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Montréal, Québec, Canada

July 2019

c© Shuai Ma, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/335015213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CONCORDIA UNIVERSITY

School of Graduate Studies
This is to certify that the thesis prepared

By: Mr. Shuai Ma

Entitled: State-Augmentation Transformations for Risk-Sensitive Markov Deci-

sion Processes

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Jeremy Clark

External Examiner
Dr. Latha Shanker

Examiner
Dr. Walter Lucia

Examiner
Dr. Jeremy Clark

Supervisor
Dr. Jia Yuan Yu

Co-supervisor
Dr. Ahmet Satir

Approved by
Dr. Mohammad Mannan, Graduate Program Director
Concordia Institute for Information Systems Engineering

September 27th, 2019
Date of Defence Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science



Abstract

State-Augmentation Transformations for Risk-Sensitive Markov Decision Processes

Shuai Ma, Ph.D.

Concordia University, 2019

Markov decision processes (MDPs) serve as a mathematical framework for modeling sequen-

tial decision making (SDM) where system evolution and reward are partly under the control of a

decision maker and partly random. MDPs have been widely adopted in numerous fields, such as

finance, robotics, manufacturing, and control systems. For stochastic control problems, MDPs are

the underlying models in dynamic programming and reinforcement learning (RL) algorithms.

In this thesis, we study risk estimation in MDPs, where the variability of random rewards is

taken into consideration. First, we categorize the reward into four classes: deterministic/stochastic

and state-/transition-based. Though a number of theoretical methods are designed for MDPs or

Markov processes with a deterministic (and state-based) reward, many practical problems are nat-

urally modeled by processes with stochastic (and transition-based) reward. When the optimality

criterion refers to the risk-neutral expectation of a (discount) total reward, we can use a model

(reward) simplification to bridge the gap. However, when the criterion is risk-sensitive, a model

simplification will change the risk value. For preserving the risks, we address that most, if not all,

the inherent risks depend on the reward sequence (Rt, t ∈ {1, · · · , N}). In order to extend the

theoretical methods for practical problems with respect to risk-sensitive criteria, we propose a state-

augmentation transformation (SAT). Four cases are thoroughly studied in which different forms of

the SAT should be implemented for risk preservation. In numerical experiments, we compare the

results from the model simplifications and the SAT, and illustrate that, i). the model simplifications

change (Rt) as well as return (or total reward) distributions; and ii). the proposed SAT transforms
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processes with complicated rewards, such as stochastic and transition-based rewards, into ones with

deterministic state-based rewards, with intact (Rt).

Second, we consider constrained risk-sensitive SDM problems in dynamic environments. Un-

like other studies, we simultaneously consider the three factors—constraint, risk, and dynamic en-

vironment. We propose a scheme to generate a synthetic dataset for training an approximator. The

reasons for not using historical data are two-fold. The first reason refers to information incomplete-

ness. Historical data usually contains no information on criterion parameters (which risk objective

and constraint(s) are concerned) and (or) the optimal policy (usually just an action for each item of

data), and in many cases, even the information on environmental parameters (such as all involved

costs) is incomplete. The second reason is about optimality. The decision makers might prefer an

easy-to-use policy than an optimal one, which is hard to determine whether the preferred policy

is optimal (such as an EOQ policy), since the practical problems could be different from the the-

oretical model diversely and subtly. Therefore, we propose to evaluate or estimate risks with RL

methods and train an approximator, such as neural network, with a synthetic dataset. A numerical

experiment validates the proposed scheme.

The contributions of this study are three-fold. First, for risk evaluation in different cases, we

propose the SAT theorem and corollaries to enable theoretical methods to solve practical problems

with a preserved (Rt). Second, we estimate three risks with return variance as examples to illustrate

the difference between the results from the SAT and the model simplification. Third, we present a

scheme for constrained, risk-sensitive SDM problems in a dynamic environment with an inventory

control example.
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Chapter 1

Introduction

I cannot choose the best. The best chooses

me.

Rabindranath Tagore, Stray Birds

Life is a sequence of decision making. Everyday we are confronted with a myriad of situations

where decisions need to be made. Some of them are simple, such as what to eat for lunch, or which

way to take to the lab, while others could be complicated, such as which university to go, or which

country to live in. The problem of decision making is ubiquitous in life, as I am now writing this

introduction, deliberating on logic, making up examples, and choosing words.

To make a good decision, one usually needs to consider the impacts of the decision not only at

the moment but also on the future. This process is known as a sequential decision making (SDM),

and the optimal action to take now depends on the uncertain future. This uncertainty stems from

many aspects of the practical situations, and has been investigated in different ways and fields. In

general, this problem is known as SDM under uncertainty, and has shown to be crucial in solving a

range of important problems, such as planning, scheduling, game playing, and auto-piloting. In the

context of Artificial Intelligence (Russell & Norvig, 2016), the decision maker is an autonomous

entity named an agent, interacting with an environment defined by parts of the world where the

actions are performed. Mathematically, if we consider this decision-making process as a discrete

time stochastic control process, we can model it as a Markov decision process. In the next section,
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we present Markov decision process preliminaries that are directly relevant to our research. For a

through coverage of the Markov decision process formulation, please refer to (Puterman, 1994).

1.1 Markov Decision Processes

A Markov decision process (MDP) is a mathematical framework for modeling SDM in situa-

tions where outcomes are partly random and partly under the control of a decision maker, and a

decision maker, or an agent needs to interact with a stochastic system (environment) by taking an

action at each decision epoch. The goal is to choose a sequence of actions to make the system

perform optimally with respect to some performance criterion. An MDP consists of eight elements:

(time) horizon, state space, action space, transition probability distribution, reward, initial state dis-

tribution, discount factor, and salvage reward function. In this study, we focus on discrete time,

finite state and action spaces. A discrete-time MDP with a deterministic reward can be represented

by

M = 〈N,S,A, r, p, μ, γ, v〉, (1)

in which N ∈ N ∪ {+∞} is the time horizon. An action is chosen at each (decision) epoch

t ∈ {1, · · · , N}. N is ignored in infinite horizon MDPs; S is a finite state space, and Xt ∈ S

represents the state at t; Ax is the finite allowable action set for x ∈ S, A =
⋃

x∈S Ax is an action

space, and Kt ∈ A represents the action at t; r is a bounded and stationary (time-homogeneous)

reward, and Rt denotes the immediate reward at epoch t; p : S2 × A → [0, 1] is a stationary

transition probability distribution, and p(y | x, a) = P(Xt+1 = y | Xt = x,Kt = a) denotes

the probability that the system transits to y ∈ S from the current state x ∈ S and a chosen action

a ∈ Ax; μ : S → [0, 1] is the initial state distribution; γ ∈ (0, 1] is the discount factor, and when

it is one, it can be ignored; and v : S → R is the salvage reward function, and we ignore it in

MDPs with long or infinite horizons. We consider two types of deterministic reward functions: the

state-based reward function

rS : S ×A → R;
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and the transition-based reward function

rT : S ×A× S → R.

Similarly, a discrete-time MDP with a stochastic reward can be represented by

M = 〈N,S,A, J, d, p, μ, γ, v〉, (2)

in which J is the set of possible values of the immediate rewards, and it is a finite subset of R; and d

is the reward distribution. We consider two types of stochastic reward distributions: the state-based

reward distribution

dS : S ×A → P(R);

and transition-based reward distribution

dT : S ×A× S → P(R),

where P(R) is a distribution on R
1. In our work, we consider d with a finite support. Taking dS for

example, we have

J :=
⋃

x∈S,a∈Ax

supp(dS(· | x, a)).

1.1.1 Decision Rule and Policy

Given an MDP, a decision maker needs to choose an action at each epoch t, and a deci-

sion rule describes how an action is chosen. Generally, decision rules range from deterministic

Markovian to randomized history dependent, depending on how they incorporate past informa-

tion and select actions (Puterman, 1994). The history of a process at t can be denoted by ht =

(X1, R1,K1, · · · , Xt, Rt,Kt), where X1 ∼ μ, Xi ∈ S, Ri ∈ R, and Ki ∈ A for i ∈ {1, · · · , t},

and we call a decision rule history dependent if it depends on history. We say a decision rule πt

1A stochastic reward can also be represented by a reward function r : S × A → P(R). However, since r returns a
distribution instead of a value, we suppose it is not suitable to call it a reward function.
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is Markovian if the action is chosen based on the current state only, and deterministic if it is cho-

sen with certainty A deterministic Markovian decision rule πt : S → A. Similarly, a randomized

Markovian decision rule is πt : S → P(A), i.e., for a given state, it outputs a distribution on the

action space. In this work, we focus on Markovian decision rules only. Randomized policy is often

considered in constrained MDPs (Altman, 1999) or MDPs with a risk objective (Defourny, Ernst, &

Wehenkel, 2008).

A policy π refers to a sequence of decision rules (π1, · · · , πN−1), which describes how to choose

actions sequentially. Based on its components, we call a policy deterministic Markovian or random-

ized history dependent as well. For long-horizon or infinite-horizon cases, we focus on stationary

policies, where πt = π for all t ∈ {1, · · · , N − 1}. In our study, we focus on three Marko-

vian policy spaces: the nonstationary deterministic policy space Πn, which is considered in the

finite horizon MDP example; the stationary randomized policy space Πr, which is considered in the

state-augmentation transformation (SAT) theorem; and the stationary deterministic policy space Πd,

which is considered in the long and infinite horizon MDP examples in Section 3.2.4 and Chapter 4.

1.1.2 Markov Reward Processes

The process generated by an MDP with a Markovian policy π is called a Markov reward pro-

cess. Similar to the definitions of MDPs in Equation (1) and Equation (2), we define two Markov

processes as follows. One with a deterministic reward is

Mπ = 〈N,S, rπ, pπ, μ, γ, v〉,

and another with a stochastic reward is

Mπ = 〈N,S, Jπ, dπ, pπ, μ, γ, v〉.

For a Markov reward process, people optimize some function on the random reward sequence (Rt :

t ∈ {1, · · · , N}). From the perspective of MDP, the goal is to find an optimal policy in a specified

policy space in terms of an optimality criterion.
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1.1.3 Optimality Criteria

An optimality criterion is an objective with a set of constraints if possible. It defines the

preference of a decison maker, and provides an objective which a decision maker wants to op-

timize. Most, if not all, optimality criteria consist of functions on the random reward sequence

(Rt : t ∈ {1, · · · , N}) in an induced Markov reward process, which is generated from an MDP

with a Markovian policy. In other words, given an MDP with an optimality criterion, the goal is to

find a policy which generates the optimal (Rt) with respect to the optimality criterion.

In most cases, people concern the total reward of the induced process. In a finite-horizon MDP,

the total reward can be denoted by

Φπ
N =

N∑

t=1

Rt.

In an MDP with a long or infinite time horizon, we usually consider the total rewards with a discount

factor γ ∈ (0, 1), and represent them as

Φπ
d =

N∑

t=1

γt−1Rt

and

Φπ =

+∞∑

t=1

γt−1Rt,

respectively, and we call the latter one return. For brevity, we denote the three total rewards by ΦN ,

Φd, and Φ, respectively.

The standard objective is to optimize the expectation of the (discounted) total reward. Without

constraints, in short-horizon MDPs, this problem can be solved by backward induction; in long-

or infinite-horizon MDPs, this problem is usually solved by policy iteration or value iteration. The

three solutions are all based on the Bellman equation. Since it is not in the scope of this study,

for details on problems with the standard optimality criteria, see (Puterman, 1994). Given a set

of cost functions 2, the constraints could refer to the expectations of some discounted total costs,

the problem can be solved with the aid of occupation measure. For more details on this type of
2In standard constrained MDP models in (Altman, 1999), the cost functions are deterministic and depend on state and

action spaces.
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constrained MDPs, see (Altman, 1999).

For an expectation-based optimality criterion, such as

maxE(Φ), (3)

all of the information necessary to make an optimal decision during the whole process can be sum-

marized in a simplified model. Here we present the model simplification in three cases.

(1) The reward is transition-based. For example, a deterministic transition-based reward function

rT can be simplified to a deterministic state-based reward function rS in an MDP by

rS(x, a) =
∑

y∈S
rT (x, a, y)p(y | x, a), for all x ∈ S, a ∈ Ax.

(2) The reward is stochastic. For example, a stochastic state-based reward dS can be simplified

to a deterministic state-based reward function rS in an MDP by

rS(x, a) =
∑

j∈J
dS(j | x, a)j, for all x ∈ S, a ∈ Ax.

(3) The policy is randomized. For example, an infinite-horizon MDP with a deterministic state-

based reward r : S × A → R and a randomized (stationary) policy π : S → P(A) induces a

Markov process with a stochastic state-based reward

dπS(x) = r(x, a) with probability π(a | x), for all x ∈ S, a ∈ Ax.

Notice that, in this case, the transition probability is simplified as well.

pπ(y | x) = p(y | x, a)π(a | x), for all x, y ∈ S, a ∈ Ax. (4)

The cases for model simplification can be quite complicated, we may consider the most general
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case, an MDP with a dT and a π ∈ Πr. To simplify it to a Markov process with an rS , we have

rπS(x) =
∑

a∈Ax,y∈S,j∈J
π(a | x)p(y | x, a)dT (j | x, a, y)j, for all x ∈ S,

as well as the simplification on transition probability (Equation 4).

When the criterion is risk-neutral, such as the (discounted) expected total reward, we can do

all bunches of model simplifications and preserve the expectation. However, when the criterion is

risk-sensitive, the model simplifications cannot preserve (Rt), which results in wrong risk values.

Next, we review risks for quantifying uncertainty in reinforcement learning (RL), and see how (Rt)

is crucial in risk-sensitive RL.

1.2 Risks

In RL, uncertainty is studied from two perspectives. One is the external uncertainty, which

refers to the parameter uncertainty or disturbance. When the model is unknown, its parameters are

usually estimated first, and then the optimal solution is calculated with a model-based approach.

However, the parameter estimation depends on noisy data in practice, and the modeling errors may

result in negative consequences. In control theory, this problem is known as robust control. Robust

control methods consider the uncertain parameters within some compact sets, and optimize the

expected return with the worst-case parameters, in order to achieve good robust performance and

stability (Nilim & Ghaoui, 2005).

The other concerns the inherent (or internal) uncertainty, which comes from the stochastic na-

ture of the processes. We claim that most, if not all, inherent risks depend on the reward sequence

(Rt : t ∈ {1, · · · , N}), and an inherent risk can be denoted by ρ : RN → R ∪ {+∞}, where

N ∈ N
+ ∪ {+∞}. The inherent risk can be quantified by a dynamic risk or a law-invariant risk.

Given a Markov process with an rS and a deterministic initial state, a sequence of risk functions

(ρi : i ∈ {1, · · · , N}), and denote the immediate reward at epoch t by Rt, a dynamic risk can be

denoted in general as

R1 + ρ1(R2 + ρ2(R3 + ρ3(· · · ))),
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which is sensitive to the order of the immediate rewards. Notice that R1 is determined here. Dy-

namic risks are usually assumed to have a set of properties, such as Markov, monotonicity and

coherence, which yields a time-consistent risk with a nested structure. For further information on

the dynamic risk, see (Ruszczyński, 2010). Given a discount factor γ, a law-invariant (Kusuoka,

2001) risk in an infinite horizon is a functional Ψ on the return Φ. Three types of law-invariant risk

have been widely studied in RL area.

1.2.1 Exponential Utility Risk

The original goal of a utility function is to represent the subjective preference (Howard & Math-

eson, 1972). One classic example can be the “St. Petersburg Paradox,” which refers to a lottery

with an infinite expected reward, but no one would put up an arbitrary high stake to play it, since

the probability of obtaining an high enough reward is too small. Mathematically, a utility function

U : R → R is a mapping from objective value space for all possible outcomes to subjective value

space. A utility function is usually in the form U−1{E[U(Φ)]}, where U is a strictly increasing

function. The most common used utility risk in RL is the exponential utility (Chung & Sobel, 1987)

ΨU (Φ, β) = β−1 log{E[exp(βΦ)]},

where β models a constant risk sensitivity that risk-averse when β < 0. This can be seen more

clearly with the Taylor expansion of the utility

β−1 log{E[exp(βΦ)]} = E(Φ) +
β

2
V(Φ) +O(β2). (5)

The exponential utility risk is also known as the entropic risk.

