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Lecture 1. General principles of turbulent diffusion in shear flows. 

1.1 Basic definitions and notation 

Turbulent diffusion can be defined as the study of how a fluid in 

turbulent motion transports foreign substances that it contains. There are 

many examples, including smoke, acid rain, and other pollution in the 

atmosphere, salt in the sea and estuaries, and hot water in factory cooling 

systems. The foreign substance may have properties (especially its density 

and overall volume) that affect the motion of the ambient fluid, but it is 

often the case that the contaminant (as the foreign substance will be 

called in these lectures) is passive, i.e. the motion of the ambient fluid 

is the same as it would be in the absence of the contaminant. In practice 

nearly all cases of atmospheric dispersion fall into this category, as do 

many industrial applications. On the other hand the presence of dissolved 

salt has a profound effect on the behaviour of estuaries. These lectures 

will deal primarily with passive contaminants, although much of what is 

said applies qualitatively or, sometimes with minor modifications, even 

quantitatively to non-passive diffusion. 

Host fluid flows are, in practice, incompressible, i.e. the density of 

each fluid element is invariant during the motion (or can be regarded as 

invariant for all practical purposes). Variations of density from fluid 

element to fluid element are, of course, quite consistent with 

incompressible behaviour (e.g. in the atmosphere), but they will not be 

relevant in these lectures. The ambient fluid will therefore be taken as 

having constant uniform density p. The velocity field at position x and 

time t in the ambient fluid will be denoted by T(x,t), where (by 

incompressibility) 

∇.T = 0 , (l.l) 

and T is the appropriate solution of the Navier-Stokes equations. Since 

the flow is turbulent, T is a random field, i.e. it is unpredictable and 

has to be described in statistical terms. 

Attention will be restricted to contaminants that undergo only two 

processes, viz. advection by the ambient fluid, and molecular diffusion. 

In particular chemical change will be assumed not to occur. All contam- 

inants considered will be such that they can be fully described by a single 

scalar field T(x,t). Usually T will be the concentration (in units of 

kg m-3), but this term is, at first sight, inappropriate when the 

"contaminant" is heat and T will then be the temperature difference between 



the dispersing substance and the ambient. (In the latter case, however, it 

will be noted that changes in Γdue to sources such as viscous heating or 

radiative heat flux are explicitly excluded.) For clarity  will always be Γ

referred to as the concentration and it is, of course, inherently 

non-negative. Mass conservation requires Γ to satisfy 

 

Γ)..(k)Γ(T.
t
Γ

∇∇=∇+
∂
∂

 (1.2)

where k(normally assumed constant) is the molecular diffusivity. Equation 

(1.2) does not require the contaminant to be passive, but that restriction 

ensures that T is independent of T and, therefore, that (1.2) is linear in 

Γ. since T is a random field, so also is Γ. 

Initial and boundary conditions must be applied to (1.2) and these 

will, of course, be determined from the specific problem. However the 

emphasis in this short course of lectures will be on fundamental principles 

and it is then most convenient to assume no contaminant is lost at the 

boundaries where, therefore, 

n.∇  = 0 , (l.3a) Γ

where n is the normal to the boundary. In directions where the ambient 

fluid extends to infinity 1.3a) has to be replaced by 

Γ → 0 as |x| → ∞                                                 (1.3b) 

In situations in which the total quantity of contaminant is finite, and 

equal to Q, say, it is convenient (and possible) to choose the time t = 0 

so that (x,0) is known.  Then it follows from (1.1), (1.2) and (1.3) that Γ

{ } ∫ =∇→=∫ ∇Γ Q,(x)t)dΓ(x,0(x)t)d(x,
dt
d                                (1.4) 

where the integrals are over the whole space occupied by the ambient fluid. 

For conciseness, situations in which (1.4) holds will be referred to as the 

dispersion of a cloud. An appropriate model for many practical problems 

(and laboratory experiments) is one in which a source of contaminant, e.g. 

a factory chimney, can be regarded as emitting continuously, i.e. from 

t = -∞ onwards. The total quantity of contaminant in such a model is not 

finite, i.e. (1.4) does not hold. In addition to the source geometry it is 

then necessary to prescribe the emission characteristics, including the 

emission rate (which could be any function of t but can often be taken to 



be constant).  Such a situation will be referred to as the dispersion of a 

plune. 

1.2 The statistical description of turbulent diffusion 

Given that (x,t) is a random variable, the concepts and terminology of Γ

statistics must be used in any respectable study of turbulent diffusion. 

There is insufficient time in these lectures to discuss this point in full, 

but reference can be made to Monin and Yaglom (1971, pp.6-9, 205-256, 

579-591; 1975, pp.743-763) for a substantial treatment. Here it is 

appropriate only to make some fundamental remarks. 

A. central concept is that of the ensemble, which is the set of 

realisations of the dispersion phenomenon to which the statistical 

description applies. For example, one could consider the ensemble of all 

possible releases of a cloud of given contaminant in a given laboratory 

wind tunnel operating under prescribed conditions, with the initial 

position, size and shape of the cloud fixed. Or one could consider all 

possible emissions from a given factory chimney. In the latter case one 

could consider the ensemble in which there is no restriction on atmospheric 

conditions or on the time (of the day or year), or one could consider the 

ensemble - a subensemble of the first - in which emission takes place 

during the day under given atmospheric conditions (e.g. stability class and 

mean wind direction). It will be clear from these examples that the choice 

of ensemble requires prior specification of the causes of variability that 

are of concern in the investigation, and these causes will differ from 

investigation to investigation. From the point of view of the statistical 

and mathematical description of turbulent diffusion the choice of ensemble 

is (very largely) arbitrary; from the practical point of view what is 

essential is that the ensemble be defined with sufficient precision for it 

to be clear whether a particular realisation belongs to the ensemble, or 

not. Further discussion of the ensemble concept is given by Chatwin 

(1982). 

For a given ensemble, consider the values of Γ(x,t) at n arbitrary 

points in space-time. This set of n values has a probability distribution 

that depends both on the ensemble and on the n points. To determine fully 

all properties of the ensemble requires full knowledge of the family of 

such probability distributions for all n and for all possible choices of 

the n points (Monin and Yaglom 1971, p.213). An equivalent statement is 

that full knowledge of the characteristic functional is required (Monin and 

Yaglom 1971, pp.218-222; Monin and Yaglom 1975, pp.743-812). 

 



I think it will be unsurprising that the technical problems associated 

with obtaining such knowledge are severe, and perhaps insoluble, even for 

very low values of n. Host research has concentrated on the case with 

n = 1, and so will these lectures. For a given ensemble, define P(θ ;x,t) 

by 

P(θ ;x,t) = prob{Γ(x,t)≤θ} . (1.5) 

Clearly P(θ ;x,t) = 0 for all θ  < 0 since Γis non-negative. The 

probability density function, to be abbreviated henceforth to p.d.f., 

p(θ ;x,t) is defined by 

t)x,;p(
d
d

t)x,;p( θ
θ

θ =                                            (1.6) 

where it may be necessary for the derivative to be defined in a generalized 

sense. The p.d.f. has the significance that, neglecting powers of δθ 

greater than 1, p(θ;x,t)δθ is the probability that θ ≤ Γ(x,t) < θ  + δθ, 

hence 

1. t)dx,;p(0 =∫
∞ θθ                                                (1.7) 

(In practice there will of course always be a maximum possible concen- 

tration θ max determined by the ensemble, and p(θ ;x,t) will be identically 

zero for θ  > θ max.) Figure 1 shows some experimental estimates of the 

p.d.f., and illustrates two important points: (i) as indicated by the 

notation, p(θ ;x,t) does, in general, depend significantly on position x 

and - though not for the experiments in Figure 1 - on time t; (ii) in 

general p(θ ;x,t) does not have a "simple" (e.g. as in a Normal or 

exponential p.d.f.) dependence on θ  and may, in particular, have more than 

one peak (mode). 

Let f[Γ(x,t)] be any function of Γ(x,t). The expectation {or expected 

value or probability mean or ensemble mean) of f [Γ(x, t)] will be denoted by 

E{f[Γ(x,t)]} and is defined by 

∫
∞

=
0

.t)dθx,f(θ(θ)p(|}t)Γ(x,|E{f                               (1.8) 

Three special choices of f will be of particular importance in these 

lectures. The first is f[Γ(x,t)J = δ[Γ(x,t)-θ ), where δ denotes the Dirac 

delta function, and (1.8) then gives the identity 

 
 
 



P(θ ;x,t)=E{δ[Γ(x,t)- θ )}                                          (1.9)         

The second choice is f[ (x,t)] = Γ Γ(x,t). It would be standard in 

statistics to use the notation µ(x,t) for E{Γ(x,t)} but, unfortunately, 

this practice is rare in research papers on turbulence and turbulent 

diffusion.  In these lectures the notation used will be C(x,t).  Thus 

        ( ) ( ) ( )∫
∞

==
0

.dθtx,θ;θptx,E{Γtx,c                                 (1.10) 
 

and C(x, t) will be referred to as the ensemble mean concentration or, more 

commonly, simply as the mean concentration. Finally there is the case when 

f[Γ (x,t)] = [Γ(x,t) - C(x,t)]2, and the expected value is then the variance 

of Γ(x,t),for which the usual statistical notation is σ 2(x,t),with σ  

being the standard deviation. In these lectures I will use this notation, 

although I recognise that this is a revolutionary step in turbulence 

circles!  Thus 

{ } t)dθ)x,p(θ(2t)]C(x,[θ0
2t)Γ(x,Et)(x,2σ −∫

∞==                   (1.11) 

Use of (1.10) shows that o2(x,t) = E{Γ 2(x,t)} - C2(x,t). 

From (1.9) it follows that 

⎭
⎬
⎫

⎩
⎨
⎧ −

∂
∂

=
∂
∂

θ)t)Γ(x,|δ'
t
Γ

E
t
p

                                               (1.12) 

where δ' denotes the first derivative of the delta function {to be inter-
preted in a generalized sense).  Use of (1.2) in (1.12) then gives 
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Γ

jTE
t
p

         (1.13) 

where the summation convention  has been used and K has been assumed 

constant. Thus 

})](),(["kE{δp2kθ]t)(x, [δ'
jx
Γ

jTE
t
p 2Γ∇−Γ−∇=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Γ
∂
∂

+
∂
∂ θtx  

θ]}t)δ[Γ(x,2Γ)E{(2θ

2
kp2k −∇

∂

∂
−∇=    (1.14) 

Equation (1.14) is more usually seen in another form.   Suppose U(x,t) = 

E(T(x,t)} is the mean velocity field (defined by an equation like (1.10) 

 
 
 
 



 
but with the p.d.f. for the velocity rather than the concentration), and 

write 

T(x,t) - U(x,t) + u(x,t) , (l.15) 

so that u(x,t) is the velocity fluctuation (and has zero mean).  Substit- 

ution of (1.15) in (1.14) gives 

]}t)Γ(x,|δ2Γ)E{(2

2
kp2kθ])t)Γ(x,|.E{uδp.U.,

t
p θ

θθ
−∇

∂
−∇=−∇∇

∂
∂

  (1.16) 

where use has been made of the result v.u = 0 which, together with v.u = 0, 

is an elementary deduction from (1.1) and the definition of U(x,t). Note 

that the two expected values in (1.16) are defined by equations like (1.8), 

but involving the appropriate joint p.d.f.s (of u(x,t) and T(x,t), and of 

(VΓ)2  and Γ(x,t))rather than p(θ ;x,t).  

     Use of (1.10) in (1.16) gives 

c2k.E(uc)Cu.
t
C

∇=∇+∇→
∂
∂

                                      (1.17) 

as the equation governing the mean concentration, where c(x,t) is the 

concentration fluctuation defined by 

Γ(x,t) = C(x,t) + c(x,t)                                              (1.18) 

an equation analogous to (1.15).  Similarly, use of (1.11) in (1.16) gives, 

after some algebra, 

}.2c)2kE{(2σ2kC.E{uc}2}2.E{uc2σU.
t

2σ
∇−∇=∇+∇+∇→

∂
∂

             (1.19) 

Both (1.17) and (1-19) exhibit the closure problem explicitly, namely 

they contain extra unknowns. For example, (1.17) contains E{uc} as well as 

terms in C These terms arise, of course, from the terms in (1.16) which 

depend on p.d.f.s other than p(θ;x,t). As is well-known (and notorious), 

attempts to resolve this difficulty by deriving equations for the extra 

unknowns do not lead to success, at least in a fundamental sense, since new 

extra unknowns occur, thus leading to an infinite hierarchy of equations. 

However, since quantities like C and 02 are of crucial importance in many 

practical problems, there have been many attempts to resolve the closure 

problem empirically by truncating the hierarchy and using closure 

hypotheses to express as many unknown terms as necessary in terms of the 



remaining unknowns. For example, the oldest and simplest such hypothesis 

is that often applied to (1.17). Noting that -V.E{uc} represents the 

contribution to ∂C/∂t from the turbulent fluctuations in T and Γ, just as - 

qualitatively - K∇ 2C represents that from molecular fluctuations, it is 

common to postulate that there exists an eddy diffusivity K(x, t) such that 

E(UC) - -K(x,t)VC           (1.20) 

and then (1.17) becomes 

C}k).{(KCU.
t
C

∇+∇=∇+
∂
∂

,                                        (1.21) 

which is a closed equation for C{x,t) provided K(x,t) is specified. Such 

specification is an integral part of the closure hypothesis. While (1.21) 

has been widely applied with some success, and an example will be discussed 

later, it is not a fundamental equation and is known to be incorrect when 

the time since release is comparable with (or smaller than) certain time 

scales characteristic of the velocity field. See Monin and Yaglom (1971, 

pp.606-614) for further discussion of this point. 

I have preferred to derive (1.17) and (1.19) in the way I have since it 

emphasizes rather better than the usual way (substituting (1.15) and (1.18) 

into (1.2) directly) how turbulent diffusion can be described using 

conventional statistical techniques and language, and, in particular, it 

highlights the role of p.d.f.s like p(θ;x,t). As will be illustrated 

later, there is now increasing research emphasis on p.d.f.s in their own 

right. X want also to point out here that the only averages that have so 

far been used, or defined, are ensemble means defined by equations like 

(l.8). In general these are not the same as time averages, even when the 

length of the averaging period tends to infinity. Only when p(9;x,t) and 

all the other p.d.f.s associated with the ensemble are independent of t, 

does ergodic theory ensure the equality of these two different types of 

mean. This never occurs with a cloud because, in a statistical sense, the 

cloud is continually expanding. It does occur often in the laboratory when 

contaminant is released at a steady rate into a shear flow, and 

approximately with some real-life plumes from sewage outfalls and factory 

chimneys. However, in general, ensemble means can be estimated 

experimentally only by taking arithmetic means over a sufficiently large 

number of realisations of the ensemble; it will be recognised that this 

may be extremely costly, both in terms of time and money.   Further 



discussion of the points in this paragraph is given by Chatwin (1982), 

Sullivan (1984), Cam and Chatwin (1985), Chatwin and Allen (1985a, 1985b) 

and Carn, Sherrell and Chatwin (1988). 

