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Abstract. Collective excitations in a two-dimensional fluid with repulsive dipole-like
interactions are systematically studied by molecular dynamics simulations. A two-oscillator
model is used to reconstruct dispersion curves and to measure q-gap boundary values in the
dispersion relation of the transverse (shear) mode. Functional form for the dependence of the
q-gap boundary value on the coupling parameter is suggested. The results obtained can be used
in future investigations of collective excitations in fluids, especially in two-dimensional cases.

1. Introduction
Two- and quasi-two-dimensional (2D) systems are widespread in nature. Atomic, molecular or
colloidal monolayers on interface surfaces, vortices in thin-film semiconductors, two-dimensional
electron gas on the surface of liquid helium are typical examples of such systems. Another
well-known quasi-two-dimensional system is a complex (dusty) plasma [1, 2] in ground-based
conditions. Various 2D systems play an important role in a wide range of phenomena occurring
on various interfaces. For example, colloidal systems at interfaces can play a crucial role in many
important technical and biological processes like system stabilization [3–5], synthesis [6, 7] or
catalysis [8]. Moreover, some microswimmers [9] or even more complex multiagent systems [10–
12] can be treated as two-dimensional systems of interacting particles. In many cases, such
systems form a fluid-like phase.

Establishing interrelations between the pair interaction and various properties (dynamic,
structure and thermodynamic) is one of the key tasks of modern condensed matter physics. In
the case of crystals, this problem is almost solved by lattice dynamics theory [13] and some
other approaches [14, 15] where collective excitations (phonons) play a central role. For fluids
it is not so, and the role of collective excitations is still poorly understood. Unlike crystals,
not all transverse (shear) excitations are present in fluids [16–19]. The domain of wave-vectors
corresponding to the absence of transverse excitations is located in the long-wavelength regime
and is often called the “q-gap”. Understanding the q-gap behaviour across coupling regimes is
important for a detailed understanding of fluid properties and to the elaboration of corresponding
theories. However, as far as we know the q-gap behaviour in various fluids is poorly studied
especially in cases of two-dimensional systems.
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In the present paper, we systematically study the q-gap behavior in a two-dimensional fluid
consisting of particles interacting with a repulsive dipole-like potential ∝ 1/r3 by molecular
dynamics (MD) simulations. This type of interactions is also known as inverse-power-law
potential (IPLk where k denotes the exponent) and is relatively well studied theoretically
[18, 20, 21]. Moreover, repulsive IPL3 interaction is intrinsic to various real two-dimensional
systems, where it appears due to different effects: the occurrence of parallel dipole moments
in systems at interfaces [22–25] induced by external electric/magnetic fields [26–30] or by
nonequilibrium environment flows [31, 32]. In particular, it should be mentioned that colloidal
systems on interfaces (with the IPL3 interaction) allowed to experimentally investigate [24, 27,
33] the famous Berezinsky-Kosterlitz-Thouless-HalperinNelson-Young (BKTHNY) scenario of
two-dimensional melting [34, 35]. The results obtained in the present work can be useful in
future studies of collective excitations in 2D fluids.

2. Methods
We performed MD simulations of the classical 2D system interacting with IPL3 potential:

φ(r) = ε(σ/r)3, (1)

where ε and σ are the energy and length scales of the interaction. We considered two dimensional
systems consisting of N = 104 particles of masses m in the NV T ensemble with Nose-Hoover
thermostat. The cut-off radius for interactions was chosen as rc = 25ρ−1/2 where ρ = N/V is the

areal density. Numerical timestep was chosen as ∆t = 2.4× 10−4
√
ma2Γ/ε where a = (πρ)−1/2

is 2D Wigner-Seitz radius and Γ = ε(σ/a)3/T is dimensionless interaction (coupling) parameter.
All the calculations were performed using the LAMMPS package [36].

In accordance with the standard approach [18, 37, 38] the longitudinal and transverse current
correlation spectra can be calculated in the following way:

CL,T(q, ω) ∝ Re

∫
dt 〈jL,T(q, t)jL,T(−q, 0)〉 eiωt, (2)

where jL(q, ω) and jT(q, ω) are the longitudinal and transverse components of velocity current
j(q, t) ∝

∑
i vi(t) exp[iqri(t)], vi(t) is the velocity of i-th particle with the radius-vector ri(t)

and summation is performed over all particles in the system. Due to isotropy of fluids we can
average CL,T(q, ω) over all directions of the wave vector q in order to get the dependence on
q = |q|.

