activities (i.e., 

working at a desk with or without a PC, participating in a meeting, the presence, and absence) 

were recognized by using their prototype while the users’ privacy was unaffected as information 

was recorded in a binary manner (i.e., TRUE, FALSE). These activities can be used as inputs for 

applying different control strategies. 

Erickson et al. (2009) used SCOPES, a distributed Smart Camera Object Position Estimation 

System proposed by Kamthe et al. (2009), to gather near real-time occupant movement with 80% 

accuracy in a large multi-function building. Based on the collected data, occupant mobility patterns 

were predicted by applying Gaussian and agent-based models. They achieved 14% energy savings 

on the HVAC system by applying an optimal control strategy based on occupants’ activity 

estimates. They found that the Gaussian model performs better for real-time prediction, while the 

agent-based model results in more energy-efficient building designs. They also examined the 

performance of the smart camera network using Markov chain models. A 20% annual energy 

savings was achieved using Markov models for the occupant activity estimates (Erickson and 
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Cerpa, 2010). In another study, they installed their camera network only on the ceilings of corridors 

to predict occupancy and reached 42% annual energy savings while maintaining comfort standards 

(Erickson et al., 2011). Considering the transition points placed at entrances/exits provides no 

indication of the occupancy patterns and interactions within other building spaces, such as offices, 

labs, meeting rooms, etc. According to their 48-hour observations, they assumed zero occupancies 

during nighttime. This assumption cannot be applied in buildings with a different function, such 

as hospitals, which restricts the usage of the proposed model to specific types of buildings. In 

addition, when a camera sensor network is used to detect occupancy, many pre- and post-

processing algorithms are required to extract the desired data from the collected data. Also, due to 

the excessive labor required to gather data over long periods of time using this type of sensor 

network, occupancy data is only collected for 48 hours. In order to increase the efficiency of the 

model, they considered several assumptions related to the maximum number of people who can 

move through doorways as well as concurrent movement through several doorways. 

Khan et al. (2014) presented a wireless sensor network (WSN) including light, temperature, 

humidity, audio level and PIR sensors that only collect non-sensitive data by explicitly avoiding 

privacy-violating means, such as cameras or microphones along with external data sources (i.e., 

computer activity and meeting schedules). They introduced a hierarchical analysis framework to 

predict occupancy at three different levels of granularity: (1) binary detection, (2) categorical 

occupancy estimation, and (3) counting the exact number of occupants. Using statistical classifiers 

adds confidence levels to different granularity levels. This helps decision-makers to make more 

reasonable decisions when less detailed, but more reliable information is available. They deployed 

the proposed framework in a real-world test by monitoring a high-traffic area (i.e., an open-plan 

office with 20 occupants) and a low-traffic area (i.e., small meeting room) for 10 and 14 days, 

respectively. The contextual data was however used only for the meeting room. The results 

demonstrated that the meeting room was not utilized according to schedules for nearly a third of 

the time. The proposed framework cannot detect the number of occupants with high confidence in 

high-traffic areas. In addition, the proposed methodology is based on a certain number of 

occupants (i.e., 14 occupants). Thus, an open-ended occupancy classification problem, where the 

maximum number of occupants is not strictly pre-defined, is necessary and more practical for real-

world applications.  



 

20 

2.2.5 Virtual Occupancy Sensors 

Some scholars argue for the cost-effectiveness of special-purpose occupancy sensors, such as 

motion sensors or vision-based systems. These sensors require setup and commissioning, 

calibration, and frequent maintenance during their useful life. This makes their application costly 

especially in the case of a sensor network in large areas. Therefore, virtual occupancy sensors are 

introduced to provide a non-intrusive and cost-effective way to detect occupants’ presence using 

existing energy-related systems within buildings. For instance, desktop activity and energy meters 

can be used to provide an indication of occupants’ presence in an office. Smart power meters were 

used by Jin and Spanos (2017) to detect occupancy. Implementation of the proposed method in 

residential and commercial buildings showed 78-93% and 90% accuracy for residences and 

offices, respectively. However, using virtual occupancy sensors provides only binary occupancy 

data (i.e., presence and absence) without indicating other important information, such as 

occupants’ identities and activities. For example, occupants may be present in their office but not 

using any electrical devices. In this case, no occupancy is reported by virtual occupancy sensors.  

To overcome this limitation, the virtual occupancy sensors data are combined with the data of 

physical occupancy sensors in some applications to derive more accurate occupancy information. 

Two types of virtual occupancy sensors were introduced by Zhao et al. (2015) at room- and 

working zone-levels. PIR, pressure, keyboard, and mouse sensors were used for the room-level 

virtual sensors. Zone-level occupancy detection was performed using a real-time global 

positioning system (GPS) location and Wi-Fi connection to Wi-Fi hotspots. They integrated all 

these occupancy measurements using a Bayesian Belief Network (BBN). The performance of the 

proposed virtual sensor was evaluated by collecting data for one to two weeks from two private 

offices. The results showed better performance of the combined system than individual use of 

sensors. They indicated that it would be more convenient to use smart devices, such as 

smartphones, to get Wi-Fi information. However, battery usage and privacy concerns are the main 

issues when using personal devices. In addition, the application of the proposed system had not 

been investigated for more random occupancy patterns and multiple occupants in open-plan 

offices.   
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2.2.6 Survey 

As mentioned in Section 2, some researchers use surveys as a way of collecting occupant 

information, either combined with other tracking technologies or alone. For instance, occupants’ 

behavior in five single-occupied offices (regarding their usage pattern of office devices) was 

investigated by Kavulya and Becerik-Gerber (2012) using in-person observation. In addition, non-

intrusive appliance load monitoring was used to track device energy consumption in these offices. 

They found that a 38% energy savings could be obtained by simply turning off the office devices 

when they are not in use. To find the potential savings, they used average values of the results 

derived from all offices. Thus, they did not consider the difference between occupant preferences 

and their working states. A stochastic occupancy model was developed by Wang and Ding (2015) 

based on the correlation between the occupants’ activities and equipment energy consumption. 

They used cameras to monitor the occupants’ behavior and count the number of occupants in each 

time step. They also conducted a survey to gather data about occupants’ working habits to 

determine different absence states. 

A model-free HVAC control algorithm was proposed by Purdon et al. (2013) to avoid installing 

sensors or building complex occupant comfort models. The control algorithm considers occupant 

preferences regarding the HVAC system settings through an application, which collects their 

votes. Due to changes in the office occupancy from day to day and the complexity of implementing 

different control strategies in a real case, they evaluated the performance of the proposed control 

algorithm through a simulator. The simulator used empirical data from 20 occupants located in 12 

offices and one conference room and simulated different HVAC control strategies. They created 

the comfort models of eight participants by specifying their comfort limits based on filtering for 

outliers in the information gathered from the surveys. A high degree of correlation between the 

preferences of individual participants suggested that it is possible to reach an internal temperature 

that makes most participants comfortable. 

2.3 Occupancy Modeling 

Occupancy models are developed using the data collected during the occupancy monitoring period. 

These models could then predict the probability of occupancy and various occupant activities 

under different conditions. Tracking data provide insights to different occupancy information, such 
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as the number of occupants, their location, and their identities for each space (and each time step) 

of a building. Moreover, occupants interact with office buildings in different ways. They work in 

their offices that may be private or open-plan offices. They communicate with their colleagues and 

other occupants in other spaces of the building. Also, they occasionally gather in meeting rooms. 

After collecting the occupancy data, analysis is required to determine occupant activity and other 

occasional variations in occupant schedules. 

Currently, most of occupancy schedules used in building energy simulation are considered binary 

and deterministic, with the Boolean values of ‘0’ and ‘1’ representing unoccupied and occupied 

states of the space, respectively. Although some diversity can be considered by using different 

deterministic schedules for workdays and weekends, all workdays are considered to have the same 

profile throughout the year (Davis and Nutter, 2010). This results in the same level of energy 

consumption in all spaces within the building. Furthermore, using simplified deterministic 

schedules in the building simulation results in a discrepancy between the building’s actual energy 

consumption and the results of the energy simulation. That is due to the inability of the 

deterministic schedules to consider the variations of the energy consumption in the cases of special 

events. Also, the peak load of spaces may be overestimated, as these schedules consider the 

maximum occupancy in all spaces at the same time. However, this situation rarely happens in 

office buildings. Thus, more precise and detailed occupancy models should be integrated with 

simulation tools to more realistically estimate energy consumption of buildings.  

There are basically three types of methods (statistical, stochastic, and ML) that represent the 

probabilistic occupancy models in this study. These methods and related research works are 

explained in Sections 2.3.1-2.3.3. Furthermore, Table 2-2 summarizes the comparison of the 

research works that have been reviewed, with an emphasis on the data collected by means of 

different occupancy monitoring methods to create probabilistic occupancy models. In the context 

of this research, location, as shown in Table 2-2, refers to the x and y coordinates of the occupant(s). 

Thus, not marking the location for a paper implies that the monitoring method only detects the 

presence of the occupant(s) at room/space level and not the exact location of the occupant(s). 

Number, identity, duration, and activity data provide answers to the following questions: (1) How 

many people are present in a space? (2) Who are they? (3) For how long is/are the occupant(s) 

present in the space? (4) What is/are the occupant(s) doing in the space (i.e., working at their 

stations, working in other parts of the space, and leaving the space)? However, since all the 
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references in Table 2-2 considered the duration parameter, this parameter is not shown in this table 

to avoid repetition. 

In addition, Table 2-3 categorized these studies based on the type of the analysis method they have 

used to develop the probabilistic occupancy models. This table shows the list of occupancy 

modeling methods that are widely used by scholars for each of the above-mentioned categories. 

The research studies are also compared based on the type of study and spaces used as demonstrated 

in Table 2-4. More than half of the reviewed papers provided binary occupancy information and 

the rest emphasized on counting the number of occupants. In addition, almost half of them 

determined occupants’ activities. Among the 80 papers reviewed, only seven detected occupancy 

at the identity level and only 20 provided detailed information regarding occupant location. It can 

be seen from Table 2-4 that simulation was used only by 20 studies and only two papers applied 

optimization to detect occupancy behavior based on behavioral rules.
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Table 2-2 Comparison of research papers focusing on probabilistic occupancy modeling using monitoring technologies (80 papers) 

Reference Occupancy Monitoring  
Occupancy Model Resolution  

Location Number Identity Activity 

Yamaguchi et al. (2003) - - - -  

Brager et al. (2004) Survey - - -  

Karjalainen (Karjalainen, 2007) Survey - - -  

Wang et al. (2005) Motion sensor - - - - 

Harris and Cahill (2005) Bluetooth-enabled mobile phones, acoustic sensors  - -  

Dodier et al. (2006) PIR sensors - - - - 

Page et al. (2008) Motion sensor - - - - 

Harle and Hopper (2008) Ultrasonic sensors (CAMP)  - - - 

Zhen et al. (2008)  RFID   - - 

Tabak (2008) A web-based survey  - -  

Haldi and Robinson (2008) Survey and temperature sensors - - -  

Meyn et al. (2009) Camera, PIR, and CO2 sensors -  - - 

Lam et al. (2009) 
Wired CO2 and indoor air quality sensing network (CO2, CO, TVOC, 

temperature), wireless ambient sensing network (PIR, RH, sound sensors) 
-  -  

Tabak and de Vries (2010) Survey - - -  

Liao and Barooah (2010) Motion sensor - - - - 

Daum and Morel (2010) Motion sensor - - - - 

Dong et al. (2010) 
Wired CO2 and indoor air quality sensing network (CO2, CO, TVOC, 

temperature), wireless ambient sensing network (PIR, RH, sound sensors) 
-  -  

Cho et al. (2010) Smart camera networks   - - 

Newsham and Birt (2010) Contact closure, PIR, and CO2 sensors -  - - 

Yu (2010) Motion sensor - - -  

Wei et al. (2010) Survey -  -  

Goldstein et al. (2010a, 2010b) Survey -  -  

Erickson and Cerpa (2010) ; Erickson et al. (2010, 

2011)  
Smart camera networks   -  

Goldstein et al. (2011) Survey   -  

Wang et al. (2011) -   - - 

Benezeth et al. (2011) Static cameras     

Hailemariam et al. (2011) PIR motion sensor, CO2, sound, light, and power use sensors - - - - 

Augello et al. (2011) RFID, RH, light, and temperature sensors -    

Attar et al. (2011) PIR, CO2, RH, light, and temperature sensors -  - - 

Virote and Neves-Silva (2012) Visual observation - - -  
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Table 2-2 Comparison of research papers focusing on probabilistic occupancy modeling using monitoring technologies (Cont.) 

Reference Occupancy Monitoring 
Occupancy Model Resolution  

Location Number Identity Activity 

Ekwevugbe et al. (2012) 
PIR, pressure mats, personal computers, CO2, VOC, temperature, RH, acoustics, and 

LDR 
-  -  

Nguyen and Aiello (2012) Infrared, pressure, and acoustic sensors - - -  

Kavulya and Becerik-Gerber (2012) Visual observation, non-intrusive appliance load monitoring - - -  

Jazizadeh and Becerik-Gerber (2012) Light intensity sensors - - -  

Brackney et al. (2012) Image-processing occupancy sensor -  - - 

Yang et al. (2012) PIR, CO2, sound, light, and temperature sensors -  - - 

Han et al. (2012) PIR, CO2, and RH, temperature, air velocity and globe thermometer -  - - 

Chang and Hong (2013) Lighting-switch sensors - - -  

Duarte et al. (2013) PIR sensors - - - - 

Milenkovic and Amft (2013) PIR and power plug meters -  -  

Humphreys et al. (2013) Survey - - -  

Fabi et al. (2014) Survey, RH, temperature, CO2, VOC, motion, and light sensors - - -  

Sun et al. (2014) Survey, occupants’ access cards -   - 

Conte et al. (2014) BLUE-SENTINEL beacons    - 

Khan et al. (2014) 
light, temperature, humidity, audio level, PIR sensors, meeting schedules, and 

computer activity 
-   - 

Jin et al. (2014) Ultrasound, pressure sensors, Wi-Fi, and power meters - - - - 

Chen and Ahn (2014) Wi-Fi  - - - 

Shih (2014) Camera   - - 

Ai et al. (2014) 
PIR, CO2, temperature, RH, air-velocity sensors, global thermometer, and reed 

switches 
-  - - 

Feng et al. (2015) -   - - 

Chen et al. (2015) Camera -  - - 

D’Oca and Hong (2015) Motion sensor -  - - 

Dedesko et al. (2015) CO2 and doorway IR beam-break sensors -  -  

Wang and Ding (2015) Camera, survey, and power meters -  -  

Nasir et al. (2015) Smart Door (LDR and ultrasonic Sensors) -   - 

Day and Gunderson (2015) Survey - - -  

Hong et al. (2015a, 2015b) Survey     

Zhao et al. (2015) 
PIR, pressure, and keyboard and mouse sensors, GPS location and Wi-Fi connection 

from Wi-Fi hotspots 
 - - - 

Arora et al. (2015) Camera, light, temperature, RH, PIR, door contact, CO2, and power consumption -  - - 
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Table 2-2 Comparison of research papers focusing on probabilistic occupancy modeling using monitoring technologies (Cont.) 

Reference Occupancy Monitoring 
Occupancy Model Resolution  

Location Number Identity Activity 

Arora et al. (2015) Camera, light, temperature, RH, PIR, door contact, CO2, and power consumption -  - - 

Labeodan et al. (2015, 2016) Pressure, strain, vibration, and PIR sensors -  - - 

Jain and Madamopoulos (2016) Wi-Fi   - - 

Javed et al. (2016) CO2, magnetic reed switches, and PIR sensors -  - - 

Mohammadmoradi et al. (2017) Wi-Fi and light sensors -  - - 

Ekwevugbe et al. (2017) PIR, CO2, VOC, temperature, RH, acoustics, and light sensors, and camera -  -  

Newsham et al. (2017) 
Keyboard and mouse activity, webcam, microphone, PIR, temperature, RH, light, 

proximity sensors, and pressure mat 
- - -  

Jin and Spanos (2017) 
Commercial: Ultrasonic, acceleration (attached to chair), Wi-Fi and survey 

Residential: Electricity power meters, manual entry 
- - - - 

Wang et al. (2017) Wi-Fi and camera -  - - 

Wang and Shao (2017a, 2017b) Wi-Fi and light sensors   - - 

Nesa and Banerjee (2017) Temperature, humidity, light, and CO2 sensors - - -  

Zhao et al. (2017) IMU, Wi-Fi, humidity, and illuminance sensors   - - 

Çiftler et al. (2017) Wi-Fi   - - 

Wang et al. (2018) Wi-Fi -  - - 

Yang et al. (2018) Wi-Fi - - -  

Mashuk et al. (2018) Wi-Fi and BLE   - - 
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Table 2-3 Categorization of research papers based on the type of the probabilistic occupancy modeling 

method (89 papers) 

Analysis 

Method 
Type References 

Statistical 

Linear Regression 
Wang et al. (2005); Mahdavi et al. (2008); Goldstein et al. 

(2010a, 2010b); Goldstein et al. (2011); Humphreys et al. (2013) 

Bayesian probability  

Harris and Cahill (2005); Dodier et al. (2006); Meyn et al. 

(2009); Langevin et al. (2013); Zhao et al. (2015); Mashuk et al. 

(2018) 

Logistic Regression 

Tabak (2008); Wang et al. (2005); Tabak and de Vries (2010); 

Liao and Barooah (2010); Daum and Morel (2010); Haldi and 

Robinson (2008, 2011); Chang and Hong (2013); Gunay et al. 

(2014); Fabi et al. (2014) 

Support Vector Regression (SVR) Wang et al. (2017) 

t-test 
Brager et al. (2004); Duarte et al. (2013); Day and Gunderson 

(2015) 

U test Karjalainen (2007) 

Pearson chi-square test Day and Gunderson (2015) 

KS test Sun et al. (2014) 

Time Series Feng et al. (2015) 

Stochastic 

Standard Markov Model 

Yamaguchi et al. (2003); Page et al. (2008); Wei et al. (2010); 

Wang et al. (2011); Erickson et al. (2011); Han et al. (2012); 

Dong and Lam (2011); Dobbs and Hencey (2014a, 2014b); Chen 

et al. (2015); Jain and Madamopoulos (2016) 

MCMC Wang and Ding (2015) 

HMM 
Lam et al. (2009); Dong et al. (2010); Dong and Lam (2011); 

Virote and Neves-Silva (2012); Han et al. (2012) 

Layered Hidden Markov Model (LHMM) Milenkovic and Amft (2013) 

Autoregressive Hidden Markov Model 

(ARHMM) 
Han et al. (2012); Ai et al. (2014); Wang et al. (2017) 

Dynamic Markov Time-Window 

Inference (DMTWI) 
Wang et al. (2017) 

Various Probability Distributions Hong et al. (2015a, 2015b) 

Machine 

Learning 

SVM 
Zhen et al. (2008); Lam et al. (2009); Dong et al. (2010); Shih 

(2014); Nasir et al. (2015); Jin and Spanos (2017) 

ANN 

Lam et al. (2009); Dong et al. (2010); Ekwevugbe et al. (2012); 

Yang et al. (2012); Javed et al. (2016); Wang et al. (2017); 

Ekwevugbe et al. (2017) 

Decision Tree 

Wei et al. (2010); Hailemariam et al. (2011), D’Oca and Hong 

(2015); Arora et al. (2015); Newsham et al. (2017); Capozzoli et 

al. (2017) 

Classification methods 
Khan et al. (2014); D’Oca and Hong (2015); Nesa and Banerjee 

(2017); Zhao et al. (2017); Yang et al. (2018) 

Polynomial Regression (Cubic) Wang and Ding (2015) 

Clustering 

K-means 
Augello et al. (2011); D’Oca and Hong (2015); Capozzoli et al. 

(2017); Wang and Shao (2018) 

K-nearest neighbor (KNN) Peng et al. (2017) 

Affinity propagation Jain and Madamopoulos (2016) 

Bayesian networks Augello et al. (2011) 

PresenceSense (PS) Jin et al. (2014) 

Optimization (GP) Yu (2010); Newsham et al. (2017) 
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Table 2-4 Comparison of research papers based on type of study and space (80 papers) 

Reference 
Type of Study  Type of Space 

Optimization Simulation Field Study  Shared Private 

Yamaguchi et al. (2003) -  -  -  

Brager et al. (2004) - -     

Karjalainen (Karjalainen, 2007) -     - 

Wang et al. (2005) - -   -  

Harris and Cahill (2005) - - -  - - 

Dodier et al. (2006) - -   -  

Page et al. (2008) - -   -  

Harle and Hopper (2008) - -    - 

Zhen et al. (2008)  - -   -  

Tabak (2008) -      

Haldi and Robinson (2008) - -   NS* NS* 

Meyn et al. (2009) - -   NS* NS* 

Lam et al. (2009) - -    - 

Tabak and de Vries (2010) - -   NS* NS* 

Liao and Barooah (2010) -  -    

Daum and Morel (2010)   -  -  

Dong et al. (2010) - -    - 

Cho et al. (2010) -  -   - 

Newsham and Birt (2010) - -     

Yu (2010)  - -  -  

Wei et al. (2010) -      

Goldstein et al. (2010a, 2010b, 2011) -  -    

Erickson and Cerpa (2010) ; Erickson 

et al. (2010, 2011)  

- 
-  

 
 - 

Wang et al. (2011) -  -    

Benezeth et al. (2011) - -     

Hailemariam et al. (2011) - -     - 

Augello et al. (2011) - -    - 

Attar et al. (2011) -    - (Cubical) 

Virote and Neves-Silva (2012) -  -    

Ekwevugbe et al. (2012) - -    - 

Nguyen and Aiello (2012) - -   -  

Kavulya and Becerik-Gerber (2012) - -   -  

Jazizadeh and Becerik-Gerber (2012) - -   NS* NS* 

Brackney et al. (2012) -     - 

Yang et al. (2012) - -    - 

Han et al. (2012) - -    - 

Chang and Hong (2013) - -    - 

Duarte et al. (2013) - -     

Milenkovic and Amft (2013) -      

Humphreys et al. (2013) - -   NS* NS* 

Fabi et al. (2014) - -     

Sun et al. (2014) -    NS* NS* 

Conte et al. (2014) - -    - 

Khan et al. (2014) - -    - 

Jin et al. (2014) - -    - 

Chen and Ahn (2014) - -    - 

Shih (2014) -     - 

Ai et al. (2014) - -    - 

Feng et al. (2015) -  -    

Chen et al. (2015) -  -   - 

D’Oca and Hong (2015) - -   -  
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Table 2-4 Comparison of research works based on type of study and space (Cont.) 

Reference 
Type of Study  Type of Space 

Optimization Simulation Field Study  Shared Private 

Dedesko et al. (2015) - -   -  

Wang and Ding (2015) -     - 

Nasir et al. (2015) - -    - 

Day and Gunderson (2015) - -   NS* NS* 

Hong et al. (2015a, 2015b) -      

Zhao et al. (2015) - -   -  

Arora et al. (2015) - -    - 

Labeodan et al. (2015, 2016) - -    - 

Jain and Madamopoulos (2016) - - -  - - 

Javed et al. (2016) - -    - 

Mohammadmoradi et al. (2017) - -    - 

Ekwevugbe et al. (2017) - -   -  

Newsham et al. (2017) - -   - (Cubical) 

Jin and Spanos (2017) - -    - 

Wang et al. (2017) - -    - 

Wang and Shao (2017a, 2017b) -     - 

Nesa and Banerjee (2017) - -    - 

Zhao et al. (2017) - -   -  

Çiftler et al. (2017) - -    - 

Wang et al. (2018) - -    - 

Yang et al. (2018) - -   - (Cubical) 

Mashuk et al. (2018) - -    - 

*NS: Not specified in the paper  

2.3.1 Occupancy Modeling using Statistical Methods 

To apply statistical methods, large amount of data should be collected in different office buildings 

and over a long period to properly represent office occupancy. These methods analyze the collected 

data and the frequency of past events to fit probability distributions to parameters of interest (Ott 

and Longnecker, 2015). Having the distributions helps to estimate the probability of the occurrence 

of an action and create the occupancy model. Linear and logistic regression models, time series, 

and Bayesian estimates are examples of statistical methods.  

According to Dodier et al. (2006), one of the biggest deficiencies in the determination of a reliable 

occupancy model is the lack of proper statistical analysis methods. Thus, they used a network of 

passive infrared occupancy sensors in two private offices and performed data analysis techniques 

based on Bayesian probability theory (a class of graphical probability models called belief 

networks) to determine the occupancy model. They showed that using probability models makes 

a significant improvement in the buildings’ operation.  

Using statistical methods, Chang and Hong (2013) defined the key parameters of the occupancy 

model as the average occupancy profile, the frequency of being absent from the office, and the 
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absence duration. They collected the required data by installing 200 lighting-switch sensors for 

each cubicle office within open-plan offices on three floors of an office building. They found five 

typical occupancy patterns based on the differences in the daily occupant presence profiles. They 

claimed that the occupancy presence pattern is affected by the location of the cubicle in the office. 

Occupants in more isolated cubicles showed less movement. The same pattern was observed for 

the cubicles near the windows. The pattern with the highest number of occurrences in three-floor 

offices indicated that most of the occupants left their offices during the lunch break. Also, they 

found that the job category has a high impact on the occupancy pattern; however, due to privacy 

and security concerns they could not find more information for further investigation. Based on the 

gathered data, they generated uniform distributions of the number of daily absences of the 

occupants, the absence duration, and the start time of each absence. However, the start time of 

absence may not follow a uniform distribution. Although they tracked occupants in an open-plan 

office, they did not consider the effect of shared activities, such as meetings.  

An object-oriented software module was introduced by Feng et al. (2015) using the occupancy 

models proposed by Page et al. (2008), Wang et al. (2011), and Chang and Hong (2013). The 

software includes all these models to have more comprehensive information to simulate different 

occupancy levels. They used the software for the simulation of a single-floor office building. The 

results were close to the input and the predetermined schedules for a typical day at the building 

level. However, there was a significant difference between the software derived from the 

occupancy module and that of the predetermined schedules at the room level. In addition, they 

concluded that occupant movements follow some statistical patterns, related to occupant job type 

or habits. They assumed the values of the inputs to the module; however, surveys and tracking 

techniques are required to provide reliable values for different types of inputs to the occupancy 

model.  

2.3.2 Occupancy Modeling using Stochastic Methods 

Occupancy models are highly dependent on the season, weather, time of day, and occupant habits 

and personality (Chang and Hong, 2013). Therefore, there is a significant need to consider the 

probabilistic modeling of occupant profiles to reflect these dependencies by leveraging various 

analysis methods (Haldi and Robinson, 2008). Stochastic models are developed by using real data 

related to occupant location, movement, and actions, collected over a short period. Stochastic 
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analysis methods are then used to predict the probability of an event (i.e., occupant present in a 

space) to generate the stochastic profiles (Virote and Neves-Silva, 2012). Monte Carlo methods, 

Markov Chain, discrete and semi-hidden Markov Chain models, Poisson model, as well as state 

transition analysis are in this category.   

Different occupant activities in office buildings are referred to as work states in this study. 

Determining the occupant’s next work state based only on his/her present state is the basis of the 

Markov chain process. Yamaguchi et al. (2003) used probabilistic occupancy profiles within the 

development of a district energy system simulation model. They used the Markov chain to 

represent different work states and considered empirical distributions for the times of arrival, 

departure, and lunch break. In order to produce the Markov matrices which, define state transitions, 

two kinds of data were required: the duration of each work state and the distribution of work states. 

They assumed fix numbers for these two parameters; however, this information should be collected 

by conducting real-world experiments. This assumption results in simulating only one day and 

repeating it for the whole year without distinguishing between working days and weekends. Wang 

et al. (2005) proposed a probabilistic occupancy model in single-person offices. As in the research 

of Yamaguchi et al. (2003), they assumed that the duration of presence periods is time-independent 

(i.e., independent of the time of day). They found that the duration of intermediate absence periods 

follows an exponential distribution with one constant coefficient over a day. However, the 

occupied intervals are more complex and required two constant coefficients of the exponential 

distributions to simulate a sequence of alternating periods of absence and presence. They also 

considered that the times of the first arrival to the office, the last departure from the office, and the 

lunch break are normally distributed, which is not supported by their observations during the field 

experiments. Also, they treated all weekdays the same and did not consider long periods of 

absence, which leads to an overestimation of annual energy consumption. 

To overcome the time-independence issue of previous occupancy models, Page et al. (2008) 

introduced probabilistic presence profiles as an input to a Markov chain to develop exponential 

distributions of intermediate periods of presence and absence with time-dependent coefficients. 

Their model also captures the changes in arrivals, departures, and typical breaks as well as periods 

of long absence. The only dependency of the proposed model to the occupant characteristics is 

related to occupancy inputs regarding the profile of probability of presence, parameter of mobility, 
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and distribution of periods of long absence. Therefore, by providing correct and concise inputs to 

the model, it could be used for any building type with any occupant presence pattern. Beside its 

generality, the proposed model provides a more realistic estimation of the actual time spent by 

occupants in their zones and the number of their interactions with the environment. They estimated 

the occupancy pattern in a space if the presence of occupants is independent of each other. Also, 

the model eliminates the occurrence of undesired peaks that comes from repeating the same pattern 

for each occupant. However, the inputs to the model (e.g., the profiles of probability of presence 

and parameters of mobility) are very complex to obtain and define in simulation programs. Also, 

the model does not simulate the movement of occupants from one zone to another, which are of 

great importance to develop detailed occupancy models. To address this point, Tabak (2008) used 

a system of User Simulation of Space Utilization (USSU) to generate occupant activity and 

location in order to develop the movement patterns of the occupants in office buildings. However, 

the model was not capable of predicting the correct number of times that a workspace was occupied 

during a work day. Therefore, to improve the occupancy movement model, Wang et al. (2011) 

proposed a novel Markov chain approach to model stochastic occupancy of office buildings based 

on occupant movement among the spaces inside and outside a building. The model determines the 

location of each occupant and other key statistical properties of occupancy, such as the time of 

morning arrival and night departure, lunch time, periods of intermediate walking-around, etc. They 

claimed that the proposed occupancy model can realistically reproduce the occupancy distribution 

and the number of occupants. It also can be easily used to simulate occupancy for building energy 

simulation (especially HVAC system operation) due to its simplicity, accuracy and unrestraint 

nature. Although assuming Markovian property for the occupants’ location and movement has 

been used for single-occupied offices, more validation is required especially for multi-occupied 

offices. They considered some assumptions in their modeling procedure to use the model for multi-

occupied offices with no restrains related to the number of occupants and number of spaces within 

a building. These assumptions, in turn, lead to losing some inherent information about the 

occupants’ movement. In addition, they could not calibrate and validate their model due to the lack 

of real measured data. Thus, they defined the inputs of the case study model based on experience.  

A stochastic occupancy model was developed by Wang and Ding (2015) based on the correlation 

between the occupants’ activities and equipment energy consumption. The accuracy of Markov 

chain models decreases when the amount of input data is increased. Thus, in order to alleviate this 
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shortcoming, they used a combined model of Markov chain and the Monte Carlo methods 

(MCMC) to determine the occupants’ activities and the computer input power for different time 

steps in multi-occupant office rooms. They used cameras to monitor occupant behavior and count 

their number each time step. The results showed a bimodal distribution for the average number of 

occupants over one week, which is compatible with the rules of building energy consumption. A 

building energy consumption prediction model can be generated using the occupant number. They 

also conducted a survey to gather data about occupants’ working habits to determine different 

absence state. In the case of absent occupants, their equipment state (i.e., normal operation, 

standby, shutdown and locked) can be obtained based on their work habit. Occupant preferences 

regarding equipment usage patterns were gathered using power meters and the input power of 

equipment was recorded manually every 10 minutes. In addition, lighting and office equipment 

energy consumption was recorded based on the electricity consumption bills. They examined three 

office buildings with business, administration and scientific research functions. They reached a 

very low error rate (below 5%) between the predicted energy consumption from the model and 

actual energy consumption record. Despite of accurate representation of occupancy-based energy 

consumption prediction model, the proposed model is useful only for typical multi-occupied 

offices with more than eight occupants. In addition, meeting rooms, machine rooms, restaurants, 

exhibition rooms and other special function rooms are not included in their research. Counting the 

number of occupants and recognizing their activities are manual processes, which makes their 

tracking technology (cameras) inefficient for long-term tracking. In addition, the privacy concern 

regarding the usage of vision-based tracking systems restricts their implementation. 

