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Abstract—Multi-pedestrian tracking in aerial imagery has
several applications such as large-scale event monitoring, disaster
management, search-and-rescue missions, and as input into
predictive crowd dynamic models. Due to the challenges such as
the large number and the tiny size of the pedestrians (e.g., 4× 4
pixels) with their similar appearances as well as different scales
and atmospheric conditions of the images with their extremely
low frame rates (e.g., 2 fps), current state-of-the-art algorithms
including the deep learning-based ones are unable to perform
well. In this paper, we propose AerialMPTNet, a novel approach
for multi-pedestrian tracking in geo-referenced aerial imagery
by fusing appearance features from a Siamese Neural Network,
movement predictions from a Long Short-Term Memory, and
pedestrian interconnections from a GraphCNN. In addition, to
address the lack of diverse aerial pedestrian tracking datasets,
we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT)
dataset consisting of 307 frames and 44,740 pedestrians anno-
tated. We believe that AerialMPT is the largest and most diverse
dataset to this date and will be released publicly. We evaluate
AerialMPTNet on AerialMPT and KIT AIS, and benchmark
with several state-of-the-art tracking methods. Results indicate
that AerialMPTNet significantly outperforms other methods on
accuracy and time-efficiency.

I. INTRODUCTION

Multi-Object Tracking (MOT) task is to localize multiple
moving objects in video frames over time with preserved
identity. Despite the progress made in recent years, MOT is
still a challenging problem in the computer vision domain
due to heavy occlusions and background clutter as well as
diverse scales and spatial object densities [1], [2], [3]. Despite
significant progress on MOT in computer vision using deep
learning methods, remote sensing or “remote vision” is still in
its infancy stage. MOT on aerial imagery has been challenging
to exploit previously, due to the limited level of detail of the
images. The development of more advanced camera systems

and the availability of very high-resolution aerial images
have alleviated the aerial MOT limitations to some extend,
allowing a variety of applications ranging from the analysis
of ecological systems to aerial surveillance [4], [5]. Aerial
imagery provides efficient image data over wide areas in a
short amount of time. Thus, given sufficient image acquisition
speed, developing MOT methods for small moving objects
such as pedestrians, vehicles, and ships in image sequences
can be investigated to offer new opportunities in disaster
management, predictive traffic, and event monitoring. The
large number and the small size of the moving objects together
with multiple scales and the very low frame rate (e.g., two
fps) are the main differences between MOT in aerial and
ground-level datasets. Besides, the diversity in visibility and
weather conditions, as well as the large images and acquisition
by moving cameras, add to the complexity of aerial MOT.
Despite its important practical application, to the best of our
knowledge, only a few research works have dealt with aerial
MOT [6], [7], [8].

Traditional MOT approaches incorporate various methods
such as discriminative correlation filters (DCF) [9], Kalman
and particle filters [10], [11], and point tracking [12]. It has
been shown that these methods perform poorly in uncon-
strained environments due to rigid target modeling and hand-
crafted target representations [13]. Recently, the rise of Deep
Neural Networks (DNNs) has led to significant performance
gains in object detection, segmentation, and classification
tasks [14], [15], [16]. This success also affected visual object
tracking, making it possible to develop more robust trackers
based on DNNs such as Convolutional Neural Networks
(CNNs) [1], Siamese Neural Networks (SNNs) [17], Recurrent
Neural Networks (RNNs) [18], and Generative Adversarial
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Fig. 1: Overview of the AerialMPTNet’s architecture including an SNN, an LSTM, and a GraphCNN module. The inputs are
two consecutive image sequences cropped and centered to a target object, and the output is the object coordinates in the second
snippet which is mapped to the image coordinates.

Networks (GANs) [19].
In this work, we propose AerialMPTNet as an effi-

cient MOT framework for multi-pedestrian tracking (MPT)
in geo-referenced aerial image sequences. AerialMPTNet is
a regression-based DNN over the state-of-the-art baseline
method of SMSOT-CNN [8].

AerialMPTNet is designed and trained so that it incorporates
temporal and graphical features of the pedestrian movements
for robust and long-term tracking of the pedestrians in var-
ious crowd densities and movements. Figure 1 illustrates an
overview of AerialMPTNet. Our approach benefits from a long
short-term memory (LSTM) [20] and a GraphCNN (GCNN)
for movement prediction and modeling the interconnections
between pedestrians, respectively. In contrast to the previous
works using an individual LSTM for each object to predict the
path of multiple objects [21], [22], AerialMPTNet uses only
one LSTM module to provide a general path prediction based
on the last total predictions of the network itself to reduce
training and runtime complexity.