1.3 The importance of p(θ;x,t) in practical problems 

It is obvious that there is insufficient time available in these 

lectures to give a comprehensive account of scalar transport in turbulent 

shear flows, and I have therefore chosen to concentrate on certain aspects 

of the subject that interest me. However, within the constraints, I hope 

there is some coherence in the set of lectures. This will be achieved by 

emphasis on p(θ;x,t) and on dependent fields like C(x,t) and o2(x,t). 

Historically, research on the mean concentration C(x,t) predated and pre- 

dominated that on p(θ;x,t) and o2(x,t). Partly as a result of this undue 

emphasis, many research papers often give the impression that determining 

C is the only (or the most important) problem of scalar transport; this 

impression is reinforced by models such as Gaussian plume models which 

appear in legislation or quasi-legal guidelines. Such papers, and such 

models, are unphysical and must, therefore, ultimately prove unsatisfactory 

from a practical viewpoint. For one thing what is observed is T(x,t), 

governed by (1.2) and (1.3), and not C(x,t), governed by the different 

equation (1.17); for another thing exclusive concern with C gives no 

indication of the variability that, as Figure 1 shows, can be substantial 

and will cause practical models based on C to be, on occasion, 

significantly in error. 

An important experimental verification of these remarks is provided by 

Birch, Brown and Dodson (1980). A mixture of air and methane is ignitable 

at a point x, i.e. can support a flame at that point, if the concentration 

by volume of methane is between 5% and 15%. Thus the probability of 

ignitable conditions is p1{x,t), where 

( dtx,;p
0.15

0.05
t)(x,IP θ∫= ) θ                                         (1.22) 

{Here, contrary to the standard convention adopted in these lectures where 

concentration is expressed as a mass per unit volume, p(8;x,t) is the 

p.d.f. of the concentration of methane expressed as a volume ratio.) 

Birch, Brown and Dodson (1980) estimated pI(x,t) at many points in a 

statistically steady methane jet (so that, in this case, pI(x,t) = pI(x)) 

by counting, for each x, the proportion of 400 occasions on which the flame 



from a spark-generating device was supported. The solid points (and 

associated error-bars) in Figure 2 are typical of the results obtained, and 

it will be seen that these points are fitted well by the solid curve 

obtained by using (1.22) with previous estimates of p(θ ;x,t) due to Birch, 

Brown, Dodson and Thomas (1978). (Some of these estimates are shown in 

Figure 1.) The good agreement between the two different methods of finding 

PI is convincing support for the practical value of models based on a 

physically realistic statistical viewpoint. By contrast the dashed curve 

in Figure 2 is of the mean concentration C(x), and this does not fit pI(x), 

even in general shape. 

The complicated structure of equation (1.16) for p(θ ;x,t) suggests that 

there is little hope of real success if it is attacked directly; Pope 

(1979,1985) summarizes the limited progress that has been made. From the 

practical point of view there is another approach that is currently 

popular. This is based on the hypothesis (probably too optimistic) that 

p(θ;x,t) can be adequately approximated in many circumstances by "simple" 

p.d.f.s (e.g. lognormal, truncated normal, beta,...), or by linear combin- 

ations of such p.d.f.s. The parameters required to specify such p.d.f.s 

precisely are, of course, simply related to such properties as C(x,t) and 

o2(x,t), and this provides one justification for the direct study of these 

variables. More mundanely, these are two of the simplest properties 

associated with the concentration field, and the equations (1.17) and 

(1.19) governing them are more amenable to analysis than that [(1.16)] 

governing p(θ;x,t). 

1.4 Some basic dynamics of C(x,t) and σ 2(x,t) 

I want to begin this section by re-emphasizing that C and o2 are 

properties of the ensemble, i,e. they are obtained by performing 

appropriate statistical operations on the results of many experiments and 

are not direct observables in the normal meaning. Only if p(θ ;x,t) is 

independent of t (or a coordinate of x) can each be obtained as an average 

over time (or the coordinate) of the results of a single experiment, and it 

is in my opinion dangerous to ignore these basic facts. It follows, at 

least for me, that it is often more appropriate and revealing to apply 

intuition and simple physical arguments to Γ(x,t), the actual observed 

concentration, and only then to consider the consequences for such ensemble 

properties as C(x,t) and o2(x,t). 

Superficially, however, there is little to say about Γ(x,t). Fluid 

elements  are advected by the velocity field Γ(x,t) and would retain the 



contaminant they began with were it not for molecular diffusion. However 

molecular diffusion causes contaminant to be transferred from one fluid 

element to an adjoining one with flux -KvT; the minus sign is necessary, 

of course, because transfer is from regions of high concentration to 

regions of low concentration. Since neither advection nor molecular 

diffusion create or destroy matter, (1.4) holds throughout each realisation 

of the ensemble (provided this is one in which the same finite quantity Q 

of contaminant is released in each realisation). 

But these simple considerations ignore the fact that the advection is a 

random process. Moreover, the nature of this random advection is not only 

to transport fluid elements as a whole in a random manner but also to 

distort them. The nature of the distortion is shown schematically in 

Figure 3, which is a famous sketch due to Corrsin (1959); an alternative 

way of describing the process is that an initially spherical fluid element 

becomes, as time increases, a more and more increasingly tangled ball of 

wool (Chatwin and Sullivan 1979c). The details of the tangling are of 

course random; however the total volume of each fluid element is invariant 

because of incompressibility. Some attention will be given later in these 

lectures to the effects of random advection on fluid elements. For the 

moment it is sufficient to note that it causes the surface area of the 

fluid element to increase rapidly (on average) and the thickness of strands 

of the fluid element to decrease rapidly (again on average). Both of these 

linked effects lead to a rapid increase in the degree of molecular transfer 

from the element. 

The mean concentration C(x,t), obtained by averaging Γ(x,t) over all 

realisations of the ensemble, depends on the magnitude of the probability 

that the point x at time t lies in the (highly distorted) wool compared 

with that of the probability that it lies in the ambient fluid between the 

strands of wool, and it depends on the average effect of the consequent 

(enhanced)  molecular  diffusion.  As  (1.17)  shows, the first of these 

effects makes a contribution -U.∇C - V.E{uc} = -v.E{TT} to ∂C/∂t.  The term 

-U.∇C represents advection by the mean velocity(which could be interpreted 

- were  C(x,t) a "real"  physical quantity – as  advection  of the fluid 

element as a whole) and the term -∇.E{uc} = -E[uvc} represents the effect 

of distortion over and above that contributing to the bulk advection.  The 

term E{uc} is sometimes referred to as the turbulent flux and could be 

interpreted, with the above proviso, as the contribution from the turbulent 

velocity fluctuations.   It is then natural,  despite the fundamental 

difference in the underlying physical processes, to compare the turbulent 



flux with the molecular flux -KVC. Despite the substantial enhancement of 

the latter by advection, there Is no doubt that, for the mean concentration 

C(x,t), the molecular term in (1.17), viz. K∇ 2C, has negligible magnitude 

compared with -V.E{uc}. If the latter term can be modelled by an eddy 

diffusivity K(x,t), as in (1.21), this statement can be written K >> K. 

Arguments supporting this conclusion are given by Monin and Yaglom (1971, 

pp.591-606), Thus  K  can be ignored  in calculating  C(x,t).  

  For a cloud the ensemble average of (1.) gives 

∫ = Q,t)dV(x)C(x,                                                (1.23) 

and this can also be obtained from (1.17)For future use I define Lij(t) 

(i.j = 1,2,3) by 

∫= t)dV(x),c(x,jxixQ
1

(t)ijL                                      (1.24) 

and I shall refer to Lij(t)as the absolute dispersion tensor. Since Lij 

is symmetric, principal axes can be chosen for each t (but note that in 

general these will not have constant directions in an arbitrary shear flow) 

and I shall then write 
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Note  that  L2  has  a  value  independent of whether  Lij is expressed in 

principal axis form. 

In the equation for σ 2(x,t), viz. (1.19), the terms U.Vσ 2, V.E{uc2} and 

k∇ 2σ 2 are analogues of corresponding terms in equation (1.17) for C(x,t) 

and I need make no further comment about their significance. The term 

2∇C.E{uc} is the so-called production term and its interpretation is 

interesting. If equation (1-17) is multiplied by 2C there results, after 

some algebra. 

 

2C)2k(2C2k2vC.E{uc))2V.)CE{uc)2U.VC
t

2C
∇−∇=−++

∂
∂

             (1.26) 

This equation contains the production term in the equation for a2(x,t), but 

with opposite sign.  Noting that 



E(Γ2}  = c2 +σ  2                                                  (1.27) 

it follows that the production term has no net effect on E(Γ2}, and 

therefore represents a transfer of "Γ2-stuff", without overall loss, from 

the C2(x,t) field to the o2(x,t) field. In general, the term "production", 

rather than "destruction", is appropriate for the term as it appears in 

equation (1.19) for σ 2(x,t) and two differing arguments will be given. The 

simplest is that involving an eddy diffusivity K; from (1.20), 2∇C.E{uc} = 

-2K(VC)2 and is negative assuming that (as befits an eddy diffusivity) K is 

positive. Thus the production term makes a positive contribution to 

∂a2/∂t. Another argument, better because it makes no appeal to empiricism, 

follows after adding equations (1.19) and (1.26) to obtain, using (1.1), 

(1.27) and some algebra. 

}.2Γ)2kE{()2E{Γ2K}2.E{uΓ}2E{ΓU.}2E{Γ
t

∇−∇=∇+∇+
∂
∂

               (1.28) 

Integrating (1.28) over all space, and using (1.1) and (1.3), gives 

{ } ( ){ .dV(x)2VΓ2kEt)dV(x)(x,2ΓE
dt
d

∫−=∫ }                               (1.29) 
 

From the point of view of interpreting the production term, it is 

legitimate for the moment to ignore the term on the right-hand side of 

1.29). Then the integral on the left-hand side would be constant, so that 

,3
0

2Q
t)dV(x,2σt)dV(x)(x,2C

l
=∫+∫                                  (1.30) 

 

where Q is the total quantity of contaminant, defined in (1.4), and ℓ0 is a 

length  which must be representative of the source size.  For t > 0, let 

ℓ(t)  be a  length  characteristic  of the extent of the distribution of 

C(x,t).  Then  (1.23) requires C to  be of  order  Q/ℓ3;  hence the first 

integral on the left-hand side of (1.30) is of order Q2/ℓ3.  Provided, as 

will  almost always be the case,ℓ(t) → ∞ as t → ∞, equation (1.30) can be 

satisfied  only  by the integral of o2(x,t) being of order Q2/ℓ30  Assuming 

that i(t)  is also a measure of the spatial extent of the o2(x,t) field, 

this   requires  σ 2  to   be  of order   Q2/ℓ3ℓ3 (Chatwin and Sullivan 1979a). Thus 
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l
                                             (1.31) 

The  argument  can be  extended  to  plumes (Chatwin and Sullivan 1979b). 



Neglect of the terra on the right-hand side of (1.30) is not justified; 

hence the estimate in (1.31) will not be accurate, certainly not for large 

t. Nevertheless the argument does show convincingly that there is a 

mechanism,, which can only be that described by the production term, for 

transfer from the C2 field to the σ 2 field. In simple physical terms, 

this is due to the increasing randomness as the cloud becomes more tangled 

during the course of one realisation. Incidentally there has been much 

controversy (see e.g. Lumley and van Cruyningen 1985; Thomson 1986, 1989) 

about the behaviour of σ /C as t → ∞ in real clouds, i.e. with the effects 

of molecular diffusivity included. I do not want to contribute (further!) 

to the arguments, but I will note that (1.30) shows that the source size is 

important, at least potentially, in the determination of the σ 2(x,t) field. 

The last term in equation (1.19), viz. -2KE{(∇ C)2) , is inherently 

negative, as is the corresponding term in each of (1.26) and (1.28). This 

is the dissipation term and it can be seen, particularly from (1.29), 

that, in the end, the values of Γ2{x,t), and therefore of both C2(x,t) and 

σ 2(x,t), must tend to zero everywhere as the result of molecular diffusion. 

In the equation (1.19) for σ 2(x,t) there is no other term that produces 

this dramatic effect; accordingly proper modelling of the dissipation term 

in that equation is essential. (By contrast the other term involving K, 

viz. K∇ 2σ 2, can be neglected by comparison with V.E{uc2}, just as with the 

corresponding terms in the equation for C(x,t).) 
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From: Bilger, Antonia & Sreenrvasan 1976 

 
Adapted from:Birch,Brown.Dodson & Thomas 1978. 

Figure 1,   Some experimental determinations of p(θ ;x,t) 



Figure 2.  The two left-hand diagrams are two of the p.d.f.s shown in Figure 1, and the hatched 
area on that for r/d = 1.49 is pI , defined in (1.22). The solid line in the right-hand 
diagram is a curve - fit to values of pI determined in this way. The solid points with 
associated error-bars are direct measurements of pI (see text) and the dashed curve is 
the mean concentration. 