1.2.2 Mean-Variance Risk

The mean-variance risk is also known in finance as the modern portfolio theory (Mannor &

Tsitsiklis, 2011; Sobel, 1994; White, 1988). The mean-variance analysis aims at optimal return at

a given level of risk, or the optimal risk at a given level of return. In RL, several mean-variance
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models have been studied. The variance and the standard deviation of the return are denoted by

V(Φ) and σ(Φ), respectively. One model could be

ΨV (Φ, k) = E(Φ)− kσ(Φ), (6)

where k is a risk parameter, and when k > 0, it is a risk-averse risk. This is the first mean-variance

model for exploring inventory management related problems (Lau, 1980). The other model can

be maximizing the expected return with a variance constraint, or minimizing the variance with an

expected return constraint (T.-M. Choi, Li, & Yan, 2008). In chapter 4, we consider the function

E(Φ)/V(Φ) > q, where q is a predefined risk parameter, as a constraint. For a review on mean-

variance risk, see (Chiu & Choi, 2016).

1.2.3 Quantile-based Risk

The last type of risk used in practice refers to quantiles, which requires us to pay attention to

discontinuities and intervals of quantile numbers. A commonly used quantile-based risk is value at

risk (VaR). VaR originates from finance. For a given portfolio, a loss threshold (target level) and a

horizon, VaR concerns the probability that the loss on the portfolio exceeds the threshold over the

time horizon. Mathematically, VaR can be defined as to find a policy which maximizes the smallest

possible outcome with respect to a specified probability level. In RL, the VaR objective can also be

defined as to find a policy which maximizes the probability that the return is larger than or equal to

a specified target (threshold) (Filar, Krass, Ross, & Member, 1995; Wu & Lin, 1999). Denote F π
Φ as

the return cumulative distribution function (CDF) from a policy π. In this paper, we forcus on VaR

and consider two problems (Filar et al., 1995) in an infinite-horizon MDP.

Problem 1.1. Given a probability α ∈ [0, 1], find the optimal threshold ρα = sup{τ ∈ R | P(Φ >

τ) ≥ α, π ∈ Π} = sup{τ ∈ R | F π
Φ(τ) ≤ 1− α, π ∈ Π}.

Problem 1.2. Given a threshold τ ∈ R, find the optimal probability ητ = sup{α ∈ [0, 1] | F π
Φ(τ) ≤

1− α, π ∈ Π}.

Both VaR problems relate to

inf{F π
Φ | π ∈ Π}, (7)
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and we name it VaR function.

In a long- or infinite-horizon case, the return distribution can be estimated with a strictly in-

creasing function (Meyn & Tweedie, 2009). In this case, VaR can be considered as a study of the

return distribution, since any point along PΦ is (estimated) (ρα, 1− ητ ) with τ = ρα or α = 1− ητ .

Therefore, both VaR problems refer to PΦ. VaR is straightforward but hard to deal with since it is

not a coherent risk (Riedel, 2004). In many cases, conditional VaR (also known as expected short-

fall) is preferred over VaR since it is coherent (Artzner, Delbaen, Eber, & Heath, 1998), i.e., it has

some intuitively reasonable properties (convexity, for example). However, when the return can be

assumed to be approximately normally distributed, VaR can be simply estimated with E(Φ) and

V(Φ) (Ma & Yu, 2017).

In our study, we focus on law-invariant risks, which concern the return Φ. The three law-

invariant risks can be either calculated (mean-variance risk), estimated (utility risk), or estimated

with assumption (quantile-based risk) with E(Φ) and V(Φ). Next, we review the return variance

formula proposed by Sobel (1982) for an infinite-horzion Markov process with a deterministic re-

ward.

1.3 Variance Formula for Markov Processes

As shown above, all of the three law-invariant risks can be estimated with the return variance.

To calculate the return variance, Sobel (1982) presented a formula for Markov processes with de-

terministic rewards.

Theorem 1.1. Given an infinite-horizon Markov process 〈S, rπS , pπ, γ〉 with a finite state space

S = {1, · · · , |S|}, a bounded rπS , any determined initial state, and a discount factor γ ∈ (0, 1).

Denote the transition matrix by P , in which P (x, y) = pπ(y | x), x, y ∈ S. Denote the conditional

return expectation by vx = E(Φ | X1 = x) for any deterministic initial state x ∈ S, and the

conditional expectation vector by v. Similarly, denote the conditional return variance by ψx =

V(Φ | X1 = x), and the conditional variance vector by ψ. Let θ denote the vector whose xth
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component is θx =
∑

y∈S pπ(x, y)(rπ(x) + γvy)
2 − v2x. Then

v = rπ + γPv = (I − γP )−1rπ,

ψ = θ + γ2Pψ = (I − γ2P )−1θ.

Notice that the variance formula is for Markov processes with deterministic rewards only. One

problem is how to apply the method to practical problems with stochastic rewards.

1.4 Thesis Contributions and Outline

Till now, we present the background knowledge, which includes the notations for MDPs and

Markov processes, four types of reward, optimality criteria, three law-invariant risks and the return

variance formula for a Markov process with a deterministic reward. With the model simplification

in mind, an initial question could be

Question 1.1. In order to implement the return variance formula on a Markov process with stochas-

tic reward (dT or dS), shall we do the model simplification?

The answer is negative. In Chapter 3, we illustrate that the model simplification changes the

return distribution in different cases. With knowing that most, if not all, law-invariant risks depend

on the reward sequence (Rt), the next question could be

Question 1.2. Given a Markov process with a reward dT , is there a Markov process with a reward

rS , such that both processes share the same (Rt)?

The answer is positive. Our work starts from answering the two questions, and extends to a

scheme for constrained and risk-sensitive MDPs in dynamic environments. Our contributions are

three-fold: i). we propose an SAT for preserving reward sequence (Rt), and enable methods for

MDPs with simple rewards for MDPs with complicated rewards; ii). by virtue of the proposed SAT,

we estimate the three law-invariant risks in an MDP with a stochastic reward and a deterministic
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policy; and iii). we propose a scheme for practical problems with risk-sensitive criteria in a dynamic

environment.

Based on the previously reviewed background knowledge, we outline the content of the three

chapters dedicated to each of these questions as follows, leaving the precise statement of contribu-

tions to the introduction section of each chapter.

In Chapter 2, we propose the SAT theorem as an MDP homomorphism, and derive three corol-

laries for different cases. In Chapter 3, in an inventory control example, we illustrate that i) the

model simplification leads to a wrong risk estimation; ii) the proposed SAT enables the methods

for MDPs (or Markov processes) with stochastic rewards and preserves the reward sequence (Rt);

and iii) the three law-invariant risks can be estimated with the SAT and return variance formula.

In Chapter 4, we present a scheme for constrained and risk-sensitive SDM problems in dynamic

environments. In Chapter 5, we give conclusions and discuss future research.

We show that, 1) the model simplification presented in Section 1.1.3 will change the reward

sequence (Rt); 2) the three commonly used law-invariant risks can be evaluated or estimated by the

return variance in a Markov process with a stochastic reward; and 3) in the framework of MDP, a

practical problem with a stochastic reward can be solved with a risk-sensitive criterion (with risk-

sensitive constraints) in a dynamic environment.
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Chapter 2

State-Augmentation Transformation

2.1 Introduction

In this chapter, we review the state-augmentation transformation (SAT) for risk-sensitive MDPs,

which is one of the main contributions of this research. The motivation arises from the model differ-

ence between theoretical methods and practical problems with respect to forms of reward. On the

one hand, some methods require MDPs, or Markov processes, to be with deterministic (and state-

based) reward functions, even in risk-sensitive cases (Berkenkamp, Turchetta, Schoellig, & Krause,

2017; Borkar, 2002; Chow, Ghavamzadeh, Janson, & Pavone, 2017; Garcı́a & Fernández, 2015;

Gilbert & Weng, 2016; Huang & Haskell, 2017; Junges, Jansen, Dehnert, Topcu, & Katoen, 2016;

Shen, Tobia, Sommer, & Obermayer, 2014). On the other hand, for many practical problems, whose

underlying MDPs or Markov processes have stochastic (and transition-based) rewards. In these

cases, if we implement the model simplification (see Section 1.1.3) for implementing the methods,

it will change the reward sequences (Rt), as well as the reward distributions, which are crucial in

risk-sensitive scenarios. In this chapter, we propose four successively more general forms of SAT

to solve this problem in different settings. Since most risks are functions of (Rt) (see Section 1.2),

we show that, the proposed SAT transforms an MDP (or a Markov process) for a theoretical method

which requires a simple reward while preserving (Rt) for a risk-sensitive objective.
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2.1.1 Chapter Contribution

In this section, we propose the SAT for four cases, which successively generalize the case of

the Problem 1.2 to a final MDP version with a positive answer. As far as we know, no similar work

has been done before. All the theorems and corollaries are for infinite-horizon problems, but can

be easily updated for finite-horizon cases. Furthermore, to relieve from the enlarged state space, a

definition of isotopic states is proposed for a state lumping theorem, which aims at decreasing the

size of augmented state space, with considering the special structure of the transformed transition

probability.

2.1.2 Chapter Organization

This chapter is structured as follows. In Section 2.2, we propose the SAT theorem, corollaries

and their algorithms for four cases, and discuss the pros and cons of the SAT. Since the transformed

process suffers from an enlarged state space, we provide a state lumping theorem in Section 2.3 to

combine states which satisfy some conditions. Finally, we draw a conclusion in Section 2.4.

2.2 State-Augmentation Transformation

This section thoroughly describes how to implement the proposed SAT in four cases, which

are generalized successively with respect to the different cases in the model simplification(see Sec-

tion 1.1.3). We firstly give the related theorem and definitions for understanding the SAT as an MDP

homomorphism, then present the SAT theorem and algorithm, as well as a proof in the appendix.

After unveiling the essence of the SAT, we give three corollaries for the other simpler cases.

2.2.1 State-Augmentation Transformation Theorem

Firstly, we give the SAT theorem as an MDP homomorphism for an MDP considering a station-

ary randomized policy space Πr. Comparing with the original SAT theorem (Ma & Yu, 2019a), the

homomorphism version of SAT works on a more abstract level. Though it is for infinite-horizon

cases, it is easy to be extended to finite-horizon cases.
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An MDP homomorphism is a formalism that captures an intuitive notion of specific equivalence

between MDPs (Ravindran & Barto, 2002). In order to convert an MDP M with dT to M† with rS

with considering Πr and preserve (Rt), we regard each “situation”, which determines immediate

rewards, as an augmented state. We can then attach each possible reward value to an augmented

state in M†. Formally, we define the SAT homomorphism as follows.

Definition 2.1 (State-augmentation transformation). The SAT for MDPs is a homomorphism h from

an MDP M = 〈S,A, J, p, dT , μ〉 to an MDP M† = 〈S†, A, rS , p†, μ†〉. The state space S† =

S‡ ∪ Sn, where S‡ = S2 ×A× J , Sn = {sn,x}x∈S , and Sn ∩ S‡ = ∅. For x† = (x, ax, y, i), y
† =

(y, ay, z, j) ∈ S‡, ax ∈ Ax, ay ∈ Ay, and sn,y ∈ Sn, we have Ax† = Asn,y = Ay; rS(y†, ay) = j,

rS(sn,y, ay) = 0; p†(y† | x†, ay) = p†(y† | sn,y, ay) = p(z | y, ay)dT (j | y, ay, z); and μ†(sn,y) =

μ(y), μ†(y†) = 0.

We call M† the homomorphic image of M under h. For any policy π for M, there exists a

policy π† for M†, such that the two induced processes share the same (Rt). We define the mapping

between the two policy spaces as a policy lift.

Definition 2.2 (Policy lift). Let M† be a homomorphic image of M under h. Let π be a stochastic

policy in M. Then π lifted to M† is the policy π† such that π†(a | x†) = π(a | y) for x† =

(x, a, y, i) ∈ S‡ and π†(a | x†) = π(a | x) for x† = sn,x ∈ Sn.

Given an MDP with a policy, the randomness of the induced Markov reward process can be

studied in its underlying probability space.

Definition 2.3 (Underlying probability space). Let (Ω,F ,P) be a probability space, and (E,B)
a measurable space with E = S × J . An induced Markov reward process can be represented

by an (E,B)-valued stochastic process on (Ω,F ,P) with a family (Yt)t∈N of random variables

Yt : (Ω,F) → (E,B) for t ∈ N. (Ω,F ,P) is called the underlying probability space of the process

(Yt)t∈N. For all ω ∈ Ω, the mapping Y (·, ω) : t ∈ N → Yt(ω) ∈ E is called the trajectory of

the process with respect to ω. The process (Yt)t∈N is progressively measurable with respect to the

filtration (Ft)t∈N.

A homomorphism version of the SAT theorem is as follows, which claims that the probability
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Algorithm 1 the SAT for an MDP
Input:an MDP with a stochastic reward M = 〈S,A, J, p, dT , μ〉.
Output: an MDP with a deterministic reward M† = 〈S†, A, rS , p

†, μ†〉.

1: Set S‡ = S2 ×A× J ;
2: Set a null state space Sn = {sn,1, · · · , sn,|S|}, with Sn ∩ S‡ = ∅; 
 needed when policy is uncertain
3: Define the state space S† = S‡ ∪ Sn;
4: Initialize the transition probability p†(· | ·, ·) = 0;
5: for all x† = (x, ax, y, i), y

† = (y, ay, z, j) ∈ S‡, ax ∈ Ax, ay ∈ Ay , and sn,y ∈ Sn do

6: Define the action space Ax† = Asn,y
= Ay;

7: Define the reward rS(y
†, ay) = j, and rS(sn,y, ay) = 0;

8: Define the transition probability p†(y† | x†, ay) = p(y† | sn,y, ay) = p(z | y, ay)dT (j | y, ay, z);
9: Define the initial state distribution μ†(sn,y) = μ(y), and μ†(y†) = 0.

10: end for

measure on trajectories is preserved under h. Therefore, as a subsequence of a sample path, the

probability measure on (Rt) is preserved as well.

Theorem 2.1 (Probability measure preservation). Let M† be an image of M under homomorphism

h. Let π† be the stochastic policy lifted from π. For the two processes M with π and M† with π†,

there exists a bijection fΩ : Ω → Ω†, such that for the underlying probability space (Ω,F ,P) for

the first process, we have a sample path probability space (Ω†, {fΩ(b) : b ∈ F}, P †) for the second

process, such that for any t ∈ N, P†({fΩ(b) : b ∈ Ft}) = P({Ft}).

The proof of the Theorem 2.1 is detailed in the appendix. The SAT theorem claims that, for

an M with a dT , there exists an M† with an rS , such that for any given π for M, there exists a

corresponding π† for M†, such that both Markov reward processes share the same (Rt) (with a null

state in the transformed one). The algorithm of the theorem for an MDP with a dT , which has a

|J | ≤ +∞, is is presented in Algorithm 1. Notice that the discount factor γ is ignored, since it has

not effect on (Rt).

The essence of the SAT lies in regarding all the factors determining one immediate reward

together as a “situation.” In the most general case considered in the Theorem 2.1, this can be

explained as follows.

Remark 2.1 (State augmentation in the transformations). In order to transform an MDP with a dT

to the one with an rS , and preserve (Rt), a bijective mapping from an “augmented” state space to a

possible “situation” space is needed. In this case, a situation can be defined by a tuple 〈x, a, y, j〉,
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in which x, y ∈ S, a ∈ Ax, j ∈ supp(dT (· | x, a, y)).

In short, the transformation varies according to the situations of the problems. Next, we present

the corollaries for three simplified situations.

2.2.2 Four Cases for SAT

Originally, to acquire an MDP (or a Markov process) with an rS (or rπS) with a preserved (Rt),

the SAT theorem 2.1 is generalized from simple cases.

• Case 1: a Markov process with an rπT ;

• Case 2: a Markov process with a dπT ;

• Case 3: an MDP with a dT and a π ∈ Πr; and

• Case 4: an MDP with a Πr.

The transformation for Case 1 is firstly proposed in (Ma & Yu, 2017), which is a special case of

Case 2. We denote this relationship by Case 0 ≺ Case 1. Case 2 can be considered as an MDP with

an rT and a deterministic policy. Case 3 describes a policy evaluation scenario, and can be also used

for constrained MDPs. Case 4 is for a direct policy search (such as gradient descent) scenario from

a risk-sensitive perspective. In all the four cases, the model simplification (see Section 1.1.3) will

lose all moment information except for the first one (mean). The four cases have the relationship

Case 1 ≺ Case 2 ≺ Case 3 ≺ Case 4.