Dong and Lam (2011) developed a complex environmental sensor network to show the correlation 

between measured environmental conditions and occupancy status. Using a Gaussian Mixture 

Model (GMM) based on Hidden Markov Models (HMMs) resulted in detecting the number of 

occupants with 83% accuracy. The duration of occupancy was also calculated using a Semi 

Markov Model (SMM). To show the feasibility of the network, a case study was simulated 

producing occupancy data (i.e., the number of occupants and the duration of the occupancy). The 

results demonstrated 18.5% energy saving using perfect control for HVAC system. Although they 

tracked open-plan offices, the method only determines the number of occupants not their identities. 

In addition, their model is case-specific and only detects a maximum number of four occupants. 

The higher number of occupants results in lower accuracy and more complex computation.  
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2.3.3 Occupancy Modeling using Machin Learning Methods 

Using approximate models guarantees the robustness of a system to the associated uncertainties. 

A robust system could react to uncertainties and accordingly tune itself. However, accurate models 

with low rates of prediction error are required to maximize the system’s efficiency. Statistical 

methods, when used alone, cannot ensure robustness; however, both efficiency and robustness can 

be achieved when statistical methods are combined with approximate models. ML methods, also 

known as predictive analytics, use a combination of statistical and stochastic methods to analyze 

historical trends in the data, learn from them and then predict the future. There are various ML 

algorithms used in the context of Building Energy Performance (BEP) including decision tree, 

artificial neural networks (ANN), support vector machine (SVM), polynomial regression, and 

Bayesian networks (Tsanas and Xifara, 2012).    

To leverage the statistical methods, different learning algorithms are integrated with historical 

trends to predict the future. Machine learning methods are getting increasing attention by scholars. 

Lam et al. (2009) and Dong et al. (2010) employed a complex sensor network to collect different 

parameters that are related to the occupancy presence in an open-plan office. They investigated the 

correlation between the detection of the number of occupants with those parameters to find the 

most important ones. Applying feature selection showed that CO2 volume and acoustic level are 

the most important parameters in estimating the number of occupants. Therefore, they used these 

parameters as inputs to three occupancy estimation methods, namely SVM, ANN, and HMM. The 

results showed that the HMM is more accurate in terms of counting the number of occupants. 

Despite using an extensive network of sensors, the method did not show very robust performance 

in accurately estimating the number of occupants. 

Yu (2010) used Genetic Programming (GP) to find the occupancy pattern in five single-occupied 

offices using motion sensors. GP is used to learn the occupants’ behavior based on behavioral 

rules. They used the same sensor data (12 weeks of data) used by Page et al. (2008) to identify the 

state of the offices; however, they did not include weekends in their research. They considered 

different variables, such as time of the day and day of a week. They got these variables based on 

suggestions from Page et al. (2008) and Wang et al. (2005); however, they added two new variables 

to complement the learning procedure. These variables along with three random constants (e.g., 

day, hour, and minute) were combined using some operators to create behavioral rules. The 
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prediction accuracy was selected as the fitness function. They trained several rules and found the 

best rule for each office. The best rule was then applied to the testing data. The results showed 

accuracy between 80-83%. This shows that the rules are robust, and GP is a proper algorithm for 

learning the occupants’ behavior based on motion sensor data. The predicted probability of 

presence at the office follows the same trend of the recorded data, except for the final departure 

time, which results in overestimation of building energy consumption. They also found that the 

occupancy and vacancy intervals are exponentially distributed. They did not consider shared 

spaces in their research and the effect of proposed occupancy models on the operation of building 

systems. 

Having a cubicle workstation equipped with different sensors (i.e., PIR motion sensor, CO2, sound, 

light, and power use sensors), Hailemariam et al. (2011) used Decision Trees to investigate the 

relationship between different types of sensors. High accuracy as 97.9% was reached using motion 

sensor alone, which can be increased to 98.4% by considering multiple motion sensors. In contrast 

with many other research studies, they found that combining the data from different sensors 

worsened the accuracy of the occupancy detection. Localized occupancy detection in real-time for 

each cubicle workstation in an open-plan office was discussed in this research; however, there is 

no usage of this concept in the proposed method. The case study is limited to one cubicle and the 

effect of multiple occupants on the performance of the sensor network is neglected.  

Ekwevugbe et al. (2017) used ANN for occupancy numbers estimation in multi-occupied offices. 

They used several sensors to gather indoor climate variables, energy data, and indoor events, such 

as PIR, CO2, VOC, temperature, relative humidity (RH), acoustics, and light sensors, and camera. 

After processing the collected data, the feature selection process is performed to derive the most 

effective features from the sensor data, which is input to the occupancy profile estimation model. 

They showed that applying a sensor fusion process results in an optimized sensor selection and 

placement. Although they mentioned that the model has the potential to be linked to a control 

system, no further investigation has been performed to prove the performance of the model. 

2.4 Control Systems 

Lighting and HVAC systems and office equipment are the main sources of energy consumption in 

offices. Studies show that Americans and Europeans are spending on average 85% to 90% of their 
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time in indoor environments (EPA, 1989; European Commission, 2003). In Canada, 

approximately 85% of the total energy in institutional and commercial buildings is consumed by 

heating, cooling, lighting, and IT equipment (NRCAN, 2012). Therefore, the intelligent use of 

energy within buildings is a recent trend of research studies and is the goal of Building Energy and 

Comfort Management (BECM) systems, which requires proper understanding of the interaction 

between occupants and building systems (Tabak, 2008; Yan, et al., 2015). The BECM system 

comprises HVAC system, lighting, hot water, and electricity control with the objective of fulfilling 

occupant requirements for comfort while reducing energy consumption during building operation 

(Tabak, 2008). In order to improve the building design and operation through BECM, proper 

energy conservation strategies should be considered. Applying control actions is an important part 

of the energy conservation strategies. Control actions include, but are not limited to, unplugging 

seldom-used appliances, enabling the "sleep mode" feature on computers, setting the thermostat to 

a reasonable temperature, using sunlight wisely, using blinds, etc. These control actions aim for a 

trade-off between minimizing the energy cost and usage while maximizing occupant comfort and 

satisfaction. However, current building control practices are unable to completely achieve these 

goals. This means applying more cost-efficient strategies can result in reducing the occupants’ 

satisfaction and even productivity (Tabak, 2008; Singhvi et al., 2005). 

2.4.1 HVAC Control Systems 

Table 2-5 shows the comparison between different research studies applying HVAC control 

strategies, with the focus on occupancy tracking methods, occupancy modeling resolution, and 

occupants’ preferences. Section 2.4.1.1 discusses the importance of utilizing occupancy tracking 

methods and occupancy information mentioned in Table 2-5 to control HVAC systems. Table 2-6 

categorized the review papers based on the type of study and space, as well as control strategy 

level and setting. Three levels of control strategy resolution are considered in Table 2-6 including 

individual, zone, and room levels. A room refers to a space with four full-height walls, such as 

single- or multi-occupant offices and meeting rooms. A zone is part of a room and is defined 

according to either the number of HVAC terminal units or lighting fixtures in the room, unless 

otherwise is mentioned. For instance, a whole building or multiple rooms are defined as zones in 

some papers. Individual resolution is used whenever an individual control is available from HVAC 

and lighting points of view. For instance, an open plan office as a room could have multiple zones 
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and there could be multiple individual sections (e.g., cubicles) within each zone. This classification 

is used throughout Section 2.4. Furthermore, to give a better insight regarding the HVAC control 

strategies, the type of control strategy and the resulting energy savings are provided in Table 2-7. 

Section 2.4.1.2 provides more detailed explanation regarding some of the references mentioned in 

Table 2-6 and Table 2-7 with emphasis on the method used to control the HVAC system (i.e., 

MPC). Section 2.4.1.3 discusses about the usage of simulation to provide a connection between 

occupancy models and Building Energy Management Systems (BEMSs) as well as to evaluate the 

energy performance of buildings due to the application of control strategies. Spatial resolution of 

the proposed HVAC control is discussed in Section 2.4.1.4 followed by the application of HVAC 

control strategies in real-world tests in Section 2.4.1.5. 

2.4.1.1 Set point-based HVAC Control Using Occupancy Detection 

In terms of controlling HVAC systems, occupancy related information is used for heat loads, 

system running time, required heating, cooling and distribution of conditioned air, and preferred 

temperature set points (Li et al., 2012). However, many current building control systems are 

designed based on regulations that assume maximum occupancy for all spaces at all times, 

regardless of the actual room occupancy. This results in unnecessary conditioning of spaces within 

a building, which ultimately leads to a large amount of energy losses. To alleviate this inefficiency 

and considering that HVAC systems consume about 50% of the total generated electricity in the 

U.S. (Erickson and Cerpa, 2010), smart control of HVAC systems has been proposed by many 

researchers. The control systems are set based on the knowledge regarding the occupants and their 

predicted usage patterns. Thus, a significant amount of energy could be saved using the control 

strategies (Erickson et al., 2009). In addition, HVAC systems are demand-driven operated. 

Occupied spaces should be ventilated in order to have proper air quality. Since ventilation depends 

on the number of occupants, the more occupants, the more ventilation is required. Some research 

papers showed that a reduction in the average ventilation rate in buildings that set ventilation rates 

based on maximum occupancy results in a decrease in the energy consumption by 10-15% while 

maintaining an acceptable indoor air quality (Erickson et al., 2009; Pavlovas, 2004; Feng et al., 

2015).  

 The number of occupants, the occupancy duration, and the type of activity performed by the 

occupants are needed to calculate HVAC loads, system running time, required heating, and cooling 
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and distribution of conditioned air. More personalized control strategies require occupant location 

and identity. This information is collected by means of monitoring technologies. Figure 2-2 shows 

the frequency of using different occupancy monitoring technologies by the 34 papers being 

reviewed with the focus on HVAC control strategies. As mentioned in Section 2.2, tracking 

technologies are used to derive occupancy information. Almost all the papers cited use of networks 

of different types of sensors to gather occupancy data. Half of all the papers mentioned the use of 

PIR, followed by CO2, temperature and relative humidity sensors. Acoustic, lighting, and camera 

sensors had equal contributions. Pressure sensors and power meters were also utilized to improve 

occupancy detection (Dong and Lam 2011, 2014). Despite the high resolution available with the 

use of RFID tags, only 5% of research studies used this system as the tracking technology (Li et 

al., 2012). Therefore, among these papers, only a small number of them collected occupancy 

information with a high resolution. Most of the research studies focused only on the duration of 

the occupancy, which shows how long the room is occupied. In addition, a few studies determined 

the x and y coordinates of occupants as their location and only one paper used the occupants’ 

identification for HVAC control application. Further, the number of studies used occupants’ 

preferences to enhance the control strategy of the HVAC system is rather limited. 

 

Figure 2-2 Percentage of the usage of different monitoring technologies in reviewed papers 

Using monitoring technologies reveal the occupancy patterns, which show how the occupants use 

different spaces. Assigning groups of occupants with similar occupancy patterns to the same 
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thermal zone was the basis of the start/stop operation of an HVAC system proposed by Capozzoli 

et al. (2017). They considered an office building with three thermal zones. Each thermal zone is 

composed of offices and corridor as the sub-zones. The typical occupancy profiles of each office 

sub-zone were found by means of ML techniques (i.e., K-means clustering algorithm and a binary 

decision tree (CART)). They also used optimization to find the optimal HVAC start/stop schedule. 

Simulation showed a 14% energy savings compared to an occupancy-independent operation 

schedule. 

The same concept of matching occupancy patterns with thermal zone schedules was used by Wang 

et al. (2017). They tracked occupancy be means of a high-resolution occupancy detection, which 

works based on an iBeacon-enabled indoor positioning system. To avoid overcooling or 

insufficient cooling, they combined the occupancy profiles with a spatial dimension. This 

consideration provides the ability to reassign occupancy as a dynamic spatial occupancy 

distribution (DSOD) occupancy matrix. They used a feature-scaled artificial neural network 

algorithm to recognize the occupancy patterns from collected data. They compared the proposed 

control strategy with other traditional controllers by conducting a filed study and using 

computational fluid dynamics (CFD) simulation. Proper implementation of the proposed strategy 

showed 20% savings in energy consumption. 

A more advanced control algorithm compared to the conventional on/off controllers was proposed 

by Foster et al. (2016). The control algorithm analyses the extracted data from a network of 

sensors, coordinates all the components of the system, and manages the communication between 

them. The sensor data determines the occupancy load of a room by counting the number of present 

occupants. A proper control signal is then sent to the HVAC system based on the sensor data. They 

used a microcontroller to implement the proposed control algorithm and reached almost 40% 

improved energy efficiency. 

Another interesting point is pertinent to the evaluation of proposed control strategies. None of the 

reviewed papers applied cost-benefit analysis to justify the monetary benefits associated with the 

occupancy monitoring systems and the proposed control strategies. In addition, only two studies 

(i.e., West et al. (2014) and Brooks et al. (Brooks et al., 2014)) conducted surveys and utilized 

statistics methods to evaluate their control strategies according to the occupants’ preferences and 

satisfaction level.  



 

40 

2.4.1.2  MPC of HVAC Systems Based on Occupancy Detection 

Regarding the type of control strategy, set-point based methods using occupancy information and 

MPC were used by most of the researchers. Only a small number of the reviewed papers used 

optimization techniques and all of them applied optimization as a part of the MPC system. MPC 

is used in these studies to optimize the operation of the HVAC system (i.e., temperature set-points) 

by minimizing the energy consumption. Most of the studies considered the occupancy discomfort 

as a constraint in the optimization problem. This means MPC sets the space temperature in a way 

to minimize the total power consumption while restricting the hours of the occupants’ discomfort. 

To do so, occupancy monitoring and modeling are used to determine the heat gain caused by the 

occupants as one of the main sources of the internal heat gains. For instance, a new predictive 

scheme for HVAC system was proposed by Majumdar et al. (2014) to make energy efficient 

decisions based on the past discomfort history of the occupants. Occupancy data were collected 

over the course of three months for a graduate office and laboratory, and for six months for a 

conference room using motion and CO2 sensors. They assumed that the occupancy pattern would 

be similar for different weekdays but would differ between weekdays and weekends in offices and 

laboratories. To account for irregular occupancy of conference room, different occupancy profiles 

were used for different weekdays, including weekends. The predictive control strategy saved 7-

10% of energy consumption while maintaining the occupancy comfort using simulation. Although 

they investigated the efficiency of the control system in shared spaces, the whole building was 

modeled as a single-zone, which restricts consideration of individual preferences regarding the 

temperature set point and local control.     

In office buildings, where multiple rooms share a single variable air volume box, independent 

room conditioning (i.e., flow rate and temperature) is not possible. To control this type of HVAC 

system, which is called “under-actuated” system, two control algorithms were proposed by Brooks 

and Barooah (2014). The first algorithm is a modified version of the occupancy-based control 

algorithm proposed by Goyal et al. (2013) and the second one is an MPC algorithm based on the 

occupancy predictions. They used simulation to compare the proposed algorithms with the baseline 

algorithm and found 10-48% potential savings. Conducting experimental tests in two under-

actuated zones, in which each of them has two rooms, showed that implementing the occupancy-

based control algorithm results in 29-80% energy savings (Brooks et al., 2015). Despite the great 
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energy saving potential of the proposed algorithms, their performance was not evaluated in open-

plan offices, which makes the application of control strategies much harder compared to single-

occupied offices. In addition, no tracking technologies were used to detect the real-time 

occupancy. 

To improve the performance of standard linear MPC, a learning-based MPC technique was 

proposed by Aswani et al. (2012) to account for the impacts of occupancy by considering its 

fluctuations through learning. The proposed control strategy estimates occupancy using room 

temperature measured by temperature sensors. Implementing the control system in a single 

laboratory room showed that the proposed technique enhances the energy efficiency of the MPC 

while maintaining its robustness regarding the constraints satisfaction. However, the effect of 

control system on a HVAC system that serves multiple rooms as well as the application of local 

control in a shared space were not investigated. 

2.4.1.3 Modeling HVAC Control Systems Using Simulation 

Due to lack of a proper connection between occupancy models (i.e., occupancy patterns and 

preferences) and BEMSs, only few studies could achieve energy savings based on the probabilistic 

occupants’ information. In order to overcome this problem, Dong and Andrews (2009) tried to 

provide this connection by using simulation tools. They developed a sensor-based network to 

model and predict occupant activities and connect them to BECM systems through simulation 

tools. By applying simulation and connecting the occupancy patterns (semi-Markov model) with 

HVAC system control (simply on/off the system), they obtained a 30% energy savings while 

maintaining a suitable indoor comfort level. Their method requires a large network of sensors to 

accurately detect occupant activities, and therefore, significant effort to code the events and then 

analyze them to find the actual occupancy pattern as well as pattern duration. All the parameters 

are defined empirically based on a predefined set of activities and any especial or unpredicted 

activity could not be captured. Thus, it can be used neither in prediction of occupancy to control 

building systems nor in other buildings and case studies. In addition, the complexity of the model 

increases with the size of monitored rooms, such as open-plan offices with many occupants and 

activities. This lowers the practically and tractability of their method for ‘whole building’ 

simulations.   
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Simulation was used in most studies to evaluate the performance of the control strategies. To 

consider the effect of temperature setback periods on building energy consumption, Gunay et al. 

(2016) developed an adaptive control strategy that learns the occupancy patterns and parameters, 

which describe the heat transfer process, to dynamically adjust the setback temperature schedules. 

They found that it takes less than two weeks for the control system to adapt to the occupancy 

patterns and temperature variations. Implementing the control strategy in a simulation model of a 

shared office space indicated 15-20% lower annual cooling loads and 8-10% lower annual heating 

loads.  

2.4.1.4 Spatial Resolution and Local HVAC Control 

Regarding the spatial resolution of the proposed control strategies, most of the reviewed papers 

evaluated the effect of HVAC control strategies on shared spaces. However, only one study 

investigated the effect of HVAC control strategy on an open-plan office (Dong and Lam, 2011). It 

can be seen that the spatial level of the control strategy is at zone level in most studies. However, 

nine of the 31 studies defined zones either as a room or multiple rooms, which lowers the accuracy 

of the application of the control strategy. Furthermore, the effect of individual preferences, which 

leads to implementation of local control, is not investigated.    

Nagarathinam et al. (2017) investigated the spatial variations in temperature and occupancy on the 

HVAC system operation in open-plan offices. They used MPC to find the optimum temperature 

set point, which is later used in a proportional-integral-derivative (PID) controller to adjust the fan 

speed of the HVAC system with multiple AHUs. The aggregate occupancy count was determined 

through swipe-card meter. They assumed that the occupants are at their respective desks if present 

in the office space. Thus, the spatial location of each occupant was derived from the occupant’s 

desk tagging information. Using simulation and comparing the proposed control strategy with 

static set-points based PID control strategies resulted in 12% energy savings. Although the effect 

of the occupants’ movements on the energy consumption of the HVAC system is rather high, this 

effect is not considered in this research. 

Applying local HVAC control strategies requires detailed occupancy information. The most 

important data is the specific location of occupants (i.e., the x and y coordinates), since the concept 

of local control is about considering the spatiotemporal variations of the space usage. Another 
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important factor is related to the occupants’ preferences. Thus, the identity of the occupants plays 

an important role in implementing the local HVAC control to identify their preferred temperature 

set points. 

2.4.1.5 Application of HVAC Control Strategies in Real-world Tests 

Using simulation by almost all the papers being reviewed shows the popularity and power of 

simulation tools to estimate building energy performance (Table 7). However, to bridge the gap 

between the simulation results and actual building energy consumption, many researchers used 

filed studies to investigate the effectiveness of their proposed control strategies. However, most of 

the field studies refer to the utilization of the monitoring technologies to gather occupancy data 

rather than applying the proposed control strategies. For instance, Agarwal et al. (2010) designed 

and implemented battery-operated wireless sensor nodes called Synergy Presence Nodes to 

accurately detect occupancy for individual offices. The sensors are low-cost, wireless, and easily 

deployable within existing buildings. They also have an estimated battery lifetime of over five 

years. They tested the proposed system by deploying it across ten offices over a period of two 

weeks. Using simulation showed significant energy saving potentials (i.e., from 10% to 15%) in 

HVAC system operation due to recognition vacancy periods. Despite practical aspects of their 

invented sensor network, since the system is attached to the offices’ doors this system could 

accurately detect occupants only when they are near the doors. Thus, if the occupant is sitting at 

his/her desk there is going to be a delay in detection of actual room status. This results in some 

inconsistencies in predicted occupancy profile as compared to the actual one.  

One instance of testing the system in the field can be seen in the work of Goyal et al. (2013) who 

compared the performance and complexity of three different control algorithms through 

simulations. The control algorithms improve both energy efficiency and thermal comfort of 

occupants using occupancy data. The first algorithm is an occupancy-based control algorithm that 

uses real-time occupancy measurements and zone temperatures to determine HVAC system set 

points and set back temperatures. The second and third algorithms work based on MPC and use 

occupancy data and predictions of occupancy, respectively. A baseline control algorithm 

commonly used in conventional HVAC systems was used to evaluate the performance of the 

proposed methods. 
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Table 2-5 Comparison of research papers applying HVAC control strategies with the focus on occupancy information (34 papers) 

Reference Occupancy Monitoring Method 
Occupancy Model Resolution Occupants’ 

Preferences Location Number Identity Duration Activity 

Dong and Andrews (2009) 
Acoustics, lighting, motion, CO2, temperature and 

relative humidity sensors 
- - -   - 

Erickson et al. (2009) Wireless camera sensor network   -  - - 

Dong et al. (2011) 

Acoustics, lighting, motion, CO2, indoor and 

outdoor temperatures, relative humidity, wind 

speed sensors and pyranometer  

-  -  - - 

Agarwal et al. (2010) Synergy Presence Nodes (PIR and door sensors) - - -  - - 

Lo and Novoselac (2010) - - - - - - - 

Erickson and Cepra (2010) Wireless camera sensor network   -  - - 

Erickson et al. (2011) SCOPES (wireless camera sensor network)   -  - - 

Dong and Lam (2011) 

CO2, temperature, RH, acoustics, lighting, motion 

detection, pressure sensors and a network of 

cameras 

-  -  - - 

Li et al. (2012) RFID    - - - 

Aswani et al. (2012) Room temperature sensor - - -  - - 

Goyal et al. (2012) - - - -  - - 

Purdon et al. (2013) PIR, temperature, and humidity sensors - - -  -  

Goyal et al. (2013) - - - -  - - 

Balaji et al. (2013) Wi-Fi and survey     -  

Oldewurtel et al. (2013) Motion sensor - - -  - - 

Gunay et al. (2014) - - - -   - 

Dobbs and Hencey (2014a, 2014b) 
- - - -  - - 

PIR motion detector network - - -  - - 

Majumdar et al. (2014) Motion and CO2 sensors - - -  -  

Bengea et al. (2014) 
PIR, space temperature, humidity, CO2, people 

counter, and supply temperature sensors 
-  -  - - 

Gruber et al. (2014) CO2 sensors -  -  - - 

Brooks et al. (2014) 
PIR, temperature, humidity, CO2 sensors, and 

web-based surveys 
- - -  -  

Dong and Lam (2014) 
Temperature, RH, lighting, acoustics motion, CO2 

sensors, and power meters 
  -   

- 

West et al. (2014) - - - - - -  

Brooks and Barooah (2014) - - - - - - - 

Brooks et al. (2015) PIR, temperature, humidity, and CO2 sensors - - -  - - 

Goyal et al. (2015) PIR, temperature, humidity, and CO2 sensors - - -  - - 
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Table 2-5 Comparison of research papers applying HVAC control strategies with the focus on occupancy information (34 papers) (Cont.) 

Reference Occupancy Monitoring Method 
Occupancy Model Resolution Occupants’ 

Preferences Location Number Identity Duration Activity 

Foster et al. (2016) 

Multiple sonic rangefinder modules (as motion 

sensor), smoke, acoustic, light, and temperature 

sensors 

-  -  - - 

Gunay et al. (2016) PIR, temperature, lighting sensors - - -  - - 

Lim et al. (2016) -  - -   - 

Capozzoli et al. (2017) PIR, temperature, humidity sensors -  -  - - 

Wang et al. (2017) 
Cameras, temperature, humidity, CO2 sensors, and 

BLE beacon 
-  -  - - 

Nagarathinam et al. (2017) Swipe-card meter   -  - - 

Peng et al. (2017) PIR, temperature, RH, and CO2 sensors, energy meter - - -  - - 
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Table 2-6 Comparison of research papers focusing on type of study and space, and the level of control strategy (34 papers) 

Reference 
Type of Study  Type of Space  Control Strategy Level 

Optimization Simulation Field Study  Shared Private  Individual Zone Room 

Dong and Andrews (2009) -  - 
  (Meeting 

room) 
- 

 
- -  

Erickson et al. (2009) -  -  Hallways -  -  - 

Dong et al. (2011) -       -  - 

Agarwal et al. (2010) -  -  -   - -  

Lo and Novoselac (2010) -  -   -  -  - 

Erickson and Cepra (2010) -  -  Hallways -  -  - 

Erickson et al. (2011) -  -  Hallways -  -  - 

Dong and Lam (2011) -  - 
  (open-plan 

office) 
- 

 
-  - 

Li et al. (2012) -  -     -  - 

Aswani et al. (2012) -     -  - -  

Goyal et al. (2012)  (MPC)  -  NS* NS*  -  - 

Purdon et al. (2013) -  -   -  -  (multiple rooms) - 

Goyal et al. (2013) -    -   -  zone=room  

Balaji et al. (2013) - -      -  - 

Oldewurtel et al. (2013)  (MPC)  -  NS* NS*  - -  

Gunay et al. (2014) -  -  NS*   - -  

Dobbs and Hencey (2014a, 2014b)  (MPC)  -  NS* NS*  -  zone=building - 

Majumdar et al. (2014)  (MPC)  -  NS* NS*  -  zone=room - 

Bengea et al. (2014)  (MPC) -   NS* NS*  -  - 

Gruber et al. (2014) -  -   -  - -  

Brooks et al. (2014) - -    -  -  zone=room - 

Dong and Lam (2014) (NMPC)       -  zone=room - 

West et al. (2014)  (MPC) -   NS* NS*  -  - 

Brooks and Barooah (2014)  (MPC)  -  -   -  (multiple rooms) - 

Brooks et al. (2015) -     -  -  (multiple rooms) - 

Goyal et al. (2015) - -    -  -  zone=room  

Foster et al. (2016) -  -  NA** NA**  - -  

Gunay et al. (2016) -  -   -  - -  

Lim et al. (2016)  -    -  -  - 

Capozzoli et al. (2017)   -   -  -  - 

Wang et al. (2017) -  -  (cubical) -  -  - 

Nagarathinam et al. (2017)  (MPC)  -   -  -  - 

Peng et al. (2017) -  -     -  - 
*NS: Not specified in the paper; **NA: Not applicable 
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Table 2-7 Comparison of research papers focusing on control strategy method and energy savings (34 

papers) 

Reference Control Method  Energy Savings (%) 

Dong and Andrews (2009) on/off  30 

Dong et al. (2011) NMPC  18 

Agarwal et al. (2010) Set-point based control  10 - 15 

Lo and Novoselac (2010) CFD  12 or 30 

Erickson et al. (2009) 
Adaptive ventilation rate based on the number of 

occupants (demand-driven HVAC operation strategies)  

 14 

Erickson and Cepra (2010)  20 

Erickson et al. (2011)  42 

Dong and Lam (2011) Set-point based on occupancy schedule  19 

Li et al. (2012) Demand-Driven HVAC operation strategies  - 

Aswani et al. (2012) MPC  30-70 

Goyal et al. (2012) MPC  12-37 

Purdon et al. (2013) Set-point based control  60 

Goyal et al. (2013) MPC  42-60 

Balaji et al. (2013) Set-point based control  18 

Oldewurtel et al. (2013) MPC  34 and 50 

Gunay et al. (2014) Set-point based control  - 

Dobbs and Hencey (2014a, 

2014b) 
MPC 

 37-44 

 19 

Majumdar et al. (2014) MPC  7-10 

Bengea et al. (2014) Digital direct control and MPC  20-70 

Gruber et al. (2014) MPC and open-loop predictive controller  - 

Brooks et al. (2014) Set-point based control  37 

Dong and Lam (2014) NMPC  18 and 30 

West et al. (2014) MPC  19 and 32 

Brooks and Barooah (2014) Set-point based control and MPC  10-48 

Brooks et al. (2015) Set-point based control  29-80 

Goyal et al. (2015) Set-point based control and MPC  40 

Foster et al. (2016) Advanced Set-point based control   40 

Gunay et al. (2016) Dynamic setback temperature schedule  10 and 20 

Lim et al. (2016) Adaptive Temperature Control  12 

Capozzoli et al. (2017) Start/stop occupancy-based HVAC schedule  14 

Wang et al. (2017) Set-point based control  20 

Nagarathinam et al. (2017) MPC and PID  12 

Peng et al. (2017) Rule-based control  20 

The baseline controller assumes occupancy during the day and vacancy during the night. While 

each room’s air temperature is kept between lower and upper bounds, set back temperatures are 

used during nighttime. Comparing the proposed algorithms against the baseline algorithm showed 

significant energy savings with each of the proposed controllers. However, the feedback controller 

was found to be more suitable due to its simplicity and lower deployment cost compared to the 

more complex MPC-based controllers. A single room with two occupants was used to verify the 

simulation results of the first two proposed algorithms through a real-case experiment. The field 

study showed 40% energy savings. In addition, Brooks et al. (Brooks et al., 2014) implemented 
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the occupancy-based control algorithm proposed by Goyal et al. (2013) in 12 shared rooms. The 

experiment demonstrated 37% energy reduction. Using web-based surveys before and after the 

implementation of the control algorithm showed no decreases in the occupants’ comfort and air 

freshness (Brooks et al., 2014). Although multi-occupied rooms were used in these experimental 

studies, there was no accurate information pertinent to the actual number of present occupants. 

Assuming design occupancy (i.e., maximum number of occupants) for occupied rooms leads to 

overestimation of the building energy consumption. 

2.4.2 Lighting Control Systems 

Lighting systems consume about 20-45% of the total electricity consumption in office buildings 

(de Bakker et al., 2017) and are controlled by using occupancy sensors usually regardless of the 

occupants’ activities. In this case, the sensors signal the state of the room (i.e., occupied or 

unoccupied) to turn on or off the lighting systems. Thus, the patterns of the lighting use are mainly 

related to the occupancy patterns in the office (Feng et al., 2015; Yun et al., 2012; Al-Mumin et 

al., 2003).  

Applying lighting control systems helps maximize the energy efficiency of the lighting system. 

This can be done by using a set of presence sensors and actuators to control the operation of 

lighting system (e.g., turning on/off or dimming the lighting). An average energy saving of about 

30% is claimed by applying lighting control strategies (Guo et al., 2010). In the following sections, 

research studies about different lighting control strategies are reviewed with regards to the type of 

monitoring systems, application of optimization methods, and local lighting control applications.   

For instance, Van de Meugheuvel et al. (2014) used two different proportional-integral (PI) 

controllers to adjust dimming levels of multiple luminaires using the occupancy and lighting 

sensors. In one scenario, the PI controllers work independently based on the global occupancy 

information (classical PI controller). In the second scenario, the PI controllers communicate with 

each other and share information of the neighbor zones by adding networking capabilities to the 

controllers (i.e., networked PI controllers). They compared the power consumption of the proposed 

control strategies with optimum centralized control systems. The results showed that the energy 

consumption of the networked PI controllers is close to that of an optimized controller that operates 
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based on the lighting inputs. The main drawback of this work is the lack of a field study to consider 

the effect of varying occupancy on the performance of the proposed controllers. As a result, they 

used static occupancy scenarios to evaluate the proposed method with pre-determined occupancy 

probabilities.   

Table 2-8 shows an overview of the comparison between different studies applying lighting control 

strategies with the focus on monitoring methods, occupancy modeling resolution, and occupants’ 

preferences. It can be seen from this table that almost all the studies tracked occupants to mainly 

determine the occupancy duration, which can be easily done by means of motion sensors. Hence, 

unlike papers that worked on the HVAC control strategies, most of the studies in this category 

only utilized motion and lighting sensors. There have been only two exceptions that used RFID 

and pressure, strain, and vibration sensors along with the motion sensors to have more detailed 

occupancy data. Furthermore, in recent studies there is a trend of using energy meters instead of 

occupancy sensors to track occupants for lighting control.  

