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Abstract

Delineation of Road Networks from Remote Sensor Data with Deep Learning

Pinjing Xu

In this thesis we address the problem of semantic segmentation in geospatial data. We investigate

different deep neural network architectures and present a complete pipeline for extracting road net-

work vector data from satellite RGB orthophotos of urban areas.

Firstly, we present a network based on the SegNeXt architecture for the semantic segmentation of

the roads. A novel loss function is introduced for training the network. The results show that the pro-

posed network produces on average better results than other state-of-the-art semantic segmentation

techniques. Secondly, we propose a fast post-processing technique for vectorizing the rasterized

segmentation result, removing erroneous lines, and refining the road network. The result is a set

of vectors representing the road network. We have extensively tested the proposed pipeline and

provide quantitative comparisons with other state-of-the-art based on a number of known metrics.

This work has been published and presented at the 14th International Symposium on Visual Com-

puting, 2019.

Finally, we present an altogether different approach to road extraction. We reformulate the task

of extracting vectorized road networks as a deep reinforcement learning problem with partially

observable state-space and present our preliminary results and future work.
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Chapter 1

Introduction

The automatic extraction of road networks from remote sensor imagery has long been a challenge

not just to the GIS but also the computer vision communities. The vast variations in the road

functions [e.g. rural, urban, highways, etc], colors [e.g. dirt road, asphalt] , shapes [e.g. wind-

ing mountain roads, straight highways], and sizes, make it an extremely challenging task. Recent

attempts using deep learning techniques have shown promising results [56], [47], the majority of

which reformulate the problem as a pixel classification problem and employ semantic segmentation

techniques. Although this is useful in some cases, the majority of the applications employing road

network data, e.g autonomous driving, GIS, etc, require that the network is in vector form; and in

fact, it is this vectorization or linearization of the road network pixels that is perhaps one of the most

challenging tasks.

In this thesis we present a novel approach for extracting road networks in vector form. A deep

convolutional neural network based on the SegNeXt architecture is trained to classify road pixels in

satellite images of urban areas. This architecture offers a reduced number of parameters and high

localization accuracy therefore eliminating the need for the typical refinement of the segmentation

results using MRF-based techniques. Furthermore, a novel loss function is proposed which provides

better results than the typical loss functions used. The segmentation result is then vectorized and

refined using a fast post-processing technique. During the post-processing, linear road segments

are extracted using an iterative patch-based Hough transform technique which tracks the segments

from one patch to the other. Next, a refinement process ensures that the nearby linear road segments
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are connected together to form a larger road network, and conflicting/overlapping parallel segments

and other small segments are removed. The final result of the proposed technique is a road network

in vector form which can be readily used in any GIS-based application.

In addition, we present preliminary results of a proposed technique based on deep reinforcement

learning. In order to overcome the aforementioned limitations with generating vectorized data, we

reformulate the problem as one of training an agent with reinforcement learning to move along

road centerlines; and in doing so directly generating a road network graph. We present the learning

environment, and details on the training of the agent using two typical deep reinforcement learn-

ing techniques namely, deep Q-learning (DQN) and Asynchronous Advantage Actor-Critic (A3C).

Finally, we discuss the feasibility of utilizing deep reinforcement learning for road extraction.

In summary, in this thesis:

• we present a complete and efficient pipeline for solving the problem of road extraction from

satellite imagery, in which a SegNeXt-like deep neural network is used, with a novel loss

function.

• we propose a new post-processing technique for the vectorization of road data from semantic

segmentation results.

• we reformulate road extraction as a deep reinforcement learning problem with partially-

observable state-space.

1.1 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides a brief overview of the state-of-

the-art related to our work, including procedural and deep-learning approaches in computer vision.

In Chapter 3 we present a semantic segmentation-based technique for road network extraction with

a novel post-processing method. Chapter 4 describes a novel technique for road extraction using

deep reinforcement learning and presents preliminary results. Finally, in Chapter 5 we present the

conclusion and future work.
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Chapter 2

Literature Review

Below we provide a brief overview of the state-of-the-art most relevant to our work.

2.1 Deep Learning in Computer Vision

2.1.1 Image Classification

Image classification has been a core task in computer vision in the recent decades. Before deep

neural networks were introduced into the field, the classic procedure of image classification was first

extracting features from the image, building feature descriptors, and then using machine learning

classifiers to classify the images. One such well known technique was Bag-of-Words, which was

first published by Salton & McGill in 1983 [54]. The main idea of Bag-of-Words model is to treat

the frequency of occurrence of each word in a text as a feature for training a classifier. Though

originally designed to represent text information in natural language processing, the concept of

Bag-of-words was later brought into the field of computer vision. When classifying images, local

features are first extracted using feature detectors, such as the Scale-Invariant Feature Transform

(SIFT [36]) interest point detector, and then a descriptor is formed for a small region around each

feature point. SIFT descriptor is commonly used in this process. A codebook is then generated

from all possible features, and each image can be represented as a histogram of the codebook and

used for the training of a classifier. Using the Bag-of-Features technique, Sivic & Zisserman [62]

developed an approach called Video Google, that can achieve immediate run-time object retrieval
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throughout a movie database.

Figure 2.1: AlexNet architecture [30]. Due to the hardware limitations, the authors trained the
network on two GPUs, and combined the outputs in the last dense layer to generate labels for
different categories.

ImageNet database [17] is a large visual database that contains more than 14 million hand-

annotated images in more than 20, 000 categories. In 2012, Krizhevshy designed the first modern

deep neural network (AlexNet [30]) for the purpose of image classification, and won the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC [53]). Figure 2.1 shows the architecture of

AlexNet. It contains five convolutional layers followed by three fully connected layers, max-pooling

layers and ReLU activation function are also applied. The trained network achieved an error rate

of 16.4%, where as the winner in 2011 had an error rate around 26%. This was a breakthrough

for both deep learning and image classification area. In the next few years, all the winners of the

ILSVRC challenge were using deep learning models and the classification error rate fell to only a

few percent.

Following the step of AlexNet, the VGG16 [59] architecture was proposed two years later. By

the time, the most common way of getting better results from convolutional neural networks is to

make the network deeper. So the VGG16 network, as shown in Figure 2.2 is designed to have

sixteen convolutional layers, with multiple max-pooling layers and three fully connected layers at

the end. 3×3 kernel filters is used, instead of the kernel size of 11×11 used in AlexNet. The smaller

kernel size helps to decrease the number of parameters to train. VGG16 architecture reached 7.3%

top-5 error rate on the 2014 ILSVRC challenge.

GoogleNet [63] was also proposed in 2014 ILSVRC challenge, and reached an error rate of

4



Figure 2.2: VGG16 architecture [13]. Gray blocks are convolutional layers, red blocks are max-
pooling layers, blue blocks are fully connected layers, and green block is the output layer to deter-
mine a label from the 1000 categories.

6.7%. It is composed of 22 layers using inception modules for a total of over 50 convolutional

layers. Although it has a similar performance as the VGG16 network, the size of the model is much

smaller than VGG16 due to the three fully connected layers used in VGG16 which take a large

amount of space to store.

Figure 2.3: ResNet block proposed in [24].

