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ABSTRACT
This work proposes an iterative algorithm for distributed deconvo-
lution of seismic signals for a reflectivity survey by a network of
sensors. Distributed deconvolution is particularly relevant for a sub-
surface exploration by sensor networks or swarms of mobile robots.
We envision such an exploration methodology by multiple mobile
agents for future explorations of a planet’s subsurface. The proposed
scheme consists of two steps: distributed estimation of the seismic
wavelet, followed by a local estimation of the reflectivity. Both steps
are realized using alternating directions method of multipliers algo-
rithms where we exploit sparsity in the reflectivity. The performance
of the scheme is compared to state-of-the-art sparse multichannel
blind deconvolution of seismic data and is found to be comparable
or even superior.

Index Terms— Blind deconvolution, distributed processing, re-
flection seismology, sparse recovery

1. INTRODUCTION

Seismic surveys such as reflection seismology use multiple seismic
sensors or geophones in order to record the seismic waves that are
reflected at underground layers. Based on the received waves the
subsurface of a given area can be reconstructed using signal pro-
cessing algorithms [1]. However, most of these processing algo-
rithms assume a centralized operation, i.e., all measurement data
is available at a central entity. In contrast to that, we envision a
distributed operation of the subsurface reconstruction that is done
within a network of geophones. To this end, each geophone is addi-
tionally equipped with algorithmic and communication capabilities
that allow a data processing and exchange with other geophones in
the network. Such an architecture is particularly relevant for the
exploration of a planet’s subsurface such as on Mars or Moon [2]
where an autonomous operation is required and a central processing
entity might not be available. In this paper, we aim at taking a first
step into a distributed seismic exploration method by focusing on
the development of a distributed deconvolution method for seismic
signals. Deconvolution of seismic signals is an important processing
step in seismic data processing that removes unwanted distortions in
the measurements.

A common survey methodology in seismic exploration is the re-
flectivity survey. Here, a seismic source such as a sledge hammer
or air gun is activated and reflected waves at underground layers are
recorded at multiple geophones that are placed over an area of in-
terest. This measurement process can be modeled by a single-input-
multiple-output system where the source signal is convolved with the
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impulse responses of multiple reflectivity paths. Each such reflectiv-
ity path describes the reflectivity profile of the specific ray path the
seismic wave travels from the source to the receiver. The goal is
to recover the hidden impulse response of the reflectivity profile by
deconvolving the measurements of the geophones with the seismic
source signal. However, the seismic source or wavelet is usually un-
known posing challenges to the deconvolution. Hence, blind decon-
volution algorithms are needed that recover both the source signal
and the reflectivity profile. In the past, a lot of research has been
contributed to the field of blind seismic deconvolution, see [3, 4]
and references therein. In particular, sparse multichannel blind de-
convolution (SMBD) methods have shown promising performance
results for the reflectivity estimation. The recent work of [4] uses
an iterative algorithm that alternates between wavelet and reflectiv-
ity estimation. The wavelet estimation is conducted in the frequency
domain whereas the reflectivity estimation is done in the time do-
main to exploit sparsity in the reflectivity’s impulse response.

However, all of these state-of-the-art deconvolution methods
consider a centralized operation. Our paper proposes a distributed
blind deconvolution algorithm inspired by [4]. Both wavelet and
reflectivity estimation are conducted in a distributed fashion within
the seismic network such that each sensor in the network obtains
an estimate of the impulse response of its corresponding reflec-
tivity. To this end, we propose a distributed wavelet estimation
within the seismic network using the alternating direction method
of multipliers. Based on the estimated wavelet each sensor then
solves an `1-regularized problem locally to obtain a sparse estimate
of the impulse response of its reflectivity. Performance evaluations
indicate that the proposed scheme performs similar to centralized
state-of-the-art blind deconvolution schemes.