Table 2-9 categorizes the reviewed papers based on the type of study and space, and control 

strategy level and setting. Regarding the spatial resolutions, the lighting systems were controlled 

at individual level in most of the reviewed papers, which shows the emphasis on the application 

of local control. However, among all the reviewed papers, only five papers used surveys to infer 

specific occupant preferences. A large portion of the proposed control strategies (26 out of 37) 

have been implemented in real-life and the rest used simulation to investigate the performance of 

the control strategies.  

In Table 2-10, the papers are classified based on the control strategy evaluation method and the 

obtained energy savings. One aspect that is not fully studied in these papers is related to the 

application of cost-benefit analysis. Only one study (i.e., Fernandes et al. (2014)) applied the cost-

benefit analysis. Considering monitoring systems can be used for several purposes, such as 

security, facility management, safety and emergency situations, the cost-benefit analysis is 

required to investigate the balance between the cost of these systems and the gains of applying 

them in the real world. 
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2.4.2.1 Lighting Control Based on Binary Occupancy Detection and the Effect of Time Delay (TD) 

As mentioned in Section 2.2.1, motion sensors are widely used to get binary occupancy data (i.e., 

whether an occupant is present in a specific space or not) and control the energy consuming 

systems in the building. Most of these sensors work based on the TD concept to control lighting 

systems. This means that whenever a motion is detected in a space under the coverage of the 

sensors the corresponding lighting system turns on. The lights will be switched “off” after a period 

of time has elapsed after the last motion is detected by the sensor. However, the TD is either pre-

fixed or user adjustable to a fixed time. In addition, according to (Guo et al., 2010), there is an 

uncertainty associated with the occupancy data collection when single-point detection is used. 

Thus, long TD and high detector sensitivity settings are proposed to compensate for the 

uncertainty. However, a long TD results in energy usage during unoccupied periods and a short 

TD leads to occupant complains about false-negative errors (i.e., lights are switched off in 

occupied spaces due to the location of the occupant that is outside of the sensor field of view) 

(Guoet al., 2010).  

Tiller et al. (2009) used three PIR sensors in 10 private offices as well as 23 cubicle workstations 

to collect data for 59 and 63 days, respectively. Comparing the occupancy profiles deduced from 

the collected data revealed considerable uncertainty in the measured data. As mentioned before, 

this uncertainty would result in using long TDs. Therefore, the effect of applying different TDs 

was investigated in private offices. The amount of energy that could be saved using 5- and 10-

minute TD varied from 8.4 to 33.3% compared to 20-minute TD. Although big savings were 

achieved using the proposed method, its effectiveness is not evaluated in open-plan offices where 

lighting systems are shared between multiple occupants. They only claimed that the correlation 

between detecting occupants and the real occupancy in the open-plan office was weak when using 

PIR sensors. 

Nagy et al. (2015) developed an adaptive lighting control system to determine occupant-specific 

set points for lighting system TD and illuminance thresholds. The control system adapts the TD 

and illuminance level based on the occupancy changes in each room. Implementation of the 

proposed control system in 10 different types of rooms in an office building shows that it took 

about one week for the control system to adapt to all occupants across all rooms. In addition, 
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decreasing the TD by 5% resulted in doubling the energy savings without too much occupant 

discomfort. Although the results of their study showed the potential for increasing the energy 

savings by reducing the TD, their claim regarding the occupants’ comfort is qualitative and based 

on not receiving complaints. However, a robust quantitative method is required to evaluate the 

occupants’ comfort. They did not distinguish between different types of rooms, such as single-

occupied, double-occupied, and multi-occupied offices. In addition, it is not clear how they defined 

the occupant-specific set points for offices with more than one occupant since different occupants 

have different preferences.  

2.4.2.2 Lighting Control Based on More Advanced Occupancy Detection 

Fixed presence sensors when used alone for controlling lighting system cause energy wastage due 

to ignoring the surrounding environment. Therefore, the energy efficiency of the lighting system 

was investigated by Delaney et al. (Delaney et al., 2009) using a WSN. To do so, they introduced 

LightWise (LIGHTing evaluation through WIreless SEnsor) to assess the lighting system of office 

buildings by determining points in which the energy wastage occurred. A light detector and PIR 

sensor were used in their study to detect ambient light and luminaries’ state (i.e., lights being on 

or off) and the occupants’ presence, respectively. Testing took place in three separate spaces, a 

large open plan office, a small individual office and a corridor. They proposed two control 

strategies, presence detecting and manual switch control strategies. They found that 50-70% 

energy saving can be achieved by either replacing this system with traditional fixed presence 

sensors or optimizing the current system based on the obtained results regarding the potential 

points where of the energy consumption can be improved in office buildings.  

On the basis of work done by Harris and Cahill (2005) mentioned in Section 2.2.2, Harle and 

Hopper (2008) used CAPM system to control lighting system. They employed an ultrasonic 

location system with 95% accuracy to detect occupancy in 36 offices, 6 corridors, and 9 communal 

rooms. They collected data for a year and used the data from 60 working days randomly selected 

from a year for evaluation purposes. To identify the tracked occupants, the room outliers, ingress 

and egress zones were defined as spatial zones. Three scenarios were applied to measure lighting 

energy consumption: (1) keep lights on 24 hours a day; (2) turn on the lights after the first arrival 

of the office owner and off after the last person who leaves the room; and (3) automatically turn 
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on/off lights using location-aware system. Comparing the results of the last two lighting schemes 

showed a 50% saving in energy consumption. The main problem with the proposed system is that 

the lighting system would switch on whenever a person enters a room regardless of the size of the 

room. This provides unnecessary lighting in the case of spacious rooms.      

Manzoor et al. (2012) combined passive RFID technology with PIR sensors to provide more 

accurate occupancy detection in open-plan offices. The proposed approach resulted in more energy 

efficient lighting control. Although they reached 13% energy savings, they used RFID gateway 

attached to the office entrance door to show the number of occupants who enter or leave the office. 

Thus, there is no indication of occupants’ behavior within the office and their preferences on the 

lighting control. Another problem with the proposed method is regarding its implementation that 

requires the installation of RFID reader. 

2.4.2.3 Daylight Harvesting 

Another strategy to save more energy is through the control of lighting systems while wisely 

utilizing the ambient natural light present in a space. This strategy is called daylight harvesting. 

Using this strategy leads to energy savings by dimming or switching off the lighting whenever 

sufficient ambient light is present (Si et al., 2017).  

Galasiu et al. (2007) studied the potential savings by applying three different lighting control 

strategies simultaneously and independently in an open-plan office over a period of one year. 

Using occupancy sensors, external light sources (i.e., daylight harvesting), and individual dimming 

controls for each occupant independently resulted in 35%, 20%, and 11% energy savings, 

respectively. However, 42-47% energy savings can be achieved by combining these three 

strategies compared to using the same lighting system without controls. In addition, comparison 

between the applications of three control strategies with the energy usage of a conventional 

lighting system, in which the lighting is always on during the working hours, showed a 67-69% 

reduction in energy consumption. They concluded that in the case of using only one control 

strategy, the occupancy sensor would be the best choice. Although different control options were 

considered in this study, the effect of the lighting energy savings on the thermal performance of 

the office was not investigated. Since there is a relationship between the internal heat gains and 
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the lighting energy consumption, the effect of applying lighting control strategies on the 

performance of HVAC system should be considered to reach even greater energy savings. 

Yun et al. (2012) presented the results of a survey conducted in four offices to monitor occupancy 

patterns, lighting system usage, and lighting system energy consumption. No statistically 

significant relationships were found between external illuminance and lighting use patterns. 

However, some clear effects related to the time of day were observed, such as a strong tendency 

of turning on lighting when occupants arrive in the morning. They found 43% reduction in the 

lighting energy consumption when using automatic dimming control. On the other hand, there was 

up to 50% increase in lighting energy use when considering a change in occupancy patterns.  

Zhu et al. (2017) proposed a simulation methodology that uses energy meters to derive the 

occupant schedules. They evaluated lighting control strategies to determine the potential energy 

savings based on four different occupant profiles. Energy savings of almost 62% were achieved as 

a result of switching from conventional lighting systems to lights with daylight-responsive 

dimming functions. 

Kuo et al. (2017) designed an automated lighting control system that adjust the indoor illuminance 

level using the individual preferences, natural light, and shading system. They implemented the 

proposed system in a scaled physical model and tried to adjust the indoor illuminance level to 

reach a pre-selected target value. The implementation showed that the control system is only able 

to reach the desired light level in the case of bright outdoor conditions. The use of real occupant 

data (i.e., presence and preference regarding indoor illuminance level) and thermal control of the 

indoor conditioning are mentioned as areas for future investigation.  

2.4.2.4 Optimization of lighting systems 

Wen and Agogino (2008) developed an intelligent lighting optimization algorithm to implement 

lighting control with the objectives of providing both energy efficiency and occupant satisfaction. 

They implemented the proposed framework in a shared office using a wireless networked lighting 

system. They reached 68% and 48% energy savings for a sparsely (four occupants) and a more 

densely (seven occupants) occupied office, respectively. There is no indication of the working 

hours and occupancy pattern in the two scenarios used to evaluate the proposed framework. More 
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reliable data could be collected using occupancy tracking and lighting sensors. They considered 

daylight harvesting, occupancy control, and lighting level tuning in another optimization problem. 

The optimization algorithm generates light output for each light fixture based on occupant 

requirements while minimizing the energy consumption. 60% energy saving was found by 

implementing the proposed lighting system in a small open-plan office (Wen and Agogino, 2011). 

The main shortcoming of the proposed model is the lack of occupancy sensors to detect the real 

occupancy pattern in the open-plan office. In addition, lighting preferences are assumed and 

predetermined instead of asking the occupants to provide their requirements.  

Rossi et al. (2015) proposed an optimization framework to determine the dimming levels of 

multiple lighting fixtures in an open-plan office under two control scenarios. In the first scenario, 

the target illumination levels are predefined as 500 lux and 300 lux for occupied and unoccupied 

zones, respectively. In the second scenario, the target illuminance levels are determined based on 

occupant desires. They used three approaches called minimum, maximum, and average approaches 

to calculate the target illuminance levels in the case of multiple occupants with different desired 

illuminance levels. They tested the performance of the control scenarios by simulating the same 

open-plan office considered in Van de Meugheuvel et al. (2014). The first control scenario showed 

no overshoot/undershoot with a small settling time to reach to the final steady-state value. They 

found that the first control scenario results in almost the same energy savings compared to a 

benchmark model. Although they proposed different approaches in the second scenario, they did 

not use the actual occupancy of the open-plan office. Thus, the effect of different occupancy 

patterns is not investigated.    

Caicedo and Pandharipande (2016) optimized the lighting power consumption of an open-plan 

office using a central controller system. They used the same model of Caicedo et al. (2015) (i.e., a 

hypothetical open-plan office with 24 zones) to compare the performance of the dual-beam 

luminaires with a standard-beam lighting system. Each zone has one occupant and is equipped 

with zone-level luminaires, and lighting and occupancy sensors. Two optimization scenarios were 

defined: one with illumination and dimming levels constraints and the other with only illumination 

constraints. The comparison of the two optimization scenarios showed better spatial uniformity of 

the dimming level for the first scenario in both absence and presence of daylight. They also 

measured the target illumination level of each lighting fixture during the calibration procedure and 
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compared the illumination level achieved by each optimization scenario with the target level. The 

results demonstrated that both scenarios were able to reach the target illumination level for all 

luminaires. They did not implement the proposed method in a real open-plan office and only used 

a simulation model to investigate the feasibility and effect of the method on the energy 

consumption savings.  

Caicedo et al. (2017) proposed a lighting control algorithm that determines the dimming level of 

luminaires based on the collected sensing data to achieve a desired illumination level in each 

workspace (zone) of an open-plan office. They applied the proposed model in a real open-plan 

office with eight luminaires associated with eight occupancy sensors, eight ceiling light sensors, 

and eight workspace wireless lighting sensors. They compared the achieved illumination levels of 

the eight workspaces using a control method that receives inputs from ceiling and workspace 

lighting sensors (combined control) with those of control methods that either receives inputs from 

ceiling lighting sensors or workspace lighting sensors. They concluded that the combined control 

saves more energy and produces more robust results than the case of using ceiling lighting sensor 

data. In both of these research studies, there is neither an indication of the model architecture nor 

the software/tools that were used to implement the proposed model. Although they mentioned that 

each zone is tracked by the occupancy sensor, they did not mention the type of sensor. In addition, 

the occupancy data were not collected, and they assumed an occupancy scenario with only four 

zones being occupied for both the simulation model and the testbed measurements.  

2.4.2.5 Local Lighting Control 

Although significant energy savings can be achieved by applying lighting control strategies, the 

different occupant preferences regarding lighting and visual comfort are usually overlooked, or 

even compromised, especially for open-plan office buildings. Therefore, a localized lighting 

control algorithm was proposed by Labeodan et al. (2015, 2016) using occupancy data from 

pressure sensors, and its performance was compared to that of the lighting control based on dual-

PIR sensor data. The pressure sensors collected more accurate and reliable occupancy data. 

However, one important limitation of this type of sensor is their inability to detect occupancy when 

the occupants are walking or standing in the room. Although open-plan offices were considered, 



 

56 

the effect of neighboring occupants’ presence and their preferences was not considered in this 

study.  

The effect of using task lights in reducing the energy consumption and improving the occupants’ 

satisfaction was investigated by Lim et al. (2017). They used illumination loggers to track the 

lighting usage of two office spaces, one with the daylight and the other one with only the artificial 

lighting. After placing the task lights, a visual comfort survey was conducted to evaluate the 

occupant lighting preferences. Comparing the energy saving potential in two offices showed 78% 

lighting energy saving in the case of using daylight. The main limitation of this study is the lack 

of occupancy sensors to collect the real offices’ occupancy data. 

2.5 Roadmap for Cognitive Building Management 

One of the long-term goals of the building industry is to design and operate cognitive buildings in 

a way that could satisfy occupants’ comfort requirements, enhance the performance of energy-

consuming systems, and increase efficiency. To reach these goals, there is a need for: (1) 

comprehensive information pertinent to different building systems; (2) real-time data collection; 

(3) proper management of the collected data (i.e., cleansing, storing, and mining); and (4) data-

driven decision models to act upon the collected data and modelled information for integration and 

coordination of different building systems (Pasini et al., 2016). Having this holistic framework 

provides better insight regarding the current and future states of buildings and their evolution 

towards more intelligent and responsive entities. In order to achieve this goal, research and 

development should be integrated with technological advances.  
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Table 2-8 Comparison of research papers applying lighting control strategies with the focus on occupancy monitoring method and occupant 

preferences (37 papers) 

Reference 
Monitoring method  Occupancy Model Resolution Occupant 

Preferences Occupancy Monitoring Lighting Sensor  Location Number Identity Activity 

Garg and Bansal (2000) Smart TD sensor -  - - - - - 

Jennings et al. (2000) Ultrasonic and PIR sensors -  - - - - - 

Escuyer and Fontoynont (2001) Motion sensor   - - - -  

Maniccia et al. (2001) PIR   Photosensor  - - - - - 

Von Neida et al. (2001) PIR  Photosensor  - - - - - 

Chung and Burnett (2001) Motion sensor and observation Photosensor  - - - - - 

Jennings et al. (2002) Ultrasonic and PIR sensors -  - - - - - 

Galasiu et al. (2007) Motion sensor Photosensor  - - - - - 

Wen and Agogino (2011) - -  - - - -  

Harle and Hopper (2008) Ultrasonic sensors -   - - - - 

Mahdavi et al. (2008) 
Motion, light, temperature, and RH 

sensors and photography 
- 

 
- - -  - 

Galasiu and Newsham (2009) Motion sensor   - - - - - 

Delaney et al. (2009) PIR    - - - - - 

Tiller et al. (2009) PIR -  - - - - - 

Rubinstein and Enscoe (2010) Motion sensor -  - - - - - 

Pandharipande and Caicedo (2011) Ultrasonic sensors Photosensor  - - - - - 

Wen and Agogino (2011) - -  - - - - - 

Manzoor et al. (2012) PIR, RFID -     - - 

Oldewurtel et al. (2013) Motion sensor -  - - - - - 

Fernandes et al. (2014) Infrared and ultrasonic sensors Photosensor  - - -  - 

Aghemo et al. (2014) PIR photosensor  - - - - - 

Van de Meugheuvel et al. (2014) Motion sensor   - - - - - 

Peruffo et al. (2015) Motion sensor   - - - - - 

Rossi et al. (2015) Motion sensor   - - - -  

Nagy et al. (2015) PIR    - - -  - 

Caicedo et al. (2015) Motion sensor   - - - - - 

Pandharipande and Caicedo (2015) Motion sensor   - - - - - 

Caicedo and Pandharipande (2016) Motion sensor   - - - - - 

Nagy et al. (2016) PIR    - - - -  

Labeodan et al. (2015, 2016) Pressure, strain, vibration, and PIR -  -  - - - 

Caicedo et al. (2017) Motion sensor   - - - - - 

Lim et al. (2017) - -  - - - -  

Zhu et al. (2017) Energy meters -  -  - - - 

Delgoshaei et al. (2017) Energy meters -  - - - - - 

Gentile and Dubois (2017) - -  - - - - - 

Dikel et al. (2017) Motion sensor and pressure mat    - - - - 
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Table 2-9 Comparison of research papers applying lighting control strategies with the focus on type of study and space, control strategy level and 

setting (37 papers) 

Reference 

Type of Study  Type of Space  Control Strategy Level  Control Strategy Setting 

Optimization Simulation Field Study 
 

Shared Private 
 

Individual Zone Room 
 

TD 
Illuminance 

Setting 

Garg and Bansal (2000) - -   -   - -    - 

Jennings et al. (2000) - -   -   -  -  -  

Escuyer and Fontoynont (2001) - -   NS NS  NS NS NS  -  

Maniccia et al. (2001) -       - -    - 

Von Neida et al. (2001) -       - -    - 

Chung and Burnett (2001) -     -  -  -   - 

Jennings et al. (2002) - -  (cubical)   -  -  -   - 

Galasiu et al. (2007) - -  (cubical)   -   - -  -  

Wen and Agogino (2011)    (cubical)   -   - -  -  

Harle and Hopper (2008) - -    -  -  -  - - 

Mahdavi et al. (2008) -       - -   - - 

Galasiu and Newsham (2009) - -  (cubical)   -   - -  -  

Delaney et al. (2009) - -      -  -  - - 

Tiller et al. (2009) - -  (cubical)      -   - - 

Rubinstein and Enscoe (2010) - -  (cubical)   -   - -  -  

Pandharipande and Caicedo (2011)   -   -   - -  -  

Wen and Agogino (2011)  -  (cubical)   -   - -  -  

Manzoor et al. (2012) - -  (cubical)   -   - -   - 

Oldewurtel et al. (2013)   -  NS NS  -  -  - - 

Fernandes et al. (2014) - -    -  - -     

Aghemo et al. (2014) - -   NS NS  - -     

Van de Meugheuvel et al. (2014)   -  - -  - -   -  

Peruffo et al. (2015) -  -  - -   - -  -  

Rossi et al. (2015)   -   -   - -  -  

Nagy et al. (2015) - -      - -     

Caicedo et al. (2015) -  -   -   - -  -  

Pandharipande and Caicedo (2015)   -   -   - -  -  

Caicedo and Pandharipande (2016)   -   -   - -  -  

Nagy et al. (2016) - -      - -    - 

Labeodan et al. (2015, 2016) - - (Laboratory)   -   - -   - 

Caicedo et al. (2017) - -  (Laboratory)   -   - -  -  

Lim et al. (2017) - -    -   - -  - - 

Zhu et al. (2017) -  -   -  -  -  -  

Delgoshaei et al. (2017) - -    -  - -   - - 

Gentile and Dubois (2017) -  -  -   - -   -  

Dikel et al. (2017) - -    -  -  -    
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Table 2-10 Comparison of research papers applying lighting control strategies with the focus on control 

strategy evaluation and energy savings (37 papers) 

Reference 
 Control Strategy Evaluation   

 Occupant Feedback   

Energy Savings (%) 
 

 Method of Collecting 

Feedback 
Statistics 

 

Garg and Bansal (2000)  - -  5 

Jennings et al. (2000)  - -  20-26 

Escuyer and Fontoynont (2001)  Survey-Interview   - 

Maniccia et al. (2001)  -  
 17-60 (irregular occupied spaces) 

28-38 (private offices) 

Von Neida et al. (2001)  -  
 17-60 (irregular occupied spaces) 

28-38 (private offices) 

Chung and Burnett (2001)  Observation - 
 26-39 (lights on for 14 hours)  

6-23 (manual control) 

Jennings et al. (2002)  - -  10-20 

Galasiu et al. (2007)  - -  up to 69 

Wen and Agogino (2011)  - -  up to 68 

Harle and Hopper (2008)  - -  50 

Mahdavi et al. (2008)  -   66-71 

Galasiu and Newsham (2009)  Survey -  up to 32 

Delaney et al. (2009)  - -  50-70 

Tiller et al. (2009)  - -  8-33 

Rubinstein and Enscoe (2010)  Survey   40 

Pandharipande and Caicedo (2011)  - -  - 

Wen and Agogino (2011)  - -  60 

Manzoor et al. (2012)  - -  - 

Oldewurtel et al. (2013)  - -  up to 34 

Fernandes et al. (2014)  - -  28-33 

Aghemo et al. (2014)  Questionnaire   17-32 

Van de Meugheuvel et al. (2014)  - -  - 

Peruffo et al. (2015)  - -  - 

Rossi et al. (2015)  -   20-45 

Nagy et al. (2015)  -   23-38 

Caicedo et al. (2015)  - -  - 

Pandharipande and Caicedo (2015)  - -  10-40 

Caicedo and Pandharipande (2016)  - -  23-54 

Nagy et al. (2016)  Questionnaire   13 

Labeodan et al. (2015, 2016)  - -  - 

Caicedo et al. (2017)  - -  - 

Lim et al. (2017)  Survey    78 

Zhu et al. (2017)  - -  62 

Delgoshaei et al. (2017)  -   23 

Gentile and Dubois (2017)  -   30-55 

Dikel et al. (2017)  - -  79 

2.5.1 Building Management Evolution 

A BMS is defined as a control system consisting of software, hardware and communication 

protocols to monitor and control a vast range of building systems (Papantoniou et al., 2015). 

Traditionally, building systems are operated separately. Each system is monitored and controlled 

regardless of the conditions of other building systems, and the different types of data collected 
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from different sources are not shared. However, the increase in the number of systems and 

technological advances have led to the development of integrated BMSs for automated building 

management, where different building systems are connected to one another via a centralized 

management system (Doukas et al., 2007). This means that the BMS allows automating the 

building systems adjustments (Somayajulu, 2014). In spite of the power of BMSs in automatically 

controlling building systems, there are two major problems when using them. Firstly, these 

systems require human input to function, such as selecting the right time to turn on the lights. 

Secondly, the BMSs are very complex in terms of operation. Therefore, considering the vast range 

of parameters affecting the energy performance of buildings, achieving an optimal operation (i.e. 

minimum energy cost and maximum comfort levels of the occupants) using BMS is difficult. To 

address these needs, more energy-efficient systems and new technologies are required in buildings 

to identify the sources of energy waste and occupant discomfort and react accordingly to 

individual, organizational and environmental requirements. One promising solution that can 

achieve these goals is the integration of IoT with BMS, which enables smart or intelligent 

buildings (Wong et al., 2005; Roselli et al., 2015). The main capability of the IoT paradigm is 

integrating sensing, communication, computation, and control (Patel et al., 2016). In this paradigm, 

each system has its own computing component, which can communicate and interact with other 

systems through either cloud computing or edge computing (Lilis et al., 2017). Computing at the 

edge of an IoT architecture is one of the most recent types of sensor data processing. Edge 

processing can help overcome latency and other issues that come from using centralized cloud 

computing (Zhao et al., 2018). Hence, the IoT-equipped systems can host sensors and actuators 

and can be controlled based on distributed decision-making. For instance, a smart building 

equipped with IoT can detect an increase in the occupancy rate of space, and accordingly adjust 

the building systems. These types of buildings are also called context-aware buildings that could 

decide when to make the necessary adjustment to different building systems by considering all 

parameters affecting the performance of the building. In addition, the growing integration of 

Artificial Intelligence (AI) predictive analytics with smart BMSs makes building systems self-

learning and intelligent in terms of adapting to changes within the building. Integrating IoT with 

AI and cognitive learning would result in CBM, which is autonomously aware of the energy 

performance of the building and its occupants’ comfort level. This type of BMSs learns from 

building systems’ operation patterns and the occupants’ behaviors to optimize energy performance 
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and improves the occupants’ satisfaction. Therefore, cognitive buildings have three main 

capabilities: (1) having information regarding the building performance and its components’ 

conditions (e.g., occupants’ comfort levels) through the application of advanced data analytics to 

near real-time data gathered by IoT sensors; (2) learning building operational patterns along with 

the occupants’ requirements and preferences and recognizing any unexpected changes; (3) 

deploying changes to building systems’ settings considering occupants comfort levels. New levels 

of productivity, increasing environmental efficiency, enabling new business models and improving 

occupant well-being are some of the advantages of shifting to CBM (Somayajulu, 2014; IBM, 

2016). 

Another main gap in the application of the current BMSs is the lack of proper communication and 

data exchange between different systems. For instance, the gathered data from occupancy 

monitoring technologies, which can be used for energy management, are not shared with other 

building systems, such as security and emergency management systems nor are they saved for 

further analysis. Through the application of IoT, the collected data from different resources can be 

shared and used for various purposes. The Crystal building in Singapore (The Crystal, 2016), the 

Edge building in Amsterdam (Bloomberg, 2015), the Capital tower in Singapore (CapotaLand, 

2017), the Al Bahar towers in Abu Dhabi (Al Bustani, 2014), and the Well Living Lab in U.S. 

(IBM, 2017) are examples of buildings using the IoT in different BMSs. 

2.5.2 Proposed Roadmap 

Based on the above discussion, a roadmap towards CBM (IBM, 2017) is proposed in this section. 

The proposed roadmap shows the evolution paths towards the CBM vision by integrating different 

research areas with advances in Information and Communication Technology (ICT). In this 

roadmap, three main steps are required for the realization of this vision: (1) Technologies: Adopt, 

deploy and integrate emerging technologies, such as IoT-based sensor networks; (2) Methods and 

Analytics: Extract the required information and patterns from the collected data using different 

techniques to add higher level of intelligence to BMSs; and (3) Goals: Define the gaps in the BMSs 

and the goals to fill these gaps for achieving CBM.  

http://www.breeam.com/index.jsp?id=804
http://www.breeam.com/index.jsp?id=804
http://www.cct.com.sg/our-properties/singapore/capital-tower/
http://www.ahr-global.com/Al-Bahr-Towers
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The proposed roadmap comprises four branches showing the goals of CBM including near real-

time sensor information, ontological Occupant Information Modeling (OIM), dynamic occupancy 

prediction, and adaptive operation systems. The full realization of CBM requires achieving all 

these goals as shown in Figure 2-3. The overall view of the paths toward CBM and the areas that 

require further development are illustrated in this figure. It is important to mention that the 

proposed roadmap fits with the previous sections. Section 2 provided a review pertinent to different 

occupancy monitoring and sensing techniques. Research review of occupancy modeling and 

control of operating systems are covered in Sections 3 and 4, respectively. Each of the roadmap 

branches is explained in the following paragraphs.  

 Near Real-time Sensor Information 

As discussed in Section 2, different sensing technologies are utilized to monitor environmental 

and occupancy parameters affecting the energy performance of buildings. The IoT network can 

provide seamless sensing and control by: (1) continuously collecting the necessary data in near 

real-time, (2) processing and analyzing the sensor data while benefiting from the information in 

the OIM for occupancy prediction. The results of this analysis provide the input for the adaptive 

operation systems, and (3) autonomously communicating the results to actuators for controlling 

different building systems through IoT-based BMSs. The near real-time sensor information will 

result in improving the efficiency and cost-effectiveness of the building (Santucci, 2010). For 

instance, the energy consumption of a building can be optimized through the application of near 

real-time local control strategies.  

 Ontological OIM 

As discussed in Section 3, different models for predicting occupancy and occupant behavior in 

office buildings are developed to quantify the impact of occupant-related parameters on building 

energy consumption. However, the lack of standardization and consistency in these models makes 

it difficult to compare them with each other. To address this problem, IEA EBC Annex 66 

Definition and Simulation of Occupant Behavior in Buildings was created to investigate the 

shortcomings of occupancy models and find the inconsistencies in them (IEA EBC Annex 66, 

2013-2017). For instance, Hong et al. (2015a, 2015b) focused on energy-related building occupant 
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behavior and suggested an ontology called Drivers-Needs-Actions-Systems (DNAS) framework to 

standardize the energy-related occupant behavior modeling. The proposed ontology is based on 

need-action-event cognitive theoretical frameworks that are presented over the past 40 years to 

represent the interactions of occupants with building systems. The occupancy models try to capture 

the stochastic nature of occupant behaviors by providing a connection between the occupant 

“inside world” inputs (drivers and physical, physiological or psychological needs) and the 

environmental “outside world” outputs (actions and events). To represent the proposed DNAS 

framework in an interoperable language, an Extensible Markup Language (XML) schema named 

occupant behavior XML (obXML) is used to capture the data syntax and structure and present 

them in a standardized way. Using this schema provides an interface to integrate the DNAS 

framework with the building energy simulation tools. 

On the other hand, Building Information Modeling (BIM) is a shared digital representation of a 

building and its functional objects. BIM basically hosts a database of information embedded within 

spatial objects. BIM has an open standard called Industry Foundation Classes (IFC) (Pasini et al., 

2016). This open-BIM has a standard representation of all types of buildings components and their 

properties, and it can support the interoperability between different BMSs (buildingSMART, 

2018). 

As an extension of the abovementioned occupant ontology, and in order to accommodate and share 

the great amount of sensor data that will be collected in the CBM systems of the future, it is 

important to represent the IoT devices (i.e. sensors and actuators) and the collected sensor data in 

BIM. The OIM should be developed based on a detailed study of occupancy ontology (i.e., 

occupancy features and the relationships between them). Eventually, the new entities and 

relationships of the OIM can be represented in IFC as part of the open-BIM (Hong et al., 2015b; 

Energy Information Administration (EIA), 2010). This fusing of occupant-related information into 

open BIM will contribute to the CBM by facilitating the interoperability of different BMSs. 

 Dynamic Occupancy Prediction 

As explained in Section 3, occupancy prediction models are developed using the data collected by 

occupancy sensors during the occupancy monitoring period. The most advanced occupancy 
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prediction methods use ANN techniques to capture the hidden patterns in the collected data using 

iterations. These techniques are assumption-independent, which makes their predictive power very 

strong and reliable (Srivastava, 2015; Lejlic, 2017). Deep Learning (DL) (Bengio, 2009) is a new 

type of ANN that can structure algorithms in layers and learn on its own without the need for the 

manual steps of extracting relevant features of the input data (Amato et al., 2017). Instead, the 

input data are directly fed into the DL model, which extracts the most discriminative features and 

combinations of features (Amato et al., 2017; Pingel, 2017). DL techniques use the back-

propagation algorithm to discover intricate structures in large data sets. They determine how the 

internal parameters of a model should change to compute the representation in each layer from the 

representation in the previous layer and perform predictions at the near-human level of accuracy 

(Amato et al., 2017; LeCun et al., 2015). Therefore, these new techniques can be employed to 

develop the next generation of occupancy models, which can predict the behavior of occupants 

with a high level of accuracy. The resulting predictive behavior modeling along with the 

information from sensors and the OIM eventually result in dynamic occupancy prediction as one 

of the CBM goals.  