Next, we review the SAT for Case 1–3 with corollaries and algorithms. Considering the rela-

tionship between the cases, all needed algorithms and theorems for different cases can be derived

from the constructive proof for Theorem 2.1 (see the appendix) with some slight changes.

Case 1

The SAT for Case 1 is originally proposed in (Ma & Yu, 2017). When the criterion is risk-

sensitive, for a Markov reward process derived from an MDP with an rT and a policy π ∈ Πd,
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Algorithm 2 the SAT for a Markov process with a deterministic transition-based reward
Input: a Markov process 〈S, rπT , pπ, μ〉. 
 rπT is deterministic and transition-based
Output: a Markov process 〈S†, rπS , p

π†, μπ†〉. 
 rπS is deterministic and state-based

1: Define the state space S† = S2;
2: Initialize the transition probability pπ†(· | ·) = 0;
3: for all x† = (x, y) ∈ S† do

4: Define the reward rπS(x
†) = rπT (x, y);

5: for all y† = (·, x) ∈ S† do

6: Define the transition probability pπ†(x† | y†) = pπ(y | x);
7: end for

8: Define the initial state distribution μπ†(x†) = μ(x)pπ(y | x).
9: end for

we cannot directly apply the methods if they require the reward to be state-based. If the reward is

simplified as described in Section 1.1.3, the reward sequence (Rt) will be changed, which results

in a wrong risk value. This case can be considered in a scenario that a deterministic policy π

is evaluated in an MDP with an rT with a risk-sensitive criterion. In order to implement those

methods, we apply the SAT for Case 1 to transform the Markov reward process with an rπT to one

with an rπS . The original theorem in (Ma & Yu, 2017) now can be considered as a corollary of the

SAT Theorem 2.1, which can be stated as follows.

Corollary 2.1 (Transformation for a Markov process with a transition-based reward). For a Markov

process 〈S, rπT , pπ, μ〉, there exists a Markov process 〈S†, rπS , p
π†, μπ†〉, such that both processes

share one reward sequence (Rt).

Notice that, i) the original version of the Corollary 2.1 in (Ma & Yu, 2017) refers to a finite-

horizon case, and here we revise it for consistency; and ii) the initial state distribution in the trans-

formed Markov process depends on the policy π. For the concern on i) the finite horizon with

a salvage reward function, and ii) a Markov process derived from an MDP with a nonstationary

policy, see (Ma & Yu, 2017).

The algorithm for the Corollary 2.1 is presented in Algorithm 2.

Case 2

The SAT for Case 2 is originally proposed in (Ma & Yu, 2019a). Similarly, when the criterion

is risk-sensitive, for a Markov reward process derived from an MDP with a dT and a policy π ∈ Πd,
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Algorithm 3 the SAT for a Markov process with a stochastic transition-based reward
Input: a Markov process 〈S, Jπ, dπT , p

π, μ〉. 
 dπT is stochastic and transition-based
Output: a Markov process 〈S†, rπS , p

π†, μπ†〉. 
 rπS is deterministic and state-based

1: Define the state space S† = S2 × J ;
2: Initialize the transition probability pπ†(· | ·) = 0;
3: for all x† = (x, y, j) ∈ S† do

4: Define the reward rπS(x
†) = j;

5: for all y† = (·, x, ·) ∈ S† do

6: Define the transition probability pπ†(x† | y†) = pπ(y | x)dπT (j | x, y);
7: end for

8: Define the initial state distribution μπ†(x†) = μ(x)pπ(y | x)dπT (j | x, y).
9: end for

we cannot directly apply the methods if they require the reward to be state-based, or simplify the

reward function as described in Section 1.1.3. This case can be considered in a scenario that a

deterministic policy π is evaluated in an MDP with a dT and a risk-sensitive criterion. In order to

implement those methods, we propose the SAT for Case 2 to transform the Markov process with a

dπT to one with an rπS , which can be stated as follows.

Corollary 2.2 (Transformation for a Markov process with a stochastic reward). For a Markov

process 〈S, Jπ, dπT , p
π, μ〉, there exists a Markov reward process 〈S†, rπS , p

π†, μπ†〉, such that both

Markov reward processes share one reward sequence (Rt).

The algorithm for the Corollary 2.2 is presented in Algorithm 3.

Case 3

The SAT for Case 3 is originally proposed in (Ma & Yu, 2019a). Similar to Case 1 and 2,

Case 3 also refers to a policy evaluation case. When the criterion is risk-sensitive, for a Markov

reward process derived from an MDP with a dT and a policy π ∈ Πr, we cannot directly apply the

methods if they require the reward to be state-based, or simplify the reward function as described in

Section 1.1.3. This case can be considered in a scenario that a stochastic policy π is evaluated in an

MDP with a dT and a risk-sensitive criterion. In order to implement those methods, we propose the

SAT for Case 3 to transform the Markov process with a dπT to one with an rπS , which can be stated

as follows.
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Algorithm 4 the SAT for MDP with a randomized policy
Input: an MDP 〈S,A, J, dT , p, μ〉 with a π ∈ Πr. 
 dT is stochastic and transition-based
Output: a Markov process 〈S†, rπS , p

π†, μπ†〉. 
 rπS is deterministic and state-based

1: Define the state space S† = S2 ×A× J ;
2: Initialize the transition probability pπ†(· | ·) = 0;
3: for all x† = (x, a, y, j) ∈ S† do

4: Define the reward rπS(x
†) = j;

5: for all y† = (·, ·, x, ·) ∈ S† do

6: Define the transition probability pπ†(x† | y†) = π(a | x)p(y | x, a)dT (j | x, a, y);
7: end for

8: Define the initial state distribution μπ†(x†) = μ(x)π(a | x)p(y | x, a)dT (j | x, a, y).
9: end for

Corollary 2.3 (Transformation for an MDP with a randomized policy). For an MDP 〈S,A, J, dT , p, μ〉
with a randomized policy π ∈ Πr, there exists a Markov reward process 〈S†, rπS , p

π†, μπ†〉, such that

both Markov reward processes share one reward sequence (Rt).

The algorithm for the Corollary 2.3 is presented in Algorithm 4. Notice that unlike Case 1 and

2, we cannot operate on a derived Markov reward porcess directly this time, since now the action

for a given state is uncertain.

2.2.3 Discussion

There are mainly two benefits brought by the SAT. Firstly, it converts an M (or Mπ) with a

discrete stochastic reward distributed on a finite support, into an M† (or Mπ†) with a deterministic

state-based reward. The essence of the SAT is a bijective mapping from an “augmented” state

space to a possible “situation” space, in which each situation determines an immediate reward.

This mapping not only extends a number of methods provided for M† to work for M, but also

allows us to analyze the immediate rewards as states with methods such as z-transform (Howard,

1964). Secondly, action is “removed” from the reward function and becomes a component of the

augmented state. This renders action to impact on transitions only. There are two disadvantages as

well. One is the size of the augmented state space is now (|S2 × A × J | + |S|), which is much

larger than |S|. The other is that the SAT removes the recurrence property from a recurrent MDP,

which may result in prohibitions of some methods. In the next section, we propose a state lumping

theorem to relieve transformed Markov processes of enlarged state spaces.
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2.3 State Lumping

In this section, we propose a state lumping theorem based on a definition of isotopic states. The

propose of the theorem is to decrease the size of the enlarged state space in transformed Markov

processes. The state lumping theorem 2.2 is originally proposed in (Ma & Yu, 2019b). Considering

the special structure of pπ†, we propose a definition of isotopic states for combining two states in

the enlarged state space.

Definition 2.4 (Isotopic states). In a Markov process 〈S, rπS , pπ, μ〉, if there exist two states xi, xj ∈
S, such that,

• Condition 1: rπS(xi) = rπS(xj); and

• Condition 2: pπ(y | xi) = pπ(y | xj) for y ∈ S \ {xi, xj},

then we say xi and xj are isotopic.

With the definition of isotopic states, we propose a theorem on reward preservation in state

lumping as follows. The proof of the Theorem 2.2 is detailed in the appendix.

Theorem 2.2 (Reward preservation in state lumping). If the two states xi, xj ∈ S are isotopic in

a Markov process M = 〈S, rπ, pπ, μ〉, then there exists a Markov process M′ = 〈S′, rπ′, pπ′, μ′〉,
in which S′ = S \ {xj}, and for x, y ∈ S′ \ {xi} and z ∈ S′, rπ′(z) = rπ(z), pπ′(xi | y) =

pπ(xi | y) + pπ(xj | y), pπ′(x | y) = pπ(x | y), pπ′(x | xi) = pπ(x | xi), pπ′(xi | xi) = pπ(xi |
xi) + pπ(xj | xi), and μ′(x) = μ(x), μ′(xi) = μ(xi) + μ(xj), such that the two Markov process

M and M′ share the same (Rt : t ∈ {1, · · · , N}).

Theorem 2.2 claims that, the isotopic state lumping will not change the reward sequence. There-

fore, most, if not all, risks will be preserved by an induced Markov process with a smaller state space

from the isotopic state lumping. Furthermore, we call a set of states isotopic class if any two mem-

bers in the set are isotopic. It is easy to generalize the Theorem 2.2 for isotopic classes.

Corollary 2.4 (Reward preservation in class lumping). In a transformed Markov process 〈S, rπ, pπ, μ〉,
if there exists a state set Sl, such that for any two states xi, xj ∈ Sl, two conditions are satisfied:
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i). rπ(xi) = rπ(xj); and ii). pπ(y | xi) = pπ(y | xj) for y ∈ S \ Sl, then we say Sl is an isotopic

class, which can be regarded as one state.

The results of this section are based in part on the results of (Burke & Rosenblatt, 1958; Ke-

meny & Snell, 1976), in which the lumpability in Markov processes was thoroughly studied. By

comparison, the Definition 2.4 and the Theorem 2.2 are based on single states instead of partitions of

state space, i.e., in Condition 2 in Definition 2.4, xi, xj and y are single states instead of partitions.

Though it is usually hard to partition a general state space with equivalent partitioned transition

probabilities (Definition 8.4 in (Harrison & Patel, 1992)), a special structural property of the trans-

formed transition probability from the SAT increases the chance of state lumping. We consider Case

2 for example. Since the transition distribution pπ†(· | x†) for x† = (x, y, j) ∈ S† depends on y

only, a sufficient condition for two states being isotopic could be that, the two states share the last

two components. This sufficient condition can be stated as follows.

Corollary 2.5 (A sufficient condition for isotopic states). In a transformed Markov process with a

state space S†, if there exist two states x† = (x1, x2, i), y
† = (y1, y2, j) ∈ S†, such that x2 = y2

and i = j, then x and y are isotopic.

In summary, for states which satisfied the two conditions in Definition 2.4, we may regard them

as one state and keep (Rt) intact. Considering that the transition probability in the transformed

Markov process has a special structural property above, the augmented state space can be shrunk

under a fair condition.

2.4 Conclusion

In this chapter, we solved the problems stem and generalized from the Question 1.2. We present

the main SAT theorem and three corollaries for the four cases (see Section 2.2.2). Though a trans-

formed process preserves (Rt), it suffers from an enlarged state space. Taking the Case 4 as an

example, the size of the state space is increased from |S| to (|S2 ×A× J |+ |S|), which may cause

a computational problem. To make the enlarged state space smaller, we propose a state lumping

theorem based on a definition of isotopic states.
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In the next chapter, we estimate three law-invariant risks in different cases. firstly, in a small

inventory control MDP, we illustrate how the SAT works in short, long, and infinite horizons, and

show how the model simplification leads to wrong results. Secondly, the VaR is considered as a

risk-sensitive objective in the inventory control MDP, and estimated in different cases. Thirdly, we

illustrate how the state lumping theorem works in a toy example, and the other two law-invariant

risks—exponential utility risk and mean-variance risk—are estimated in an MDP with a dT by virtue

of the proposed SAT.
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Chapter 3

Risk Evaluations with

State-Augmentation Transformations

3.1 Introduction

In RL, many practical problems can be modeled as MDPs with complicated forms of reward,

such as dT , whereas many theoretical methods are for MDPs or Markov processes with relatively

simple forms of reward, such as rS or rT . When the objective is the standard criterion—the ex-

pectation of (discounted) total reward, the model simplification works perfectly. However, when

the objective is risk-sensitive, the model simplification leads to an incorrect value. Many practi-

cal problems require stronger reliability guarantees, especially where the small probability events

have serious consequences, such as self-driving cars and medical diagnosis. In these cases, a risk-

sensitive criterion should be considered. In sequential decision making problems, a risk-sensitive

criterion refers to a risk, or a risk function, which assigns a scalar to a reward sequence {Rt}. In

this chapter, we focus on law-invariant risks described in Section 1.2, which are functions map-

ping random variables (return Φ) to real numbers. With the aid of the SATs, we can apply the

return variance formula, which requires processes with deterministic rewards, to ones with stochas-

tic transition-based rewards, and at the same time preserve the reward sequence (and the reward

distribution).

In Section 1.2, we claim that, the three law-invariant risks—exponential utility, mean-variance,
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and VaR—can be estimated with the return variance. The variance can be calculated in a Markov

process, but with a deterministic reward only. Besides, a number of RL methods have similar

requirements (Berkenkamp et al., 2017; Borkar, 2002; Chow et al., 2017; Garcı́a & Fernández,

2015; Gilbert & Weng, 2016; Huang & Haskell, 2017; Junges et al., 2016; Shen et al., 2014) even

in a risk-sensitive scenario. However, the reward functions are usually stochastic in many practical

problems. Therefore, in this chapter, we consider the return variance formula (see Section 1.3) for

example, and show how the proposed SAT can solve this problem—to enable those methods, which

work for processes with simple forms of reward only, to work for ones with complicated forms

of reward. Furthermore, with the help of the SAT and the return variance formula, we estimate

the three law-invariant risks—VaR, exponential utility, and mean-variance. In the examples in the

following sections, we illustrate that, when the objective is risk-sensitive, and the reward needs to

be converted to a simpler form, the SAT should be implemented instead of the model simplification.

3.1.1 Chapter Contribution

In this chapter, we estimate the three law-invariant risks presented in Section 1.2 with the return

variance. Meanwhile, we consider the variance formula (See Section 1.3) as an example to show

how the proposed SAT preserves (Rt), and how the model simplifications (see Section 1.1.3) lead

to wrong results in terms of risk objectives. Since many RL methods require the reward function

to be deterministic and state-based, the transformation is needed for the MDPs with other types of

reward functions in the risk-sensitive problems. The proposed SAT presents a connection between

theoretical methods and practical problems in risk-sensitive RL, and we believe that many related

studies should be revisited with the proposed SAT instead of applying the common-used model

simplification directly. In the last example, we illustrate how the state lumping works for an MDP

with a stochastic policy.

3.1.2 Chapter Organization

This section consists of two MDP examples. The first one refers to an inventory control MDP,

in which we consider VaR objectives in short, long, and infinite horizons, respectively. Since the

VaR measures the return distribution, this example illustrate the error in the reward distribution
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estimation from the model simplification. The second example illustrates the state lumping in an

MDP with a randomized policy, and we estimate the other two law-invariant risks with the SAT and

the model simplification.

3.2 Examples

In this section, we illustrate that, i). how the model simplifications change the (discounted)

total reward distributions; ii). how the proposed SAT preserves the return variance and enable the

variance formula; and iii). how to use the isotopic state lumping to alleviate the enlarged state space.

With the return variance, we estimate VaR functions for the two VaR problems (see 1.2.3) in MDPs

with short, long, and infinite horizons, and estimate the other two law-invariant risks in an MDP

with an infinite horizon.

3.2.1 An MDP for Inventory Control Problems

We constructs an MDP for a single-product stochastic inventory control problem based on (Put-

erman, 1994, Section 3.2.1). The assumptions for problem modeling are listed in the appendix.

Define the inventory capacity M ∈ N
+, and the state space S = {0, · · · ,M}. Briefly, at time

epoch t ∈ N, denote the inventory level by Xt ∈ S before the order, the order quantity by Kt ∈
{0, · · · ,M −Xt}, the demand by Dt ∈ {0, · · · ,M} with a time-homogeneous probability distri-

bution, then we have Xt+1 = max{Xt+Kt−Dt, 0}. For x ∈ S, denote the cost to order x units by

c(x), a fixed cost W ≥ 0 for placing orders, then we have the order cost o(x) = (W + c(x))1[x>0].