Unlike ground imagery enjoying large and diverse annotated
MOT datasets such as MOT17 [23], remote vision is lacking
similar datasets for aerial imagery, which limits the develop-
ment of MOT methods. To the best of our knowledge, the
only existing aerial pedestrian tracking dataset is the KIT AIS1

dataset, which comprises 189 frames with the frame rates of
1–2 fps and 32,760 pedestrians annotated. The images were
provided by the German Aerospace Center (DLR) from their
various flight campaigns. The dataset suffers from low-quality
annotation and a low degree of diversity.

Dealing with the limitations of the KIT AIS dataset, we
introduce the Aerial Multi-Pedestrian Tracking (AerialMPT)

1https://www.ipf.kit.edu/code.php

dataset, an aerial imagery dataset for pedestrian tracking com-
posed of 307 frames and 44,740 total pedestrians annotated
with the frame rate of 2. The DLR’s 3K camera system
took the image sequences during different flight campaigns,
captured from different crowd scenarios, i.e., from densely
moving pedestrian in mass events to the sparse ones in streets.
Figure 2 demonstrates example images from AerialMPT. We
believe that AerialMPT with its crowd and movement diversity
can promote research on aerial MOT. The dataset will be
released publicly.

We conduct an intensive qualitative and quantitative eval-
uation of our approach on the AerialMPT and KIT AIS
datasets. Furthermore, we benchmark the AerialMPT by var-
ious traditional and DNN-based methods. Results show that
our AerialMPTNet outperforms all existing methods in the
long-term tracking of pedestrians in aerial image sequences.
Also, qualitative evaluations demonstrate that AerialMPTNet
overcome the limitations of the existing methods (e.g., ID
switches and losing track of objects) by fusing the temporal
and graphical features.

In the following, Section 2 provides an overview of existing
aerial tracking approaches. In Section 3, we introduce the
benchmark datasets. Afterwards, we present our methodology
in Section 4. In Section 5, we evaluate the proposed method
and discuss it. We conclude this paper with Section 6 and give
some ideas for future work.

II. RELATED WORK

For images taken from airborne platforms, most tracking
methods are based on moving object detection [6], [24], [7].
For instance, Reilly et al. [6] eliminated camera motion by
a point correspondence based correction method, afterwards
motion can be detected by modeling a median background



Fig. 2: Sample images of the AerialMPT dataset from different locations and with various crowd and movement complexities.

image out of several frames. Images are divided into over-
lapping cells, and objects are tracked in each cell using the
Hungarian algorithm. The cell placement makes it possible
to track a large number of objects with O(n3). Meng et
al. [7] calculate an accumulative difference image from time
step to time step to detect moving objects. An object is
afterwards modeled by extracting spectral and spatial features.
Given a target model, matching candidates can be found in
the following frames via regional feature matching. However,
such approaches have several disadvantages in our scenario.
In general, these methods are sensitive to changing light
conditions and the parallax effect, working not well with small
or static objects. Reilly et al. use a road orientation estimate as
a constraint to assign labels. In our scenario, pedestrians do not
walk on predetermined paths such as highways or roads and
show more complex moving behaviors. Hence, such estimates
can not be used.

Appearance-based methods successfully overcome these
issues by working on single images [25], [26], especially
successful with big objects such as ships, airplanes on the
ground, or cars. There is a huge amount of literature covering
the topic of pedestrian tracking in surveillance scenarios [27],
[28]; however, for pedestrian tracking in aerial imagery, the
amount of literature is minimal [8], [29]. Schmidt et al. [29]
propose a tracking-by-detection framework based on Haar-like
features. Due to different weather conditions and visibilities
and the small size of the objects, pedestrians are hardly visible
sometimes. Those difficulties result in the regular occurrence
of false positives and negatives, influencing the tracking per-
formance negatively. Bahmanyar et al. [8] introduced SMSOT-
CNN in 2019, the only previous work dealing with multi-
pedestrian tracking in aerial imagery by using deep learning
(DL). They extend the single object tracker GOTURN [17]
with three additional convolution layers and modify the net-
work to be capable of MOT. GOTURN is a regression tracker
based on SNNs to track generic objects at high speed. The

network receives two image crops as input, one crop from
the previous frame centered at the known object position,
and one crop from the current frame centered at the same
position. A hyperparameter controls the size of the crop, and
with this, the amount of context the network obtains. In a
final step, the network regresses the object position in crop
coordinates. Bahmanyar et al. evaluate SMSOT-CNN on the
KIT AIS pedestrian dataset, reaching a MOTA and MOTP
score of -29.9 and 71.0, respectively. However, the network has
problems to deal with crowded situations and objects sharing
similar appearance features happen to be in the same crop,
resulting in identity switches and loosing of tracks.