2. SYSTEM MODEL

We consider a network of J connected sensors each equipped with a
geophone that measures a seismic trace at its corresponding position.
We describe the network topology by a graph G = {J , E} with a
set of nodes J = {1, 2, . . . , J} and a set of edges E = {(j, i)|j, i ∈
J , j 6= i}. With Nj we denote a neighborhood of the sensor j - a
set of all sensors directly connected to sensor j, including sensor j
itself. In addition, we assume that the network graph is undirected
and strongly connected [5].

It is common to model the acquisition of a seismic trace via a
convolution of a seismic source wavelet w and the impulse response
hj that models the subsurface reflection between the source and the
receiver j [1]. The impulse response hj is typically termed reflectiv-
ity. It characterizes the reflections occurring as the sound ray passes
between source and the receiver by reflecting off different subsurface
layers. Thus, it is the reflectivity that is important for quantifying the
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subsurface under consideration. Unfortunately, due to the non-ideal
form of the seismic source, the reflectivity profile of the subsurface is
blurred, which makes a reliable subsurface reconstruction difficult.
Therefore, the goal of seismic deconvolution is to remove the influ-
ence of the seismic source on the seismic traces in order to infer “a
clean” reflectivity. However, both source wavelet and reflectivity are
usually unknown such that blind approaches are required. As pro-
posed by [4] one can separate the blind deconvolution into a stage of
wavelet estimation and reflectivity estimation. We make use of the
same approach here but extend it for distributed operation. However,
for wavelet estimation and reflectivity estimation we use different
formulations of a system model which we present in the following.

2.1. System Model for Wavelet Estimation

Each sensor j acquires a noisy seismic trace dj which can be de-
scribed by a convolution between a discrete time source wavelet
w = [w(0), w(1), . . . , w(LW − 1)]T ∈ RLW and the reflectivity
hj = [hj(0), hj(1), . . . , hj(LR − 1)]T ∈ RLR :

dj(l) = w(l) ∗ hj(l) + nj(l) =

LW∑
ν=0

hj(l − ν)w(ν) + nj(l), (1)

where l = 0, . . . , LW + LR − 1. In matrix-vector notation, the
seismic trace dj ∈ RLW+LR−1 at sensor j can be formulated via

dj = Hjw + nj , j ∈ J , (2)

where nj ∈ RLW+LR−1 contains noise samples. Matrix Hj ∈
R(LW+LR−1)×LW is the convolution matrix of the reflectivity hj at
sensor j. Finally, we can stack the seismic traces of all J sensors
into a vector d = [dT

1 , . . . ,d
T
J ]T ∈ RJ(LW+LR−1) and all J reflec-

tivity matrices Hj into H = [HT
1 ,H

T
2 , . . . ,H

T
J ]T which allows to

reformulate model (2) as

d = Hw + n (3)

with n = [nT
1 , . . . ,n

T
J ] ∈ RJ(LW+LR−1). We assume white Gaus-

sian noise with covariance matrix Σ = blkdiag(σ2
1I, . . . , σ

2
JI) of

dimension J(LW + LR − 1) × J(LW + LR − 1), where blkdiag
builds a block-diagonal matrix and σ2

j is the noise variance at sen-
sor j. It should be noted that each seismic trace dj is generated by
the same source wavelet w. This fact will be later exploited to enable
a distributed estimation of the wavelet w.

2.2. System Model for Reflectivity Estimation

Inspecting (2) one observes that it can be also formulated in terms
of a convolution matrix for the wavelet w. In this case, the seismic
trace dj per sensor j is the result of

dj = Whj + nj , ∀j ∈ J . (4)

Matrix W ∈ R(LW+LR−1)×LR is the convolution matrix of the
wavelet w. In case W is available at sensor j (4) directly enables
the formulation of an optimization problem to recover the reflectivity
hj locally at each sensor j.

3. DISTRIBUTED SPARSE BLIND DECONVOLUTION

Based on the system models introduced in Section 2 we aim at es-
timating both the source wavelet w and the reflectivity vectors hj
in a distributed fashion within the network. As proposed in [4] for

the centralized case, we can separate the problem into two steps:
one step is an estimation of the wavelet w and the other one is the
estimation of the reflectivity hj . Let us first introduce the wavelet
estimation.