 Adaptive Operation Systems 

The main advantage of integrating IoT, BIM, and OIM in BMS is the application of adaptive 

operation systems. For example, local control strategies can contribute to energy conservation by 

combining the spatiotemporal variations of space usage with occupant information. The 

integration of the research related to the above three branches (i.e., sensor information, OIM for 

occupancy prediction) eventually leads to consistent and continuous assessment of building 

performance by providing real-time information pertinent to the conditions of the building and its 

occupancy (Pasini et al., 2016). In this case, IoT-based self-tuned systems collect the information 

from the sensors and use context-aware analytics to achieve distributed decision making, which 

sends proper control signals to building systems to locally perform the control actions (Ersue et 

al., 2015). In this way, the building learns from the collected data and occupant information 

including comfort preferences and fine-tune its systems for optimal efficiency. 
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Figure 2-3 Roadmap for Cognitive Building Management 

2.6 Summary and Conclusions 

This chapter provided a comprehensive critical review that covers all the dimensions explained in 

Section 1.2 with respect to office buildings’ energy management. Since the application of 

occupancy detection systems and occupancy-based control strategies differ based on the nature of 

the building (e.g., residential vs. commercial buildings), the focus of this chapter was only on 

office buildings, especially open-plan offices. The added value of the chapter relies on its 

comprehensiveness and linkage between different dimensions of the research. In addition, a 

roadmap regarding the advances in different dimensions was presented. The proposed roadmap 

provides a high-level view of the directions for future research towards CBM. By integrating all 

the components in the roadmap, a vision of CBM can be seen where buildings’ systems, their 

occupants, and all other stakeholders have intelligent support from systems encapsulating sensor 

data and control strategies. The benefits of a CBM are: (1) the integration of the IoT with BIM and 

BEMS to change buildings from adaptive and predictive to cognitive and energy-efficient entities; 

(2) real-time monitoring of the energy consumption and occupants’ behavior to reduce energy 

consumption; and (3) the integration of sensor networks and cloud-based technologies in the built 

environment and their future applications, such as safety, emergency, and security applications. 
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CHAPTER 3 RESEARCH FRAMEWORK 

3.1    Introduction 

As discussed in Section 1.2, the application of different intelligent local control strategies on 

building energy-consuming systems will result in reducing the building’s energy consumption and 

improving occupancy comfort. In order to have effective control strategies, the most important 

factors affecting the operation of building systems should be investigated. Considering the fact 

that occupants spend over 80% of their time within indoor environments makes occupancy a 

paramount parameter in the evaluation of building energy consumption (Zhu et al., 2005). 

Moreover, according to (Yu et al., 2011), among the factors influencing the total building energy 

consumption, building occupants’ presence and preferences could have high impacts on the energy 

usage of a building. Focusing on office buildings, most of the energy is consumed during working 

hours (Masoso and Grobler, 2010). Lights are often set to produce more light than necessary and 

HVAC systems are set based on the peak occupancy regardless of actual space utilization pattern. 

This makes the occupants-related parameters driving factors causing large discrepancies in the 

building energy usage even between similar buildings with the same function and located at similar 

locations. Therefore, these factors should be considered as accurate as possible when dealing with 

the building operation and energy models. As a result, the research in this area is two-folded. 

Firstly, due to the vital impact of occupancy data on building operation, accurate occupancy 

prediction models should be developed. A good occupancy prediction model requires enough 

amount of input data pertinent to the occupants’ presence and preferences, which show the space 

utilization patterns and desired settings of the building systems, respectively. Secondly, control 

strategies should be generated based on the occupants’ presence and preferences.  

In addition, generally, there is an inverse relationship between the energy consumption of 

operational systems and the comfort level of occupants using these systems. Occupants’ 

preferences regarding the energy-consuming systems affect their energy consumption. On the 

other hand, changing the settings of these systems has an impact on how occupants feel about their 

surrounding conditions. As a result, finding a balance between these two important concepts is 

crucial to improve the building operation. Optimal operation of building energy-consuming 
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systems is a complex procedure for decision-makers, especially in terms of minimizing the energy 

cost and the occupants’ discomfort. Proper control strategies should be selected to optimally 

operate energy-consuming systems while minimizing their energy usage and the occupants’ 

discomfort considering different constraints. Simulation techniques can be used to investigate the 

effect of different control strategies on building energy consumption and the occupants’ 

satisfaction. This is done by performing sensitivity analysis on the settings of the energy-

consuming systems to find how changes in the settings of these systems affect the performance of 

the simulation model. However, simulation alone cannot explore the whole search space of a 

complex energy efficiency problem; therefore, optimization methods are required to fully 

investigate all the possible different combinations of settings.  

The application of the near real-time local control strategies improves the building performance 

by providing varying control actions depending on the dynamic occupancy information on the 

performance of the buildings’ operation systems. To this end, the occupants’ detailed information 

is collected using a new monitoring technology (i.e., Bluetooth RTLS). After developing the 

personal profile for each occupant using advanced data analysis, a BEMS applies the near real-

time local control of HVAC and lighting systems. The BEMS needs to solve an optimization 

problem with the input of the occupancy model (i.e., occupants’ profiles and preferences) and 

energy efficiency requirements in building codes and standards (e.g., the HVAC system setback 

temperature, minimum lighting level, etc.). The results of the optimization are the settings of the 

HVAC and lighting systems that will provide minimum energy consumption and maximum 

occupants’ satisfaction. The integration of the simulation model and the optimization algorithm 

allows exploiting the best features of these tools simultaneously.  

The overall proposed framework of this study is discussed in this chapter, which includes 

introducing the two main modules comprising the proposed framework. 

3.2 Research Methodology 

3.2.1 Overview of the Research Framework 

In order to achieve the objectives of minimizing the building energy consumption as well as the 

occupants’ discomfort hours, a detailed building energy simulation model should be developed 
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and encapsulated within an optimization algorithm. Since the operation of building systems are 

highly dependent on the presence of occupants, the integrated model should select the most 

optimized settings for building systems based on the dynamic space occupancy information. 

Having reliable insight regarding the occupancy information is especially crucial when applying 

local control strategies in shared spaces. When applying local control of building systems, the 

modeled space should be divided into multiple zones to assign relevant dynamic occupancy 

information to each zone. The zoning is applied to consider the effect of (1) different types of 

activities performed in each zone; (2) different number of the HVAC terminal units as will be 

discussed in the following section; (3) different facade orientation for perimeter zones. In large 

open-plan offices occupied with multi occupants, space should be divided into zones for the 

adoption of the local control strategies (Salimi et al., 2017). The concept of the proposed local 

control strategy is demonstrated in Figure 3-1. The figure shows a multi-occupied open-plan office, 

which is equipped with RTLS, which tracks occupants and captures their location, and activities 

at the zone level and at a certain frequency over time. To control the HVAC and lighting systems 

at a more detailed level, the office can be divided into different zones according to the number of 

HVAC terminal units or the number of lights. Knowing the location of a specific occupant, the 

corresponding HVAC terminal unit and corresponding light are adjusted using local control 

strategies. 

  

 

Figure 3-1 Local control strategy with occupancy monitoring (Liu et al., 2016) 

  

Sensor Readers 

Tag or Smart Phone 



 

69 

In this study, the proposed methodology comprises two main modules: (1) simulation-based multi-

objective optimization module and (2) occupancy module as illustrated in Figure 3-2. The 

processes required for each module are shown in this figure. Firstly, information regarding space 

occupancy is obtained through the occupancy module. To do so, real occupancy data should be 

collected over a reasonable period using RTLSs within the occupancy module. The collected data 

are then processed and the derived information is imported to the simulation model as an indication 

of the real occupancy space utilization patterns. This information helps the model to better 

differentiate occupants in the monitored shared space.  

The next module, which is simulation-based multi-objective optimization, starts with developing 

a detailed simulation model to evaluate the energy performance of the building using the building 

and its energy-consuming systems’ characteristics. Feeding the energy simulation model with the 

occupancy information, a simulation-based optimization problem is then solved to determine the 

values of the decision variables, which are the settings of the building energy-consuming systems. 

These values are calculated based on the problem objective functions. The output of this module 

is a file containing information pertinent to the local control of the building systems. 

3.2.2 Occupancy Module  

There are many factors determining the accuracy of the occupancy model including the occupants’ 

identities, the duration of the occupants’ presence, their locations in different zones of a building, 

and their preferences. New RTLSs can provide the location and duration of presence while the 

preference data can be collected by a simple survey. The occupancy module is used to determine 

the occupants-specific dynamic profiles based on their presence data as shown in Figure 3-2. The 

main benefits of having dynamic occupancy profiles, which reveals the occupant’s information 

regarding his/her location and space utilization pattern are: (1) unlike models that rely on averaging 

the various occupants’ behaviors or schedules, the dynamic occupancy profiles can capture the 

diversity of the different occupants’ behaviors, which is very important factor in open-plan offices; 

(2) real-time monitoring and the resulting decision making are the closest ways to emulate the real 

behavior of occupants and their interaction with building’s energy-consuming systems. The 

dynamic occupancy profiles can distinguish between different occupants’ schedules and habits. 

These profiles can be used to effectively apply occupants’ personalized preferences. More details 
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regarding the development of the occupancy module are presented in Chapter 4. Moreover, the 

performance of the proposed occupancy model is investigated in Chapter 5 using different 

sensitivity analyses. 
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Figure 3-2 Proposed framework main modules 

3.2.3 Simulation-based Multi-objective Optimization Module 

Due to different parameters affecting buildings’ energy consumption as discussed in Section 1.1, 

the optimal operation of buildings’ energy-consuming systems is a complex procedure for 

decision-makers especially in terms of minimizing the energy cost and the occupants’ discomfort. 

They have to find proper control strategies to optimally operate energy-consuming systems while 

minimizing their energy usage and the occupants’ discomfort considering different constraints. 

Generally, there is an inverse relationship between the energy consumption of operational systems 

and the comfort level of occupants using these systems. Occupants’ preferences regarding energy 

consuming systems affect their energy consumption. On the other hand, changing the settings of 

these systems has an impact on how occupants feel about their surrounding conditions. As a result, 
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finding a balance between these two important concepts is crucial to improving the building 

operation. Simulation techniques can be used to investigate the effect of different control strategies 

on the building’s energy consumption and the occupants’ satisfaction. This is done by performing 

sensitivity analysis on the settings of the energy-consuming systems to find how changes in the 

settings of these systems affect the performance of the simulation model. However, simulation 

alone cannot explore the whole search space of a complex energy efficiency problem; therefore, 

optimization methods are required to fully investigate all the possible different combinations of 

settings. To this aim, Chapter 6 provides an in-depth discussion of the integration process and 

elaborates on the algorithms for the application of occupancy-centered local control strategies. 

3.3 Summary  

Addressing the current research gaps regarding the efficient and intelligent energy management of 

buildings, an overview of the proposed framework has been discussed in this chapter. The 

methodology, which consists of several modules and phases, covers the development of a new 

adaptive probabilistic occupancy model. This is done using prediction techniques. Moreover, the 

dynamic occupancy profiles, derived from the RTLS data, are fed to the simulation-based 

optimization model to assess the effect of different intelligent and occupancy-centered local 

control strategies on the building’s energy-consuming systems and the occupants’ satisfaction. In 

the upcoming chapters, each module of the proposed method is explained in detail and validated 

using case studies. 
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CHAPTER 4 PROBABILISTIC OCCUPANCY PREDICTION MODEL 

4.1 Introduction 

As discussed in Section 1.1, among the parameters affecting the energy consumption in buildings 

the ones that vary with time, such as the occupancy, play an important role in accurately evaluating 

the energy performance of buildings. However, these parameters are difficult to predict due to the 

uncertainties associated with them.  

Occupancy models, which are derived based on space utilization patterns and occupant behavior, 

are key factors to accurately estimate the energy consumption of buildings. According to (Feng et 

al., 2015; Yan et al., 2015), there are different resolution levels for occupancy models, which are 

highly context-dependent. These levels should be determined according to the required granularity 

of occupancy models used for different purposes. For instance, a finer level of granularity is needed 

to apply lighting control strategies. Given that HVAC systems need some time to adjust the indoor 

temperature to a specified target set-point, less accuracy in occupancy detection may not lead to a 

significant thermal discomfort (Shen et al., 2017). The high-resolution occupancy models provide 

the following information: (1) the location of occupants, (2) their identities, (3) the number of 

occupants in each zone of the building, and (4) their activities at each time-step. Having this 

information helps to determine the occupants’ interactions with building systems (Hong et al., 

2015a). This will eventually lead to the application of occupancy-centered local control strategies 

on the systems. Furthermore, occupancy-related information is useful for different energy/comfort 

management purposes as well as other areas, such as safety/security, space management, and 

emergency responses. 

Based on the above discussion, occupancy modeling is a complicated procedure and many 

occupant behavior analytics (data processing) steps are required to polish the input data and create 

a reliable occupancy model. Monitoring and data collection are important steps to develop a 

detailed occupancy model. A good occupancy model requires enough input data pertinent to the 

occupants’ space utilization patterns. This data is gathered for a reasonable period through 

monitoring techniques, such as different RTLSs. However, most of the occupancy detection 

systems cannot provide the number of occupants and the specific location of each occupant (i.e., 
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the x and y coordinates of the occupant) when they are used for open-plan offices. Most of the 

research works that consider shared multi-occupied offices did not distinguish between different 

individuals. Therefore, their practicality is reduced for open-plan offices, which have multiple 

thermal zones (Li et al., 2012). In addition, they lack detailed investigation of the effect of the 

individual preferences of occupants sharing the same area on the energy consumption of the 

building. Therefore, there is a need to use proper sensing and occupancy modeling techniques to 

distinguish between different occupants in multi-occupied offices and apply their preferences.  

This chapter aims to develop a new adaptive probabilistic occupancy prediction model for open-

plan offices based on occupancy data. In this study, the occupancy modeling (i.e., occupants’ 

profiles) has been further enhanced using an inhomogeneous Markov chain prediction model, 

which distinguishes the temporal behavior of different occupants within an open-plan office based 

on occupancy space utilization patterns data. To this end, the occupants’ detailed data (who, where, 

when) is collected using a relatively new monitoring technology (i.e., Bluetooth RTLS) that 

responds to occupancy changes in open-plan office buildings with acceptable accuracy. After 

developing the personal profile for each occupant with varying time-steps using advanced data 

analytics, a new adaptive probabilistic occupancy prediction model is developed to be used for 

occupancy prediction of open-plan offices. The proposed model is verified using a case study. 

Finally, comparing the building’s real occupancy and produced results by the occupancy prediction 

model provides the validation of the applicability of the proposed model. 

4.2 Research Methodology for Developing Occupancy Model 

There are many factors determining the accuracy of the occupancy model including the occupants’ 

identities, the duration of the occupants’ presence, their locations in different zones of a building, 

and their preferences. New RTLSs can provide the identity, location, and duration of presence 

while the preference data can be collected by a survey. The zoning concept plays an important role 

in capturing the detailed occupancy information in real open-plan offices and improving the 

accuracy of the occupancy prediction model. Open-plan offices should be divided into multiple 

zones to assign different probabilistic occupancy information to each zone. The zoning is applied 

to consider the effect of (1) different types of activities performed in each zone; (2) different 

number of the HVAC terminal units or the number of luminaires; (3) different facade orientation 
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for perimeter zones, to name a few. The occupancy prediction model is used to determine the 

occupants-specific probabilistic profiles based on their presence data. The main benefits of this 

dynamic and probabilistic occupancy prediction model are: (1) Probabilistic feature benefit: unlike 

models that rely on averaging the various occupants’ schedules, the probabilistic occupancy 

prediction model can capture the diversity of the different occupants’ presence patterns using 

stochastic methods, which is very important factor in open-plan offices; (2) Dynamic update 

benefit: real-time monitoring and the resulting decision making are the closest way to emulate the 

real patterns of occupants’ presence and their interaction with building systems. The probabilistic 

occupancy prediction model can distinguish between different occupants’ schedules and habits. 

To consider the variations in the occupants’ profiles due to their temporal behavior, each day is 

divided into different time slots. There are typical events of importance in office buildings that 

should be captured while defining these time slots, such as the first arrival to the office. These time 

slots are determined based on the patterns seen in the collected data as will be explained in Section 

4.4.3. The events of importance indicate the typical patterns of the occupants’ activities in open-

plan offices. These activities are referred to as work states in this study as shown in Table 4-1. The 

duration of each work state is determined using the monitoring data. The first arrival to the office 

is defined as the first reading of the occupant’s presence in the office after his/her long absence 

during the night. The last departure from the office is determined as the point when there is no 

recording of the occupants’ presence for a duration greater than four hours after that point. Lunch 

break is defined as a break happening around noon with a duration greater than half an hour. Other 

breaks during the day with duration shorter than half an hour are considered as short breaks. 

Meetings, as one example of long breaks, are events that are happening based on a predefined 

schedule, such as weekly, bi-weekly, etc.  

Table 4-1 Typical Occupancy Work States in Office Buildings 

Work 

State 

Description Label (in Prediction Model) 

1 Working in Occupant’s Station (Occupant’s Zone) Soc 

2 Working in Other Occupants’ Station (Other Zones) Sot 

3 Lunch Break (lb) Slb 

4 Short Break (sb) Ssb 

5 Long Break/Meeting (lm) Slm 
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Figure 4-1 shows the proposed framework of developing a new adaptive probabilistic occupancy 

prediction model. This framework comprises three main steps including data collection, data 

processing, and occupancy prediction model. Data collection is discussed in the following section. 

During the occupant behavior analytics (data processing), the analysis is required to find important 

occupancy features, such as the number of present occupants, periods of absence and presence, 

and other occasional variations in the occupants’ profiles. Calculation of the occupancy rate is 

explained in Section 4.2.2.1 after discussion regarding the data processing phases in Section 4.2.2. 

The development procedure of the occupancy prediction model is then explained in Section 4.3. 

Occupancy Prediction Model

Occupants-specific probabilistic profiles 

For each time step of the day:

Occupant s zoneWork state of each occupant
Number of occupants in 

each zone

Occupant Behavior Analytics (Data Processing) 

Data Collection 

Phase 3 - Prediction model 

parameters calculation
Phase 2 – Occupancy rate calculationPhase 1 – Zone calculation

Survey/smart phones 

regarding indoor 

environment condition

Part 2

Occupants  Preferences

Part 1
Occupancy sensors

Occupancy Data

Occupants  location (Where)

Time of day (When)
Occupants  identity (ID)

(Who)

Occupants  activity (What)

 

Figure 4-1 Occupancy module components 
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4.2.1 Data Collection 

Considering that the energy performance of an open-plan office is mainly influenced by its 

occupants, the office occupants’ schedules and habits determine the input to the occupancy 

prediction model. To this end, the office occupants need to be monitored. The data collection step 

includes two parts to gather all important occupancy data. As mentioned in Section 4.1, occupants 

should be monitored over a reasonable period using RTLS to get occupants’ locations, their 

identities, presence time, and the type of activities and find the spatiotemporal patterns of the 

occupant’s behavior (part 1). RTLSs are wireless systems that are used to automatically identify 

and monitor the location of objects or people in a defined space at a point in time that is or is close 

to real-time (Curran et al., 2011). RTLS comprises of different components: (1) various tags and 

badges or cell phones to send signals to the sensors (locators); (2) locators for reading tags; (3) 

platforms (Infrared, Ultrasound, Radio Frequency, and others); (4) timing cables or wireless 

bridges, for the connectivity of sensors with each other and with the host computer; (5) location 

engine, for calculating tag’s position using various techniques; and (6) end-user software 

application for recording data (Akanmu et al., 2013).  

To monitor occupants within an open-plan office using Bluetooth technology, either tags or cell 

phones can be used. These tags will send signals to the RTLS. Each tag has a unique ID number; 

thus, when a person moves in the area covered by locators, the system detects the unique ID 

number of the tag and measures the direction of a radio signal transmitted by the tag. Using Angle-

of-Arrival (AoA) signal processing method, the incidence angles of the received signals are 

calculated with respect to the known positions of the locators. Applying a triangulation method, 

the position of tags can be determined (Azzouzi et al., 2011). As illustrated in Figure 4-2, an 

accurate 3D position is determined using at least two locators. In practical applications, several 

locators should be used, depending on the size of the monitored office, to detect the tags providing 

continuous positioning and substantially improving the accuracy and reliability of the results 

(Quuppa, 2017). The main targets of the data collection procedure are the office occupants who 

are assigned to the office. Thus, visitors, who may enter the office during the day, do not interfere 

with the data collection procedure and would not affect the accuracy or performance of the 

proposed model since there is no tag associated with them. The proposed occupancy prediction 

model is developed based on the office occupants’ data and will predict the future occupancy 
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profiles of the office occupants. In addition, occupants are questioned regarding the settings of the 

building energy-consuming systems to know their preferences (part 2).  

 

Figure 4-2 3D Positioning using RTLS (Quuppa, 2017) 

4.2.2 Occupancy Behavior Analytics (Data Processing) 

The occupancy behavior analytics (data processing), which is comprised of three phases, is 

performed to find important occupancy features, such as the number of present occupants, periods 

of absence and presence, and other occasional variations in the occupants’ profiles. Figure 4-3 

depicts the pseudocode showing how the collected data is converted to the occupancy location and 

presence duration information to calculate the occupancy zone and rate, respectively. All the 

phases of the data processing procedure are also shown in Figure 4-4.  

The occupant’s zones for each time-step of the total daily presence time (PT) are determined at the 

end of Phase 1 according to the x and y coordinates of his/her tag for each time-step. Using the 

information from phase one, the number of present occupants, and eventually the occupancy rate 

of the office, as will be explained in Section 4.2.2.1, are determined at zone and room levels for 

each time-step of the total occupancy duration (TOD), each day of a week (𝑑), and for the total 

number of weeks of the data collection (𝑊) during phase 2. Phase 3 of the data processing focuses 

on the analysis required to obtain the parameters that are necessary for developing the occupant-

specific transition probability matrices, as will be explained in Section 4.3.1, for each time-step of 

each day of a week. This phase starts with changing the time-step resolution according to the 
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purpose of the occupancy model. For instance, HVAC system local control strategies require 

longer time-steps knowing that it takes time for the system to adjust the zone temperature. 

Set W = the total number of weeks of the data collection, w = week, D = the total days of a week, d = the day 

of a week, o = occupant, No = the total number of occupants in the office, 𝑡 𝑑𝑟= detection time resolution, 𝑧 = 

occupant zone, no = the number of present occupants, 𝑜𝑐𝑐𝑟 = occupancy rate  
 

For each d in D  

   For each w in W  

      For each o in No  

            𝑇𝑠𝑡𝑎𝑟𝑡
𝑜 = the first time that the occupant o is detected in the morning 

            𝑇𝑒𝑛𝑑
𝑜  = the last time that the occupant o is detected in the evening 

            𝑃𝑇𝑜 = 𝑇𝑒𝑛𝑑
𝑜  - 𝑇𝑠𝑡𝑎𝑟𝑡

𝑜  

            For 𝑡𝑖
𝑑𝑟 in 𝑃𝑇𝑜 

               if there are multiple readings for each 𝑡𝑖
𝑑𝑟: 

                    calculate the average coordinates of readings with the same 𝑡𝑖
𝑑𝑟 

               if there is a missing data: 

                    assign the coordinates of 𝑡𝑖−1
𝑑𝑟  to 𝑡𝑖

𝑑𝑟 

               determine 𝑧 based on the coordinates of o from the tracking system and the office dimensions    

            end 

      end 

   end 

   𝑇𝑠𝑡𝑎𝑟𝑡
𝑡𝑜𝑡𝑎𝑙 = the earliest arrival time to the office among all occupants 

   𝑇𝑒𝑛𝑑
𝑡𝑜𝑡𝑎𝑙 = the latest departure time from the office among all occupants 

   𝑇𝑂𝐷 = 𝑇𝑒𝑛𝑑
𝑡𝑜𝑡𝑎𝑙

 - 𝑇𝑠𝑡𝑎𝑟𝑡
𝑡𝑜𝑡𝑎𝑙  

   For 𝑡𝑖
𝑑𝑟in 𝑇𝑂𝐷   

        if o is present: 

            add 1 to 𝑛𝑜

𝑡𝑖
𝑑𝑟,𝑑𝑖

  

            calculate the 𝑜𝑐𝑐𝑟 based one 𝑛𝑜

𝑡𝑖
𝑑𝑟,𝑑𝑖

  

        else no change in the number of present occupants 

    end 

end 

Figure 4-3 Pseudocode for data processing phases: zone and occupancy rate calculations 

4.2.2.1 Occupancy Rate 

The occupancy rate for time-step 𝑡, (𝑜𝑐𝑐𝑟
𝑡,𝑑

), is the average occupancy rate for each day of a week 

based on the total number of weeks of the data collection (𝑊). After collecting data for a certain 

period, the occupancy rate (%) of all zones within an office is calculated for each time-step (e.g., 

one minute) and for each day of a week (including weekends) according to Equation (4-1): 

𝑜𝑐𝑐𝑟
𝑡,𝑑 =

∑ (
𝑛𝑜

𝑡,𝑑

𝑁𝑜
)𝑤

𝑊
𝑤=1

𝑊
× 100% 

(4-1) 
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Phase 2 – Occupancy Rate Calculation

Phase 1 – Zone Calculation
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Figure 4-4 Occupant behavior analytics (data processing) phases 
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where 𝑛𝑜
𝑡,𝑑

 is the number of present occupants at time-step 𝑡 and day 𝑑, and 𝑁𝑜 is the total number 

of occupants sharing the same open-plan office during day 𝑑. 

4.3 Markov Chain Occupancy Prediction Model 

In this research, the Markov chain technique is used for the analysis aiming to develop the 

probabilistic occupancy profiles. Since the occupants’ movement among the zones inside and 

outside open-plan offices creates the occupancy profile, random mobility between different work 

states is assumed. This assumption allows for modeling the transitions among work states as a 

Markov chain process. Therefore, the next work state of the occupant only depends on his/her 

present state and some rules about the work states.  

A Markov chain is a sequence of random variables with the Markovian property presented as 

(Serfozo, 2009): 

𝑃{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖, 𝑋𝑡−1 = 𝑖𝑡−1, 𝑋𝑡−2 = 𝑖𝑡−2, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0}

= 𝑃{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} = 𝑃𝑖𝑗(𝑡 + 1) 
(4-2) 

where 𝑋𝑡 is a random variable representing different occupants’ work states, 𝑡 is the time-step, and 

all states 𝑖0, 𝑖1, … , 𝑖𝑡−1, 𝑖, 𝑗 are nonnegative integers values ∈ 𝐼 = {0, 1, 2, … }. 𝑃𝑖𝑗(𝑡 + 1) shows the 

probability of transition from state 𝑖 to state 𝑗 at time 𝑡 + 1. 

Knowing that the future state of the occupant depends on his/her current state, the transitions of 

states are defined in Markov matrices. Since the whole day is clustered into different time slots, as 

mentioned in Section 4.2, the probability of occurrence of different states varies with the time of 

the day; and consequently, the transition probability matrices are different for each of these time 

slots as illustrated in Figure 4-5. This figure shows the transition probabilities during the lunch 

break. For instance, if an occupant is going out of the office (at time t) for the lunch break at time 

t+1, there is a higher probability to either stay at lunch break or go back to his/her zone at time 

t+2 and no probability to go to a short break. This makes the transition probabilities to be time-

dependent. This type of Markov chain process is called an inhomogeneous Markov chain (Douc 

et al., 2004).  
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In the proposed inhomogeneous Markov chain model for prediction of space occupancy in multi-

occupied offices, the states of the Markov chain are occupants’ work states as shown in Table 4-1. 

This results in having 5×5 transition probability matrices independent of the maximum number of 

occupants in open-plan offices. Compared to methods that define transition probability matrices 

based on the number of occupants in a zone, (e.g. (Ai et al., 2014; Richardson et al., 2008; Han et 

al., 2012)), or methods that consider some restrictions regarding the movement of occupants 

between zones to reduce the order of transition matrices (e.g. (Chen et al., 2015)), using the 

proposed method significantly simplifies the calculation of transition probability matrices. 

Transition probability matrices are key parameters in Markov chain models and reducing their 

order has a high impact on the overall complexity of the Markov models, especially for 

inhomogeneous Markov chain models with a large number of transition matrices. 

The output of the proposed inhomogeneous Markov chain model is the probabilistic profiles of 

each specific occupant. The work state of each occupant, his/her location and the total number of 

present occupants can be derived from these profiles at each time-step. Eventually, building 

energy-consuming systems are adjusted based on this information to reflect the variations in 

different occupants’ daily profiles (Salimi et al., 2019). 

4.3.1 Transition Probability Matrices 

In the first step of determining the transition probability matrices, the PT of each occupant for 

different days of a week along with the distribution of being in different work states during the PT 

are deduced from the results of the Phases 1 and 2 of the data processing steps. Next, the transition 

probabilities between different work states are calculated. To do so, two parameters are required: 

(1) the percentage distribution of each work state for each occupant; and (2) the transition 

occurrences between different work states for each occupant. The transition probability matrix is 

then calculated using Equations (4-3) and (4-4): 

𝑃𝑖𝑗 = 1 − 𝑠𝑖 + 𝑠𝑖 × 𝑡𝑟𝑖𝑗                 (𝑖𝑓 𝑖 = 𝑗) (4-3) 

𝑃𝑖𝑗 = 𝑠𝑖 × 𝑡𝑟𝑖𝑗                                  (𝑖𝑓 𝑖 ≠ 𝑗) (4-4) 
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Figure 4-5 Sample Transition Process from Time t to t+2 during Lunch Break 

where 𝑠𝑖 shows the probability of being in state i, which is calculated based on the percentage of 

occurrence of each work state during the monitoring period. The probability of transition 

occurrences from state i to state j is indicated by 𝑡𝑟𝑖𝑗. These formulas are inspired by the work of 

Yamaguchi et al. (2003). However, improvements are applied to their proposed formula. Firstly, 

the Markov chain is time-independent in their method. Secondly, they assumed constant numbers 

for the parameters 𝑠𝑖 and 𝑡𝑟𝑖𝑗. In this study, the Markov chain and the parameters are time-
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dependent. In addition, the collected data regarding the actual occupancy of the open-plan office 

are used to define the parameters 𝑠𝑖 and 𝑡𝑟𝑖𝑗 with some enhancement in their calculation method 

as discussed below:  

(1) For each occupant 𝑜 (𝑜 = 1,2, … , 𝑁𝑜) and each day of a week 𝑑 (𝑑 =  1,2, … , 7), the probability 

of being at work state 𝑖 (𝑖 = 1,2, … , 𝐼, where 𝐼 represents the maximum number of work states) at 

each time-step 𝑡, 𝑠𝑜,𝑖
𝑡,𝑑

, is obtained by counting the number of times of being in work state 𝑖 (𝑛𝑠𝑜,𝑖
𝑡,𝑑

) 

divided by the total number of weeks over the monitoring period as shown below:  

𝑠𝑜,𝑖
𝑡,𝑑 = 

∑ (𝑛𝑠𝑜,𝑖
𝑡,𝑑)𝑤

𝑊
𝑤=1

𝑊
 (4-5) 

This procedure results in personalized probability distribution graphs for each work state at 

different time-steps over each specific day of a week. The following condition should be 

considered for each time-step 𝑡 and each occupant 𝑜 when calculating the probabilities:  

∑𝑠𝑜,𝑖
𝑡,𝑑 = 1                                                      

𝐼

𝑖=1

 (4-6) 

(2) For each occupant 𝑜, the number of transition occurrences from state 𝑖 to state 𝑗 at each time-

step 𝑡 and for each day of a week 𝑑, 𝑛𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

, is obtained from the collected data. Then, the 

probabilities of transition occurrences are calculated over the monitoring period (𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

): 

 𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑 = 

∑ (𝑛𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑 )𝑤

𝑊
𝑤=1

𝑊
 (4-7) 

In this study, the transition probability matrix for each time-step and for each day of a week is then 

calculated for each occupant (𝑃𝑖𝑗𝑜

𝑑(𝑡)) using Equations 8 and 9: 

𝑃𝑖𝑗𝑜

𝑑(t)  = 1 − 𝑠𝑜,𝑖
𝑡,𝑑 + 𝑠𝑜,𝑖

𝑡,𝑑 × 𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑                   (𝑖𝑓 𝑖 = 𝑗) (4-8) 

𝑃𝑖𝑗𝑜

𝑑(t)  = 𝑠𝑜,𝑖
𝑡,𝑑 × 𝑡𝑟𝑜,𝑖𝑗

𝑡,𝑑                                       (𝑖𝑓 𝑖 ≠ 𝑗) (4-9) 

Considering five states of the transition probability matrix, this matrix has a dimension of 5 × 5 ×

288 × 7 using a 5-minute time-step for one day (i.e., 288) and one matrix for each day of a week 
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(i.e., 7 days). The procedure for finding the transition probability matrix is demonstrated in Figure 

4-6. 

i = j
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d
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Figure 4-6 Markov chain transition matrix flowchart 

In the next step, Probability Density Function (PDF) for each time-step 𝑡 can be deduced from 

each row of the Markov transition matrix. Further, the Cumulative Distribution Function (CDF) is 

derived from the PDF for each time-step. The CDF is a histogram of five bins corresponding to 

the five work states. Each bin shows the probability at which a value of that bin can be randomly 
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selected. Using the Inverse Function Method (IFM) gives the estimation of the work state for the 

next period (𝑡 + 1). The IFM works by inverting the CDF of the parameter of interest. It randomly 

generates a number between 0 and 1 using a uniform distribution. The random number determines 

which bin is going to be selected for the parameter of interest using the CDF. Figure 4-7 illustrates 

these steps. 