The authors in [24] showed that by increasing the depth of the network the error rate also in-

creases. Residual networks were then introduced to alleviate this problem. Residual learning cre-

ates connections between the output of multiple convolutional layers and their original input with an

identity mapping. Consequently, features from the training images can be learned faster in deeper

layers. The so called ResNet architecture, which won the 2015 ILSVRC challenge with an error

rate of 3.57%, contains 154 convolutional layers with 3× 3 filters using residual learning by block

of two layers. An example of ResNet block structure is shown in Figure 2.3
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(a) Origin (b) LA (c) SMC

(d) Human (e) EAMS (f) NC

Figure 2.4: Image segmentation example on horse image [29]. 2.4a: Original Image, 2.4b: Local
Variation Algorithm [21], 2.4c: Spectral Min Cut [19], 2.4d: Human Labeled [37] [38], 2.4e: Edge
Augmented Mean Shift [12] [11], 2.4f: Normalized Cut [57] [15]

2.1.2 Semantic Segmentation

Image segmentation is a pixel-wise classification problem, where every pixel in an image has to be

assigned a label. Generally in a segmentation result, pixels with the same label should share similar

visual characteristics, such as color, intensity, texture, etc. Thus, image segmentation is not only

of interest to artificial intelligent and computer vision communities, but also widely used in image

compression, image editing, and many other image processing techniques. The procedural methods

of segmenting images are more or less depending on thresholds. Figure 2.4 shows an example of

the performance of some classic image segmentation algorithms on a test image.

Unlike ordinary segmentation that partitions the image with only low-level cues, such as color

and intensity, semantic segmentation tries to partition the image by considering the semantic mean-

ing of pixels and classifies them into one of the pre-determined classes. This means semantic seg-

mentation takes one more step further than image classification i.e. in addition to finding the object

category similar to image classification, it also indicates the position of the object in a given image,

by assigning different labels to object pixels and background pixels, or between different classes of

objects; this is in contrast to image classification where only one label is required for the image as

a whole. For this reason, semantic segmentation is generally considered as a harder problem than
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Figure 2.5: FCN architecture [35].

image classification and ordinary segmentation.

In the past few years, following the highly active development of image classification, deep

learning has also proved to be a very efficient tool for solving semantic segmentation problems. By

modifying the existing deep neural networks used in image classification tasks, fully convolutional

networks (FCN) [35] were purposed. The result of semantic segmentation, is an image of equal

size as the input image. Figure 2.5 shows the architecture of FCN network. The authors in [35]

replaced the fully connected layers used in AlexNet and VGG16 with convolutional layers to allow

the network to have an arbitrary input size and corresponding output size. Then a skip connection

architecture was defined that combines semantic information from the deep layer with appearance

information from the shallow layer. An up-sampling at the end of the network is necessary to re-

cover the reduced size caused by convolution operations. This is commonly called "deconvolution"

because it generates a larger size for output than the input of this layer. The authors in [35] showed

that in a FCN trained end-to-end pixels-to-pixels on semantic segmentation exceeds all procedural

methods without having additional post-processing steps.

Since then, a lot of work has been done to improve the performance of FCN [8, 34, 40, 64].

In contrast to FCN, which replaces the fully connected layers in VGG16 network architecture, the

authors in [47] designed a new deconvolutional network. In their work, as shown in Figure 2.6, 13
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Figure 2.6: Deconvolutional network architecture [47]

convolutional layers were adopted from a generic VGG16 network, and a deconvolution network

consisting of a corresponding number of deconvolution and unpooling layers was used as the second

part of the complete architecture. This network achieved 72.5% accuracy, measured with the mean

Intersection-over-Union(mIoU) metric, in the 2012 PASCAL VOC segmentation challenge [20],

where the original FCN network achieved 62.2% mIoU score.

Building upon the FCN architecture, U-Net [51] was proposed to solve biomedical image seg-

mentation problems. Similar to the deconvolution network designed in [47], U-Net also has a series

of convolutional layers and pooling layers, followed by symmetric deconvolutional layers and up-

sampling layers. Feature maps from the convolutional part are integrated with the output from

deconvolutional layers which helps with improving the overall precision. The architecture can be

seen in Figure 2.7. Moreover, a key challenge for the development of deep learning techniques in

the field of biomedical image segmentation is the relatively smaller size of the available datasets.

Thousands of training images are usually beyond reach in biomedical tasks, while AlexNet in 2012

ILSVRC was trained with 1 million images. To solve this problem, U-Net also utilized extensive

data augmentation techniques, which allowed the network to learn invariance to all kinds of defor-

mations. As a result, the authors were able to train the network on a dataset that contains only 30

images without overfitting.

2.2 Deep Reinforcement Learning

The first well-known method that combines reinforcement learning and deep learning is Deep Q-

Learning [44]. In this work, a system that consists of a network called Deep Q-Network (DQN)
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Figure 2.7: U-Net Architecture [51].

trained with a variant of Q-learning learns to play most of the Atari 2600 video games with a

human-like performance. Based on this system, a lot of improvements and variants have been

proposed such as the work in [23, 45, 55, 58, 67] to name a few.

Since then, most deep reinforcement learning algorithms are tested with the Atari 2600 games

which have a relatively simple game environment e.g. Pong, Breakout, Space Invaders, Seaquest and

Beam Rider. These games have a fixed background scene, instant reward, and only a small number

of possible actions for the agent. A more complex game environment was considered in [61] called

Montezuma’s Revenge. The game has sporadic and delayed reward. The agent must jump down,

climb up, get the key, and open the door, and kill the monster in order to win the reward. This leads

to problems in training the agent and in fact the authors report that all current techniques (circa

2017) of using deep reinforcement learning failed primarily because the ε-greedy strategy fails to

explore the game in a consistent and efficient manner. A similar conclusion was also mentioned in

the original DQN paper in [44].

In [32], the authors designed a method that applies double Deep Q-Networks (DDQN [23]) for

dynamic path planning of an unknown indoor environment. Their results shows that after training,

the agent is able to reach the local target position successfully in an unknown dynamic environment.
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In the work of [50], the authors created a Memory-based Deep Reinforcement Learning algorithm

for robots that can explore unknown environments like indoor mazes.

Following a different approach which employs real ground-based geospatial data, the authors

in [41] created a city scale interactive navigation environment called StreetLearn that uses an end-

to-end reinforcement learning approach. StreetLearn takes images and underlying connectivity in-

formation from Google Street View as input and can traverse and navigate from start to goal within a

city. This is the first work that successfully utilizes an RL method on large-scale outdoor navigation

based on real-world images instead of indoor environments or simulated outdoor environments.

2.3 Road Extraction

2.3.1 Procedural Approaches

Research aimed at extracting roads from remote sensing data automatically has been going on for

more than three decades. For many years, though important progress has been made, the majority

of the road extraction techniques relied solely on procedural approaches. An overview can be found

in [66]. Similar to the most common techniques, authors in [2] designed an automatic algorithm

to extract roads from aerial images using dynamic programming and Kalman filters. By modeling

the urban and road context in different scales, authors in [26] described a new speed function con-

structed using multi-spectral characteristics and road geometry. In [27], a knowledge-based system

was built that could find the dominant directions of the road footprint, then initialize and track a

road segment without user interaction. However it suffers from over-extraction due to the design

of multi-directional road tracker. [68] determine road likelihood with superpixels and then create

road networks using the shortest path algorithm and Conditional Random Field (CRF). Of the most

recent, is the work in [33] where the authors propose a technique for extracting urban roads from

satellite images by using orientation histograms and morphological profile features to guide a binary

partition tree, thus achieving a higher accuracy.

As it is evident, all these methods mentioned above strongly rely on low-level image features,

make a lot of assumptions, and require prior knowledge for the road extracting process to work. Due

to the different illumination effects, appearances, and the complex environments in urban areas, such
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as shadows and occlusions of buildings, trees, vehicles, etc images captured by cameras carried on

airplanes or satellites can be highly variable and different. Thus, it is extremely difficult for these

procedural methods to generalize on arbitrary remote sensing image datasets.