 
Adapted  from:  Birch, Brown. Dodson, & Thomas 1978 



 

p(θ ;X,t)=Pδ(θ -QL )+(l-P)δ(3−
0 θ ) 

Adapted  from: Corrsin 1959 

Figure 3.A schematic sketch of the effect of the advection process on a 
marked  fluid  element. (Note  that  the indicated form of p(θ ;x,t] 
is (2.3)in a different notation.) 
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Lecture 2.  The turbulent diffusion of fluid elements 

2. 1 Introduction 

It was shown An the first lecture that molecular diffusion has little 

importance for certain properties of the concentration field, particularly 

the mean concentration C(x,t), Conversely, it plays an essential role in 

other properties, including the variance σ 2(x, t). But, if turbulent 

diffusion is regarded as a branch, of physics, and this will be the primary 

approach in these lectures, quantification of this role requires prior 

investigation and understanding of the effects of random advection; this 

is clear from the discussion following Figure 3. There is therefore a 

strong case for investigating turbulent diffusion in the hypothetical 

situation in which K = 0, provided the limitations of the results (severe 

in many circumstances) are recognized. Furthermore, this was, historic- 

ally, the basis of most early research into the subject. 

when K = 0, there is no mechanism that can transfer contaminant from 

one material volume (large or small) to another. Consequently each fluid 

element of volume δV retains, throughout the dispersion process, the same 

mass of contaminant that it began with and, therefore (since incompress- 

ibility ensures that δV itself is constant), the same concentration Γ. It 

follows that f(Γ)δv is also invariant for each fluid element for every 

function f and, integrating over the whole volume occupied "by fluid, that 

 

.constantt)]dV(x)Γ(x,|f∫ =                                        (2.1) 

 

A consequence of (2.1), but a much weaker result, is that 
 

{ } { } constant.constantEt)]dV(x)Γ(x,|fE ==∫                        (2.2) 

(Chatwin and Sullivan 1979). The special cases of (2.2) with f(Γ) = Γ and 

f(Γ) = Γ2 are (1.23) and (l-30) respectively, but little other use of 12.1) 

or (2.2) appears to have been attempted, although that effort could be 

worthwhile- 

As is common in practice consider an ensemble in which the initial 

concentration  within  the  cloud is the same in each realisation, and 

uniform, with value θ 1. Subsequently the concentration Γ(x,t) has one of 

only two values, viz, θ 1 if the point x at time t lies in a fluid element 

emanating from the original cloud, and 0 otherwise. Consequently p(θ ;x,t) 

has a simple form P0(θ ;x,t), where 
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pQ(θ;x,t) =πQ(x,t)δ(θ-θ1) + [l-π0(x,t)]δ(θ) , (2.3) 

and 

π0 (x,t) = prob{Γ0(x,t) > 0} , (2.4) 

is the intermittency factor in this hypothetical situation, which will 

subsequently be denoted by the zero subscript, where appropriate for 

clarity, as in (2.3) and (2,4).  As usual the δ s in (2.3) denote Dirac 

delta functions.  Use will be made of these results in a later lecture. 

2.2 The Taylor (1921) analysis 

So far in these lectures the discussion and, certainly, the equations, 

have been presented in an Eulerian framework, i.e. the variable x has 

referred to a point in space and not to a fluid element. Arguably the most 

famous result in turbulent diffusion, viz. (2.11) below, due to Taylor 

(1921), was derived from an analysis in a Lagrangian framework, i.e. 

following fluid particles, this approach has proved very illuminating and 

I want to discuss some results obtained with it, beginning with Taylor's 

result. 

Let X(a;t), to be shortened to X(t) (or even X) on occasion, be the 

position vector at time t of the fluid particle that was known to be at a 

at time t = 0. Thus X(a;0) = a for all a. The velocity V(a;t) of this 

fluid particle is of course simply ∂X(a;t)/∂t and, though this will not be 

relevant, T[X(a;t),t), where T(x,t) is the Eulerian velocity field. The 

random variables X and V are related by 

.)dv(tax(t) ττ∫=− 0                                          (2.5) 

  The ensemble mean of (2.5) is 

( ) }ττ dE{Vt
0

aE{x(t)} ∫=−                                    (2.6) 

Taylor considered the situation where V(t) is a stationary random 

process. This is defined to be a process in which the probability 

distribution of {V(t1) ,V(t2) ... . ,V(tn)} for each n depends only on (tr-tl) 

(r = 2,3,. ..,n), i.e. it depends only on the time differences and is 

independent of a translation in time. In particular the p.d.f. of V(t) is 

independent of t so that (2.6) becomes 



E{X(t)} = a + E{V}t , (2.7) 

and the p.d.f. of {V( t1) ,V(t2)> depends only on (t2-t1). Thus 

E{[vi(tl)-E(vi})[vj(t2)-E{vj}]) = Rij (t2-t1) (2.8) 

where RIJ[T) is termed the Lagrangian autocorrelation tensor.   Define 

Σij(a;t) by 

Σij.(a;t) - E{[Xi-aj.-E{V.}t][X.-aj.-E{Vj.}t]}                                   (2.9) 
  
Than  
 

}]}jE{Vj}t][ViE{ViaiE{[X}t}jE{Vjaj}][XiE{ViE{[V
dt

ijd
−−−+−−−=∑  

 

         (2.10),τ)dτ(t
t

0 ijRτ)(tji[R −∫ +−=

on using (2.5) and (2.8).  It follows, since Σij((a;0) = 0, that 

            (2.11)(ττ)dτ
ij jiR(ττ

t

0 ijτ)[R(tt)(a;∑ +∫ −=  

   

  Taylor gave, in effect, the version of (2.11) with i = j = 1 and noted 

  that, for large t, this becomes 

  (2.12)(ττ)dτ
~

0 11R11Dwheret112D11 ∫==∑  

and it is assumed that the infinite integral converges. The derivation 

above is similar to, but not identical with, that in Monin and Yaglom 

(1971, pp.540-547). 

There are many important applications of Taylor's result (but not - it 

has to be said - as many as some people appear to think!). One important 

one is to longitudinal dispersion; this area of research was also 

originated by Taylor (1953, 1954) but, as he acknowledges in his 1954 

paper, he did not realize the connection with his 1921 paper until it was 

pointed out to him by Batchelor! For simplicity consider a long pipe of 

constant cross-section, and suppose that a finite cloud of contaminant is 

released in this pipe at time t = 0. It is intuitively obvious that the 

contaminant particles will eventually "forget" where they have started from 

and that, then, the analysis above will apply.  In particular, if the 1 



axis is taken along the axis of the pipe 

E{V1 = U0 , E(V2) = E{V3} = 0 , (2.13) 

where UO is the discharge velocity (Batchelor, Binnie and Phillips 1955), 

and (2.12) holds. Thus (Taylor 1953, 1954) the centroid of the contaminant 

cloud eventually moves at the discharge velocity and, relative to its 

centroid, spreads axially. Since Σ11(t) is the variance of the displace- 

ment of a fluid particle, and since all fluid particles have, eventually, 

the same variance to highest order in t, the axial extent of the mean cloud 

grows as t½. There is not time here to make more than three further 

comments, Taylor showed that, in this case, D11 in (2.12) could be inter- 

preted as a longitudinal dispersion coefficient in the sense that the 

average of C(x,t) over the pipe cross-section, say Co(x1,t), obeyed {for 

large t) the diffusion equation 

(2.14).2
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However, a solution of (2.14) is the Gaussian form 
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and this can be derived independently of (2.14) by a plausible application 

of the central limit theorem to (2.5); see Monin and Yaglom (1971, p.541). 

Thus (2.14) has little significance in itself. This conclusion is 

reinforced by my second comment on the application of Taylor's analysis to 

longitudinal dispersion in a long pipe which is that deviations of observed 

distributions of C0(X1,t) from (2.15) are not described by (2.14) (Chatwin 

1972). It has been emphasized that (2.12) is valid only for large t, and 

other deviations from (2.15) occur because of the legacy of the initial 

conditions (Chatwin 1970). Indeed it now appears that, for times of 

practical interest, (2.15) is usually inadequate, and much attention has 

been paid to methods of improving (2.15) in practical situations (Chatwin 

1970; Smith 1981a,b; 1987). Finally I note that the analysis leading to 

(2.11) and (2.14) gives no method for calculating the value of D11 Taylor 

(1954) used an eddy diffusivity argument for a pipe of circular 

cross-section to obtain the result D11 = 1O.lau*, where a is the pipe 

radius and u* is the friction velocity. 



There is another point of interest in pipe dispersion that is not 

connected with longitudinal dispersion. It is obvious that Taylor’s 

analysis applies in directions perpendicular to the axis as well. Thus, 

for example, (2.11) gives 

 ( ) ( )∑ ∫ ∫−=
t

0
(2.16)dτ

t

0 22τR2dτ22R2t(t)22 ττ  

Since Σ22 (unlike Σ11) is bounded for large t because the pipe has finite 

cross-section, it follows that the integral of R22(τ ) from τ = 0 to ∞ has 

value zero. Indeed, in this case, it is easy to calculate the finite value 

of Σ22(∞), given the shape of the cross-section, since the fluid particles 

must eventually be distributed uniformly in the directions normal to the 

axis.  Thus, for a pipe of circular cross-section,  I find 

  ∫∫ ==∞∑ (2.17).2a
4
1θ.rdrdθ2cos2r2πa

1)(22  

2.3 Some other one-particle Lagrangion analyses 

It is possible to apply dimensional arguments to the starting point of 

Taylor's analysis, viz. (2.5), even when V(t) is not a stationary random 

process.  I shall discuss two statistically steady shear flows. 

Consider first a round turbulent jet generated by the injection of 

momentum at rate F into a fluid of density P- For large enough t, i.e. 

when the details of the source geometry no longer influence the motion of a 

fluid particle, the statistical properties of X{t) can depend only on F, p 

and t. Here, for convenience, it is assumed that X(t) is the displacement 

of the fluid particle relative to the source. The dimensions of (F/p) are 

L4T-2 and, choosing the 1 axis to be in the direction of the injected 

momentum, it follows by simple dimensional and symmetry arguments that, for 

large t. 
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where α 1, α 11 and α 22 are universal numerical constants. The dependence on 

t, for large enough t, of all statistical properties of X can obviously be 

written down in the same way. In particular, let p(ε;a,t) be the p,d.f. of 

X{a,t); thus p(ε;a,t)δV(ε) is the probability that X(a,t) is in the small 

volume element δV{ε) surrounding ε  Clearly 



                                                       (2.19) ∫ =∑∑ 1)t)dv(a, ; (p

For all a.  For large t, p becomes independent of a and the dimensional 

arguments above give 
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where the function φ is the same for all round jets. The arguments above 

do not lead to values for constants like a1 or to the precise form of φ 

but. then, neither do those employed by Taylor for the case when the 

Lagrangian velocity is a stationary random function. 

The second shear flow I want to consider is the neutral planetary 

boundary layer (Batchelor 1964). When effects due to stratification are 

negligible, the statistical properties of X(t) can depend only on the 

friction velocity u*, the roughness height z0 and t {when, as usual, the 

effects of the initial position of the particle have been forgotten). 

However the influence of ZO in this long-term situation must be trivial 

since its only effect on the Eulerian dynamics is to add a constant speed 

-{u*/k)lnzo to the component of velocity in the direction of the mean wind 

(Galilean invariance). Here k(= 0.41) is von Karman's constant. choose 

axes with Ox parallel to the mean wind and Oz vertically upwards; write 

      X(t) = (X(t),Y(t),Z(t)) . (2.21) 

By symmetry E{Y(t)} is a constant, which can be taken as zero; E{dX/dt) must 

be the sum of -(u*/k)lnzo, and a function of u* and t, and E{dZ/dt) a func- 

tion of u* and t.  Dimensional arguments then give 
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where b and c are universal dimension less numbers.  On integrating it 

follows that, to leading order for large t. 
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The result for E{dZ/dt} deserves comment since, if b ≠ 0, it is non-zero, 

whereas the vertical component of the Eulerian velocity has zero ensemble 

mean everywhere. While this result may seem paradoxical to some at first 



sight, it is easily seen to be reasonable. The result for E{dZ/dt} 

requires an average, over all realisations, of the vertical velocity of 

fluid particles released from the source at t = 0 and the fact that this is 

non-zero, indeed positive, is not then surprising given that fluid 

particles cannot travel below z = 0 whereas their upward motion is 

unlimited (at least in the present simplified model). By contrast the mean 

vertical Eulerian velocity is an average over all fluid particles that are 

at a given point in space and must be zero if mass conservation is not to 

be violated. 

Given the importance of atmospheric dispersion, there have inevitably 

been attempts to estimate the constants b and c in (2.22) and (2.23). 

Chatwin (1968) used (1.21) with the eddy diffusivity K(z) equal to ku*z. 

This was chosen because of Reynolds analogy, an empirical law which asserts 

that the eddy diffusivity equals the eddy viscosity (and - by implic- 

ation - that both exist). Since the mean horizontal Eulerian velocity is 

(U*/k)ln(z/z0), the latter must be ku*z. It then follows from (1.21) after 

algebra that 

b = k = 0.41 ,  c = 0.23 . (2.24) 

Hunt and Weber (1979) obtained almost identical results by a totally diff- 

erent type of argument. Unfortunately it is very difficult to estimate b 

and c from experiments, essentially because the centroid of the cloud 

ascends without limit (although, nevertheless, the maximum mean concen- 

tration is always at the ground). What observations there are do not 

contradict (2.24) but nor would they for substantially different estimates. 

Yaglom (1976) showed that the use of an eddy diffusivity tensor with 

non-zero off-diagonal terms, i.e. with (1.20) replaced by 

      
jx

ct)(x,ijKC}iE{u
∂
∂

−=                                                    (2.25) 

with Kij ≠ Kδij, could change (2.24) significantly. 

The results (2.22) and (2.23) are due to Batchelor (1964), who 

discussed other consequences of the methods including the decay of the mean 

concentration C(x) due to a steady line source with downwind distance x. 

(See also Monin and Yaglom 1971, pp.559-569, 640-655; these pages give 

references to work extending the ideas above to stratified atmospheres.) 

The methods discussed in this section can be applied to many other 

shear flows in which simple dimensional arguments are valid (Monin and 

Yaglom 1971, pp.547-556). 



2,4 Material line and surface elements 

A study of the effect of random advection on material line elements and 

material surface elements is illuminating, not least in trying to 

understand (later!) the role of molecular diffusivity in real situations. 

The term "material element" denotes a set of fluid particles whose linear 

dimensions are small. In particular it will be supposed that the elements 

are small enough for the scales of the turbulent velocity field that 

dominate their distortion to be statistically isotropic, i.e. without 

directional preference. That this is a realistic condition was shown by 

Kolmogorov {1941) in, arguably, the most important paper ever written in 

turbulence. In any turbulent shear flow at high Reynolds number, the 

statistical properties of the small scale velocity fluctuations are 

isotropic and stationary, and are determined by the values of the mean 

energy dissipation rate ε and the kinematic viscosity v (Monin and Yaglom 

1975, pp.337-368). This condition of local isotropy does not, of course, 

apply to the large scales of the velocity field that are responsible for 

the transport of the material element as a whole but this transport is not 

of present concern. 

Consider two fluid particles whose initial positions are a and a + l o. 

Subsequently the positions of these particles are X(a;t) and X(a + ℓ0;t), 

using the notation of section 2.2. As a vector therefore, the material 

line element ℓ0 becomes ℓ = ℓ(t), with ℓ(0) = ℓ0 and 

ℓ(t) = X(a + ℓ0;t) - X(a;t) . (2.26) 

I shall discuss in some detail the case when │ℓ0│ is so small that the 

material line element remains straight for a substantial period of time, so 

that (2.26) can be replaced by 
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The quantities Ajk are the components of symmetric tensor, albeit one which 

is random and time-dependent. This tensor therefore has real eigenvalues 

which must be positive since (2.28) shows that the diagonal elements of Ajk



 
are positive.  Denote these eigenvalues by A21, A22 and A23.In Lagrangian co- 
ordinates the incompressibility condition (1.1) becomes 

 

(2.29)1
ja
ix

det =
∂

∂
 

 (Monin and Yaglom 1971, p. 531).  Hence 

 det(Ajk)                                                                (2.30)        
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Using coordinates with the eigenvectors of Ajk as coordinate axes,  (2.28) 

becomes 
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      The result that I want to establish relates to the ensemble mean of 

  (2.32).  By considering first the mean over the sub-ensemble in which 
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Since the eigenvalues of Ajk are positive, the elementary arithmetic mean- 
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This proof is a Lagrangian version of one given by Orszag (1970), but is 

somewhat more straightforward than his. In turn, Orszag"s proof is a 

simple variant of one by Cocke (1969). Cocke actually proved the stronger 

result that E{ln( │ℓ│ /│ℓ0│)} > 0, and thereby established coniectures by 

Batchelor (1952b). 



