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Traditional transmissive polarimetric methods can be used for wavelengths above 123 nm where birefringent mate-
rials transmit light and create significant birefringence. Below 123 nm, no suitable solution is known to measure
the four Stokes parameters on a large wavelength range. Therefore, we study here an innovative reflective (rather
than transmissive) polarimeter working in the far ultraviolet (FUV) range from 90 to 130 nm. We take advantage of
the phase shift created by reflections as well as the different reflectivities for p (orthogonal ⊥) and s (parallel ‖ to the
plane of incidence) polarizations to design an FUV polarimeter. Simulation of the analyzer and modulator using
Mueller matrices coupled to polarimetric efficiencies calculations allowed optimization of reflective polarime-
ters for the first time, to the best of our knowledge. This opens up a new perspective for FUV polarimetry below
123 nm. ©2020Optical Society of America

https://doi.org/10.1364/AO.397984

1. INTRODUCTION

A. POLLUX for LUVOIR

For the 2020 NASA decadal survey, the large ultraviolet opti-
cal infrared surveyor (LUVOIR) [1], a 15 m diameter space
telescope in its version A, is being studied. LUVOIR has the
ambition to become a serviceable space telescope working
from ultraviolet (UV) to infrared (IR). It is proposed to har-
bor four instruments, including POLLUX, a high-resolution
spectropolarimeter working in the UV domain from 90 to
400 nm. POLLUX would enable the study of various topics
such as galactic and stellar formation and reflected light from
exoplanets or stellar magnetosphere [2]. To do so, POLLUX
requires us to measure the full Stokes vector (I , Q,U , V ) and
to have a spectral resolution of 120,000 and a polarimetric
precision of 10−4 at all wavelengths. To maximize instrument
performance, the wavelength range of POLLUX is divided
into three channels: the FUV from 90 to 124.5 nm, the mid-
UV (MUV) from 118 to 200 nm, and the near UV (NUV)
[3] from 200 to 400 nm. For the NUV channel, transmissive
polychromatic polarimeters are being considered [4,5]. For the
MUV and FUV, such solutions are either not ideal or simply
impossible. Therefore, we study here reflective polychromatic
polarimeters.

B. General Principles

All polarimeters, which are currently considered for POLLUX,
use temporal modulation, as illustrated in Fig. 1. As traditional
sensors (e.g., CCD, CMOS, MCP) are not sensitive to the
polarization of light but only to its intensity, we need to rec-
ord the information of the polarization state into intensities.
Modulating the polarization means to encode polarization
information into the measured intensities. Temporal modula-
tion means successive intensity measurements by the detector
with different amounts of polarization encoded. The successive
measurements are then combined to obtain the polarization of
the source. In order to achieve that modulation, the polarimeter
is made of two parts: the modulator, which takes several angular
positions around the optical axis and rotates the polarization
between the different Stokes parameters; and the analyzer,
which filters the light polarized along one linear direction.
To measure all four Stokes parameters, we need at least four
measurements, which means four angular positions of the
modulator. However, we decided to consider not only the four
required angular positions of the modulator but a few more for
redundancy reasons in case we have an outlier. This also allows
us to improve the final polarimetric extraction efficiency. [6]

Commonly, polarimeters use birefringent materials such as
calcite or magnesium fluoride. A waveplate of birefringent mate-
rial acts as the modulator, and a linear polarizer or a prism works
as the analyzer. Even though magnesium fluoride can be used for
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Fig. 1. General principle of a polarimeter using temporal
modulation.