2.3.2 Deep Learning Approaches

Although generalization is a hard problem for procedural methods, it is a perfect task for modern

deep learning techniques. Perhaps one of the first works on training deep neural networks for

extracting large-scale road networks from satellite images is the work presented in [43]. The authors

present an approach for automatically detecting roads in aerial imagery using a neural network. In

this work, synthetic road/non-road labels generated from readily available vector road maps were

used as ground truth labels. Firstly, principal component analysis (PCA) was applied to the RGB

aerial images as pre-processing. This step was able to reduce the dimensions of the input data

by two thirds and make it possible to use a large context (i.e. larger-sized patches containing a

large number of urban features) for training the neural network using limited memory. By using a

larger context, it is easier to better differentiate between what is a road vs a non-road pixel. Then

a neural network was initialized using an unsupervised pre-training procedure proposed in [25],

which has been proved better to use than initializing neural network weights randomly [25, 31].

While training the network, random angle rotations are applied to each image patch before feeding

it into the network, so that the network is trained to generalize and not favor roads in any particular

orientation. Lastly, as a post-processing step, a neural network was trained to refine the predictions

given by the former network. This post-processing approach showed a significant improvement on

the results by removing the disconnected blotches and filling in the gaps in the prediction images.

Recently, following the success of FCN, U-Net and residual block in the field of semantic

segmentation, more studies in road extraction are following the semantic segmentation approach

[10, 60]. Linknet architecture was proposed in [7], which takes benefit of combining U-Net archi-

tecture and residual blocks from ResNet architecture, and using pre-trained weights from ResNet18

network as its encoder. Although ResNet18 was a light network at the time, it outperforms many

other deep networks on benchmark datasets [5,14] and the training speed is fast. On top of Linknet,

D-LinkNet [74] added to the architecture dilated convolutional layers to increase the receptive fields
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of feature points without decreasing the resolution of the feature maps. Also the encoder in D-

LinkNet is upgraded to ResNet34 with pre-trained weights on ImageNet dataset. The network

surpassed U-Net and Linknet34 and achieved 64.12% IoU score during the DeepGlobe Road Ex-

traction Challenge [16].

The authors in [6] propose a fully convolutional network based on the U-Net family architecture

with pre-trained ResNet34 as the encoder. They optimize a loss function which combines the binary

cross entropy and the intersection over union. During the test phase they report that data augmen-

tation, such as randomly scaling the image by a factor between 0.6− 1.4 and rotating the image by

30 degrees, helps improve the prediction results even further.

In [73] the authors present a network which combines the ResNet and U-Net architectures to

address the road network extraction. Their network employs skip connections within the residual

units and between the encoding and decoding paths of the network to facilitate propagation of

information, and also reduce the number of the generic U-Net’s parameters by 75%.

The purpose of extracting road networks from aerial or satellite images is for using in real

applications, such as autonomous driving, city planning and GIS system, where vectorized road

data is required. However, the above mentioned methods are addressing road segmentation, which

feeds RGB images into a deep neural network, labels the pixels as road/non-road and outputs an

image that is a rasterized result. As a matter of fact, it is the vectorization or linearization of the

road network pixels that is perhaps one of the most challenging tasks in road networks extraction.

The authors in [39] propose an approach named as DeepRoadMapper that estimates road topol-

ogy from aerial images. Firstly, they utilize an encoder-decoder (convolution-deconvolution) net-

work that consists of several ResNet blocks with a total of 55 convolutional layers in the encoder

and 3 fully convolutional layers in the decoder. Skip connections are also used between convolu-

tional layers in the decoder and corresponding layers in the encoder. This deep network generates

an initial segmentation for roads. Then road centerlines are extracted by applying a thinning al-

gorithm [72]. Treating every pixel on the centerlines as a node, a graph of the road network is

generated, which is later refined and simplified using Ramer–Douglas–Peucker algorithm [18, 49].

In the latter half of the proposed pipeline, a heuristic algorithm is designed to make a hypothesis on
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possible connections for gaps and missing parts in the graph. A second network built with an in-

ception network [63] is then trained to classify and determine whether a hypothesized connection in

the graph is correct or not. The DeepRoadMapper is a complete workflow, that takes RGB imagery

as input and generates a fine-tuned road graph as their output. Their result fits the requirements of

real applications, but issues still exist.

As of early 2019, the best performing road network extraction technique is RoadTracer pre-

sented in [3]. Instead of using deep neural networks for semantic segmentation, the authors follow

a new paradigm in which a CNN is used as a decision function for tracing the road network in

the image. A searching algorithm is designed that maintains a graph and a stack of vertices in the

graph. Given a known road pixel in the RGB image, a small patch around this pixel is cropped

and fed into a convolutional neural network. The CNN contains 17 convolutional layers, with batch

normalization [28] and ReLU [46] activation applied after each layer. The network has two output

components: an action to decide between "GO" and "STOP", and a vector of 64 elements repre-

senting 64 orientations around the current road pixel indicating the specific orientation for the next

step if the action component shows "GO". Every time the CNN decides to move i.e. "GO", a new

vertex will be added to the vertex stack according to the orientation component, meanwhile this

new vertex and an edge will be added into the graph. By doing so, it is possible to trace along the

road in the satellite imagery. Once the CNN outputs "STOP" as the action component, the vertex

stack will pop the top vertex and the tracer will jump back to the last visited vertex (top vertex in

the stack) to check if there is any other options to choose (i.e. at a road junction). This approach

is doing an excellent job on extracting vectorized road data with no post-processing required, but it

has the pre-condition that the starting point lies on a road otherwise the tracing fails. Problems also

arise in cases where tracing the road network runs out of points to process e.g. commonly occurring

at bridges. In this case, the result will be partial and disjoint from the entire road network and it

becomes hard to recover the missing parts.
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Chapter 3

Deep Residual Neural Networks and

Iterative Hough Transform for Road

Extraction

In this chapter, we present a complete pipeline for road extraction. A SegNeXt-like network ar-

chitecture trained with a novel loss function provides a semantic segmentation of roads. A novel

post-processing technique then converts the segmented roads into vector form. We show that the

post-processing technique produces better output when compared to other commonly used meth-

ods in state-of-the-art road extraction techniques. The final result is a set of vectors representing

the road network. We extensively test our network and present an analysis of the results on two

benchmark datasets. This work has been published in the 14th International Symposium on Visual

Computing [70].

3.1 Technical Overview

The input to our system is an RGB image which is fed forward into a deep autoencoder network

(SegNeXt) with aggregated residual transformations. The network outputs a semantic segmentation

of the image in the form of a grayscale image in which each pixel is classified into a road or non-

road classes. The classification image is then divided into patches which are further refined. During
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Figure 3.1: System overview. The input RGB image is processed using SegNeXt and results in a
grayscale classification image of road and non-road pixels. The classification image is then divided
into patches which are further processed. The refinement process involves an iterative application of
patch-based Hough transforms which results in a set of extracted lines. Erroneously extracted lines
resulting from misclassification are removed, and nearby lines are either connected (if not parallel)
or suppressed (if parallel). The result is a set of vectors representing the road network in the input
image shown in yellow overlaid on the input image.

the refinement process, an iterative patch-based Hough transform is applied. Extracted lines are

tracked from one patch to the other. Spurious lines resulting from misclassification are removed,

and nearby lines are either connected (if non-parallel) or suppressed (if parallel). The result is a

set of vectors representing the road network in the input image. Figure 3.1 summarizes the system

overview.

3.2 Network Architecture

Although plenty of remarkable works has been done in the recent years to improve the performance

of deep neural networks in the semantic segmentation task, the segmentation output of most network

architectures is still coarse, due to the loss of information while applying pooling or down-sampling

to the feature maps [1]. Thus, a post-processing technique, such as conditional random field to

smooth and refine the segmentation result is often required. The skip connection used in U-Net is

one of the solutions to this problem, where the feature maps are passed to the decoding layers from

corresponding layers in the encoder, concatenated with the input to the decoder layers before apply-

ing deconvolution. The SegNet architecture, proposed in [1], tries to solve the problem in another

way. It stores the pooling indices while applying max-pooling, then directly passes the pooling

indices to the corresponding decoder layers. During up-sampling for deconvolution, feature maps
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Figure 3.2: SegNeXt-variant architecture

are expanded according to the pooling indices, and the information lost during pooling operation is

restored. As a result, the SegNet model is more efficient when compared to the U-Net where the

entire feature maps in float precision are stored in memory.