III. AERIAL MULTI-PEDESTRIAN TRACKING DATASET

AerialMPT is an aerial pedestrian tracking dataset com-
posed of 14 sequences and 307 frames of average size
425 × 358 pixels. The images were taken by the DLR’s 3K
camera system composed of a nadir-looking and two side-
looking commercial DSLR cameras, mounted on a helicopter
flying at different altitudes ranging from 600 m to 1400 m. The
different flight altitudes resulted in various spatial resolutions
(ground sampling distances – GSDs) from 8 cm/pixel to 13
cm/pixel. Due to the movement of the helicopter, the camera
system is constantly moving. Therefore, in a post-processing
step, for each region of interest, the images were co-registered,
geo-referenced, and cropped, resulting in sequences of 2 fps
from the region of interest. The images were acquired at
different flight campaigns over various scenes, containing
pedestrians, and with different crowd density and movement
complexities between 2016 and 2017. Figure 2 demonstrates
some sample images from the AerialMPT dataset.

A. Pedestrian Annotation

The dataset was labeled manually with point-annotations
on individual pedestrians by qualified specialist staff, where
each individual got assigned a unique ID over the whole
sequence. This process resulted in 2,528 pedestrians annotated



TABLE I: Statistics of the train and test sets of the AerialMPT
dataset. The image sequences are from different flight cam-
paigns over BAUMA construction trade fair (Munich, Ger-
many), OAC Open Air Concert (Germany), Witt Church day
(Wittenberg, Germany), as well as Pasing, Marienplatz, and
Karlsplatz Munich city areas (Germany).

Training
Seq. Image Size # Frames # Pedestrian # Anno. # Anno./fr. GSD (cm)

Bauma1 462x306 19 270 4,448 234.11 11.5
Bauma2 310x249 29 148 3,627 125.07 11.5
Bauma4 281x243 22 127 2,399 109.05 11.5
Bauma5 281x243 17 94 1,410 82.94 11.5

Marienplatz 316x355 30 215 5,158 171.93 10.5
Pasing1L 614x366 28 100 2,327 83.11 10.5
Pasing1R 667x220 16 86 1,196 74.75 10.5

OAC 186x163 18 92 1,287 71.50 8.0
Total 179 1,132 21,852 122.08

Testing
Seq. Image Size # Frames # Pedestrian # Anno. # Anno./fr. GSD (cm)

Bauma3 611x552 16 609 8,788 549.25 11.5
Bauma6 310x249 26 270 5,314 204.38 11.5

Karlsplatz 283x275 27 146 3,374 124.96 10.0
Pasing7 667x220 24 103 2,064 86.00 10.5
Pasing8 614x366 27 83 1,932 71.56 10.5

Witt 353x1202 8 185 1,416 177.00 13.0
Total 128 1,396 22,888 178.81

with 44,740 annotation points, ranging from 71.5 to 549.2
average annotations per frame in the sequences. Since the
number of pedestrians in the frames of a sequence could be
different (due to entering and leaving pedestrians), we use the
annotation effort by the average annotation per frame for each
sequence. The annotations were sanity checked by the authors
in order to provide precise and accurate annotations. Pedestrian
tracking annotation in aerial imagery is a challenging task due
to the large number and the small size of the pedestrians in
the images. Due to the similar appearance of the pedestrians,
discriminating each person from adjacent pedestrians and
similar-looking objects as well as rediscovering the pedestrians
occluded for a few frames are difficult and time-consuming.
We split the dataset manually into 8 train and 6 test sequences,
where the splits were not randomized. This procedure allowed
us to cover all scenes in our train/test splits so that images from
the same campaign are either in the training or in the test set.
Table I details the statistics of the image sequences.

B. Contributions of AerialMPT over KIT AIS

The only existing aerial pedestrian tracking dataset is the
KIT AIS dataset comprising 13 sequences and 189 frames.
Table II and Figure 3 compare the statistics of our AerialMPT
and the KIT AIS datasets. As it can be seen, the sequences of
AerialMPT usually hold a higher amount of frames than those
of KIT AIS, i.e., 60 % of the sequences in AerialMPT contain
more than 20 frames whereas in KIT AIS less than 20 % of the
sequences are within this length. The longer sequence length
makes AerialMPT more appropriate for long-term pedestrian
tracking applications compared to KIT AIS. Moreover, the
image contrast and quality in AerialMPT is much higher than
in KIT AIS, which helps tracking methods to discriminate
pedestrians and similar-looking objects better.