a waveplate almost near its transmission cutoff around 115 nm
[7], its small and variable birefringence at these wavelengths
makes it challenging to be used for a polychromatic polarimeter.
Therefore, below∼123 nm [4], one needs to find another way.
To measure polarization as low as 90 nm, one must resort to
reflection rather than the usual transmissive methods. Each
reflection introduces a phase shift between p and s polarizations
as well as a change in the total rate of polarization thanks to the
different reflectivities. This makes it possible to use reflection
for the modulator and analyzer functions. Here, we study a
polarimeter made of four reflecting surfaces. Three surfaces are
at a fixed position with respect to each other but free to rotate
together around the optical axis; thus, they make the modulator.
We choose to have three surfaces, as it is the minimum number
that permits not to change the optical axis while maximizing the
flux. The analyzer is made of a single reflecting surface (a dielec-
tric crystal or a metal at a Brewster angle, which we define as the
incidence angle at which the reflected beam is optimally polar-
ized, though seldom polarized at 100% contrary to dielectrics),
which polarizes the incoming light. Contrary to transmissive
polarimeters, which can use dual-beam polarizers [8, 9], the
use of the Brewster angle in this reflective polarimeter implies
a single beam output. A scheme of this polarimeter is shown in
Fig. 2. The alignment of such a device is tricky: the rotation of
the modulator is likely to wobble the beam if not aligned exactly.
In order to qualify for a space mission, the alignment should
resist the vibration of a launch or be corrected in space. Thus, the
accuracy and stability of the alignment are a major issue that will
be studied later for the case of POLLUX.

C. Matrix Calculations/Mueller Calculus

In what follows, we study polarimetry using Stokes parame-
ters and Mueller calculus. The simulation of polarimeters and
the data processing involve Mueller matrices. We recall that a
Mueller matrix is a 4× 4 matrix that characterizes how a com-
ponent, C , affects the polarization: the input Stokes vector Sin

and the output Stokes vector Sout are linked by

Fig. 2. Scheme of the reflective polarimeter.

Sout =

 I ′

Q′

U ′

V ′

=MC ∗ Sin =MC ∗

 I
Q
U
V

 , (1)

where MC is the Mueller matrix of the optical component C .
The four lines and four columns of the matrix correspond to the
Stokes parameters I , Q, U , and V and show how the compo-
nent changes the polarization among the four parameters. Each
optical element has its own characteristic Mueller matrix. In
particular, both the modulator and the analyzer are represented
by such matrices. The Mueller matrix of the modulator can be
computed with the Mueller matrix of each reflection as well
as by using the rotation matrix, a 4× 4 matrix that encodes
the rotation of a component with respect to the optical axis.
Mueller matrices form a group under matrix multiplication;
therefore, the global Mueller matrix of the polarimeter can easily
be obtained from Eq. (1) as

Sout =

∏
i∈[C ]

Mi


α

∗ Sin =Mpolarimeterα ∗ Sin, (2)

thus

Mpolarimeterα =
∏

i∈[C ]

Miα, (3)

where Miα is the Mueller matrix for a component in the ensem-
ble of components [C ] in the system, and Mpolarimeterα is the
Mueller matrix of the whole polarimeter for the position of the
modulation α. Since we measure only intensities, we are only
interested in the first component of Sout, which gives the total
intensity measured on the detector. We define the modulation
matrix O, which is a matrix of dimensions 4× N formed by
combining every first line of the polarimeter Mueller matrix for
each of the N modulation angles (we shall often have N = 6 in
the rest of this work).

This modulation matrix O allows us to write an equation for
the measurement process:

Iout =


I ′α1
I ′α2
...

I ′αN

=O ∗ Sin, (4)

with Iout the vector of the series of N intensity measurements
made for each angle α of modulation and Sin the Stokes vector
we want to measure. To retrieve the Stokes vector, we need the
demodulation matrix D, which is the pseudo-inverse of the
modulation matrix O [10]:

D= (OT
∗O)−1

∗OT . (5)

We then have

Sin =D ∗ Iout (6)

to retrieve directly the initial Stokes vector from the N intensity
measurements. The demodulation matrix also allows us to
determine the efficiency of the polarimeter (see Section 4).
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After fully studying the reflection in Section 2, we first simu-
late and optimize the analyzer independently using the contrast
and figures of merit in Section 3. Using the results obtained
for the analyzer, we finalize the polarimeter by optimizing the
modulator according to the global polarimetric efficiency in
Section 4.