3.1. Wavelet Estimation

3.1.1. Initialization of Reflectivities

For the estimation of the wavelet w we rely on system model (3).
However, to solve for w we need estimates of the reflectivities
h1, . . . ,hJ contained in H . To obtain initial estimates of the reflec-
tivities Iqbal et. al. proposed the use of a peak locator per seismic
trace dj [4]. The motivation of this approach is to provide a rough
estimate of the reflectivities that enables an initial wavelet estimation
which in turn is used later to improve the reflectivity estimation. We
use the same approach here to get an initial reflectivity estimate ĥj
at each sensor j. Based on these estimates we can construct a matrix
Ĥ as an estimate of the stacked convolution matrix H in (3).

However, to obtain an appropriate initial estimate of the reflec-
tivities we need to take into account the peak position of the wavelet
w. Since the source wavelet w is a modeled as a casual FIR system,
its peak does not lie at the 0-th sample but is shifted in positive time
by lpeak samples. Therefore, when convolving w with the reflectivity
hj the peaks in the seismic trace dj are not aligned to the original
peak positions but shifted by lpeak samples as well. Hence, if we ap-
ply a peak locator on the seismic trace dj the original peaks in hj
will be shifted by lpeak in the initial reflectivity estimate ĥj . This
offset will eventually lead to a corrupted wavelet estimate. Thus to
enable an appropriate wavelet estimation, after applying the peak lo-
cator on the trace dj the located peaks need to be shifted back in time
by lpeak samples. In reality this information needs to be estimated ap-
propriately. For validation purposes, we assume that we know lpeak

perfectly at this stage. The initial estimate of each reflectivity is then
modified as follows:

ĥj ← [ĥj(lpeak), ĥj(1 + lpeak), . . . , ĥj(LR + lpeak)], (5)

where the last lpeak entries in ĥj are set to 0.

3.1.2. Centralized Operation

Using the estimate Ĥ of the convolution matrix of all reflectivities,
we can formulate a regularized least squares (LS) problem for the
wavelet w:

wLS = argmin
w
||d− Ĥw||2Σ−1 + λ`2||w||22 (6)

We employ Σ−1 in the vector norm in (6) to achieve a noise-
dependent regularization. The variable λ`2 is a Tikhonov regu-
larization parameter that is used to enhance numerical stability of
the solution and to mitigate the possibility of an ill-posed problem.
Solution to (6) is readily given in closed form as

wLS =

(
J∑
j=1

Ĥ
T

j Ĥj + σ2
jλ`2I

)−1 J∑
j=1

Ĥ
T

j dj . (7)

Note that solution wLS requires access to all estimated reflectivities
{ĥj}Jj=1 and seismic traces {dj}Jj=1. As such (7) describes a cen-
tralized solution. For our considerations it will serve as the bench-
mark scheme for the distributed wavelet estimation.



3.1.3. Distributed Operation

To estimate w in a distributed fashion, we begin with (6) but intro-
duce individual wavelet estimates wj ∈ RLW per sensor j. This
allows us to reformulate (6) as the following LS estimation problem
that is more suitable for distributed optimization:

min
{wj}Jj=1

{
J∑
j=1

1

2σ2
j

||dj − Ĥjwj ||22 +
λ`2
2J
||wj ||22

}
(8a)

s.t. wj = wi, ∀i ∈ Nj . (8b)

The factor 1/σ2
j originates from the noise-dependent regularization

via Σ−1. Compared to (6) we separated the squared norms into
a sum over the sensor-specific squared norms. In addition, we in-
cluded a consensus constraint (8b) to enforce that each sensor con-
verges to the same wavelet estimate. The constraint ensures that the
estimate of the sensor j and sensors in its neighborhood Nj coin-
cide. Since the network is assumed to be strongly connected, this
ensures a network-wide consensus on the wavelet estimate.

