MASTER’S THESIS

Prediction of High Dimensional
Complex Systems by Means of
Generalized Local States

SEBASTIAN BAUR

LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN
DEPARTMENT: PHYSICS
SUPERVISOR: DR. CHRISTOPH RATH

SEPTEMBER 15, 2020

MASTER’S THESIS

Vorhersage hochdimensionaler
komplexer Systeme mittels
generalisierter lokaler Zustande

SEBASTIAN BAUR

LubDwiIG-MAXIMILIANS-UNIVERSITAT MUNCHEN
FAKULTAT: PHYSIK
BETREUER: DR. CHRISTOPH RATH

15. SEPTEMBER 2020

Contents

1 Introduction

Reservoir Computing

2.1 Reservoir Computing Introduction

2.2 Implementation Details

3.1 Generalization

3.2 Similarity Measures

3.2.1

General Local States

Cross Correlation

3.2.2 Mutual Information

3.3 Creating Neighborhoods

4.2 Kuramoto-Sivashinsky

4.3 Lyapunov Exponents

5 Experiments

5.1 System Characterization

5.2 Parameters

3.3.1 Single Core Neighborhoods
3.3.2 Multi Core Neighborhoods

4 Systems and Simulations
4.1 Lorenz-96 e e

5.3 Locally Interacting Systems

5.3.1

Neighborhoods

TN

O© O 9

10
11
11
11

13
13
14
16

5.3.2 Short Term Predictions 24

5.3.3 Climate Reproduction 25

5.4 Combined System Prediction 32
5.4.1 Short Term Predictions 33

5.4.2 Climate Reproduction 36

5.5 GLS Neighborhoods in higher Dimensions 38

5.6 Clustering e e 40
5.6.1 Locally Interacting Systems 40

5.6.2 Combined Systems Clustering 45

5.6.3 Higher Dimensional clustered Neighborhoods 45

6 Conclusion and Outlook 49
References 51
Glossary 55
A Appendix 57
A.1 Kuramoto-Sivashinsky Simulation Details 57
A.2 Realization vs Starting Position Variance 60
A.3 Anaconda Environment oL Lo 62

II

1. Introduction

Understanding the world around us has been a human desire for as long as humans inhabited
this planet. Truly understanding every minutia of the cosmos is impossible due to its
unfathomable complexity. Information can only be gained by separating the important
from the irrelevant. Well known techniques like principal component analysis [1,2] and

autoencoders [3] have been devised for just such a purpose.

With the same goal in mind, Pathak et al. [4] introduced local states (LS). A new approach to
reduce the complexity of datasets in the context of predictions. In systems with known local
interactions, this method can be used to reduce the size of a potentially very large dataset to a
number of significantly smaller, much easier predictable local neighborhoods. Unfortunately,
this approach is limited to systems where such a local interaction is not only present but also

known a priori, severely limiting its potential applications.

This thesis introduces the method of generalized local states (GLS), lifting the restriction to
locally interacting systems by abstracting spatial distances to similarity between time series.
This similarity is derived from information driven measures and hence allows the definition
of generalized local neighborhoods in systems where no spatial interactions or even spatial

distance exists.

We will demonstrate this approach on the basis of reservoir computing (RC) [5], a machine
learning (ML) routine with promising future, outperforming many state of the art ML
methods [6,7]. We combine this with the use of cross-correlation (CC) and mutual

information (MI) as exemplary similarity measures (SMs).

As illustrative datasets we use the Lorenz-96 (L96) [8] and Kuramoto-Sivashinsky (KS) [9]
systems, both well understood, locally interacting, chaotic systems. This choice allows us to

compare our method of GLS to Pathak’s spatial LS approach.

We want to emphasize that neither RC, nor the two illustrative systems, nor the chosen
information measures are an essential part of our presented method. In principle, GLS can be
used with various ML methods and similarity measures. Depending on the given dataset an

appropriate choice has to be made.

In the following 2nd chapter, a summary of RC and its main differences to other ML

approaches are given. Chapter 3 introduces local states and its extension to GLS. Furthermore
we will explain CC and MI, the information measures used to generate the SMs, as well
as the process of clustering, which allows greater scalability of the GLS. Chapter 4 covers
the .96 and KS systems, the algorithms used to simulate them and the maximal Lyapunov
exponent (MLE), a quantity characterizing chaotic systems. In chapter 5 we present a number
of experiments comparing LS and GLS predictions, as well as quantifying GLS scalability to

high dimensional systems before leading to a final discussion and outlook in chapter 6.

2. Reservoir Computing

The last decade has been a renaissance for artificial intelligence and ML. Many tasks previously
thought to be almost impossible for traditional computing systems can now be solved in a
very short time frame. Image classification [10, 11], time series prediction [12, 13], as well as
beating the best humans in demanding games like Go [14] are all tasks that have largely been

mastered by artificial neural networks (ANNs).

2.1 Reservoir Computing Introduction

Throughout the years, many different versions of ANNs have been devised with feed forward
networks (FFNs) used in deep learning likely being the most prominent one. [15] While
showing remarkable successes for static tasks?!, they are overshadowed by recurrent neural

networks (RNNs) and their derivatives in dynamic tasks.

As with most ML systems, the core of a RNN is a network mapping an input into a higher-
dimensional space which is then used to transform the data before a readout for pattern
analysis or time series prediction takes place. A sketch of basic FFN and RC anatomy is

depicted in 2.1.
Crucially, RNN networks exhibit topological loops which FFNs do not. RC developed as an

extension of RNNs and liquid state machines shares this important feature. [5, 16] Compared
to FFNs, which are often used as classifiers, the RNN loops make RC especially qualified for

temporal/sequential data, as they enable the network to “remember” previous inputs.

RC distinguishes itself from the other RNN variants by keeping its internal network fixed, i.e.
only the readout layer is trained. This significantly decreases the required training time, since
the network can now be trained with classical methods such as linear regression. Moreover,
this makes RC very amenable to physical implementations only possible due to the static
nature of the reservoir. [17] Additionally, the training of the output is conventionally done
with simple methods such as linear regression. Thus, irrespective of its performance, a major

advantage of RC is its fast and cheap training compared to other ANNS.

there defined as tasks without temporal or sequential information

e
—0 oO— Py —0
—O0 oO— —0
—0 O0— > —o0
—O0 o— ! —O0
—o0 o— —0
Input FFN Output Input Reservoir Output

Figure 2.1: ML network schematics. (a) A basic FFN setup with input on the left and readout
on the right. Crucially, the network in the center consists only of right facing connections,
making the interaction of input data from different computation steps impossible. (b) A basic
RC setup with the same input and output couplers as the FFN. The reservoir network in the
center is fundamentally different from the FFN network as it exhibits topological loops. An
example of such a loop is marked in red.

2.2 Implementation Details

The core of RC is a network, in the following called the reservoir A. While different network
topologies have been investigated in research [18, 19], sparse random D, X D, networks with
average node degree x and Erd6s—Rényi connectivity deliver consistently great results and

thus are also chosen here.

After network generation, all its connection strengths are scaled to have a predetermined
fixed spectral radius p. Not only is the spectral radius an important hyperparameter to be
optimized, it is advisable to choose p < 1 for the reservoir to gain the echo state property

which is crucial during the training process 2.

The Dj, dimensional input x (¢) interacts with the reservoir state r(z) through an input coupler
which in our case is a sparse D, X Dj, matrix Wj,. Following Lu et al. [20], Wj, is created
such that one element in each row is chosen uniformly between [—w, w] where w is the input

coupler scaling parameter. All other elements of Wj, are zero.

The input data then connects with the reservoir state r(¢) of the previous time step via the
hyperbolic tangent activation function tanh(-) to advance the reservoir state by one step in
time

r(t + Ar) = tanh (Ar(t) + Win x(1)) , 2.1

where tanh(x) is the vector [tanh(x}), tanh(x»),...]”. Training r(¢) is recorded and used

during the regression procedure as detailed below. For the activation function a wide variety

2p < 1 is not a necessary condition for the echo state property but a sufficient one [5]

of choices are possible. The effect of different activation functions on the prediction quality

is subject of current research.

In the same way an input coupler is used to get information into the reservoir, an output
coupler W is used to get information out of it. In the case W, is a matrix, the training is

done via a simple linear regression procedure
Wour = arg min [[Wou (1) = yr (Ol + £ | Woudll , (2.2)

where yr(#) is the Do, dimensional target output, ||-|| is the vector L2-norm and f is the
L2 regularization (ridge regression) parameter which prevents the system from overfitting.

Furthermore 7 is a nonlinear transformation of the reservoir state r.

The Wy, minimizing equation 2.2 is solved by a system of linear equations given by
(£ + B1) Wou =y, 2.3)

which, compared to many other ML training procedures, is quickly computable by modern

hardware.

Note that this nonlinear transformation of the reservoir state r to 7 has proven crucial to
achieve the high rate of successful long and short term predictions demonstrated in chapter 5.
Here we choose 7 = [r,r*]" = [r1, 72, ..., D, rlz, r%, ...r%)r

Doyt X 2D, matrix. As also observed in Chattopadhyay et al. [7], a nonlinear transformed #

17, which results in Wy being a

is especially important for the L96 system we will work with later on.

Its flexibility allows RC in principle to be used for a variety of tasks, including classification.
This is achieved by changing the target output y1(#) to an appropriate quantity during the
regression procedure. In this thesis we will consider the target to be a prediction of the full or

partial input time series, which is the typical use case for RC.

In practice the reservoir also needs to be synchronized with the training data set before
the training can begin. Without this step, the arbitrary initial state of the reservoir would
influence the training and regression results. Synchronization avoids this by exploiting the
aforementioned echo state property of the reservoir, which lets the system ‘“forget" past
input [5]. Therefore, each training period is preceded by synchronization steps where the
reservoir state is updated sequentially as given by equation 2.1 without recording the reservoir

state.

Once trained, the output y(¢) can be calculated from the reservoir state r(t) as
y(#) = WouF (1) . (2.4)

When using RC for prediction, it can be run autonomously by using the prediction of the

previous time step y(¢) as the input xpreq () to calculate the next predicted time step y (¢ + Ar)
with. In this case one finds

xpred([) =y(), (2.5)
r(t + Ar) = tanh (Ar (1) + Win Xprea (7)) , (2.6)
y(t + At) = Wou 7 (1 + At) . 2.7)

3. General Local States

Reducing the dimension of a dataset can be vital for many real world applications. By
disposing of superfluous information, data processing operations not only become faster, but
many methods rely on a manageable data size due to their scaling behavior. This also applies
to RC as the reservoir size needed to accurately characterize and predict high dimensional
input quickly becomes unfeasible. (See e.g. [4])

As such, measures and methods are needed to reduce the number of dimensions of the input
data, while retaining its essential characteristics. In this chapter we will introduce the method
of GLS which achieves just that.

3.1 Generalization

GLS is based on the local state (LS) approach published by Pathak et al. in 2018 [4]. While
non-local implementations of ANN algorithms use just one network to process all input data
(Figure 3.1a), LS and GLS partitions the input data into multiple subsets of smaller dimension.

These subsets are in the following called neighborhoods.

Each neighborhood itself consists of a number of core dimensions and neighbor dimensions
and is assigned its own ANN. Each ANN in question then uses only the dimensions of the
input making up its neighborhood to predict its core dimensions as accurately as possible. In
Figure 3.1b-c) sketches of such local neighborhoods are shown

In the context of RC this means that the input time series for the reservoir assigned to the i-th
neighborhood is not the full D;, dimensional input time series x anymore, but instead a slice
unique to this neighborhood x’ of dimension Dfn < Dj,. Similarly, the trained output of the
i-th neighborhood y’ is given by just its core dimensions and hence is an even smaller subset

of the neighborhood of dimension D! < Dfn.