In order to learn more detailed features from input images, most of the state-of-the-art deep

neural networks try to build the network deeper and wider, as well as introducing various hyper-

parameters within the architecture, e.g. atrous convolutions. However, the deeper a network, the

more difficult it is for deeper layers to retain information about the input during training due to

vanishing/exploding gradients. A solution to this was the ResNet block [24] which pushes the

learning process at the deep layers, by having direct connections to shallower layers. In contrast

to the ResNet blocks that help the network go deeper, the authors in [69] introduce the concept of

"cardinality", which represents the size of the set of transformations. They demonstrated that by

having a larger cardinality the networks can be built shallower and thus easier to train.

In our work, the network architecture resembles that of a SegNeXt network [22], which is a

combination of a SegNet-like architecture and ResNeXt blocks [69] as shown in Figure 3.2. It

consists of three deep convolutional encoders and a corresponding number of decoders with feed-

forward links to pass the feature maps from the encoder layers to the decoder layers and merge it

with the input of decoder layers; in contrast to the SegNet where only pooling indices are restored

for up-sampling since the information lost from the pooling operation can not be fully recovered

with pooling indices. The cardinality-enabled residual-based building blocks proposed in [69] are

also used in our network. In each residual block the input data is split into multiple groups onto
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which different kernels are applied. A dilation of 2 is applied during convolution to introduce more

spatial context. Batch normalization [28] and the ReLU activation function [46] are applied at each

convolutional layers. The feed-forward links from the encoders to the decoders help to retain high

frequency information and improve the boundary delineation resulting in a smoother segmentation

result therefore eliminating the need for any subsequent post-processing with conditional random

fields (CRF), etc. In [69] these cardinality-enabled residual-based blocks used in shallow networks

were shown to surpass in terms of performance other deeper CNNs. Thus, using these blocks the

network can be shallower resulting in a smaller number of trainable network parameters therefore

making the training process more cost-effective. In addition, the last layer that performs softmax

operation in the original SegNeXt architecture, which is used for multi-class classification task, is

replaced by a convolutional output layer that gives grayscale results in which the value of each pixel

indicates the likelihood of it to be a road/non-road pixel.

3.3 Experiments

3.3.1 Dataset

We trained our network on two different datasets: (a) satellite imagery of Potsdam from 2D Se-

mantic Labeling Contest [52] held by the International Society for Photogrammetry and Remote

Sensing (ISPRS), and (b) Google Map Imagery data of 40 different cities around the world. For

both datasets, ground truth images are generated with road centerlines extracted from the Open-

StreetMap [48] data.

Potsdam Imagery from ISPRS Benchmark Dataset

The ISPRS benchmark dataset for Potsdam contains 38 RGB image tiles in total, with a pixel

resolution of 6K × 6K and ground sampling resolution of 5cm. Of all these tiles, only 24 images

are geo-referenced (GPS information included in the image file) and available for training neural

networks. We spilt them into two sets, 18 images are used for training the network, and 6 images are

for testing. The city of Potsdam shows a typical European city with relatively larger building blocks,

narrower streets and dense settlement structure compared with modern cities in North America.
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Google Maps Imagery

Google Maps Imagery data is very easy to use with; configurations such as location, zoom level

and image resolution can be defined by the user. To make our work more comparable to the current

state-of-the-art, we train and test our network following a similar approach as in [3]. 300 satellite

images acquired from Google Maps with resolution of 4096 × 4096 and ground sampling density

of 60 cm
pixel (zoom level 18) are used. These images are randomly selected in the 24km2 surrounding

area of the GPS locations of 40 major cities.

3.3.2 Training

In order to maximize the training dataset we decided not to use a validation set during training but

rather calculate the loss based after each epoch on three randomly selected patches from the training

set. The training took 48 hours on a single NVIDIA GTX 1080Ti with an adaptive learning rate.

We have used Keras API (with Tensorflow as backend engine) for the development of the network

and the code is available as open source at https://theictlab.org/lp/2019Re_X/.

Input. It is necessary to make an appropriate choice for the patch size of the network input. If

the patch is too large, it could not fit into the network due to the limited memory in GPU, and if a

patch is too small it will have less coverage and therefore context which in turn will cause ambiguity

when learning the features in the image as reported in [43] (see Figure 3.3). In each epoch during

our training process, the input to the network is a batch of 32 image patches of size 200 × 200 to

make sure that the patch width is wider than the general road width in the imagery. Patches are

cropped and selected from the images in the entire training set using random sampling in order to

ensure appropriate coverage.

(a) (b)

Figure 3.3: An example of using small patch size vs. larger patch size given in [43]. These two
images are showing the same roof top region, but with different patch size. On 3.3a, there is no way
to determine the content inside the patch. On 3.3b, with a larger patch size, more context is visible
to us, and helps to understand the semantic meaning of this region.
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Data augmentation. We apply a series of different data augmentation operations on the input

patches. A histogram equalization is first applied to all patches in order to reduce possible high con-

trast resulting from deep black shadows. Next, a number of transformations is performed consisting

of random rotations in the range of [0, π2 ], scaling up/down by up to 70%, and random flipping on

the vertical/horizontal axis.

Loss function. Perhaps the most widely used loss functions when dealing with a classification

problem are the (a) Mean square error(MSE), and (b) Intersection over Union(IoU). However, due to

the characteristics of MSE (takes the sum of a patch but ignores the positional relationships, shown

in Figure 3.4), it tends to result in a lot of noise in the segmentation output, and often yields bad

performance. On the other hand, the use of an IoU loss function results in many gaps in the results

as it was also recently reported in [3]. To address the aforementioned limitations, we propose a new

loss function which comprises of both MSE and the inverse of IoU, and combines them as follows,

L = MSE × union

intersection
(1)

Intuitively, the MSE is good at indicating whether a pixel is road or non-road, and the inverse of

the IoU helps to reduce the noise.

Figure 3.4: An example of two different predictions to the same patch. MSE of prediction (a) is
12
9 , MSE of prediction (b) is 9

9 . Prediction (b) has a smaller loss in terms of number, but prediction
(a) is prefered in segmentation result because the edge in prediction (a) is sharper than in prediction
(b), which makes it easier to choose a proper threshold value.
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Training on Potsdam Imagery from ISPRS Benchmark Dataset

We had some issues while training our network on the ISPRS Potsdam dataset. The ground

sampling resolution on this dataset (5cm) is too high. The range of 30cm to 60cm of ground

sampling resolution is the commonly used in most of the related works. With the ground sampling

resolution of 5cm we can hardly set a proper patch size for training the network. Furthermore, we

tried to not only extract road centerlines from the satellite images but also the type and orientation of

each extracted road. Thus, some pre-processing steps needed to be done before the actual training.

Firstly for the RGB imagery, we down-sampled all the image tiles to the pixel resolution of

600 × 600 (was 6K × 6K), so the ground sampling resolution is reduced to 50cm and lies in the

commonly used range. Then, while generating the ground truth images we designed an encoding

that is able to include road type and orientation information into the pixel values. The encoding

uses a three channel matrix, which can be visualized by an image, to store the information. The

three-channel image is then compressed into a single channel image to reduce the dimensionality of

the problem. The details are as follows (also see Figure 3.5):

• Extract data. Road centerlines and road type data are extracted from OpenStreetMap [48]

database. Road orientations are calculated from the OSM road vector data. According to

the extracted data, there are totally 11 road types appearing in the ISPRS Potsdam dataset:

motorway, trunk, primary, secondary, tertiary, residential, track, pedestrian, side walk, foot

way and unclassified road.