Thus, for so long as the conditions assumed in the proof remain valid, 

the Length of a material line element increases on the average. I want 

briefly to consider these conditions, and how progress may be made when 

they are violated. Let q{∑;ℓo,t) be the p.d.f- of ℓ(t) so that, as usual, 

qδV(ξ) is the probability that ℓ(t) has one end at 0 and the other end in 

the small volume element δV(∑) surrounding ∑, given that ℓ(0) = ℓ0. 

Restrict attention throughout to the case when E{│ℓ(t)│} << LE, where LE is 

a length-scale characteristic of the energy-containing eddies; naturally a 

necessary (but not sufficient) condition for this to be valid is that 

│ℓ0│ « LE. Then, as noted above, the scales of the velocity field that 

determine q are isotropic; in particular a characteristic length-scale is 

n (the Xolmogorov microscale) and a characteristic time-scale is T, where 
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It follows from isotropy and dimensional arguments that 
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Monin and Yaglom (1975, pp.536-546, 578-584) give this formula and 

discuss many special cases. See also Batchelor (1952a). Here I can select 

only one or two special cases. Suppose first that │ℓ0│ << n, when there 

will be a range of times for which a power series approximation to (2.36) 

is valid, as in (2.27). Hence (2.36) reduces to 
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Hence, for example. 
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where, according to (2.34), g(0) = 1 and g(t/τ ) > 1. (Note that, by 

symmetry, the term involving Q1 in (2.37) does not contribute to 

E{│ℓ(t)│2}.) 

Equations  (2.37)  and  (2.38)  cannot,  of  course,  remain  valid 



indefinitely. More generally (2.38) has to be replaced by 
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Eventually, the influence of ℓ0 will be lost, and (2.39) becomes 
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This is likely to occur (for │ℓo│ « n) when t is somewhat greater than τ . 

A further, well-known, simplification of (2.40) is possible for very high 

Reynolds number when, according to a further result of Kolmogorov (1941), 

there is a range of length scales for which v is irrelevant. This requires 

j(t/τ ) = C(t/τ )3, using (2.35), and (2.40) becomes 

E{│ℓ(t)│2} = Cεt3 , (2.41) 

a  result  known to Obukhov  and  Landau  since  the early  1940s.  Finally, in 

this  brief "snapshot", I  note  another  well-known  formula  that  will be 

relevant  later.   The  analogue of (2.40) for  the  rate  of change of 

lnE{|t(t)|} is 
 

.
τ
t

k1-τ|}(t)|}/E{|(t)E{|
dt
d

|}(t)lnE{|
dt
d

⎥⎦
⎤

⎢⎣
⎡== lll                      (2.42)

Batchelor  (1952b) - see  also  Monin  and  Yaglom  (1975,  pp.581-584)  - argued 

that  there  is  a  range  of  (t/τ) of order  1 for which k (t/τ)  in  (2.42)  is 

(approximately)  constant.  Let  the  value  of this  constant  be a*1 , so  that 

(2.42) gives (after integration) 
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From (2.34),a*1 will be positive. (Strictly t in (2.43) ought to be 

replaced by (t - t0) where t0 is a virtual origin representing the legacy 

of the initial dispersion period.) For t »τ, (2.43) is, of course, 

invalid and has eventually to be replaced by (2.41). 

The argument leading to (2.34) for E{ℓ(t)) applies, with obvious 

changes only, to a material surface element S(t), with S(0) = S0 where 

s0i =  εijk ℓOj mOk  (2.44) 



and ℓ0 and m0 are two material Line elements.  It follows (Batchelor 1952b; 

Cocke 1969;  Orszag 1970) that 

E{tS(t)l2} > │SQ│2 . (2.45) 

Moreover, there are analogues also to all the results for ℓ(t) based on 

(2.36);  in particular there is a range of values of t of order τ for which 
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where α
 
is as in (2.43); and *

1
*
2α  

is a further constant with
 

0.*
2α

*
1 >+α  

(In  principle  could be negative but is  generally believed to be pos- *
2α

itive. ) 

Apart from their intrinsic fascination, the results in this section 

have importance for the later consideration of the effects of molecular 

diffusion. In particular (2.45) and (2.46) quantify the remarks following 

Figure 3 in Lecture 1 that the area of a material volume increases rapidly 

with time on average, for the surface of any material volume is made up of 

many material surface elements to each one of which (2.45) and (2.46) 

apply. Moreover consider two adjacent material surface elements on each of 

which the concentration ґ is constant. Since the magnitudes of these areas 

increase (on average) in accordance with (2.46) (say) incompressibility 

requires the distance between the surfaces to decrease {on average) in pro- 

portion to exp[ hence vrt increases (on average) in propor- ];τ)t/*
2α

*
1(α +−

tion to exp[ ( ) ].τt/*
2α

*
1α + It will be seen in the next Lecture that this 

result must be modified in the presence of molecular diffusion. (The 

argument above is a subtle one since it may not be seen immediately why the 

distance between two material surface elements should not (on average) 

increase since it is possible to define a material line element ℓ(t) 

joining fluid particles in the adjacent surface elements such that 

ℓ0= ℓ(0) is normal to the surface elements at t = 0. While (2.34) and 

(2.43) apply to this line element, the key point is that it does not remain 

normal to the surface elements. This argument is given mathematical form 

in Batchelor (1952b).) 

2.5 Absolute and relative diffusion 

It will have been noted in the previous section that no attention was 

paid to the translation of the elements as a whole , since what was of 



exclusive concern was the statistical properties of the relative velocity 

of two fluid particles. Further developments of these ideas have been 

examined by many authors (Richardson 1926; Batchelor 1952a,b; Monin and 

Yaglom 1975, pp,536-567 etc.). However, important though this subject is, 

it is essential to relate it to practical problems. 

Consider one realisation of the dispersion of a cloud. As the result 

of random advection of the cloud as a whole (meandering), a fixed point in 

space will sometimes be in the cloud and sometimes not. The same comment 

obviously applies to a plume. For the ensemble as a whole, there will be a 

probability distribution associated with the event that at time t the fixed 

point in space with position vector x lies in the cloud. (To make this 

precise, a definition of the phrase "in the cloud" is required.) This 

meandering will make a contribution (usually substantial) to the mean and 

variance of T(x,t). Gifford (1959) considered a fluctuating plume model in 

which it was assumed that, at each downwind distance x, the centroid (Y,Z) 

of the instantaneous concentration distribution in the cross-section was a 

random variable with p.d.f. 
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i.e- Y and Z are independent Normal random variables,each with zero mean 

and variances∑  
respectively. Gifford assumed further that ∑ (x)2

zand(z)2
x

the concentration distribution ґ(x,y,z) was of the form 
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where Q is the steady rate of emission of material into the plume, U is the 

mean wind and Σ(x) is a measure of the plume radius. Note that, in the 

model, Y and Z are the only random variables. I do not pause to evaluate 

C(x) and o2(x) for this widely used and influential model, except to note 

t hat contributions to both arise from the meandering of the centroid 

((2.47)) and from the assumed within - plume distribution [(2.48)]. 

Further details can be found in the original paper (see also Sykes (1984), 

Hanna (1984)). 

Gifford clearly recognized that (2.48) was not justified for real 

plumes since the within - plume concentration distribution is itself a 

random variable. A more general approach follows from the work of 

Batchelor (1952a), and I shall apply it to clouds (although there is no 



difficulty in the extension to plumes).. Suppose x denotes position vector 

relative to an origin fixed in space. In any one realisation of the 

dispersion, let the centroid of the distribution be Xg(t), so that (by 

definition), 

∫ Γ= t)dv(x).(x, x
Q
1

(t)gx                                              (2.49)

Here Q is the total quantity of contaminant within the cloud, and is equal 

to the integral of ґ (x,t) over all space by (1.4).  Now define y by 

Y = x - xg (t) ,                                                     (2.50) 

so that y is the position vector relative to a randomly moving origin, and 

Γ R(y,t) by 

Γ R(y,t) = r(x,t) = T(Y + xg(t),t) . (2.51) 

I shall define relative diffusion to be that in which position vectors are 

measured relative to the randomly moving centroid. By contrast, absolute 

diffusion occurs when the origin of position vectors is fixed in space. In 

a relative diffusion ensemble, ensemble averages are over clouds whose 

centroids coincide at all times; in this way, use of a relative diffusion 

ensemble eliminates all contributions due to meandering. (As noted in 

Lecture 1, the choice of ensemble is a free one. However there is still 

confusion and misunderstanding about the fact that relative diffusion, as 

here defined, is a perfectly valid ensemble. Remarks in the penultimate 

sentence of the first paragraph of p.197 of Sykes, Lewellen and Parker 

(1984)are typical of the errors that abound in the literature.) 

Define DRij(t) by 
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From (2.49), (2.50) and (2.51) it follows that 
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Let the ensemble average of DRij(t) be the relative dispersion tensor 



LRij (t);  the ensemble average of (2.53) gives 
 

,                            (2.54)gjxgixRijLije.Li,,gjxgixijLRijL +=−=

where Lij is the absolute dispersion tensor defined in (1.24). Equation 

(2.54) is a kind of "parallel-axis" theorem, which shows that the 

contributions of meandering and relative dispersion to the random spatial 

spreading in an absolute frame are directly additive. When the extension 

of (2.54) to plumes is applied to Gifford's model, equations (2.48) and 

(2.47) give, respectively. 
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where  the  tensors are  (2x2) since  only  diffusion in the yz plane is 

relevant, and I have written y1 for y and Y2 for z.  Thus 
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Further results on relative diffusion are given in the next Lecture. 
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Lecture 3.   Recent research on turbulent diffusion in shear flows 

3.1 Introduction 

In the remaining two Lectures, I shall some recent research, and 

also indicate some important problems that, in my view, merit  attention. 

Given the time restrictions, severe selection has been necessary and I did 

not think it was possible, or even desirable, to attempt a comprehensive 

review. Rather I have tried to produce a quasi-coherent account of some 

work on my own interests, mainly because that is what I think I understand 

best ! 

Since, as noted in Lecture 1, early work in turbulent diffusion was, 

overwhelmingly, on the properties of the mean concentration C(x,t), I shall 

(perversely?!) emphasize investigations on o2(x,t), p(;x,t) and related 

quantities. Obviously nearly all such investigations are relatively 

recent; for example, it is remarkable now to read on p.583 of Monin and 

Yaglom (1971) that the equation [viz. (1.19)] governing o2(x,t) is "rarely 

investigated"! 

3.2 Some early work on (o2(x,t) 

Following the results of Kolmogorov (1941) and their application to the 

small scales of the velocity field, it woe recognized that the same ideas 

could be applied to the small scales of a contaminant field (Monin and 

Yaglom 1975, pp.377-387, 395-448). For example Obukhov (1949) considered 

the concentration structure function D(x,r,t), defined by 

D(x,r,t) = E{[c(x+r,t) - c(x,t)]2} , (3.1) 

where c(x,t) is the concentration fluctuation defined in (1.18). For 

sufficiently high Reynolds number there is an inertial subrange governing 

the velocity differences on length scales r, where 

n « r « L ; (3.2) 

for this subrange the statistical properties of the velocity differences 

are homogeneous, stationary and isotropic, and dependent only on r andε . 
In (3.2) η, is the Kolmogorov microscale defined in (2.35) and L is a length 

characteristic of the energy-containing eddies. Using the same ideas there 

will be, for sufficiently high Péclet numbers (where the Péclet number is 

defined like the Reynolds number, but with K replacing v), a  Convective 



subrange governing quantities like D(x,r,t)on length scales r(=|r|), where 

 no « r « L , (3.3) 

and ηo is to be determined. Within this subrange the statistical 

properties of concentration differences, i.e. quantities like D(x,r,t), 

will also be homogeneous, stationary and isotropic, and dependent only on 

r, ε and ε ґ, where 

εґ = 2K E{{VC)2} (3.4) 

is the mean dissipation rate of concentration fluctuations discussed at the 

end of Lecture 1. Furthermore, the linearity of (1.2) for ґ(x,t) shows 

that D must be proportional to εґ; dimensional arguments then give 

(Obukhov 1949) 

D(x,r.t) = A εґε-1/3r2/3 , (3.5) 

where A is a universal constant. Corrsin (1951) gave the corresponding 

result for the spectrum of c(x,t). 

A more difficult, but associated, problem is the range of values of r 

for which (3.5) applies, i.e. the value of the scale ηo in (3.3). 

Batchelor (1959) argued that the mechanics of the convection process, 

represented by the term V.E{uc2} in (1.19), is not affected by molecular 

diffusion, i.e. it can be described by the analysis of material elements 

discussed in Lecture 2. Clearly, and as Batchelor pointed out, this 

assumes molecular diffusion becomes important only on scales λ whose order 

of magnitude is much less than n. In turn this obviously requires v » K, 

and implies that, when v » K, η0 in (3.3) is of order η.  For 

 λ « r « η , (3.6) 

viscosity  has an effect on  the velocity  field  and  therefore on D;   thus 

(3.5) does not then hold.  Batchelor (1959) gave  a  form  for  D  valid  when 

(3.6) holds but this will not be discussed here. Of relevance, however, is 

the order of magnitude of λ when v » K. This can be estimated by 

requiring the order of magnitude of V.E{uc2}, viz. η-l(η/τ)0(o2) under the 

given conditions, to be the same as that of the molecular diffusion terms 

in (1.19), viz. Kλ-20(o2). Thus, from (2.35), 
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When v ~ k, viscous and molecular diffusion terms become important at the 

same length scale; also, and consistently, η and λ are then both of order 

(K3/ε) 4
1

. Batchelor, Howells, and Townsend (1959) discuss the less 

practically important case of v « K. The scale λ, given by (3.8), will be 

referred to as the conduction cut-off length; its magnitude in the 

atmosphere is usually of order 10-3m (Monin and Yaglom 1975, p.494), and in 

oceans and large lakes is typically one order of magnitude smaller (Chatwin 

and Sullivan 1979c). 

The only other substantial work on o2(x,t) prior to 1970 was by Csanady 

(1967a,b). He considered (1.19) as it applied to a steady plume, and 

looked for self-similar solutions by assuming the fltix terms, viz. 