Besides, according to Figure 3, the scenes in AerialMPT
are more crowded and complex than those of KIT AIS,
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Fig. 3: Distribution of (left) number of frames and (right)
average per-frame annotations of our AerialMPT and the
KIT AIS pedestrian datasets.

i.e., all image sequences of AerialMPT contain at least 50
pedestrians; however, more than 20% of the sequences of
KIT AIS contains less than 10 pedestrians. Furthermore, based
on a visual inspection, the spatial densities of the pedestrians in
AerialMPT are higher, and their movements are more complex
and realistic than those of KIT AIS. In KIT AIS the sequences
represent simplified and unrealistic movement patterns, e.g.,
many sequences include only a few tracks (<10), or in many
scenes, all pedestrians move in the same direction. Altogether,
the models trained on AerialMPT can better generalize to
various real-world pedestrian tracking scenarios.

IV. METHODOLOGY

During our experiments, we noticed that the pedestrians’
trajectories are influenced by their previous movements, scene
arrangement, and other moving objects. However, the current
regression-based tracking networks such as SMSOT-CNN do
not consider movement history or the relationships between
neighboring objects. The networks rely only on a particular
neighborhood of the target object (no contextual information
outside of the neighborhood). Moreover, inside the neighbor-
hood, the networks do not learn to distinguish the target object
from other similar-looking objects. As a consequence, identity
switches occur in crowded situations and object crossings.
Besides, object tracks could be lost due to background clutter
and occlusion.

Dealing with these issues, we propose AerialMPTNet,
which considers the track history and the neighboring ob-
jects’ interconnections together with the networks’ appearance
features (see Figure 1). AerialMPTNet crops two image tiles
from two consecutive frames, namely target and search area,
in which the object location is known and to be detected,
respectively. Both tiles are cropped from the same coordinates,
centered on the target object, and scaled to 227×227 pixels.
Afterwards, they are given to the SNN module, which is
composed of two branches of five 2D convolution, three max-
pooling, and two local response normalization layers each,
where the layer weights are shared between the branches.
Figure 1 details the layer information. The output features of
the branches OutSNN are then concatenated and given to four



TABLE II: Comparing the statistics of the AerialMPT and KIT AIS pedestrian tracking datasets.

Dataset Avg. GSD # Sequences # Frames # Annotations (per Frame) Total FPS
Image Size (cm) Train Test Total Avg. Min Max Avg. Min Max Annotations

KIT AIS 438×483 12–15 7 6 189 14.1 4 31 192.7 8 877 32,760 1–2
AerialMPT (Ours) 425×358 8–13 8 6 307 21.9 8 30 145.7 68 556 44,740 2

fully connected layers that regress the object coordinates in the
search area (top-left and bottom-right points of the bounding
box around the object). The predicted object coordinates are
then input to the LSTM and GCNN modules.

A. Long Short-Term Memory Module

The LSTM module is composed of two LSTM layers. For
each object being tracked, the network prediction is used to
generate a sequence of motion vectors. In our experiments,
each track has a dynamic history li of up to five last predic-
tions. Since the tracks do not necessarily start at the same time,
the length of the histories can differ, which is considered for
padding the tracks and making it possible to be processed as a
batch. The padded tracks are fed to the first LSTM layer with
a hidden size of 64. The hidden state of the first LSTM layer
hl−1
t goes through a dropout layer with p = 0.5 and is given as

input to the second LSTM layer. After that, the output features
ht of the second LSTM layer are given to a linear layer of
size 128. Finally, the output of the LSTM module OutLSTM

is concatenated with OutSNN and OutGraph, the output of
the GCNN module. The concatenation allows the network to
predict object locations based on a fusion of appearance and
movement features.

B. GraphCNN Module

The GCNN module is composed of three convolution layers
with 1×1 kernels, and the output channel numbers of 32, 64,
and 128. In order to generate the target object’s adjacency
graph, based on the location estimates of all objects, eight
closest neighbors in a neighborhood of 7.5 m of the object
are considered and represented as a directed graph by a set
of vectors. The vectors are zero-padded if less than eight
neighbors are found. The track length is limited to five, and
a padding procedure applied, similar to the LSTM module.
This graph contains the (x,y) coordinates of the target object
in the image tile coordinate system, and the (x,y) information
of the vectors to the eight selected neighbors. Thus, for each
track, the input to the GraphCNN is a matrix of 18×5, which
is given to the network as a batch of multiple tracks. The
output features of the last convolution layer are gone through a
global average pooling to generate the final output OutGraph

of 128 dimensions, which is concatenated to OutSNN and
OutLSTM .

V. RESULTS AND DISCUSSION

In this section, we evaluate our AerialMPTNet on the
AerialMPT and KIT AIS datasets, and compare its results to a
set of traditional methods such as KCF [9], Medianflow [30],
Mosse [31] and CSRT [32], and DNN-based methods such as
Tracktor++ [2], DCFNet [33], and SMSOT-CNN [8].