• Encode data. Encode the road information for all images with the following rules:

– Red channel: 1 if the pixel is road pixel, otherwise 0;

– Green channel: road orientation in the range [0, π2 ], with 11.25 degrees increments at a

time, which results in 16 different orientations in total;

– Blue channel: a number representing road type, if applicable, ranging in [1, 11].

• Compress encoded data. Compress the three channel image into single channel, and make
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(a) (b)

(c) (d)

Figure 3.5: Generate ground truth image for ISPRS Potsdam dataset. 3.5a shows the RGB image
tile. 3.5b shows align encoded 3-channel data with RGB imagery. 3.5c shows encoded 3-channel
data without background. 3.5d shows compressed single channel data as a grayscale image.

sure each label can be mapped into an unique value by using the formula:

PixelIntensity = R× (G× 11 +B) (2)

During our experiment, we found that the training process can not reach a performance which

will produce useful results. Although road pixels in the image can be labeled out by the network,

the prediction is not good enough, as labels for road pixels can not be distinguished from each other.

For pixels lying on the same road where the type and orientation should be identical, different labels
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: ISPRS Potsdam dataset imagery is out-of-date. 3.6a and 3.6d are the latest imagery
download from Google Earth, 3.6b and 3.6e are the imagery in the ISPRS Potsdam dataset, 3.6c
and 3.6f shows the ground truth data extracted from OpenStreetMap of the corresponding region.

were shown and there is no way to recover the correct label for the single complete road. We then

tried to discard the encoding and change the labels in ground truth images into a binary format,

using 255 vs 0 with respect to road vs non-road. At the same time, we widened the width of road

centerlines in the ground truth images to 10 pixels instead of the single pixel width shown in Figure

3.5. The goal was to make the feature in the ground truth images clearer so that it won’t easily lose

information during convolutional and pooling operations.

We examined both the training result and the ISPRS dataset and came up with the following

conclusions:

• The ISPRS Potsdam dataset was captured at a past time and therefore did not match the latest

OSM data well enough (see Figure 3.6);

• OSM data contains mistakes in the labels, and since ISPRS Potsdam has only 18 images in

the training set, there is a large percentage of wrong examples in the training set. This makes

it hard to learn correct features and also hard to evaluate. An example is shown in Figure 3.7.
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Figure 3.7: Example shows OSM data mistakes. Yellow lines are road data extracted from Open-
StreetMap database. It is clear to see that in the region of the red circle, the entire road is misaligned
with the actual one.

For the above mentioned reasons, we concluded that the ISPRS Potsdam dataset is not appro-

priate for this purpose.

Training on Google Maps Imagery

To make our work more comparable to the state-of-the-art approaches, we train and test our

network following a similar approach as in [3], as well as the similar settings for dataset. Training

and validation is performed using images of 25 of these cities, and testing is performed on the

images of the remaining 15 cities. Thus, there are no images of the same city between the training

and testing sets. The ground truth images are rendered with road center line data extracted from the

OpenStreetMap [48], and the width of road lines is set to 10 pixels.

3.3.3 Inference

During inference, we run the network on the image with a sliding window, of size 200 × 200

and a step size of 100. Instead of thresholding the semantic segmentation result similar to many
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Figure 3.8: Refinement process. Three cases are considered. A: no overlap between two windows,
move the two nearby end points to the average location to connect these two line segments; B:
50% overlapping between windows, in addition to merging nearby end points of line segments,
the merging of nearby points-to-lines is also needed; C: extract a curve by merging nearby lines.
Smaller windows size and larger overlapping area will yield smoother result.

other semantic segmentation techniques, we remove the noise and extract roads by applying Hough

transform to extract line segments in each window based on the network predictions. Since we have

overlaps between the sliding windows, extracted line segments may not agree in different windows.

Thus, further refinement is needed to improve the result and get a clean road network.

3.3.4 Post-processing Refinement

Figure 3.8 shows all possible cases handled by our refinement process and what the resulting line

segments will be. For a simple case, if there’s no overlap between two windows (patches), the

extracted Hough lines will be like case A with no crossing over or overlap on one another. In this

case, we merge all nearby line end points by moving them to their average location. Next, we

consider the case of overlapping patches similar to case B in the Figure 3.8. If the extracted Hough

lines on two patches do not match with each other, intersection or misalignment will occur. To

address the misalignment issue, we perform the following steps:

1. Merge all nearby line end points similar to case A;
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2. For each line end point, search around itself for nearby lines, if there is a line AC passing by

this end point, merge this end point into the line in the following steps:

• break the line AC;

• find the middle point B between the end point and the line;

• move the end point to B;

• connect the two end points A and C with point B, forming two new lines AB and BC

This procedure is repeated on all line end points in the image and as a result all misaligned

lines are removed. An advantage of this procedure is that although Hough transform cannot extract

curved roads from the network prediction, by extracting short line segments a curved road can be

approximated as a set of piece-wise linear segments connected to each other. By merging nearby

points-to-points (e.g. case A) and points-to-lines (e.g. case B), we can reconstruct a curved road or

a circle with Hough lines (e.g. case C).

Searching for road segments iteratively through the entire image space can be a time consuming

process. Since we are using a sliding window technique during testing only neighbours of the

current patch are within the search range for merging nearby points and connecting line segments.

In most cases, only one or two line segments will be found on road patches. Thus, this searching

and merging progress is very fast. Figure 3.9 shows an example of the network segmentation and

result after post-processing.

(a) (b) (c)

Figure 3.9: An example of the network segmentation and result after post-processing. 3.9a is the
RGB image, 3.9b is the segmentation output from our network, 3.9c is the final result after applying
our proposed post-processing technique.
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3.3.5 Evaluation

As of writing this manuscript the state-of-the-art in the area is considered to be the work presented

in [3]. The authors have shown that they outperform all previously top performers in road extraction.

Hence, we use the custom junction metric proposed by [3] and the well-known Intersection over

Union (IoU) metric to evaluate our work and compare our results. The junction metric involves

measuring the precision and recall based on the detected junctions in the inferred map. Furthermore,

we report on additional metrics typically used in road extraction such as completeness, correctness,

precision, recall, and F1 score.

Ours [3] RT [39] DRM
City F1 IoU Junction F1 IoU Junction F1 IoU Junction

Amsterdam 0.28 0.16 0.16 0.01 0.01 0.01 0.22 0.13 0.04
Boston 0.71 0.55 0.58 0.67 0.51 0.74 0.77 0.62 0.66
Chicago 0.58 0.41 0.41 0.69 0.52 0.77 0.68 0.51 0.51
Denver 0.71 0.56 0.57 0.69 0.53 0.73 0.46 0.30 0.35

Kansas City 0.82 0.69 0.70 0.76 0.61 0.82 0.85 0.74 0.76
Los Angeles 0.68 0.51 0.51 0.73 0.57 0.79 0.73 0.58 0.61

Montreal 0.73 0.57 0.55 0.78 0.63 0.80 0.69 0.53 0.56
New York 0.51 0.34 0.35 0.73 0.57 0.84 0.42 0.26 0.29

Paris 0.59 0.42 0.26 0.67 0.51 0.71 0.41 0.26 0.31
Pittsburgh 0.71 0.55 0.57 0.41 0.26 0.48 0.69 0.58 0.57

Salt Lake City 0.75 0.60 0.65 0.73 0.58 0.79 0.58 0.41 0.47
San Diego 0.72 0.56 0.62 0.66 0.49 0.77 0.79 0.65 0.72

Tokyo 0.38 0.24 0.11 0.56 0.39 0.60 0.42 0.27 0.34
Toronto 0.69 0.53 0.48 0.76 0.61 0.74 0.79 0.65 0.69

Vancouver 0.41 0.26 0.25 0.65 0.49 0.70 0.45 0.29 0.29
Average 0.63 0.47 0.45 0.63 0.49 0.69 0.60 0.45 0.48

Table 3.1: F1 Score, IoU and Junction metrics on 15 test cities. [3] RT: RoadTracer, [39] DRM:
DeepRoadMapper (implementation provided in [3])

Table 3.1 shows the comparison between the proposed approach and the two state-of-the-art

RoadTracer [3] and DeepRoadMapper [39]. The F1 Score and IoU metrics shown are for the 15

test cities. As it can be seen, our method outperforms the DeepRoadMapper on the overall test set

in both F1 score and IoU metrics. Our technique also surpasses the RoadTracer in accuracy on at

least half of the cities. We attribute this to the fact that our approach initially results in a very high

number of classified roads which the refinement process then prunes down, leading to a lower error
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rate than the other techniques.