While the training proceeds as described in chapter 2.2, the prediction needs one further
adjustment. Even though in principle the choice of neighborhoods is completely arbitrary
when predicting a time series, each dimension of the original input must be in one and

only one neighborhood as a core dimension. This is because, as given by equations 2.5-2.7

,(a) Yi—3 Yi—2 Yi—1 Yi Yi+1 Yi+2 Yi4+3 e

R

/]\\

cer L4-3 Ti—2 Ti-1 €Ly LTit1 T2 Ti43 ee

(b) Yi

Figure 3.1: Schematic depicting different neighborhoods. Yellow circles mark the core
dimensions, green the neighbors and purple all other dimensions of the full input. (a) The
neighborhood of simple, non-local RC. All dimensions of the input vector x(¢) are core
dimensions. No neighbors or other reservoirs exist. (b) LS RC. The highlighted reservoir’s
neighborhood has one core dimension and four locally adjacent neighbors. Many more
reservoirs exist, each with their own neighborhood. (¢) GLS RC. As in (b), the Neighborhood
has one core dimension and four neighbors, with the crucial difference being that the neighbors
do not have to be adjacent to the core.

i

between each prediction step, the neighborhoods need a new input which, as D,

< D{ can
only come from the other neighborhoods’ prediction. Hence between each prediction step, a

new input vector X preq is formed by the combined prediction of all neighborhoods.

While having the advantage that the training of the entire system is easily parallelizable as the
training of each neighborhood is completely independent of the others, its main advantage
comes from the fact that it reduces the effective input dimension for each reservoir to the size

of its neighborhood.

However, this procedure depends on an appropriate choice of neighborhoods, such that the
information necessary to predict their core dimensions is present in the neighbors. Pathak
et al. originally came up with their LS approach in the context of the KS system (see
section 4.2), a purely locally interacting system. As such, their neighborhoods were chosen to

have only spatially adjacent cores surrounded by contiguous buffer regions of neighbors (see
Figure 3.1b).

For systems where such a local interaction is not present, this a scheme can not be used.
Nonetheless, this idea of locality in the sense of importance to a prediction is generalizable as
the choice of neighborhoods is practically arbitrary. For this, one needs to generalize the idea
of locality to something which we will call similarity as well as measures to calculate it from

the underlying data set.

3.2 Similarity Measures

To generate useful neighborhoods from the initial time series, we need a SM between all of
its dimensions, optimally quantifying the relevance each dimension has to the prediction of

each other one. For this we use two information driven measures, the CC and the MI.
3.2.1 Cross Correlation

A staple in time series analysis is the CC coeflicient

Yoy brie — %) (00 — X))
VL (e = 5) Y2y by - 55)°

where x; is the i-th dimension of the time series x and X; its mean.

Cx,.x; = ; (3.1

In this normalized form the CC is bounded between —1 and 1. To transform the CC into a

SM we take its absolute value

SM(X;, X)) = |Cx,.x,| € [0,1], (3.2)

and define a value closer to 1 as more similar. This can be justified by the intuitive reasoning
that a time series doing the “opposite” of another one, contains much more relevant information

for the latter’s prediction, than a completely uncorrelated one.

While straightforward to compute, the CC has the major problem that it only captures linear
relationships. As chaotic time series are by their very nature nonlinear, we use one more

measure that captures these nonlinear relationships, the MI.

3.2.2 Mutual Information

MI, originally defined by Shannon in 1948 [21], has a variety of properties making it ideal as
a SM. In fact, “given two time series X and Y, their MI, T(X ,Y) = T(Y , X) is the average
number of bits of X that can be predicted by measuring Y and vice versa" [22]. Furthermore
Ml is, in contrast to CC, sensitive to linear and nonlinear dependencies and becomes zero if

and only if the two time series are completely independent.

In the language of probability densities the MI between two random variables X and Y is

defined as
P xnxy)
X,, X x,, x] log dx;dx; , 3.3)
p(x)p(x))

where p (x;,x;) is their joint probability density

While MI has many advantages over the CC, applying this definition to real, finite and often
inaccurate data, can prove much trickier. Many estimators have been devised over the years,
such as kernel density [23] and nearest neighbor methods [24] but, as we are working with

long (1 x 10° time steps), well behaved time series we will implement the widely used binning
method [21,24,25]

For this we alternatively express the MI as
1 (Xl‘,Xj) = H(Xl) +H(Xj) - H(Xi,Xj) , (34)

where H (X;) and H (X;) are the Shannon entropies of X; and X respectively while H (X;, X;)
is their joint Shannon entropy. Notably this definition is only correct for discretely distributed
random variables which, at least in principle, many systems are not. Both for real world data,
due to a finite measurement accuracy, and simulated data, due to finite floating point accuracy,

this distinction does not matter. The entropies are defined as
H (X)) = - Z p (x;)log (p (x))) , (3.5)

H (Xi, X;) ZZP xi,x;) log (p (xi,;7)) , (3.6)

10

with the expressions on the right hand side summed over all possible states of the random

variables x; .

While in principle this would be enough to calculate the MI for any discrete data set, in
practice, the number of different values taken by random variables greatly eclipses the length
of most time series. As such, we artificially restrict the number of possible values used in the
entropy calculation by not summing over all possible states, but instead only a number of bins
into which the individual values are combined. Akin to [25] we find empirically that for a
time series of length 7" a choice of { T/ 4J bins of equal size works well for a wide range of
lengths. The typical time series in this thesis has a length of 7 = 10° steps resulting in a total
of 158 bins.

Lastly, we normalize the MI as described by Strehl et al. [26] leading to our MI SM

I (X,-,Xj)

SM(X;, X;) = e[0,1]. (3.7)

H (X)) H (X))

3.3 Creating Neighborhoods

Once a SM has been chosen and calculated for all dimensions of the full input data, one
needs to use it to create the neighborhoods discussed in section 3.1. As the ANN output in
each neighborhood is only given by its core dimensions, predicting these core dimension as
accurately as possible is most important. While other choices are possible, this leads to a

simple and intuitive way of defining neighborhoods when there is only one core dimension.

3.3.1 Single Core Neighborhoods

In the LS case of a single core neighborhood, a spatial neighborhood (SN), the core’s
neighbors are simply the dimensions spatially closest to that core. In the GLS case with
one core, the exact analog is possible, where the one core’s neighbors are the dimensions
most similar to it as defined be the SM. We call the corresponding neighborhoods CC or
MI neighborhoods respectively, depending on the similarity measure used. All single core

neighborhoods discussed during this thesis were created this way.

3.3.2 Multi Core Neighborhoods

Generating SNs with more than one core is done as in [4] by dividing the input dimensions
D into g non-overlapping groups of equal size. To this group of core dimensions are then a

number of neighbors added in ascending order of spatial distance to the average core in group

11

g. Once the desired number of neighbors is added, this group is the neighborhood.

For GLS neighborhoods with more than one core dimension, the generalization process is a

little less obvious. As cores do not necessarily have to be adjacent dimensions.

Due to possibly arbitrary distance measures defined by the SM, we need to use a clustering
method that can work with such arbitrary distances. Many standard clustering methods which
rely on a distance metric defined between all possible points of a coordinate space, like

K-Means [27], can therefore not be used here.

A popular algorithm that can work with such constraints is called agglomerative cluster-
ing [28]. In the language of dimensions and neighbors, its algorithmic implementation can

be summarized as follows:

1. Initially assign each input dimension to its own neighborhood Ny, N», ..., Np
2. Merge neighborhoods until the desired number of neighborhoods is reached

(a) Find the closest pair of neighborhoods (N;, N;) according to the linkage distance
d(Nia N]) .

(b) Merge the two neighborhoods.

While many different choices for the linkage distance are possible, we use average linkage

during this thesis as we heuristically found it to give the best results. It is defined as

1
d(NiNj) = ——— SM(xi,x;) . (3.8)
"IN - [N xieN%:;eNj !

12

4. Systems and Simulations

For modeling high dimensional, spatiotemporal, chaotic systems, the Lorenz-96 and Ku-
ramoto—Sivashinsky systems have become widely used in the RC community [4, 6,29, 30].
As such, they are the perfect example systems allowing us to compare and quantify the LS

and GLS approaches in well understood systems.

4.1 Lorenz-96

Our first artificial system is the Lorenz-96 system, originally developed and often used to

study climate and weather predictability [8,31]. It is defined as

dx]'
— = (xj41—xj2)xjo1 —x;+F, 4.1)

where x (¢) is the system’s D-dimensional state vector and F the forcing parameter.

During this thesis we will be looking exclusively at a forcing parameter of |F| = F = 5. For
this parameter choice, the L96 system exhibits both periodic and chaotic behavior, depending
on its system size D as demonstrated by Marwan et al. [32]. We simulate the .96 system
using the fourth order Runge-Kutta Method [33] with a time step size of Ar = 0.05. Two

examples of the L96 behavior are shown in Figure 4.1.

13

= 19

100
Time Step Time Step

Figure 4.1: Space—time plots of the L96 system. (a) D = 38, F = 5, periodic dynamics, (b)
D =40, F =5, chaotic dynamics.

4.2 Kuramoto-Sivashinsky

The second model, widely used to model a variety of weakly turbulent fluid systems [34, 35],
is the KS system [9]. Its PDE reads

Ou+0u+ 0 u+udu=0, 4.2)

where the field u(x, t) is defined on some domain size L. As with the L96 system, the KS
system is exhibits both periodic and chaotic behavior depending on parameter choice, an
example of which is depicted in Figure 4.2. In this thesis, we constrain ourselves to a domain

size of L = 22 with periodic boundary conditions
u(x+L,t)=u(x,t) forall0 <x<L. 4.3)

As proven in section 4.3, this parameter choice also results in a chaotic system.

For the numerical treatment, the equations are discretized on a grid of D = 40 points, the same
size as the Lorenz-96 system, and numerically integrated with a step size of A = 0.5, using the
fourth order time-stepping method exponential time-differencing fourth-order Runge-Kutta
(ETDRK4) [36,37].

While widely used to simulating the KS system [6,37-40] ETDRK4 is inherently numerically
unstable [37]. As such, a well chosen initial condition is paramount for reproducing a sensible
realization of the KS system. Hence, unless otherwise specified, all simulations of the KS
system are initialized by a generalized form of the initial condition used by Kassam et al. [37].

This initial condition is given together with our python code for the KS simulation and a

14

Time Step Time Step

Figure 4.2: Space—time plots of the KS system. (a) L = 12, N = 20, periodic dynamics, (b)
L =33, N =40, chaotic dynamics.

comparison of the initial system dynamics in appendix A.1.

15

4.3 Lyapunov Exponents

Chaotic systems can be characterized by a variety of quantities, chief among them being
the spectrum of Lyapunov exponents, "which has proven to be the most useful dynamical

diagnostic for chaotic systems" [41].

Typically considered the most important Lyapunov exponent is the MLE defined as the largest
Lyapunov exponent of any given chaotic system. Its importance stems from the fact that it is
intimately tied to the predictability of the system as, given a MLE Ap,ax two infinitesimally

close trajectories in phase space, initially separated by the vector 6x (¢ = 0) diverge as [42]
|6x ()] ~ et |5x (1 = 0)] , (4.4)

where 7 is the time since separation.