E{uc2} - K∇O2, could be modelled by an eddy diffusivity equal to that for 

E{uc} in the equation for the mean concentration, and by some other, 

apparently rather arbitrary, assumptions. Although the resulting profiles 

had the same shape as some observed profiles, the model did not allow 

independent determination of the Magnitude of o2 on the plume axis, and 

this appears to be a serious shortcoming, given the dependence of the 

magnitude of o2 on such parameters as source size; see the discussion 

following (1.31) above. 

3.3 An exact solution for o2(x,t) 

This section will deal exclusively with the dispersion of a cloud in a 

relative diffusion ensemble as defined in section 2.5. More particularly, 

it will consider only clouds of sufficiently small linear dimensions that 

the fluid velocity relative to that of the centroid of the instantaneous 

distribution of contaminant is linear in the position vector x of a point 

relative to the centroid. In these circumstances the relative velocity 

field is the sum of a solid-body rotation and a uniform rate-of-strain; 

the former of these will play no part in the statistical properties of 

ґ(x,t) that are considered here and will henceforth be ignored. Then, at 

any time t, axes can be chosen so that the relative velocity field, to be 

denoted from now on, without possibility of confusion, by T(x,t), has 

coordinates such that 

T = (α1x1α2x2,α3x3),                                                 (3.9) 
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where x has coordinates (x1,x2,x3). Incompressibility, viz. (1.1), requires 

α 1+ α 2 + α 3 = 0 ;              (3.10) 

without loss of generality, I can insist that 

α 1  ≤ α 2 ≤ α 3 , α 1 < 0 , α 3  > 0 {3.11} 

The aim of the calculations summarized in this section is to illustrate 

certain simple physical mechanisms and it will not be claimed that the 

results have exact practical significance. For this reason it will be 

supposed that the principal rates of strain α1, α2, α3 are constant 

throughout each realisation, and that they are the same for each realis- 

ation of the ensemble. (Relaxation of these conditions would (perhaps 

greatly) increase algebraic/computational complexity without altering in 

any important way the conclusions reached,) The single random feature of 

the motion will then be the distribution in space of the directions of the 

principal axes. The linearisation of the velocity field in terms of the 

coordinates of x has justification provided the cloud dimensions are not 

much greater than the Kolmogorov microscale η; accordingly it is reason- 

able to suppose that the principal axes are distributed isotropically in 

space. The random velocity field described above has often been used to 

illustrate aspects of the small-scale structure of contaminant fields 

(Townsend 1951; Batchelor 1959; Saffman 1963); the work described below 

is that of Chat win and Sullivan (1979a) and its extension to plumes is 

described in Chatwin and Sullivan (1979b). 

It is convenient first to consider rather briefly the case when the 

effects of K are ignored, and when the initial distribution of contaminant 

is uniform over a sphere of radius ao.  Thus, in each realisation. 

    3
04π

3Q
o)Γ(x,

α
=  for |x|  < a0  and  Γ(x,o)  =o  for |x| > a0 .  (3.12)        

 
According to (1.30), 

   ,3
0

2Q
o)dv(x)(x,2Γ

l
=∫                                                     (3.13)

 and (3.12) gives 

     .0a
1/3

3
4π

0 ⎥⎦
⎤

⎢⎣
⎡=l                                                         (3.14)
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When  k = 0,  the  initial sphere of  radius ao  is  transformed  into  an 
ellipsoid with semi-axes ai(t) (i = 1,2,3), where 

ai = a0 exp(α it);                                                (3.15) 

(cf. the discussion of the stretching of material line elements in section 

2.4).  Thus, from (3.11), the maximum dimension of the ellipsoid is 2a3 and 

the minimum dimension is 2a1.  When K- = 0 the concentration is uniform (and 

equal to its initial value )30Q/l  within the ellipsoid.  Since the ensemble 

mean is obtained by considering all possible orientations of the ellipsoid 

in space to be distributed with equal probability, it follows immediately 

that the ensemble mean concentration C(x,t) is equal to T(x,0) = )30Q/l
 
for 

(xl ≤ a and is zero for │x│ ≤ a3. For a1 < │x│ < a3 , the mean concentr- 

ation changes continuously from )30Q/l to zero. It is also geometrically evi- 

dent that L(t), defined in (1.25), is of order a3 (t) since a3 is exponent- 

ially greater than a ;  moreover a1 approaches zero exponentially quickly as 

t → ∞ and, therefore. 

(3.16)                     a3(t)~ L(t)~ l(t) where a1,  |x| for
(t)3
Q

~C >>
l

The distribution of a2 (x,t)is obtained by considering the average of [Γ-C] 

over all possible orientations of the axes in space.  It is, for example, 

obvious that a2 ≡ 0 for │x│ ≤ a1 and for │x│ ≥ a3.For a1  << │x│ << a3 , o2

is of order Q2 /ℓ3 ℓ30 as predicted by the analysis that immediately precedes 

(1-31) in Lecture 1 (see detailed calculations in Chatwin and Sullivan 

(1979a)). 

The preceding results imply, unambiguously, that the spatial structures 

of C and o2 have a "core-bulk" structure irrespective of the initial dis- 

tribution.  Thus C ~ Q/ℓ30  and 02 ~ Q2 /ℓ60 for │x│ ≤ a1 , and C ~ Q/ℓ3  and 

o2 ~ Q2 /ℓ3 ℓ30 for │x│ » a1 .The "core" radius of order a1 tends to zero as 

t → ∞in the hypothetical case when k ≠ 0 that has just been considered. 

  Before going forward to consider the key issue,namely the effects of 

molecular diffusion,I wish to draw attention to the consequences of the 

above arguments for Richardson's distance-neighbour function. Reference 

should be made,of course,to Richardson (1926) and Batchelor (1952). The 

most important experimental paper is by Sullivan (1971),and calculations 

are given in Chatwin and Sullivan (1979a). 

In the real case when k ≠ 0, the algebra is more complicated than that 
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given above. Although the axes used are not inertial (since the origin is 

the randomly-moving centroid), this does not change the equation governing 

T(x,t), viz. (1,2); this is simply a statement of mass conservation and 

does not involve an equation of motion. To avoid unnecessarily complicated 

algebra adding nothing to physical understanding I shall here consider the 

special case of the relative velocity field (3.9) with 

α2 = α3 > 0 ,  α1 = -2 α3 < 0 , (3.17) 

and the special initial distribution of concentration with 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= r,2

0

2r2
exp3

0

2Q2
O)Γ(x,

ll

π
|x|                                 (3.18)

Note that (3.18) is consistent with (3.13). (Saffman (1963) gives the 

general solution of (1.2) with an arbitrary initial distribution of 

concentration when T is given by (3.9).) With (3.9), (3.17) and (3.18), 

the solution of (1.2) is (Chatwin and Sullivan 1979a) 
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where 
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In view of  the isotropy,  the ensemble mean  concentration  C(x, t) 

satisfies 

,sinθinθ2t)rΓ(x,2r4

1
t)C(x, ϕ

π
∫∫=                                    (3.21) 

where  (r,θ,φ)  are  spherical  polar  coordinates  with  X1 = rcosθ, X2 = 

rsinθcosφ, x3 = rsinθsinφ.  Hence, substituting and integrating. 

( )
,

(r/d)
erf(r/d)2/b2r2πe2ab

Q2
1

2π
t)c(r,t)C(x, −==                    (3.22)         
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where 

( ){ }2
1

2a2b2π

ab
d(t)

−

=                                                        (3.23)

and 

∫ −=⎥⎦
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⎡ (r/d)

0
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2
d
r

erf                                                  (3.24)

Also o2 (x,t) satisfies 

( ) ( ) ϕsinθinθ2r2}tr,ctx,{Γ2r 4π

1
t){x,20 ∫∫ −=                            (3.25)

and, after integration o2 (x,t) = o2 (r,t), where 
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Finally, before discussion and interpretation of these results, note that 

the length L(t) defined in (1.25) satisfies 

  ∫
∞

+==
0

).22b2(a
4π
1

t)drC(r,4r4π
Q
1

(t)2L                                (3.27)

When k = 0 and a3t is of order 1 (or greater), (3.27) and (3.23) give, 

using the formulae in (3.20): 

( )
0t32αe

)(

0d(t);0
t3αe

2
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2π

0L(t) l
l

l
l

<<−=>>=

2
1

2π

                   (3.28)

It follows from (3.22) and (3.26) that 3
0Q/~C l  and for r ≤ d(t). 6

0/2Q~2ο l

Noting from (3.28) and (3.17) that ,t1αe0~d l
 
these "core" estimates are 

the same as those derived above in the case of a uniform initial distrib- 

ution. Similarly, it follows that and 
 
for r » d(t), 3Q/~C l 3

0
3/2Q~2σ ll

where ;t3αe0~L(t)(t) ll =
  
again these "bulk" estimates are the same as 

those for the case of a uniform initial distribution. In either case, L(t) 

is the order of magnitude of the spatial extent of the mean cloud, and d(t) 

is the order of magnitude of the thinnest part of the cloud in one realis- 

ation. It will be clear also that these results are consistent with the 

discussion in section 2.4 of Lecture 2 and, moreover, that there is 

quantitative order of magnitude agreement between the present results and 
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those in ( 2.46) and the subsequent discussion.   (Note  that this  presumes 

/τ*
iα in section 2.4 is the present α1.) 

There is a single, but crucial, difference in the real case when k  ≠  0. 
This is that d(t), defined in (3.23), now approaches the non-zero value 

( )313k/α
Since because it is determined by  Kolmogorov  microscal- 

1τ~3α
−

ing, it follows that, for K ≠ 0, 

  ∞→
⎥
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⎦

⎤

⎢
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⎡
= tas

4
1

ε

2vk
λ~d(t)                                               (3.29)

Thus the thinnest part of the cloud in one realisation approaches the 

conduction cut-off length, defined in (3.8) and obtained by a different 

argument, as the length scale at which the statistics of the concentration 

differences are affected by molecular diffusion. In {3.19), ab2 ~ L2λ for 

large a3t, where the estimate of L(t) is as in (3.28), i.e. it is unaffect- 

ed by molecular diffusion. Also a(t) ~ d(t) ~λ  and b(t) ~ L(t). Thus the 

distribution of concentration in any one realisation given by (3.19) 

occupies a flat ellipsoid of revolution (a "discus") with (ultimately) 

constant thickness of order A but expanding cross-section. The volume of 

the ellipsoid when k ≠ 0 is of order ab2 ~ L2λ; consequently the maximum 

concentration, and the order of magnitude of the overall concentration, is 

of order  i.e. it decreases with t (unlike the case when K = 0). λ2Q/L

This occurs entirely as the result of the constancy of the minimum 

dimension of the ellipsoid which, as the mathematics makes clear, is due to 

the balance between advection and diffusion in this: direction. 

It is now geometrically obvious, on considering an isotropic super- 

position of the ellipsoidal distributions just discussed, that there is 

still a "core" with, now, constant thickness of order λ, and a "bulk" with 

the same dimensions, viz. L(t), as when K = 0. Thus the order of magnitude 

of C in the bulk is still ,3Q/L i.e. it is unaffected by molecular 

diffusion; this confirms the conclusions reached by general considerations 

in section 1.4 of Lecture 1- By contrast the size of o2 is affected by 

molecular diffusion. Its bulk order of magnitude can be estimated from 

3.26), or by the following simple, but illuminating, argument based on 

1.27), viz. 

E{ґ 2 } = C2  + a2  . (3.30) 

Since ґ2 is of order over a region of space of volume of order L2λ4/L2Q 2λ 
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 and since this region is isotropiclly distributed within a volume of space 

 of order L3,it follows that E { }2Γ ~{Q2/L4λ/L2).(L2λ/L3)= Q2/L5λ. Since 

 C2~Q2/L6 << Q2/L5λ,(3.30) gives the bulk magnitude of 02 as of order 

   
λ5L

2Q
~2ο                                                                   (3.31) 

 

The work in this section is a surnnary of some of that in Chatwin and 

Sullivan (1979a); that paper includes some discussion of other cases and 

discusses whether the "core-bulk" structure that the above results exhibit 

exists in flows more general than (3.9). This particular aspect will not 

be considered further here except to note that experimental verification of 

the separate core structure would be extremely difficult because of the 

tiny size of the core, illustrated by the typical values of λ given after 

(3.8). What the above calculations do illustrate clearly include the 

reasons why: 

(a) molecular diffusion does not affect the magnitude of the mean 

concentration C; 

(b) molecular diffusion does affect the magnitude of the concentration 

variance o2; 

(c) the conduction cut-off length λ is the appropriate measure of the 

scales of the contaminant field that are affected by molecular 

diffusion. 

The velocity field (3.9) has also been used to construct exact 

solutions for the p.d.f. p(θ;x,t) defined in (1.6) (Kowe and Chatwin 1985). 

3.4 Random walk models 

In simple terms the difficulty with turbulent diffusion is in making 

quantitative predictions for real flows that have some reliability. In the 

remaining two sections of this Lecture, I want to comment on two of the 

currently most popular methods that are being used in an attempt to improve 

this situation. (Because of the limitations to small scales the work 

summarized in the previous two sections cannot be extended in any obvious 

way to real flows; it is the physical insight they provide that is 

valuable.) I do not have the time to do more than provide a few remarks 

and references. 

The first method can be motivated by considering the statistics of the 

motion of a contaminant molecule. Let X(t) be the position of the molecule 

at time t and let p(x,t,y,s) be the p.d.f. of X(t) conditional on X(s) = y, 

where s ≤ t.  Suppose that the concentration field ґ(y,s) is known, e.g. by 
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release occurring in a specified way at time s.  Then it is obvious (Monin 

and Yaglom 1971, p.584;  Thomson 1987) that 

).(s)dv(y)(y, s)Γy, |tp(x,t),(E{t)C(x, 233∫=Γ= x  
 
(As usual I consider the dispersion of a cloud.)Therefore, if p(x,t|y,s) 

can be evaluated, or estimated, the mean concentration can be found. One 

method of doing this is to construct a stochastic model for the evolution 

of X(t), and random walk models are one example for this. A simple such 

model is provided by the Langevin equation for V(t)=  this can be t;x/∂∂

written 

(3.33),dtiVidxwithiσddtiμVidv =∑+−=
 

where µ and o are constants, and d∑ i are the increments of a Wiener process 

∑ i (t)(Feller 1971, pp.99, 181). The Wiener process has,among its proper- 

ties, those that ξi(t + dt) - ξi(t) is a Normally distributed random vari- 

able with mean zero and variance dt (Thomson 1987, 1989b); the Langevin 

equation was proposed (in, 1908) to describe Brownian motion. For many 

reasons (Thomson 1987,1989b) this model is inadequate in shear flows, and 

is replaced by the more general model: 

   
    dvi = ai(X,v,t)dt + bij (x,v,t)d∑j ; dxi = vidt ,                           (3.34) 
 

where ai and bij are deterministic, and d∑i is as in (3.33). Van Dop, 

Nieuwstadt and Hunt (1985) and Thomson (1987) discuss (3.34) and give 

examples. In particular Thomson shows how ai and bij ought to be chosen to 

satisfy certain desirable criteria. 