To solve the optimization problem (8) we rely on the alternating
direction method of multipliers (ADMM) framework [6]. To this
end, we introduce an additional variable z ∈ RLW that is used in the
regularization term and reformulate problem (8) such that it matches
the ADMM framework:

min
{wj ,z}Jj=1

{
J∑
j=1

1

2σ2
j

||dj − Ĥjwj ||22 +
λ`2
2
||z||22

}
(9a)

s.t. wj = z, ∀j ∈ J . (9b)

Constraint (9b) guarantees that the consensus constraint (8b) is
adopted via the additional variable z. Solving (9) via ADMM leads
to the following set of update equations:

w
[k+1]
j =

(
Ĥ

T

j Ĥj + σ2
jρWI

)−1 (
Ĥ

T

j dj + σ2
jρW(z[k] − u

[k]
j )
)

(10a)

z[k+1] =
JρW

λ`2 + JρW
(w̄[k+1] + ū[k]) (10b)

u
[k+1]
j = u

[k]
j + w

[k+1]
j − z[k+1] (10c)

where the subscript [k] denotes the ADMM iteration index, ρW > 0
is the regularization parameter for ADMM augmented Lagrangian,
and w̄[k] = 1

J

∑J
j=1 w

[k]
j and ū[k] = 1

J

∑J
j=1 u

[k]
j are the aver-

aged wavelet estimate and the averaged Lagrange multiplier in the
network, respectively. The averaged quantities can be obtained by
each node via average consensus sharing [7]. However, to obtain
the exact same averaged quantities at each node via average consen-
sus multiple iterations are again required. To avoid another iterative
stage we use only one consensus averaging step at each sensor j per
iteration k to obtain estimates of w̄[k] and ū[k]. Thus, each sensor j
computes its own averaged w̄

[k]
j and ū

[k]
j via

w̄
[k]
j =

1

J

∑
i∈Nj

w
[k]
i , ū

[k]
j =

1

J

∑
i∈Nj

u
[k]
i . (11)

In our experiments we have found that one consensus step is suffi-
cient to obtain an appropriate wavelet estimate. According to (11)
only the neighboring wavelet estimates w

[k]
i need to be exchanged

among the sensors per iteration k.
To further improve the wavelet estimate, we apply a low pass

filter on the estimated wavelet w[k]
j at each sensor j. Usually, the

seismic source wavelet has a band-limited spectrum such that we
can filter out high-frequency noise. For our considerations here, we
apply a low pass filter with cut-off frequency fLP = 130 Hz.

3.2. Local Estimation of Reflectivity under Sparsity Constraints

In the second stage of the algorithm, we aim at estimating the reflec-
tivity vectors based on the obtained wavelet estimate at each sensor.
Let us now assume that an estimate of the wavelet is obtained as de-
scribed in Section 3.1. We will denote this estimate by wj . Based
on the wavelet estimate wj at each sensor j we can then formulate
an optimization problem to recover the reflectivity hj . To this end,
we refer to system model (4) since here the reflectivity vector hj ex-
plicitly occurs in the formulation and the convolution matrix of the
wavelet can be constructed based on the node’s wavelet estimate wj .
Based on wj each sensor j constructs an individual convolution ma-
trix Ŵ j as an estimate of the original convolution matrix W from
(4). The reflectivity vector hj is known to have a sparse structure,
i.e., the majority of its entries are zero and only a few elements have
a non-zero amplitude [8]. This a priori knowledge can be exploited
by including a corresponding sparsity constraint in form of the `1-
norm into the optimization problem. For each sensor j, we therefore
formulate a least absolute shrinkage and selection operator (LASSO)
problem as follows:

min
h̃j

||dj − Ŵ jh̃j ||22 + λ`1||h̃j ||1, ∀j ∈ J (12)

with ||h̃j ||1 =
∑LR−1
l=0 |h̃j,l| and λ`1 is a regularization parameter

that can be tuned to enhance sparsity of the solution with the price
of compromising an optimal fit to the seismic data. To solve prob-
lem (12) locally at each sensor j we again employ the ADMM. Thus,
for a formulation in the framework of the ADMM we introduce an
additional variable rj for the `1-regularization term and add a con-
straint that guarantees equivalence to the original problem (12):

min
{h̃j ,rj}

||dj − Ŵ jh̃j ||22 + λ`1||rj ||1 (13a)

s.t. h̃j = rj , ∀j ∈ J (13b)