Denote the revenue when x units of demand is fulfilled by f(x), the maintenance fee by m(x). The

real reward is rT (Xt,Kt, Xt+1) = f(Xt +Kt −Xt+1)− o(Kt)−m(Xt).

We set the parameters as follows. The fixed order cost W = 4, the variable order cost c(x) =

2x, the maintenance fee m(x) = x, the warehouse capacity M = 2, and the price f(x) = 8x.

Given the probabilities of demands P(Dt = 0) = 0.25, P(Dt = 1) = 0.5, P(Dt = 2) = 0.25, re-

spectively, we have the transition probability p(y | x, a) for any x, y ∈ S and a ∈ Ax. Set the initial

distribution μ(0) = 1. Notice that, the reward function is deterministic and transition-based in this
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Figure 3.1: An MDP with a transition-based reward function and its counterpart with a state-
based reward function following the model simplification. Labels along transitions denote
a(rT (x, a, y), p(y|x, a)), and labels next to states denote a(rS(x, a)) , the state-based reward func-
tion simplified with Equation (1). For example, the labels in bold are interpreted as follows: the
label 2(0, 0.5) below the transition from 0 to 1 means that the reward rT (0, 2, 1) = 0 and the transi-
tion probability is 0.5; the label 2(0) near state 0 means when Xt = 0 and Kt = 2, the simplified
reward rS(0, 2) = 0.

MDP. The simplified reward rS can be calculated by Equation (1), which is state-based. As illus-

trated in Figure 3.1, now we have two MDPs with different reward functions: 〈N,S,A, rT , p, μ, γ〉
and 〈N,S,A, rS , p, μ, γ〉.

3.2.2 VaR in Short-Horizon MDPs

Here, we illustrate that both VaR problems (Problem 1.1 and 1.2) refer to the VaR function

in the two MDPs described above with the time horizon N = 3, and show how the model sim-

plifications affect the total reward distribution and the VaR function. Firstly, we show for a given

deterministic policy, how the model simplification changes the cumulative reward distribution. We

consider the optimal policy for the nominal expected total reward objective. The optimal nonsta-

tionary deterministic policy for both MDPs is π∗ = (π1, π2) ∈ Πn, where π1(0) = π2(0) = 2 and

π2(x) = 0, for x ∈ {1, 2}. The expected total reward E(Φ) = 6.5625. As shown in Figure 3.2, with
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Figure 3.2: Taking the expected total reward as the objective, the two MDPs, 〈N,S,A, r, p, μ, v〉
and 〈N,S,A, r′, p, μ, v〉, share the same optimal policy π∗, but the total reward CDFs are different.

the expected total reward objective, the simplification of transition-based reward function leads to a

different total reward distribution, which leads to a different VaR function (Equation (7)) shown in

Figure 3.3.

Unlike the expected total reward, VaR does not have a time-consistent property, so the backward

induction cannot be implemented directly. For short-horizon MDPs, one method is the augmented-

state 0-1 MDP (Xu & Mannor, 2011), which incorporates the cumulative reward space into the state

space, and brings in the threshold and reorganizes the MDP components, in order to calculate the

probability as expectation. The other method is to enumerate all policies to achieve the total reward

CDF set, then calculate the VaR function. Here we describe and compare the two methods.

Augmented-State 0-1 MDP

Since the cumulative reward is needed for the optimality (Bouakiz & Kebir, 1995), an aug-

mented state space is adopted to keep track of it. For short-horizon MDPs considering the VaR
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Figure 3.3: The VaR functions for the short-horizon inventory MDPs with two rewards from the
model simplification and the SAT, respectively.

Problem 1.2, Xu and Mannor (2011) presented a state augmentation method to include the cumu-

lative reward in state space. This state augmentation is also implemented in several former studies

(Bouakiz & Kebir, 1995; Ohtsubo & Toyonaga, 2002; Wu & Lin, 1999; Xu & Mannor, 2011). Here

we give the proof for Lemma 3.1 in the appendix, which is missed in (Xu & Mannor, 2011).

Lemma 3.1. For every finite-horizon MDP 〈N,S,A, r, p, μ, v〉, there exists an augmented-state

0-1 MDP 〈N,S′, A, v′, p′, μ′〉, in which the optimal expected total reward equals to the optimal

probability ητ ∈ [0, 1] of the original MDP with a threshold τ ∈ R.

This 0-1 MDP enables backward induction to solve VaR Problem 1.2 with calculating the prob-

ability ητ as an expectation. The augmented-state 0-1 MDP algorithm is presented in the appendix.

In the implementation of the algorithm, it is worth noting that, in most instances, it is more efficient

to deal with the state space in a time-dependent way, since at each epoch, only a subspace of S′ is

feasible. Furthermore, since the reward function is recorded by means of the cumulative reward, the

model simplification still affects the result.
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Now we use the augmented-state 0-1 MDP method to solve the inventory control problem de-

scribed above. We consider the VaR Problem 2 with the threshold τ = 9, for instance. The

optimal policy for the MDP with the transition-based reward function is π∗ = (π1, π2), where

π1((0, 0)) = 2, π2((0, 2)) = 2, π2((0, 8)) =1 or 2, π2((1, 0)) = 1 or 2, π2((1, 6)) = 0 or 1, and

π2((2,−2)) = 0 or 1. The optimal probability is η∗τ = 0.3125. The optimal policy for the MDP

with a simplified reward function is π∗ = (π1, π2), where π1((0, 0)) = 2, π′
2((2, 0)) = 0. And

the optimal probability is η∗τ = 0.1875. The conclusion which claims that the model simplification

changes the VaR, is verified here.

As described above, it is clear that the augmented-state 0-1 MDP method is for VaR Problem 1.2

with a specified threshold only. In order to solve either VaR problem with any τ ∈ R or α ∈ [0, 1],

we enumerate all the deterministic policies on the augmented state space S′ to acquire the optimal

VaR.

Policy Enumeration

In a finite-horizon MDP, the VaR function is a right-continuous step function. It is worth noting

that its jump points contains the VaR information. Denote the jump set {x ∈ R | ηx− < ηx}.

Remark 3.1 (VaR function in a finite horizon). Given the jump set {x ∈ R | ηx− < ηx} for a finite-

horizon MDP, for any τ ∈ R, denote α∗ = 1− ητ , and then τ∗ = ρ(1−α∗) ∈ {x ∈ R | ηx− < ηx},

then we have (τ∗, 1− α∗) ∈ {(x−i , ηx−
i
)} ∪ {(+ inf, 1)}. There exists a similar conclusion for any

α ∈ [0, 1].

In other words, in a finite-horizon MDP, the set {(x−i , ηx−
i
)}∪{(+ inf, 1)} contains all solutions

to the two VaR problems defined in Section 1.2.3. In the same MDP setup, we study the effect

of the model simplification on the VaR function. Given the two MDPs, 〈N,S,A, r, p, μ, v〉 and

〈N,S,A, r′, p, μ, v〉, Figure 3.3 illustrates that the simplification of reward function changes the

VaR function. Now we can verify the solution to the VaR problem with a specified threshold τ = 9.

Furthermore, for any threshold τ ∈ R, we can acquire ητ ∈ [0, 1] along the curves, so as for any

probability α ∈ [0, 1]. For example, when τ = 7.5, ητ for the MDP with a transition-based reward

function is 0.6875 (1 − 0.3125), and η′τ for the MDP with a state-based reward function is 0.25
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(1 − 0.75). The model simplification results in a nontrivial difference (0.6875 − 0.25 = 0.4375),

which could have an effect on a risk-sensitive decision making.

Briefly, the model simplification changes the VaR function. For the VaR Problem 1.2, the

augmented-state 0-1 MDP method enables the backward induction algorithm. However, the method

fails for long-horizon MDPs, and it works for the VaR problem 1.2 with a specified threshold only.

Since both VaR problems relate to the VaR function, how to calculate it effectively in a short horizon

needs further study. Next, we compare the VaR results from the SAT and the model simplification

in a long horizon.

3.2.3 VaR in Long-Horizon MDPs

Since it is intractable to find the exact optimal policy for a long-horizon MDP with a VaR

objective, we look for a deterministic stationary policy instead. With the aid of spectral theory

and the central limit theorem, the total reward CDF set {F π
Φ} can be estimated in an MDP with

a deterministic reward by enumerating all π ∈ Πd, in order to achieve the VaR function. For

MDPs with transition-based reward functions, we use the Corollary 2.1 and present an algorithm

to transform a Markov reward process with the reward function rπT : S × S → R to one with

rπ†S : S† → R, where S† = S × S, in order to keep the VaR function (which is derived from

{F π
Φ}π∈Πd

) intact.

Total Reward CDF Estimation

Firstly we estimate the total reward distribution for a long-horizon Markov reward process

derived from an MDP with an rS and a policy π ∈ Πd, and denote the reward in the derived

Markov process by rπS . Given an MDP with a state-based reward function 〈N,S,A, rS , p, μ〉1

and a π ∈ Πd, we have a Markov reward process 〈N,S, rπS , p
π, μ〉. For x, y ∈ S, the reward is

rπS(x) = rS(x, π(x)), and the transition probability is pπ(x, y) = p(x, π(x), y).

Kontoyiannis and Meyn (2003) proposed a method to estimate F π
Φ . In a positive recurrent

Markov reward process with invariant probability measure (stationary distribution) ξ : S → [0, 1],

we have the total reward Φπ
N =

∑N−1
t=0 rπS(Xt), and the averaged reward ζ(rπS) = limN→∞ 1

NE(ΦN ),

1Though the salvage function v is ignored when the horizon is long, it can be involved if necessary.
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which can be expressed as ζ = ξrπS . Define the limit r̂πS = limN→∞ Eμ(ΦN −Nζ), which solves

the Poisson equation

P r̂πS = r̂πS − rπS + ζ,

where P is the transition matrix and P (x, y) = pπ(x, y). Denoting the variance of the return ΦN

with the initial state x by Vx(ΦN ), two assumptions (Kontoyiannis & Meyn, 2003, Section 4) are

needed for the total reward CDF estimation.

Assumption 3.1. The Markov reward process X is geometrically ergodic with a Lyapunov function

V : X → [1,∞) such that ζ(V 2) < ∞.

Assumption 3.2. The (measurable) function rπS : S → [−1, 1] has zero mean and nontrivial asymp-

totic variance σ2 = limN→∞Vx[(ΦN )/
√
N ].

Under the two assumptions, we show the Edgeworth expansion theorem for nonlattice function-

als (Kontoyiannis & Meyn, 2003, Theorem 5.1) as follows.

Theorem 3.1. Suppose that X and the strongly nonlattice functional rπS satisfy Assumptions 3.1

and 3.2, and let GN (y) denote the distribution function of the normalized partial sums (ΦN −
Nζ(rπS))/σ

√
N :

GN (y) = P{(ΦN −Nζ(rπS))/σ
√
N ≤ y}, for all y ∈ R.

Then, denote the standard normal density by γ(y), the corresponding distribution function by g(y),

and a constant related to the third moment of ΦN/
√
N by κ ∈ R. For any initial state x ∈ S and

as N → ∞,

GN (y) = g(y) +
γ(y)

σ
√
N

[
κ

6σ2
(1− y2)− r̂πS(x)] + o(N−0.5).

The formulas for κ, r̂πS and σ2 can be found in (Xu & Mannor, 2011).
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Figure 3.4: Estimated VaR functions for the long-horizon inventory problems with the transformed
reward function and the simplified reward function, respectively.

Distribution Estimation with SAT

For a Markov reward process derived from an MDP with a transition-based reward function

and a stationary policy π, we simplify the reward function to show the effect of the model sim-

plification. In order to compare the result with the one from the SAT, we transform the Markov

reward process with a transition-based reward to one with a state-based reward by Corollary 2.1.

Comparing with the result from the model simplification, the proposed transformation can keep the

distribution intact.

In a similar MDP setup outlined in the last section, we estimate the VaR function in a long

horizon. We set N = 500 and implement the SAT for Case 1 to the MDP with every π ∈ Πd. In

order to reduce the computational complexity, we use ĜN (y) = g(y) instead of Equation (3.1). In

Figure 3.4, we can see that the simplification of the transition-based reward function with Equa-

tion (1) results in a distinct VaR function with different values at most nontrivial thresholds (τ ∈
[1300, 1700] ∪ [1900, 2300] in general). For example, when τ is around 1600, the difference is

around 0.2, which may have a serious impact on a risk-sensitive decision making.
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Remark 3.2 (VaR in a long horizon). In a long-horizon MDP, given an estimated VaR function

which is strictly increasing, for any probability α ∈ [0, 1], there exists a unique τ ∈ R, such that

α = 1 − ητ . In this case, every point along the estimated VaR function can be regarded as a

“jump point” described in Remark 3.1. In other words, when the estimated VaR function is strictly

increasing, the inversed VaR function solves the VaR Problem 1 with α ∈ [0, 1].

Till now we have shown that how the SAT preserves the (discounted) total reward distribution

in finite-horizon MDPs with VaR objectives, and the model simplification changes the result. Next,

we show how the three law-invariant risks are estimated with the aid of the return variance formula

in infinite-horizon MDPs.

3.2.4 Risks in Infinite-Horizon MDPs

In this section, we focus on the three law-invariant risks described in Section 1.2, which are

functionals on the return Φ =
∑+∞

t=1 γ
t−1Rt. We estimate the three risks with the return variance

in infinite horizons, and show how the model simplification leads to wrong results. In the same

inventory control MDP, we illustrate how the SAT works for the Case 1 (Corollary 2.1). In a different

toy MDP example, we illustrate how the SAT works for the Case 3 (Corollary 2.3), and how the

state lumping works.

VaR

The two VaR problems (Problem 1.1 and Problem 1.2) both depend on the VaR function (Equa-

tion (7)), which is the infimum of the set of return CDFs. Therefore, we need to estimate the return

CDF for every policy. The functional distribution estimations in Makrov reward processes have

been studied for decades (Meyn & Tweedie, 2009; Woodroofe, 1992). However, there is no related

central limit theorem for the discounted sum of rewards (return). To simplify the estimation, we es-

timate the return distribution by considering mean and variance only, which implies the assumption

that the return is approximately normally distributed.

We consider the MDP described in Section 3.2.1 with an infinite horizon for example. To illus-

trate how the SAT works for an MDP with a deterministic policy, and show the effect of the model
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Figure 3.5: (a) The Markov reward process for the MDP in Figure 3.1 with the policy π. This
Markov process has an rπT . The labels along transitions denote rπT (x, y)(p

π(x, y)), and the labels
rπS(x) near states denote the state-based reward simplified with Equation (1); (b) The transformed

Markov reward process with a an rπ†S . For a Markov reward process with an rπT , the transformation
takes transitions as states and attach each possible reward to a state, in order to preserve the reward

sequence. The labels along transitions denote pπ†(x†, y†), and the labels rπ†S (x†) near states denote
the state-based reward function from the transformation.

simplification, we give two Markov processes from the model simplification and the SAT, respec-

tively. We consider a deterministic policy π = [2, 1, 0]—to order 2, 1, 0 item(s) when the inventory

level is 0, 1, 2, respectively—then we have a Markov reward process illustrated in Figure 3.5(a),

with the simplified reward. To illustrate how the SAT works, we implement the SAT for Case 1, and

the transformed Markov process is presented in Figure 3.5(b), with only some of the transitions are

shown.

Now we set γ = 0.95 and compare the two return distributions—one from the SAT for Case 1,

and the other from the model simplification—with the averaged empirical return distribution. With

the aid of Theorem 1.1, the two distributions are estimated and shown in Figure 3.6. The averaged

empirical return distribution is from a simulation repeated 50 times with a time horizon 1000, with

the error region representing the standard deviations of the means along return axis.

The Kolmogorov–Smirnov statistic DKS (Durbin, 1973) is used to quantify the distribution dif-

ference (error). Denote the averaged empirical return distribution by F̂ π
Φ , the estimated distribution
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Figure 3.6: Comparison among the averaged empirical return distribution with error region, the
estimated return distribution from the transformation, and the estimated return distribution from the
model simplification.

for the transformed process by Qπ
Φ, and the estimated distribution for the process with the model

simplification by Q′π
Φ . For the case in Figure 3.6, DKS(Q

′π
Φ , F̂ π

Φ) = supφ∈R |Q′π
Φ (φ) − F̂ π

Φ(φ)| ≈
0.145, and DKS(Q

π
Φ, F̂

π
Φ) ≈ 0.012. The results show that, the model simplification leads to a

nontrivial estimation error (0.145 > 0.012).