Due to its importance, the MLE is an ideal candidate to quantify the long term statistical
properties of a chaotic system. As we will compare simulated with predicted time series in
chapter 5 we seek a method which is able to calculate the MLE of both.

Many popular methods for low dimensional dynamic systems can not be used due to the
high dimensionality of the GLS RC system. Popular QR decomposition based methods for
example have an algorithmic complexity of O (n®) where n is the size of the square Q and R

matrices and as such the dimension of the dynamic system. [43] !

While this problem can be somewhat alleviated by rounding techniques, GPU computing
and parallelization on a computing cluster, its scaling behavior poses a clear obstacle for the
generalization to higher dimensions which is one of the main goals of GLS. As such, we limit
ourselves to compute only the most important, largest Lyapunov exponent and take advantage
of the fact that we can repeat our predictions and simulations as often as we want, which

allows us to use Sprott’s method of orbit separation (OS) [44].

By taking the logarithm of equation 4.4 we obtain
log |6x ()| ~ log |6x(t = 0)| + Amax? , 4.5)

which is a linear relationship between the two measurable quantities log |6x(¢)| and ¢. Taking
the average (-) over many trajectory divergences in different parts of the chaotic attractor we
find

Amax =

1 <log |5x(t2)|> . (4.6)

tr —t1 \log|ox(t1)]

1With a typical time of computing the Lyapunov exponent for a 500 dimensional system of about one second,
a naive application of the algorithm for the 40 x 5000 dimensional GLS RC used in chapter 5 would take about
2 years and, assuming 8 byte floating point values, consume a minimum of 320GB of memory.

16

Note that for this equation to hold, we are only using the divergence data after transient effects
have subsided but before the divergence size saturates due to it reaching the size of the chaotic

attractor.

From this, we can use a linear least squares fit to calculate the MLE. Note that this averaging

is essential to getting useful results,especially for noisy data [42].

Additionally, we can use the MLE to calculate the Lyapunov time 77, i.e., the average amount
of time for errors to grow by a factor of e as

1
Amax .

Ty = 4.7)

17

18

5. Experiments

In the following set of experiments we explore and compare the LS and GLS methods. We
will analyze the neighborhoods created by the two different approaches as well as the resulting

short and long term RC predictions using these neighborhoods.

5.1 System Characterization

First and foremost, we calculate the MLE of the L96 and KS systems, as we will use it later

to quantify the accuracy of our long term RC predictions.

We do so by using OS as described in section 4.3. Both systems are first simulated using
the parameters and methods described in chapter 4 for 1 x 10° time steps after discarding
the first 2 x 10* time steps to avoid the influence of transient effects on the MLE fit. These
1 x 10° time steps are then used as basis for the OS. From these 1 x 10° trajectory positions,
we take every tenth one, leaving us with 1 x 10* and add to them normally distributed noise
with standard deviation oeise = 1 X 107101, With 0gata being the standard deviation of the
simulated data. Using the noisy trajectory positions as a new starting point, we simulate the
system for 1500 time steps from each one and compute the separation magnitude from the

initial, noise-less time series.

Lastly, we use a linear least squares fit as described in section 4.3, resulting in Figure 5.1 with

the relevant quantities listed in table 5.1

System | Apmax | At Ty, | time steps per Tp,
KS 0.049 | 0.5 | 204 40.8
L96 045 |1 0.05] 2.2 45

Table 5.1: MLEs A, time step size At, Lyapunov time 77, and the number of time steps
per 77, for the KS and L96 systems.

19

10

(a)

107

10 i

Separation
\

10° /
10710

102
107

(b)

107

10

Separation
\

10_8 J/ ’

1010 /

102

0 400 800 1200 1500
Time Step

Figure 5.1: OS for 1 x 10* diverging trajectories in the (a) KS and (b) L96 system. The
measured data is depicted in blue, the subset used for the linear regression fit in orange, while
the striped green line depicts the resulting linear fit.

20

5.2 Parameters

To enable a fair comparison of the different neighborhood generation methods, the RC
hyperparameters are optimized for the LS neighborhoods and then copied for the GLS
neighborhoods without further adjustments. This slightly unorthodox approach is justified
because we will compare the prediction efficacies of GLS and LS. As RC is sensitive on
its hyperparameters [19], our approach of equal hyperparameters makes such a comparison

much more straight forward.

Furthermore we optimize the hyperparameters for the LS and copy them to the GLS, and not the
other way around, such that that any difference in efficacy resulting from the hyperparameters

can only benefit the LS, the method not introduced in this thesis.

Additionally, this was done with the goal in mind to predict a mixed L96-KS, non-locally
interacting system in section 5.4. As we will see later, the SN approach fails at this task.
Nonetheless, we want to give the SN approach the highest possible chance of succeeding
in this task, even though optimizing its hyperparameters on the mixed L96-KS directly is

fruitless. Therefore we optimize it on the the individual L96 and KS systems simultaneously.

This optimization was done via trial and error for the short term prediction accuracy of both
systems at once, with the goal of finding a hyperparameter set able to learn and predict both
systems in isolation. One hyperparameter not optimized with this approach is the noise we
added to all training data following Vlachas et al. [45]. Without this noise we found the
short term prediction accuracy to often be higher, but at the cost of an increased rate of
failed realizations!, and lower quality long term predictions in general. This noise proved
decisive in minimizing variance between network realizations and reducing the number of

failed realizations, especially for the the L96 system.

Heuristically, we found normally distributed noise with standard deviation oypise = 1% O gata

where ogat, 1S the standard deviation of the training data, to be a sweet spot.

The hyperparameters used for all RC in this chapter are given in table 5.2

reservoir dimension D, 5000
average node degree K 3

spectral radius p 05

input coupler scaling w 05

ridge regression parameter 3 1076

noise level a 1%

Table 5.2: RC hyperparameters used during chapter 5

Iproducing only diverging predictions

21

The data used in the following sections is simulated as detailed in chapter 4. Transient effects
of the simulated data were discarded before any synchronization, training or prediction took
place. Notably, the first 2 x 10* time steps after the start of a simulation are dropped to make
sure the starting condition of the simulation does not influence the results. Similarly, each

reservoir training and prediction is preceded by 2000 synchronization steps.

Each reservoir network is randomly generated as described in section 2.2. No randomly
generated network was discarded due to unsatisfactory prediction accuracy or any other

reasons.

All reservoirs were trained for a total of 1 x 10° time steps using the noisy training data,

which is a typical training data length for higher dimensional systems [4,7].

5.3 Locally Interacting Systems

In this section the predictive efficacy of GLS and LS neighborhoods for the locally interacting

L96 and KS systems are compared.

5.3.1 Neighborhoods

In the realistic case of having only a finite amount of measured data, the training data is often
the only data one has to characterize a system. As such, we restrict ourselves to use only this
training data to calculate the neighborhoods. Additionally, as measured time series would
also be noisy in reality, we do not remove the noise added to the training data in section 5.2
when calculating the SMs of the CC and MI neighborhoods. A side effect of this is that the
neighborhoods for each random network realization will look slightly different due to this
noise. Therefore all neighborhoods shown in this thesis are representative examples, but not

uniform for all realizations.

The neighborhoods are calculated as described in section 3.3.1 for a single core and 18
neighbors, in the case of SN and MI neighborhoods, and 28 neighbors, in the case of a CC
neighborhood. Example neighborhoods for the KS and L96 systems are shown in Figure 5.2
and Figure 5.3 respectively. While the SN neighborhoods are defined as a contiguous
set of cores (here just one) and their nearest neighbors, the CC and MI neighborhoods
warrant of a closer look. First and foremost, even though the MI neighborhoods were
calculated dynamically, without directly using the knowledge of KS or L96 being a locally
interacting system, the resulting neighborhoods closely resemble the SN neighborhoods. The
CC neighborhoods in contrast include many dimensions spatially far away from the core,

especially for the L96 system.

This tendency of dimensions spatially distant to the core being included in the CC neighborhood

22

Core
B Neighbor
B Else

40
Neighborhood Neighborhood Neighborhood

Figure 5.2: Example Neighborhoods for the KS system. Each row depicts one dimension of
the time series, while each column represents a neighborhood. Each neighborhood is defined
by the core dimension (yellow) and its neighbors (green). (a) SN neighborhoods. As defined
in section 3.1 the SN neighborhood consists only of a core and its 18 nearest neighbors. (b)
CC neighborhoods. As mentioned in the text, each CC neighborhood consists of a total of 29
dimensions. (¢) MI neighborhoods.

Core
B Neighbor
B Else

40

Neighborhood Neighborhood Neighborhood

Figure 5.3: Example Neighborhoods for the L96 system. Each row depicts one dimension of
the time series, while each column represents a neighborhood. Each neighborhood is defined
by the core dimension (yellow) and its neighbors (green). (a) SN neighborhoods. As defined
in section 3.1 the SN neighborhood consists only of a core and its 18 nearest neighbors. (b)
CC neighborhoods. As mentioned in the text, each CC neighborhood consists of a total of 29
dimensions. (¢) MI neighborhoods.

23

is also the reason that CC neighborhoods are larger than the MI and SN ones. While the
neighborhood sizes for SN and MI were chosen to be similar to Pathak’s original paper [4]
which had a total neighborhood size of 202. While for them this results in good predictions,
for the CC SM this leads to essentially all predictions diverging. This is likely the result of
the CC SM not “recognizing" the importance of the core’s nearest neighbors in these systems.
As such, the CC neighborhood size was increased to a total size of 29, the minimum where
no predictions diverged and, not coincidentally, where the core’s nearest neighbors were
consistently included in its neighborhood. CC neighborhoods of size 19, 27 and 29 for the

L96 system are depicted in Figure 5.4. While the real importance of each dimension regarding

R
Core
B Neighbor
M Else
0 20 40 0 20 40 0 20 40
Neighborhood Neighborhood Neighborhood

Figure 5.4: CC neighborhoods of the L96 system. (a) Total neighborhood size 19, the core
dimensions’ nearest neighbors are not included in the neighborhood. (b) Neighborhood size
27. Only a couple nearest neighbors of the core’s are missing. Nevertheless, this is fatal when
trying to predict the system using these neighborhoods. (¢) Neighborhood size 29. All core’s
nearest neighbors are included in the neighborhood.

the prediction of another is of course unknown, this is the problem the SM were defined to
solved for after all, at least for the locally interacting L.96 and KS systems studied here, the

core’s spatial nearest neighbors are absolutely crucial for achieving a sensible prediction.

5.3.2 Short Term Predictions

Following section 2.2, 180 distinct random network realizations are generated, 30 for each
system-SM combination, using the hyperparameters of section 5.2. They are then trained as
described in section 5.2 and used to predict the same 300 sections of 10 Lyapunov times (see
table 5.1) length on the chaotic attractor of the L96 and KS systems. Before each prediction,

the reservoirs are synchronized for 2000 steps.

To quantify the short term prediction accuracy, we define the normalized root mean square

2albeit with 8 core dimensions per neighborhood

24

error (NRMSE) as

((0-»7?)
NRMSE(§) = Y "~ ° (5.1)

Ymax — Ymin
where y € RP is the prediction at a single time-step, y € RP the true signal and ymax (Ymin)

the largest (smallest) value taken of any dimension in the simulated data set.
Short term prediction results are shown in Figures 5.5 and 5.6.