Check in which state (i) is the occupant   

Inputs: 

 Occupant (o)

 Day of the week (d)

 Time-step (t)

Start

Choose the i
th

 row of the Markov matrix 

that corresponds to occupant o at day d

Draw the PDF and CDF for the row i of the 

Markov Matrix

Use IFM to select the work state of the 

occupant at next time-step (t+1) 
 

Markov Transition Probability Matrix

Pij
d

o(t) =

 

 

(a)  (b) 

  

(d)   (c) 

Figure 4-7 Work state estimation flowchart; (b) PDF generation; (c) CDF generation; (d) Generation of 

series of work states using IFM 
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4.4 Implementation and Case Study 

Figure 4-8 shows the picture of the case study location (a research laboratory) and the monitoring 

system set up along with the office layout. There are six occupants assigned to the research 

laboratory. In this case study, the occupancy data were collected every second using Bluetooth 

Low Energy (BLE) (also known as Bluetooth 4.0 or Bluetooth Smart) for one month. The BLE-

based monitoring system used in this research (i.e., Quuppa Intelligent Locating System™) is able 

to track the latest smartphones and BLE devices with an accuracy of 20-50 cm (Liu, 2017; 

Analytics, 2015). Based on the measurements made, the size of the monitored office is 5.0 m×7.0 

m×3 m. In order to get the required data for the prediction model, it is important to know whether 

the occupant is at zone 1, 2 or 0 (which is the outside of the office) as shown in Figure 4-8. 

According to the dimensions of each zone (i.e., 5.0 m×3.5 m), the accuracy of 20-50 cm is precise 

enough for the purpose of this study.  

Quuppa system uses the AoA approach to calculate the position of different objects (e.g., people, 

equipment, etc.) as discussed in Section 4.2.1. This system offers many advantages including long 

tag battery lifetime, compatibility with standard mobile devices, and the ability to carry sensor data 

alongside the positioning data (Quuppa Intelligent Locating System™, 2016).  

As shown in Figure 4-8-(b), four locators are used in this study to accurately monitor the occupants 

and their movement. According to (Quuppa, 2017), distances of 6-10 meters between indoor 

locators are convenient for a good coverage. In our case, locators are placed with the distances 

between them less than 7 meters. In addition, the coverage quality estimate is checked and 

demonstrated in Figure 4-9. As shown in this figure, the red color represents bad quality and green 

color represents good quality. Thus, the coverage quality of four locators in the room is good for 

tracking. In the case of having larger offices, more sensors are required to accurately cover the 

whole space in order to collect precise occupancy data. Having enough number of locators with 

distances within the suggested range, the same accuracy of 20-50 cm is achievable. 
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(a)  

(b)  

Figure 4-8 (a) Case study location (graduate research lab); (b) Monitoring system setup and office layout 
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Figure 4-9 Quality Estimate of the Locators Coverage (L001-L004 are the four locators used in the 

monitoring process) 

4.4.1 Visualization of Recorded Data in Quuppa  

After collecting the data, the QDP (Quuppa Data Player) allows reviewing the recorded data with 

respect to the paths occupants followed, the percentage of the time that each occupant spends in 

each zone, and the heat map during the recorded time. The occupants’ paths in Figure 4-10(a) show 

all the movements of the occupants, which is the replay of the passed monitoring time. As can be 

seen in Figure 4-10(b), the occupancy-time chart indicates the length of the time that the occupants 

spend in each zone. The heat map in Figure 4-10(c) can be used to define the most occupied area 

of the space. 

In addition, the scattered plots are created to visualize the distribution of the occupants’ positions. 

For example, occupants 1 and 2 are assigned to Zone 1 and Zone 2, respectively. As Figure 4-11 

shows, most of the time, the occupants are in their zones, but they also interact with other occupants 

or appliances in other zones. The scatter plots can only provide the distribution of the occupants’ 

movements, which are related to the Who and Where questions, but the occupancy schedule cannot 

be shown. 
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(a) Occupants’ paths 

  
(b) Occupancy-time proportion for each zone (c) Heat map 

Figure 4-10 Data visualization enabled by the Quuppa system 

  
(a) Occupant 1 (b) Occupant 2 

Figure 4-11 Scattered plots of the movement distribution of the occupants 

4.4.2 Occupancy Probabilistic Profiles  

The probabilistic profile of each occupant shows the probability of the occupant’s presence at a 

certain time of the day at a specific location. This profile can be used for predicting the status of 
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the occupants and adjusting building operational systems in advance to save energy as well as to 

satisfy the occupants’ indoor environment comfort levels.  

In this study, the test was run for one month and since the collected data from the monitoring 

system could be used for different purposes with different levels of accuracy, the BLE system 

monitored occupants with high resolution (i.e., each second). Collecting the occupancy data with 

the high resolution of one second generated about 250 MB of the raw data in total. Figure 4-12 

shows the distribution of the size of the collected data over the one-month period of the data 

collection. It takes some time to polish this raw data, such as producing the missing data or 

removing duplications in the collected raw data, as explained in Section 4.2.2. 

All the data processing phases and the development of the occupancy prediction model are 

performed on a desktop computer with properties as Intel Xeon CPU X5550 @ 2.67 GHz, 6 GB 

Random Access Memory (RAM), and running Windows 7 Professional Dell computer.  

 

Figure 4-12 Size of the collected data per day 

The data processing phases are used to produce the input data to the prediction model with the 

desired time-step. The required computational time is about four hours for one month of the 

collected data. However, the high granularity of one second is not required for building energy 

management. Therefore, the occupants’ zones are calculated every five minutes according to 
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Section 4.2.2. During a five-minute time-step, the final selected zone for that time-step will be the 

zone in which the occupant spent more minutes. In this study, the number of defined zones is equal 

to 𝑴 plus one zone for the outside of the office. For instance, three zones are considered for a 

shared office with zones 1 and 2, being within the office, and one zone for outside of the office 

(i.e., zone 0). 

After determining the occupants’ zones for each time-step of PT, the average number of occupants 

present at each zone of the room is calculated for each day of a week for a five-minute time-step 

resolution. The average occupancy rate for each day of a week (average of four series of data) is 

also calculated using Equation (4-1). Figure 4-13 illustrates the results for Mondays. The same 

results are obtained for other days of the week, which are not included here due to space limitation. 

This figure shows the number of present occupants at the office level for four Mondays in a month. 

The average occupancy number for one month is also shown in this figure. Furthermore, the 

average occupancy numbers for weekdays and weekends are illustrated in Figure 4-13. As it was 

expected, the occupancy rate of the office is much lower during weekends. However, it is important 

to know that the office is always occupied for several hours during the weekends. 

4.4.3 Validation of the Occupant Behavior Analytics Method 

The proposed data processing method is validated by comparing the obtained profiles using the 

proposed method with those obtained from the ground truth data. A check table is created to collect 

the ground truth data from April 07 to May 17, 2017, and from May 23 to June 10, 2017. The table 

includes the time of occupants’ first arrival, their lunch break, and the last departure. After logging 

the information, the PDF of the events of importance along with their CDF, such as the first arrival 

to the office, are created to determine the actual range of their occurrences (Figure 4-14 and Figure 

4-15). As shown in these figures, the majority of the first arrival event has occurred between 08:15 

to 11:30 am. Table 4-2 shows the start and end times of these events based on the ground truth 

data as well as ranges that are used for data processing at the office level. As discussed in Section 

4.2, five typical work states are considered in office buildings (Table 4-1). 
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(a) 

 

(b) 

 

(c) 

Figure 4-13 Variation in occupancy number for (a) Mondays; (b) Weekdays; and (c) Weekends 
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In order to process the raw data to reflect these work states, the ranges derived from ground truth 

data, as a basis for data processing, are broken down to smaller ranges. In addition, a window of 

±15 minutes is considered at the start and end times of these ranges to give more diversity to these 

time slots. This means that 15 minutes is deducted from the first arrival time and 15 minutes is 

added to the end time of each range (fifth and sixth columns in Table 4-2). Furthermore, the same 

time ranges showing different work states’ durations are created for each occupant to have more 

accurate time ranges that are specific to each occupant’s pattern of presence for each day of a week 

as demonstrated in Table 4-2. 

 

Figure 4-14 Probability Distributions of Events of Importance during a Day 

4.4.3.1 Comparison with the Ground Truth Data 

The comparison between the occupant behavior analytics method and the ground truth data is 

displayed in Table 4-3. There are some cases that differences between the arrival time and the 

results of the occupant behavior analytics method are found. The review of the raw data in these 

cases shows that the occupants arrived and left the room after a short stay (less than five minutes). 

This results in a delay for the processing methods to capture the first arrival of the occupants, such 

as the first arrival of occupant Ng on May 1st that is not captured correctly by the occupant behavior 

analytics method. On the other hand, the occupant behavior analytics method could catch the 

departure times. Hence, it can be concluded that the daily profiles are in accordance with the 

ground truth data.  
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Figure 4-15 Probability distributions of events of importance during a day 

Table 4-2 Examples of start and end times of events of importance at the office and at occupant level 

Level Events 
Ground Truth  Data Processing 

Start Time End Time  Start Time End Time 

Office 

First arrival  08:15 11:30   08:00 11:45 

Before lunch  11:30 13:30   11:45 13:45 

Lunch break  13:30 16:00   13:45 16:15 

After lunch  16:00 18:15   16:15 18:30 

Last departure  18:15 20:45   18:30 21:00 

Occupant 

First arrival  09:15 10:15  09:00 10:30 

Before lunch  10:15 13:30  10:30 13:45 

Lunch break  13:30 14:15  13:45 14:30 

After lunch  14:15 17:30  14:30 17:45 

Last departure  17:30 20:45  17:45 21:00 
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Table 4-3 Validation of the occupant behavior analytics method 

  Arrival  Departure 

Date Occupant 
Ground 

Truth 

Data 

Processing 

Method 

Error 

(%) 

Ground 

Truth 

Data 

Processing 

Method 

Error 

(%) 

5.01 

Ng 08:30 09:48 13 18:15 18:19 0 

A 09:30 10:04 6 18:15 18:21 1 

S 11:30 10:05 -14 18:15 18:21 1 

Ns *NP 15:53 − 18:15 18:19 0 

Al *NP *Ab 0 *NP *Ab 0 

Z *NP *Ab 0 *NP 12:39 − 

5.02 

Ng 08:30 08:38 2 19:00 18:48 -1 

A 09:30 10:05 6 *NP 13:47 − 

S 09:00 09:07 1 15:50 15:50 0 

Ns 09:30 10:04 6 17:00 16:47 -1 

Al *NP *Ab 0 *NP *Ab 0 

Z *NP *Ab 0 *NP *Ab 0 

5.03 

Ng 08:15 08:14 0 19:30 19:26 0 

A 09:30 09:38 1 23:00 22:50 -1 

S 10:45 13:57 23 19:30 19:32 0 

Ns 10:30 10:43 2 *NP 17:00 − 

Al *NP *Ab 0 *NP *Ab 0 

Z *NP 13:17 − *NP 13:29 − 

5.04 

Ng 08:30 08:22 -2 *NP 19:28 − 

A 08:45 08:22 -5 *NP 15:11 − 

S 09:45 10:14 5 17:45 17:57 1 

Ns 10:30 10:51 3 18:30 18:39 1 

Al *NP *Ab 0 *NP *Ab 0 

Z *NP *Ab 0 *NP *Ab 0 

5.05 

Ng 08:00 08:02 0 19:00 18:50 -1 

A 10:30 10:43 2 *NP 15:52 − 

S 10:45 10:47 0 17:45 17:46 0 

Ns 10:45 10:45 0 *NP 14:37 − 

Al *NP *Ab 0 *NP *Ab 0 

Z *NP 11:10 − *NP 11:45 − 

5.06 

Ng 11:15 11:20 1 16:00 15:45 -2 

A 10:45 10:53 1 *NP 12:23 − 

S *NP *Ab 0 *NP *Ab 0 

Ns *NP *Ab 0 *NP *Ab 0 

Al 11:30 11:35 1 17:30 17:30 0 

Z *NP Ab 0 *NP *Ab 0 

5.07 

Ng *NP 09:12 − *NP 17:46 − 

A *NP *Ab 0 *NP *Ab 0 

S *NP *Ab 0 *NP *Ab 0 

Ns *NP *Ab 0 *NP *Ab 0 

Al *NP 09:50 − *NP 14:42 − 

Z *NP *Ab 0 *NP *Ab 0 
*NP: Not Provided 
*Ab: Absent 
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4.4.4 Occupancy Prediction Results using the Markov Chain Model 

To estimate the occupancy profiles using the probabilistic inhomogeneous Markov chain 

occupancy prediction model, all states are labeled to show the transition probabilities from one 

state to another according to Table 4-1. For example, the transition probability from work state 1 

to 3, which is leaving the office for lunch break, is presented by 𝑃𝑜𝑐,𝑙𝑏𝑜

𝑑(t). Thus, the transition 

probability matrix of 𝑃𝑖𝑗𝑜

𝑑(t)  can be shown as follows: 

𝑃𝑖𝑗𝑜

𝑑(t)  =

                                

[
 
 
 
 
 
𝑃𝑜𝑐,𝑜𝑐 𝑃𝑜𝑐,𝑜𝑡 𝑃𝑜𝑐,𝑙𝑏 𝑃𝑜𝑐,𝑠𝑏 𝑃𝑜𝑐,𝑙𝑚

𝑃𝑜𝑡,𝑜𝑐 𝑃𝑜𝑡,𝑜𝑡 𝑃𝑜𝑡,𝑙𝑏 𝑃𝑜𝑡,𝑠𝑏 𝑃𝑜𝑡,𝑙𝑚

𝑃𝑙𝑏,𝑜𝑐

𝑃𝑠𝑏,𝑜𝑐

𝑃𝑙𝑚,𝑜𝑐

𝑃𝑙𝑏,𝑜𝑡

𝑃𝑠𝑏,𝑜𝑡

𝑃𝑙𝑚,𝑜𝑡

𝑃𝑙𝑏,𝑙𝑏

𝑃𝑠𝑏,𝑙𝑏

𝑃𝑙𝑚,𝑙𝑏

𝑃𝑙𝑏,𝑠𝑏

𝑃𝑠𝑏,𝑠𝑏

𝑃𝑙𝑚,𝑠𝑏

𝑃𝑙𝑏,𝑙𝑚

𝑃𝑠𝑏,𝑙𝑚

𝑃𝑙𝑚,𝑙𝑚]
 
 
 
 
 

    (4-10)     ) 

As discussed in Sections 4.1 and 4.2.2, different resolution levels are required for controlling 

different building systems. For instance, a higher level of resolution is needed to apply lighting 

control strategies, which improve the comfort level. However, considering the required lag time 

for HVAC systems to adjust the indoor temperature to a specified target set-point, a lower level of 

resolution may not lead to a significant thermal discomfort. As a result, two different prediction 

time-steps are defined to determine occupancy predictions for lighting and HVAC systems control.  

Five-minute prediction time-step is considered to predict the office occupancy pattern and 

accordingly adjust the lighting system. While this time-step changes to 30-minute prediction time-

steps to control the HVAC system. Having the occupants’ zones for every five-minute time 

interval, the distribution of the time being spent in the office’s zones and outside is determined for 

each day of a week (i.e., 𝑛𝑠𝑜,𝑖
𝑡,𝑑

). After calculating the number of transition occurrences (i.e., 

𝑛𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

), the transition matrices corresponding to each time-step of each day of a week would be 

calculated using the average values of 𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

 and 𝑠𝑜,𝑖
𝑡,𝑑

 for that specific day of the week throughout 

the whole month. For instance, the transition matrix of occupant 𝑜5 on Mondays at 02:40 pm is 

shown below:  
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𝑃𝑖𝑗𝑜5

𝑀𝑜𝑛(02: 40 pm) =

                                

[
 
 
 
 
0.8125 0 0.0625 0 0.125

0 0 0           0         0
0.0625

0
0.125

0
0
0

0.8125
0

0.125

0
0
0

0.125
0

0.75 ]
 
 
 
 

        (4-11) 

In this matrix, a row of zero probabilities happens when the 𝑠𝑜,𝑖
𝑡,𝑑

 is zero. In these cases, since the 

probability of being in state, i is zero at that specific time-step, it is not possible to have 

probabilities of state transitions.  

4.4.5 Validation of the Probabilistic Inhomogeneous Markov Chain Occupancy Prediction 

Model 

To validate the performance of the probabilistic inhomogeneous Markov chain occupancy 

prediction model, the actual occupancy for different days of a week are compared to those of 

resulted from the prediction model. The comparison between the occupancy profiles resulting from 

the prediction model, to be used for the purpose of lighting control (i.e., five-minute time-step 

prediction), and the real data is illustrated in Figure 4-16 for occupants 𝑜1 and 𝑜6. This figure shows 

the zone of each occupant for each five-minute time-step. Comparing the prediction results and 

the actual occupancy patterns show the high accuracy of the prediction model (92% and 84% for 

occupants 𝑜1 and 𝑜6, respectively) in capturing the variations in occupants’ zones.  

As mentioned in the previous section, two different time-steps are defined to determine occupancy 

predictions for lighting and HVAC systems’ control. In the case of using occupancy prediction to 

control the HVAC system, the initial state of occupancy is determined using the real-time collected 

data. Then, the probabilistic inhomogeneous Markov chain prediction model predicts the 

occupancy pattern for the next 30 minutes using the transition probability matrices and the IFM 

method as shown in Figure 4-7. 
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(a) Occupant 𝑜1 

 

(b) Occupant 𝑜6 
Figure 4-16 Comparison of predicted and the real occupancy profiles-lighting control purposes 

(Mondays)  

Since the 𝑃𝑖𝑗𝑜

𝑑(t) matrices are derived based on five-minute time-steps, the prediction model 

should be run six times to produce the occupancy pattern for the next 30 minutes. Then, the actual 

occupancy state is read again from the occupancy sensors to restart the prediction procedure. This 

update improves the accuracy of the prediction model by avoiding the accumulation of errors 

happening at each five-minute time-step. The prediction process is then repeated for the next 30 

minutes and this loop is continued till the end time of occupancy PT. Figure 4-17 demonstrates 

this procedure. The same method is applicable in the case of using occupancy prediction to control 

the lighting system with the difference of changing the 30-minute to five-minute time-steps. Thus, 

the prediction model is only run once in this case since the time-step of having the 𝑃𝑖𝑗𝑜

𝑑(t) matrices 

and prediction time-step are identical.  
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Figure 4-17 Occupancy prediction process and updates 

The proposed prediction model is an adaptive model that evolves and improves itself over time. 

The adaptive probabilistic occupancy model determines the HVAC and lighting systems’ settings 

at the beginning of each day based on the collected data. In this manner, the HVAC system starts 

working half an hour before the start time of occupancy to reach the desired temperature by the 

time the first occupant arrives at the office. The lighting system will be turned on at the time of 

arrival of the first occupant. Using the prediction model, the level of occupancy is estimated for 

the next time-step and the HVAC and lighting systems are accordingly adjusted. This procedure 

continues for each time-step during the day (as specified for the control purpose) until the 

estimated end time of occupancy is reached. However, there may be some cases that the real 

occupancy does not follow the predicted one. This could happen when an unexpected occupancy 

happens when the prediction model estimates a vacancy for space. For instance, one occupant can 

arrive earlier than the time she/he was expected to start working. In these cases, there would be a 

switch to the real-time operation of building systems where the sensors detect the unexpected 

occupant and turn on the light automatically. Thus, real-time occupancy detection and control give 

an indication of the wrong estimation of occupancy. In such cases, an update is sent to the adaptive 

prediction model to adjust itself by correcting the current state of the occupancy. Using newly 

collected occupancy data helps the model to capture changes in occupancy space utilization 
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patterns, especially in the case of open-plan offices with varying occupancy (e.g., common labs). 

In this type of offices, occupancy data should be collected over a shorter period, and more frequent 

updates are required to reflect changes in occupancy patterns. This would help the model to evolve 

and become more precise in predicting office occupancy. Therefore, the idea of frequently 

updating the occupancy prediction model can improve the reliability of the model for future 

predictions. However, the data collection period can be longer for offices with fixed occupancy, 

such as research labs; since there would not be many variations in the space utilization patterns. 

Using different data collection periods and frequent updates make the proposed prediction model 

more general for different types of open-plan offices.   

Having the occupancy profile prediction for each occupant results in developing the occupancy 

rate prediction for each zone. After calculating the 𝑃𝑖𝑗𝑜

𝑑(t) matrices, the number of present 

occupants in each zone can be predicted. Using Equation 1, the occupancy rate at the zone level is 

calculated and the results are used to control the lighting system. Since the prediction model 

demonstrated the same performance for different days of a week, Figure 4-18 shows the occupancy 

rates only for Mondays.  

The same comparison was made between the occupancy rates resulted from the prediction model 

to be used for the purpose of HVAC system control (i.e., 30-minute time-step prediction), and the 

real data as also illustrated in Figure 4-18. As shown in this figure, the prediction model captures 

the real behavior of occupants at the zone level. The prediction model is able to accurately estimate 

the location of occupants at most periods of data collection during the day, which shows that the 

overall performance of the prediction model is satisfactory. Table 4-4 shows the performance 

measurement of the prediction model using the coefficient of determination (known as R2) for 

different cases. The values of R2 when using the proposed prediction model for the lighting control 

are 0.8 and 0.92 for zones 1 and 2, respectively. This would result in having 0.86 on average for 

this parameter (86%) for the application of lighting system control. The same method is used to 

calculate the average value of R2 when using the proposed prediction model for the control of the 

HVAC system (68%). These values indicate the high accuracy of the prediction model in imitating 

the real occupancy patterns of the open-plan office. 
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(a) For lighting control (Zone 1) (b) For lighting control (Zone 2) 

  

(c) For HVAC control (Zone 1) (d) For HVAC control (Zone 2) 

Figure 4-18 Comparison of predicted and the actual occupancy rates (Mondays) 

Table 4-4 Performance measurement of the prediction model 

Use of occupancy prediction Level of prediction R2 

Lighting control 
Zone 1 0.8 

Zone 2 0.92 

HVAC Control 
Zone 1 0.65 

Zone 2 0.7 

4.5 Summary and Conclusions 

In this chapter, the occupancy modeling (i.e., occupants’ profiles) has been further enhanced using 

a probabilistic inhomogeneous Markov chain prediction model based on real occupancy patterns 

data. The main contributions of this research are: (1) developing a method for extracting detailed 

occupancy information with varying time-steps from collected RTLS occupancy data. This method 

can capture different resolution levels required for the application of intelligent, occupancy-

centered local control strategies of different building systems; (2) developing a new adaptive 

probabilistic occupancy prediction model based on the extracted occupancy information; and (3) 
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developing time-dependent inhomogeneous Markov chain occupancy model, which distinguishes 

the temporal behavior of different occupants within an open-plan office.  

The proposed prediction model is an adaptive model that evolves and improves itself over time. 

By frequently updating the occupancy prediction model whenever an unexpected occupancy 

happens, the model captures changes in the occupancy space utilization patterns and becomes more 

precise in predicting the office occupancy. 

Having the occupancy profile prediction for each occupant results in developing the occupancy 

rate prediction at the zone level. The comparison between the occupancy profiles resulting from 

the prediction model and the actual profiles showed that the prediction model was able to capture 

the actual behavior of occupants at occupant and zone levels. The prediction model can accurately 

estimate the location of occupants at most periods of data collection during the day. High accuracy 

(86% and 68% on average for the purpose of the lighting and HVAC systems control, respectively) 

of occupancy patterns prediction also indicates the acceptable performance of the prediction model 

in capturing the temporal behavior of different occupants working in the same open-plan office. 

Although the overall performance of the prediction model was satisfactory, it may not capture 

variations in occupancy patterns that may happen after the data collection period, especially in the 

case of open-plan offices with varying occupancy. This limitation could be solved by collecting 

occupancy data for a longer period of time and frequently updating the prediction model whenever 

a real-time occupancy detection and control happened to consider changes in the space utilization 

patterns.  

There is a privacy issue when the occupants’ identities are used to have detailed occupancy 

information. However, this issue can be resolved by anonymizing the occupants’ data through 

defining occupancy profiles per zone. In addition, having this type of data could be vital for other 

purposes, such as emergency and safety. Informing the monitored occupants about all the benefits 

coming from using the real-time monitoring system for a reasonable period could also be helpful 

to solve this issue.
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CHAPTER 5 SENSITIVITY ANALYSES OF THE OCCUPANCY 

PREDICTION MODEL 

5.1   Introduction 

An Important indicator for evaluating a building energy performance is its occupancy information 

including occupants’ presence data and their behavior. Considering that more than 80% of 

buildings’ energy consumption occurs during their operation phase makes occupancy a crucial 

element in assessing the energy usage of buildings (Liang et al., 2016). One of the accepted 

methods for estimating buildings’ energy consumption is building simulation (Ioannou and Itard, 

2015). There are different simulation tools in the market for analyzing energy performance of 

buildings, such as DOE-2 (DOE, 2016), EnergyPlus (EnergyPlus, 2015), IES-Virtual Environment 

(IES, 2019), ESP-r (ESRU, 2012), and TRNSYS (TRNSYS, 2013). Despite some minor 

differences between these tools, building parameters and occupancy information are common 

inputs among them. Building simulation tools are mature in terms of incorporating proper building 

parameters in energy analysis. However, they have some shortcomings with regard to occupancy 

data, which could cause inaccurate prediction of building energy performance (Clevenger and 

Haymaker, 2006). This makes the occupants-related parameters a driving factor causing large 

discrepancies in the building energy usage even between similar buildings with the same 

characteristics. According to (Ioannou and Itard, 2015), these differences range from 30% up to 

100% in some cases (Soebarto and Williamson, 2001; Guerra-Santin and Itard, 2012; Majcen et 

al., 2013a-b). 

The ability of simulation tools to accurately estimate buildings’ energy usage close enough to their 

actual use, hence, is dependent on the accuracy of the provided input data. This makes the 

performance of the energy simulation models sensitive to the input parameters. In terms of 

sensitivity of the simulation models to the physical parameters of buildings, many studies have 

been conducted focusing on these parameters (Li et al., 2016; Zhang et al., 2017; Delgarm et al., 

2018; Gagnon et al., 2018; Yip et al., 2019; Tian et al., 2019). Furthermore, the impact of changes 

in occupancy-related parameters on the performance of energy models has been investigated in 

(Azar and Menassa, 2012; Ioannou and Itard, 2015; Tahmasebi and Mahdavi, 2015), to name a 
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few. Studies of the sensitivity of occupancy prediction models to their input occupancy data, 

however, are missing.  

In the case of occupancy input data, occupants’ presence information (i.e., occupancy profiles) 

significantly contributes to providing reliable occupancy information. Deterministic and 

probabilistic occupancy profiles are widely used to model occupancy information. In spite of the 

simplicity of deterministic models, all days of a week have been assumed to have the same profile 

throughout the year in these models, which results in the same level of energy consumption in 

spaces with similar size and other energy-related characteristics within the building (Davis and 

Nutter, 2010). Moreover, deterministic schedules fail to consider the variations of the energy 

consumption in the cases of special events. Also, the peak load of spaces may be overestimated, 

as these schedules consider the maximum occupancy in all spaces at the same time. However, this 

situation rarely happens in buildings. Thus, more precise and detailed occupancy models (i.e., 

probabilistic occupancy prediction models) should be integrated with simulation tools to more 

realistically estimate the energy consumption of buildings. Using probabilistic prediction models 

offers a more accurate representation of building occupancy information and helps reduce the gap 

between simulation results and the actual energy consumption of buildings. Occupancy prediction 

models use real data pertinent to the occupants’ location, movement, and actions to predict the 

probability of an event (i.e., an occupant being present in a space) or an activity (e.g., window 

opening behavior) and generate the probabilistic profiles (Virote and Neves-Silva, 2012; Wei et 

al., 2018). Accordingly, the first step towards having reliable occupancy information is collecting 

the proper amount of data for a reasonable period and with an acceptable resolution level. Modern 

buildings are equipped with various types of sensors to collect the required data for their operation. 

Thus, enough amount of input data can be provided to occupancy prediction models, and 

eventually simulation tools, for predicting building energy performance (Moreno et al., 2016).  

On the other hand, the massive amount of collected raw data requires significant data processing 

to provide reliable results (Khan and Hornbæk, 2011). Therefore, finding a balance between the 

amount of collected data and the required accuracy is important. To this end, the resolution level 

of collected raw data plays a key role. Different data collection periods along with various time-

steps for recording and analyzing the occupancy data have been reported as shown in Table 5-1.  
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The resolution levels of five and 60 minutes are used more frequently to collect occupancy data. 

Moreover, 60 minutes is the most frequently used time-step to analyze the collected data (Liang et 

al., 2016). However, this time-step may not be suitable for all types of applications. In order to 

enhance the quality of the results generated by the probabilistic prediction models, it is vital to 

investigate the effect of the changes in the input parameters on the outcomes of the prediction 

models. This can be done through the application of sensitivity analysis. Although many research 

studies emphasized the importance of incorporating occupancy information in energy assessment 

of buildings through the usage of occupancy data (Azar and Menassa, 2011; Oldewurtel et al., 

2013; Duarte et al., 2015; Imanishi et al., 2015; Kim and Srebric, 2015; Sangogboye et al., 2018), 

none of them investigated the sensitivity of these models to the data collection period and the 

resolution level used for analyzing the collected data. To address this gap, the current study aims 

to answer the following questions: (1) How to select the near-optimum data collection period 

length that results in accurate occupancy prediction? (2) How to sample the training months out of 

the whole period of data collection? (3) What is the effect of different temporal resolution levels 

used to analyze the collected data on the accuracy of the occupancy prediction model? Answering 

the above questions leads to selecting the most effective data collection period and resolution level, 

which helps the prediction model to produce reliable occupancy information. The focus of this 

study is on shared office spaces with multiple zones. Having different occupants with dissimilar 

work habits and schedules highlights the need for probabilistic prediction models to estimate the 

occupants’ profiles. To differentiate between different occupants’ profiles, zoning is required to 

assign a typical zone-level occupancy profile to each zone. 

5.2 Methodology 

5.2.1 Framework for the Proposed Sensitivity Analyses 

The methodology to apply sensitivity analysis unfolds over three steps as demonstrated in Figure 

5-1.  

Step 1: Data collection and preparation. Considering that the energy performance of an office is 

mainly influenced by its occupants, the office occupants’ schedules and habits determine the input 

to the occupancy prediction model. To this end, three tasks are fulfilled aiming to collect 

occupancy data and prepare the collected data for further analysis. Real-time location systems 

(RTLSs) can be utilized to get occupants’ locations and their presence time. The occupancy data 
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should be collected over a reasonable period using a high-resolution level (e.g., each minute) for 

facilitating the sensitivity analysis. Furthermore, very high-resolution occupancy data are required 

for some specific applications, such as security and emergency situations. In order to improve the 

quality of the collected data, data cleansing is applied, which comprises filling the missing data, 

removing duplications, and detecting outliers in the collected raw data. After cleansing the data, 

data processing is performed to obtain the parameters required for developing the occupancy 

prediction model. The spatiotemporal patterns of the occupant’s behavior along with their number 

are derived from the collected data during this step. Since the very high resolution is not required 

for building energy management, the occupancy data are generated with the time intervals of one 

minute during the data processing phase. 