The emphasis in this Lecture is on concentration fluctuations. Fortun- 

ately it is easy to generalize the results above to two molecules with 

trajectories X(1)(t), X(2)(t) by writing X(t) for the six-dimensional 

vector (x(1)(t)/X(2)(t)), with identical extensions for x, y and V. The 

two-molecule extension of <3.32) is then (Thomson 19&9a,b): 

(3.35),dv(y)s)(y,2Γs)y,t,p(x,t)}(x,2E{Γ ∫=  

where 

t).,(2)t)Γ)Γ),(1)Γ(xt)(x,2Γ);(2)x,(1)(xx ==                     (3.36) 
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Formally, equation (3.34) applies as a model of the (now) six-dimensional 

process X(t). Thomson (1989a,b) extends his discussion to cover the choice 

of ai and bij in the present two molecule case, and discusses earlier work 

by others, including Durbin (1980). Note that E{T2(x,t)} is obtained from 

(3.35) by putting x(1) = x(2), and that this can be combined with the 

estimate of E{T(x,t)} = C(x,t) obtained from (3.32) to yield an estimate of 

o2(x,t) = E{T2(x,t)} - C2(x,t). In practice, reasonably reliable estimates 

of p(x,tly,s) for both processes require a large number of numerical simul- 

ations of the two random walks. For example Thomson (1989a,b) followed 

30000 pairs of molecules; he also used a "particle-splitting" technique 

for obtaining more reliable estimates in the especially difficult cases 

when the two molecules are close together. 

These techniques have produced good comparisons with some datasets 

including those of Fackrell and Robins (1982) and Warhaft (1984). It is 

not yet clear how useful they will be in practice for more complex flows 

given (a) the need for large computing capacity, and (b) certain rather 

subtle inconsistencies in the above formulation of the two molecule random 

walk. These are exposed and discussed by Thomson (1989a,b), but will not 

be considered further here.  Reference should also be made to Pope (1987). 

It is however interesting in view of earlier material in these lectures 

to consider certain differences between the properties of T(x,t) and 

ґ2(x,t) that are relevant to the construction and results of random walk 

models. If, following the notational device introduced above, the six- 

dimensional random velocity field T2(x,t) is defined by 

T2(x,t) = [T(x(l),t),T(x(2),t)] , (3.37) 

then ґ2(x,t) satisfies 

 ,2Γ
2
2k2Γ2.V2Γt

2Γ ∇=+
∂

∂
                                                    (3.38)

whe re V2 is the six-dimensional gradient operator with components[ (1)
ix/∂∂  

[ (2)
ix/∂∂ Despite the formal identity of (3.38) with (1.2), there are 

hidden complications due to the structure of T2(x,t) in (3.37). For 

example this field is inhomogeneous, even in homogeneous turbulence, since 

the joint distribution of T(x(1),t) and T(x(2),t) always depends on x(1) - 

x(2)Also, for initially coincident pairs of molecules, the effect of T2 

does not separate them;  thus molecular diffusion must be important in 
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determining ґ2, and hence o2.   This confirms what is already known from 

work summarized above. 

The comments above have been based on work by Thomson, since this what 

is most familiar to me. However this type of model is currently undergoing 

rapid development, particularly for the two particle case and there is some 

controversy about approach, and formulation. 'Reference should be made, for 

example, to Kaplan and Dinar (1988). 

3.5 Remarks on closure and related hypotheses 

In a sense, random walk models constitute a closure hypothesis because 

they  replace the infinite  hierarchy of eqations for t)(x,2cort)c(x,  (or 

any other statistical property of the concentration) that was discussed in 

Lecture 1 by an approximate, but closed, calculation scheme. However the 

term closure hypothesis is normally restricted to an approximation (or 

approximations) applied to equations, like (1.17) or (1.19), that are more 

directly related to (1.2) than the equations used in random walk models. 

In principle closure hypotheses can be devised for situations of any 

geometrical and physical complexity; in practice most emphasis has been 

placed (as with random walk models) on relatively simple flows, and. this is 

understandable. 

Much work has been done in modelling data by Warhaft and Lumley (1978) 

who measured the decay of o2 for temperature fluctuations in statistically 

steady grid turbulence. Newman, Launder and Lumley (1981) modelled the 

observed decay beginning with the equations: 
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In these equations U is the magnitude of the mean velocity in the direction 

of the z axis, and the other symbols have been defined earlier; in 

particular εґ is the mean dissipation rate of the fluctuations defined in 

(3.4). Note that (3.39a) is the exact form of (1.19) under the assumed 

conditions (homogeneous except for the constant and uniform mean wind), 

while (3.39b) is the exact form of the equation for εґ under the same 

conditions. By analogy with the successful procedure used in modelling the 

decay of the turbulent kinetic energy, the right-hand side of (3.39b) was 
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written in the form - where k}2/σ2
Γ{εΓk ґ  is a dimensionless  decay rate.   In 

turn kT was expressed in terms of ET, o and corresponding properties of the 

turbulent velocity field. This gave four coupled ordinary differential 

equations forming a closed system, but there remains a choice of certain 

constants. Appropriate choices of these gave good agreement with the data, 

and with other comparable datasets. The principles involved in choosing 

the details of the closure, e.g. the expression for kґ in the above 

example, are interesting and are discussed by e.g. Lumley (1978) and Lumley 

and van Cruyningen (1985). Nevertheless, to a non-expert in this field 

(like me), the procedure is not totally satisfactory since it needs so much 

"tuning", much more for example than in applications of random walk models 

to the same, or comparable, datasets (Thomson 1989b). 

A totally different type of approximation to the one-point closure and 

second-order modelling technique illustrated above is to apply two-point 

closures, and this has primarily been applied to the equations in spectral 

form for situations that are homogeneous and isotropic, or approximately 

so. (It is only in these circumstances that the use of spectra confers 

algebraic advantages.) Such methods are discussed by Lareheveqrue, Chollet. 

Herring, Lesieur, Newman and Schertzer (1980) and by Lesieur, Montmory and 

Chollet (1987), and, of course, elsewhere. The former of these papers 

discusses the Test Field Model (TFM) and the eddy-damped. Marrovian 

procedure (EDM), and models with reasonable agreement the data of Warhaft 

and Lumley (1978) and others. There is unfortunately insufficient space to 

discuss any details; however these models also need tuning to give 

numerical predictions and it is not clear how successful, or how  practical, 

they will be for complex real flows. 
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Lecture 4.    The interpretation of data and some datasets 

4.1 Introduction 

This last Lecture attempts to redress a serious imbalance in the course 

so far, namely an overemphasis on theory at the expense of data. Turb- 

ulence and turbulent diffusion, like all branches of fluid mechanics and 

perhaps more than most, cannot be understood (let alone predicted) without 

both types of investigation. Perhaps, in an ideal world, each of us would 

be both experimenter and theoretician! 

The first part of the Lecture will consider many datasets from 

turbulent shear flows, and present and discuss a framework that enables 

them to be understood rather simply. The results should certainly be 

useful to modellers. The second (and final) part will discuss some 

problems that occur in using, and modelling, data; some of these are 

connected with the instrument smoothing that is normally unavoidable. 

4.2 Some data on C and o2

Table 1 gives information about some typical experiments on steady 

scalar dispersion conducted in a variety of steady self-similar turbulent 

shear flows. It will be clear that these include several different 

contaminants, including heat and smoke, and a range of measurement 

techniques. Despite the differences in the experimental configurations, 

all the experiments in Table 1 (and nearly all similar ones that have been 

studied) have two common features. 

First, in each case, the profiles of C and o2 are themselves self- 

similar (or approaching self-similarity). Let z denote distance downstream 

from the (effective) source in the direction of mean flow and let CM(z) 

denote the maximum value of C{x) at each cross-section. (As noted above, 

all the statistical properties considered in this section will be 

independent of time t.) In cases like jets and wakes, CM(z) is the centre- 

line value and, for turbulent boundary layers with the source at the wall, 

it is the wall value. The self-similar structure observed in the profiles 

of C and o2 shows that there is a transverse length-scale a(z) which, when 

used to non-dimensionalise the transverse coordinate(s) in plane or 

cylindrical geometry, produces a dimensionless transverse coordinate η such 

that, for sufficiently large z. 

 

( ) ( )η(z)f2
MC(x)2o;η(z)FMCC(x) ==     (4.1)
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NO WORKERS FLOW CONTAMINANT MEASUREMENT 
TECHNIQUE 

(1)  
 Becker, Hottel and 
   Williams (1967) 

   
   Round jet 

 
 Oil smoke 

 
 Light-scatter

(3)   
 LaRue and Libby 
    (1974) 

 
   Plane wake 

 
   Heat 

Platinum wire 
 resistance 
 thermometer 

(3)  
Antonia, Prabhu and 
Stephenson {1975) 

 
Round jet with 
coflowing stream 

 
   Heat 

 
Platinum/10% 
rhodium wire 

(4) 
 
 
(5) 
 
 
 
(6) 
 
 
(7) 
 
 
(8) 
 
 
(9) 

Sreenivasan, Danh 
and Antonia (1976) 
 
Shaughnessy and 
Morton (1977) 
 
 
Birch, Brown, 
Dodson and Thomas 
(1978) 
 
Gad-el-Hak and 
Morton (1979) 
 
Fackrell and 
Robins (1982) 
 
Antonia, Browne, 
Chambers and 
Rajagopalan (1983) 

 Smooth-walled 
 boundary-layer 
 
   Round jet 
exhausting into a
secondary airflow 
 
 
 Round methane 
     jet 
 
 
 Grid turbulence 
 
 Rough-walled 
 boundary-1ayer 
 
 
 
 Plane jet 

     Heat 
 
 
    Smoke 
  particles 
 
 
  Methane 
 
 
   Smoke 
  particles 
 
Propane/helium 
   mixture 
 
 
    Heat 

Wollaston wire 
 
 
 Light-scatter 
 
 
Raman scatter-
ing of laser 
light 
 
Laser 
anemometer 
 
Flame ionis- 
ation detector
system 
 
Wollaston wire 

TABLE I.  Experiments in which profiles of C and o2 were measured. 

with F(0) = 1 because of the definition of CM(z).  In most flows, including 

all those in Table 1, F(n) is Gaussian, or approximately so. 

The second feature that all the experiments in Table 1 have in common 

is that f(n) in (4.1) has a maximum at a non-zero value of n of order 1- 

Figure 4, adapated from Antonia, Prabhu and Stephenson (1975) is entirely 

typical of all the datasets.  Most other measurements have this property 
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but not all; one exception is the work of Nakamura, Sakai and Miyata 

(1987) on the dispersion of dye in grid-generated water turbulence using a 

light absorption probe, in which (4.1) held but the maximum of f(η) was at 

n = u. 

4.3 A simple framework and its development 

Use of a simple framework turns out to explain the robust features 

noted above; it is particularly noticeable that it does not seem to matter 

whether the contaminant is passive or not. The framework is once more 

based on consideration of the hypothetical case when K = 0, and aspects of 

it were discussed in many of the papers listed in Table 1 and elsewhere 

(Chevray and Tutu 1977; Chatwin and Sullivan 1987a,b). In all the 

experiments in Table 1, the concentration at the source was uniform; if 

its value is denoted by θ1, the p.d.f. p(θ;x) is given by p0(θ;x) in (2.3), 

viz. 

P0(θ;x) = π0(x)δ(θ-θ1) + [ l-π0(x)]δ(θ) , (4.2) 

where, using the zero subscript notation introduced after (2.4), 

π0(x) = prob{ґ0(x,t) > 0} (4.3) 

is the intermittency factor in this hypothetical situation.  Use of (1.10) 

and (1.11) gives 

C(x) = CQ(x) = θ1 π0 (x) ; o2(x) = O20(X) = θ21π0(x)[1-π0(x)] .         (4.4) 

Hence, eliminating π0 , 

2)1θ2
1

0(c2)1θ2
1
()0C1(θ0C

2
0o −−=−=                                      (4.5)

Thus, in this hypothetical situation,
 

2
0σ  has a maximum value of 2

iθ4
1

which 

it takes at all points on the surface .1θ2
1

(x)0C =  The schematic Figure 5 

shows the transverse and axial variations of 2
1/θ2

0σ predicted by (4.5) for a 

case when 

( )
,

5dz
17.5d

1θ

(Z)MC,

2
η2

1
(z)eMC(x)0C −

=
−

=                                        (4.6)
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for z » d, where d is the source diameter. While (4.6) is typical of 

observed behaviour in jets (Becker, Hottel and Williams 1967), the main 

features of Figure 5 are independent of (4.6); indeed (4.5) - and 

therefore the general properties of the curves in Figure 5 - does not 

require self-similar or even steady behaviour, or that the scalar be 

passive. 

A brief examination of the datasets listed in Table 1 shows, unsurpris- 

ingly, that they are not quantitatively consistent with (4.5).  Nevertheless, 

there are suggestive points of qualitative agreement.  It has already been 

noted that all the observed transverse profiles of o2 have the off-axis min- 

imum at n ~ 1 that is observed at Station A in Figure 5(b) - refer to Figure 

4.  Also those papers showing the axial variation of  (Becker, Hottel 2
1/θ2σ

and Williams 1967;  Birch, Brown, Dodson and Thomas 1978;  Fackrell and 

Robins 1982;  Pitts and Kashiwagi 1984) show a maximum as in Figure 5(c). 

However the measured maximum values of 2
1/θ2σ are significantly less than

4

1 , 

predicted by (4.5).  For example, Becker, Hottel and Williams (1967; Figure 

7) observe a maximum value of 2
1/θ2σ on the centre-line of order 0.018, 

occurring when = 0.77 (not 1C/θ
2
as predicted by (4.5)), and z/d = 13.2. 1

Molecular diffusion has several interrelated effects that invalidate 

(4.5) for real flows. Host fundamentally perhaps, the maximum concen- 

tration occurring at any point during any realisation is less than the 

source concentration θ1 by a factor that increases with z. Also molecular 

diffusion causes o2 to be dissipated in a way which depends not only on 

this reduction of the maximum concentration, but also on the statistical 

properties of the velocity field inasmuch as these determine the 

geometrical properties of the scalar - containing volumes emanating from 

the source. For well understood reasons, the magnitudes of C(x) and o2(x) 

in the types of flow being considered do not depend to any measurable 

degree on the value of the molecular diffusivity K; it will be noted that 

there are wide variations in the values of K in the experiments of Table 1. 