Looking at the short term predictions of the KS system, it is very striking that the averaged
NRMSE of all three neighborhoods coincide more or less exactly. While the same holds
true for the SN and MI neighborhoods of the L96 system, the CC prediction is significantly
worse. This performance drop is likely the result of the CC neighborhood’s inclusion of many
dimensions which are far from the, at least for the locally interacting systems, ostensibly most

important, close region around the core (see Figure 5.3b).

Comparing these results with the short term predictions of similarly sized KS and L96 systems
reveals that we achieve slightly worse but nonetheless comparable performance for both. [4,6]
Considering that our hyperparameters were optimized for two different systems at the same

time, a slight performance drop in the short term prediction accuracy was to be expected.

It should be noted that the method stability shown here is remarkable, as often RC algorithms
have a much larger spread of prediction qualities between different random networks [19]. This
stability is almost certainly attributable partly to finding the correct hyperparameters for the
systems at hand, as suboptimally chosen hyperparameters often leave the best predictions intact
while increasing the variance towards bad/completely failed predictions drastically. [6, 19]
However, the role of the noise added to the training data in achieving this stability, especially
for the .96 system, can not be understated either. Additionally it should be noted that, as is
typical for RC, the variance in short term NRMSE between different starting positions on the
attractor is much larger than the variance for different random network realizations. This is

demonstrated in appendix A.2.

5.3.3 Climate Reproduction

Not only short term prediction accuracy is important when it comes to judging the quality
of a reservoir’s understanding of the underlying true data. The long term statistical, often
called climate, properties of a system are, depending on the application, equally if not more

important.

25

X

NRMSE

Figure 5.5: Short term prediction of the KS system. (a) Actual KS simulation data. (b-d)
Exemplary error in the RC prediction when using the (b) SN, (¢) CC and (d) MI neighborhoods.
(e) NRMSE of SN, CC, and MI prediction data averaged over first the 300 predicted sections
and then the 30 network realizations. The error bands correspond to the 30 standard deviation
of the random network realizations. We multiply # by the MLE A« of the model, so that
each unit on the horizontal axis represents one Lyapunov time.

26

X

NRMSE

Figure 5.6: Short term prediction of the L96 system. (a) Actual L96 simulation data.
(b-d) Exemplary error in the RC prediction when using the (b) SN, (¢) CC and (d) MI
neighborhoods. (e) NRMSE of SN, CC, and MI prediction data averaged over first the 300
predicted sections and then the 30 network realizations. The error bands correspond to the
30 standard deviation of the random network realizations.

27

Probability Distribution Functions

One measure of a systems climate is the probability distribution function (PDF), which can be
estimated via a simple histogram. For this purpose we let each of our reservoirs predict three
distinct sections of the systems attractor each 1000 Lyapunov times in length. For the purpose
of PDF estimation the three resulting predictions and reference data sets from the simulation
are treated as one single data set of 3000 Lyapunov times length. The resulting 40 dimensional
datasets are flattened, creating two one dimensional time series of 40 x 3000 x 3 = 1.2 x 10°
Lyapunov time length which are used to build the histogram. The histograms themselves
consist of 100 equally sized bins. To make comparison easy, they are chosen such that bin

position and size for the simulated and predicted time series histograms are the same.

Looking at the PDF calculated for the KS system in Figure 5.7 it is clear that the CC
neighborhood is able to reproduce the underlying simulated data the best, with excellent
agreement even at the tails of the distribution. Next best is the MI which, while still showing
close agreement at the core of the distribution, exhibits a divergence at the tails mainly by
assuming values of greater magnitude than are ever reached in the simulated dataset. This
pattern continues with the SN which shows the same divergence behavior as the MI RC, only

at a more prominently.

The explanation for this is that both the MI RC as well as the SN RC seem to “get stuck™ in
different parts of the attractor when predicting independently for a long time. Crucially, this
is not a full breakdown of the trajectory dynamics as can be seen when looking at exemplary
trajectory slices, individual realization PDFs and the longterm NRMSE depicted in Figure 5.8
Looking at the predicted data more closely, one finds the characteristic shapes and length
scales of the KS still intact, but with the normally almost horizontal lines showing a clear
drift to lower or higher dimensions respectively. While this behavior is also present in the
simulated KS data, this is the case only for much shorter durations of at most a couple
Lyapunov times, while the predicted data manifests this shift for hundreds of Lyapunov times
or more. Notably no clear separation between the start and end of such a the shift period is
visible in the NRMSEs even though the effect on the PDFs is immediately noticeable.

This is especially interesting as the SN and MI neighborhoods for the KS system are almost
the same (see Figure 5.2), meaning that the resulting difference in climate reproduction ability
must come from the few outliers, far removed from the ostensibly most important closest
neighbors. These results indicate that even for purely locally interacting systems there might
be something to gain from using the GLS approach over the conventional LS one, or at least
further reinforces the importance of small amounts of randomness to get high quality long

term predictions from RC.

The L96 PDFs presented in Figure 5.9 on the other hand are up to and including the

distribution’s tails in excellent agreement with the simulated data for all three neighborhood

28

(2)

107

PDF

10+

106

' (b)

107

PDF

10

10

(©)

107

PDF

10+

10

-4 -2 0 2 4
Prediction Value

Figure 5.7: PDF for the longterm predictions of the KS system. The PDFs are estimated via
two superimposed 100 bin histograms of the simulated (gray) and the predicted (orange) data
of the (a) SN, (b) CC and (c¢) MI Neighborhoods. Each entry in the histogram is generated by
the prediction/simulation of a single dimension value, with the dataset coming from three
1000 Lyapunov time long sequences. The errorbars represent the 10~ standard deviation of
the predicted histogram bins. 29

0 2 4 6 8 100 2 4 6 8 10

Amax Amax
83
2
Z.
0 ' ' 1000 0 ' ' 1000
Amaxt Amaxt
1
© D |
Tl .'“'I | | II""|
5 | I|
[a W | I
10
10¢
-4 -2 0 2 4 -4 -2 0 2 4
Prediction Value Prediction Value

Figure 5.8: SN example realizations exhibiting the PDF shift. (a)-(b) Predictions of the KS
system, qualitatively different than the simulated data. (c)-(d) NRMSEs over a full 1000
Lyapunov times corresponding to the predictions shown in (a) and (b) respectively. (e)-(f)
PDFs corresponding to the NRMSEs depicted in (c) and (d). A clear shift of the entire
distribution to lower (higher) values is visible.

30

10

10

PDF

10

10°#

10

PDF

10

=

10°

oo

10°

10

10

PDF

10

10°®

2
Prediction Value

Figure 5.9: PDFs for the longterm predictions of the L96 system. The PDFs are estimated
via two superimposed 100 bin histograms of the simulated (gray) and the predicted (orange)
data of the (a) SN, (b) CC and (¢) MI Neighborhoods. Each entry in the histogram is
generated by the prediction/simulation of a single dimension value, with the dataset coming
from three 1000 Lyapunov time long sequences. The errorbars represent the 1o standard
deviation of the predicted histogram bins.

31

types. This is one more small surprise as the comparatively worse L96 CC NRMSE does not

seem to effect the long term PDFs at all.

Lyapunov Exponents

Using the OS method introduced in section 4.3 we can calculate the MLESs of the predictions

as another characteristic to quantify long term prediction accuracy.

We base the OS calculation on the same three 1000 Lyapunov time long term prediction
datasets that generated the PDFs in the previous section. For each of the 30 realizations we
choose 100 trajectory positions uniformly distributed in the first of the three long term datasets
as starting point for the orbit separation. In the next step, we synchronize the reservoirs that

originally created the data for at least 2000 time steps before each starting point.

Once reached, we add normally distributed noise with standard deviation oyeise = 1 X 1071007,
to the internal reservoir states. From this perturbed internal state, we let the reservoir predict
1500 time steps and compute the separation magnitude to the unperturbed predicted time
series. This is repeated for each of the three long term datasets for each of the 30 realizations

for a total of 9000 measured separation magnitudes.

Lastly, we again use a linear least squares fit to calculate the MLEs listing the results in
table 5.4. As with the PDFs, the MLEs show excellent agreement with the MLEs calculated
directly from the simulations. Notably, this is true even for the SN and MI neighborhoods

System | SIM SN CC MI
KS 0.049 | 0.046 = 0.004 | 0.048 +£0.002 | 0.048 = 0.002
L96 0.45 0.43 +0.05 0.47 +0.04 0.44 £0.04

Table 5.3: MLEs calculated via the OS method for the simulated (SIM) and predicted
trajectories using the SN, CC and MI neighborhoods for the KS and .96 data. The errors
represent the 1o standard deviation between network realizations.

in the KS system with the only noticeable difference being a slightly larger variance for the
SN neighborhood. Therefore, due to the relatively low impact on the MLE, the previously
mentioned behavior of the prediction getting "stuck” in a part of the attractor, might have
never been discovered without calculating the PDFs. This highlights the need for multiple

analysis methods when quantifying the climate reproduction of a prediction.

5.4 Combined System Prediction

To test the usefulness of GLS for non-locally interacting systems we use the KS and L96

systems to artificially create a non-locally interacting test system. As depicted in Figure 5.10

32

we do this by concatenating both systems and then randomly shuffling the 80 dimensions

of the combined system. As this combined system now is a composite of two systems with

Figure 5.10: Concatenated System (a) Simulated data combined from the L96 (dimensions
1-40) and KS (dimensions 41-80) systems. (b) Simulated data as in (a) with the dimensions
shuffled. The time axis is scaled by the MLE Ap,ax of the KS model.

different time steps, it does not have a well defined Lyapunov exponent any more. For the
sake of consistency we nonetheless continue the time axis rescaling in terms of Lyapunov
exponents. For this we now using the larger of the two system’s time steps per Lyapunov time
as calculated in table 5.1, hence at worst slightly underestimating our short term prediction

results in section 5.4.1.

As before, we can also calculate the SN, CC and MI neighborhoods for this new concatenated
system. The CC and MI neighborhoods are shown in Figure 5.11. The SN neighborhoods
have been omitted from this Figure as they are, by definition, always the same. Fascinatingly,
both the CC and MI neighborhoods in the combined but not shuffled systems look like they
are composed of the individual system’s neighborhoods. In fact, exactly this is the case as
both the CC and the MI SMs are able to completely separate the KS and L96 systems.

As will become crucial in the next section, the neighborhoods for the shuffied system have
been calculated from shuffled data directly and not, as one might assume, been calculated for

the un-shuffled combined system and then shuffled in tandem with the simulated data.

5.4.1 Short Term Predictions

Using the same procedure as in section 5.3.2 we quantify the short term prediction accuracy
using the NRMSE. The results are shown in Figure 5.12. Immediately noticeable is the

almost instant divergence of all SN predictions. This is of course expected, considering the

33

Core
B Neighbor
1 3 H Else
0 40 80 0 40 80
Neighborhood Neighborhood

Figure 5.11: Neighborhoods of the concatenated L.96 and KS systems. (a) is the CC and
(b) the MI neighborhoods for the concatenated, un-shuffled system. Dimension 1-40 of the
data used to compute these neighborhoods come from the L96 system with dimensions 41-80
originating from the KS simulation In (c) the CC and (d) the MI neighborhoods for the
shuffled system are shown.