A. Experimental Setup

We used Titan XP GPUs and PyTorch for all of our experi-
ments. All networks were trained with an SGD optimizer and
an initial learning rate of 10−6. However, for the training of
SMSOT-CNN, we assigned different fractions of the learning
rate to each layer, similar to its original implementation
in Caffe inspired by the GOTURN’s [17] implementation2.
Weight and bias initialization was also identical to the Caffe
version. For the training of AerialMPTNet and SMSOT-CNN,
firstly, the SNN module and the FC layers were trained on the
DLR-ACD [34] and tracking datasets simultaneously (similar
to [8]). Then for AerialMPTNet, using the model weights,
all network modules were trained as a whole on the tracking
dataset. The learning rate was decayed by a factor of 0.1 in
every 20K iterations. For all trainings, the L1 loss was used,
L(x, y) = |x−y|, where x and y are the output of the network
and ground truth, respectively.

SMSOT-CNN is trained offline in which the network learns
to regress the object location based on only one time step.
AerialMPTNet is trained in an end-to-end fashion by using
feedback loops to integrate historical movement and intercon-
nection information from previous time steps. In more detail,
a batch of 150 tracks was selected, starting at random time
steps between 0 and the individual track end tend − 1. For
each track in the batch, the network’s position estimates were
stored. The position estimates were given to the LSTM module
as a sequence of movement vectors with a length of up to 6
previous network estimates. The neighbor calculation for the
GCNN is also based on the network’s predictions. We searched
for nearest neighbors based on the network’s position estimates
and the true positions of all objects in the specific sequence
and frame known from the annotations. If the network failed
to track a pedestrian and it moved out of the predicted search
window, we removed the object from the batch and inserted a
new random track.

B. Evaluation Metrics

We report all of the widely used metrics in the MOT
domain [23]. However, we mainly use MOTA and MOTP
in our discussion as the commonly-used metrics for MOT
performance evaluation. MOTP describes the capability of a
tracker in estimating precise object locations:

MOTP =

∑
t,i dt,i∑
t ct

, (1)

where dt,i is the location error for the matched object i in
frame t, and c is the total number of matched objects. A

2https://github.com/nrupatunga/PY-GOTURN



tracklet and an annotation are associated as matched if their
Intersection over Union (IoU) is greater than 0.5.

MOTA gives an intuitive measure of the tracker’s perfor-
mance at keeping trajectories, independent of the precision of
the estimates. It is calculated by summing the false negatives,
false positives, and identity switches over all frames divided
by the total amount of objects:

MOTA = 1−
∑

t(FNt + FPt + IDt)∑
t GTt

. (2)

In our evaluations, the objects are either Mostly Tracked
(MT) tracked successfully for > 80% of the lifetime, Mostly
Lost (ML) tracked successfully for < 20% of the lifetime,
and Partially Tracked (PT) the rest of the cases. For the other
used abbreviations, we refer the readers to [8].

C. Results

Figure 4 demonstrates tracking results of our AerialMPTNet
on two sequences of the AerialMPT dataset. Table III shows
the quantitative results of different tracking methods on the
KIT AIS and the AerialMPT datasets. In general, the DNN-
based methods outperform the traditional ones, with MOTA
varying between -16.2 and -48.8 versus between -55.9 and
-85.8. Furthermore, CSRT is the best performing traditional
methods on both datasets based on MOTA (-55.9 and -64.6).
It tracks 9.6% and 2.9% of the pedestrians mostly on the
KIT AIS and AerialMPT datasets, while it mostly loses 39.4%
and 59.3% of the pedestrians, respectively.

According to the table, our AerialMPTNet outperforms all
other methods on both datasets by the significantly high-
est MOTA (-16.2 and -23.4) and competitive MOTP (69.6
and 69.7) values. It mostly tracks 28.1% and 15.3% of the
pedestrians (on the two datasets) while mostly loses only
16.6% and 34.8% of them. Among the previous DNN-based
methods, SMSOT-CNN achieves the most promising results
on both datasets (MOTA: -35.0 and -37.2; MOTP: 70.0 and
68.0). DCFNet is a single object tracker originally; however,
we adapted its framework to handle multi-object tracking.
Although it outperforms SMSOT-CNN in terms of MOTP
by 1.6 and 4.3 points, its MOTA values fall behind by 2.4
and 4.6 points. Tracktor++ is a tracking method based on
FasterRCNN [16]. It is the worst-performing among the other
DNN-based methods due to suffering from a high amount of
FNs and ID switches.

