Model in model: Electricity price forecasts in agent-based energy system simulations

Felix Nitsch, Christoph Schimeczek

INREC 2020

German Aerospace Center Institute of Engineering Thermodynamics Energy Systems Analysis Curiestraße 4, 70563 Stuttgart

Knowledge for Tomorrow

Forecasts in energy system simulations

- Background: agent-based model AMIRIS developed at DLR Stuttgart (Deissenroth et al., 2017) simulating German electricity market
- Supply:
 - Conventional power plants bid with marginal costs (operation, fuel, CO₂, etc.)
 - Renewables follow provided generation profiles
 - Flexibility options rely on price forecasts for optimizing operational strategy

Fig.1: Schematic model overview of the agent-based model AMIRIS

Retrospective: INREC 2019

- Analysis of commercial day-ahead price forecast
- Identification of key error components
 - Merit Order gradient
 - 24h cycle characteristic (e.g. PV & demand)
 - Autocorrelation
 - Random fluctuations
- Construction of artificial day-ahead price forecasts
- Application in agent-based electricity market model AMIRIS (Deissenroth et al., 2017)
- Enabling of modelling more realistic agentbehaviour due to similar error characteristics as found in the industry

Fig.2: Summary of presentation at INREC 2019 (Schimeczek and Nitsch, 2019)

Providing forecasts for flexibility option agents

Fig.3: Agent providing forecasts for a **single** flexibility option

- Perfect price forecast which for single agent
- No competition
- Perfect optimization of operational strategy

Fig.4: Agent providing forecasts for multiple flexibility options

- Multiple flexibility agents receive price forecast
- Forecast errors due to competition
- Disrupts optimization of operational strategies

How-to provide accurate forecasts for multiple agents?

- Goal: integrate expected bidding behaviour of flexibility agents
- Common approach:
 - Finding equilibrium for flexibility operators using game theory
 - High computational effort
- Alternative approach:
 - Forecast agent is equipped with neural network:
 - Estimate bidding behaviour of flex agents
 - Use data from previous and future hours of simulation
 - Technical details:
 - Combine multiple NN
 - Feed-forward network & Long Short-Term Memory (LSTM)
 - Training on data from previous simulations
 - Implementation in agent-based electricity model (,Model-in-model' approach)

Merit Order Model

• Conventional power plants bid with marginal costs (according to theory)

Fig.6: Stylized merit order curve (Cludius et al., Energy Economics 44, 2014)

Merit Order Model

• Conventional power plants bid with marginal costs (according to theory)

In simulations

• <u>Without flexibility options:</u> price as function of residual load

Fig.7: Modelled merit order curve without flexibility options

Merit Order Model

• Conventional power plants bid with marginal costs (according to theory)

In simulations

- <u>Without flexibility options:</u> price as function of residual load
- <u>With flexibility options:</u> more complex, time-dependent relation between residual load and prices

Fig.8: Modelled merit order curve with significant capacities of flexibility options

Feed-forward model I

- Map residual load on day-ahead price
- Artificial scenario with no storage capacity
- Therefore no unforeseen deviations
- Architecture:
 - Input: Residual_load(t)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 48 epochs
 - batch size of 32
- Fit:
 - R2 0.9999
 - MAE 0.26 EUR/MWh
 - Max. abs. error 2.39 EUR/MWh

Fig.9: Residual load in scenario with no storage capacity

Fig.10: Predicted prices against simulated prices

Feed-forward model II

- · Map residual load on day-ahead price
- Artificial scenario with extended storage capacity,
- Leads to various unforeseen deviations due to storage dispatch
- Architecture:
 - Input: Residual_load(t)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 48 epochs
 - batch size of 32
- Fit:
 - R2 0.9482
 - MAE 1.52 EUR/MWh
 - Max. abs. error 58.66 EUR/MWh

Extract flexibility option signal

- Task: predict delta for forecasted price deviation of FF network to account for time-dependent dispatch by flexibility options
- Prediction delta (and past simulated electricity price) should be used as input for LSTM

Long-short term model (LSTM)

- Artificial scenario with extended storage capacity,
- LSTM should account for time-dependent deviations due to storage operation and therefore correct the FF prediction
- Architecture:
 - Input: Past_simulated_prices(t-24, ..., t-1), Delta_from_FF(t-24, ..., t-1)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 72 epochs
 - batch size of 32
- Fit:
 - R2 0.9945
 - MAE 2.25 EUR/MWh
 - Max. abs. error 48.92 EUR/MWh

Fig.15: Predicted prices against simulated prices from LSTM network using FF predictions and simulated prices as input

Comparison of predictions

Fig.16: Comparison of simulated prices (black), FF prediction (grey dotted), FF&LSTM prediction (red dashed) and storage dispatch over time

Discussion

- Generalization of FF possible or training for each specific scenario setup necessary?
 - Power plant park
 - Operational costs (prices, emission allowances, etc.)
- Generalization of LSTM possible or training for different flexibility option setups necessary?
 - Different technologies (Pumped hydro vs. Li-Ion vs. H₂ vs. P2X2P storage)
 - Different capacities
- Deploying individually trained sub-networks, e.g. for in simulation?
 - Accounting for time-segment specific characteristics (each hour of day)

Conclusion

- Price forecasts in agent-based energy system models need to be adapted to account for competition amongst multiple flexibility options
- Game theory no preferred method due to high computational effort
- Forecast agent equipped with neural networks to integrate flexibility agents bidding behaviour
 - Feed forward to account for residual load
 - LSTM to model price impact by flexibility options
- Results demonstrate feasibility of idea to integrate model-in-model approach in ABM
- Still open questions on deployment and training

Contact: Felix Nitsch, Christoph Schimeczek

German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Department of Energy Systems Analysis, Curiestraße 4 | 70563 Stuttgart, felix.nitsch@dlr.de