Table 5-1 Implementation settings of different research studies 

Reference Data collection period 
Data collection 

time-step (min) 

Analysis 

time-step 

(min) 

Balaji et al. (2013)  3 weeks 15 60 

Yang and Becerik-Gerber (2014)  6 months 3 15 

Chen and Ahn (2014)  20 days 5  20 & 30 

Dobbs and Hencey (2014b)  58 days 1 sec.  60 

D’Oca and Hong (2015)  2 years 10 60 

Wang and Ding (2015)  1 week, working time 10 10 

Liang et al. (2016)  1 year 5 60 

Wang and Shao (2017b)  30 days 35 sec. 60 

Wang et al. (2017)  7 days 1 20 

Newsham et al. (2017)  31 days 15 sec. 15 sec. 

Capozzoli et la. (2017)  4 months 15 15 

Peng et al. (2017)  7 months 1 1 

Wang et al. (2017)  10 days 5sec. 5 

Jiefan et al. (2018)  22 months 60 60 

Pang et al. (2018) 1 year 60 60 

Zou et al. (2018) 2 days 1 sec. 30 sec. 

Howard et al. (2019)  59 days 60 60 

Deng and Chen (2019)  54 days 5 5 

Piselli & Pisello (2019)  1 year 5 60 

Kim et al. (2019)  4 months 20 sec. 60 

Step 2: Occupancy prediction model. After preparing the raw data, a probabilistic occupancy 

prediction model is developed in this step. A variety of occupancy prediction models have been 

developed to generate probabilistic occupancy profiles as mentioned in Chapter 2. In this study, 

the prediction model developed in Chapter 4 is used. The output of the proposed inhomogeneous 

Markov chain model is the probabilistic profiles of each specific occupant for each day of the 

week. The work state of each occupant, his/her location (i.e., zone) and the total number of present 
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occupants can be derived from these profiles at each time-step. It is assumed that the occupants 

are assigned to the office with assigned seats. This assumption helps the prediction model to learn 

the occupants’ working habits and schedules. Moreover, the proposed model is a generic prediction 

model that is independent of the type of office (e.g., single- and multi-occupied offices).  

Step 3: Sensitivity analyses. There are two critical parameters affecting the performance of the 

occupancy prediction model including the data collection period for training the model and the 

time-step used for predicting future occupancy. In order to investigate the effects of these 

parameters on the accuracy of the prediction model, two sets of sensitivity analyses are applied as 

explained in the following sections. 

5.2.2 Sensitivity Analysis of the Data Collection Period 

A prediction model trained over a short data collection period cannot capture variations in 

occupancy profiles. Presumably, more data would result in a more reliable and accurate prediction 

model. On the other hand, collecting data over a long period requires more computation time and 

costs more to process and analyze the data. Hence, finding the optimal data collection period to 

balance between accuracy and computation effort is important when developing a prediction 

model.  

Thus, the first sensitivity analysis investigates the effect of the data collection period on the 

accuracy of the occupancy prediction model. To do so, two steps are applied including the ranking 

of the months in the training dataset and then varying the length of training data used in the 

analysis. The latter is performed by reducing the number of training months from the total number 

of months in the training dataset (𝑀 months) to one month after ranking them. 

The training months are sorted based on their rankings, which are defined according to the 

following criteria: data spread feature showing the variations in the collected data, the reliability, 

and the similarity between collected time-series. Figure 5-2  illustrates this procedure. The ranking 

is firstly done by recognizing the months (ℎ months) with the highest and lowest variations in 

terms of 𝑃𝑇 and the number of occupants. This is done to accommodate the maximum and 

minimum possibilities regarding occupancy patterns. Figure 5-3 shows examples of the monthly 

average number of occupants during months with different rankings. Moreover, months with 
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unreliable data, such as the one illustrated in Figure 5-3 that shows occupancy only for half an 

hour throughout the whole month, are given the lowest ranks (𝑙 months). 

S
te

p
 1

:

D
at

a 
C

o
ll

ec
ti

o
n
 a

n
d
 P

re
p

ar
a
ti

o
n

Data collection

Data cleansing 

Data processing 

Database

S
te

p
 2

:

O
cc

u
p
an

cy
 P

re
d
ic

ti
o
n
 M

o
d
el

Training dataset

Occupants-specific Markov transition 

probability matrices 

Number of occupants

Occupants  location

Occupants  activity

Occupants  schedules

Statistical metrics

Cross validation

Near-optimum period and specific 

months for training dataset

Occupancy Data

Analysis 1

Data collection period

Varied length

Varied months

Analysis 2

Time-step resolution

Defining work states

Clustering day into different time 

slots

Fixed length

Fixed months

Fixed length

Fixed months

Fixed length

Fixed months

Fixed length

Varied months

Fixed length

Fixed months

Statistical metrics

Near-optimum time-step resolution

Results

Ranking process

Datasets

Trainning Testing

Datasets

Trainning Testing

S
te

p
 3

:

S
en

si
ti

v
it

y
 A

n
al

y
si

s

 

Figure 5-1 Framework of investigating the sensitivity of the occupancy prediction model 
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After allocating the highest and lowest ranks to ℎ and 𝑙 months, respectively, the similarity aspect 

of the time-series is investigated to rank the remaining months. The Kolmogorov-Smirnov (KS) 

test is a widely used test to check the similarity of time-series (Massey Jr, 1951; Justel et al., 1997; 

Lee et al., 2016). KS test is a non-parametric statistical hypothesis testing method, which can 

determine whether two time-series of a random variable (𝑥) from any arbitrary distributions are 

similar or not (Lee et al., 2016; Christ et al., 2016). After normalizing the two time-series (𝑝 and 

𝑞), as shown in Equation (5-1), the CDF (𝑐𝑑𝑓𝑝′(𝑥) and 𝑐𝑑𝑓𝑞′(𝑥)) of the two normalized time-

series are derived. Then, the maximum distance between these two CDFs is calculates as the KS 

statistic (𝐷𝑠𝑡𝑎𝑡) (Massey Jr, 1951): 

𝑝𝑖
′ =

𝑝𝑖

∑ 𝑝𝑖
𝑇
𝑖=1

                  𝑞𝑖
′ =

𝑞𝑖

∑ 𝑞𝑖
𝑇
𝑖=1

 (5-1) 

𝐷𝑠𝑡𝑎𝑡 = 𝑚𝑎𝑥𝑥|𝑐𝑑𝑓𝑝′(𝑥)  − 𝑐𝑑𝑓𝑞′(𝑥) | (5-2) 

where 𝑇 is the total number of time-steps in a day. The 𝐷𝑠𝑡𝑎𝑡 shows the similarity between two 

time-series (i.e., the lower values of 𝐷𝑠𝑡𝑎𝑡 indicate more similarity).  

In the next step, a 𝑛 × 𝑛 statistic matrix containing the 𝐷𝑠𝑡𝑎𝑡 for each pair of time-series of the 

monthly average number of occupants for the remaining 𝑛 months is created. 𝑛 is determined by 

deducting ℎ and 𝑙 from the total number of months in the training dataset (𝑀 months). In order to 

find the first 𝑣 months with the highest similarity, all combinations of 𝑣 months out of 𝑛 months, 

𝑐𝑜𝑚𝑣
𝑛 = (𝑛

𝑣
), are created. Having the 𝐷𝑠𝑡𝑎𝑡 for the pairs within each combination (i.e., 𝑐𝑜𝑚2

𝑣 =

(𝑣
2
)), the months in the combination with the smallest summation of ∑ 𝐷𝑠𝑡𝑎𝑡,𝑖

𝑐𝑜𝑚2
𝑣

𝑖=1  are granted the 

next highest rank. Moreover, an average time-series (𝑎𝑣𝑒𝑣) of the number of occupants of these 𝑣 

months is calculated. The remaining months are 𝐼 = 𝑀 − (ℎ + 𝑙 + 𝑣). Afterward, the KS test is 

applied on each pair of 𝑖, ranges from 1 to 𝐼 months, and 𝑎𝑣𝑒𝑣 time-series to find the most similar 

month to 𝑎𝑣𝑒𝑣. After determining the month with the lowest dissimilarity with respect to 𝑎𝑣𝑒𝑣, 

the next rank is assigned to this month and the 𝑎𝑣𝑒𝑣 is recalculated after adding this month to the 

pool of 𝑣 months (𝑣 = 𝑣 + 1). These steps are repeated until all months are ranked.  

After ranking the training months, the second step of the first sensitivity analysis is applied to find 

out the near-optimum length of the training dataset (𝐿𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔). In this regard, the length of training 

months is varied from 𝑀 months to one month. The reduction process is done based on the rankings 
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of the training months in which the months with lowest ranks are deducted first. At each step of 

the reduction process, the prediction model is trained using the selected months and the accuracy 

of the model is calculated against the results obtained from a testing dataset with a fixed length 

(𝐿𝑡𝑒𝑠𝑡𝑖𝑛𝑔) and fixed months.  
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Figure 5-2 Training dataset ranking procedure 
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Figure 5-3 Example of monthly average occupancy patterns from months with different ranking criteria 

5.2.3 Sensitivity Analysis of the Simulation Time Step 

In the second sensitivity analysis, the variation in the time-step resolution used for predicting the 

future occupancy is explored. There are two rounds of sensitivity analyses applied for this purpose. 

In the first round, the optimum number of months of the training data, as found in Section 5.2.2, 

and a testing dataset with fixed length and a fixed number of months are used. The testing dataset 

is the same as the one used in the first sensitivity analysis. The time-step is changed reflecting 

different resolution levels and the statistical performance metrics, as explained in Section 5.2.4, 

are calculated. 

Since the 𝑃𝑖𝑗𝑜

𝑑(t) matrices are derived based on a one-minute time-step, some adjustments and 

updates should be applied in the case of using occupancy prediction for time-steps bigger than one 

minute as demonstrated in Figure 4-17. In these cases (e.g., having the time-step of 𝑛 minutes), 

the initial state of occupancy is determined using the real-time collected data and the prediction 

model is run for 𝑛 times to produce the occupancy patterns for the next 𝑛 minutes. Then, the actual 

occupancy state is read again from the occupancy sensors to restart the prediction procedure for 

the next time-step. This update improves the accuracy of the prediction model by avoiding the 

accumulation of errors happening after each 𝑛-minute time-step. The prediction process is then 

repeated for the next 𝑛 minutes and this loop is continued till the end time of the simulation. 
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The second round of simulation time-step sensitivity analysis validates the outcomes obtained 

from the first round using a cross-validation process. The ultimate result of this analysis is the 

optimum temporal resolution level that leads to a tradeoff between the level of accuracy in 

predicting occupancy and the computation effort.  

For cross-validation, the complete set of collected data is partitioned into two subsets, training and 

testing datasets using a one-month time interval. The optimum number of months for the training 

dataset (𝐿𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is determined by means of the first sensitivity analysis as explained in Section 

5.2.2. The testing dataset comprises of 𝐿𝑡𝑒𝑠𝑡𝑖𝑛𝑔 months (e.g., six months) is randomly selected 

from the remaining collected data in several iterations. The schematic procedure of the cross-

validation process is shown in Figure 5-4. In each iteration, different accuracy metrics, as 

explained in Section 5.2.4, are calculated.  

Complete Database

Training Dataset

1st iteration

Testing Dataset Testing Dataset

Prediction Model
E1

Training Dataset
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Testing Dataset

Prediction Model
E2

Training Dataset

ith iteration

Testing Dataset Testing Dataset
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...

Average of Es

Final accuracy 
indication

One month

 

Figure 5-4 Schematic procedure of the cross-validation process 

5.2.4 Statistical Metrics 

In this study, R2 (coefficient of determination) and nRMSE (normalized Root Mean Square Error) 

are used as the statistical performance metrics. R2 provides a measure of how well the collected 

data are replicated by the prediction model. The equation of this metric is:  
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𝑅2 =   1 −
∑ (𝐿𝑛 − 𝑃𝑛)2𝑁

𝑛=1

∑ (𝐿𝑛 − �̅�)2𝑁
𝑛=1

 (5-3) 

In this study, 𝐿𝑛 and 𝑃𝑛 represent the real number of present occupants and prediction values, 

respectively. �̅� is the mean of the real number of present occupants. 𝑁 is the size of the dataset, 

which changes according to the selected time-step. For instance, if real data are analyzed every 

minute, 𝑁 is equal to 1,440 for each day.  

nRMSE, also known as CVRMSE (Coefficient of Variation of the Root Mean Square Error) 

(ASHRAE, 2002), is the RMSE divided by the mean of the data and it quantifies the size of the 

error relative to the mean (Granderson and Price, 2014). The equation for this metric is: 

𝑛𝑅𝑀𝑆𝐸 =  
√∑ (𝐿𝑛 − 𝑃𝑛)2𝑁

𝑛=1

�̅�
 (5-4) 

A third accuracy indicator of the model is determined by averaging the obtained metrics in all 

iterations. Assuming 𝐸 as the performance metric, the final indication after 𝐼 iterations is calculated 

as follows: 

�̅� =  
∑ 𝐸𝑖

𝐼
𝑖=1

𝐼
 (5-5) 

5.3 Case study and Results 

5.3.1 Data Collection and Preparation 

The same case study, used in Chapter 4, is considered to demonstrate the feasibility of the proposed 

method in finding the suitable data collection period and resolution level to be used in the 

occupancy prediction model.  

The occupancy data are collected for 18 months using a very high temporal resolution level (i.e., 

each second). Collecting the occupancy data with the high resolution of one second generated 

about 3.8 GB of yearly raw data in total resulting in more than 14 million data points. Figure 5-5 

shows the distribution of the size of the collected data over one year of data collection. The 

distribution is a right-skewed distribution, which indicates that most of the collected data per day 

(104 days) has a size smaller than 4 MB. Moreover, the daily distribution of the collected data size 
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shows almost equal data size for weekdays with the highest size for Thursdays and the lowest for 

Fridays during weekdays. The results indicate that the occupants spend more time in the office on 

Thursdays (most probably due to preparation for Fridays’ meetings or the end of the week 

deadlines) and leave the office earlier on Fridays. 

 

(a) Yearly distribution 

 

(b) Daily distribution 
Figure 5-5 Distribution of the collected data size 

Temporal variations in occupancy presence data are shown by analyzing the changes in the 

occupancy 𝑃𝑇 for two-time horizons (i.e., daily and monthly) based on the one-year collected data. 

Using the start and end times of occupancy, the total 𝑃𝑇 of occupants for each day of a week and 

at each zone are derived. The raw data characteristics are shown in Table 5-2 by measuring the 
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central tendency and dispersion of daily 𝑃𝑇 at each zone. According to this table, the mean 𝑃𝑇 

increases by 20% and 15% when excluding weekends with lower presence time at Zones 1 and 2, 

respectively. Although 50% of days (excluding weekends) have 𝑃𝑇 above 406 minutes for Zone 

1, 𝑃𝑇 of zero occurs most often compared to other values. High values of the standard deviation 

show that the 𝑃𝑇 at both zones is spread out over a wide range of values. On the other hand, less 

variability is observed around the mean of the 𝑃𝑇 based on the standard errors’ values.  

Table 5-2 Descriptive statistics of collected raw data 

  Daily 𝑃𝑇 𝑎𝑡 Zone 1 (min) 

Whole year 

Daily 𝑃𝑇 𝑎𝑡 Zone 2 (min) 

Whole year 

  Including 

weekends 

Excluding 

weekends 

Including 

weekends 

Excluding 

weekends 

M
ea

su
re

 o
f 

ce
n
tr

al
 t

en
d
en

cy
 

Mean 292 367 478 561 

Median 306 406 530 586 

Mode 0 0 0 595 

M
ea

su
re

 o
f 

v
ar

ia
b
il

it
y
 Standard deviation 221 198 225 162 

Standard error 12 10 12 8 

Min 0 0 0 0 

Max 827 827 901 901 

Figure 5-6 depicts the total 𝑃𝑇 at each zone for weekdays. The beginning of the year shows shorter 

𝑃𝑇 due to the holidays. For the first half of the year (i.e., the first 27 weeks), the average 𝑃𝑇 is 

around 400 minutes for Zone 1. This number drops almost 17% to 333 minutes for the second half 

of the year. However, the average 𝑃𝑇 of the first half of the year rarely goes under 300 minutes. 

The same trend is observable for Zone 2. This indicates that office occupants tend to spend more 

time outside of the office when the outside weather gets better during the spring and summer. 

Therefore, it is important to consider seasonal variations when defining occupancy profiles. The 

same data are generated for weekends for both zones, which are not included here due to space 

limitations. As expected, the occupancy rate of the office is much lower during the weekends. 

However, it is important to know that the office is occupied for several hours during most 

weekends. 
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(a) Zone 1 

 

(b) Zone 2 
Figure 5-6 Variation in zone occupancy 𝑷𝑻 for different days of a week and the average 𝑷𝑻 

Variations in the number of present occupants at each zone are also investigated in Figure 5-7. The 

expected values of the mean of average occupancy 𝑃𝑇 (𝜇𝑃𝑇𝑎𝑣𝑒

𝑧 )  and the number of occupants at 

each zone (𝜇𝑂𝑎𝑣𝑒

𝑧 ) during a year are also calculated, which are shown by horizontal lines in Figure 

5-6 and Figure 5-7 (a) and (b). The lower number of the mean of average present occupants (i.e., 

1.11 and 1.59 in Zones 1 and 2, respectively) compared to the peak occupancy (i.e., 3) 

demonstrates that using the maximum number of occupants all the time (according to the common 

practice) results in overheating or overcooling space. Moreover, wasting energy would be the 

result of conditioning zones with no occupancy. In addition, Zone 2 shows 43% higher average 

the number of occupants compared to Zone 1. This indicates the importance of considering the 

occupancy data at zone level instead of room level. It is especially important when applying local 

control strategies to building energy-consuming systems (Liu et al., 2016). Local control strategies 

exploit the spatiotemporal variations of the zone-level occupancy patterns (including occupants’ 

locations and occupancy duration) to adjust building systems. 
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(a) Zone 1 

 

(b) Zone 2 
Figure 5-7 Variation in the number of occupants for different days of a week and the average occupancy 

The occupancy daily 𝑃𝑇 over different months of the year is illustrated in boxplots for both zones 

as demonstrated in Figure 5-8. Boxplots summarize sets of data by showing the shape of the data 

distribution, their central value, and variability. Therefore, they are one of the best ways to compare 

different data sets. The box, also known as the interquartile range (IQR) represents the middle 50% 

of data and the top and bottom whiskers extend to the highest and lowest values in a data set. One-

quarter of the data set span in the lower whisker and the highest 25% of values fall within the upper 

quartile (Massart and Smeyers-verbeke, 2005; Wickham and Stryjewski, 2011).   

It can be seen from this figure that the 𝑃𝑇 of occupants in Zone 2 on average exceeds that of Zone 

1 during all months of the year. The highest difference happens during the month of January in 

which all days at Zone 1 have lower 𝑃𝑇 than the 𝑃𝑇 of the 75% of the days at Zone 2. Almost the 

same pattern is detectable for the next three months (i.e., February, March, and April). These 
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boxplots also show that the 𝑃𝑇 is more consistent in Zone 2 and remains at upper levels while 

Zone 1 𝑃𝑇 is more variable, especially at lower levels. In Zone 2, the 𝑃𝑇 is higher than six hours 

for 75% of the days of each month except for December. The first half of the year shows the most 

symmetric data for Zone 2. Zone 2 consistent 𝑃𝑇 makes predictions more dependable than the 

highly variable 𝑃𝑇 of Zone 1. The collected data are skewed to lower values for most months of 

the year at Zone 1, which means that most days have relatively short 𝑃𝑇. This observation is 

aligned with the conclusion that occupancy in Zone 2 is much higher than that of Zone 1. 

 

Figure 5-8 Variation in occupancy 𝑷𝑻 for different months of a year 

Variations in the median of 𝑃𝑇 can also be observed in this graph. January shows the lowest 

occupancy for Zone 1 followed by December. The median of 𝑃𝑇 of Zone 1 then starts to increase 

and is almost stable during the next five months. Furthermore, distinguished drops can be detected 

during July and August. There is an increase in the 𝑃𝑇 for the following months. However, the 

median shows lower values for the second half of the year compared to the first half at both zones. 

These drops and variations could be due to the spring and summer breaks. This is an indication of 

seasonal variations in the 𝑃𝑇. December also has the lowest occupancy record for Zone 2. The 

much longer whiskers for 𝑃𝑇 of Zone 2 in August indicate that 𝑃𝑇 varies more widely during this 

month. The peak of the median occupancy is observed during June and February for Zones 1 and 

2, respectively. Some outliers are observed at Zone 2. These abnormal values can affect the overall 
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observation due to their very high or low extreme values, and hence should be discarded from the 

data series. Removing these points avoid underestimating or overestimating the 𝑃𝑇. 

Overall, the above discussion shows the importance of applying the effect of the temporal behavior 

of occupants when predicting their presence patterns. 

5.3.2 Occupancy Prediction Model 

To estimate the occupancy profiles using the probabilistic inhomogeneous Markov chain 

occupancy prediction model, all states are labeled to show the transition probabilities from one 

state to another according to Table 4-1. 

As discussed in Section 5.2.1, a one-minute prediction time-step is considered to predict the office 

occupancy patterns. Having the occupants’ zones for every minute time interval, the distribution 

of the time being spent in the office’s zones and outside is determined for each day of a week (i.e., 

𝑛𝑠𝑜,𝑖
𝑡,𝑑

). After calculating the number of transition occurrences (i.e., 𝑛𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

), the transition matrices 

corresponding to each time-step of each day of a week would be calculated using the average 

values of 𝑡𝑟𝑜,𝑖𝑗
𝑡,𝑑

 and 𝑠𝑜,𝑖
𝑡,𝑑

 for that specific day of the week throughout the whole year using Equations 

(4-8) and (4-9). For instance, the transition matrices of occupant 𝑜5 on Wednesdays at 01:04 pm 

and 02:14 pm are shown below:  

𝑃𝑖𝑗𝑜5

𝑊𝑒𝑑(01: 04 pm) =  

[
 
 
 
 
0.7934 0.0147 0.0295 0.0147 0.1475
0.0147 0.9796 0.0008 0.0004 0.0004
0.0295 0.0008 0.9600 0.0008 0.0086
0.0147 0.0004 0.0008 0.9796 0.0004
0.1475 0.0004 0.0086 0.0004 0.8350]

 
 
 
 

 

    

(5-6) 

𝑃𝑖𝑗𝑜5

𝑊𝑒𝑑(02: 14 pm) =  

[
 
 
 
 
0.7504 0 0.1193 0.0217 0.1085

0 0 0 0 0
0.1193 0 0.8233 0.0095 0.0477
0.0217 0 0.0095 0.9600 0.0086
0.1085 0 0.0477 0.0086 0.8350]

 
 
 
 

 

5.3.3 Sensitivity Analyses 

5.3.3.1 Sensitivity Analysis of the Fata Collection Period 

In the first step of the sensitivity analysis 1, out of all collected data, the first 12 months are selected 

as the training dataset and the test dataset comprises of the remaining 6 months. Time-step 
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resolution of one minute is selected for this analysis to provide the highest accuracy. To investigate 

the sensitivity of the time-dependent inhomogeneous Markov chain occupancy model to the data 

collection period, the number of training months is reduced from 12 months to one month 

according to the ranking procedure explained in Section 5.2.2. The ranking schema is shown in 

Table 5-3 for each zone. In this table, the lower numbers show the higher ranking and subsequently 

the better quality of the collected raw data. Thus, the months with lower ranks are firstly removed 

from the training dataset, such as the 12th and 4th months for Zone 2.  

Table 5-3 Rankings of the months in the training dataset 

 Ranking 1 2 3 4 5 6 7 8 9 10 11 12 

Zone 1 
Month No. 

2 12 6 7 11 5 3 9 1 10 4 8 

Zone 2 3 9 2 7 5 1 6 10 8 11 4 12 

Considering the occupancy prediction at the zone level, the results of the first sensitivity analysis 

are demonstrated in Figure 5-9 for Wednesdays. The same results are obtained for other days of 

the week, which, for brevity, are not included in this study. The performance measurement of the 

prediction model using R2 is shown in this figure. Each point shows the R2 of the prediction model 

trained by a certain number of months and evaluated using the testing dataset (with a fixed number 

of 6 months). Overall, the performance of the prediction model in estimating the occupancy rate 

is higher for Zone 2 compared to Zone 1. That is mainly due to the higher quality of collected raw 

data in Zone 2 to that of Zone 1. Occupants in Zone 2 were more dedicated to wearing their tags 

all the time and spent more time in the office compared to those in Zone 1.  

As shown in Figure 5-9, the values of R2 improves by increasing the number of months of the 

training dataset. The R2 reaches the highest value at three and four months of data collection as the 

training set in Zones 1 and 2; respectively, showing the highest accuracy in predicting the 

occupancy. Thus, three (i.e., months 2, 12, and 6) and four (i.e., months 3, 9, 2, and 7) are selected 

as the optimum numbers of months required to train the prediction model in Zones 1 and 2; 

respectively, and used for the second sensitivity analysis. Although there are more variations in 

the values of R2 for Zone 1 after three months, the performance of the prediction model in 

estimating the occupancy at both zones almost reaches a plateau after the selected optimum months 

of data collection as the training datasets.  
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Figure 5-9 Performance comparison for different lengths of the training dataset (for Wednesdays) 

5.3.3.2 Sensitivity analysis of simulation time-step 

In the second analysis, the variation in the time-step resolution is explored. In this regard, after 

finding the optimal number of training months, different time-steps are considered to evaluate the 

accuracy of the occupancy prediction model. Thus, the first round of the sensitivity analysis 2 is 

applied on the optimum three and four months of training data, as found in the previous analysis 

for Zones 1 and 2; respectively, and six months of the test data. The test dataset is the same as the 

one used in the first sensitivity analysis. The time-step is changed reflecting eight resolution levels 

and the values of R2 and nRMSE are calculated using Equations (5-4) and (5-3).  

The results are demonstrated in Figure 5-10 by solid lines. As shown in this figure, five- and 10-

minute time-steps result in an R2 value of 0.8 for both zones. After these levels, the accuracy drops 

especially for Zone 1. The nRMSE of Zone 1 is twice as that of Zone 2 for all resolution levels, 

which indicates that the discrepancy between the predicted and the real collected data are occurring 

more frequently for Zone 1. These results prove the lower quality of the collected data at Zone 1 

compared to that of Zone 2, which are in agreement with the observations of the collected raw data 

explained in Section 5.3.1 indicating the better quality of the collected data at Zone 2. It can be 

concluded that the required resolution for an acceptable accuracy level is dependent on the quality 

of the collected data. The lower quality of raw data leads to the need for smaller time-steps in order 

to have the desired performance. 
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In order to validate the obtained outcomes, a cross-validation process with 10 iterations is 

employed on the testing dataset as explained in Section 5.2.3. In this study, a set of six months 

comprising the test dataset is randomly selected among all months of the data collection except 

the months used for the training dataset at each iteration. The performance of the occupancy 

prediction model is then evaluated against the selected test dataset. The final performance 

assessment is obtained by averaging the results calculated at each iteration as shown in Equation 

(5-5). As illustrated by dashed lines in Figure 5-10, the results are aligned with those calculated in 

the first round, which shows the validity of the proposed analyses. 

 

(a) Zone 1 

 

(b) Zone 2 
Figure 5-10 Performance assessment of the prediction model for different resolution levels 
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5.4 Summary and Conclusions 

Occupancy-related parameters are recognized as influential parameters affecting either positively 

or negatively the energy operation in buildings. In order to find comprehensive probabilistic 

occupancy profiles, which capture the variations in occupancy presence and diverse activities of 

different occupants within a building, probabilistic occupancy prediction models should be 

leveraged. Improving the reliability of probabilistic prediction models depends on the accuracy of 

the input parameters used to develop these models. There are two critical parameters affecting the 

performance of occupancy prediction models including the length of the data collection period for 

training the model and the time-step used for predicting future occupancy. 

In this chapter two sensitivity analyses are performed to investigate the dependencies of the 

outcomes of an occupancy prediction model on the changes to its input parameters. Using the 

proposed method in similar cases provides the following benefits: (1) ranking months of data 

collection using the proposed ranking procedure based on the data spread feature, the reliability, 

and the similarity between collected time-series; (2) determining the near-optimum length of the 

data collection period required at each zone of a space; (3) selecting the near-optimum training 

dataset with the length found in the previous step; and (4) finding the most satisfying temporal 

resolution level for analyzing the occupancy data assuring acceptable accuracy in occupancy 

prediction.  

To this aim, the occupancy data are collected for 18 months in an open-plan office and different 

analyses are conducted to study various aspects of the occupancy data and their impact on the 

accuracy of the occupancy prediction model. The key insights drawn from the analyses are 

summarized as follows: 

1) Processing the collected raw data indicates that the occupancy presence data are spread out 

over a wide range of values at both zones. 

2) The sensitivity analysis of the data collection period results in the selection of three and 

four months of data collection as the optimum number of months required to train the 

prediction model for Zones 1 and 2, respectively. 

3) Five- and 10-minute time-steps showed the acceptable value of R2 for Zones 1 and 2, 

respectively.  
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4) Further examination of the outcomes obtained from the first round of the sensitivity 

analysis 2 is performed through the cross-validation process. This step validates the model 

performance in capturing variability in data patterns and effectively predicting occupancy 

profiles. The results are aligned with those calculated in the first round, which shows the 

validity of the proposed analyses. 

It can be concluded that the required resolution for an acceptable accuracy level is dependent on 

the quality of the collected data. The lower quality of raw data leads to the need for smaller time-

steps in order to have the desired performance. 

Overall, the above results show the importance of investigating the effect of the temporal behavior 

of occupants when predicting their presence patterns. Obvious differences in the number of 

occupants and patterns in different zones indicate the importance of considering the occupancy 

data at zone level instead of room level. This information is especially crucial when applying local 

control strategies to building energy-consuming systems.  

As future work, seasonal changes in occupancy patterns can be studied in detail by having different 

training datasets for different seasons. Other methods can be used for ranking the months in the 

training dataset, such as clustering. Furthermore, the results of the proposed method can be used 

to quantify the impact of the occupancy prediction model, tuned based on the most effective data 

collection period and resolution level, on the energy performance of buildings. Energy models 

coupled with accurate occupancy prediction model not only lead to optimizing the operation of 

buildings but also can improve the thermal satisfaction of occupants. Future work could also 

consider cost-benefit analysis to investigate the balance between the cost of using different RTLSs, 

collecting data over a long period, and the gains of using them in the real world. In addition, 

solutions to solve privacy issues when collecting detailed occupancy data should be investigated. 
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CHAPTER 6 SIMULATION-BASED MULTI-OBJECTIVE 

OPTIMIZATION 

6.1 Introduction 

While the effects of occupant-centered control strategies on the energy performance of office 

buildings have been studied by various researchers, most of the works are restricted to 

deterministic occupancy profiles. Although some diversity has been considered by using different 

deterministic schedules for workdays and weekends, all workdays are considered to have the same 

profile throughout the year (Davis and Nutter, 2010). This assumption disregards the important 

impact of the dynamic variations in occupants’ profiles. Even when these variations are considered 

through the usage of probabilistic occupancy profiles, all days of a week are treated equally by 

using fixed pre-defined profiles (Yang and Becerik-Gerber, 2014; Goyal et al., 2015; Sehar et al., 

2017). This makes these occupancy models not mature enough for representing real occupancy 

patterns. Furthermore, as mentioned before, generally there is an inverse relationship between the 

energy consumption of operational systems and the comfort level of occupants using these 

systems. Thus, the optimal operation of buildings’ energy-consuming systems is of great 

importance for minimizing the energy consumption of the building while satisfying the occupants.  

In this chapter, a new simulation-based multi-objective optimization model of the energy 

consumption in open-plan offices based on occupancy dynamic profiles and occupants’ 

preferences is developed. Using a proper sensing technique to distinguish between different 

occupants in open-plan offices and detect occupancy patterns results in differentiating the temporal 

behavior of different occupants. Based on the derived occupancy information, an occupancy 

prediction model can be developed using different stochastic methods to predict future occupancy 

information as discussed in Chapter 4. Furthermore, the results of the prediction model have to be 

periodically corrected (e.g., every 30 minutes) based on the RTLS data. However, the full 

integration of the prediction model with the simulation-based optimization model is beyond the 

scope of this chapter. Instead, for the sake of simplicity, real occupancy data is used as a proxy of 

the occupancy prediction results. As such, occupant-specific dynamic profiles are developed. 