Due to the similarity of the SSN module of AerialMPT-
Net to SMSOT-CNN, we consider the prediction results of
SMSOT-CNN (which only utilizes appearance features) as the
baseline for the ablation study of AerialMPTNet. According
to Table III, adding the LSTM module to the SNN module,
improves the baseline MOTA by 17.2 and 9.1 points on the
KIT AIS and AerialMPT datasets, respectively. Moreover,
adding the GCNN module to the SNN module improves
the baseline MOAT by 12 and 11.8 points. According to
the results, considering both modules increases the baseline
MOTA by 18.8 and 13.8 points. Figure 5 compares the baseline
SMSOT-CNN and our AerialMPTNet on sample sequences of

the two datasets qualitatively. According to the results of the
first three columns, the fusion of the appearance, temporal, and
graphical features allows our AerialMPTNet to outperform the
baseline by better handling the pedestrian crossing situations
(avoid ID switches) and keeping the pedestrian trajectories for
a longer-term even in the presence of interrupting features.

Table IV shows the tracking results of our AerialMPTNet
on the test sequences of KIT AIS and AerialMPT datasets.
According to the table, on the KIT AIS dataset, the tracker
usually achieves better MOTA and MOTP scores for the
shorter sequences. On this dataset, the worst MOTA (-34.5) is
obtained on the Munich02 sequence, which is the most com-
plex sequence considering its length as well as the number of
pedestrians and their movements. On the AerialMPT dataset,
the MOTA scores are not correlated to the sequence lengths.
This finding indicates that the scene complexities are well-
distributed over different sequences of AerialMPT. According
to the results, despite its small number of frames, the MOTA
score of the Witt sequence is relatively low (-65.9). Further
investigation shows that the poor performance is caused by
the search-window dependency of AerialMPTNet on the size
of the tracked object. In the Witt sequence, due to its very
different GSD, the objects move out of the search-window
(and are therefore lost) at some point, which influences the
tracking results negatively.

In order to demonstrate how an approach trained on
AerialMPT can generalize on the other datasets, we conducted
a cross-dataset validation of AerialMPTNet on the AerialMPT
and KIT AIS datasets. As the results in Table V show, the
model trained on AerialMPT achieves a MOTA score of -
58.9 on the test set of KIT AIS which is 35.5 points worse
than testing on AerialMPT. Nevertheless, the model trained
on KIT AIS can achieve a MOTA score of -62.8 on the test
set of AerialMPT, which is 46.6 points worse than testing
KIT AIS. The results indicate that AerialMPT contains the
features of KIT AIS to a large degree, allowing the models to
better generalize to various pedestrian movement scenarios.

VI. CONCLUSION

In this paper, we introduced an aerial pedestrian tracking
dataset, the AerialMPT dataset, and proposed AerialMPTNet,
an advanced pedestrian tracking approach based on DNNs.
AerialMPT is composed of 307 frames acquired from different
flight campaigns over various crowd scenarios and improves
the shortcomings of the only existing pedestrian tracking
dataset (KIT AIS) by better image quality and contrast,
longer sequences, and a larger number of tracks. Cross-dataset
validations indicate that the models trained on AerialMPT
can better generalize on the other datasets. Besides, our
proposed AerialMPTNet is composed of an SNN, an LSTM,
and a GraphCNN module to fuse appearance, temporal, and
graphical features. Results on the KIT AIS and AerialMPT
dataset demonstrate that our approach successfully tackles the
challenges of tracking small objects in aerial imagery, leading
to a MOTA improvement by 18.2 and 13.8 compared to the
baseline, respectively. Moreover, it outperforms the existing



Fig. 4: Sample predictions of AerialMPTNet on the Bauma3 (left; 20th frame) and Bauma6 (right, 7th frame) sequences.

TABLE III: Results of different tracking methods on the KIT AIS and AerialMPT datasets.
Tracker Dataset IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KCF KIT AIS 9.0 8.8 9.3 10.3 9.8 165.56 1043 1.1 53.8 45.1 11426 10782 32 116 -84.9 87.2 -84.7
Medianflow KIT AIS 18.5 18.3 18.8 19.5 19.0 144.72 1043 7.7 55.8 36.5 9986 9678 30 161 -63.8 77.7 -63.5

CSRT KIT AIS 16.0 16.9 15.2 17.5 19.4 126.55 1043 9.6 51.0 39.4 8732 9924 91 254 -55.9 78.4 -55.1
Mosse KIT AIS 9.1 8.9 9.3 10.5 10.0 163.81 1043 0.8 54.0 45.2 11303 10765 31 133 -85.8 86.7 -83.5