In terms of the junction metric, the results show that both semantic segmentation methods (ours

and DeepRoadMapper) have the same level of performance in detecting the junctions, whereas the

RoadTracer performs better because it seldom misclassifies road pixels around junctions.

Ours (w/ PP) Ours (w/o PP) DRM [39] DRM (w/ PP)
City F1 IoU F1 IoU F1 IoU F1 IoU

Amsterdam 0.28 0.16 0.26 0.15 0.22 0.13 0.21 0.12
Boston 0.71 0.55 0.62 0.45 0.77 0.62 0.80 0.67
Chicago 0.58 0.41 0.44 0.29 0.68 0.51 0.74 0.58
Denver 0.71 0.56 0.64 0.47 0.46 0.30 0.55 0.38

Kansas City 0.82 0.69 0.78 0.64 0.85 0.74 0.88 0.79
Los Angeles 0.68 0.51 0.57 0.39 0.73 0.58 0.77 0.63

Montreal 0.73 0.57 0.69 0.52 0.69 0.53 0.74 0.59
New York 0.51 0.34 0.41 0.26 0.42 0.26 0.42 0.27

Paris 0.59 0.42 0.30 0.18 0.41 0.26 0.42 0.27
Pittsburgh 0.71 0.55 0.59 0.42 0.69 0.58 0.75 0.60

Salt Lake City 0.75 0.60 0.72 0.56 0.58 0.41 0.64 0.47
San Diego 0.72 0.56 0.64 0.47 0.79 0.65 0.83 0.71

Tokyo 0.38 0.24 0.08 0.04 0.42 0.27 0.42 0.26
Toronto 0.69 0.53 0.67 0.51 0.78 0.65 0.83 0.71

Vancouver 0.41 0.26 0.35 0.21 0.45 0.29 0.47 0.31
Average 0.63 0.47 0.52 0.37 0.60 0.45 0.63 0.49

Table 3.2: F1 score, IoU on 15 test cities with and without post-processing. [39] DRM: Deep-
RoadMapper (implementation provided in [3]). DRM (w/ PP): DeepRoadMapper, but replace its
own post-processing with our post-processing. w/ PP: with our post-processing. w/o PP: without
our post-processing

As shown in the results in Figure 3.11, the road network resulting from our proposed method has

relatively high completeness factor, and higher continuity than the results of DeepRoadMapper for

the same areas. The images of some of the cities in the test dataset such as Tokyo and Amsterdam

exhibit considerably different characteristics when compared to the images of other cities in the

training set. As shown in Figure 3.10, the building density in Tokyo is much higher than other

cities and the roads are narrower, therefore tall buildings produce shadows which occlude large

parts of the roads. Amsterdam on the other hand has a different color temperature (tone). Both of

these examples are rarely seen in the dataset during the training process, hence their presence in

the testing dataset results in a higher misclassification rate. This is also evident from the reported
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(a)

(b)

Figure 3.10: Cities exhibiting different characteristics i.e. patterns, building densities, building
heights, etc. The most commonly occurring city pattern/density in the training dataset looks like
Boston (a)-right and Chicago (b)-right. Unique cases appearing in the test dataset none similar to
which were seen by our network during training such as Tokyo (a)-left and Amsterdam (b)-left.
Tokyo (a)-left is shown at the same zoom-level as Boston (a)-right; has much higher road and
building density, roads are narrower, tall buildings produce shadows which occlude large parts of
the roads. Amsterdam (b)-left is shown at the same zoom-level as Chicago (b)-right. The majority
of the images used in training have similar color temperature (tone) as Boston and Chicago; in
contrast Amsterdam has more green and gray areas.

metrics shown in Table 3.1.

Table 3.2 shows the effect on the performance of the proposed post-processing method. A set

of experiments were conducted to determine how the iterative Hough Transform post-processing

affects the accuracy and completeness of the extracted road network. First, we applied our pipeline
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: Comparison between the proposed technique (a, b, c), DeepRoadMapper [39] (d, e, f),
and RoadTracer [3] (g, h, i) for the cities of Pittsburgh (left column), San Diego (middle column),
and Kansas City (right column). Green: true positives. Red: false positives. Blue: false negatives.
Ground truth: OpenStreetMap [48]. The full resolution comparison results for all 15 cities and the
source code can be downloaded from http://theictlab.org/lp/2019Re_X/

on the aforementioned 15 cities with- and without- the proposed post-processing. Furthermore, we

applied our post-processing method on the results of DeepRoadMapper by replacing its own post-

processing steps. As it can be seen from the reported metrics the proposed post-processing method

has a significant and positive effect on the evaluation results. Specifically using our network, in
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Tokyo where the network performs the worst the F1 score increased by 30% and IoU increased by

19% when using our post-processing method, while the overall F1 score increased by 10%, and

IoU increased by 9%. For DeepRoadMapper, the average performance improved by 4% on both

F1 score and IoU after substituting their post-processing method with ours. It should be noted

that DeepRoadMapper uses a post-processing method which relies on training yet another deep

neural network to recover the missing segments and connect the gaps in the raw segmentation result.

The authors indicate that the training of this second network takes at least a day to reach a good

performance score. Thus, the iterative Hough transform method is not only improving the overall

performance, but also takes less time to perform the task. All measurements shown in Table 3.2 are

based on the F1 score and IoU metrics.
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Chapter 4

Road Extraction using Deep

Reinforcement Learning

Semantic segmentation using deep learning techniques have been developed for many years, and

have achieved a very good level in terms of the accuracy of pixel-wise classification, some re-

cent works [9, 71] have reached nearly 90% mIoU score on the 2012 PASCAL VOC segmentation

challenge [20]. The score is 43.1% higher than FCN [35], 22.8% higher than the deconvolution

network [47]. As for the road extraction task, most researchers are following a similar approach

which first performs a semantic segmentation of road pixels and then applies some post-processing

techniques to refine the segmentation and extract road boundaries/centerlines. There are three main

problems with this kind of workflow:

• Although semantic segmentation is still evolving, the accuracy of road extraction using se-

mantic segmentation remains at around 60%. So we have a reason to believe that the perfor-

mance of road extraction task with the typical "segmentation and post-processing" technique

is reaching an upper bound and will be difficult to surpass.

• Current semantic segmentation network architectures can be very confident while looking for

the center area of an object, but less confident at the boundaries/edges. Although tricks like

skip connections in U-Net and SegNet can help to generate smoother results, boundaries and

edges are not as clear as the main body of objects in the final segmentation. But for roads,
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boundaries or centerlines are vital features and more important than the roads surface. Road

boundaries or centerlines are often not clear enough or even incomplete in the segmentation

results due to convolutional operation itself and also the occlusion of trees and vehicles.

• The segmentation result for roads is rasterized and can not be directly used in most of the

real-life applications, so post-processing is almost always required. There are plenty of post-

processing techniques available, but which technique to use usually depends on what kind of

segmentation we have. This fact makes the human labor involvement a necessary step during

road extraction and thus it can no longer be considered an automatic process.