Given the observed self-similarity of the data, it now seems natural to 

attempt to account for the effects of k on the maximum concentration by 

replacing θ1 in (4.5) by a local concentration scale αCM(z), where CM(z) is 

the maximum mean concentration at downstream distance z defined in (4.1) 

and a is a constant of order unity. If this hypothesis is correct the 

value of a can be expected to depend on factors like the type of flow and 

the source geometry, but not on K. In the first instance, therefore, the 

hypothesis is that (4.5) should be replaced by o2 = C(αCM-C). (From now 

on, following work in the earlier Lectures C0 will be written C, since K 
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has no effect on the mean concentration.) But this relationship requires 

the value of a to account for both effects of K described above, and this 

seems likely to be unreasonable in general. There is no conceptual 

difficulty in extending the hypothesis very simply by allowing a constant 

reduction factor ß in the equation for o2, and it happens that this is easy 

to accommodate practically. Therefore the main work of the remainder of 

this section will be to investigate whether the datasets from Table 1 

satisfy 

σ2 = ßC(αCM-C) ,   (4.7) 

with C = C(z,η), σ2 = σ2(z,n), and a and ß constant. 

Before giving the results of this investigation, it is helpful to 

mention two points that will be discussed later. Although (4.5) was 

derived from the exact form {4.2) for p0{θ;x), no hypothesis has yet been 

made here concerning the p.d.f. in real flows that may lead to {4.7). 

Secondly, increasing attention is being given to the actual and perceived 

(i.e. measured) values of o2, and other statistical properties of ґ(x,t), 

that may occur due to instrument smoothing (Sullivan 1984; Carn and 

Chatwin 1985; Chatwin and Sullivan 1987a; Derksen and Sullivan 1987; 

Hole and Chatwin 1987; Mole 1989), If there are such differences they may 

well affect the values of α and/or ß, but they do not affect the data 

analysis and will, for the moment, be ignored. 

After proposing (4.7) and drawing several of the graphs in Figure 6 , 

it was discovered that Becker, Hottel and Williams (1967, Figure 8) had 

shown that their data followed (4.7) "highly accurately" with a = 1.31 and 

ß = 0.156. However no physical explanation of its validity was then 

attempted;  thus its status until now was purely empirical. 
 

The procedure adopted to test whether (4.7) described the other data- 

sets in Table 1 was, first, to determine a by the location of the maximum 

in the self-similar transverse profile of o2; according to (4.7) this 

occurs when C/CM = α
2
1  Graphs of  2)/σCMC(α( −   against η were then drawn. 

It can be seen from Figure θ that this quantity is a constant, within 

experimental error, for each dataset for n less than about 1.75. Thus each 

dataset in Table 1 is consistent with (4.7), and the value of the constant 

is ß -½.  Table 2 lists the values obtained in this way. 
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NO (l)1 (2) (3) (4)2 (5) (6)3 (7) (8)4 (9) 

α 
ß 

 

1.31 
0.16 

1.17
0.46 

1.16 
0.34 

1.09 
0.46 

1.24 
0.12 

1.27 
0.14 

1.52 
0.37 

1.35 
0.72 

1.15
0.20 

1 Values from empirical relationship in paper.   2 Data for z/d = 102. 
3 Data for z/d = 40.  4 Data for z/H = 5.00, 5.92. 

TABLE 2.   Values of a and ß for Table 1 datasets. 

The method used in Figure 6 artificially highlights measurement, and 

graph-reeding, errors in the low values of C and o2 at higher values of η. 

(In fact, graph-reading errors account for a substantial proportion of the 

scatter in the diagrams in Figure 6; these are relatively greatest at the 

larger values of n.) Despite this, the evidence from Figure 7 is that such 

errors are likely to be of little practical significance; equation (4.7) 

provides at least as good a fit (and arguably better) to the data of 

Fackrell and Robins (1982) as a complicated, and specifically developed, 

formula due to Wilson, Robins and Fackrell (1982). 

It will be observed that all the entries in Table 2 satisfy 1 < α < 2, 

and ß < 1. From (4.7) it follows that 

}2)MαC
2
1

(c2
MC

2α
2
1

β{2σ −−=       (4.8)

and, since c ≤ CM everywhere at any fixed cross-section, an off-axis (i.e. 

for n ≠ 0) maximum in the profile of o2 occurs only if α. < 2. There is no 

fundamental reason why this shoud be so. It has already been noted that no 

off-axis maximum occurred for the profiles of o2 measured by Nakamura, 

Sakai and Miyats (1987), and it is therefore very interesting that these 

authors showed (figure 16 of their paper) that their profiles could be well 

fitted by a curve which is exactly (4.7) with α = 3 (and ß = 1). Two 

further points about these experiments are relevant. Nakamura, Sakai and 

Miyata attributed the differences between their results and those, also 

from grid turbulence, of Gad-el-Hak and Morton (1979) - dataset No. (7) in 

Tables 1 and 2, and Figure 6 - to the fact that their fluctuating 

concentration field was highly intermittent everywhere unlike that recorded 

by Gad-el-Hak and Morton, In view of later material in this Lecture it 

would be interesting to know whether this difference in intermittency 
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behaviour was genuine, or due to differences in the degree of instrument 

smoothing. The second point is that the observed values of o2 were shown 

to be strongly dependent on source geometry consistent with the theoretical 

work of Chatwin and Sullivan (1979); see the discussion in Lecture 1 

centred on equations (1.30) and (1.31). 

4.4 The development of the framework to higher moments 

Given the remarkable agreement between 4.7) and the data, it is 

natural to extend the hypothesis Leading to (4.7) to further statistical 

properties such as the higher moments E{cn(x,t)) and shape parameters like 

the skewness and flatness factor (or kurtosis). The moment generating 

function M(s) is defined by 

∑
∞

=
+=∫

∞
−=−=

2n
(4.9).

n!

ns
}nE{c1pdθ

0
sc)e(θs}C)(ΓE{eM(s)

 

Substituting in for p the simple form P0 in (4.2) (on which (4.7) was 

based) gives 

(4.10)cs)e0π(1
c)s1(θ

e
2n 0πn!

ns
}nE{c1 −−+

−
∑
∞

=
=+  

 
and then, on expanding the right-hand side and eliminating π0 using  (4.4) 

nC
1θ
C

1n1)(nC)1( θ
1θ
C

}nE{C ⎥
⎦

⎤
⎢
⎣

⎡
−−+−=                                       4.11)         

  It is elementary to check that 4.11) vanishes as θ1 → 0 there is then no 

 scalar) and when C = θ1 (all the fluid is then occupied by scalar of 

concentration θ1, i.e. π0 = 1 everywhere). 

The hypothesis leading to (4.7) can be extended in an obvious way to 

all n by replacing in (4.11) (a) θ1 by the local concentration scale aCM, 

and (b) equality by proportionality. Thus (4.11) is replaced by 

(4.12).
Mc
c

};n)(αn1)(n)(α{
α

n
MC}nE{C =−−+−∝ ϕϕϕϕϕ

 

In particular 

  ,}233α2)(α(α4
MδC}4E{C);2)(α(α3

Mγc}3E{C ϕϕϕϕϕϕϕ +−−=−−=        (4.13) 
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for some constants Y and δ.  Furthermore the shape parameters S (skewness) 

and F (flatness factor) then satisfy 

     
{ }

(4.14b),
)(α

)233α2(α
2β

δ
4
}4E{c

F

(4.14a);
)(α

)2(α
3/2β

γ
3σ

}3E{c
S

ϕϕ
ϕϕ

σ

ϕϕ
ϕ

−
+−

==

−
−

==

   

(Chevray and Tutu (1977) give the formulae corresponding to (4.14) that 

follow from (4.11) rather than (4.12).) 

There is unfortunately insufficient space and time to discuss the 

results of testing datasets against the formulae (4.13) and (4.14), 

although this has been done by myself and Sullivan. Very briefly, the 

agreement is reasonable given the difficulty of making measurements of 

higher moments (which results in large experimental scatter); the 

principal discrepancy is that the experimental results are flatter in the 

central region (near n = 0) than (4.13) and (4,14) predict. Table 3 gives 

values of y and δ that we have determined from three of the datasets in 

Table 1. Also shown are figures demonstrating that, within experimental 

error for these datasets. 
1/4δ1/3γ1/2β ==      (4.15) 

  
 NO 

  
 Y 

  
 & 

 
 ß1/2    1/3γ

41 /δ  

(2) 0.3 0.2 0.68 0.67 0.67 

(3) 0.15 0.08 0.58 0.53 0.53 

(6) 0.034 0.035 0.37 0.32 0.43 

            TABLE 3. Values of certain constants for three 

            datasets in Table I. 

A theoretical justification of (4.15) is based on the reasons for the 

introduction of the constants a and ß into (4.7). The constant ß allowed 

for possible overall reduction to measured values of σ2 (relative to the 

hypothetical K = 0 result) additional to that due to reduction, by 

molecular diffusion, of the maximum concentration from θ1 to order aCM. 

However conservation of mass requires this reduction to be accompanied by 
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on overail increase in the background concentration (from zero when k = 0), 

and therefore a further reduction in the range of concentration values. 

Since all moments are estimated from the same data record, there is an 

immediate inference that each of the quantities in (4.15) measures this 

range reduction at least to an order of magnitude. The evidence presented 

in Table 3 suggests that the argument has much more precision than this! 

A first (and partial) account of the work described in sections 4.2, 

4.3 and 4,4 is given by Chatwin and Sullivan (1987b), However the work has 

been written up in full (Chatwin and Sullivan 1990), and is expected to 

appear in the March 1990 edition of Journal of. Fluid Mechanics which will 

consist entirely of invited papers in honour of the 70th birthday of 

Professor G.K. Batchelor, F.R.S. In the meantime, I should be happy to 

supply copies of the manuscript of this paper to anyone who writes to me. 

We believe that the simplicity and apparent generality of the results 

should make them of great practical value even, perhaps, in more complex 

flows such as atmospheric dispersion. 

4.5 Some remarks on the intermittency factor 

The only intermittency factor so far considered in these Lectures has 

been that defined in (4.3) for the hypothetical case when k = 0. Given the 

physical ideas behind such models as Gifford's fluctuating plume model (see 

section 2.5 of Lecture 2), it is natural to consider models of p(θ;x,t) in 

atmospheric dispersion in which meandering is (at least partly) accounted 

for by an intermittency factor measuring the probability of being in the 

plume. Recent work relevant to this is given in e.g. Hanna (1984) and Ride 

(1984a,b; 1988). It has also been "fashionable" for some years to measure 

conditional statistics of scalar concentrations in the laboratory; see 

e.g. LaRue and Libby (1974) and Antonia, Prabhu and Stephenson (1975). 

These statistics are those determined from measurements of Γ(x,t) 

conditional on it being non-zero. 

Obviously, therefore, the measurement of conditional statistics 

presumes the existence of an intermittency factor π(x,t) in real dispersion 

situations with K ≠ 0, with π(x,,t) defined by 

π(x,t) - prob{Γ(x,t) > 0} (4.16) 

The distinction between (4.3) and (4.16) is important.  The definition of 

π0 in (4.3) was applied only to the hypothetical situation in which there 
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is no molecular diffusion, but users of (4.16) intend it to apply in real 

flows. In view of the importance of the concept of intermittency in both 

the different situations described - practical predictions of atmospheric 

dispersion, and conditional statistics - its modelling is an obvious 

challenge for theoreticians. This section, based on Chatwin and Sullivan 

(1989), considers this problem. 

It is well-known that experimental determination of π is difficult 

because of its dependence on the fine-scale structure of the velocity and 

contaminant fields; the achievement of finer spatial and temporal 

resolution is invariably accompanied by relatively increasing random noise. 

For example Shaughnesey and Morton (1977) measured π in a smoke-filled 

turbulent air jet, and Figure 16 of their paper shows a sensitive 

dependence of the perceived distribution of π on the diameter of the laser 

beam used in the transducer system. Also Bilger, Antonia and Sreenivasan 

(1976) illustrated the subjective element involved in measuring π by 

showing that different workers estimated different values from the same 

data. 

In many experiments such difficulties are explicitly recognised by 

replacing (4.16) by 

π(x,t) = prob{Γ (x,t) > θT) , (4.17) 

where θT(p(>0) is a threshold value whose choice inevitably involves 

arbitrariness. Use of (4.17) gives perceived values of π that are strongly 

dependent on θT (Sreenivasan 1985), and one important practical conclusion 

is that quantitative} interpretations of published data are impossible 

unless each individual measurement of π is accompanied by the corresponding 

value of θT. 

However from the points of view of both basic understanding and of 

theoretical modelling, there is an even more serious difficulty with the 

definitions of π in (4.16) and (4.17) and this is the role of molecular 

diffusivity. It has been noted in these Lectures on several occasions that 

the mean concentration is not affected by molecular diffusion but that the 

variance is. There is no doubt that π, as defined in (4.16), is affected 

by molecular diffusion. In fact, solutions of the equation governing 

Γ (x,t), viz. 

( ) Γ,2kΓτ.
t
Γ

∇=∇+
∂
∂

   (4.18) 
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have the well-known property that Γ (x,t) > 0 everywhere in the flow regime 

for all t > t1, where t1 is the time when dispersion began (with a 

continuous release represented by t1 = -∞).  Use of (4.16) then gives 

π(x,t) = 1  for  t > t1   and for all x . (4.19) 

It is common, perhaps, to dismiss this point as one that has no practical 

importance (presumably because molecular diffusion is a "weak" process). 

Such a dismissal has no foundation whatsoever (unless its advocates are 

claiming (without, it must be said, any evidence at all) that (4.18) is not 

the equation governing the concentration). Molecular diffusion is a real 

physical process, and its existence makes (4.16) a meaningless definition. 

(Perhaps "trivial definition" would be more accurate.) In practice, (4.17) 

is always used instead of (4.16) so that values of Γ  less than θT are 

excluded and perceived values of π less than 1 are reported. However it is 

obvious from the reasoning leading to (4.19) that such values are 

sensitively dependent on θT and this is consistent, as noted above, with 

experiments. Such sensitive dependence means that theoretical predictions 

using (4.17) would not have any meaning insofar as the dispersion process 

itself were concerned. 

The conceptual importance of the intermittency of the distribution of a 

scalar is in no way diminished by the total inadequacy of either (4.16) or 

(4.17). It therefore seems essential to seek a definition of intermittency 

factor that is theoretically sensible and can be reliably measured. It is 

just as important that any new definition of π  should have clear physical 

interpretation; in particular it would be desirable to have a definition 

that separated the (essentially) rapid and large-scale process of advection 

from the (relatively) slow and small-scale process of molecular diffusion 

in an unambiguous way. Only the former process motivates the original 

concept, but (4.16) involves the latter process also, and (4.17) brings in 

the irrelevant (from the point of view of understanding the dispersion 

process) dependence on threshold. 