Tracktor++ KIT AIS 6.6 9.0 5.2 10.8 18.7 81.86 1043 1.1 28.4 70.5 5648 10723 648 367 -41.5 40.5 –
Stacked DCFNet KIT AIS 30.0 30.2 30.9 33.1 32.3 120.52 1043 13.8 62.6 23.6 8316 8051 139 651 -37.3 71.6 -36.1

SMSOT-CNN KIT AIS 32.5 31.7 33.4 35.7 33.9 121.32 1043 22.2 56.0 21.8 8371 7730 135 585 -35.0 70.0 -33.9
AerialMPTNet (LSTM only) (Ours) KIT AIS 39.7 38.8 40.6 44.6 42.6 104.78 1043 28.9 53.8 17.3 7230 6661 270 886 -17.8 68.8 -15.5
AerialMPTNet (GCNN only) (Ours) KIT AIS 37.5 36.7 38.4 42.0 40.0 109.49 1043 25.3 55.3 19.4 7555 6980 259 814 -23.0 69.6 -20.9

AerialMPTNet (Ours) KIT AIS 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2
KCF AerialMPT 11.9 11.5 12.3 13.4 12.5 167.24 1396 3.7 17.0 79.3 21407 19820 86 212 -80.5 77.2 -80.1

Medianflow AerialMPT 12.2 12.0 12.4 13.1 12.7 161.97 1396 1.7 20.2 78.1 20732 19883 46 144 -77.7 77.8 -77.5
CSRT AerialMPT 16.9 16.6 17.1 20.3 19.7 148.52 1396 2.9 37.8 59.3 19011 18235 426 668 -64.6 74.6 -62.7
Mosse AerialMPT 12.1 11.7 12.4 13.7 12.9 165.66 1396 3.8 17.9 78.3 21204 19749 85 194 -79.3 80.0 -78.9

Tracktor++ AerialMPT 4.0 8.8 3.1 5.0 8.7 93.02 1396 0.1 7.6 92.3 11907 21752 399 345 -48.8 40.3 –
Stacked DCFNet AerialMPT 28.0 27.6 28.5 31.4 30.4 128.30 1396 9.4 44.2 46.4 16422 15712 322 944 -41.8 72.3 -40.4

SMSOT-CNN AerialMPT 32.0 30.7 33.4 36.6 33.6 129.13 1396 10.7 47.7 41.6 16529 14515 359 1082 -37.2 68.0 -35.6
AerialMPTNet (LSTM only) (Ours) AerialMPT 35.7 34.5 37.0 40.5 37.7 119.40 1396 12.8 49.8 37.4 15283 13627 409 1376 -28.1 70.1 -26.3
AerialMPTNet (GCNN only) (Ours) AerialMPT 37.0 35.7 38.3 42.0 39.1 117.05 1396 15.6 46.0 38.4 14983 13279 433 1229 -25.4 69.7 -23.5

AerialMPTNet (Ours) AerialMPT 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5

Fig. 5: Comparing the performance of AerialMPTNet (top row) and SMSOT-CNN (bottom row). The first three columns
illustrate the outperformance of AerialMPTNet in pedestrian intersections and keeping the trajectories. The third column shows
the poor performance of both methods due to nonadaptive search window size. Samples are from the AerialMPT (Pasing8,
Karlsplatz, and Witt sequences) and KIT AIS (AA Walking 02 sequence) datasets. The frame numbers are also depicted.

TABLE IV: Results of AerialMPTNet on the test sets of KIT AIS and AerialMPT datasets.

KIT AIS
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT↑ PT↑ ML↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA Crossing 02 13 46.7 45.6 46.9 49.3 48.8 45.08 94 23.4 51.1 25.5 586 576 12 92 -3.4 69.7 -2.5
AA Walking 02 17 41.4 40.8 42.1 43.7 42.3 93.59 188 17.0 51.6 31.4 1591 1504 25 231 -16.8 68.5 -15.9

Munich02 31 31.2 30.2 32.3 37.8 35.3 136.77 230 10.4 55.7 33.9 4240 3808 192 498 -34.5 67.6 -31.4
RaR Snack Zone 02 4 59.0 58.8 59.2 60.9 60.5 86.00 220 33.2 65.0 1.8 344 3338 4 34 20.7 73.4 21.1
RaR Snack Zone 04 4 68.5 68.3 68.6 69.8 69.5 94.25 311 45.7 51.8 2.5 377 371 3 42 38.9 74.2 39.1

Total 69 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2

AerialMPT
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT↑ PT↑ ML↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
Bauma3 16 31.2 30.4 32.0 38.2 36.3 368.12 606 11.6 51.7 36.7 5890 5435 277 582 -32.0 70.8 -28.9
Bauma6 26 37.2 34.8 39.9 44.2 38.6 143.69 270 17.0 58.1 24.9 3736 2964 123 333 -28.4 70.2 -26.1