Having the occupancy dynamic profiles along with the indoor environmental conditions, this study 
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contributes to the exploration of solutions produced by the integration of a simulation model with 

a multi-objective optimization process. This integration eventually leads to the identification and 

application of the optimal local control strategies of the building energy-consuming systems. The 

objectives of this chapter are: (1) Developing high-resolution dynamic occupancy profiles based 

on RTLS data to represent temporal variations of occupancy patterns in open-plan offices; (2) 

Integrating the energy simulation model with the optimization algorithm to optimally control the 

building energy-consuming systems and to analyze the trade-off between buildings’ energy 

consumption and occupants’ comfort; and (3) Developing local control algorithms for building 

energy-consuming systems. These objectives aim at assisting decision-makers in evaluating 

optimized occupancy-centered building operations. The novelty of the proposed method is also 

related to the consideration of full-year real occupancy profiles with a high resolution of 1-minute 

capturing the stochastic behavior of occupants in full. Thus, there are no typical occupancy 

patterns, rather each day has a unique occupancy profile, which is the result of fully exploiting 

occupancy data. This consideration coupled with detailed occupancy-centered building systems’ 

operation and control are used to optimize building performance. Moreover, unlike other studies 

(Capozzoli et al., 2017), building systems’ schedules not only work based on the start and end 

times of occupancy but also, they follow occupancy patterns throughout the day. 

6.2 Occupancy Module 

There are many types of information determining the accuracy of the dynamic occupancy profiles 

including the duration of the occupants’ presence, their locations in different zones of a building, 

and their preferences. New RTLSs can provide the location and duration of presence while the 

preference data can be collected by a survey. The collected data are then processed using occupant 

data analytics (data processing) to derive the important occupancy features, such as the number of 

present occupants, periods of absence and presence, and other occasional variations in the 

occupants’ profiles. The procedure used to develop dynamic occupancy profiles is illustrated in 

Figure 6-1. In this figure, 𝑍 shows the total number of zones in the office. Since different resolution 

levels are required for controlling different building systems, as will be explained in Section 6.3.4, 

two models with two resolution levels of i and m (𝑖 < 𝑚) are required to produce dynamic 

occupancy profiles. The first set of profiles is generated using a high-resolution level of i minute 

(e.g., one minute). For each day of a week (𝑑) and for each hour (𝑛) of the daily total occupncy 
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time (𝑇𝑂𝑇𝑑), the zone status (𝑆𝑡𝑎𝑡𝑢𝑠𝑧,𝑖) at time-step i is derived from the collected data at each 

zone (𝑧). In additon, the duration at which the zone is occupied (𝑡𝑜𝑐𝑐) is recorded and compared 

with the unoccipied duration (𝑡𝑢𝑜𝑐𝑐). In this way, the status of the zone z during each m time-step 

(𝑆𝑡𝑎𝑡𝑢𝑠𝑧,𝑚) will be determined based on compring 𝑡𝑜𝑐𝑐 and 𝑡𝑢𝑜𝑐𝑐 and selecting the bigger value. 

The zone occupancy ratio (𝑂𝑐𝑐𝑅𝑧,𝑚) is calculated by dividing the summation of number of 

occupants who occupied the zone during each i minute within the m time-step by the total number 

of occupants assigned to that zone (𝑇𝑂𝑇𝑧,𝑜𝑐𝑐). The derived occupancy profiles are used as a basis 

for the development of occupants-centric local control strategies as explained in Section 6.3.4. 

These profiles can distinguish between different occupants’ schedules and habits by capturing their 

temporal behavior. Dynamic occupancy profiles not only enable the application of schedule-based 

local control of building systems but also, they reflect the stochastic nature of occupants’ schedules 

in the simulation model. This would help to effectively analyze the energy performance of the 

building under uncertainties.  

6.3 Simulation-based Multi-objective Optimization Module 

As mentioned in Section 3.2, the optimal operation of building energy-consuming systems is 

dependent on finding a balance between their energy cost and the occupants’ satisfaction. 

Simulation techniques can be used to investigate the effect of different control strategies on 

building energy consumption and the occupants’ satisfaction. This is done by performing 

sensitivity analysis on the settings of the energy-consuming systems to find how changes in these 

settings affect the performance of the simulation model. However, simulation alone cannot explore 

the whole search space of a complex energy efficiency problem; therefore, optimization methods 

are required to investigate all the possible combinations of the settings. The developed 

optimization and simulation models are respectively explained in detail in Sections 6.3.1and 6.3.2, 

followed by a description of the integration of two models in Section 6.3.3. Local control strategies 

are also discussed in Section 6.3.4. 

 

 



 

128 

Start

z = 1

d = 1

n = 1

Zone z

z   Z

YES

End

NO d = d +1 d      

NO

YES

tocc = 0

i = 1

Read occupancy data at time-step i

Is zone z 

occupied?

Status z, i= 1

YES

i = i +1

i   mYES

counterocc   counteruocc

NO

NO

tuocc = 0

tocc = tocc+1

Status z, i= 0

tuocc = tuocc+1

OccR z, m=   (Count z, i)i  / m×TOTz, occ

Status z, m= 1

YES

Status z, m= 0

NO

n =n +1

z = z +1

n   TOTd

NO

tocc = 0

tuocc = 0

i ˂ 60

No

YES

YES

 

Figure 6-1 Flowchart for developing dynamic occupancy profiles based on RTLS data 

6.3.1 Optimization Model 

The mathematical representation of the optimization algorithm is expressed as follows: 
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𝑎𝑟𝑔 𝑚𝑖𝑛
𝑋∗ ∈ 𝑅𝑛

 𝐹(𝑋) = [𝐷𝐶(𝑋), E(𝑋)]𝑇
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜             𝑔𝑙(𝑋) 

(6-1) 

where 𝑋∗ ∈ 𝑅𝑛 is the optimal decision variables vector, and 𝐹(𝑋) = [𝐷𝐶(𝑋), E(𝑋)]𝑇 is the vector 

of the discomfort (𝐷𝐶) and energy (𝐸) objective functions. 𝑔𝑙(𝑋) is the vector of the constraint 

functions that could take into account the regulations and the occupants’ preferences regarding the 

HVAC and lighting systems’ settings. The inputs to the optimization model are the sensor data as 

well as the information from the occupancy module. These inputs are the environmental conditions 

(i.e., the HVAC and lighting systems’ settings), occupants’ preferences and their dynamic profiles.  

In this study, cooling and heating set-points for each zone along with the illuminance level of each 

zone are the optimization decision variables. In this study, minimizing discomfort hours (all clo), 

which is the total discomfort hours when winter or summer clothes are worn (ASHRAE 55, 2010) 

and minimizing energy consumption are the ultimate goals of the proposed integrated model. The 

level of occupants’ satisfaction regarding the thermal environmental conditions defines the thermal 

comfort of occupants. Several mathematical models have been proposed exploring the correlation 

between thermal comfort variables to predict the thermal satisfaction of occupants. Among these 

models, the Graphic Comfort Zone method suggested by ASHRAE Standard 55-2010 (ASHRAE 

55, 2010) is used in this study to measure the discomfort hours. Based on this method, the total 

number of discomfort hours is calculated based on whether the humidity ratio and the operative 

temperature are within the regions provided in ASHRAE Standard 55-2010. These regions are 

derived from the Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied (PPD) indices 

developed by Fanger (1972). According to ASHRAE 55, the PMV index between +0.5 and -0.5 

can be used as an indication of the thermally comfortable environment when setting the zone 

cooling and heating temperatures (ASHRAE 55, 2010; Sehar et al., 2017). Hence, the optimal 

control strategies override the normal heating and cooling set-point temperatures at zone level to 

maintain the PMV within the comfort range. Therefore, unlike global set-point adjustment, 

occupants’ thermal requirements can be met at zone level resulting in fewer discomfort hours.  
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The energy (𝐸) objective function is defined as a combination of the energy consumption of the 

HVAC system (𝐸𝐻), which is the summation of cooling (𝐶𝐸𝑡,𝑧
𝑠

) and heating (𝐻𝐸𝑡,𝑧
𝑠

) power 

consumption, and lighting (𝐸𝐿) system as shown below: 

𝐸(𝑋) = 𝑀𝑖𝑛(𝐸𝐻(𝑋) + 𝐸𝐿(𝑋)) (6-2) 

𝐸𝐻(𝑋) = ∑ ∑ ∑(𝐶𝐸
𝑡,𝑧
𝑠

𝑇𝑂𝑇

𝑡=1

𝑍

𝑧=1

𝑆

𝑠=1

+ 𝐻𝐸𝑡,𝑧
𝑠 ) (6-3) 

𝐸𝐿(𝑋) = ∑ ∑ ∑ 𝐿𝑃𝑡 ,𝑧
𝑠

𝑇𝑂𝑇

𝑡=1

𝑍

𝑧=1

𝑆

𝑠=1

 (6-4) 

The HVAC system heating/cooling load is dependent on the internal heat gains (𝐼𝐻𝐺) including 

gains from occupants (𝐼𝐻𝐺𝑜𝑐𝑐), lighting (𝐼𝐻𝐺𝑙), and equipment (𝐼𝐻𝐺𝑒𝑞). The cooling energy at 

time-step t at zone z during season s (𝐶𝐸𝑡,𝑧
𝑠

) is calculated using Equation (6-5) (EnergyPlus, 2015), 

where 𝐶𝑂𝑃 is the coefficient of performance of the system. Focusing on occupancy, the summation 

of the latent (𝑄𝐿𝑜𝑐𝑐) and sensible heat gains (𝑄𝑆𝑜𝑐𝑐) comprises the total occupancy heat gain and 

are calculated as follows (Thomas, 2018): 

𝐶𝐸𝑡,𝑧
𝑠

=
𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑜𝑎𝑑𝑠

𝐶𝑂𝑃⁄  (6-5) 

𝑄𝐿𝑜𝑐𝑐 = 𝐶𝑜𝑢𝑛𝑡𝑧 × 𝐿𝐻𝐺𝑜𝑐𝑐 (6-6) 

𝑄𝑆𝑜𝑐𝑐 = 𝐶𝑜𝑢𝑛𝑡𝑧 × 𝑆𝐻𝐺𝑜𝑐𝑐 × 𝐶𝐿𝐹 (6-7) 

Where 𝐶𝑜𝑢𝑛𝑡𝑧 is the number of occupants at each time-step 𝑡 at zone 𝑧. 𝐿𝐻𝐺𝑜𝑐𝑐 and 𝑆𝐻𝐺𝑜𝑐𝑐 are 

the latent and sensible heat gain per person for the type of activity performed in the zone, 

respectively, and are derived from standards. Since part of the sensible heat generated by occupants 

is absorbed by the surroundings and then gradually released into the zone, a cooling load factor 

(𝐶𝐿𝐹) is considered when calculating 𝑄𝑆𝑜𝑐𝑐 to reflect this time delay. This factor is also obtained 

from standards (e.g., ASHRAE). This factor is not needed for 𝐿𝐻𝐺𝑜𝑐𝑐, which is instantaneously 

added to the zone (EnergyPlus, 2015). The same concepts are used to calculate the heating energy. 

The lighting local control strategies are applied in near-real-time using 1-minute occupancy data. 

Two different resolution levels of 30- and 60-minutes are used to control the HVAC system, as 

explained in Section 6.3.4. The optimization results are shown as the summation of zone energy 
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consumption and the number of discomfort hours in a year using Equations (6-3) and (6-4). This 

is done to have an overall estimation of the effect of optimal local control strategies on building 

energy performance and comfort. 

The lighting power is calculated using Equation (6-8) (EnergyPlus, 2015): 

𝐿𝑃𝑡 ,𝑧
𝑠 =

𝐿𝐸𝑧 × 𝐼𝑡,𝑧
𝑠 × 𝐴𝑧

100
 (6-8) 

where: 

𝐿𝑃𝑡 ,𝑧
𝑠

: Lighting power at time-step t at zone z during season s (W) 

𝐿𝐸𝑧: Lighting energy at zone z (W/m2/100 lux) 

𝐼𝑡,𝑧
𝑠

: Zone illuminance level at time-step t at zone z during season s (lux) 
𝐴𝑧: Zone floor area (m2) 

The discomfort (𝐷𝐶) objective function is defined as the normalized summation of all discomfort 

time at all zones: 

𝐷𝐶(𝑋) =
∑ (𝐴𝑧 ∑ ∑ 𝐷𝑇𝑡,𝑧

𝑠𝑇𝑂𝑇
𝑡=1

𝑆
𝑠=1 )𝑍

𝑧=1

∑ 𝐴𝑧
𝑍
𝑧=𝑖

 (6-9) 

where 𝐷𝑇𝑡,𝑧
𝑠  is the discomfort time according to ASHRAE55 at time-step t in zone z during 

season 𝑠. 

6.3.1.1 Selection of Optimization Algorithm 

Optimization problems can be mainly categorized as single objective or multi-objective 

optimization problems, where the former have only one objective function and the latter have more 

than one objective function. These objective functions are usually in conflict with each other in 

real-world engineering optimization problems so that the improvement of one of them leads to 

worsening the others. Therefore, multi-objective optimization offers the near-optimal set of 

solutions, which are called Pareto points or Pareto front, rather than a single near-optimal solution. 

In this set, there is not any answer that dominants the others (Deb, 2005).  

Different analytics and heuristic optimization methods have been used by researchers in order to 

solve the optimization problems related to energy management objectives, such as improving 
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energy efficiency, reducing energy cost, and increasing the occupants’ comfort. The 

approximations (or heuristics) algorithms are used when finding exact optimal solutions is not 

applicable. Although heuristic optimization algorithms find approximate feasible solutions within 

a reasonable time frame, there is no guarantee of optimality. To overcome this shortcoming, meta-

heuristic methods were developed that employ heuristics techniques with guidance through the 

search space to obtain near-optimal solutions (Mellouk et al., 2015). 

Among different meta-heuristic optimization algorithms, the Genetic Algorithm (GA) followed by 

Particle Swarm Optimization (PSO) are the most used ones in the energy management field 

(Shaikh et al., 2016). This is due to the capability of GA in solving complex multi-objective 

optimization problems while maintaining the simplicity of its computational steps. GAs mimic the 

process of natural selection in order to find proper solutions to optimization problems based on the 

ideas of the evolutionary theory (Holland, 1975). PSO algorithm is an evolutionary computation 

technique, which is motivated by the behavior of bird flocks. Similar to GA, the PSO algorithm 

generates a population of random solutions called particles. However, unlike GA, each particle is 

also associated with a randomized velocity. Thus, particles fly around a multi-dimensional search 

space to find out optimal solutions (Shi, 2001; Sun et al., 2004). Based on the literature, while both 

PSO and GA obtain high-quality solutions, the number of computational steps for GA is lower 

than that of PSO, which is due to the communication between the particles after each generation 

(Panda and Padhy, 2008). The difference in computational effort between PSO and the GA is 

problem-dependent. PSO, in general, outperforms GA for unconstrained nonlinear problems with 

continuous design variables. However, when applied to highly nonlinear, constrained optimization 

problems, that are typical for complex energy management problems, GA is more efficient and 

requires less computational time (Hassan et al., 2005). Therefore, choosing an optimization 

algorithm with less computational steps, such as GA, would result in producing near-optimal 

solutions while reducing the complexity of the problem.  

Among various multi-objective evolutionary algorithms (MOEAs), the Non-Dominated Sorting 

Genetic Algorithm (NSGA) was one of the first methods to create Pareto-optimal solutions 

(Srinivas and Deb, 1994). However, in order to alleviate some of the problems associated with 

NSGA, a better and faster algorithm, called NSGA-, was introduced a few years later. 

Computational complexity, lack of elitism, and the need for sharing parameters were some of those 



 

133 

problems (Deb et al., 2002). The new algorithm performs better and faster to find the non-

dominated solutions by providing a better distribution of the population. According to (Wang, 

2016) the NSGA- is a mature multi-objective optimization algorithm at present. The main 

advantages of NSGA- includes the flexibility to be applied to a wide range of optimization 

problems of significant complexity (McCall, 2005; Deb et al., 2002), the simplicity of its 

computational steps, especially when it is integrated with simulation models, and its ability to 

effectively solve multi-objective optimization problems. Therefore, NSGA- is selected as the 

optimization engine in this research. 

6.3.2 Simulation Model 

In order to evaluate the energy performance of an open-plan office in terms of energy consumption 

and its occupants' discomfort time, a simulation model of a shared space is created as a basis to 

develop the proposed integrated model. Given outside weather conditions, building characteristics 

(e.g., building location, geometry, envelope, etc.), building systems’ characteristics (e.g., the type 

of HVAC and lighting systems and their specifications), and internal loads (e.g., occupancy loads), 

the simulation model calculates the building energy consumption as well as the occupants’ thermal 

condition mimicking the actual building energy performance. In this study, the simulation model 

is developed to investigate the effect of the application of multiple local control strategies on the 

energy performance of the building considering the dynamic occupancy information. 

6.3.3 Integrated Simulation-based Optimization Model 

Figure 6-2 depicts the integration procedure of the simulation and the optimization models. The 

optimization algorithm starts with creating the initial population of size H in the first generation. 

The optimization decision variables, as discussed in Section 6.3.1, are randomly varied within their 

pre-defined ranges to create the members of the population. Each member of the population, which 

contains a set of decision variables, is fed into the simulation model as part of its inputs. Based on 

the values of the decision variables in each simulation run, the objective functions are calculated. 

After calculating the fitness values of all members of the population, the selection, crossover, and 

mutation operations are performed on the entire population. This procedure is repeated for all 

members of the population in all generations until the convergence criterion (i.e., the specified 
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number of generations, M) is met. After that, the optimization terminates and the optimal solutions 

are obtained as a Pareto front. 

The output of the simulation-based optimization model is a file containing the information 

pertinent to the local control strategies. This file provides the following information: (1) the type 

of the control action, such as turning on/off the lights; and (2) the optimal settings for each zone 

of the space. By capturing the locations of the occupants at the zone level, the HVAC and lighting 

systems in the corresponding zone are activated and adjusted using the optimal results obtained 

from the integrated framework of the simulation-based optimization considering a trade-off 

between occupants’ satisfaction and the energy consumption. It is important to mention that 

defining detailed control strategies regarding the building’s energy-consuming systems are out of 

the scope of this research. In this research, control strategies are limited to changing the space 

temperature and turning on/off the lighting system using the thermostat setting and light switches, 

respectively. 

6.3.4 HVAC and Lighting Operation Local Controls 

 HVAC System Local Control 

The operation of the HVAC system to reach the desired temperature is not an instantaneous process 

like other energy-consuming systems (e.g., light). Therefore, having information regarding the 

next state of a space usage plays an important role in the operation of the HVAC system. To this 

end, the dynamic space usage patterns are required. Although the techniques proposed in this area 

of research are well-established, only few studies considered the optimal operation of HVAC 

system based on dynamic occupancy information in shared open-plan offices (Goyal et al., 2013; 

Oldewurtel et al., 2013; Dobbsand Hencey, 2014a-b; Dong and Lam, 2014; Capozzoli et al., 2017). 

In office buildings, the HVAC system usually runs based on pre-determined set-point and set-back 

temperatures during the occupied and unoccupied hours, respectively. This corresponds to control 

the temperature for defined fixed schedules (e.g., 8 am - 8 pm). Occupancy schedules, however, 

are highly dependent on occupants’ work habits and they may deviate from one zone to another in 

the same shared office. Running the HVAC system based on a predefined schedule could result in 

higher energy consumption as well as occupants’ dissatisfaction. 
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Figure 6-2 Integration of optimization and simulation models 

For instance, if occupants leave their office earlier than the time in the fixed schedule, conditioning 

an empty space causes unnecessary energy consumption. On the other hand, working later than 

the pre-determined time in the fixed schedule in spaces conditioned based on the set-back 

temperature will have a negative impact on the occupants’ productivity. Having prior information 

pertinent to occupancy changes at the zone level can be used as input for the optimal local control 

of the HVAC system (schedule-based HVAC local control). Figure 6-3 depicts the pseudocode 
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showing how the HVAC local control algorithm adjusts the cooling set-point temperature during 

the cooling season using dynamic occupancy information. The same control procedure is used to 

set the heating set-point temperature with different sets of temperatures.  

Set 𝑇𝑂𝑇𝑐= the total number of occupancy time-steps during the cooling period, 𝑚 = time-step resolution to 

control the HVAC system, 𝐻𝑆𝑐= HVAC cooling schedule, 𝑂𝐶𝑇𝑠𝑝
𝑧  = cooling set-point temperature outside the 

comfort range, 𝐼𝐶𝑇𝑠𝑝
𝑧  = cooling set-point temperature inside the comfort range, 𝐶𝑇𝑠𝑏

𝑧  = cooling setback 

temperature, 𝑇𝑐,𝑡
𝑜𝑐𝑐,𝑧 = occupied zone cooling temperature, 𝑇𝑐,𝑡

𝑢𝑛𝑜𝑐𝑐,𝑧 = unoccupied zone cooling temperature, 

𝐶𝐸𝑡,𝑧
𝑠  = cooling energy at time-step t at zone z during season s. 

 

During cooling season 

   For each z in Z 

      determine Status z, m and OccR z, m  

      For each 𝑚 in 𝑇𝑂𝑇𝑐  

         if Status z, m = 1: 

            𝐻𝑆𝑐 = 1 

            if PMV index is outside the comfort range: 

               𝑇𝑐,𝑡
𝑜𝑐𝑐,𝑧 = 𝑂𝐶𝑇𝑠𝑝

𝑧  

            else 

               𝑇𝑐,𝑡
𝑜𝑐𝑐,𝑧 = 𝐼𝐶𝑇𝑠𝑝

𝑧  

            calculate cooling energy consumption (𝐶𝐸𝑡,𝑧
𝑠

) due to occupancy internal gains using OccR z, m      

         else 

            𝐻𝑆𝑐 = 0.5   

            𝑇𝑐,𝑡
𝑢𝑛𝑜𝑐𝑐,𝑧 = 𝐶𝑇𝑠𝑏

𝑧   

       end 

   end 

Figure 6-3 Pseudocode for HVAC local control during the cooling season 

Furthermore, two different HVAC schedules are considered in this study called simple and detailed 

schedules to apply optimal local control strategies. In the simple schedule, the HVAC system starts 

one hour before occupants’ first arrival to each zone to bring the zone to the desired temperature. 

The zone temperature will remain at set-point temperature throughout the day and the HVAC 

control system will set the zone temperature to the set-back temperature one hour after the last 

departure of the occupants at that zone. The detailed HVAC schedule, however, follows the zone 

occupancy schedule. In this case, like the simple schedule, the HVAC system starts one hour before 

occupants’ first arrival to each zone and remains on for the first hour. Considering the lag time of 

the HVAC system to adjust the zone temperature, a one-hour time-step is used to check the 

occupancy status and adjust the zone temperature accordingly. As such, if the zone is unoccupied 

for at least one hour, the set-back temperature is used. Otherwise, the set-point temperature is 

applied even when the zone is unoccupied. This procedure is repeated for the following hours until 

the end time of occupancy at each zone.  
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 Lighting System Local Control 

Lighting system control is performed to maintain an optimum set-point illuminance level in 

occupied zones based on the dynamic occupancy information. Using schedule-based lighting 

system control and turning off the lights during unoccupied periods lead to a reduction in the 

internal heat gains and eventually to a decrease in total building energy consumption. 

According to the dynamic occupancy information imported to the simulation model, the zone 

status can be determined at each time-step. Knowing the zone status, the lighting system control 

algorithm, as demonstrated in Figure 6-4, sets the lighting operation schedule based on the 

dynamic occupancy schedule and adjusts the lighting power according to the illuminance level of 

the occupied zone selected by the optimization algorithm.  

Set LS = lighting operation schedule, 𝑖= occupancy time-step resolution, TOT= the total number of occupancy 

time-steps in a year.  
 

During all seasons 

   For each z in Z 

      read Status z, i data series   

      For each 𝑖 in TOT  

         if Status z, i = 1: 

            Select randomly 𝐼𝑡,𝑧
𝑠

 from decision variables table 

            turn the lights on 

            calculate the lighting power using Equation (6-8) 

                  𝐿𝑃𝑡 ,𝑧
𝑠 = LS × 𝐿𝑃𝑡 ,𝑧

𝑠   

         else              

            turn the lights off  

       end 

   end 

Figure 6-4 Pseudocode for lighting local control  

6.3.5 Building Energy Management System (BEMS) 

In order to integrate the dynamic occupancy-centered operation schedules of building energy-

consuming systems with the simulation model, the EnergyPlus Energy Management System 

(EMS) is used. The EMS module is a high-level, generalized, supervisory control for building 

systems that utilizes EnergyPlus Runtime Language (Erl), which is a simplified programming 

language, to define the EMS control and modeling programs (DOE, 2015). 
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The EMS employs a set of sensors to retrieve information regarding the building’s internal and 

external conditions. The collected data defines Erl variables to be used in control programs. 

Different changes are then performed on building systems through EMS actuators. Co-ordination 

between EMS sensors and actuators is performed through EnergyPlus simulation (DOE, 2015). 

Using EMS helps to emulate, inside EnergyPlus, the same control actions implement through 

BEMS in real buildings (Sehar et al., 2016; Tahmasebi and Mahdavi, 2018). Figure 6-5 illustrates 

the optimal local control algorithm used in this study. Although most of the traditional BEMSs 

control building systems using 15-minutes time-step intervals, with the growing advances in 

Information and Communication Technology (ICT) and the application of advanced data analytics 

to near real-time data gathered by Internet of Things (IoT) sensors, finer resolution levels are used 

by new BEMSs to monitor and control building systems (Sehar et al., 2017; Salimi and Hammad, 

2018). This shows the importance of considering high-resolution levels for the application of 

control strategies. On the other hand, different resolution levels are required for controlling 

different building systems based on the discussion in Section 6.3.4. For instance, a higher level of 

resolution (i.e., time-step i in Figure 6-5) is needed to apply lighting control strategies, which 

improves the comfort level. However, considering the required lag time for the HVAC system to 

adjust the indoor temperature to a specified target set-point/set-back, a lower level of resolution 

(i.e., m in Figure 6-5) is needed to provide the required thermal comfort. As a result, different time-

steps are defined to develop the dynamic occupancy profiles for the control of various building 

systems as explained in Section 6.2. As illustrated in Figure 6-5, time-step 𝑖 is used to derive the 

zone occupancy patterns and accordingly adjust different schedules within the simulation model. 

This includes schedules regarding the zone occupancy, equipment, and lighting systems. If the 

zone is occupied, equipment and lights are turned on and the lighting power is calculated. Since 𝑖 

is smaller than 𝑚, the control module with time-step i is run for 𝑚/𝑖 times. Then, the HVAC 

system is controled using the derived dynamic occupancy profiles according to the procedure 

shown in Figure 6-1. In this study, i is considered as one minute. Two resolution levels of 30 and 

60 minutes are used as m to control the HVAC system.  
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Figure 6-5 Optimal control flowchart for the operation of building systems 

To run the optimal local control algorithm, the EMS sensors collect information pertinent to the 

occupancy status of each zone of the space (i.e., occupied or not in use) and the number of present 
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occupants in the case of the occupied zone at each time-step. Based on the retrieved data, necessary 

control actions defined in EMS programs are performed through the EMS actuators. For instance, 

to apply HVAC system local control, once the EMS sensors retrieved the zone occupancy 

information, the optimization algorithm determines the optimal set-point temperature of the zone 

according to the values of the PMV index. Then, EMS actuators change the zone temperature to 

reach the optimal setting. At predefined calling points specified by EMS 

ProgramCallingManager, EMS programs are run during EnergyPlus simulation (DOE, 2015).   

6.4 Case Study 

6.4.1 Simulation Model and Input Data 

In order to evaluate the energy performance of an open-plan office, a simulation model of a shared 

space is described in this section as a basis to develop the proposed integrated model. The 

simulation model is created in EnergyPlus version 8.6 (EnergyPlus, 2015). The model’s layout is 

defined based on the plan of a real open-plan office. EnergyPlus, a powerful dynamic building 

energy simulation tool, offers accurate evaluation of the energy performance of buildings by 

predicting the dynamic behavior of building systems under ever-changing internal and external 

conditions (Sehar et al., 2017). Providing the building characteristics, such as building location 

and geometry, and its energy-consuming systems specifications, internal loads (e.g., occupancy, 

office equipment, and lighting) along with the external input (i.e., weather data), the simulation 

model calculates the space energy consumption, discomfort hours, and other required parameters 

at specified time-steps. Table 6-1 summarizes the input data of the simulation model. 

Table 6-1 Input data of the open-plan office simulation model 

Simulation Model Inputs Value 

Space floor area (m2) 35.1 

Wall height (m) 3.5 

Number of occupants at each zone  3 

Office equipment power density (W/m2) (Raji et al., 2017) 11.77 

𝐶𝑂𝑃 5.5 

Coefficient of efficiency 0.89 

Lighting power density (W/m2/100 lux) 
Zone 1 1.38 

Zone 2 3.10 

 Weather data: The weather data from Montréal–Pierre Elliott Trudeau International Airport 

available in (EnergyPlus, 2015) are used in this study.  
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 HVAC load: The normal heating and cooling set-points are 22 ℃ and 24 ℃, respectively. The 

set-back temperatures are set to 18 ℃ and 28 ℃ during winter and summer seasons, 

respectively, for unoccupied periods for all zones according to the ASHRAE 90.1-2007 

recommendations (ASHRAE, 2007). The simulated office has two zones.  

 Occupancy, lighting, and equipment loads: There are three occupants located at each zone of 

the open-plan office. The occupancy profiles representing the working schedules of each 

occupant are derived from real occupancy data collected from the shared office for one year. 

The lighting and equipment schedules follow the occupancy profiles in this study. According 

to (Raji, Tenpierik, & van den Dobbelsteen, 2017), the office equipment power density is set to 

11.77 (W/m2). Since the number of luminaires varies between zones, each zone has its own 

lighting power density as shown in Table 6-2.   

The occupancy and HVAC schedules are shown in Figure 6-6 for a one-week period.  

 

(a)  

 

(b)  
Figure 6-6 Occupancy and HVAC system schedules during one summer week (a) Simple; (b) Detailed 
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Since the operation of building systems are highly dependent to the presence of occupants, the real 

occupancy data of the simulated open-plan office are collected over the course of one year (from 

April, 1st 2017 to March, 31st 2018) using Bluetooth Low Energy (BLE)-based monitoring system 

with a very high temporal resolution level (i.e., each second). High-resolution occupancy data are 

required for some specific applications, such as security and emergency situations. However, the 

high granularity of one second is not required for building energy management. Therefore, the real 

occupancy data are generated with the time intervals of one minute. After processing the raw 

collected data to have the occupants-specific dynamic profiles, the occupancy information at zone 

level with required resolution levels are imported to the simulation model in order to emulate the 

occupants’ dynamic space utilization patterns. The integration of the dynamic occupancy-centered 

operation schedules of building systems derived from the processed raw data with the simulation 

model is performed using EnergyPlus EMS. As mentioned in Section 6.3.5, different resolution 

levels are considered for the simulation model’s input data. Moreover, EnergyPlus EMS is 

integrated with an optimization algorithm to design different optimal local control strategies using 

jEPlus+EA (Zhang, 2009; Zhang, 2012), a third-party optimization tool developed for EnergyPlus. 

In order to apply the local control strategies of building systems based on dynamic occupancy 

information, the zoning is used to assign different dynamic occupancy-centered schedules for the 

operation of building systems at each zone. These zones are created using virtual partitions to 

separate open spaces without having physical boundaries that could affect the energy consumption 

of the space. During zone occupancy, set-point temperatures are adjusted according to Table 6-2 

for cooling and heating set-points. These ranges are selected based on the average occupants’ 

preferences in each zone. In case of turning the lights on, the illuminance level of the occupied 

zone is set to be between 300 to 500 lux recommended by Illuminating Engineering Society of 

North America (IESNA) for office buildings (DiLaura et al., 2011).   