Fortunately there is one, almost obvious, definition. As noted several 

times, for example in (4.4), the intermittency factor πo(x,t) in the 

hypothetical dispersion process that is identical in all respects with the 

real dispersion process except that K = 0 satisfies 

   (4.20),
1θ

t)(x,0Ct)(x,0π =  
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and the key point is that C, and therefore π0, depend only on the advection 

process (in addition to factors like the source geometry) since there is 

now no molecular diffusion. Since the advection process is, for a passive 

contaminant, unchanged by the presence of a contaminant undergoing 

molecular diffusion, π0(x,t) in (4.20) meets the criteria laid down earlier 

for the new definition of intennittency factor, except that I have not yet 

considered whether it can be reliably measured. Fortunately this does not 

pose a problem since, again as noted several times in these Lectures, the 

mean concentration C(x,t) in real flows is believed to be indistinguishable 

from C0(x,t).  Thus πo(x,t) can be well estimated by π(x,t), where 

   
1θ
t)C(x,

t)π(x, =                                                          (4.21) 

 It is therefore proposed that (4.20) be adopted as the new definition of 

intennittency factor, and that it be estimated by (4.21). It is reassuring 

that (4.21) involves only the source concentration θ1 and the mean 

concentration C(x,t), which are the two most easily measured properties of 

the contaminant field, and the most robust. 

Scalars are often used in an attempt to separate the "turbulent regime" 

from the "non-turbulent (or irrotational) regime" in the velocity field. 

While my subject is not turbulent flow (and while I certainly do not intend 

to involve myself in sterile discussions about what turbulence is!), I 

think a comment or two would be allowed. In fact the presence of viscosity 

has the same effect on the vorticity field as molecular diffusion has on 

the concentration field, namely that its diffusive action causes the 

vorticity to be non-zero everywhere. There is no "irrotational regime" in 

real flow fields! It would of course be of interest to consider the 

vorticity analogue of (4.20) with the mean vorticity magnitude replacing 

C0(x.t); this may be unnecessary in practice since use of (4.20) as it 

stands and a passive scalar tracer ensures marking of the original vortical 

fluid emanating from the source. 

4.6 The structure of p(θ;x,t) 

The new definition π0(x,t) of intermittency factor in (4.20) has an 

interesting role in the structure of p(θ;x,t), the p.d.f. of the 

concentration in real flows defined in equations (1.5) and (1.6). To see 

this, it is illuminating to begin with the joint p.d.f. P2(θ,θo;x,t) of 

Γ (x,t) and T0(x,t) where, following the notation introduced in section 2.1, 

Γ o(x,t) satisfies (4.18) with k = 0, but all the other conditions satisfied 
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by the real concentration Γ(x,t).  Thus p2(θ,θ0 ;x,t) satisfies [cf. (1.5) 

and (1.6)] 

(4.22)}]0θt)(x,0Γandθ),([prob{
0θθ

2
t)x,;0,(2P ≤≤Γ

∂∂
∂

= txθθ

 

In  the  normal  way P(θ;x.t)  can be  obtained  from P2(θ,θo;x,t)  bY 

integration: 

  (4.23).0t)dθx,;
0 0,(2pt)x,;0,p( ∫
∞

= θθθθ

 

As we have already observed on several occasions, Γ0 takes the value θ1 

with probability π0 and the value 0 with probability (l-π0). Let f(θ;x,t) 

and g(θ;x,t) be the p.d.f.s of Γ(x,t) conditional, respectively, on Γ 0 = θ1 

and Γ0 = 0.  Then, by standard probability laws. 

p2(θ,θ0;x,t) = πo(x,t)δ(θo-θ1)f(θ;x,t) + [l-π0(x,t)]δ(θ0)g(θ;x,t) .      (4.24) 

Use of (4.23) then gives the exact representation (Chatwin and Sullivan 

1989) 

p(θ;x,t) = π0(x,t)f(θ;x,t) + [l-π0(x,t)]g(θ;x,t) , (4.25) 

in which the new definition of intermittency factor appears naturally. The 

conditional p.d.f.s f and g have clear physical interpretations, and can be 

modelled.  For example Cf(x,t), where 

   ∫
∞

=
0

(4.26)t)dθ)x,θf(θ;t)(x,fC  

is the mean concentration in those fluid particles emanating from the 

source, and the extent to which it is below θ1 provides a precise measure 

of the degree of molecular mixing that has occurred. 

Although formulations like (4.25) have appeared in the literature, it 

is believed that this is the first time they have been given a sound 

foundation. 

4.7 The assessment of instrument smoothing 

The discussion of interrnittency has highlighted one of the statistical 

properties  for  which  proper  consideration  of  molecular  diffusion   is 
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essential- More generally there are other properties, e.g. the higher 

moments of c(x,t), for which proper resolution of the small-scale structure 

of the concentration field is important. In practice it is not normally 

possible in experiments to resolve accurately both in time and, simultan- 

eously, in all three space dimensions; this appears to be inevitable given 

the smallness of λ, the conduction cut-off length defined in (3.8). 

Attention is therefore being paid to the assessment of the degree of 

instrument smoothing in datasets and; reference shoud. be made to the papers 

cited following (4.7). Mole (1989) has discussed the principles of 

deconvolution techniques that may be applied to "raw" time-series of 

concentration measurements to yield more accurate estimates of parameters 

like o2. These techniques make no assumptions about the structure of the 

real concentration field, but do (naturally) require estimates of noise and 

of the smoothing mechanism. They have been applied to various datasets 

including recent experiments by Griffiths and Jones in the atmosphere using 

the ion technique described by Jones (1979, 19&3) and Jones and Griffiths 

(1984). The results suggested; in fact that instrument smoothing played 

little role as far as o2 was concerned; this is undoubtedly due to the 

very rapid response time of that particular instrumentation system. 

Unfortunately I have no opportunity here to discuss this important research 

topic further. 

4.8 Concluding remarks 

It appears to me that the awesome resources nowadays available for 

researchers in turbulent dispersion and turbulence (whether they be 

theoreticians or experimenters) , though of great, potential benefit, do not 

always result in important papers - unfortunately. Certainly some of the 

work I read, while full of (doubtlessly worthy) calculations or data, 

contains few good ideas and adds little to physical understanding. There 

seems to be an inertia in the research community which somewhat inhibits 

receptiveness to new ideas or lines of inquiry, and there is (conversely) 

rather too much emphasis on fashionable research areas which take rather 

more resources than their results merit (or than they will produce). 

I expect it will be clear, therefore, that I support all research based 

on good (but not "half-baked"!) ideas, particularly that with novel view- 

points. Our subject is still not well enough understood for there to be no 

place for these. In this last Lecture I have indicated some problems that 

currently interest me and my colleagues, and which I intend to pursue in 

the short-term future. 

http://de.convolut.lon/
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I am grateful to Professors Olivari and Benocci for inviting me to give 

these Lectures. My knowledge of turbulent dispersion has benefitted from 

contact with many people, but I particularly want to mention Professor Paul 

J. Sullivan of the University of Western Ontario with whom I have enjoyed a 

stimulating collaboration over many years. I thank my colleague Dr. Nils 

Mole for commenting on these Lectures, and my secretary Mrs. Molly Demmar 

for her efficient conversion of my manuscript into readable form. Finally 

I want to apologize to my fellow researchers if I have misrepresented, or 

inappropriately forgotten, their work. 

4.9 References for Lecture 4 

Antonia, R.A.,  Browne, L.W.B., Chambers, A.J.  and Rajagopalan, S.  1983 

Budget of the temperature variance in a turbulent plane jet. Inl. J. 

Heat Mass Transfer 26, 41-48. 

Antonia, R.A., Prabhu, A. and Stephenson, S.E. 1975 Conditionally sampled 

measurements in a heated turbulent jet. J. Fluid Hech, 72, 455-480. 

Becker, H.A.,  Hottel, H.C.  and  Williams, G.C.  1967  The  nozzle-fluid 

concentration field of the round turbulent free jet. J, Fluid Nech. 30, 

285-303. 

Bilger, R.W., Antonia, R.A. and Sreenivasan, K.R. 1976 Determination of 

intemuttency from the probability density function of a passive 

scalar. Phys. Flaids 19, 1471-1474. 

Birch, A.D., Brown, D.R., Dodson, M.G. and Thomas, J.R. 1978 The turbulent 

concentration field of a methane jet. J. Fluid Nech. 88, 431-449. 

Carn, K.K. and Chatwin, P.C. 1985 Variability and heavy gas dispersion. 

J. Hoz. Nat. 11, 281-300. 

Chatwin, P.C. and Sullivan, P.J. 1979 The relative diffusion of a cloud of 

passive contaminant in incompressible turbulent flow. J. Fluid Hech. 

91, 337-355. 

Chatwin, P.C. and Sullivan, P.J. 1987a Perceived statistical properties of 

scalars in turbulent shear flows. Proc. 6th Symp. on Turb. Shear Flows, 

Toulouse, France, 9.1.1 - 9.1.6. 

Chatwin, P.C. and Sullivan, P.J. 1987b The probability density function for 

contaminant concentrations in some self-similar turbulent flows- Proc. 

2nd Int. Symp. on Transport Phenomena in Turb- Flows, Tokyo, 215-226, 

Chatwin, P.C. and Sullivan, P.J. 1989 The intermittency factor of scalars 

in turbulence. To appear in Phys. Fluids. 



66 

Chatwin, P.C.  and Sullivan, P.J.  1990 A simple and unifying physical 

interpretation of scalar fluctuation measurements from many turbulent 

shear flows. Submitted to J. Fluid Nech. 

Chevray, R.  and Tutu, N.A.  1977 Conditional measurements  in  a heated 

turbulent jet. In Structures and Mechanism in Turbulence II (edited by 

H. Fiedler, Springer-Verlag),. 73-84. 

Derksen, R.W. and Sullivan, P.J. 1987 Deriving contaminant concentration 

fluctuations from time averaged records. Atmos. Envir. 21, 789-798. 

Fackrell, J.E. and Robins, A.G. 1982 Concentration fluctuations and fluxes 

in plumes from point sources in a turbulent boundary layer. J. Fluid 

Nech. 117,  1-26. 

Gad-el-Hak, M. and Morton, J.B. 1979 Experiments on the diffusion of smoke 

in isotropic turbulent flow. AIAA J. 17, 558-562. 

Hanna, S.R. 1984 Concentration fluctuations in a smoke plume. Atmos. Envir. 

18, 1091-1106. 

Jones, CD. 1979 Statistics of the concentration fluctuations in short 

range atmospheric diffusion.   In Mathematical Modelling of Turbulent 

Diffusion in the Environment (edited by C.J. Harris, Academic Press), 

277-298. 

Jones, CD.  1983  On  the  structure  of  instantaneous  plumes  in  the 

atmosphere. J. Haz. Nat. 7, 87-112. 

Jones, CD. and Griffiths, R.F. 1984 Full-scale experiments on dispersion 

around an isolated building using an ionized air tracer technique with 

very short averaging time. Atmos. Envir. 18, 903-916. 

LaRue, J.C and Libby, P.A. 1974 Temperature fluctuations in the plane 

turbulent wake. Phys. Fluids 17, 1956-1967. 

Mole, N.  1989 Estimating statistics of concentration fluctuations from 

dispersion data. Proc. 4th Int. Workshop on Wind and Water Tunnel 

Modelling of Atmospheric Flow and Dispersion, Karlsruhe (edited by 

A.G. Robins). 

Mole, N. and Chatwin, P.C.  1987 Assessing and modelling variability in 

 dispersing vapour clouds. Proc. Int. Conf, on Vapor Cloud Modeling 

(edited by J.L. Woodward, AIChE), 779-800. 

Nakamura, I., Sakai, Y. and Miyata, M.  1987 Diffusion of matter by a 

non-buoyant plume in grid-generated turbulence. J. Fluid Mech.  178, 

379-403. 

Pitts, W.M.  and Kashiwagi, T.  1984  The  application  of  laser-induced 

Rayleigh light scattering to the study of turbulent mixing. J. Fluid 

Mech. 141, 391-429. 



67 

Ride, D.J.  1984a A probabilistic model  for dosage.  In  Atmospheric 

Dispersion of Heavy Gases and Small Particles (edited by G. Ooms and H. 

Tennekes, Springer-Verlag), 267-276. 

Ride, D.J. 1984b An assessment of the effects of fluctuations on the 

severity of poisoning by toxic vapours. J. Haz. Nat, 9, 235-240. 

Ride, D.J. 1988 A model for the observed intermittency of a meandering 

plume. J. Haz. Nat. 19, 131-137. 

Shaughnessy, E.J, and Morton, J.B. 1977 Laser light-scattering measurements 

of particle concentration in a turbulent jet, J. Fluid Nech. 80, 

129-148. 

Sreenivaaan, K.R. 1985 On the fine-scale intermittency of turbulence. 

J. Fluid Hech. 151, 81-103. 

Sreenivasan, K.R., Danh, H.Q. and Antonia, R.A. Diffusion from a heated 

wall-cylinder immersed in a turbulent boundary later. Proc. 

Thermofluids Conf., Hobart, Inst, of Engineers, Australia, 103-106. 

Sullivan, P.J. 1984 whence the fluctuations in measured values of mean- 

square fluctuations? Proc. 4th Joint Conf. on Applies, of Air Pollution 

Meteorology (Portland, Oregon; American Meteorological Society, Boston, 

edited by G.A. Beals and N.E. Browne), 115-121. 

Wilson, D.J., Robins, A.G. and Fackrell, J.E. 1982 Predicting the spatial 

distribution of concentration fluctuations from a ground level source. 

Atmos. Envir. 16, 497-504. 



           68 

 

 

 

 

 

Figure 4.  Measurements of C and σ2 taken in a round jet 
by Antonio, Prabhu and Stephenson (1975). 
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Figure 5.  Schematic diagram showing profiles of σ2

0/ θ 2
1 given by (4.5) 

and (4.6).  (a) geometry;  (b) transverse profiles; 

(c) axial profile (η 0 0).  Note that 020/ θ 2
1 < 

4
1 everywhere 

except on the surface indicated in (a),and that maxima occur 
on crossing this surface. 
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 Figure 6.  Graphs of 2
1-

β versus n for the datasets in Table 1,where  

  α and ß are defined in (4.7). 



 

 

 

 

 

Figure 7.   Comparison of data (X) by Fackrell and Robins (1982) 
   with (i) an empirical formula ( --) developed for this 
  dataset by Wilson, Robins and Fackrell (1982), and 
  (ii) equation (4.7) (φ). (Note that σ2

0 is the maximum 
  value of  .2σ
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