On the other hand, although reinforcement learning is not a new subject, the application of

reinforcement learning can be seldom seen over a long period. Until AlphaGo, an AI Go player

developed by Google DeepMind, defeated world top Go player Lee Sedol in a five-game Go match

in March 2016, the application of reinforcement learning finally come into the spotlight. The tech-

nique behind AlphaGo [58] is actually a combination of reinforcement learning and deep learning,

where a deep neural network is used as a decision function. In fact, the work in [44] is the first to

apply a deep neural network into the reinforcement learning framework. This was later named deep

reinforcement learning, and made it possible for a machine to learn playing Atari 2600 video games

at human expert level. More recently, a new AI agent called AlphaStar [65] developed by Google

DeepMind successfully mastered on the real-time strategy game StarCraft II, and was able to beat

99.8% of all human players.

In recent years, a few works on applications of reinforcement learning have been done, and most

of them focus on self-driving cars or indoor path planning for robots. Considering the drawbacks of

semantic segmentation and the advances of deep reinforcement learning, we investigate the use of

deep reinforcement learning for the task of road extraction.

4.1 Fundamentals of RL

Reinforcement learning is an area of machine learning which aims at training the learning agent

on how to behave (take actions) in a given environment so that it can maximize a cumulative re-

ward. Figure 4.1 shows a simple example of a typical environment used to train a reinforcement
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Figure 4.1: CartPole-v1 Environment [4]. This environment consists of a track, a cart that can move
along the track, and a pole attached to the cart. the pole is not solid fixed on the cart, in other words,
the joint between the cart and pole is un-actuated. The system is controlled by applying a force from
the left or the right to the cart. The pendulum starts upright, and the goal for a learning agent is to
prevent it from falling over as long as possible. A reward of +1 is provided to the agent for every
second that the pole remains upright. The game ends when the pole is more than a certain degrees
from vertical, or the cart moves more than a certain length away from the center.

learning agent. A complete reinforcement learning system consists of 4 component: environment,

observation, action and reward. The explanation of these concepts are as follows:

Environment is the state-space that the learning agent will explore and interact with.

Observation is a sub-space of the whole environment, which is visible to the learning agent

at each time. The learning agent will make decisions based on its former experience and

current observation.

Action in an action space that contains all possible actions to take in the environment.

Reward is gained when learning agent achieves a goal as expected. Can be positive or nega-

tive.

Figure 4.2 shows the relationship between these 4 components. In an environment, the learning

agent has an observation. According this observation, an action is taken by the agent. This action

can possibly change the settings of the environment, so the environment space is updated after

every iteration after the agent takes an action. The agent will receive a reward according to how

its action changed the environment, which can be positive or negative. Then the agent will have
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Figure 4.2: Reinforcement learning system. The agent updates the environment with actions, and
environment updates the decision policy of the agent with reward.

a new observation in the environment and will adjust its decision policy to achieve higher reward.

After many attempts, the agent will finally learn how to interact with the environment in a way that

maximizes the final accumulated reward. In some simple cases, such as the Atari game set and even

the Go game that the entire game board i.e. state-space is visible to the learning agent during the

game play, the observation space is the same as the environment space. But in most cases, they

are different. For example in the case of self-driving, the agent is driving a car through a city. The

observation is the view captured by a camera/radar sensor in front of the agent. The environment is

the entire city, which contains much more context than the observation of the agent.

4.2 Technical Overview

The system takes satellite image tiles as input. An image patch centered at a road pixel is sampled

and fed into a deep neural network. The network is used as a decision function and predicts the

best action to take at each location. The action is then applied by the learning agent to update the

environment and receive rewards. During training, the ground truth is used to check whether all

roads in the image are visited and terminates the tracking progress when it is finished. During the

inference stage, the ground truth is unknown to the system, thus the termination request will be
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Figure 4.3: RL System Overview. During training progress, the ground truth information will be
used to determine whether the agent is on the right track, and also to tell if the terminate state is
reached. During inference, the lower part in the figure will be removed, so the agent will trace the
road all by itself.

given from other factors in the environment. The output of this system is expected to be a road

network in a graph format for each satellite image tile. Figure 4.3 summarizes the reinforcement

learning system overview.

4.3 Design the DRL System

To design a reinforcement learning system, we need to define the 4 components according to the

problem we want to solve. In our case, we want to formulate the problem of satellite image road

extraction into a automatic road tracking and exploring task, similar to the process of training a

robot to achieve the self-driving task in urban street environment. Based on the characteristics of

the problem, we define our RL system as follows:

Environment. At both stages of training and inference a satellite image forms the environment.

Once the process starts, the roads that have been visited by the agent will be remembered and

labeled, so that the agent will know which road is visited before and which is not.

Observation. For every move of the learning agent, an image patch centered at the current

position of the agent is extracted. We set the patch size to 200 × 200 to ensure the context visible

to the agent is enough to learn the orientation of the current road and make a decision on which

direction it will go for the next step.
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Action. For the road tracking problem, we define the actions as moving along the 8 directions

around the agent: north, east, south, west, northeast, southeast, northwest, southwest.

Reward. Starting from a road point in the environment, the agent should keep walking along

the road. Every time when the decision made by the agent leads it to a road point that it has not yet

visited before, a positive reward will be given. If the decision leads the agent onto a visited road

pixel, a small negative reward/penalty will be given to encourage the agent explore more. Finally if

the decision leads the agent to go off the road, the agent will receive a great negative reward/penalty.

If the accumulated reward keeps decreasing, then this means that the agent keeps tracing along a

visited road, or keeps making mistakes by going off the road. When the accumulated reward reached

a certain negative number, it will raise a "game over" signal to terminate the current tracing process

and reset the environment to start from the beginning again.

One thing that is worth noting is the complex nature of the environment space. Consider the

Go game, which uses 19 × 19 grids as its game board and each grid on board has three possible

cases (white, black, not occupied), is considered to have a complexity of 10 to the power of 170

possible board configurations. In our case, the resolution of each satellite imagery is 4096 × 4096

(pixels), and each pixel is represented by [R, G, B] values ranging in [0, 255]. The complexity of

our environment is intractable. Thus, we first need to simplify our environment.

4.4 Creating the Environment

There are several issues that one needs to consider when creating the environment. On one hand,

tracing roads in high resolution satellite imagery has a very high complexity. On the other hand,

training an agent to trace the road using deep reinforcement learning always begins from a starting

point. The agent then explores the surrounding region and tries to move further away in incremental

steps. This makes the size of state-space visible to the network limited. This is in contrast to

image classification or semantic segmentation where networks process a batch of randomly sampled

patches at every epoch and therefore learn to generalize quickly.

For these reasons, while creating the environment for the designed reinforcement learning sys-

tem, we were following two simple rules:
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(a) (b)

Figure 4.4: RL Mesh Envirinment. 4.4a shows mesh only, 4.4b shows road centerline labeled.

• The environment must be as simple as possible to make it easier for the learning agent to

optimize its decision policy.

• Since we are training the agent to trace roads in the image, the environment should have a

good representation for road/non-road regions.

Following these two rules, the easiest way to simplify the environment is down-sampling the

high-definition satellite image to reduce its resolution. A serious problem arises when the image is

down-sampled by a large factor: there is a massive loss of information. We found that the general

road width in the dataset is around 20 pixels, and the resolution of the satellite imagery is 4096 ×

4096. If we down-sample the image to one-tenth of its original, the roads in the resulting image

will have a width of 2 pixels. A narrower road in the original image will vanish during the down-

sampling process. Thus, we would rather keep the high resolution image as it is, and create another

image whose size is one-tenth of the original to be used as the learning environment. A mesh is

drawn on each high resolution satellite image, and each grid in the mesh is mapped into a pixel in

the small image. By doing so, the small images are considered as the representation of the large

one. Figure 4.4a shows an example of the reduced-size image (mesh) environment from a satellite

imagery.