2. SIMULATING A REFLECTION AS A MUELLER
MATRIX

A. Mueller Matrix of a Reflection

To simulate and optimize a reflective polarimeter, we need to
calculate its modulation and demodulation matrices from the
Mueller matrices of the components, i.e., with Mueller matrices
of a reflection. The Mueller matrix of a reflection MR at an
incidence angle θ and for a wavelengthλ is given by [11]

MR(θ, λ)=


X (θ, λ)2 + 1 X (θ, λ)2 − 1
X (θ, λ)2 − 1 X (θ, λ)2 + 1 ...

0 0
0 0

0 0
0 0

2X (θ, λ) cos(τ (θ, λ)) 2X (θ, λ) sin(τ (θ, λ))
−2X (θ, λ) sin(τ (θ, λ)) 2X (θ, λ) cos(τ (θ, λ))


(7)

with X 2
= r 2
‖
/r 2
⊥

the squared ratio of Fresnel amplitude reflec-
tion coefficients and τ the difference of phase shift between p
and s polarizations. To study the modulation and efficiency of
the reflective polarimeter, these two parameters must be known.
This matrix is obviously dependent on the angle of incidence
θ and the wavelength λ but also on the material used (optical
indices of the substrate, of the coating, and of its thickness).

We present below three cases, depending on the surface used
to reflect (absorbing or not) and with or without a coating. We
did not consider the case of multilayer coatings.

B. Phase Shift and Amplitude of a Reflection on an
Absorbing Surface with a Nonabsorbing Coating

A reflection on an absorbing material creates a phase shift in
addition to the polarization-dependent reflectivities. As shown
in Fig. 3, we call 1 the environment of the instrument, vacuum
in our case; 2 the coating; and 3 the substrate of the surface. The
indices of all the parameters in this section will refer to this nota-
tion. One may notice that the calculation of the refraction angle

Fig. 3. Reflection on a coated absorbing surface.

using Snell–Descartes equations should use the complex optical
index to take the absorption into account and may provide
mathematical complex refraction angles [12].

The rate of reflectivities χ and the phase difference τ in this
case can be directly found in [13]. Explicitly, they are calculated
using the reflection coefficient r :

r =
r12 + ρ23e i(φ23+2β)

1+ r12ρ23e i(φ23+2β)
, (8)

with β = 2πn2
h
λ

cos(θ2), where r12 is the reflection ratio at the
interface between 1 and 2, and ρ23 and φ23 are the amplitude
ratio and phase change at the interface between 2 and 3. The
amplitude and phase of this reflection coefficient give the reflec-
tivities and phases for p or s polarizations, using the appropriate
expressions.

Using Born and Wolf equations [13], it is now possible to cal-
culate χ and τ and retrieve the Mueller matrix of a reflection in
the case of a coated reflecting surface.

C. Phase Shift and Amplitude of a Reflection on an
Absorbing Surface Without Coating

Although a particular case of a coated surface, it is worth to recall
here also the case of an uncoated substrate, which, obviously, can
be computed with simpler expressions. These can also be found
in [11]:

χ2
=

f 2
+ g 2
− 2 f ∗ sin(θ1) ∗ tan(θ1)+ sin2(θ1) ∗ tan2(θ1)

f 2 + g 2 + 2 f ∗ sin(θ1) ∗ tan(θ1)+ sin2(θ1) ∗ tan2(θ1)
(9)

and

tan(τ )=
2g ∗ sin(θ1) ∗ tan(θ1)

sin2(θ1) ∗ tan2(θ1)− ( f 2 + g 2)
(10)

with θ1 the angle of incidence, and where

f 2
=

1

2
(n2
− k2
− sin2(θ1)+

√
(n2 − k2 − sin2(θ1))

2
+ 4n2k2

(11)
and

g 2
=

1

2
(k2
− n2
+ sin2(θ1)+

√
(n2 − k2 − sin2(θ1))

2
+ 4n2k2

(12)
help to simplify the expressions, and k is defined by n̂ = n + ik.
Other terms use the same notations as in Section B.