Karlsplatz 27 45.6 44.2 47.1 48.6 45.6 72.37 146 19.9 61.6 18.5 1954 1733 25 153 -10.0 67.4 -9.3
Pasing7 24 67.6 64.8 70.7 71.3 65.3 32.58 103 49.5 43.7 6.8 782 593 5 93 33.1 70.7 33.3
Pasing8 27 39.7 38.7 40.8 41.3 39.2 45.85 83 15.7 55.4 28.9 1238 1134 2 83 -22.9 68.9 -22.8

Witt 8 16.0 15.9 16.1 17.9 17.6 147.75 185 2.7 24.3 73.0 1182 1163 4 25 -65.9 60.1 -65.7
Total 128 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5



TABLE V: The cross-validation results of AerialMPTNet on the KIT AIS and AerialMPT datasets.
Train Test IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT↑ PT↑ ML↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AerialMPT AerialMPT 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5
KIT AIS KIT AIS 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2

AerialMPT KIT AIS 20.1 19.5 20.7 24.5 23.1 142.59 1043 8.8 55.7 35.5 9839 9077 193 515 -58.9 73.7 -57.3
KIT AIS AerialMPT 19.2 18.6 19.9 22.7 21.2 150.42 1396 3.9 32.2 63.9 19254 17700 301 967 -62.8 66.4 -61.5

traditional and DNN-based tracking methods. Results also
show that due to different GSDs and pedestrians’ speeds,
AerialMPTNet may lose pedestrians as they move out of its
search window. We leave the development of an adaptive
search window size for future works. Furthermore, the usage
of new SNNs and different loss functions could be considered.

VII. ACKNOWLEDGEMENTS

We thank TernowAI3 for providing us with the high-quality
labeled data.

REFERENCES

[1] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[2] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 941–951.

[3] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 4705–4713.

[4] “Remote sensing data: Applications and benefits,” U.S. House Hear-
ings, Subcommittee on Space and Aeronautics, Committee on Sci-
ence and Technology, Tech. Rep., April 2008, serial No. 110-91,
retrieved January 2, 2020: https://www.govinfo.gov/content/pkg/CHRG-
110hhrg41573/html/CHRG-110hhrg41573.htm.

[5] J. Everaerts et al., “The use of unmanned aerial vehicles (uavs) for
remote sensing and mapping,” The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. 37,
no. 2008, pp. 1187–1192, 2008.

[6] V. Reilly, H. Idrees, and M. Shah, “Detection and tracking of large
number of targets in wide area surveillance,” in European conference
on computer vision. Springer, 2010, pp. 186–199.

[7] L. Meng and J. P. Kerekes, “Object tracking using high resolution
satellite imagery,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 5, no. 1, pp. 146–152, 2012.

[8] R. Bahmanyar, S. Azimi, and P. Reinartz, “Multiple vehicles and people
tracking in aerial imagery using stack of micro single-object-tracking
cnns,” The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. 42, pp. 163–170, 2019.

[9] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed track-
ing with kernelized correlation filters,” IEEE transactions on pattern
analysis and machine intelligence, vol. 37, no. 3, pp. 583–596, 2014.

[10] E. V. Cuevas, D. Zaldivar, and R. Rojas, “Kalman filter for vision
tracking,” 2005.

[11] E. Cuevas, D. Zaldivar, and R. Rojas, “Particle filter in vision tracking,”
e-Gnosis, no. 5, pp. 1–11, 2007.

[12] M. Ighrayene, G. Qiang, and T. Benlefki, “Making bayesian tracking
and matching by the brisk interest points detector/descriptor cooperate
for robust object tracking,” in 2016 IEEE International Conference on
Signal and Image Processing (ICSIP). IEEE, 2016, pp. 731–735.

[13] S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, and S. Kasaei,
“Deep learning for visual tracking: A comprehensive survey,” arXiv
preprint arXiv:1912.00535, 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

3https://ternow.ai

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[17] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with
deep regression networks,” in European Conference on Computer Vision.
Springer, 2016, pp. 749–765.

[18] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online
multi-target tracking using recurrent neural networks,” in Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[19] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W.
Lau, and M.-H. Yang, “Vital: Visual tracking via adversarial learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8990–8999.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[22] B. Cheng, X. Xu, Y. Zeng, J. Ren, and S. Jung, “Pedestrian trajectory
prediction via the social-grid lstm model,” The Journal of Engineering,
vol. 2018, no. 16, pp. 1468–1474, 2018.
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