We used the two-oscillator model [39, 40] to extract dispersion curves from calculated intensity
distributions CL,T(q, ω). In accordance with this approach the full amplitude Cq(q, ω) =
CL(q, ω) + CT(q, ω) should be approximated by the function:

f(q, ω) = A [fL(q, ω) + fT(q, ω)] , (3)

where A is a normalization constant, fL(q, ω) and fT(q, ω) correspond to the contributions
of the (longitudinal) high- and (transverse) low- frequency modes respectively, each having a
double-Lorentzian shape:

fL,T(ω) = γL,T

[
1

(ω − ωL,T)2 + γ2L,T
+

1

(ω + ωL,T)2 + γ2L,T

]
. (4)

Optimization for each value of q allows to obtain dispersion relations ωL(q) and ωT(q) of high- and
low- frequencies modes respectively with the corresponding γL,T(q) values and the normalization
constant A(q).
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3. Results
An example of the collective excitation spectra in a 2D IPL3 fluid with Γ = 31.8 is shown in
Figure 1(a). Excitation spectra amplitudes Cq(ω) are shown in color-coded format. The blue
and red circles correspond to high- and low-frequency modes, respectively, obtained based on
the two-oscillator model. The black circles denote maxima positions of fT(ω). In the long-
wavelength regime some deviations between the two approaches were noted. In both sets of red
and black points, there is a long-wavelength domain in which the frequency is zero (corresponding
to the q-gap). Due to non-zero γT values, the black points are systematically lower than the red
ones, which also follows from Eq. (4). Moreover, if γT/ωT &

√
3, then the maximum of fT(q, ω)

is located at ω = 0, even though ωT itself is non-zero. Therefore, the q-gap boundary value qg
measured using the two-oscillator model (red points) is lower than q∗ value measured from the
maxima of fT(ω). The difference between qg and q∗ values has been already briefly discussed in
the context of three-dimensional Yukawa and Coulomb systems [41]. The numerically obtained
amplitudes Cq(ω) along with the corresponding fits by the two-oscillator model for the two
given values of the wave vector q are shown in Figures 1(b) and 1(c). Good agreement both at
moderate and short wavelengths is observed.
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Figure 1. The collective excitation spectra in the 2D IPL3 system at Γ = 31.8. The normalized
amplitudes Cq(ω) at each given q in color-coded format, dispersion curves ωT(q) (red circles) and ωL(q)
(blue circles) obtained based on the two-oscillator model, the values ωL,T ± γL,T which are marked by
symbols >/ ⊥ of the corresponding color are shown in Panel (a). Black circles correspond to maxima
of fT(q, ω). Frequencies are expressed in units of 2D plasma frequency ω0 =

√
2πρεσ3/ma3. The

numerically obtained amplitudes Cq(ω) (orange points) and the corresponding fits using Eq. (3) (black
curves) for wave numbers qa/π equal to 0.4 and 0.8, respectively are shown in Panels (b) and (c).

The values of the q-gap boundary, q∗, can be easily detected from the maxima of fT(ω) since
the maxima locations ωm exhibit an explicit jump from zero to finite values at q∗. Analysis
using the two-oscillator model can lead to the presence of some (small) noise at low ωT values
and therefore the accurate determination of qg is somewhat more complicated. The dependence
of ωT on q obtained by the two-oscillator model for Γ = 42.7 is shown on Fig. 2(a). In this
strongly coupled regime, ωT(q) behaves as a linear function in the vicinity of the qg value. The
latter can be measured by fitting ωT(q) data with the help of the function

ωT(q) ≈ cT(q − qg)θ(q − qg), (5)

where cT and qg are fitting parameters and θ(q) is the Heaviside function. However, in the 2D
IPL3 system far from the fluid-solid phase transition (lower Γ), the dependence ωT(q) becomes
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non-linear in the vicinity of qg as demonstrated in Fig. 2(b). The question about the exact origin
of this ωT(q) behaviour (obtained based on the two-oscillator model) is beyond the scope of the
present paper and should be considered separately. We just note that the dependence ωT(q) can
be reasonably well described by the function of the form

