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Forecasts in energy system simulations

• Background: agent-based model AMIRIS 

developed at DLR Stuttgart (Deissenroth et al., 

2017) simulating German electricity market

• Supply:

• Conventional power plants bid with marginal 

costs (operation, fuel, CO2, etc.)

• Renewables follow provided generation 

profiles

• Flexibility options rely on price forecasts for 

optimizing operational strategy
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Fig.1: Schematic model overview of the agent-based model AMIRIS



Retrospective: INREC 2019
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Fig.2: Summary of presentation at INREC 2019 (Schimeczek and Nitsch, 2019) 

• Analysis of commercial day-ahead price forecast

• Identification of key error components

• Merit Order gradient

• 24h cycle characteristic (e.g. PV & demand)

• Autocorrelation

• Random fluctuations

• Construction of artificial day-ahead price forecasts 

• Application in agent-based electricity market 

model AMIRIS (Deissenroth et al., 2017) 

• Enabling of modelling more realistic agent-

behaviour due to similar error characteristics as 

found in the industry



Providing forecasts for flexibility option agents
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Fig.3: Agent providing forecasts for a single flexibility option Fig.4: Agent providing forecasts for multiple flexibility options

• Perfect price forecast which for single agent

• No competition

• Perfect optimization of operational strategy

• Multiple flexibility agents receive price forecast

• Forecast errors due to competition

• Disrupts optimization of operational strategies



How-to provide accurate forecasts for multiple agents?

• Goal: integrate expected bidding behaviour of flexibility agents

• Common approach:

• Finding equlilibrium for flexibility operators using game theory

• High computational effort

• Alternative approach:

• Forecast agent is equipped with neural network:

• Estimate bidding behaviour of flex agents

• Use data from previous and future hours of simulation

• Technical details:

• Combine multiple NN

• Feed-forward network & Long Short-Term Memory (LSTM) 

• Training on data from previous simulations

• Implementation in agent-based electricity model (‚Model-in-model‘ approach)

> Model in model: Electricity price forecasts in agent-based energy system simulations  > Nitsch F, Schimeczek C  > INREC 2020DLR.de  •  Chart 5



The idea of a learning forecast agent

• Central forecast agent is learning

bidding behaviour of flexibility options

and their impacts on prices

• Architecture:

• Feed-forward model

• LSTM model

• Inputs:

• Previous prices

• Previous residual load

• (Future residual load)

• Output: 

• Forecast for at least next 24 hours
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Fig.5: Forecast agent equipped with neural networks

providing forecasts for multiple flexibility options



Merit Order Model

• Conventional power plants bid with 

marginal costs (according to theory)
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Fig.6: Stylized merit order curve (Cludius et al., Energy Economics 44,  2014)



Merit Order Model

• Conventional power plants bid with 

marginal costs (according to theory)

In simulations

• Without flexibility options: 

price as function of residual load
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Fig.7: Modelled merit order curve without flexibility options



Merit Order Model

• Conventional power plants bid with 

marginal costs (according to theory)

In simulations

• Without flexibility options: 

price as function of residual load

• With flexibility options:

more complex, time-dependent relation 

between residual load and prices
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Fig.8: Modelled merit order curve with significant capacities of flexibility options



Feed-forward model I
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• Map residual load on day-ahead price

• Artificial scenario with no storage capacity

• Therefore no unforeseen deviations

• Architecture:

• Input: Residual_load(t)

• Output: Price(t)

• 3 hidden layers [100, 50, 30]

• 48 epochs

• batch size of 32

• Fit: 

• R2 0.9999

• MAE 0.26 EUR/MWh

• Max. abs. error 2.39 EUR/MWh

Fig.9: Residual load in scenario with no storage capacity

Fig.10: Predicted prices against simulated prices



Feed-forward model II
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• Map residual load on day-ahead price

• Artificial scenario with extended storage capacity, 

• Leads to various unforeseen deviations due to storage 

dispatch

• Architecture:

• Input: Residual_load(t)

• Output: Price(t)

• 3 hidden layers [100, 50, 30]

• 48 epochs

• batch size of 32

• Fit: 

• R2 0.9482

• MAE 1.52 EUR/MWh

• Max. abs. error 58.66 EUR/MWh

Fig.11: Residual load in scenario with extended storage capacity

Fig.12: Predicted prices against simulated prices



Extract flexibility option signal
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Fig.13: Simulated electricity price (red) and FF prediction delta (blue) in sample period of 300 hours

• Task: predict delta for forecasted price deviation of FF network to account for time-dependent dispatch by

flexibility options

• Prediction delta (and past simulated electricity price) should be used as input for LSTM



Long-short term model (LSTM)
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• Artificial scenario with extended storage capacity, 

• LSTM should account for time-dependent deviations due to 

storage operation and therefore correct the FF prediction

• Architecture:

• Input: Past_simulated_prices(t-24, …, t-1), 

Delta_from_FF(t-24, …, t-1)

• Output: Price(t)

• 3 hidden layers [100, 50, 30]

• 72 epochs

• batch size of 32

• Fit: 

• R2 0.9945

• MAE 2.25 EUR/MWh

• Max. abs. error 48.92 EUR/MWh

Fig.14: Predicted prices against simulated prices from FF network

Fig.15: Predicted prices against simulated prices from LSTM network 

using FF predictions and simulated prices as input



Comparison of predictions
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Fig.16: Comparison of simulated prices (black), FF prediction (grey dotted), FF&LSTM prediction (red dashed) and storage dispatch over time



Discussion

• Generalization of FF possible or training for each specific scenario setup necessary?

• Power plant park

• Operational costs (prices, emission allowances, etc.)

• Generalization of LSTM possible or training for different flexibility option setups necessary?

• Different technologies (Pumped hydro vs. Li-Ion vs. H2 vs. P2X2P storage)

• Different capacities

• Deploying individually trained sub-networks, e.g. for in simulation?

• Accounting for time-segment specific characteristics (each hour of day)
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Conclusion

• Price forecasts in agent-based energy system models need to be adapted to account for 

competition amongst multiple flexibility options

• Game theory no preferred method due to high computational effort

• Forecast agent equipped with neural networks to integrate flexibility agents bidding behaviour

• Feed forward to account for residual load

• LSTM to model price impact by flexibility options

• Results demonstrate feasibility of idea to integrate model-in-model approach in ABM

• Still open questions on deployment and training
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