34

X

NRMSE

Figure 5.12: Shuffled system short prediction comparison. (a) Simulated data of the
combined shuffled KS-L.96 system. (b-d) Exemplary error in the RC prediction when using
the (b) SN, (¢) CC and (d) MI neighborhoods. The color scale of the diverging prediction
was cut to the ensure legibility of the other plots (e) NRMSE of SN, CC, and MI prediction
data averaged over first the 300 predicted sections and then the 30 network realizations. The
error bands correspond to the 30 standard deviation of the random network realizations.

35

SN neighborhood’s assume a locally interacting system which the shuffled system is not.
Furthermore the CC and MI neighborhood’s NRMSE is the combination of the individual
system’s NRMSE which again, makes sense due to the perfect separation between the L.96

and the KS system shown in Figure 5.11.

5.4.2 Climate Reproduction

For the long term statistical analysis we also use the same procedure as before with the
exception of omitting the MLE calculation which, as mentioned, is not well defined due
to the different time step sizes of the sub-systems. The CC and MI PDFs are depicted in
Figure 5.13. Again, the PDFs show excellent agreement. From the neighborhoods depicted in
Figure 5.11 this could have been predicted as the complete separation of the two subsystems
means that the corresponding RCs also do not interact. Hence the computed histograms
for the combined system are, in this case literally, the added histograms of the independent

sub-system predictions.

36

(a)

102
5 oe
e 10

10

10

107

PDF

10

106

10

-6 -2 2 6 10
Prediction Value

Figure 5.13: PDFs for the longterm predictions of the combined and shuffled KS-L96
system. The PDFs are estimated via two superimposed 100 bin histograms of the simulated
(gray) and the predicted (orange) data of the (a) CC or (b) MI Neighborhood. Each entry in
the histogram is generated by the prediction of a single dimension value, with the dataset
coming from the prediction of three 1000 Lyapunov time long sequences. The error bars
represent the 1o standard deviation of the predicted histogram bins.

37

5.5 GLS Neighborhoods in higher Dimensions

As GLS is to a large part a complexity reduction method, its scalability to higher dimensional
systems than considered so far is essential for its wide spread usefulness. To demonstrate this
scaling behavior one could repeat the preceding analyses for very high dimensional input but,

due to the large amount of computation time required, this is outside the scope of this thesis.

Considering that we have shown RC being more than capable of learning and predicting the
L96 and KS systems using the GLS neighborhoods, we also do not need to do so, as long
as we can demonstrate the higher dimensional neighborhoods to have the same properties
allowing the CC and MI neighborhoods to create high quality prediction in the 40 dimensional
system. Namely that, for locally interacting systems, the core’s nearest spatial neighbors are
included in the GLS neighborhoods.

Therefore, we will demonstrate the scalability of GLS to higher dimensional input by
simulating the KS and L96 equations using a larger system dimension of D = 400. For this,
we keep all other system parameters, notably L.96’s forcing F' = 5 as well KS’s system size
L =22, unchanged.

We use OS to calculate the MLEs of the higher dimensional systems. As listed in table 5.4

we find them to again be chaotic, making them suitable example systems.

System | D =40 | D =400
KS 0.049 0.047
L96 0.45 0.62

Table 5.4: MLEs calculated via the OS method for the simulated KS and L96 of different
dimension D. All other system parameters of the .96 and KS systems remain unchanged.

Generating the neighborhoods as before, we find that the MI neighborhoods do not need
any adjustments to accurately reproduce the local neighborhoods around each core. The CC
neighborhoods on the other hand need a slightly increased neighborhood size of 33 compared
to the 27 of the 40 dimensional .96 to also include the core’s nearest neighbors which,
as discussed, is paramount for a working prediction. The resulting neighborhoods for the

individual, as well as for the combined systems are shown in Figure 5.14

Even though the CC neighborhood elements include dimensions much farther out from the
core than in the MI neighborhoods, both are still very much clustered around the cores.
Furthermore, we note that neighborhoods for the combined system show that the separation
between the two sub systems works even for very large dimensions. Crucially though, the
adjustment needed for the CC neighborhood to reconstruct the core’s local neighborhoods

including its nearest neighbors is minimal. For the MI SMs no adjustment was needed at all.

38

=200
0L
400
=200
0 200 400 0 200 400
Neighborhood Neighborhood
800
= 400
Core
B Neighbor
N W Else
0 400 800 0 400 800
Neighborhood Neighborhood

Figure 5.14: CC and MI neighborhoods for (a)-(b) the 400 dimensional L96, (¢)-(d) the 400
dimensional KS and (e)-(f) the 800 dimensional combined system. (a), (c) and (e) are CC
while (b), (d) and (f) are MI neighborhoods. The insets are magnifications of the center of
each plot.

39

Combining the knowledge that this reproduction of the local neighborhoods is usually the key
for predicting locally interacting systems, or at least is the key for the KS and L96 systems
studied here, with the results from Pathak et. al. [4], predicting KS systems of this dimension
and larger using similarly sized SN neighborhoods, gives a strong indication that at least
for the case of the individual and combined L96 and KS systems, scaling GLS to large

dimensions works.

5.6 Clustering

To see if clustering of cores can be achieved with GLS we start by again looking at the

individual .96 and KS systems, simulated as in section 5.3.

5.6.1 Locally Interacting Systems

The single core neighborhoods are computed as discussed in section 3.3.1. Additionally, we
also divide the 40 dimensional system into neighborhoods with an average of two, four and

eight core dimensions, resulting in a total of 20, 10 and 5 total neighborhoods.

For the SN neighborhoods this is easily done by taking adjacent sets of input dimensions as
cores and the spatially closest remaining dimensions as neighbors. The result of this process

is depicted in Figure 5.15.

40

Core
B Neighbor
W Else

0 20 40 0 20 0 100 5
Neighborhood

Figure 5.15: SN Neighborhoods for a 40 dimensional system with (a) one (b) two (c) four
(d) eight cores per neighborhood. The total neighborhood size of 19 is the same for all cases.

For the CC and MI neighborhoods we use the agglomerative clustering algorithm described

40

in section 3.3.2 resulting in the neighborhoods depicted in Figures 5.16 and 5.17. All of the

Core
B Neighbor
B Else

0 20 40 0 20 0 100 5
Neighborhood

Figure 5.16: Clustered CC neighborhoods for the (a)-(d) KS and (e)-(h) L96 systems. The
neighborhoods have an average of one (a, e), two (b, f) four (c,g) or eight (d, h) cores.

computed neighborhoods include the dimensions around each core as neighbor, with the only
exception being the clustered CC neighborhoods for the L96 system. (Figure 5.16f-h). As the
systems simulated here are all locally interacting systems, this failure to reproduce the local
neighborhood around the cores inevitably leads to a failed prediction as we discussed during

section 5.3.1 .

Nonetheless, we can again use these neighborhoods to compute the short and long term
predictions for the L96 and KS systems using the same procedure and hyperparameters as in

section 5.3. The short term prediction results are given in Figures 5.18, 5.19 and 5.20.

Starting with the obvious outlier of the L96 CC predictions of Figure 5.19b we see that the

predictions diverge quickly for all cases with more than one core. As mentioned, this is a

41

Core
B Neighbor
B Else

0 20 40 0 20 0
Neighborhood

Figure 5.17: Clustered MI neighborhoods for the (a)-(d) KS and (e)-(h) L96 systems. The
neighborhoods have an average of one (a, e), two (b, f) four (c,g) or eight (d, h) cores

42

NRMSE

NRMSE

max

Figure 5.18: SN short term predictions for neighborhoods with an average of one (SN-1),
two (SN-2), four (SN-4), and eight (SN-8) cores for the (a) KS and (b) L96 systems. The
error bands correspond to the 30~ standard deviation of the random network realizations.

(a) R
m
w2
s J
~
Z
m
2]
= 1F .
~
Z
— CC-1
CC-2 1
e CC-4
CC-8
0 L
0 2 4 6 8 10

max

Figure 5.19: CC short term predictions for neighborhoods with an average of one (CC-1),
two (CC-2), four (CC-4), and eight (CC-8) cores for the (a) KS and (b) L96 systems. The
error bands correspond to the 30~ standard deviation of the random network realizations.

43

——— e '\'
,’/v — — .
on
/)]
s i
[a4
Z
o5
/)]
S 1k -
[a4
Z
— MI-1
MI-2 T
= MI-4
MI-8
0 .
0 2 4 6 8 10

max

Figure 5.20: MI short term predictions for neighborhoods with an average of one (MI-1),
two (MI-2), four (MI-4), and eight (MI-8) cores for the (a) KS and (b) L96 systems. The
error bands correspond to the 30 standard deviation of the random network realizations.

case of the core’s local nearest neighbors not being included in the neighborhood. All other

clustered neighborhoods achieve the same performance as their non-clustered counterparts.

Calculating the MLESs in the same manner as previously we find that, with exception of the
diverging L.96 CC neighborhoods, all calculated MLEs agree very well with the simulated
values. The MLEs are listed in table 5.5.

Additionally, the PDFs of the clustered SN and MI do not exhibit the same shift their single
core counterparts do (see section 5.3.3) which is further reflected in the decreased variance of
SN-2, SN-4 and SN-8 compared to SN-1.

The results are notable, not only because it is evident that the agglomerative clustering
algorithm works as intended, but also because the neighborhoods with more cores are much
faster to train and predict with. This speed-up is a direct result of the parallelizability as
mentioned in section 3.1. Theoretically, neighborhoods with an average of eight cores
could be up to eight times faster than their single core counterparts while achieving at least

equivalent performance.

Finally, while neighborhood sizes exist for which the CC neighborhoods deliver accurate
predictions, in practice they turn out to be too large to be useful. For e.g. CC-8 and the 40

dimensional L96 predicted here, this neighborhood size turns out to be 39. Therefore, we

44

System | SIM SN-1 SN-2 SN-4 SN-8
KS 0.049 | 0.046 £ 0.004 | 0.047 £ 0.002 | 0.049 £0.002 | 0.048 + 0.002
L96 0.45 | 0.43+0.05 0.42 +0.04 0.43 +0.04 0.44 +0.04

System | SIM CC-1 CC-2 CC-4 CC-8
KS 0.049 | 0.048 +£0.002 | 0.048 +£0.002 | 0.050 £ 0.002 | 0.049 + 0.003
L96 0.45 0.47 £0.04 - - -

System | SIM MI-1 MI-2 MI-4 MI-8
KS 0.049 | 0.048 £0.002 | 0.048 £0.001 | 0.049 £ 0.002 | 0.050 + 0.003
L96 0.45 0.44 £0.04 0.43 £0.02 0.43 £0.02 0.44 £0.02

Table 5.5: MLEs calculated via the OS method for the simulated (SIM) and predicted
trajectories of the KS and 1.96. The predictions are grouped by the similarity measure (SN,
CC or MI) and the average number of core dimensions present in each neighborhood (1, 2, 4
or 8). The errors represent the 10 standard deviation between network realizations.

kept the neighborhood size of 29 here and in the following, as it more accurately showcases

the problems of using CC as a SM.

5.6.2 Combined Systems Clustering

Considering the promising results achieved by agglomerative clustering for the individual
systems, expecting similarly good predictions when applying clustering to the combined
system from section 5.4 is very reasonable. Somewhat counterintuitively, agglomerative
clustering for the combined system does not work. As can be seen in Figure 5.21 the clustering
of neighborhoods for both MI and CC results in a very uneven distribution of cores between

the neighborhoods.

While in principle still better than randomly distributing dimensions between neighborhoods,
in practice it does not make a difference as, with the exception of some 40 dimensional
MI neighborhoods, most predictions using these neighborhoods diverge. This result is
fundamentally tied to how agglomerative clustering works, namely that there is no limit to
the cluster size it can create. While uneven cluster sizes can be an advantage, e.g. when the
data is composed of smaller, internally interacting subgroups of different sizes, it can also

lead to results as shown here.