ωT(q) ≈
[
cT(q − qg) + c2(q − qg)2

]
θ(q − qg), (6)

where cT, c2 and qg are fitting parameters. Example of such a fit is shown in Fig. 2(b). It
should be noted that such a strong deviation from the linear behavior of ωT(q) near qg is not
observed in 3D system even for the case of one-component plasma (corresponding to the very
soft and long-ranged interaction limit) [41]. The results of q∗ and qg measurements are presented
in Figure 2(c). Black points correspond to q∗ values obtained using the maxima ωm(q). Orange
and red symbols correspond to qg values obtained from the fits of MD data for ωT(q) using
Eqs. (5) and (6), respectively. Black and orange points on Fig.2(c) can be well approximated
by the functional form

qg(Γ) ≈ A+BΓ + C exp(−DΓ), (7)

where A, B, C and D are constants. At the same time, the behavior of red points is more simple
and can be approximated by a linear function. Note that the obtained dependencies can also
be fitted by qg ∝ Γ−n (where n is a constant) in a moderate range of Γ values, which has been
observed in a 2D one-component plasma previously [42].
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Figure 2. The q-gap behaviour in the 2D IPL3 system. The panels (a) and (b) show the dependence
ωT(q) for Γ = 42.7 and Γ = 13, respectively. Red symbols correspond to results obtained by the two-
oscillator model, dashed and solid blue curves are fits by Eq. (5) and Eq. (6), respectively. The summarized
results of the q-gap boundary measurements are shown in Panel (c). Black symbols correspond to q∗
values obtained from the maxima ωm(q). Orange and red symbols are qg values obtained using ωT data
fitted by Eq. (5) and Eq. (6), respectively. Black solid (q∗a ≈ 0.84 + 5.83 exp ∗(−0.17Γ)− 10.7× 10−3Γ)
and blue dashed (qga ≈ 0.69 + 2.52 exp(−0.14Γ) − 9.1 × 10−1Γ) curves are fits by Eq. (7) and the blue
solid curve corresponds to a linear fit (qga ≈ 0.54− 6.4× 10−3Γ).

4. Conclusion
In this paper, the behaviour of the q-gap in the two-dimensional system with repulsive dipole-like
interactions was systematically studied . The value of q-gap boundary has been obtained from
the maxima positions of the transverse correlation spectra as well as from the two-oscillator
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model. It is demonstrated that when moving away from the melting point, the dependence of
ωT(q) becomes strongly non-linear in the vicinity of the transverse wave onset (q-gap boundary).
We have suggested a functional form, which fits well the dependence of the q-gap boundary on
the coupling parameter in a wide range of coupling strength. The obtained results can be used
in future studies of collective excitations in fluids, especially in cases of two-dimensional systems.

Acknowledgements
The study was supported by Russian Science Foundation (RSF) Grant No. 17-19-01691.

References
[1] Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I and Petrov O F 2004 Phys.-Usp. 47 447 – 492 URL

http://dx.doi.org/10.3367/UFNr.0174.200405b.0495

[2] Fortov V E, Ivlev A, Khrapak S, Khrapak A and Morfill G 2005 Phys. Rep. 421 1–103

[3] Clegg P S 2008 J. Phys.: Condens. Matter 20 113101 URL http://stacks.iop.org/0953-8984/20/i=11/

a=113101

[4] Stocco A, Drenckhan W, Rio E, Langevin D and Binks B P 2009 Soft Matter 5(11) 2215–2222 URL
http://dx.doi.org/10.1039/B901180C

[5] Yurchenko S O, Shkirin A V, Ninham B W, Sychev A A, Babenko V A, Penkov N V, Kryuchkov N P and
Bunkin N F 2016 Langmuir 32 11245–11255 URL http://dx.doi.org/10.1021/acs.langmuir.6b01644

[6] van der Meer B, Filion L and Dijkstra M 2016 Soft Matter 12(14) 3406–3411

[7] Gray A T, Mould E, Royall C P and Williams I 2015 Journal of Physics: Condensed Matter 27 194108 URL
http://stacks.iop.org/0953-8984/27/i=19/a=194108

[8] Lee W, Chan A, Bevan M A, Lewis J A and Braun P V 2004 Langmuir 20 5262–5270 URL http:

//dx.doi.org/10.1021/la035694e
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