We solve (13) using [6, Section 6.3] and obtain the following update
equations for each sensor j:

h̃
[k+1]

j =
(
Ŵ

T

j Ŵ j + ρRI
)−1 (

Ŵ
T

j dj + ρR(r
[k]
j − v

[k]
j )
)

(14a)

r
[k+1]
j = Sλ`1/ρR

(
h̃

[k+1]

j + v
[k]
j

)
(14b)

v
[k+1]
j = v

[k]
j + h̃

[k+1]

j − r
[k+1]
j (14c)

where the variable ρR > 0 is the penalty parameter of the ADMM.
For ease of notation we use the same iteration index k here as in the
stage of wavelet estimation although it should be noted that these in-
dices are not equivalent to each other. The function Sλ`2/ρR(·) is a
soft-thresholding operator defined as Sα(x) = sign(x) max(|x| −
α, 0) and it is applied element-wise to a vector argument. In each it-
eration k the sparse estimate of the reflectivity vector hj is given by

r
[k]
j after applying the soft-thresholding operator on h̃

[k]

j + v
[k−1]
j .

By using (14) each sensor j is able to locally obtain a sparse estimate
r
[k]
j of its reflectivity vector hj . Another widely used algorithm to

solve LASSO problems is the fast iterative shrinkage-thresholding
algorithm (FISTA) [9]. However, in our experiments we noted that
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Fig. 1: Considered network topology with J = 10 sensors.

FISTA requires more iterations than the ADMM to achieve the same
estimation performance. For this reason, we selected the ADMM for
the estimation of the reflectivities, but note that other algorithms can
be also used for this purpose. Algorithm 1 summarizes the whole
procedure of the proposed distributed sparse blind deconvolution
(D-SBD). Here, we denote the outer iterations by (k) and the in-
ner iterations by [m], [n], respectively. Note that in a further stage
the obtained reflectivity estimates need to be processed distributedly
among the sensors in order to obtain a subsurface image at each sen-
sor. This stage is left for future work.

Algorithm 1 Distributed Sparse Blind Deconvolution (D-SBD)

Initialize reflectivity ĥ
(0)

j via peak locator on dj

Shift reflectivity ĥ
(0)

j by peak position lpeak in wavelet
Initialize r

(0)
j = 0

for k = 1 to K do
Update convolution matrix Ĥj ,∀j ∈ J , using ĥ

(k−1)

j

for m = 0 to M − 1 do
w

[m+1]
j ← (10a)

w̄[m+1], ū[m] ← one average consensus step (11)
z
[m]
j ,u

[m]
j ← (10b), (10c)

end for
w

(k)
j ← w

[M ]
j

Apply low pass filter on w
(k)
j , ∀j ∈ J

Update convolution matrix Ŵ j , ∀j ∈ J , using w
(k)
j

Initialize: r[0]
j ← r

(k−1)
j

for n = 0 to N − 1 do
h̃

[n+1]

j , r
[n+1]
j ,v

[n+1]
j ← (14a), (14b), (14c)

end for
r
(k)
j ← r

[N ]
j

ĥ
(k)

j ← r
[N ]
j

end for
return Estimated wavelet w(K)

j and reflectivity r
(K)
j

4. NUMERICAL RESULTS

To evaluate the performance of our proposed scheme we consider
the estimation of synthetically generated reflectivities by a sensor
network. To this end, we assume a network of J = 10 fixed sensors
and generate 10 reflectivities, one for each sensor, with a sampling

frequency of 500 Hz. The generated reflectivities can be seen in Fig-
ure 3b. The network graph considered in these evaluations is shown
in Figure 1. To generate seismic traces at each sensor, we employ
a Ricker wavelet with a center frequency of 40 Hz and a phase shift
of 30◦. The duration of the wavelet is TW = 0.1 s and it is shifted
by 16 samples into positive time. The wavelet is convolved with
each of the reflectivities and white Gaussian noise of variance σ2

j is
added onto the resulting signal for sensor j. We define the signal-to-
noise ratio (SNR) via SNR = 10 log10