5.6.3 Higher Dimensional clustered Neighborhoods

Using the same 400 dimensional systems and neighborhood sizes as in section 5.5 we compute

the two, four and eight core neighborhoods resulting in Figure 5.22.

For the 400 dimensional individual systems the clustered neighborhoods exhibit the same

behavior as for the 40 dimensional clustering, namely that, besides the .96 CC clustering, all

45

= 400

B Neighbor
. . I 0 H Else
0 200 20 0 400 0 400
Neighborhood Neighborhood

Figure 5.21: CC-2 and MI-2 neighborhoods for (a)-(b) the 40 dimensional and (¢)-(d) the
400 dimensional combined L96-KS. (a) and (c) are CC, (b) and (d) are MI neighborhoods.
The insets in (c) and (d) are magnifications of the left center area of each plot.

neighborhoods consist of a mostly cohesive group of cores surrounded by neighbors, which
as discussed is the main condition for a good prediction of the locally interacting systems
studied here. This gives a strong indication that the clustering of L96 and KS is generalizable

to arbitrary dimensions.

46

400 |

0
400 |
= 200 N K
b or ’ f
" B Neighbor
0l | Else '

0 100 2000 100050 0 100 2000 1000 50
Neighborhood Neighborhood

Figure 5.22: CC and MI neighborhoods for the 400 dimensional (a)-(f) KS and (g)-(1) L96
systems. (a)-(c) and (g)-(i) are CC, while (d)-(f) and (j)-(1) are MI neighborhoods. The insets
in (a), (d), (g) and (j) are magnifications of representative parts of the neighborhoods.

47

48

6. Conclusion and Outlook

This thesis introduced the method of GLS, an extension of Pathak et al.’s LS [4] approach by
generalizing spatial locality to the concept of similarity using the information measures CC
and ML

We demonstrated this approach by using RC to reproduce the short and the long term statistics
achieved by LS in the locally interacting .96 and KS systems without explicitly using this

local interaction.

Furthermore, we created a non-locally interacting system by first concatenating and then
shuffling the dimensions of L96 and KS. We then accurately predicted this system using GLS

while the conventional LS approach failed completely.

In the next step we further improved the scalability of GLS by using agglomerative clustering
to group the most similar input dimensions as cores of the same neighborhoods. While
agglomerative clustering was not able to generate useful neighborhoods for the mixed L96-KS
system, it accurately grouped the dimensions in three out of four cases, only failing when
applying the CC SM to the L96 system.

Additionally, we demonstrated the successful scaling of single core and clustered GLS
neighborhoods to high dimensions in all systems where they were able to create accurate

predictions in the lower dimensional case.

We want to again emphasize that the working principle of the GLS approach does not depend
on our choice of ML technique, illustrative systems, or SMs. Rather, GLS is a very broad
concept, allowing the grouping of time series by their similarity and using these groupings to

infer the future of said time series.

Nonetheless, while substantial results have been achieved, multiple new opportunities and
potential improvements were uncovered during this thesis. First and foremost, GLS has yet to
be applied on real experimental data with a non-local interaction structure. Such data with

purely abstract connections can for example be found in financial markets.

The choice of SM is another aspect that has yet to be investigated in more detail. While this
thesis has shown that the MI delivers consistently better results than the CC, many more

choices as SM are possible. Causal measures, like the transfer entropy, or one of the many

49

extensions of MI could allow a significant increase in the SM’s efficacy when calculating the
most relevant neighbors for any given core. In the analysis of more complicated or noisy data,

this could prove crucial.

Additionally, while we layed the foundation for the clustering of core dimensions, further work
in this area seems worthwhile. Not only does clustering come with a significant decrease in
computation time, it could also enable a further increase in neighborhood quality by grouping

inherently tied dimensions, such as position and velocity of a particle, to be predicted together.

Lastly, expanding the measure of similarity to take changes over time into account, for example
in the relationships between humans, could open up yet another new field of problems GLS

could be used for.

50

Bibliography

(1]

(2]

(3]

(4]

(5]

[6]

(7]

[8]
[9]

[10]

Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition

and principal component analysis. In A practical approach to microarray data analysis,
pages 91-109. Springer, 2003.

Harri Valpola. From neural PCA to deep unsupervised learning. In Adv. Indep. Compon.

Anal. Learn. Mach., pages 143—171. Elsevier, jan 2015.

Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational
auto-encoder. In Second International Conference on Learning Representations, ICLR,
volume 19, 2014.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-
Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir
Computing Approach. Phys. Rev. Lett., 120(2):24102, 2018.

Herbert Jaeger. The “ echo state ” approach to analysing and training recurrent neural
networks. GMD Rep., (148):1-47, 2001.

Pantelis R. Vlachas, Jaideep Pathak, Brian R. Hunt, Themistoklis P. Sapsis, Michelle
Girvan, Edward Ott, and Petros Koumoutsakos. Forecasting of Spatio-temporal Chaotic

Dynamics with Recurrent Neural Networks: a comparative study of Reservoir Computing
and Backpropagation Algorithms. 2100:0-2, 2019.

Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian. Data-driven
prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods:
Reservoir computing, ANN, and RNN-LSTM. 2019.

Edward N. Lorenz. Predictablilty: A problem partly solved, 1996.

Y. Kuramoto and T. Tsuzuki. Persistent Propagation of Concentration Waves in
Dissipative Media Far from Thermal Equilibrium. Prog. Theor. Phys., 55(2):356-369,
feb 1976.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

51

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

52

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097-1105. Curran Associates, Inc., 2012.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-9, 2015.

Mantas LukoSevicius and Herbert Jaeger. Reservoir computing approaches to recurrent

neural network training. Comput. Sci. Rev., 3(3):127-149, aug 2009.

Ray J Frank, Neil Davey, and Stephen P Hunt. Time series prediction and neural
networks. Journal of intelligent and robotic systems, 31(1-3):91-103, 2001.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436-444, 2015.

Wolfgang Maass, Thomas Natschldger, and Henry Markram. Real-time computing
without stable states: A new framework for neural computation based on perturbations.
Neural Comput., 14(11):2531-2560, nov 2002.

Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent

Advances in Physical Reservoir Computing: A Review. 2019.

T. L. Carroll and L. M. Pecora. Network structure effects in reservoir computers. Chaos,
29(8), 2019.

Alexander Haluszczynski and Christoph Réth. Good and bad predictions: Assessing
and improving the replication of chaotic attractors by means of reservoir computing.
Chaos, 29(10), 2019.

Zhixin Lu, Brian R. Hunt, and Edward Ott. Attractor reconstruction by machine learning.
Chaos, 28(6):061104, jun 2018.

C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J.,
27(4):623-656, 1948.

C. J. Cellucci, A. M. Albano, and P. E. Rapp. Statistical validation of mutual information
calculations: Comparison of alternative numerical algorithms. Phys. Rev. E - Stat.
Nonlinear, Soft Matter Phys., 71(6):066208, jun 2005.

[23] Young Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information
using kernel density estimators. Phys. Rev. E, 52(3):2318-2321, sep 1995.

[24] Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual
information. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top.,
69(6):16, 2004.

[25] Alexander Haluszczynski, Ingo Laut, Heike Modest, and Christoph Réth. Linear and
nonlinear market correlations: Characterizing financial crises and portfolio optimization.
Phys. Rev. E, 96(6):1-11, 2017.

[26] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - A knowledge reuse framework
for combining multiple partitions. J. Mach. Learn. Res., 3(3):583-617, 2003.

[27] Xin Jin and Jiawei Han. K-Means Clustering, pages 563-564. Springer US, Boston,
MA, 2010.

[28] Pankaj Mehta, Marin Bukov, Ching Hao Wang, Alexandre G.R. Day, Clint Richardson,
Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction to
Machine Learning for physicists. Phys. Rep., 810:1-124, 2019.

[29] Zhixin Lu, Jaideep Pathak, Brian Hunt, Michelle Girvan, Roger Brockett, and Edward
Ott. Reservoir observers: Model-free inference of unmeasured variables in chaotic
systems. Chaos, 27(4), 2017.

[30] Yu Huang, Zuntao Fu, and Christian L. E. Franzke. Detecting causality from time series
in a machine learning framework. Chaos An Interdiscip. J. Nonlinear Sci., 30(6):063116,
2020.

[31] Daniel S. Wilks. Effects of stochastic parametrizations in the Lorenz 96 system. Q. J.
R. Meteorol. Soc., 131(606):389-407, jan 2005.

[32] Norbert Marwan, Jiirgen Kurths, and Saskia Foerster. Analysing spatially extended
high-dimensional dynamics by recurrence plots. Phys. Lett. Sect. A Gen. At. Solid State
Phys., 379(10-11):894-900, 2015.

[33] William H Press, Saul A Teukolsky, Brian P Flannery, and William T Vetterling.
Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the

art of scientific computing. Cambridge university press, 1992.

[34] Yoshiki Kuramoto and Toshio Tsuzuki. Persistent propagation of concentration waves
in dissipative media far from thermal equilibrium. Progress of theoretical physics,
55(2):356-369, 1976.

53

[35] Y Pomeau and S Zaleski. The kuramoto-sivashinsky equation: A caricature of
hydrodynamic turbulence? In Macroscopic Modelling of Turbulent Flows, pages
296-303. Springer, 1985.

[36] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems. J.
Comput. Phys., 176(2):430-455, 2002.

[37] Aly Khan Kassam and Lloyd N. Trefethen. Fourth-order time-stepping for stiff PDEs.
SIAM J. Sci. Comput., 26(4):1214-1233, 2005.

[38] Jaideep Pathak. Model-Free Prediction of Large Spatiotemporally chaotic systems from
data - supp material. Phys. Rev. Lett., 3(4):381-420, 2018.

[39] M Jardak, IM Navon, and M Zupanski. Comparison of sequential data assimilation
methods for the kuramoto—sivashinsky equation. International journal for numerical
methods in fluids, 62(4):374-402, 2010.

[40] Fei Lu, Kevin K Lin, and Alexandre J Chorin. Data-based stochastic model reduction
for the kuramoto—sivashinsky equation. Physica D: Nonlinear Phenomena, 340:46-57,
2017.

[41] Alan Wolf, Jack B Swift, Harry L Swinney, and John A Vastano. Determining Lyapunov
exponents from a time series. Phys. D Nonlinear Phenom., 16(3):285-317, 1985.

[42] Michael T. Rosenstein, James J Collins, and Carlo J De Luca. A practical method
for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear
Phenom., 65(1-2):117-134, 1993.

[43] Henry Abarbanel. Analysis of observed chaotic data. Springer Science & Business
Media, 2012.

[44] Julien Clinton Sprott and Julien C Sprott. Chaos and time-series analysis, volume 69.
Citeseer, 2003.

[45] Pantelis R. Vlachas, Wonmin Byeon, Zhong Y. Wan, Themistoklis P. Sapsis, and
Petros Koumoutsakos. Data-driven forecasting of high-dimensional chaotic systems
with long short-Term memory networks. Proc. R. Soc. A Math. Phys. Eng. Sci.,
474(2213):20170844, may 2018.

[46] https://anaconda.org/.
Called on: 2020-09-11.

