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Forecasts in energy system simulations
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Fig.1: Schematic model overview of the agent-based model AMIRIS
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Providing forecasts for flexibility option agents
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Fig.3: Agent providing forecasts for a single flexibility option
 Perfect price forecast which for single agent
* No competition
» Perfect optimization of operational strategy
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Fig.4: Agent providing forecasts for multiple flexibility options

» Multiple flexibility agents receive price forecast
» Forecast errors due to competition

 Disrupts optimization of operational strategies
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How-to provide accurate forecasts for multiple agents?

» Goal: integrate expected bidding behaviour of flexibility agents

« Common approach:
» Finding equlilibrium for flexibility operators using game theory
« High computational effort

« Alternative approach:

» Forecast agent is equipped with neural network:
 Estimate bidding behaviour of flex agents
» Use data from previous and future hours of simulation

 Technical details:
« Combine multiple NN
» Feed-forward network & Long Short-Term Memory (LSTM)
 Training on data from previous simulations
» Implementation in agent-based electricity model (,Model-in-model’ approach)

i DLR
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Fig.5: Forecast agent equipped with neural networks

* Forecast for at least next 24 hours providing forecasts for multiple flexibility options
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Fig.6: Stylized merit order curve (Cludius et al., Energy Economics 44, 2014)
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Fig.7: Modelled merit order curve without flexibility options
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Fig.8: Modelled merit order curve with significant capacities of flexibility options
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Feed-forward model |

» Map residual load on day-ahead price

« Artificial scenario with no storage capacity

* Therefore no unforeseen deviations

 Architecture:
* Input: Residual load(t)
« Qutput: Price(t)
« 3 hidden layers [100, 50, 30]
» 48 epochs
* batch size of 32
* Fit:
* R2 0.9999
« MAE 0.26 EUR/MWh
* Max. abs. error 2.39 EUR/MWh

i DLR
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Fig.9: Residual load in scenario with no storage capacity

250

200 - +
£
g 150 -
-
o
)
W 100 -
=
9
=
[ %]
5 50
@
[ —
o
0 -
-50 T T T T T
-50 0 50 100 150 200 250
Electricity price EUR/MWh




DLR.de * Chart 11 > Model in model: Electricity price forecasts in agent-based energy system simulations > Nitsch F, Schimeczek C > INREC 2020 160
) 140 - i
S 120 - !
Feed-forward model Il =
a 100 -
S 80 -
» Map residual load on day-ahead price CE
E 40 -
L
« Artificial scenario with extended storage capacity, 20 1 |
0 . ‘ : ‘
0 20000 40000 60000 80000 100000
» Leads to various unforeseen deviations due to storage | _ _ Residual load mwn .
) Fig.11: Residual load in scenario with extended storage capacity
dispatch
200
 Architecture: < 150
- Input; Residual_load(t) -
 Output: Price(t) >
- 3 hidden layers [100, 50, 30] s
» 48 epochs S
* batch size of 32 o 50
* Fit:
« R2 0.9482 0 ) : !
0 50 100 150 200
* MAE 152 EUR/MWh Electricity price EUR/MWh
« Max. abs. error 58.66 EUR/MWh Fig.12: Predicted prices against simulated prices

i DLR

, 5
S S R Y s
AR . =

- b S
A S




DLR.de * Chart 12 > Model in model: Electricity price forecasts in agent-based energy system simulations > Nitsch F, Schimeczek C > INREC 2020

Extract flexibility option signal
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Fig.13: Simulated electricity price (red) and FF prediction delta (blue) in sample period of 300 hours

» Task: predict delta for forecasted price deviation of FF network to account for time-dependent dispatch by
flexibility options

 Prediction delta (and past simulated electricity price) should be used as input for LSTM
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Comparison of predictions
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Fig.16: Comparison of simulated prices (black), FF prediction (grey dotted), FF&LSTM prediction (red dashed) and storage dispatch over time




DLR.de * Chart15 > Model in model: Electricity price forecasts in agent-based energy system simulations > Nitsch F, Schimeczek C > INREC 2020

Discussion

» Generalization of FF possible or training for each specific scenario setup necessary?
* Power plant park
» Operational costs (prices, emission allowances, etc.)

» Generalization of LSTM possible or training for different flexibility option setups necessary?
« Different technologies (Pumped hydro vs. Li-lon vs. H, vs. P2X2P storage)
* Different capacities

» Deploying individually trained sub-networks, e.g. for in simulation?
« Accounting for time-segment specific characteristics (each hour of day)

i DLR
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Conclusion

Price forecasts in agent-based energy system models need to be adapted to account for
competition amongst multiple flexibility options

Game theory no preferred method due to high computational effort

Forecast agent equipped with neural networks to integrate flexibility agents bidding behaviour
» Feed forward to account for residual load
« LSTM to model price impact by flexibility options

Results demonstrate feasibility of idea to integrate model-in-model approach in ABM

Still open questions on deployment and training
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