The learning agent searches for roads in the environment. Therefore in the reduced-sized image,
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we remove all pixels that are not mapped into road pixels in the original satellite image, and label

them as non-road pixels. The rest of the pixels in the environment are labeled as road pixels (as

shown in Figure 4.4b). While running the deep reinforcement learning system, the small image is

used as the environment that the agent explores in, and the original high resolution image is only

used as the input to the deep neural network, which acts as the decision function in the reinforcement

learning system.

4.5 Experiments

4.5.1 Environment Configurations

To create the environment, we randomly choose one image tile from the dataset. The image resolu-

tion is 4096 × 4096, and ground sampling resolution is 60cm. We draw mesh on the image to get

the grids, each having a size of 10 × 10 pixels. A small single channel image of size 409 × 409 is

then created. While mapping each grid into a small image we check whether there is road centerline

extracted from OpenStreetMap [48] lying through this grid. If there is any, the region in this grid

will be labeled as road, and the corresponding pixel in the reduced image (mesh) is labeled as road

pixel (use 1 as its value). Otherwise, the grid is a non-road and the linked pixel in the reduced image

is labeled as non-road pixel (use 0 as its value).

Next, the 409×409 image is used as the environment. For every training epoch, the agent starts

from a randomly selected road pixel. The step size is set to 1 pixel in the environment (equivalently

to 10 pixels in the original satellite image). First the current position of the agent in the original

satellite image is located, and a patch of size 200 × 200 is cropped and fed-forward into the deep

neural network. According to the network output, an action is taken by the agent. During the tracing

process, if the action leads the agent to a road pixel which is never visited before, a reward of 10

points will be given to the agent. If the agent steps onto a road pixel that has been visited before, it

will get the small penalty of −1 point. Finally, if an action is leading the agent to a non-road pixel,

the agent will not move in the environment, and a large penalty of −10 points will be given. When

all the road pixels in the environment are visited at least once by the agent, this training epoch will

end. In addition, if the accumulated reward reaches −500 before the agent managed to visit all road
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pixels, the environment will also terminate the current training epoch and reset itself to start a new

epoch.

4.5.2 Reinforcement Learning Algorithms

In our experiments, we tested two classic algorithms in deep reinforcement learning.

Asynchronous Advantage Actor-Critic known as A3C [42], is an advanced reinforcement

learning algorithm. The main advantage of this algorithm is that it trains multiple learning agents

in parallel. Each agent can interact with the environment and collect experience independently, and

push their gradient updates to a central network. The parallelization is very helpful for speeding

up the training process in a complex environment. We combine the A3C algorithm with an LSTM

network as the decision function. Due to the memory limitation in GPU, the LSTM network has 3

convolutional layers, max-pooling and ReLU activation function are applied at each layer.

Deep Q-Learning is a combination of deep learning and Q-learning [44]. It uses deep neural

network to learn a Q function, where Q represents "quality". That means, the agent tries to optimise

its decision policy by expecting a maximum accumulate future reward at each step, instead of the

max single step reward. The deep neural network used in this process is called deep Q-network

(DQN). In our case, we use the deep Q-learning algorithm together with a deep CNN, that contains

17 convolutional layers, with max-pooling and ReLU activation layers.

Both of the decision networks used in A3C and deep Q-learning take an RGB image patch of

size 200× 200 from the high resolution satellite image as input, and output a integer number in the

range of [0, 7] with respect to the 8 possible actions as the decision for the agent.

4.5.3 Results & Analysis

Figure 4.5a and 4.5b shows the preliminary results of the A3C algorithm with LSTM network as its

decision function. The red lines in the satellite images are the trace of the agent in a single epoch

generated after training for a few hours. The results are very limited, only one road is extracted from

each of the cities. Starting from the top left corners in both imagery of Amsterdam and Vancouver,

the agent traces along the road until the road is cut-off and ends somewhere on the right edge of

the image. Figure 4.5b shows a better result than Figure 4.5a: in the early stage during training, the

39



(a) Amsterdam (b) Vancouver

(c) Atlanta (d) Denver

Figure 4.5: Preliminary results of deep reinforcement learning approaches.

agent moves straight along the road shown as the green line. This is a similar result as in Amsterdam

(Figure 4.5a). However, later the agent learned to turn left and right at two of the road junctions (the

first one is labeled with orange circle). This means that at different phases of the training, the agent

learned to make different decisions to the same situation. It is obvious that the action of turn right

at that junction can bring a higher accumulate reward.

The behavior of the agent is still quite basic. One reason for this is that we are using a shal-

low network during the learning phase. Due to hardware limitations, the LSTM network used as

the decision function has only 3 convolutional layers. In contrast to the deep networks used in im-

age classification and segmentation, this network does not have the capacity to learn the features
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from the input image, especially from satellite images which are complex in terms of texture and

illumination.

Figure 4.5c and 4.5d show the preliminary results of the deep Q-learning algorithm with a

CNN network as its decision function. Although the results are also limited, they still show some

improvements from the combination of A3C algorithm and LSTM network. Again starting from

a point near the top left corners in both imagery of Atlanta and Denver, the agent not only traces

along road similar to when using the A3C algorithm, but also learns to turn back when it gets to a

dead-end such as edges of image (shown in Figure 4.5c) or T-junctions (as shown in Figure 4.5d).

However, it still fails to keep tracing the road at more complex situations. For instance the road is

occluded by trees from top view (as shown in Figure 4.5c).

A common problem between the two experiments is that due to the lack of termination condi-

tion, it is difficult to run the system for testing or inference. During the testing process, the ground

truth information is invisible to both the environment or the agent, thus there is no way to know

whether all roads in the environment are visited or not. Although there are some possible solutions

to this problem such as terminate the current epoch when all visited roads have been visited at least

twice, it will not work well because of the poor training performance at current stage.

With the above mentioned results, we conclude that further investigation is required for training

an agent to trace roads in satellite imagery using reinforcement learning with various decisions to

be made regarding (a) the learning environment, (b) choice of RL algorithm, and (c) the deep neural

network. In order to have a more complete road network as the system output, further adjustments

need to be done in the aforementioned three aspects. Also a proper termination condition needs to

be set for the testing/inference process.
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Chapter 5

Conclusion and Discussion

5.1 Semantic Segmentation Approach

In this thesis we addressed the problem of delineation of road networks from remote sensor data

using deep learning. We presented a novel approach for road extraction. Uniquely, the proposed

approach leverages cardinality-enabled neural networks with feed forward links in order to achieve

high accuracy in the semantic segmentation. The classification result is then further processed using

a novel post-processing refinement process that iteratively applies a Hough-transform on a per-patch

basis which results in a set of linear segments. These are further refined by connecting nearby seg-

ments together and removing erroneous segments resulting from misclassification. We compared

our approach with state-of-the-art techniques and we have shown that it can produce on average

comparable results and in some cases better. We also compared the post-processing techniques and

showed our proposed iterative Hough-transform post-processing method brings significant improve-

ments for semantic segmentation results.

5.2 Deep Reinforcement Learning Approach

We reformulated road extraction as a deep reinforcement learning problem. We have developed

a system that can train an agent using reinforcement learning on satellite imagery to trace roads.

We compared two reinforcement learning algorithm, deep Q-learning (DQN) and Asynchronous
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Advantage Actor-Critic (A3C), and presented the preliminary results.

Although the current results are very limited, the agent shows the ability of tracing straight

roads, turning left/right, and moving backwards at road dead-ends. This demonstrates the feasibility

of using deep reinforcement learning in the road extraction task. Thus, further work will be done

to improve the training performance, such as adding a step for recognizing road junctions. Also a

proper termination condition needs to be specified, other than just counting the number of visited

roads during training, such that the agent can perform inference on a unknown map that has no

ground truth information.
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