{
||sj ||22/

(
Lsσ

2
j

)}
, where

sj ∈ RLs is the clean seismic trace for sensor j without noise and
σ2
j is the corresponding noise power. For each trace we assume the

same SNR.
As reference schemes we use the SMBD-SPG proposed in [4]

and the centralized version of the D-SBD that uses a centralized LS
wavelet estimation following (7). We denote the centralized case
of the D-SBD as centralized sparse blind deconvolution (C-SBD),
here. For all algorithms we use K = 5 outer iterations. Moreover,
the D-SBD uses M = 10 inner iterations for the distributed wavelet
estimation andN = 10 inner iterations for the reflectivity estimation
based on the ADMM LASSO. For the ADMM the penalty parame-
ters are set to ρW = 15, ρR = 1, the LS regularization parameter is
set to λ`2 = 0.1 and the LASSO parameter to λ`2 = 0.6. For a fair
comparison C-SBD uses the same parameter setup as the D-SBD.
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Fig. 2: PCC performance for (a) reflectivity and (b) wavelet estima-
tion.

4.1. PCC Performance

As first performance metric we employ the Pearson correlation co-
efficient (PCC) that gives a similarity measure between two vectors.
For vectors x, x̂ of the same dimension it is defined as PCC =
xTx̂/ (||x||2||x̂||2). A PCC value close to one indicates a high simi-
larity between the two vectors. We use the PCC to measure how well
our reflectivity and wavelet estimates match their original quantities.
Figure 2a depicts the PCC over the SNR for the considered algo-
rithms with respect to the reflectivity estimation where the PCC val-
ues are averaged over all sensors and over 20 independent trials. We
observe that D-SBD performs close to its central benchmark, the C-
SBD, and outperforms the SMBD-SPG for 5 dB ≤ SNR ≤ 15 dB.
At SNR = 20 dB, D-SBD loses in performance and is outperformed
by SMBD-SPG. In Figure 2b we compare the PCCs for the wavelet
estimate where again the PCC values are averaged over all sensors.
For SNR > 5 dB the C-SBD performs best among the schemes.
D-SBD outperforms SMBD-SPG in the mid-SNR range but loses in
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Fig. 3: Example of seismic traces with deconvolved results at SNR=10dB.
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Fig. 4: Estimated wavelet of D-SBD at SNR = 10 dB after 5 itera-
tions.

performance at high SNR. For a low SNR of 0 dB the SMBD-SPG
obtains the best wavelet estimate. Figure 4 illustrates an exemplary
wavelet estimate at one sensor after 5 iterations of the D-SBD at
SNR = 10 dB. One can observe that the peak of the wavelet as well
as the sidelobes are recovered. An example of the estimated reflec-
tivities next to the true reflectivity at SNR = 10 dB can be seen in
Figure 3. Particularly in the marked areas of the plots one can see
that D-SBD and C-SBD obtain a spikier reflectivity estimate than
SMBD-SPG.

4.2. EMD Performance

Using the PCC as a measure to compare sparse vectors as the re-
flectivities might not be the most suitable metric since it employs
an inner product of the vectors. Hence, if two spikes in the vectors
appear only a margin apart from each other the corresponding PCC
results in a value of zero. Therefore, the PCC does not take into ac-
count the distance between two spikes in the vectors. To have a met-
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Fig. 5: EMD of estimated reflectivities over SNR.