The VaR function is obtained by enumerating the deterministic policies. Figure 3.7 shows the

two estimated VaR functions. Since the VaR function can also be regarded as a return distribution,

we can still use DKS to measure the error from the model simplification, and in this case DKS ≈
0.150. Denote the optimal probability for the MDP with the model simplification by η̂τ , then the

error bound for the optimal probability sup{|η̂τ − ητ | : τ ∈ R} ≈ 0.150, which is nontrivial in this

risk-sensitive problem.

Remark 3.3 (Smaller variance from model simplification). In Figure 3.6 we can tell that the dis-

tribution for the process with the model simplification has a smaller variance. The reason can be
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Figure 3.7: Comparison among the averaged empirical VaR function, the estimated VaR function
from the transformation, and the estimated VaR function from the model simplification.

intuitively explained by the analysis of variance (Scheffé, 1999). Taking the deterministic transition-

based reward function for example. Considering the possible rewards for the same current state as

a group, the variance of Rt includes the variances between groups and the variances within groups.

When the reward function is simplified with Equation (1), the variances within groups are removed,

so the variance is smaller.

From the inventory example we can see that, some methods require Markov processes to be

with deterministic and state-based reward functions only, and the model simplification changes the

reward sequence as well as the return distribution. If we want to use Q-learning, or other methods

for Markov processes with rS in a risk-sensitive scenario, we should implement an appropriate SAT

first. In the next two sections, we consider the other two law-invariant risks—mean-variance risk

and exponential utility risk—in an MDP with dT and a randomized policy, and illustrate how the

state lumping alleviates the enlarged state space.
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Figure 3.8: A toy example with two states and two actions. The labels a(j, q) along transitions
represent the action a, the immediate reward j, and the probability q = p(y | x, a)dT (j | x, a, y),
where x, y represent the current and the next states, respectively.

Mean-Variance and Exponential Utility Estimations with State Lumping

Here, we illustrate how the SAT works in Case 3 and compare the results with the estimations

from the model simplification. Since Case 3 refers to an MDP with a dT and a randomized policy

π ∈ Πr, we turn to a smaller example to simplify the graphical representation. Moreover, we also

illustrate how the state lumping works.

Consider the process illustrated in Figure 3.8 with two states and two actions, in which state 1

has two actions and state 2 has one. The process starts from state 1 at time t = 1. Let’s consider

the randomized policy π(1) = [0.5, 0.5]—uniformly choose an action for state 1—then we have a

Markov reward process illustrated in Figure. 3.9(a). In order to calculate the return variance, the

Markov process needs to have a deterministic reward. One way to achieve this is to naively simplify

the reward function by calculating the expectation conditioned on state. The induced Markov pro-

cess is shown in Figure 3.9(b). The other way to acquire a deterministic reward function is through

1 2

(5, 0.6)

(-10, 0.125);(5, 0.125);(5, 0.35)

(5, 0.25);(10, 0.15) (10, 0.4)

(a)

1 2
0.6

0.6

0.4 0.4

3.875 7

(b)

Figure 3.9: (a) A Markov process with a stochastic transition-based reward function. The labels
(j, q) along transitions represent the immediate reward j and the probability q = pπ(y | x)dπT (j |
x, y), where x, y represent the current and the next states, respectively. The two blue situations are
isotopic states, which can be lumped into one augmented state in the transformed Markov process;
(b) The Markov process from the model simplification. The labels p along transitions represent
the probability p = pπ(y | x), and the labels r(x) in the text boxes represent the deterministic
state-based reward values from the model simplification.
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Figure 3.10: The transformed Markov process with a deterministic state-based reward function.
Some transitions are hidden. The underlined state comes from lumping two situations from the
original Markov process in Figure 2(a).

the SAT. A suitable SAT renders a deterministic reward function and preserve (Rt). However, the

SAT also enlarges the state space from |S| to (|S|2|A||J | + |S|) in general, which is illustrated in

Figure 3.10 for this case.

Figure 3.10 illustrates the transformed Markov process with the two states underlined in Fig-

ure 3.9(a) lumped into the underlined state (1−2−5). Furthermore, by Corollary 2.5, the two states

(1−1−5) and (2−1−5) are isotopic as well, which can be lumped to further simplify the analysis.

In summary, by lumping isotopic states into one state, we decrease the size of the augmented state

space and keep (Rt) intact. Considering the structural property of the transition probability of the

transformed Markov process, it has a fair chance to relieve from the enlarged state space to some

degree.

Next, we estimate the two risks on the return with the aid of the SAT. we estimate the exponential

utility risk and the mean-variance risk by Equation (5) and (6), respectively. The return variance

is calculated by Theorem 1.1. For each risk, we compare three estimations: empirical estimation,

estimation from the model simplification, and estimation from the SAT. The empirical estimation
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Figure 3.11: The comparison among the empirical mean-variance risk (with an error region), the
estimated mean-variance risk from the model simplification and the estimated mean-variance risk
from the SAT along the risk parameter k ∈ (−3, 3).

is calculated as follows. We run L = 50 groups of simulations to calculate the variance of an

estimation, in each group we run M = 1000 simulations of the Markov process, and we set the time

horizon N = 1000 for the simulations.

Mean-variance risk estimation: The empirical estimation of mean-variance risk with a risk

parameter k ∈ R is

Ψ̂V (Φ, k) =

L∑

i=1

ΨV,i(k)/L,

in which

ΨV,i(k) =

M∑

j=1

[φi,j − k(φi,j −
M∑

j=1

φi,j/M)2]/M,

where φi,j is the j-th simulation in group i ∈ {1, · · · , L} and j ∈ {1, · · · ,M}. The comparison

among the empirical mean-variance risk, the estimated mean-variance risk from the model simplifi-

cation, and the estimated mean-variance risk from the SAT along the risk parameter k ∈ (−3, 3) is

shown in Figure 3.11. For different k, the empirical mean-variance risk Ψ̂V (k) is illustrated with an

error region representing the standard deviations of the means. Since the error region is so narrow

that it is hardly seen, we zoom in a piece to make it clear. Based on the observation, we can see that,
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Figure 3.12: The comparison among the empirical exponential utility risk (with an error region),
the estimated exponential utility risk from the model simplification, and the estimated exponential
utility risk from the SAT along the risk parameter β ∈ (−0.1, 0.1).

the estimated mean-variance risk from the SAT is close to the empirical mean-variance risk, but

its counterpart from the model simplification is not. That is because the SAT preserved the return

variance, but the model simplification does not.

Exponential utility risk estimation: The empirical estimation of exponential utility risk with a

risk parameter β ∈ R \ {0} is calculated by

Ψ̂U (Φ, β) =
L∑

i=1

ΨU,i(β)/L,

in which

ΨU,i(β) = β−1 log[
M∑

j=1

exp(βφi,j)/M ], (8)

where φi,j is the j-th simulation in group i ∈ {1, · · · , L} and j ∈ {1, · · · ,M}. The comparison

among the empirical exponential utility risk, the estimated exponential utility risk from the model

simplification, and the estimated exponential utility risk from the SAT along the risk parameter

β ∈ (−0.1, 0.1) is shown in Figure 3.12. It is worth noting that, the utility value at β = 0 is set by

the average of the two adjacent values, since as the denominator in the Equation (8), β cannot be
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Figure 3.13: The comparison among the empirical exponential utility risk (with an error region),
the estimated exponential utility risk from the model simplification, and the estimated exponential
utility risk from the SAT along the risk parameter β ∈ (−3, 3).

zero. Based on the observation, we can see that when β ∈ (−0.1, 0.1), the estimated risk from the

SAT is close to the empirical one, but its counterpart from the model simplification is not. That is

again because the return variance is preserved by the SAT only. It is also found that, for the case

β ∈ (−3, 3) in Figure 3.13, the estimated risk from the SAT goes far from the empirical one. That

is because there exists a term O(β2) in Equation (5), and when β deviates too much from zero, this

term brings a large error. Therefore, the estimation from the SAT works only when β is close to

zero, and its counterpart from the model simplification has large errors in both cases.

Thus far, we have shown that, the model simplification changes the two risk estimations in

different cases. There are a number of methods for MDPs and Markov processes with rewards

which are not stochastic and transition-based, such as (Guo, Ye, & Yin, 2012; Xia, 2018) on mean-

variance risk and (Borkar, 2002; Shen et al., 2014) on exponential utility risk. We believe that, when

people apply these methods for practical problems with stochastic and transition-based rewards, they

should revisit the methods with the SAT instead of the model simplification. This concern refers to

the case when randomized policy is involved as well.

42



3.3 Related Work

The two VaR problems were defined in (Filar et al., 1995), which studied the VaR problems on

average reward by separating state space into communicating and transient classes. VaR concerns

the threshold-probability pair, and the optimality of one comes into conflict with the other as they

are virtually non-increasing functions of each other. Bouakiz and Kebir (1995) pointed out that the

cumulative reward is needed for VaR objectives, and various properties of the optimality equations

were studied in both finite and infinite-horizon MDPs. In a finite-horizon MDP, Wu and Lin (1999)

showed that the VaR optimal value functions are target distribution functions, and there exists a

deterministic optimal policy. The structure property of optimal policy for an infinite-horizon MDP

was also studied. For the VaR problem with a probability α ≥ 0.5, Delage and Mannor (2010)

solved it as a convex “second order cone” programming with reward and transition uncertainties.

Different from most studies, Boda and Filar (2006) and Kira, Ueno, and Fujita (2012) considered

the VaR objective in multi-epoch settings, in which a risk is required to reach an appropriate level

at not only the final epoch but also all intermediate epochs.

The VaR problem with a fixed threshold has been extensively studied. An augmented-state 0-1

MDP was proposed for finite-horizon MDPs with either integer or real-valued reward functions (Xu

& Mannor, 2011). By including the cumulative reward space into the state space, the states which

satisfied the threshold can be “tagged” by a Boolean salvage function. The general reward discretiz-

ing error was also bounded (Xu & Mannor, 2011). In a similar problem named MaxProb MDP, the

goal states (in which the threshold is satisfied) were defined as absorbing states, and the problem

was solved in a similar way (Kolobov, Mausam, Weld, & Geffner, 2011). Value iteration (VI) was

proposed to solve the MaxProb MDP in (S. X. Yu, Lin, & Yan, 1998), and followed by some VI

variants. In the topological value iteration (TVI) algorithm, states were separated into strongly-

connected groups, and efficiency was improved by solving the state groups sequentially (Dai, Weld,

& Goldsmith, 2011). Two methods were presented to separate the states efficiently by integrating

depth-first search (TVI-DFS) and dynamic programming (TVI-DP) (Hou, Yeoh, & Varakantham,

2014). For both exact and approximated algorithms for VaR with a threshold, the state of the art can

be found in (Steinmetz, Hoffmann, & Buffet, 2016). VaR was also considered in practical problems,
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Ermon, Gomes, and Vladimirsky (2012) solved a time-sensitive stochastic shortest path problem,

in which the route of a delivery truck was planned in order to reach the destination before a strict

deadline. They defined a utility function with a worst case constraint, and solved the problem with

dynamic programming.

Central limit theorem (CLT) for Markov chain is studied for decades. Most works in this field

are for the partial sum of rewards. Under different conditions, the distribution of the partial sum can

be estimated (Jones, 2004; Meyn & Tweedie, 2009). Gerber (1971) studied the discounted sum of an

infinite sequence of i.i.d. random variables. The first three moments of each random variable were

assumed to be bounded, and it was shown that the normalized discounted sum is asymptotically

normal (N(0, (1+ v)−1)) when the discount factor v tends to be 1. The difference between the two

CDFs were also studied. Stein (1972) presented a bound for the error in the normal approximation

to the distribution of the sum of dependent random variables. In the review part it also mentioned

several error bounds under different conditions. For example, if every single term in the sum is

bounded with exponentially decreasing dependence, then the error is roughly O(n1/4). Several

studies used different methods to present bounds under different conditions. Woodroofe (1992)

developed a sufficient condition for partial sums of a function of a stationary, ergodic Markov chain

to be asymptotically normal.

Q-learning has been studied in risk-sensitive RL for decades2. Many risk-sensitive Q-learning

studies are for MDPs with an rS . Borkar (2002) proved the convergence of Q-learning for an ex-

ponential utility cost objective with an ordinary differential equation method. A trajectory-based

algorithm which combines policy gradient and actor-critic methods was presented to solve a CVaR-

constrained problem (Chow et al., 2017). For robust MDP problems, with considering a set of

general uncertainties (random action, unknown cost and safety hazards), Junges et al. (2016) pro-

vided an approach to compute safe and optimal strategies iteratively. Q-learning has also been used

to provide risk-sensitive analysis on the fMRI signals, which provides a better interpretation of the

human behavior in a sequential decision task (Shen et al., 2014).

For large-scale MDPs with time-consistent risks, P. Yu, Haskell, and Xu (2018) proposed an ap-

proximate dynamic programming approach and developed a family of simulation-based algorithms.
2As well as methods based on value function, (Borkar & Meyn, 2002) for example.
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A unified convergence and sample complexity analysis technique were also given for this set of com-

putationally tractable and simulation-based algorithms. For the whole class of coherent risks, Tamar,

Chow, Ghavamzadeh, and Mannor (2015) extended the policy gradient method for both static and

time-consistent dynamic risks. For static risk measures, they combined the policy gradient with a

standard sampling approach with convex programming. For dynamic risk measures, they proposed

an actor-critic algorithm which involved explicit approximation of value function. This unified ap-

proach to RL with coherent risks generalized previous related studies. The expectation-based worst

case risk might not need the proposed SATs. For example, the minimax risks studied in (Huang &

Haskell, 2017). For a comprehensive survey on safe RL, see (Garcı́a & Fernández, 2015).

3.4 Conclusion and Future Research

With the aid of the SAT, we show that, the three law-invariant risks can be estimated in MDPs

with a stochastic transition-based reward and a randomized policy. To relieve the enlarged state

space, a novel definition of isotopic states is proposed for the state lumping, considering the special

structure of the transformed transition probability. In the numerical experiment, we illustrate the

state lumping in the SAT, errors from a naive model simplification, and the validity of the SAT for

the three risk estimations. It is worth noting that, the SATs also works for some risks that are not

law invariant, such as dynamic risks (Ruszczyński, 2010), since (Rt) is preserved.

Quite a few techniques operate on MDPs with deterministic reward functions, such as Q-

learning and the estimation of total reward distribution. However, in many practical scenarios,

the reward is stochastic, and the model simplification will change the total reward distribution. The

SAT enables the transitions to have properties of states, in order to implement the techniques and

keep the distribution intact. We believe that some practical problems with respect to VaR should be

revisited using our proposed transformation approach when the reward is complicated.

The essence of the SATs is to attach each possible reward value to an augmented state to pre-

serve the reward sequence. This attachment is crucial in risk-sensitive RL, considering the wide

application of value function and Q-function. Without the proposed SATs, when the MDP is with
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a reward which is not an rS type, the direct use of Q-learning also implies such a model simplifi-

cation. Now with the SATs, the Q-function (value function) can be considered as an approximation

of the “real” value of a given augmented state-action pair (state). In other words, the proposed

transformations “transform” the uncertainties from the transition, action, and the stochasticity of

the reward to the augmented state space. One future work is to efficiently deal with the enlarged

state space in the transformed process. Since the state space is augmented, the SATs has an effect on

the computational complexity. Denote the complexity for an algorithm by T (|S|, |A|), it becomes

T (|S2 ×A× J |+ |S|, |A|) when the SAT for Case 4 is implemented.

The second future study is to estimate the VaR function without enumerating all the policies. A

special case is that there exists an optimal policy π∗ for all τ ∈ R, i.e., F π∗
Φ (τ) = inf{F π

Φ(τ) | π ∈
Πn}. Ohtsubo and Toyonaga (2002) gave two sufficient conditions for the existence of an optimal

policy in infinite-horizon discounted MDPs, and another condition for the unique solution on a tran-

sient state set. Another idea is to consider it as a dual-objective optimization. Zheng (2009) studied

the dual-objective MDP concerning variance and CVaR, which might provide some insight. A sur-

vey on multi-objective MDPs, which concern more than risks, can be found in (Roijers, Vamplew,

Whiteson, & Dazeley, 2013). Furthermore, multiple quantile objectives can also be considered as

constraints (Randour, Raskin, & Sankur, 2015). A study on multiple long-run average objectives

can be found in (Chatterjee, 2007).