[47] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

54

https://anaconda.org/

Glossary

ANN artificial neural network. 3, 7, 11

CC cross-correlation. 1, 2, 9-11, 22-28, 32-36, 38—41, 4347, 49

ETDRK4 exponential time-differencing fourth-order Runge-Kutta. 14

FFN feed forward network. 3, 4

GLS generalized local states. 1, 2,7, 13, 16, 19, 21, 22, 32, 38, 40, 49, 50

KS Kuramoto-Sivashinsky. 1, 2, 9, 14, 15, 19-26, 28-30, 32-34, 36, 38-47, 49, 55, 58

L96 Lorenz-96. 1, 2,5, 13, 14, 19-25, 27, 28, 31-34, 36, 38-47, 49, 59

LS local states. 1, 2, 13, 19, 21, 22, 49

MI mutual information. 1, 2, 9-11, 22, 24-28, 32-36, 38-40, 42, 44-47, 49, 50
ML machine learning. 1, 3-5, 49

MLE maximal Lyapunov exponent. 2, 16, 17, 19, 26, 32, 33, 36, 38, 44, 45
NRMSE normalized root mean square error. 24-28, 30, 32, 33, 35, 36, 58, 59
OS orbit separation. 16, 19, 20, 32, 38, 45

PDF probability distribution function. 28-32, 36, 37, 44

RC reservoir computing. 1, 3-5, 7, 13, 16, 19, 21, 25-28, 35, 36, 38, 49
RNN recurrent neural network. 3

SM similarity measure. 1, 2, 9—12, 22, 24, 33, 38, 45, 49, 50

SN spatial neighborhood. 11, 21-28, 30, 32, 33, 35, 36, 40, 44, 45

55

56

A. Appendix

A.1 Kuramoto-Sivashinsky Simulation Details

Shown here are a comparison of our KS simulation with the one published by Kassam
et.al. [37] in Figure A.1 as well as the python code used to produce it and all other KS
simulations of this thesis.

0 300 600 0 300
Time Step Time Step

Figure A.1: Comparison of KS simulations using the same initial condition and parameters
N =128, L = 100, dt = 0.25. (a) Simulation published by Kassam et.al. [37]. The color bar
is omitted, as was done in the original paper. Modified from [37] (b) Our simulation using
the code given in A.1

import numpy as np
def _kuramoto_sivashinsky(dimensions, system_size, dt, time_steps, starting_point):
""" This function simulates the Kuramoto-Sivashinsky PDE

The underlying algorithm is called ETDRK4, see Kassam et al. 2005 for details
Args:

dimensions (int): nr. of dimensions of the system grid

system_size (int): physical size of the system

57

58

dt (float): time step size
time_steps (int): nr. of time steps to simulate
starting_point (np.ndarray): starting point for the simulation of shape

(dimensions,)

Returns:
(np.ndarray): simulated trajectory of shape (time_steps, dimensions)

i

No. of grid points in real space (and hence dimensionality of the output)

n = dimensions

system size
size = system_size

Define initial conditions and Fourier Transform them
if starting_point is None:
Use the starting point from the Kassam_2005 paper
X = size * np.transpose(np.conj(np.arange(l, n + 1))) / n
u=np.cos(2 * np.pi * x / size) * (1 + np.sin(2 * np.pi * x / size))
else:
x = starting_point

starting_point

np. fft.fft(u)

<
Il

h =dt # time step
nmax = time_steps # No. of time steps to simulate

Wave numbers
k = np.transpose(
np.conj(np.concatenate((np.arange(0, n / 2), np.array([0]),
np.arange(-n / 2 + 1, 0))))) * 2 * np.pi / size

L=k * 2 -k **4

E = np.expCh * L)

E 2 =np.expth * L / 2)

M = int(np.ceil(size/(2 * np.pi)))

o

r = np.exp(lj np.pi * (np.arange(l, M + 1) - 0.5) / M)
LR = h * np.transpose(np.repeat([L], M, axis=0)) + np.repeat([r], n, axis=0)
Q = h * np.real(np.mean((np.exp(LR / 2) - 1) / LR, axis=1))
fl = h * np.real(
np.mean((-4 - LR + np.exp(LR) * (4 - 3 * LR + LR ** 2)) / LR ** 3,
axis=1))
f2 = h * np.real(
np.mean((2 + LR + np.exp(LR) * (-2 + LR)) / LR ** 3, axis=1))

f3 = h * np.real(
np.mean((-4 - 3 * LR - LR ** 2 + np.exp(LR) * (4 - LR)) / LR ** 3,
axis=1))

List of Real space solutions, later converted to a np.array

uu = [np.array(u)]

g=-0.5] *k

ETDRK4 steps in FT space

for n in range(l, nmax + 1):
Nv = g * np.fft.fft(np.real(np. fft.ifft(v)) ** 2)
a=E2*v+Q*Nv
Na = g * np.fft.fft(np.real(np.£fft.ifft(a)) ** 2)
b=E2*v+Q*Na
Nb = g * np.fft.fft(np.real(np.fft.ifft(b)) ** 2)
c=E2*a+Q* (2*Nb - Nv)
Nc = g * np.fft.fft(np.real(np.fft.ifft(c)) ** 2)

v=E®*v+Nv* f1l +2 * (Na + Nb) * £2 + Nc * £3
u = np.real(np.fft.ifft(v))
uu. append(np.array(u))

uu = np.array(uu)
return uu

59

A.2 Realization vs Starting Position Variance

2 T T ¥ T ¥ T T T T
(a) e
=
N
Z T ‘
Z.
S
O i 1 1 N 1 1
2 r T T T T T
(b) B
=
N
Z T ‘
Z.
L = SN
CC
/,// MI
O s 1 1 1 1
0 2 4 6 8 10

At
max
Figure A.2: NRMSE for the KS prediction done in 5.3.2. (a) NRMSE averaged first over
all 300 different starting positions and then again over all 30 random network realizations.
The error bands correspond to the 30~ standard deviation of the random network realizations
of only this latter set, the 30 realizations. (b) NRMSE averaged over all 9000 independent
predictions at once. The error bands correspond to the 1o standard deviation of these 9000
distinct predictions.

60

(a)

NRMSE
T
|

m
N
5 1+ i
Z.
R = SN
CC
MI
0 [L L L
0 2 4 6 8 10

Figure A.3: NRMSE for the L96 prediction done in 5.3.2. (a) NRMSE averaged first over
all 300 different starting positions and then again over all 30 random network realizations.
The error bands correspond to the 30 standard deviation of the random network realizations
of only this latter set, the 30 realizations. (b) NRMSE averaged over all 9000 independent
predictions at once. The error bands correspond to the 1o standard deviation of these 9000
distinct predictions.

A.3 Anaconda Environment

In the interest of reproducibility, listed here is the full environment file for the open source
package distribution software Anaconda [46]. All code was written in Python 3.7.5 [47]. and

executed using the packages specified in the following environment.

name: rc_env - bzip2=1.0.8=h7b6447c_0
channels: - ca-certificates=2020.6.24=0

- defaults - cairo=1.14.12=h8948797_3
dependencies: - certifi=2020.6.20=py37_0

- _anaconda_depends=2019.03=py37_0 - cffi=1.14.0=py37h2e261b9_0

- _ipyw_jlab_nb_ext_conf=0.1.0=py37_0 - chardet=3.0.4=py37003

- _libgee_mutex=0.1=main - click=7.0=py37_0

- alabaster=0.7.12=py37_0 - cloudpickle=1.2.2=py_0

- anaconda=custom=py37_1 - clyent=1.2.2=py37_1

- anaconda-client=1.7.2=py37_0 - colorama=0.4.3=py_0

- anaconda-navigator=1.9.7=py37_0 - conda-package-handling=1.6.0=py37h7b6447c_0
- anaconda-project=0.8.4=py_0 - conda-verify=3.4.2=py_1

- argh=0.26.2=py37_0 - contextlib2=0.6.0.post1=py_0

- asnlcrypto=1.2.0=py37_0 - cryptography=2.8=py37h1ba5d50_0
- astroid=2.3.3=py37_0 - curl=7.67.0=hbc83047_0

- astropy=3.2.3=py37h7b6447c_0 - cycler=0.10.0=py37_0

- atomicwrites=1.3.0=py37_1 - cython=0.29.15=py37he6710b0_0
- attrs=19.3.0=py_0 - cytoolz=0.10.1=py37h7b6447¢c_0
- autopep8=1.4.4=py_0 - dask=2.9.0=py_0

- babel=2.7.0=py_0 - dask-core=2.9.0=py_0

- backcall=0.1.0=py37_0 - dbus=1.13.12=h746ee38_0

- backports=1.0=py_2 - decorator=4.4.1=py_0

- backports.functools_lru_cache=1.6.1=py_0 - defusedxml=0.6.0=py_0

- backports.os=0.1.1=py37_0 - diff-match-patch=20181111=py_0
- backports.shutil_get_terminal_size=1.0.0=py37_2 - distributed=2.9.0=py_0

- backports.tempfile=1.0=py_1 - docutils=0.15.2=py37_0

- backports.weakref=1.0.post1=py_1 - entrypoints=0.3=py37_0

- beautifulsoup4=4.8.1=py37_0 - et_xmlfile=1.0.1=py37_0

- bitarray=1.1.0=py37h7b6447c_0 - expat=2.2.6=he6710b0_0

- bkcharts=0.2=py37_0 - fastcache=1.1.0=py37h7b6447c_0
- blas=1.0=mkI - bleach=3.1.0=py37_0 - filelock=3.0.12=py_0

- blosc=1.16.3=hd408876_0 - flake8=3.7.9=py37_0

- bokeh=1.4.0=py37_0 - flask=1.1.1=py_0

- boto=2.49.0=py37_0 - fontconfig=2.13.0=h9420a91_0

- bottleneck=1.3.1=py37hdd07704_0 - freetype=2.9.1=h8a8886c_1

62

- fribidi=1.0.5=h7b6447c_0

- fsspec=0.6.0=py_0

- future=0.18.2=py37_0

- get_terminal_size=1.0.0=haa%9412d_0
- gevent=1.4.0=py37h7b6447c_0

- glib=2.63.1=h5a9¢c865_0

- glob2=0.7=py_0

- gmp=6.1.2=h6c8ec71_1

- gmpy2=2.0.8=py37h10f8cd9_2

- graphite2=1.3.13=h23475e2_0

- greenlet=0.4.15=py37h7b6447c_0
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1

- h5py=2.9.0=py37h7918eee_0

- harfbuzz=1.8.8=hffaf4al_0

- hdf5=1.10.4=hb1b8bf9_0

- heapdict=1.0.1=py_0

- html5lib=1.0.1=py37_0

- hypothesis=4.44.2=py37_0

- icu=58.2=h9c2bf20_1

- idna=2.8=py37_0

- imageio=2.6.1=py37_0

- imagesize=1.1.0=py37_0

- importlib_metadata=1.3.0=py37_0
- intel-openmp=2019.4=243

- intervaltree=3.0.2=py_0

- ipykernel=5.1.3=py37h39e3cac_1
- ipython=7.10.2=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0