Table 6-2 Optimization variables 
 

Variable Min Max Increment 

Cooling set points outside the comfort range (𝑂𝐶𝑇
𝑠𝑝
𝑧 ) 26 ℃ 27 ℃ 0.5 ℃ 

Cooling set points inside the comfort range  (𝐼𝐶𝑇
𝑠𝑝
𝑧 ) 26 ℃ 28 ℃ 0.5 ℃ 

Heating set points outside the comfort range (𝑂𝐻𝑇
𝑠𝑝
𝑧 ) 24 ℃ 26 ℃ 0.5 ℃ 

Heating set points inside the comfort range (𝐼𝐻𝑇
𝑠𝑝
𝑧 ) 22 ℃ 24 ℃ 0.5 ℃ 

Illuminance level at each zone (𝐼𝑡,𝑧
𝑠 )   300 lux 500 lux 50 lux 
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6.4.2 Building Performance Metrics 

To evaluate the performance of the simulation model under the application of different optimal 

local control strategies, the annual building energy consumption along with the time outside 

ASHRAE 55 comfort regions are considered as building performance indicators. The building 

performance indicators without the application of control strategies are used as the baseline and 

are denoted by 𝑃0
𝑢𝑛𝑐. The building performance metrics are calculated as follows: 

∆𝑃 =
𝑃𝑐 − 𝑃0

𝑢𝑛𝑐

𝑃0
𝑢𝑛𝑐  (6-10) 

where 𝑃𝑐 is the building performance indicators after the application of optimal local control 

strategies.  

6.4.3 Results  

All simulations are run using the 1-minute resolution level for a whole year. However, according 

to the discussion in Section 6.3.4, the HVAC system control is performed at 30- and 60-minute 

time-steps. Six different cases are investigated in this study among which four cases incorporate 

local control strategies using the optimization algorithm, and the other two cases are simulation 

models without the application of local control strategies nor optimization. Table 6-3 shows the 

specifications of the six cases. 

Table 6-3 Specifications of investigated cases 

Case No. 1 2 3 4 5 6 
Occupancy schedule Standard 

schedules 

Real 

schedules 

Real 

schedules 

Real 

schedules 

Real 

schedules 

Real 

schedules 

Occupancy resolution level 60 min 1 min 1 min 1 min 1 min 1 min 

HVAC schedule Standard 

schedules 

Simple Simple Simple Detailed Detailed 

Temperature Fixed Fixed Variable Variable Variable Variable 

HVAC control resolution level - - 30 min 60 min 30 min 60 min 

Lighting control resolution 

level 

- - 1 min 1 min 1 min 1 min 

Optimization - -     

In this table, standard schedules are standard office schedules with the maximum occupancy 

between 8:00 am and 5:00 pm and an hour of reduced occupancy for lunch at noon. Equipment 
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and lighting are set to be on during occupancy periods in the first case. Occupancy, equipment and 

lighting schedules in the remaining cases, however, follow the real occupancy patterns derived 

from the real collected data. The heating and cooling set-point temperatures are fixed at 22 ℃ and 

24 ℃; respectively, for the first two cases. Figure 6-7 illustrates the sets of Pareto optimal solutions 

for the four optimization cases. In all these cases, optimization is run for 100 generations with a 

population size of 20. For the two resolution levels, cases with the simple HVAC schedule 

outperform the ones with the detailed schedule from the comfort point of view. This observation 

indicates that simpler schedules for operating the HVAC system result in fewer discomfort hours. 

That is mainly due to the lag time required for the HVAC system to adjust the indoor temperature. 

Frequent changes in the zone temperature result in more dissatisfied occupants, which 

subsequently leads to a decrease in their productivity. For instance, although solutions A and B 

have the same energy consumption, there is almost 11% increase in the discomfort hours as shown 

in Figure 6-7. On the other hand, cases with the detailed HVAC schedule generate more energy 

conservative solutions as the Pareto fronts of these cases are more towards the lower right side of 

the graph. Furthermore, the cases with lower resolution level for the application of local control 

strategies (i.e., 60 min) generate slightly better optimal solutions than those of obtained from the 

cases with more frequent application of local control (i.e., 30 min), such as solutions C and D in 

Figure 6-7. As a result, the simple HVAC schedule with the 60-minute resolution level (Case 4) 

found to be the best option for the application of local control strategies.  
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Figure 6-7 Sets of Pareto solutions for four optimization cases 

The Pareto solutions Case 4 along with all other solutions generated by the optimization algorithm 

are shown in Figure 6-8. Almost 8% of the results of the optimization are optimal solutions that 

make the Pareto front as demonstrated in this figure. According to Figure 6-8, three distinct areas 

are distinguished as shown by square, ellipse, and circle areas. The optimal solutions within the 

square area represent solutions with lower discomfort hours and higher energy consumption. The 

optimal solutions enclosed within the circle area, however, show the opposite trend (i.e., higher 

discomfort hours and lower energy consumption). Choosing any of these solutions means 

preferring one objective function for achieving better results at the expense of the other objective 

function. Therefore, the most desirable solutions that correspond to a trade-off between the two 

objective functions are the solutions inside the ellipse area. For Case 4, the most desirable solutions 

account for almost 51% of solutions (76 out of 150 optimal solutions). The average discomfort 

hours and energy consumption associated with this area are about 645 hours and 6138 kWh, 

respectively. 
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Figure 6-8 Optimization results for Case 4 

The comparison of the average discomfort hours and energy consumption of the most desirable 

optimal solutions in the four optimal cases are shown in Table 6-4. The information regarding 

these solutions is also included in this table. Case 6 generates the best solutions in terms of building 

energy consumption. However, the highest number of discomfort hours is reported in this case. A 

balance between the two objective functions is observed in Case 4. This conclusion is aligned with 

the observations related to the whole Pareto optimal solutions (Figure 6-7).   

Table 6-4 Average of most desirable optimal solutions for four optimal cases  

Case No. 
No. of optimal 

solutions (Percentage 

of total solutions %) 

No. of most desired 

solution (Percentage of 

optimal solutions %) 

Total energy 

consumption 

(kWh) 

Discomfort 

hours (hr) 

3 191 (10) 110 (58) 6227 628 

4 150 (8) 76 (51) 6138 645 

5 233 (12) 59 (25) 6116 728 

6 243 (13) 104 (43) 6076 729 
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After selecting Case 4 as the best case for the application of local control strategies, the results of 

comparing this case with the first two cases are shown in Table 6-5. The comparison demonstrates 

that although using standard schedules leads to fewer discomfort hours, there is 15% more energy 

consumption compared to optimal solutions of Case 4. On the other hand, following real 

occupancy schedules without changing the set-points results in a considerable increase in the 

number of total discomfort hours (more than 148%) compared to standard schedules. Using 

optimization helps to find a balance between these two extreme cases. Although the improvement 

in the office energy consumption (i.e., 2%) is not as much as that of the discomfort hours, these 

hours could be cut by more than 50% when comparing Cases 2 and 4. 

Table 6-5 Comparison among three cases  

Case No. 

Total energy 

consumption 

(kWh) 

Performance 

metric (%) 

Discomfort 

hours (hr) 

Performance 

metric (%) 

1 7065 -15 395 +39 

2 6266 -2 982 -52 

4 6138 - 645 - 

The comparison between the PMV index of the three Cases 1, 2, and 4 in Zones 1 and 2 is 

demonstrated in Figure 6-9 for a winter day in January. Moreover, Figure 6-10 illustrates the 

changes in the PMV index during a summer day in June. The outcomes of one optimal solution, 

as a representative of the solutions enclosed within the ellipse area in Case 4 (as shown in Figure 

6-8), are used for the comparison purpose.  

As shown in Figure 6-9, Case 1 demonstrates better performance compared to the other two cases 

from the comfort point of view during winter. However, comparing Cases 2 and 4 shows that the 

PMV index remains greater than -0.5 for the optimal case compared to that of Case 2 during most 

of the occupied hours except the start time of occupancy. Although the HVAC system is set to 

bring the zone temperature to the set-point one hour before the start time of occupancy, this may 

not be always possible. This problem can be solved by considering earlier wake-up time for the 

HVAC system to provide enough time to adjust the zone temperature.  
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(a) 

 

(b) 
Figure 6-9 Changes in PMV index during a winter day (a) Zone 1; (b) Zone 2 

As opposed to the heating season, analyzing the obtained results from Case 1 demonstrates that 

the most discomfort hours are happening during the cooling season. Therefore, the optimal case 

outperforms the other two non-optimal cases during most of the summer days. In Case 4, shifting 

the cooling temperature set-point by 3 ℃ (i.e., from 24 to 27 ℃) results in increasing the PMV 

index and improving the comfort condition. In addition, the PMV index in Case 4 becomes positive 

in many hours during the summer day showing the higher potential for saving energy while 

maintaining occupants’ comfort during the cooling season compared to the wintertime.  
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(a) 

 

(b) 
Figure 6-10 Changes in PMV index during a summer day (a) Zone 1; (b) Zone 2 

6.5 Summary and Conclusions 

Occupancy-related information is recognized as influential factors affecting the energy operation 

in buildings. In order to enhance the energy management of buildings, occupancy-centered control 

strategies are required. Therefore, the need for localized and customizable comfort controls is 

increasing in open-plan office buildings to improve the occupants’ satisfaction, and consequently 

their productivity. The main contribution of this study is optimizing energy consumption and 

occupants’ comfort in open-plan offices using local control based on occupancy dynamic data. In 

this research, full-year dynamic occupancy profiles with high resolution of 1-minute are developed 

using real occupancy data capturing the stochastic behavior of occupants. Having the dynamic 

occupancy profiles along with the indoor environmental conditions, this study contributes to the 
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exploration of optimal local control strategies based on the integration of a simulation model with 

a multi-objective optimization process. It is concluded that the simple HVAC schedule with the 

60-minute resolution level is the best option for the application of local control strategies from the 

comfort point of view for the case study of this research. The application of HVAC and lighting 

local control strategies results in improving the thermal condition by 50% along with 2% savings 

in energy consumption. More energy conservative solutions are, however, generated upon the 

usage of detailed HVAC schedules for both resolution levels. 

Using the proposed method in open-plan offices results in: (1) developing high-resolution dynamic 

occupancy profiles to represent temporal variations of occupancy patterns in open-plan offices; (2) 

developing local control algorithms for building energy-consuming systems; (3) finding the best 

settings to operate HVAC system including the type of HVAC schedule and the resolution level 

used to control this system; and (4) finding the trade-off between buildings’ energy consumption 

and occupants’ comfort levels by maintaining the PMV index within the comfortable range. The 

practical application of the proposed method aims at assisting decision-makers in evaluating 

optimized occupancy-centered building operations.  

Since the air flows from the terminal units have different temperatures, the effect of air mixing 

should be considered. It is assumed that the air mixing of zones only happens in the boundaries. 

This assumption makes the proposed method more applicable in large open-plan offices, where air 

mixing effects do not considerably affect the zone temperatures. Thus, the effect of air mixing 

should be considered as future work. To do so, computational fluid dynamics (CFD) analysis of 

the proposed optimal local control strategies should be conducted to capture the air mixing 

between zones and the resultant variations in the zone temperature. In addition, the effect of using 

occupancy information generated by an occupancy prediction model should be investigated. To 

this aim, occupancy information generated by a probabilistic occupancy model can be fed to the 

integrated simulation-based optimization model for investigating the energy savings 

corresponding to predicted occupancy profiles. Analyzing the outcomes of this integration helps 

to evaluate the effect of occupancy prediction accuracy on the performance of the integrated 

model. Future work will also consider discomfort time from the lighting point of view including 

the effects of glare and positions of occupants with respect to windows.    
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CHAPTER 7 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 

7.1 Summary of Research 

This research covered a comprehensive review of the related literature, the current research gaps, 

the overview of the proposed framework, and detailed explanation of the proposed methods 

followed by the case studies to validate and evaluate the applicability of the proposed framework. 

In the literature review, different occupancy monitoring techniques, occupancy modeling 

approaches, and control systems for building energy-consuming systems were discussed. 

Moreover, a roadmap regarding the advances in different dimensions with respect to office 

buildings’ energy management is presented. The proposed roadmap provides a high-level view of 

the directions for future research towards CBM. By integrating all the components in the roadmap, 

a vision of CBM can be seen where buildings’ systems, their occupants, and all other stakeholders 

have intelligent support from systems encapsulating sensor data and control strategies. 

In the proposed framework of this research, the methodology regarding the development of a new 

adaptive probabilistic occupancy model and a simulation-based multi-objective optimization 

framework was introduced. After performing the occupancy behavior analytics (data processing), 

important occupancy features, such as the number of present occupants, periods of absence and 

presence, and other occasional variations in the occupants’ profiles are determined. Using the 

derived information, the proposed inhomogeneous Markov chain occupancy perdition model 

generates the probabilistic profiles of each specific occupant. The work state of each occupant, 

his/her location and the total number of present occupants can be derived from these profiles at 

each time-step.  

Furthermore, after developing the energy simulation model of the office building, an integration 

framework of the simulation model with the optimization algorithm was proposed in order to 

improve the performance of the simulation model in evaluating the space energy usage. The 

optimization algorithm was designed to satisfy the two objective functions of minimizing the office 

building’s energy consumption and occupants’ discomfort. By capturing the locations of the 

occupants at the zone level, the HVAC and lighting systems in the corresponding zone are 

activated and adjusted using the optimal results obtained from the integrated framework 

considering a trade-off between occupants’ satisfaction and the energy consumption.  
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7.2 Research Contributions and Conclusions  

This research results in the following contributions:  

(1) Developing a method for extracting detailed occupancy information with varying time-steps 

from collected RTLS occupancy data;  

(2) Developing a new adaptive (self-learning) probabilistic occupancy prediction model based on 

the RTLS data to distinguish between different occupants within open-plan offices. With 

regard to the first two contributions the following conclusions can be drawn:  

 The occupancy perdition model was able to accurately estimate occupancy patterns of 

the open-plan office at occupant and zone levels. 

 The proposed prediction model is an adaptive model that evolves and improves itself 

over time. 

 High accuracy of occupancy patterns prediction (86% and 68% on average for the 

purpose of the lighting and HVAC systems control, respectively) indicates the 

acceptable performance of the prediction model in capturing the temporal behavior of 

different occupants working in the same open-plan office. 

(3) Improving the performance of the developed occupancy prediction model by applying 

sensitivity analyses. This contribution leads to the following conclusions: 

 Months of data collection can be ranked using the proposed ranking procedure based 

on the data spread feature, the reliability, and the similarity between collected time-

series. 

 The application of the proposed sensitivity analyses determines the near-optimum 

length of the data collection period required at each zone of space along with the near-

optimum training dataset.  

 The performance evaluation also finds the most satisfying temporal resolution level 

for analyzing the occupancy data assuring acceptable accuracy in occupancy 

prediction. 

 The required resolution for an acceptable accuracy level is dependent on the quality of 

the collected data. 
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 Obvious differences in the number of occupants and patterns in different zones 

indicate the importance of considering the occupancy data at the zone level instead of 

the room level. 

(4) Developing local control algorithms for building energy-consuming systems. 

(5) Developing a simulation-based multi-objective optimization model and assessing the effect of 

different intelligent and occupancy-centered local control strategies on building energy-

consuming systems, which eventually leads to the application of different occupants’ 

preferences with respect to building systems. The following conclusions are achieved from 

the last two contributions:  

 The proposed method improves the energy management of buildings by developing 

intelligent, optimal, and occupancy-centered local control strategies and evaluating the 

effect of them on building energy-consuming systems and the occupants’ satisfaction.   

 The simple HVAC schedule with the 60-minute resolution level is the best option for 

the application of local control strategies from the comfort point of view.  

 The application of the simple HVAC schedule with the 60-minute resolution level and 

lighting local control strategies results in improving the thermal condition by 50% 

along with 2% savings in energy consumption. 

 More energy-saving solutions were, however, generated upon the usage of detailed 

HVAC schedules for both resolution levels of 30 and 60 minutes. 

7.3 Limitations and Future Work 

In spite of the above-mentioned contributions, there are limitations in this research that are needed 

to be addressed in the future. These limitations are as follows: 

(1) Although the overall performance of the prediction model was satisfactory, it may not capture 

variations in occupancy patterns that may happen after the data collection period, especially 

in the case of open-plan offices with varying occupancy. This limitation could be solved by: 

 Having access to real-time occupancy detection and control. 

 Using different data collection periods and frequently updating the prediction model 

whenever a real-time occupancy detection and control happened to consider changes 

in the space utilization patterns. These considerations make the proposed prediction 

model more general for different types of open-plan offices.   
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 Using more advanced estimation approaches, such as machine learning techniques. 

(2) In terms of performance analyses, a cost-benefit analysis should be done to investigate the 

balance between the cost of using different RTLSs, collecting data over a long period, and the 

gains of using them in the real world. In addition, the ranking procedure (proposed in Chapter 

5) requires improvements to better fit its application for occupancy detection in open-plan 

offices. To do so: 

 Seasonal changes in occupancy patterns should be studied in detail by having different 

training datasets for different seasons.  

 Other methods, such as clustering, can be used for ranking the months in the training 

dataset. 

(3) Since the air flows from the terminal units have different temperatures, the effect of air mixing 

should be considered. To address this issue, computational fluid dynamics (CFD) analysis of 

the proposed optimal local control strategies should be conducted to capture the air mixing 

between zones and the resultant variations in the zone temperature.  

(4) In this study, occupants’ comfort was studied by focusing on their thermal comfort. The 

discomfort time from the lighting point of view should be included to have a complete vision 

regarding occupants’ discomfort time. It is recommended in the future to include the effects 

of glare and positions of occupants with respect to windows in order to account for discomfort 

time from the lighting perspective.    

(5) There is a privacy issue when the occupants’ identities are used to have detailed occupancy 

information. In the future, it is necessary to: 

 Anonymize the occupants’ data through defining occupancy profiles per zone. 

 Clarify the importance of collecting this type of data for other purposes, such as 

emergency and safety.  

 Inform the monitored occupants about all the benefits coming from using the real-time 

monitoring system for a reasonable period. 

(6) Future applications of emerging ICT in the building sector are towards real-time energy 

management. Thus, the ultimate goal of this research is to apply the near real-time occupancy 

responsive local control strategies on building energy-consuming systems in order to have 

responsive operational systems, which can learn and self-tune themselves for optimum and 

intelligent operation. In this matter: 
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 The results of the occupancy prediction model should be fed to the integrated 

simulation-based optimization model to perform near real-time energy management 

and investigate the energy savings corresponding to predicted occupancy profiles. 

Analyzing the outcomes of this integration helps to evaluate the effect of occupancy 

prediction accuracy on the performance of the integrated model.  

 By feeding the occupancy pattern of space along with the local control strategies, 

derived from the occupancy prediction model and the simulation-based optimization 

module, respectively; the integrated model predicts the zone condition in near real-

time and applies relevant local control strategies.
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Appendix A – MATLAB Code of Occupancy Detection Model 

function output = IFM_Val7_1Min_Shide_PredictionVsTestData(~) 
 % x and x1 are inputs:  
 %inputs are day of the week, occupants name, and location of the occupant: 
x = {'Shide-S-P-AllInstances-', 'Wed'}; 
x1 = {'Shide-S-P-AllInstances-', 'Wed', '-TestData'}; 
 

d=x{2}; 
name     = sprintf('%s%s', x{1}, x{2}); 
name1     = sprintf('%s%s%s', x1{1}, x1{2}, x1{3}); 
full_filename = fullfile(d,name); 
full_filename1 = fullfile(d,name1); 
P = xlsread(full_filename, 'PWholeDay-WholeYear'); 
Loc = xlsread(full_filename1, 'SWholeDay-WholeYear'); 
format long g 
ST=P(1,2); 
ET=P(end,2); 
ST=datetime(ST,'ConvertFrom','datenum'); 
ST = datetime(ST,'Format','HH:mm'); 
ST = dateshift(ST, 'start', 'minute', 'nearest'); 
NearestHrST = dateshift(ST, 'start', 'hour', 'nearest'); 
MinST = minute(ST); 
HrST=hour(NearestHrST); 
if MinST >= 30 

     
else 
    HrST=HrST+1; 
end 

  
ET=datetime(ET,'ConvertFrom','datenum'); 
ET = datetime(ET,'Format','HH:mm'); 
ET = dateshift(ET, 'start', 'minute', 'nearest'); 
MinET = minute(ET); 
HrET=hour(ET); 

  
    HrDiff=HrET-HrST; 
    MinDiff=MinET+(60-MinST); 

  
    PT=(HrDiff*60)+MinDiff; 
    PMatrix_Index=(PT)+1; 
T(1)=ST; 
Time = zeros(1, PMatrix_Index); 
y = zeros(1, PMatrix_Index); 

  
ncols= zeros(1,PMatrix_Index); 
L=zeros(1,PMatrix_Index); 
mat_max_index=cell(PMatrix_Index,1); 
i=1; 
Time(i) = rem(datenum(T(1)),1); 
    zz=Loc(i, :);    
    zz(:,1) = []; 
        mat_max_index{i,:}=find(zz == max(zz));  
        [~,ncols(i)] = cellfun(@size,mat_max_index(i,1)); 
            if ncols(i) > 1                
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                L(i)=5;                 
            else 
                L(i)=mat_max_index{i}; 
            end  
y (1)=L(i); 
    [a,~]=find(abs(P(:,2)-Time(i))<0.00001,5);  
    PR=P(a, :); 
    A=PR(L(i),:); 
    kk=find(A(1,:)>=0,5,'last'); 
    Pr=A(kk); 
    [~, n] = size(Pr); 
    if Pr == zeros(1,n) 
        Predicted_L=1;            
        A=PR(Predicted_L,:);  
        kk=find(A(1,:)>=0,5,'last'); 
        Pr=A(kk); 
          if Pr == zeros(1,n) 
             while true 
                 Predicted_L = Predicted_L+1; 
                 A=PR(Predicted_L,:);  
                 kk=find(A(1,:)>=0,5,'last'); 
                 Pr=A(kk); 
                    if any(Pr > zeros(1,n)) 
                        break;  
                    end 
              end 
          end 
        pd(:,1)=Pr(:,1); 
        for j = 2 : n 
            pd(:,j)=Pr(:,j)+pd(:,j-1); 
        end 
        C=rand; 
        D=pd-C; 
        E=find(D>0,1); 
        y(i+1)=E;   
        T(2) = T(1) + minutes(1);     
    else 
        pd(:,1)=Pr(:,1); 
        for j = 2 : n 
            pd(:,j)=Pr(:,j)+pd(:,j-1); 
        end 

     
        C=rand; 
        D=pd-C; 
        E=find(D>0,1); 
        y(i+1)=E; 

         
        T(2) = T(1) + minutes(1);  
    end 
for i = 2 : (PMatrix_Index-1)   

     
    Time(i) = rem(datenum(T(i)),1); 
    zz=Loc(i, :);    
    zz(:,1) = []; 
    mat_max_index{i,:}=find(zz == max(zz));  
    [~,ncols(i)] = cellfun(@size,mat_max_index(i,1)); 
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    if ncols(i) > 1 
        if i==1 
            L(i)=5;    
        else     
            L(i)=L(i-1); 
        end  
    else 
        L(i)=mat_max_index{i}; 
    end  
    [a,~]=find(abs(P(:,2)-Time(i))<0.00001,5); 

 
    PR=P(a, :); 
    A=PR(L(i),:); 
    kk=find(A(1,:)>=0,5,'last'); 
    Pr=A(kk); 
    [~, n] = size(Pr); 
    if Pr == zeros(1,n) 
        Predicted_L=1;            
        A=PR(Predicted_L,:);  
        kk=find(A(1,:)>=0,5,'last'); 
        Pr=A(kk); 
          if Pr == zeros(1,n) 
             while true 
                 Predicted_L = Predicted_L+1; 
                 A=PR(Predicted_L,:);  
                 kk=find(A(1,:)>=0,5,'last'); 
                 Pr=A(kk); 
                    if any(Pr > zeros(1,n)) 
                        break;  
                    end 
              end 
          end 
        pd(:,1)=Pr(:,1); 
        for j = 2 : n 
            pd(:,j)=Pr(:,j)+pd(:,j-1); 
        end 
        C=rand; 
        D=pd-C; 
        E=find(D>0,1); 
        y(i+1)=E;   
        T(i+1) = T(i) + minutes(1); 
    else 
        pd(:,1)=Pr(:,1); 
        for j = 2 : n 
            pd(:,j)=Pr(:,j)+pd(:,j-1); 
        end 
        C=rand; 
        D=pd-C; 
        E=find(D>0,1); 
        y(i+1)=E; 

         
        T(i+1) = T(i) + minutes(1);   
    end 

     
end 
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i=PMatrix_Index; 
zz=Loc(i, :);    
    zz(:,1) = []; 
    mat_max_index{i,:}=find(zz == max(zz));  
    [~,ncols(i)] = cellfun(@size,mat_max_index(i,1)); 
    if ncols(i) > 1 
        if i==1 
            L(i)=5;    
        else     
            L(i)=L(i-1); 
        end  
    else 
        L(i)=mat_max_index{i}; 
    end 

  

  
output=[L;y]; 
output=output.'; 

  
end
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Appendix B – MATLAB Code of Cross-validation Process 

function s = IFM_Val7_DiffRes_Shide_PredictionVsTestData(~) 
clc 
H=10; 
qq=1; 
s= zeros(1440,2*H); 
for hh = 1:10  
    month= '04Months'; 
    cvnumber=hh; 
    res=5; 
    x = {month, '-Shide-S-P-AllInstances-', 'Wed'}; 
    x1 = {'Shide-S-P-', cvnumber, '-Wed-TestData'}; 

  
    d=x{3}; 
    name     = sprintf('%s%s', x{1}, x{2}, x{3}); 
    name1     = sprintf('%s%d%s%', x1{1}, x1{2}, x1{3}); 

  
    full_filename = fullfile(d,name); 
    full_filename1 = fullfile(d,sprintf('%d', cvnumber), name1); 

  
    P = xlsread(full_filename, 'PWholeDay-WholeYear'); 

  
    Loc = xlsread(full_filename1, 'SWholeDay-WholeYear'); 

  
    format long g 

  
    ST=P(1,2); 
    ET=P(end,2); 

  
    ST=datetime(ST,'ConvertFrom','datenum'); 
    ST = datetime(ST,'Format','HH:mm'); 
    ST = dateshift(ST, 'start', 'minute', 'nearest'); 
    NearestHrST = dateshift(ST, 'start', 'hour', 'nearest'); 
    MinST = minute(ST); 
    HrST=hour(NearestHrST); 
    if MinST >= 30 

  
    else 
        HrST=HrST+1; 
    end 

  
    ET=datetime(ET,'ConvertFrom','datenum'); 
    ET = datetime(ET,'Format','HH:mm'); 
    ET = dateshift(ET, 'start', 'minute', 'nearest');     
    MinET = minute(ET); 
    HrET=hour(ET);  

  
        HrDiff=HrET-HrST; 
        MinDiff=MinET+(60-MinST); 

  
        PT=(HrDiff*60)+MinDiff; 
        PMatrix_Index=(PT)+1;  
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    T(1)=ST; 
    Time = zeros(1, PMatrix_Index); 
    y = zeros(1, PMatrix_Index); 

  
    ncols= zeros(1,PMatrix_Index); 
    L=zeros(1,PMatrix_Index); 
    mat_max_index=cell(PMatrix_Index,1); 
    i=1; 
    Time(i) = rem(datenum(T(1)),1); 
        zz=Loc(i, :);    
        zz(:,1) = []; 
            mat_max_index{i,:}=find(zz == max(zz));  
            [~,ncols(i)] = cellfun(@size,mat_max_index(i,1)); 
                if ncols(i) > 1                
                    L(i)=5;                 
                else 
                    L(i)=mat_max_index{i}; 
                end  
    y (1)=L(i); 
        [a,~]=find(abs(P(:,2)-Time(i))<0.00001,5); 

  
        PR=P(a, :); 
        A=PR(L(i),:); 
        kk=find(A(1,:)>=0,5,'last'); 
        Pr=A(kk); 

  
        [~, n] = size(Pr); 
        if Pr == zeros(1,n) 
            Predicted_L=1;            
            A=PR(Predicted_L,:);  
            kk=find(A(1,:)>=0,5,'last'); 
            Pr=A(kk); 
              if Pr == zeros(1,n) 
                 while true 
                     Predicted_L = Predicted_L+1; 
                     A=PR(Predicted_L,:);  
                     kk=find(A(1,:)>=0,5,'last'); 
                     Pr=A(kk); 
                        if any(Pr > zeros(1,n)) 
                            break;  
                        end 
                  end 
              end 
            pd(:,1)=Pr(:,1); 
            for h = 2 : n 
                pd(:,h)=Pr(:,h)+pd(:,h-1); 
            end 
            C=rand; 
            D=pd-C; 
            E=find(D>0,1); 
            y(i+1)=E;   
            T(2) = T(1) + minutes(1);     
        else 

  
            pd(:,1)=Pr(:,1); 
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            for h = 2 : n 
                pd(:,h)=Pr(:,h)+pd(:,h-1); 
            end 
            C=rand; 
            D=pd-C; 
            E=find(D>0,1); 
            y(i+1)=E; 

  
            T(2) = T(1) + minutes(1);  
        end  

  
    j=2; 
    q=res-2; 
    while true 
    for i = j : j+q          
        Time(i) = rem(datenum(T(i)),1); 
        zz=Loc(i, :);    
        zz(:,1) = []; 
        mat_max_index{i,:}=find(zz == max(zz));  
        [~,ncols(i)] = cellfun(@size,mat_max_index(i,1)); 
        if ncols(i) > 1 
            if i==1 
                L(i)=5;    
            else     
                L(i)=L(i-1); 
            end  
        else 
            L(i)=mat_max_index{i}; 
        end  
        [a,~]=find(abs(P(:,2)-Time(i))<0.00001,5); 
        PR=P(a, :); 
        A=PR(y(i),:); 
        kk=find(A(1,:)>=0,5,'last'); 
        Pr=A(kk); 
        [~, n] = size(Pr); 

  
        if Pr == zeros(1,n) 
            Predicted_L=1;            
            A=PR(Predicted_L,:);  
            kk=find(A(1,:)>=0,5,'last'); 
            Pr=A(kk); 
              if Pr == zeros(1,n) 
                 while true 
                     Predicted_L = Predicted_L+1; 
                     A=PR(Predicted_L,:);  
                     kk=find(A(1,:)>=0,5,'last'); 
                     Pr=A(kk); 
                        if any(Pr > zeros(1,n)) 
                            break;  
                        end 
                  end 
              end 
            pd(:,1)=Pr(:,1); 
            for h = 2 : n 
                pd(:,h)=Pr(:,h)+pd(:,h-1); 
            end  
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            C=rand; 
            D=pd-C; 
            E=find(D>0,1); 
            y(i+1)=E;   
            T(i+1) = T(i) + minutes(1); 
        else  
            pd(:,1)=Pr(:,1); 
            for h = 2 : n 
                pd(:,h)=Pr(:,h)+pd(:,h-1); 
            end  
            C=rand; 
            D=pd-C; 
            E=find(D>0,1); 
            y(i+1)=E;    
            T(i+1) = T(i) + minutes(1);   

  
        end  
    end 

  
    if i < PMatrix_Index-1  
        if i == ((floor(PMatrix_Index/res))*res) 
        zz=Loc(i+1, :);    
        zz(:,1) = []; 
        mat_max_index{i+1,:}=find(zz == max(zz));  
        [~,ncols(i+1)] = cellfun(@size,mat_max_index(i+1,1)); 
        if ncols(i+1) > 1 
            if i==1 
                L(i+1)=5;    
            else     
                L(i+1)=L(i); 
            end  
        else 
            L(i+1)=mat_max_index{i+1}; 
        end 
        y(i+1)=L(i+1); 
        q=res-1; 
        j=PMatrix_Index-q;         
        else         
        zz=Loc(i+1, :);    
        zz(:,1) = []; 
        mat_max_index{i+1,:}=find(zz == max(zz));  
        [~,ncols(i+1)] = cellfun(@size,mat_max_index(i+1,1)); 
        if ncols(i+1) > 1 
            if i==1 
                L(i+1)=5;    
            else     
                L(i+1)=L(i); 
            end  
        else 
            L(i+1)=mat_max_index{i+1}; 
        end 
        y(i+1)=L(i+1); 
        j=i+1; 
        q=res-1; 
        end 
    else 
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        break; 
    end 
    end 
    y(end)=[]; 

  
    output=[L;y]; 
    output=output.'; 

     
    s(:,qq:qq+1)=output; 
    qq=qq+2; 
end 

  
end 

 