The final work could refers to distributional RL. Distributional RL aims to model the distri-

bution over returns in order to evaluate and improve a policy. A successful algorithm, categorical

DQN (Bellemare, Dabney, & Munos, 2017), combined a categorical distribution and the cross-

entropy loss with the Cramer-minimizing projection. Categorical DQN outperformed all previous

improvements to DQN on a set of 57 Atari 2600 games in the Arcade Learning Environment, which

we refer to as the Atari-57 benchmark.

Distributional RL algorithms are restricted to assigning probabilities to an a priori fixed, discrete

set of possible returns. Dabney, Ostrovski, Silver, and Munos (2018) proposed an alternate pair of

choices, parameterizing the distribution by a uniform mixture of Diracs whose locations are adjusted

using quantile regression. Their algorithm restricted to a discrete set of quantiles, and automatically

adapted return quantiles to minimize the Wasserstein distance between the Bellman updated and
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current return distributions.

Dabney et al. (2018) built on recent advances in distributional RL to give a generally applicable,

flexible, and state-of-the-art distributional variant of DQN. They achieved this by using quantile

regression to approximate the full quantile function for the state-action return distribution. By repa-

rameterizing a distribution over the sample space, this yields an implicitly defined return distribution

and gives rise to a large class of risk-sensitive policies.

Zhang and Yao (2019) proposed the Quantile Option Architecture (QUOTA) for exploration

based on recent advances in distributional RL. QUOTA provides a new dimension for exploration

via making use of both optimism and pessimism of a value distribution. However, the decision

making in prevailing distributional RL methods is still based on the mean (Bellemare et al., 2017).

They focused on making decisions based on the full distribution and whether an agent can benefit

for better exploration. They proposed to select an action greedily w.r.t. certain quantile of the action

value distribution. A high quantile represents an optimistic estimation of the action value, and action

selection based on a high quantile indicates an optimistic exploration strategy. QUOTA adaptively

selects a pessimistic and optimistic exploration strategy, resulting in improved exploration consis-

tently across different tasks.
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Chapter 4

A Scheme for Dynamic Risk-Sensitive

Sequential Decision Makings with

Constraints

4.1 Introduction

Risk-sensitive criteria have been drawing more attention in practical problems, especially in

which the small probability events have serious consequences. When various goals are targeted

in practice, one solution is to optimize one of them as objective and take others as constraints.

Furthermore, the environment might vary over time, which makes it more complicated. In this

chapter, we consider the sequential decision making (SDM) problems with three concerns: risk,

constraint, and dynamic environment. In order to solve this problem, we give a constrained and

risk-sensitive model, sample the variables involved within specified intervals, and propose a scheme

for generating a synthetic dataset and training an approximator (here we use a neural network for

example).

The motivation for the proposed scheme arises from practical problems in which exact analytic

risk analysis may be excessively complicated or prohibitively expensive, especially in a dynamic

environment. Though historical data can be used for neural network (NN) training, in many practical
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situations, the recorded decisions are not optimal. Furthermore, in risk-sensitive cases, the criteria

based on which the decisions were made are not clarified. Therefore, we generate a synthetic dataset

for problems with a specified risk-sensitive objective and constraints. For a given parameter set, we

construct an MDP, calculate the return variance for any deterministic policy, evaluate (or estimate)

the involved risks to check constraint satisfaction, and record the optimal policy.

A practical inventory control problem is considered for example, in which the risk objective and

constraints can be evaluated or estimated with return variance, as shown in the previous chapter.

The environment of an inventory control problem is dynamic in the long run. For example, the

wholesale prices are changing all the time, as well as the uncertainties of the market demands and

supplier reliabilities. How to adapt to these dynamics efficiently from a risk perspective is not only

an academic concern, but also a business one.

4.1.1 Chapter Contribution

In this chapter, we propose a scheme for solving risk-sensitive SDM problems with constraints

in a dynamic environment. we focus on law-invariant risks, as well as other functions of the return

variance V(Φ). As presented in the previous chapter, the three law-invariant risks can be either

calculated (mean-variance risk), estimated (utility risk), or estimated with assumption (quantile-

based risk) with E(Φ) and V(Φ). By virtue of the SAT, V(Φ) can be calculated in a Markov process

with a stochastic reward, which allows a risk evaluation in practical SDM problems. For a given

risk-sensitive problem, parameters defining a targeted process might be dynamic, i.e., they might

vary over time, so we sample them within specified intervals to deal with these dynamics. As for

the risk-sensitive criterion, considering the objective and constraints are, or can be estimated by,

functions of the mean and variance of return, we enumerate all π ∈ Πd to estimate the risk objective

and check the risk constraints. Thus, we can now generate a synthetic dataset as training data by

virtue of the proposed SAT.

We use MDPs to model SDM problems for example, and it enables us to evaluate risks as shown

in previous chapters. An NN is trained as an approximator of the mapping from risk and environ-

ment parameter spaces to space of risk and policy spaces with respect to risk-sensitive constraints.

We show that, i) practical problems modeled by MDPs with stochastic rewards can be solved in a
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risk-sensitive case; and ii). the proposed scheme is validated by a numerical experiment.

4.1.2 Chapter Organization

This chapter is structured as follows. In Section 4.2, we give a constrained and risk-sensitive

decision-making model, and propose a scheme for solving it in a dynamic environment with NN as

the approximator for example. In Section 4.3, we present a practical inventory control problem for

illustrating the validity of the scheme. In Section 4.4, we give the literature review on constrained

and risk-sensitive SDMs in dynamic environments. In Section 4.5, we make conclusions and discuss

the future research.

4.2 Sequential Decision Making Scheme and Approximator

In this section, we propose a scheme for solving risk-sensitive SDM problems with constraints

in a dynamic environment. We use MDP to model it and NN as the approximator in the scheme for

example.

4.2.1 Sequential Decision Making Scheme

Taking advantage of the growing computational power, “big data” techniques have been drawing

attentions for decades. People from all walks of life value their historical data and use it to automate

decision-making processes. However, there are several problems in the risk-sensitive decision-

making automation.

Question 4.1. Is the risk criterion in the decision making fixed all the time?

The answer to this question can be negative in many cases, since a decision maker can be fickle,

and there could be multiple decision makers accounting for the historical data.

Question 4.2. Is the risk criterion in the decision making well defined?

The answer to this question can be negative in most cases, since a criterion description (a math-

ematical one or not) is usually missing in historical data.
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Question 4.3. Are the decisions optimal?

Unfortunately, the answer to this question can be often negative as well. Consider an inventory

control problem for example. The manager could simply adopt the EOQ (economic order quantity)

strategy since it is easy to use, though the situation does not meet the assumptions of the EOQ

model. To solve this problem for automated risk-sensitive decision making, we propose a scheme

for solving risk-sensitive SDM problems with constraints in a dynamic environment.

A dynamic, constrained, and risk-sensitive SDM problem can be considered as a process (envi-

ronment) with a criterion (objective with constraints). Since the future environment is unknown, we

consider the problem in a “static” environment with the current related parameters to evaluate the

criterion at any epoch, and thus it becomes a one-step decision-making problem. We represent the

process of the problem by a vector of n ∈ N
+ environmental features qe ∈ Qe = F1 × · · · × Fn.

Similarly, denote the parameters involved in the criterion by a vector of qp ∈ Qp, and it may

contain β in Equation 5 for exponential utility risk, k in Equation 6 for mean-variance risk, α in

Problem 1.1, τ in Problem 1.2 for VaR, and other coefficients and factors. It worth noting that, we

allow qp to change within the prespecified Qp for dynamic concern as well as qe ∈ Qe.

With all the parameters defined, we can model this one-step decision-making problem into an

infinite-horizon MDP (from qe) with a criterion 〈z0, z〉 = 〈z0, z〉(qp) = 〈z0(·, ·;qp), z(·, ·;qp)〉.
z0(·, ·;qp) and z(·, ·;qp) are functions of expectation and variance of return, which are denoted

by E(Φ) and V(Φ), respectively. Recall that Πd is the deterministic policy space, the return (or

the discounted total reward) in an infinite-horizon MDP with a policy π ∈ Πd is defined by Φπ =

∑+∞
t=1 γ

t−1Rt (for details see Section 1.1), and here we denote it by Φ for brevity. Also note that the

immediate reward Rt is not the one in the dynamic SDM process, but the one in the MDP modeled

with qe at any epoch.

For any given qp ∈ Qp, we have z0(·, ·;qp) : R
2 → R as an objective function on E(Φ) and

V(Φ), and z(·, ·;qp) : R
2 → R

m as a m-dimensional vector of constraint functions on E(Φ) and

V(Φ), where m ∈ N
+. Hence, a constrained and risk-sensitive SDM problem at any given epoch
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can be formulated as

min
π∈Πd

z0

s.t. z ≤ 0.

Denote the allowable policy space by Πc = {π ∈ Πd | z(E(Φπ),V(Φπ);qp) ≤ 0}, and then the

optimal policy

π∗ ∈ argmin
π∈Πc

z0(E(Φ
π),V(Φπ);qp),

with the optimal risk qo = z0(E(Φ
π∗
),V(Φπ∗

);qp) ∈ Qo. Thus, a decision maker can be mathe-

matically denoted by

ν : Qe ×Qp → Qo ×Πd,

i.e., a theoretically perfect decision maker consider all the environmental parameters, the objective,

and possible constraints, and choose the optimal policy with respect to a specified risk-sensitive

criterion. The goal is to train an NN to approximate ν.

Usually, historical data is used in training an approximator. However, as we describe above,

at least two problems should be considered in practice. The first problem refers to information

incompleteness. Most historical data contains no information on qp and (or) π∗, and in many cases,

even the information on qe is incomplete. The second problem is about optimality. In practice, the

decision makers might prefer an easy-to-use policy than an optimal one, which is hard to determine

since the practical problems could be different from the theoretical model diversely and subtly. We

therefore propose that, for any qe ∈ Qe and qp ∈ Qp, we should evaluate or estimate involved risks

and calculate qo and π∗ to generate a synthetic dataset, and then use it to train the NN.

We present a scheme in Figure 4.1 to solve a constrained risk-sensitive SDM problem in a

dynamic environment. In the feature representation module, we define the SDM process with qe.

In the SDM modeling module, a mathematic model is chosen to represent the process and offer a

platform for risk evaluation, and here we use MDP for example. In the risk evaluation module, we

calculate the optimal policy by evaluating all deterministic policies with a specified risk-sensitive

criterion. For a given MDP with a risk-sensitive criterion, we firstly enumerate all deterministic

policies to generate Markov processes. Secondly, we implement the SAT to transform every Markov

process to one with a deterministic reward, and calculate the return variance. Thirdly, we estimate
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Figure 4.1: A dynamic risk evaluation scheme with NN and RL methods for optimal risk and policy
in a sequential decision making problem.

the related risk(s) with the return variance, and here we consider VaR as the objective and a function

of return mean and variance as a constraint only. In the label generation module, the optimal VaR

and policy is recorded and attached to the input as a label. Finally, a functional approximator, such

as an NN or a linear combination of polynomial basis or Fourier basis, is trained with the labeled

feature dataset. In this chapter, we consider an inventory control problem for example.

Briefly, the upper level of the scheme is for synthetic dataset generation (modeling and risk

evaluation), and the lower level is for approximator training. After each decision-making epoch,

some parameters will be updated with the outcome (such as market demand distribution) and the

involved external variables (such as wholesale price). Suppose the updated parameters are still

within the predefined intervals, the trained NN is able to output the estimated optimal policy and

risk at the next decision-making epoch. We present Algorithm 5 for the synthetic dataset generation

(upper level of the scheme) as follows.

4.2.2 Approximator

A functional approximator needs training with a dataset to approximate the mapping from pa-

rameter space to risk and policy space. In this study, we choose to use an NN, which is a universal

function approximator (Hornik, 1991). Other approximators, such as a linear combination of poly-

nomial basis or Fourier basis, are not considered here. The definition of NN is as follows.

Definition 4.1 (Feed forward neural network). Let Q ∈ N
+ be the number of layers, and
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Algorithm 5 Synthetic Dataset Generation Algorithm
Input: the size of training dataset |G|, environmental feature space Qe, risk parameter space Qp, and the

criterion 〈z0, z〉.
Output: the training dataset G.
1: for all i ∈ {1, · · · , |G|} do

2: Randomly generate a environmental feature vector qe ∈ Qe and a risk parameter vector qp ∈ Qp;
3: Construct an MDP M from qe;
4: for all π ∈ Πd do

5: Get the Markov process Mπ from M and π; 
Mπ has a stochastic transition-based reward
6: Get the transformed Markov process Mπ† using the SAT; 
Mπ† has a deterministic state-based

reward
7: Calculate the return variance in Mπ†;
8: Evaluate the criterion 〈z0, z〉(qp);
9: if π does not satisfy the constraint(s) z(qp) then

10: continue;
11: else

12: record the risk value z0(qp) and policy π;
13: end if

14: end for

15: Get the optimal risk value ρ∗ and the corresponding optimal policy π∗;
16: Record the i-th sample point as (ki, li), with ki = (qe,qp) and li = (ρ∗, π∗));
17: end for

N0, N1, · · · , NQ ∈ N
+ be the numbers of nodes of different layers. Denote the activation function

by g : R → R. For any q ∈ {1, · · · , Q}, x ∈ R, denote the affine function by Wq(x) = Aqx + bq

for some Aq ∈ R
Nq×Nq−1 and bq ∈ R

Nq . For any i ∈ {1, · · · , Nq}, j ∈ {1, · · · , Nq−1}, and q ∈
{1, · · · , Q}, the entry Aq,i,j of Aq denotes the weight of the edge from the i-th node in the (q−1)-th

layer to the j-th node in the q-th layer. For any layer q ∈ {1, · · · , Q}, let Wq : RNq−1 → R
Nq be

an affine function. With Hq = g ◦Wq for q = 1, · · · , Q− 1, a function H : RN0 → R
NQ defined as

H = WQ ◦HQ−1 ◦ · · · ◦H1

is called a feed forward NN. Since we use NN as an estimator of the decision maker ν, we denote

the NN by ν̂, and the set of NNs mapping from R
N0 to R

NQ with g by {ν̂g∞,N0,NQ
}.

In this study, for any given qe, we construct an MDP model, and by virtue of the SAT, we can

preserve the variance for a Markov process with a stochastic reward. As claimed in Section 1.2, most

inherent risks can be evaluated or estimated by return variance with or without some assumption.

We calculate qo and π∗ and attached them to qe and qp as labels. Finally, we train an NN with the

synthetic dataset. In the next section, we present an inventory management problem as an example
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to show the implementation details.

4.3 Numerical Experiment

Figure 4.1 illustrates the scheme with an NN and RL methods for a dynamic risk-sensitive SDM

problem with a VaR objective and risk-sensitive constraints. The scheme includes synthetic dataset

generation (upper layer), approximator training and predicting (lower layer). To generate the dataset

for training and testing according to Algorithm 5, we define and randomly generate a domain set.

For each domain instance, we estimate the optimal VaR and the corresponding policy as follows.

Firstly, construct an inventory MDP under some predefined assumptions. Secondly, enumerate

all deterministic policies to achieve a set of Markov reward processes {〈S, Jπ, pπ, dπT , μ〉}π∈Πd
.

Thirdly, acquire the set of transformed Markov process {〈S†, rπ†S , pπ†, μ†〉}π∈Πd
by the SAT, with

rπ†S being deterministic and state-based. Fourthly, estimate the mean and variance vectors v, ψ by

Theorem 1.1. Assuming the return is approximately normally distributed, we have the estimated

return distributions for all 〈S†, rπ†S , pπ†, μ†〉 to calculate the VaR function for the inventory MDP.

Finally, for the risk sensitivity parameters in the domain instance, check the constraints, calculate

risk-sensitive objective, and record π∗. With the training dataset, we tune, train and validate an NN

properly, and use it to predict qo and π∗ for any qe ∈ Qe and qp ∈ Qp.