D. Phase Shift and Amplitude of a Reflection on
Nonabsorbing Material (k = 0)

In the particular case of a nonabsorbing medium, such as crystal,
where k is considered null, the expressions for reflectivities
reduce to the well-known expressions. We stress that, in this
case, there is no phase shift between the polarizations. Indeed,
at each reflection of light coming from vacuum into the crystal,
the phase shift is 0, unless the crystal is finite with width d and
transparent enough so that multiple reflections occur [14].
Total reflections impose another different phase shift, used in
Fresnel rhombs, but this is beyond application in our present
study. Therefore, nonabsorbing media cannot be used for the
modulator but can make a good polarizer.
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For any given wavelength, it is indeed possible to find an
angle for which the reflected beam is 100% polarized: the
Brewster angle θB = arctan(n). Such a Brewster angle is
wavelength-dependent, which complicates its use in a broad-
band polarimeter if the available materials have chromatic
optical indices. In addition, even if the reflection at the Brewster
angle is 100% polarized, the actual reflectivity may be too small,
jeopardizing the throughput of any polarimeter based upon it.
This will be studied further in Section 3.

3. SIMULATING THE ANALYZER

A. Polarization Contrast and Figure of Merit

Usually, above 123 nm, beam splitters are used as transmissive
analyzers, as they separate the incoming beam into two linear
polarization states. This has the advantage to use all the incom-
ing flux and to have a perfect polarizer, with two 100% polarized
beams. Using a reflection is more complicated. First, this FUV
analyzer only reflects one linear polarization, so we lose some
flux, which is precious in the UV domain. Also, the efficiency
of the polarimeter decreases, as the output beam is not 100%
polarized.

Our goal is to simulate and then optimize the analyzer in
order to restrict these two drawbacks, i.e., to maximize the
degree of polarization, the ratio of one linear polarization with
respect to its orthogonal polarization, and the transmission,
i.e., to retain a sufficient signal-to-noise ratio.

Two parameters are going to help us quantify their efficiency.
First, we can define a contrast as the ratio between p and s polar-
izations:

C =

∣∣∣∣ Rs − R p

Rs + R p

∣∣∣∣ . (13)

The contrast can help us to determine the degree of polarization
of the reflection, which is linked to the efficiency of the polar-
imeter. This is, however, not sufficient to characterize a good
analyzer, since the reflection can be fully polarized but with an
extremely low reflectivity. Thus, reflectivity should be part of
our characterization. To combine both parameters, reflectivity
and contrast, we introduce a figure of merit (as found in a pres-
entation of S. Fineschi at the workshop Polarimetric Techniques
& Technology in March 2014):

ε =C ∗
√

max(Rs , R p)=

∣∣∣∣ Rs − R p

Rs + R p

∣∣∣∣ ∗√max(Rs , R p).

(14)

The figure of merit helps us to quantify and compare analyzers
according to their efficiencies and reflectivities. The square root
is used on the reflectivity to minimize its variation and give a
larger weight to contrast.

Now that we have a way to quantify the quality of a polarizer,
we can study different solutions and compare them. The study
is divided in two parts: first, the solutions, including only one
material (no coating) with only one parameter to study, i.e., the
incidence angle; second, the study of a coated substrate, for
which there is then two parameters, i.e., the incidence angle and
the thickness of the coating.

B. Uncoated Surface

For a reflection made with a material without coating, we have
just one parameter: the angle of incidence. For a given material
and a given wavelength, a particular angle of incidence, which
optimizes polarization contrast or transmission or, ideally, both,
can be computed. However, the values of the optimal angle of
incidence are chromatic; at best, for a given material, we can find
a compromise at the price of some trade-offs. The previously
defined figure of merit in Eq. (14) will help us to define that
optimal solution, but it will also be used to compare different
materials. The contrast alone has also been studied to underline
the benefit of the defined figure of merit.