- ipywidgets=7.5.1=py_0

- isort=4.3.21=py37_0

- itsdangerous=1.1.0=py37_0

- jbig=2.1=hdba287a_0

- jdcal=1.4.1=py_0O

- jedi=0.14.1=py37_0

- jeepney=0.4.1=py_0O

- jinja2=2.10.3=py_0

- joblib=0.14.1=py_0

- jpeg=9b=h024ee3a_2

- json5=0.8.5=py_0

- jsonschema=3.2.0=py37_0

- jupyter=1.0.0=py37_7

- jupyter_client=5.3.4=py37_0

- jupyter_console=6.0.0=py37_0

- jupyter_core=4.6.1=py37_0

- jupyterlab=1.2.3=pyhf63ae98_0

- jupyterlab_server=1.0.6=py_0

- keyring=19.2.0=py37_0

- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0

- lazy-object-proxy=1.4.3=py37h7b6447c_0
- libarchive=3.3.3=h5d8350f 5

- libcurl=7.67.0=h20c2e04_0

- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4

- libgcc-ng=9.1.0=hdf63c60_0

- libgfortran-ng=7.3.0=hdf63c60_0

- liblief=0.9.0=h7725739_2

- libpng=1.6.37=hbc83047_0

- libsodium=1.0.16=h1bed415_0

- libspatialindex=1.9.3=he6710b0_0
- libssh2=1.8.2=h1ba5d50_0

- libstdcxx-ng=9.1.0=hdf63c60_0

- libtiff=4.1.0=h2733197_0

- libtool=2.4.6=h7b6447c_5

- libuuid=1.0.3=h1bed415_2

- libxcb=1.13=h1bed415_1

- libxml2=2.9.9=hea5a465_1

- libxslt=1.1.33=h7d1a2b0_0

- llvmlite=0.30.0=py37hd408876_0
- locket=0.2.0=py37_1

- Ixml=4.4.2=py37hefd8ale_0

- 1z4-c=1.8.1.2=h14c3975_0

- 120=2.10=h49e0be7_2

- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib=3.1.1=py37h5429711_0
- mccabe=0.6.1=py37_1

- mistune=0.8.4=py37h7b6447c_0

- mkl=2019.4=243

- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0

- mkl_random=1.1.0=py37hd6b4{25_0

63

- mock=3.0.5=py37_0 - pickleshare=0.7.5=py37_0

- more-itertools=7.2.0=py37_0 - pillow=6.2.1=py37h34e0{95_0

- mpc=1.1.0=h10f8cd9_1 - pip=19.3.1=py37_0

- mpfr=4.0.1=hdf1c602_3 - pixman=0.38.0=h7b6447c_0

- mpi=1.0=mpich - mpidpy=3.0.3=py37h028fd6f 0 - pkginfo=1.5.0.1=py37_0

- mpich=3.3.2=hc856adb_0 - pluggy=0.13.1=py37_0

- mpmath=1.1.0=py37_0 - ply=3.11=py37_0

- msgpack-python=0.6.1=py37hfd86e86_1 - prometheus_client=0.7.1=py_0

- multipledispatch=0.6.0=py37_0 - prompt_toolkit=2.0.10=py_0

- navigator-updater=0.2.1=py37_0 - psutil=5.6.7=py37h7b6447c_0

- nbconvert=5.6.1=py37_0 - ptyprocess=0.6.0=py37_0

- nbformat=4.4.0=py37_0 - py=1.8.0=py37_0

- ncurses=6.1=he6710b0_1 - py-lief=0.9.0=py37h7725739_2

- networkx=2.4=py_0 - pycodestyle=2.5.0=py37_0

- nltk=3.4.5=py37_0 - pycosat=0.6.3=py37h7b6447c_0

- nose=1.3.7=py37_2 - pycparser=2.19=py37_0

- notebook=6.0.2=py37_0 - pycrypto=2.6.1=py37h14c3975_9
- numba=0.46.0=py37h962{231_0 - pycurl=7.43.0.3=py37h1ba5d50_0
- numexpr=2.7.0=py37hd81dba3_0 - pydocstyle=4.0.1=py_0

- numpy=1.17.4=py37hc1035e2_0 - pyflakes=2.1.1=py37_0

- numpy-base=1.17.4=py37hde5b4d6_0 - pygments=2.5.2=py_0

- numpydoc=0.9.1=py_0 - pylint=2.4.4=py37_0

- olefile=0.46=py37_0 - pympler=0.7=py_0

- openpyx1=3.0.2=py_0 - pyodbc=4.0.27=py37he6710b0_0
- openssl=1.1.1g=h7b6447c_0 - pyopenssl=19.1.0=py37_0

- packaging=19.2=py_0 - pyparsing=2.4.5=py_0

- pandas=0.25.3=py37he6710b0_0 - pyqt=5.9.2=py37h05f1152_2

- pandoc=2.2.3.2=0 - pyrsistent=0.15.6=py37h7b6447¢c_0
- pandocfilters=1.4.2=py37_1 - pysocks=1.7.1=py37_0

- pango=1.42.4=h049681c_0 - pytables=3.6.1=py37h71ec239_0

- parso=0.5.2=py_0 - pytest=5.3.2=py37_0

- partd=1.1.0=py_0 - pytest-arraydiff=0.3=py37h39e3cac_0
- patchelf=0.10=he6710b0_0 - pytest-astropy=0.7.0=py_0

- path=13.1.0=py37_0 - pytest-astropy-header=0.1.1=py_0
- path.py=12.4.0=0 - pytest-doctestplus=0.5.0=py_0

- pathlib2=2.3.5=py37_0 - pytest-openfiles=0.4.0=py_0

- pathtools=0.1.2=py_1 - pytest-remotedata=0.3.2=py37_0

- patsy=0.5.1=py37_0 - python=3.7.5=h0371630_0

- pere=8.43=he6710b0_0 - python-dateutil=2.8.1=py_0

- pep8=1.7.1=py37_0 - python-jsonrpc-server=0.3.2=py_0
- pexpect=4.7.0=py37_0 - python-language-server=0.31.2=py37_0

64

- python-libarchive-c=2.8=py37_3

- pytz=2019.3=py_0

- pywavelets=1.1.1=py37h7b6447c_0
- pyxdg=0.26=py_0

- pyyaml=5.2=py37h7b6447c_0

- pyzmqg=18.1.0=py37he6710b0_0

- qdarkstyle=2.7=py_0

- qt=5.9.7=h5867ecd_1

- gtawesome=0.6.0=py_0

- gtconsole=4.6.0=py_1

- qtpy=1.9.0=py_0O

- readline=7.0=h7b6447¢c_5

- requests=2.22.0=py37_1

- ripgrep=0.10.0=hc07d326_0

- rope=0.14.0=py_0

- rtree=0.8.3=py37_0

- ruamel_yaml=0.15.46=py37h14c3975_0
- scikit-image=0.15.0=py37he6710b0_0
- scikit-learn=0.21.3=py37hd81dba3_0
- scipy=1.3.2=py37h7c811a0_0

- seaborn=0.9.0=pyh91ea838_1

- secretstorage=3.1.1=py37_0

- send2trash=1.5.0=py37_0

- setuptools=42.0.2=py37_0

- simplegeneric=0.8.1=py37_2

- singledispatch=3.4.0.3=py37_0

- sip=4.19.8=py37hf484d3e_0

- six=1.13.0=py37_0

- snappy=1.1.7=hbae5bb6_3

- snowballstemmer=2.0.0=py_0

- sortedcollections=1.1.2=py37_0

- sortedcontainers=2.1.0=py37_0

- soupsieve=1.9.5=py37_0

- sphinx=2.3.0=py_0

- sphinxcontrib=1.0=py37_1

- sphinxcontrib-applehelp=1.0.1=py_0
- sphinxcontrib-devhelp=1.0.1=py_0

- sphinxcontrib-htmlhelp=1.0.2=py_0
- sphinxcontrib-jsmath=1.0.1=py_0

- sphinxcontrib-qthelp=1.0.2=py_0

- sphinxcontrib-serializinghtml=1.1.3=py_0

- sphinxcontrib-websupport=1.1.2=py_0
- spyder=4.0.0=py37_0

- spyder-kernels=1.8.1=py37_0

- sqlalchemy=1.3.11=py37h7b6447c_0
- sqlite=3.30.1=h7b6447c_0

- statsmodels=0.10.1=py37hdd07704_0
- sympy=1.5.1=py37_0

- tbb=2019.8=hfd86e86_0

- tblib=1.5.0=py_0

- terminado=0.8.3=py37_0

- testpath=0.4.4=py_0

- tk=8.6.8=hbc83047_0

- t001z=0.10.0=py_0

- tornado=6.0.3=py37h7b6447¢c_3

- tqdm=4.40.2=py_0

- traitlets=4.3.3=py37_0

- ujson=1.35=py37h14c3975_0

- unicodecsv=0.14.1=py37_0

- unixodbc=2.3.7=h14c3975_0

- urllib3=1.25.7=py37_0

- watchdog=0.9.0=py37_1

- wewidth=0.1.7=py37_0

- webencodings=0.5.1=py37_1

- werkzeug=0.16.0=py_0

- wheel=0.33.6=py37_0

- widgetsnbextension=3.5.1=py37_0
- wrapt=1.11.2=py37h7b6447c_0

- wurlitzer=2.0.0=py37_0

- xlrd=1.2.0=py37_0

- xIsxwriter=1.2.6=py_0

- xlwt=1.3.0=py37_0

- x2=5.2.4=h14c3975_4

- yaml=0.1.7=had09818_2

- yapf=0.28.0=py_0

- zeromq=4.3.1=he6710b0_3

- zict=1.0.0=py_0O

- zipp=0.6.0=py_0

- zlib=1.2.11=h7b6447¢c_3

- zstd=1.3.7=h0b5b093_0

65

66

Acknowledgement

I would like to express my gratitude to all the people who supported me during the my thesis.

In particular I would like to thank

Christoph for enabling and supervising this thesis, his positivity and our many discussions

making me a better researcher.

Hubertus for facilitating a friendly but productive work environment and allowing me the

freedom to work on interesting programming challenges.

Jonas, Joschka and Youssef for our discussions and their help in solving a variety physics and

programming problems.

Daniel M. and Peter for going above and beyond when helping me with my computer troubles.
Daniel E., Prapti and Eshita for the company in the office before the coronavirus hit.
Alexander and Haochun for our short but fascinating knowledge exchanges.

All members of the Forschungsgruppe Komplexe Plasmen for the pleasant atmosphere and

fun conversations.
Many of my friends for taking hours out of their day to proof read this thesis.

My family for their relentless support of my studies and life in general.

67

Declaration

I hereby declare that this thesis is my own work, and that I have not used any sources and aids
other than those stated in the thesis.

Hiermit erklire ich, die vorliegende Arbeit selbstindig verfasst zu haben und keine anderen

als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben.

Braunschweig, September 15, 2020

Sebastian Baur

68

	Introduction
	Reservoir Computing
	Reservoir Computing Introduction
	Implementation Details

	General Local States
	Generalization
	Similarity Measures
	Cross Correlation
	Mutual Information

	Creating Neighborhoods
	Single Core Neighborhoods
	Multi Core Neighborhoods

	Systems and Simulations
	Lorenz-96
	Kuramoto-Sivashinsky
	Lyapunov Exponents

	Experiments
	System Characterization
	Parameters
	Locally Interacting Systems
	Neighborhoods
	Short Term Predictions
	Climate Reproduction

	Combined System Prediction
	Short Term Predictions
	Climate Reproduction

	GLS Neighborhoods in higher Dimensions
	Clustering
	Locally Interacting Systems
	Combined Systems Clustering
	Higher Dimensional clustered Neighborhoods

	Conclusion and Outlook
	References
	Glossary
	Appendix
	Kuramoto-Sivashinsky Simulation Details
	Realization vs Starting Position Variance
	Anaconda Environment