4.3.1 An Inventory Management Example

As a proof of principle for the applicability of the proposed scheme, we apply it with an NN

to a practical inventory control process for example, in which three factors are modeled: multiple

sourcing, supplier reliability, and backlog. It is worth noting that MDP is a discrete-time process,

so the output optimal policy is a periodic-review strategy, which has its limitations comparing with

its aperiodic-review counterparts. Furthermore, some assumptions are made to keep the model

small. Hence, this inventory control SDM model is theoretical, and in many cases a more accurate

estimation can be achieved through simulation with respect to complicated cases.
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Multiple sourcing

Multiple sourcing (multisourcing) is a strategy that blends services from the optimal set of

internal and external suppliers in the pursuit of business goals (Cohen & Young, 2006). We consider

two suppliers U1 and U2, and a retailer R. The scenario involves a multinational corporation (R)

which functions in the supply chain as a retailer. For a targeted product, this corporation has two

suppliers U1 and U2 (in US and in India, for example). The supplier U1 in US is close and reliable,

the other supplier U2 is far and unreliable but with a lower wholesale price.

Supplier reliability

Supplier (sourcing) reliability can be expressed in terms of quantity, quality or timing of orders

due to multiple factors, such as equipment breakdowns, material shortages, warehouse capacity con-

straints, price inflations, strikes, embargoes, and political crises (Mohebbi, 2004). In the framework

of MDP, one way to model these uncertainties is to take the status of a supplier as a Boolean vari-

able, which represents whether the supplier is “available” or “unavailable”, and it can be modeled

as a two-state Markov process (Ahiska, Appaji, King, & Warsing Jr, 2013). In order to simplify

the state representation, we assume that the unreliable supplier U2 is available with a probability

β1 ∈ [0, 1], and the retailer will be compensated with an amount ps ∈ R
+ if the supplier with an

order is unreliable at the current epoch. The probability β1 can be estimated using historical data.

Transportation can be another source of unreliability. It emphasizes the long delivery time which

mainly results from a long physical distance. This uncertainty can be also a critical factor at times.

In our model, we assume U1 is reliable and its transportation lead time can be ignored (for example,

a day when one epoch is a month). Assume U2 offers a lower price but unreliable. Since it is far

from R, its lead time is one period. To simplify the model, we consider the transportation factor

within the supplier reliability.

Backlog and lost sale

For each unsatisfied unit of demand, a backlog or a lost sale occurs. Suppose the probabilities

of backlog and lost sale are β2 ∈ [0, 1] and 1−β2, respectively. The probability β2 can be estimated
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using historical data. We assume that when a backlog happens, the product will be sold at a lower

price pr − cb (which can be due to from fast delivery or other reasons), where pr ∈ R
+ is the retail

price and cb ∈ (0, pr). A lost sale induces a cost cl ∈ (0, pr). Rewards for both cases will be

calculated at the current epoch, in order to keep the state representation small. The backlog and lost

sale instances are associated with market demand. To keep the stochastic reward function simple,

finite possible demands are considered (i.e., a finite support for the reward function). For example,

when the warehouse capacity is four units and the maximum demand is six units, then the possible

maximum amount of backlogs or lost sales is two units. In the MDP model, the reward and cost

from these two units will be received at a discount at the current epoch.

To simplify the model, other factors, such as fast delivery, order replacement and foreign cur-

rency exchange, have not been considered. The inventory control process is illustrated in Figure 4.2,

in which the solid arrows represent the product flow, and the dashed arrows represent the order flow.

Next, we construct an MDP for this inventory control problem.

4.3.2 An Inventory MDP

Here we use an infinite-horizon MDP with finite state and action space to model the inventory

control process. The related parameters are given in Table 4.1. For a set of specified parameters,

we construct the MDP as follows. Given the warehouse capacity M ∈ N
+, for any epoch t ∈

N
+, denote the inventory level by I1,t ∈ {0, · · · ,M}, and the number of items in transit I2,t ∈

{0, · · · ,M − I1,t}, then the state is Xt = (I1,t, I2,t) ∈ S, where S = {(i1, i2) ∈ {0, · · · ,M}2 |
i1 + i2 ≤ M}. The action Kt = (K1,t,K2,t) ∈ AXt represents the order quantities with the two

U1 R T U2

Figure 4.2: The product (solid) and order (dashed) flows between the retailer R and the two suppliers
U1 and U2. The letter T denotes transportation. The transportation lead time of U1 is negligible,
hence ignored.
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Table 4.1: Inventory control parameter list

M ∈ N
+ warehouse capacity

γ ∈ [0, 1] Discount factor
μ : S → [0, 1] Initial state distribution
pr ∈ R

+ Retail price
ps ∈ R

+ Penalty on supplier’s unavailability
c1, c2 ∈ R

+ Wholesale price from U1 and U2

cb ∈ R
+ Backlog cost

cl ∈ (0, pr) Lost sale cost, which could be a dependent variable
cf ∈ R

+ Fixed ordering cost
ch ∈ R

+ Holding cost
fD : N → [0, 1] Demand distribution function (PMF)
β1 ∈ [0, 1] Supplier availability probability
β2 ∈ [0, 1] Backlog probability
α ∈ [0, 1] Risk sensitivity parameter (for VaR)

suppliers, where AXt = {(k1, k2) ∈ {0, · · · ,M}2 | k1 + k2 ≤ M − I1,t − I2,t}. Assume that

the maximum demand could be double of the warehouse capacity, i.e., supp(fD) = {0, · · · , 2M},

and the demand is Dt ∈ supp(fD) with probability fD(Dt). Given β1, β2 ∈ [0, 1] to represent

supplier availability and backlog probabilities, respectively, the reward and transition probability

can be formulated.

The reward and transition probability formulations are based on “situation” (check Remark 2.1).

For every Xt ∈ S and Kt ∈ AXt , we consider two factors. Firstly, is U2 reliable? Secondly, can

the demand be satisfied? If not, how many of them is backlogged? By enumerating all possible

situations for all Xt ∈ S and Kt ∈ AXt , we construct stochastic transition-based reward and

the transition probability. For example, given the current state Xt = (I1,t, I2,t) ∈ S, the action

Kt = (K1,t,K2,t) ∈ AXt , one situation could be that, the demand is Dt ≤ I1,t + I2,t +K1,t, and

U2 is available currently. In this situation, the reward is

Rt = pr ·Dt − cf · (1[K1,t>0] + 1[K2,t>0])− (c1 ·K1,t + c2 ·K2,t)− ch · I1,t.

The probability of this situation is given by

q = P(Xt+1, ‘U2 is available’ | Xt,Kt) = fD(Dt) · β1,

and the next state Xt+1 = (I ′1,t,K2,t), where I ′1,t = I1,t + I2,t +K1,t −Dt.
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For the same Xt and Kt, consider the situation that U2 is unavailable, Dt = I1,t+I2,t+K1,t+x,

x ∈ N
+, i.e., the demand is larger than the supply, and y ∈ [0, x] units are backlogged. In this case,

the reward is

Rt =

pr ·(Dt−x+y)−cf ·(1[K1,t>0]+1[K2,t>0])−(c1·K1,t+c2·K2,t)−ch·I1,t+ps·K2,t−y·cb−(x−y)·cl,

and the probability of this situation is

q = P(Xt+1, ‘U2 is unavailable’, ‘y backlog’, ‘(x-y) lost sale’ | Xt,Kt) =

fD(Dt) · (1− β1) · βy
2 · (1− β2)

x−y,

and the next state Xt+1 = (0,K2,t). For any Xt ∈ S and Kt ∈ AXt , denote the number of possible

situations by NXt,Kt . For the z-th situation, where z ∈ {1, · · · , NXt,Kt}, we denote the related

results by (Rt,z, qz, Xt+1,z) as the reward, the situation probability and the next state, respectively.

Then for any Xt ∈ S and Kt ∈ AXt , by enumerating all possible situations, we have the set of

results {(Rt,z, qz, Xt+1,z) | z ∈ {1, · · · , NXt,Kt}}. The transition probability conditioned on Xt

and Kt is

p(Xt+1 | Xt,Kt) =
∑

z∈{1,··· ,NXt,Kt} qz · 1[Xt+1,z=Xt+1],

and the stochastic transition-based reward is

d(j | Xt,Kt, Xt+1) =
∑

z∈{1,··· ,NXt,Kt} qz · 1[Xt+1,z=Xt+1,j=Rt,z ].

Next, we consider a VaR objective with a risk-sensitive constraint, and generate the synthetic

training data for NN.

4.3.3 Dataset Generation

In this study, the risk-sensitive criteria can be composed of any functions of E(Φ) and V(Φ).

Here, we consider the VaR Problem 1.1 as the objective with a constraint E(Φ)/V(Φ) > q for

example, where q ∈ Qp. The intuitive meaning of this constraint is that the earning per unit of risk

(variance) should be larger than a threshold q. To simplify the problem, we set q = 5 as a constant.
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Next, we artificially generate a dataset for the inventory control process with this criteria, in which

qp = α ∈ Qp, and Qp is a prespecified set.

There are multiple ways to define a mapping from parameter space to risk and policy space.

Here we define it as follows. Define the domain set K, with each instance k ∈ K refering to a vector

of inventory control parameters (retail price, fixed ordering cost, etc.). Define the label set L, with

each instance l ∈ L refering to a vector of labels (optimal VaR, optimal policy, etc.). A dataset

G = {(k1, l1), · · · , (km, lm)} is a finite set of pairs in K×L, i.e., a set of labeled domain instances.

It worth noting that, to construct an NN one needs to predefine certain parameters, including

but not limit to Q, {Ni} and g (see Section 4.2.2 for details). The predefined parameters, which

determine the network structure and how the NN is trained, are called hyperparameters. A fine-

tuned NN with a large enough dataset should be able to make a satisfactory prediction. For our

inventory control problem, all related parameters are set and sampled as follows.

Hyperparameters: A domain instance includes all variable values except for warehouse capacity

M ∈ N
+, discount factor γ ∈ [0, 1], and initial inventory distribution μ : S → [0, 1], which are

considered as hyperparameters. We set M = 2, γ = 0.95, and μ((0, 0)) = 1, i.e., at the beginning

the inventory level and the item amount in transit are both zero. The latter two parameters are fixed

only to simplify the problem.

Revenue related parameters: Set the retail price pr ∈ Pr = [6, 10], and for generating the

dataset, we take it as a random variable, whose distribution is U(6, 10) 1. Similarly, set the penalty

on supplier’s unavailability ps ∈ Ps = [0, 2] with ps ∼ U(0, 2), the wholesale prices from U1 and

U2 are c1 ∈ C1 = [4, 6] with c1 ∼ U(4, 6) and c2 ∈ C2 = [1, 4] with c2 ∼ U(1, 4), the backlog

cost cb ∈ Cb = [0, 2] with cb ∼ U(0, 2), the fixed ordering cost (for both supplier) cf ∈ Cf = [0, 2]

with cf ∼ U(0, 2), and the holding cost ch ∈ Ch = [0, 2] with ch ∼ U(0, 2). For brevity, we set the

lost sale cost cl = pr − c2.

For probabilistic parameters, we set the supplier availability probability β1 ∈ [0, 1] with β1 ∼
U(0.8, 1), the backlog probability β2 ∈ [0, 1] with β2 ∼ U(0, 1), and the risk sensitivity parameter

α ∈ [0, 1] with α ∼ U(0, 1). For the demand distribution vector vD ∈ [0, 1]2M+1, we sample

it uniformly from a 2M -simplex. For the criterion parameter α, we set Qp = [0.01, 0.99]. After

1A uniform distribution with a support [6, 10].
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Figure 4.3: The loss for training/validating a 3-layer network in 50 epochs.

defining the domain features, labels are calculated, which include the optimal risk and policy.

We denote a policy list (vector) by Lp, in which each item represents an allowable policy. An NN

will be trained as an approximator of the function, whose inputs represent the inventory parameters

and α, and outputs represent ρα and the corresponding policy (denoted by a Boolean vector or an

index), i.e., the domain set K = Pr ×Ps ×C1 ×C2 ×Cb ×Cf ×Ch × [0.8, 1]× [0, 1]2M+3 ×Qp,

and the label set L = R×{0, 1}|Lp| in general. Next, we train an NN with the synthetic dataset and

show the validity of the proposed scheme.

4.3.4 Numerical Result

Since VaR is numeric and (deterministic) inventory policy is categorical, we consider both of

them to be numeric. Considering the setting given in Section 4.3.3, we set a network ν̂gw,16,13 : K →
R
13. Now we use Keras to construct, train and validate an NN for this small inventory problem.

Firstly, we try a 3-layer NN. We set Q = 3, the numbers of nodes N0 = 16, N1 = 12, N2 =

8, N3 = 13. We set the relu function and the linear function as the activation functions for the

hidden and output layers, respectively. Set the mean squared error as the loss function, and adam as

the optimizer. Given that all hyperparameters are determined, the network is trained with a training
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dataset Gt ⊂ G. We train the NN 50 times for the means and variances of the loss values at different

epochs. We set the batch size to be 50 for the batch gradient descent.

Since it is a regression problem, we measure the loss by the regression metrics, such as mean

absolute error or mean squared error (MSE). In Figure 4.3, it shows that the result with the training

data size 105 converges within 10 epochs, with a hit rate around 95% in both training and validation

phases. The error regions represent the standard deviations of means along the epoch axis.

4.4 Related Work

Constrained probabilistic MDPs take VaR as a constraint. The mean-VaR portfolio optimization

problem was solved with the Lagrange multiplier for the VaR constraint over a continuous time

span (Yiu, Wang, & Mak, 2004). Bonami and Lejeune (2009) solved the mean-variance portfolio

optimization problem, and used variants of Chebychev’s inequality to derive convex approximations

of the VaR function. Randour et al. (2015) converted the total discounted reward to an almost-sure

quantile, and proposed an algorithm based on linear programming to solve the weighted multi-

constraint quantile problem. It is also pointed out that randomized policy is necessary when VaR is

considered in the constraint, and an example can be found in (Defourny et al., 2008).

The SDM problems considering risk, dynamic environment, and constraint are usually studied

separately. Besides the works reviewed in Section 3.3, Shen (2015) generalized risks to the valuation

functions. The author applied a set of valuation functions, derived some model-free risk-sensitive

reinforcement learning algorithms, and presented a risk control example in simulated algorithmic

trading of stocks. For SDMs in dynamic environments, Hadoux (2015) proposed a new model

named Hidden Semi-Markov-Mode Markov Decision Process (HS3MDP), which represented non-

stationary problems whose dynamics evolved among a finite set of contexts. The author adapted the

Partially Observable Monte-Carlo Planning (POMCP) algorithm to HS3MDPs in order to efficiently

solve those problems. The POMCP algorithm used a black-box environment simulator and a parti-

cle filter to approximate a belief state. The simulator relaxed the model-based requirement, and each

filter particle represented a state of the POMDP being solved. For different types of dynamic envi-

ronment, the author compared a regret-based method with its Markov counterpart (S. P.-M. Choi,
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Zhang, & Yeung, 2001). In the regret-based method, the agent was involved in a two-players re-

peated game, where two agents (the player and the opponent, which can be the environment) chose

an action to play, got a feedback, and repeated the game.

For SDMs with constraint(s), Chow (2017) investigated the variability of stochastic rewards and

the robustness to modeling errors. The author analyzed a unifying planning framework with coher-

ent risks (such as CVaR), which was robust to inherent uncertainties and modeling errors, and output

a time-consistent policy. A scalable approximate value-iteration algorithm on an augmented state

space was developed for large scale problems with a data-driven setup. The author proposed novel

policy gradient and actor-critic algorithms for CVaR-constrained and chance-constrained optimiza-

tion in MDPs. Furthermore, the author proposed a framework for risk-averse model predictive con-

trol, where the risk was time-consistent and Markovian. In the framework of CMDP (Altman, 1999),

Chow, Nachum, Duenez-Guzman, and Ghavamzadeh (2018) derived two LP-based algorithms—

safe policy iteration and safe value iteration—for problems with constraints on expected cumulative

costs. The algorithms hinged on a novel Lyapunov method, which constructed Lyapunov functions

to provide an effective way to guarantee the global safety of a policy during training via a set of lo-

cal, linear constraints. For unknown environment models and large state/action spaces, the authors

proposed two scalable safe RL algorithms: safe DQN, an off-policy fitted Qiteration method, and

safe DPI, an approximate policy iteration method. Another way to consider risk in an SDM prob-

lem is to avoid some dangerous system states. Geibel and Wysotzki (2005) defined the risk with

respect to a policy as the probability of entering such states, and set the constraint as the probability

being smaller than a predefined threshold. The authors presented a model-free RL algorithm with a

deterministic policy space. The algorithm was based on weighting the original value function and

the risk. The weight parameter was adapted to find a feasible solution for the constrained problem,

and the probability defining the risk was expressed as the expectation of a cumulative return.