For the spectral range of POLLUX in the FUV and MUV, we
have studied the following materials: calcium fluoride (CaF2),
magnesium fluoride (MgF2), silicon dioxide (SiO2), gold (Au),
boron carbid (B4C), tetrahedral amorphous carbon (ta-C, a
diamond-like carbon), and silicon carbide (SiC). We identified
those materials in the literature, as they seem to have good reflec-
tivity in the considered wavelength range [15–17]. The contrast
as a function of incidence angle and wavelength is shown in
Fig. 4. The figure of merit as a function of incidence angle and
wavelength is given in Fig. 5.

Figure 4 shows that the contrast is sufficiently high for some
materials such as CaF2, MgF2, SiO2, Au, and ta-C to consider
them. Moreover, the variation of the contrast with wavelength
is acceptable in the considered wavelength range. However,
in Fig. 5, one can see that, in spite of the good contrast, the
reflectivity is not very high and is mostly responsible for the
degradation of the efficiency of these polarizers.

Fig. 4. Contrast after reflection on various materials as a function
of wavelength and angle of incidence. At a contrast of 1, the beam after
reflection is fully polarized. At a contrast of 0, the beam is not polarized.
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Fig. 5. Figure of merit after reflection on various materials as a func-
tion of wavelength and angle of incidence. At a figure of merit of 1, the
beam after reflection is fully polarized and with no loss of flux. At a con-
trast of 0, the beam is not polarized and/or the flux is lost.

To compare our solutions, the mean contrast (Fig. 6) and
figure of merit (Fig. 7) averaged over the considered wavelength
range are plotted as a function of incidence angle. On those
graphs, one can see clearly that, even though ta-C isn’t the best
analyzer based on contrast, reaching almost 0.7, it is the best
choice when based on the figure of merit, where it hits 0.6. CaF2

and SiO2 seem to be good backup solutions since they have
good figures of merit almost reaching 0.6. One may notice that
they also have good contrast, around 0.9 for CaF2 and 0.8 for
SiO2. The figure of merit helps us to choose ta-C reflection as

Fig. 6. Contrast of a polarizer (averaged across the spectrum) made
with a reflection on various materials as a function of angle of inci-
dence. At 1, the beam after reflection is fully polarized. At 0, the beam
is not polarized.

Fig. 7. Figure of merit of a polarizer (averaged across the spectrum)
made with a reflection on various materials as a function of angle of
incidence. At 1, the beam after reflection is fully polarized. At 0, the
beam is not polarized.

the analyzer for POLLUX, as it is the best compromise between
reflectivity and contrast, but this decision could be modified
for a CaF2 or a SiO2 plate to improve the contrast and thus the
efficiency of the polarimeter if the global signal-to-noise ratio
obtained with POLLUX permits it. These figures show that, at
maximum contrast, a tolerance of 1 deg in the incidence angle
creates a loss of contrast of less than 1%.

Considering the reflectivity, we conclude that the best polar-
izer for the 90–130 nm wavelength domain is a plate of ta-C at
74.3◦ with a mean of 0.599 for the figure of merit and 0.6762
for the contrast. Nevertheless, if there were spectral lines at
specific wavelengths of particular scientific interest, the choice
of the polarizer could be reconsidered by adding weights to those
particular wavelengths. In addition, to study particularly bright
objects, a plate of CaF2 or SiO2 could be a better choice, as those
materials improve overall efficiency, even though they decrease
reflectivity.

C. Study on Coated Materials

To simulate the use of a coated material, the thickness of the
coating is another parameter to consider. Thicknesses between
5 and 90 nm are considered and cover the usual values. We
decided to study a reflection on aluminum coated with MgF2
[18], as it is a well-known combination to study UV light.
To analyze the two relevant parameters (incidence angle and
thickness), we plot the contrast averaged over wavelength as
a function of incidence angle in Fig. 8 for several thicknesses.
Thicknesses were studied from 5 to 90 nm with a 1 nm step,
but fewer values are displayed for clarity. A maximum contrast
of 0.12 is obtained for a thickness of 32 nm, which is much
lower than contrasts found for noncoated materials, which are
up to 0.9. This case is therefore discarded for the analyzer of
POLLUX.