ric that is aware of the distance between two spikes we employ the
Earth Mover’s Distance (EMD). The EMD has been proposed as an-
other possible metric for the recovery performance of sparse vectors
[10]. Basically, the EMD provides a measure of how much ”work” is
at least required to transfer one probability distribution into another
one. Here, the EMD can be used to quantify the amount of work
needed to transfer one sparse vector into another one and therefore
it can be used as a similarity measure for sparse vectors. For our
evaluations we use the PyEMD package available for Python [11].
More specifically, we use the function emd() which takes three ar-
guments: two sparse vectors under consideration and a distance ma-
trix that is needed to quantify the amount of work needed to move
one spike from one entry to another one. The two vectors are the true
reflectivity hj and our estimated reflectivity rj at each sensor j. For
the distance matrix we use the absolute time distance between two
elements of the vectors under consideration. Furthermore, we nor-
malize each reflectivity vector to the `2-norm of the corresponding
true reflectivity vector hj .



Figure 5 shows the EMD over the SNR averaged over 20 tri-
als for each SNR value. A lower EMD indicates a higher similar-
ity between true and estimated reflectivities. D-SBD performs very
similar to its benchmark C-SBD at SNR = 0 dB. In the low SNR
region C-SBD and D-SBD tend to outperform SMBD-SPG. How-
ever, for higher SNRs both C-SBD and D-SBD performance flattens
out while SMBD-SPG achieves a lower EMD. This behavior is due
to a fixed LASSO parameter λ`1 used in both D-SBD and C-SBD
over the whole SNR range. SMBD-SPG uses a basis pursuit de-
noising solver to obtain sparse estimates. Here, the corresponding
threshold for the solver is set depending on the true noise power σ2

j .
Hence, SMBD-SPG adapts its sparse recovery to the current SNR
and therefore achieves lower EMD values for higher SNRs.

4.3. Performance over LASSO Parameter

As a last result we examine the estimation performance in depen-
dence of the LASSO parameter λ`1 for the D-SBD. Figure 6a and
6b show the PCC and the EMD over different values of λ`1, re-
spectively. The performance is averaged over 20 independent trials.
At low SNR λ`1 = 1 leads to the highest PCC whereas for higher
SNRs a lower value of λ`1 = 6 dB is appropriate. Surprisingly,
the PCC at SNR = 20 dB does not outperform the performance at
SNR = 10 dB over the whole range of λ`1. Hence, it seems that
the choice of the ADMM penalty parameter ρW for the wavelet es-
timation requires an additional adaptation to the SNR. In general,
with an increasing SNR the parameter λ`1 should be reduced. This
can be also observed for the EMD in Figure 6b. Here, the curves
again suggest that for high SNRs low values of λ`1 are appropriate
and vice versa. However, the values leading to the corresponding
minimal EMD are quite different compared to the PCC result. For
instance, at SNR = 20 dB a value of λ`1 = 0.1 leads to the small-
est EMD which does not coincide with the results for the PCC. Since
PCC and EMD differ in their computation the corresponding values
for λ`1 do not coincide either. Both results with regard to PCC and
EMD show that the performance of the reflectivity estimation highly
depends on the LASSO parameter λ`1. Therefore, setting λ`1 ap-
propriately with respect to the SNR is important for a satisfactory
reflectivity recovery.
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Fig. 6: Performance of D-SBD over λ`1 for (a) PCC and (b) EMD.

5. CONCLUSION AND FUTURE WORK

We proposed a distributed algorithm for the blind deconvolution of
seismic signals under sparsity constraints. To this end, we employed
a distributed wavelet estimation and a local reflectivity estimation.
The wavelet estimation is realized by a LS consensus-based ADMM
approach. The reflectivity estimation is done locally at each sensor
using an ADMM-based LASSO scheme. Performance evaluations
show that our proposed scheme performs close to its central bench-
mark scheme and outperforms state-of-the-art sparse blind deconvo-
lution in terms of the PCC in mid SNR regions. We also investigated
the EMD performance and found that for higher SNRs the perfor-
mance of our proposed scheme flattens out. This behavior is due to
a fixed LASSO and ADMM penalty parameter. For future work, an
adaptive parameter mechanism shall be realized in the framework of
Bayesian learning to improve the performance and robustness of the
algorithm. Furthermore, the proposed scheme will be investigated
for the deconvolution of real seismic data.
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