4.5 Conclusions and Future Research

We propose a scheme using functional approximator and RL methods to solve SDM problems

with risk-sensitive constraints in a dynamic scenario. We consider risks as functions of mean and
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variance of the return in an induced Markov process. As shown in Section 1.2, most, if not all,

law-invariant risks can be evaluated or estimated with return variance. Considering that rewards

in practical problems are often stochastic, we implement SAT to enable the variance formula and

preserve the reward sequence. In an inventory control problem with practical factors, an NN is

trained and validated with a synthetic training dataset in the numerical experiment.

The current work can be extended in two ways. The first one has to do with the “no free lunch”

theorem. In our inventory control model, the more factors considered, the larger size the policy

space has. When the warehouse capacity is 3, there are 8748 deterministic policies, when it is 4

and 5, the size goes to around 2.4 × 107 and 1.4 × 1012, respectively. How to deal with a policy

space of such an astronomical magnitude in a risk-sensitive case is still an unsettled problem. The

second one is how to deal with two different output data types in an NN efficiently. In our setting,

the outputs include optimal risk value (numeric) and policy (categorical). In this case, a crucial task

is to properly set activation functions, normalization, and loss function for network training.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we proposed the SAT for risk estimation in MDPs and Markov processes. Three

law-invariant risks have been estimated with the aid of the return variance formula. In the framework

of MDP, we proposed a scheme for constrained risk-sensitive SDMs in dynamic environments.

In Chapter 1, we gave notations of MDPs with four reward forms. In the section of risks, we

categorized common-used risks in RL, and claimed that most, if not all, inherent risks depend on

the reward sequence (Rt : t ∈ {1, · · · , N}). With respect to risk-sensitive criteria, we pointed

out the model difference between theoretical methods and practical problems with respect to forms

of reward, which is implied by Question 1.1 and 1.2. The problem is that, on the one hand, theo-

retical methods often work for MDPs or Markov processes with simple forms of reward. On the

other hand, practical problems often occupy complicated forms of reward. In those cases, how to

solve the practical problems with the theoretical methods for processes with simple rewards only?

A naive way to work around this problem is to simplify the reward. We described three model sim-

plifications, which work perfectly when the criteria refer to the total reward expectation, but fail in

risk-sensitive cases, since they change (Rt). To illustrate how the proposed SAT preserves (Rt), we

considered the return variance formula as a representative of a family of theoretical methods, and

focused on the three law-invariant risks, i.e., exponential utility risk, mean-variance risk, and VaR,

all of which can be estimated with the return variance.
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We proposed the SAT in Chapter 2 for four different cases. The goal of the SAT is to trans-

form processes with complicated rewards to ones with simple rewards, and preserve (Rt) at the

same time. The essence of the SAT is to construct a bijective mapping from an “augmented” state

space to a possible “situation” space, in which each situation determines an immediate reward. Fur-

thermore, there exists a surjective mapping from the situation space to the reward space as well.

Therefore, we now have a chance to analyze the process of immediate rewards directly as we ana-

lyze the process of state. However, nothing is free. The transformed processes have disadvantages

comparing with the original ones. One problem is that the new state space is augmented. In Case 4,

the size of the new state space is (|S2 × A× J | + |S|). Comparing with the original size |S|, a lot

more computational power is needed. To relief this problem to some degree, we proposed the state

lumping theorem based on the definition of isotopic states. Considering the special structural prop-

erty of the transformed transition probability, transformed processes have a fair chance to decrease

the size of the state space.

In Chapter 3, we estimated the three risks. The goal of the part is three-fold. First, we illus-

trated how the model simplification changes return (or total reward) distribution, as well as (Rt).

The essence of the model simplification is to preserve the expectation of return (or total reward)

by preserving conditional expectations of immediate rewards only. Therefore, it changes (Rt) and

the return distribution. In the examples, we consider the return variance as a measure to show the

change, since return variance is crucial in risk estimation. Second, we illustrated how the proposed

SAT works in different cases. The first three cases are for policy evaluation, which plays an im-

portant part in RL. The most general case for an MDP as a whole, which could be deployed in

model-free methods, such as Q-learning. Third, we showed that the three law-invariant risks can be

estimated with the return variance. As the second central moment, the variance has a decisive effect

on the risks. As shown in Section 1.2, many different risks are functions of return variance. There-

fore, in our study, we focused on the return variance calculation, and reckon it as a representative of

the family of theoretical methods to show the power of the proposed SAT.

After such a large amount of theoretical work, we dealt with a more realistic problem in Chap-

ter 4. In SDM problems, we consider three factors at the same time: risk, constraint, and dynamic

environment. Usually, these concerns are studied separately in SDM, as reviewed in Section 4.4.
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Now by virtue of the proposed SAT, we can estimate risks in MDPs of practical problems and gen-

erate a synthetic dataset by ourselves. The reason why we need a synthetic dataset instead using

a historical dataset has been explained in Section 4.2. In the proposed scheme, for any vector of

environmental features, the problem is modeled for risk estimation (such as the approach we pro-

posed in Chapter 3). By enumerating all deterministic policies, we can find the optimal risk value

and policy. By doing so, we can generate a synthetic dataset for training an approximator. In our

study, we chose an NN as the approximator. A numerical experiment illustrated the validity of the

proposed scheme.

5.2 Future Work

We finally conclude this thesis with two additional important future research directions with

respect to the SAT.

5.2.1 SAT with Deep Q-Network

One future work is to implement the SAT in Deep Q-Network (DQN) (Mnih et al., 2015). The

goal to combine the SAT with DQN is two-fold. First, we can deal with a large state space by

using NN. Second, we can learn the real immediate rewards by combining Q-learning with the SAT,

which may offer us a platform for model-free risk estimation methods. A solution from a traditional

risk-sensitive Q-learning could be like that, for a given state, an optimal action generates a preferred

immediate reward distribution, since some measure on the distribution is optimal. By comparison,

a solution from a risk-sensitive Q-learning with the proposed SAT could be like that, for a given

state, an optimal action generates a preferred immediate reward value. By so doing, we divide a

finite return distribution into a set of possible reward values, which lowers the uncertainty from the

output of an algorithm.

5.2.2 SAT with Distributional RL

The other future work is to combine the SAT with distributional RL. Two points are worth not-

ing when we consider the SAT in distributional RL. First, most distributional RL methods, such
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as (Bellemare et al., 2017), outputs the optimal policy based on expectations with respect to an

estimated return distribution conditioned on states. By virtue of the proposed SAT, a finite return

distribution could be separated by considering each possible outcome as a state. By combining the

SAT with distributional RL, we might be able to update the policy from a real risk-sensitive perspec-

tive, instead of considering the traditional expectation value in Bellman operator. Second, for the

SAT to solve problems with continuous space, we may borrow the idea of quantile actors (Zhang &

Yao, 2019). Each quantile actor is responsible for proposing an action that maximizes one specific

quantile of a state-action value distribution.
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Appendix A

A.1 Proof of Theorem 2.1

Proof. The proof has two steps. Step 1 constructs a second MDP and shows that, for every possible

sample path in the first MDP, there exists a corresponding sample path in the second MDP. Step 2

proves that, the probability of any possible sample path in first MDP equals to the probability of its

counterpart in the second MDP.

Step 1: Define S = {1, · · · , |S|}. Define J :=
⋃

x,y∈S,a∈Ax

supp(dS(· | x, a)). Define S‡ =

S2 × A × J . In order to remove the dependency of the initial state distribution on policy, define a

null state space Sn = {sn,1, · · · , sn,|S|}, and sn ∩ S‡ = ∅. Define the state space S† = S‡ ∪ sn.

For all x† = (x, a, y, j), y† = (y, a′, y′, j′) ∈ S†, where y′ ∈ S, a′ ∈ Ay, j, j
′ ∈ J , define the

state-based reward function r†(j | x†, ·) = 1, and r†(0 | sn,·, ·) = 1; define the transition kernel

p†(y† | x†, a′) = p(y′ | y, a′)r(j′ | y, a′, y′), and p†(x† | sn,x, a) = p(y | x, a)r(j | x, a, y); the

initial state distribution μ†(sn,x) = μ(x).

Now we have two MDPs. Let MDP1 = 〈S,A, r, p, μ〉, and MDP2 = 〈S†, A, r†, p†, μ†〉. For

any sample path (x1, a1, j1, x2, a2, j2, x3, a3, j3, x4 · · · ) in MDP1, there exists a sample path

(wx1 , a1, 0, (x1, a1, j1, x2), a2, j1, (x2, a2, j2, x3), a3,

j2, (x3, a3, j3, x4), · · · )

in MDP2. Therefore, we proved that for every possible sample path for the first MDP, there exists

a corresponding sample path for the second MDP.
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Step 2: Next we prove the probabilities for the two sample paths are equal. Here we prove it

by mathematical induction. Set time epoch to n after the first xn+1 in MDP1, and after the first

(xn, an, jn, xn+1) in MDP2.

Denote the partial sample path till epoch i by ιi in MDP1. Given any π ∈ Πr for MDP1, the

probability for the sample path before epoch 1 in MDP1 is

P(ι1 = (x1, a1, j1, x2)) =

μ(x1)π(a1 | x1)p(x2 | x1, a1)r(j1 | x1, a1, x2).

There exists a policy π† for MDP2, with π†(a | sn,x) = π(a | x), and π†(a | x†) = π(a | y). The

probability for the sample path before epoch 1 in MDP2 is

P(ι†1 = (wx1 , a1, 0, (x1, a1, j1, x2)))

= μ(sn,x1)π
†(a1 | sn,x1)p((x1, a1, j1, x2) | sn,x1 , a1)

= P(ι1 = (x1, a1, j1, x2)).

Therefore, at epoch 1, the two partial sample paths share the same probability.

Assuming that the two partial sample paths share the same probability at epoch n, then the

probability for the sample path before epoch n+ 1 in MDP1 is

P(ιn+1 = (ιn, xn+1, an+1, jn+1, xn+2))

= P(ιn = (x1, · · · , xn, an, jn, xn+1))π(an+1 | xn+1)×

p(xn+2 | xn+1, an+1)r(jn+1 | xn+1, an+1, xn+2).
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The probability for the sample path before epoch n+ 1 in MDP2 is

P(ι†n+1 = (ι†n, an+1, jn, (xn+1, an+1, jn+1, xn+2))) =

P(ι†n = (sn,x1 , · · · , (xn, an, jn, xn+1)))×

π†(an+1 | (xn, an, jn, xn+1))×

p((xn+1, an+1, jn+1, xn+2) | (xn, an, jn, xn+1), an+1)×

r(jn | (xn, an, jn, xn+1), an+1)

= P(ιn+1 = (ιn, xn+1, an+1, jn+1, xn+2)).

By induction we proved that, the probability of any possible sample path in 〈S,A, r, p, μ〉 equals

to the probability of its counterpart in 〈S†, A, r†, p†, μ†〉. As a subsequence of a sample path, the

reward sequence {Rt} is preserved with a null reward at t = 1. Given the discount factor γ, we

can compensate this time drift effect simply by setting r†(x†) = r†(x†)/γ to preserve the return

distribution. Theorem 2.1 is proved.

A.2 Proof of Theorem 2.2

Proof. Denote the reward sequence for M′ by (R′
t : t ∈ {1, · · · , N}). Since for x ∈ S′ \ {xi},

μ′(x) = μ(x), μ′(xi) = μ(xi) + μ(xj), we have R1 and R′
1 share the same distribution. Since

the outcome xj is replaced by xi in M′, the two events Xt ∈ {xi, xj} and X ′
t = xi share the

same probability conditioned on Xt−1; and since pπ(y | xi) = pπ(y | xj) for y ∈ S \ {xi, xj},

the replacement does not change the probability of X ′
t+1 = x ∈ S′ conditioned on Xt. Then, for

t = 2, · · · , N , Rt and R′
t share the same probability conditioned on Xt−1. Therefore, the two

Markov process M and M′ share the same (Rt : t ∈ {1, · · · , N}).
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A.3 Assumptions for Inventory Control Model Formulation

At each epoch (every first day of a month, for example), the warehouse manager needs to de-

termine how many units to order based on the current inventory and the demand prediction. Based

on the information, he (or she) decides whether to order from a supplier. He is faced with a tradeoff

between the cost of keeping inventory and the lost sales. The goal is to maximize profit over a

decision-making horizon. Here we suppose that the demand follows a known probability distribu-

tion.

To simplify the problem, some assumptions are made as follows:

(1) The order decision is made at the beginning of each epoch and delivery occurs instanta-

neously.

(2) All demand orders are filled at the end of an epoch.

(3) If demand exceeds inventory, the customer will go elsewhere to buy the product, which means

no backlogging of unfilled orders, so that excess demand is lost.

(4) The revenues, costs, and demand distribution do not vary from epoch to epoch.

(5) The warehouse has a capacity of M units.

A.4 Proof of Lemma 3.1

Proof. Given an MDP 〈N,S,A, r, p, μ, v〉, define C as the cumulative reward space, ma and Ma

as the minimum and maximum of the rewards for action a. Then C can be {0}⋃N
t=1

⋃
a∈A[t ·

ma, t · Ma], or we can acquire C by enumerating all possibile cumulative reward within the short

horizon. Define the augmented state space S′ = S × C for the new MDP. For all x, y ∈ S and

x′, y′ ∈ S′, define the action space A′
x′ = Ax where x′ = (x, ·); define the transition kernel

p′(y′ | x′, a) = p(y | x, a) where y′ = (y, ci), x
′ = (x, cj), ci − cj = r(x, a, y), ci, cj ∈ C and

a ∈ Ax; define the initial distribution μ′((x, 0)) = μ(x). Set the salvage reward v′ = 1[Φ≥τ−v],

where τ is the threshold and Φ is the cumulative reward at the final epoch. Now we have an

augmented-state 0-1 MDP 〈N,S′, A, v′, p′, μ′〉.
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Given an augmented-state 0-1 MDP 〈N,S′, A, v′, p′, μ′〉, for all x′ ∈ S′, implement the back-

ward induction as follows.

Step 1: Set t = N and

u∗N (x′) = r′N (x′) = 1[Φ≥τ−v].

Step 2: Set t = t− 1, and compute u∗t (x′) by

u∗t (x
′) = max

a∈Ax′
{r′(x′, a) +

∑

y′∈S′
p′(y′ | x′, a)u∗t+1(y

′)},

where r′(x′, a) = 0, therefore,

u∗t (x
′) = max

a∈Ax′
{
∑

y′∈S′
p′(y′ | x′, a)u∗t+1(y

′)}.

Since the only rewards are r′N = 1[Φ≥τ−v], we have ut(x
′) = P (Φ ≥ τ | X ′

t = x′), i.e., the

probability that the total reward Φ ≥ τ given any state at any epoch.

Step 3: If t = 1, stop. Otherwise return to Step 2. The optimal policy derived from

A∗
x′,t = argmax

a∈Ax′
{P (Φ ≥ τ | X ′

t = x′)}

gives the highest probability to reach the threshold.

A.5 Augmented-State 0-1 MDP Algorithm

For policy conversion, see Section 5.2 in Xu and Mannor (2011).
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Algorithm 6 Augmented-State 0-1 MDP
Input: a finite-horizon MDP 〈N,S,A, r, p, μ, v〉 and a threshold τ ∈ R.
Output: a deterministic policy π∗ and the optimal VaR ητ .
1: Generate the cumulative reward set

C = {0}
N⋃

t=1

⋃

a∈A

·[t ·ma, t ·Ma],

or enumerating all possibilities;
2: Generate the augmented state space S′ = S × C;
3: Generate the salvage reward v′ = 1[Φ≥τ−v];
4: for all x† = (x, y, j) ∈ S† do

5: Construct the transition kernel

p′(y′ | x′, a) = p(y | x, a);

6: end for

7: Calculate μ′
0(x

′) = μ(x)1[x′=(x,0)];
8: Solve the MDP 〈N,S′, A, v′, p′, μ′

0〉 with the expected total reward objective, and output the policy.
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