Other combinations of materials for the substrate and coat-
ings may be considered in the future, if an efficient combination
appears from the current LUVOIR R&D studies.
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Fig. 8. Mean of contrast on wavelength of a reflective polarizer
made with an aluminium mirror coated with different thicknesses
(h) of MgF2 as a function of angle of incidence. At 1, the beam after
reflection is fully polarized. At 0, the beam is not polarized.

4. POLARIMETER MODULATION

A. Mueller Matrix of the Modulator

As mentioned in Subsection 1B, the modulator is formed by
three reflections, so that the beam is not deviated from the opti-
cal axis, and the output beam does not move with the rotation
of the modulator. The first and third reflections are then sym-
metrical with respect to the second one, which has its normal
perpendicular to the optical axis of the instrument. The three
reflections are studied as a whole and not independently, since
it is the total change of phase that is of interest. To that effect,
the Mueller matrix of the modulator must be computed. The
studied parameter is the incidence angle θm on the first surface,
as denoted in Fig. 2. The incidence on the other surfaces can be
computed from θm .

The Mueller matrix of the modulator is easily built
up as the product of the matrices of these three reflec-
tions. Following the notation from Fig. 2, we have M3 =

MR(θm, λ) ∗MR(2θm −
π
2 , λ) ∗MR(θm, λ).

The three reflecting surfaces are allowed to rotate around the
optical axis, and the combined Mueller matrix is then modified
by the rotation matrix of the angle of this rotationα:

R(α)=

 1 0 0 0
0 cos(2α) sin(2α) 0
0 − sin(2α) cos(2α) 0
0 0 0 1

 . (15)

The measurement of polarization with our present design
consists in choosing a set of N angular positions for the modula-
tor that differently encode polarization into intensity variations.
Each one of the N measurements is differentiated by α, the
rotation angle; further, the resulting Mueller matrix for the full
modulator is

Mmodulator =R(−α) ∗M3 ∗R(α)

=R(−α) ∗MR(θm, λ) ∗MR

(
2θm −

π

2
, λ
)

∗MR(θm, λ) ∗R(α). (16)

However, as seen in previous sections, we cannot find a perfect
analyzer. The solutions found for POLLUX polarizes light but
not completely; in the case of ta-C, we even expect a retardance
phase to appear between the reflected orthogonal polarizations.
In other words, the analyzer may not just be polarizing but also
transforming, rotating one polarization into another, a role that,
in theory, we reserved to the modulator. Because of this, we can-
not study or optimize the modulator alone. We must consider
the whole polarimeter made of the rotating three-reflections
modulator plus the nonperfect analyzer.

B. Optimizing the Polarimeter

To study and optimize the modulator, we must also study the
analyzer, i.e., the Mueller matrix of the complete polarimeter
must be studied. We can easily compute the Mueller matrix
for the whole polarimeter from the modulator Mueller matrix
computed in Section B. The Mueller matrix for the whole
polarimeter is

Mpolarimeter =Manalyzer(θa ) ∗R(−α) ∗M3 ∗R(α)

=Manalyzer(θa ) ∗R(−α) ∗MR(θm, λ)

∗MR

(
2θm −

π

2
, λ
)
∗MR(θm, λ) ∗R(α).

(17)

Choosing a set of modulation angles α and keeping only the
intensity of the resulting Stokes vector for each one of those
angles, we can build the modulation matrix O, as described
in Section C, which relates the incoming Stokes vector to the
actual series of intensity measurements. An example of this
modulation matrix is shown in Fig. 9.

To quantify the performances of the whole polarimeter and
optimize it, we define, following [10], a polarimetric efficiency
as

εi =

N
N∑

j=1

D2
ij

−1/2

(18)

of a given demodulation scheme made of N measurements and
represented by matrix D, the pseudo-inverse of the modulation
matrix O, for every Stokes parameter i ∈ [I , Q,U , V ]. It is
important to stress that the three efficiencies for Q, U , and V
obey the relationship ∑

Q,U ,V

ε2
i ≤ 1. (19)

Our work in optimizing the modulator has been to pick
the material, incidence angle θm , and set of modulation angles
α, which maximize these efficiencies εi . The need for good
reflectivity limits the materials available for the modulator to
the same ones as those studied for the analayzer, i.e., SiC, ta-C,
Al+MgF2. . . Crystals cannot be used for modulation because
they do not introduce any phase shift between polarizations.

The incidence angle θm and modulation angles α have been
fixed through a Marquardt–Levenberg iteration scheme with
the constraint to minimize the difference between their value
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Fig. 9. Modulation matrix of a polarimeter made with one surface of B4C and two surfaces of SiC and a ta-C analyzer.

and the maximum theoretical one. The maximum theoretical
efficiency is 1/

√
3 in our case, since we choose to measure the

three Stokes parameters with identical efficiency. This can be
changed to highlight a particular Stokes parameter to satisfy
scientific specification. The incidence angle and modulation
angles have been optimized for all combinations of materials for
the three reflections, including mixing and matching different
materials in order to find the best polarimeter.

The actual number of measurements N, however, has been
fixed by simple comparison of the best solutions obtained in
each situation. A minimum of N = 4 is required to retrieve the

four Stokes parameters, but increasing the number of measure-
ments will improve the signal-to-noise ratio attributed to each
Stokes vector. This may improve overall efficiency. To compro-
mise between redundancy and convenience, we chose N = 6 for
our polarimeter.

This optimization on the materials, incidence angle, and
modulation angles has converged to one efficient modu-
lator working from 90 to 130 nm. The first reflection is in
B4C and the two others are in SiC. The incidence angle
is θm = 86.8◦. The modulator takes six angular positions:
15.8◦, 48.4◦, 66.0◦, 114.0◦, 131.6◦, and 164.2◦. Figure 10
shows the efficiencies in the three Stokes parameters Q, U ,

Fig. 10. Polarimetric efficiencies of a polarimeter by reflection with a B4C and SiC modulator and a ta-C analyzer. The black dotted line is the opti-
mal efficiency at 57.7% we try to achieve.
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and V as a function of wavelength for this modulator and a
ta-C analyzer. The black dotted line is the optimal efficiency to
measure the three Stokes parameters with the same efficiency.
The efficiencies are around 0.3 at 90 nm and increase with
wavelength to obtain a satisfying result around 0.55 at 130 nm.
The sensibility of the modulator is thinner than the one of the
polarizer. Indeed, a change of 0.1 degree in the incidence angle
on the first mirror implies a change up to 0.04 in the polarization
efficiencies.

5. CONCLUSION

We have studied and optimized, for the first time to our knowl-
edge, a new polarimeter design using only reflection on different
surfaces and working in the FUV on a large spectrum. The
modulator is made with three surfaces, fixed with respect to one
another, and rotating as a block to create a temporal modulation
of the polarization. The analyzer is the critical part of the design,
as one has to make a trade-off between efficiency and reflectivity.
A plate at the Brewster angle or a reflecting surface at a simi-
lar angle can play the role of the analyzer. This design has the
benefit of not deviating the optical axis with the rotation of the
modulator. The optimal polarimeter for the wavelength range
90–130 nm calculated for POLLUX is made of one reflection in
B4C and two reflections in SiC for the modulator. The analyzer
has several options, the one maximizing the flux is a reflection
in ta-C. A plate of CaF2 or Si O2, increasing the efficiency but
decreasing the reflectivity of the polarimeter, can be used for
bright sources. In the case of POLLUX, we need to maximize
the flux; thus, the choice of a ta-C reflection has been made,
decreasing a bit the efficiency but increasing a lot the reflectivity.
To confirm those theoretical results, an experiment has been
set up to measure complex optical indexes for the considered
materials. This experiment should be conducted in the coming
year and will be the subject of a subsequent paper.

6. DATA

For calculations, the optical indexes used to compute CaF2,
MgF2, SiO2, Au, B4C , and SiC are from Palik and to compute
ta-C are from Juan Larruquert.
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