
LONG-SHORT SKIP CONNECTIONS IN DEEP NEURAL NETWORKS FOR DSM
REFINEMENT

Ksenia Bittner1∗, Lukas Liebel2, Marco Körner2, Peter Reinartz1

1 Remote Sensing Technology Institute, German Aerospace Center (DLR), Wessling, Germany
2 Computer Vision Research Group, Chair of Remote Sensing Technology (LMF), Technical University of Munich (TUM), Munich,

Germany

Commission II, WG II/4

KEY WORDS: Conditional generative adversarial networks (cGANs), balancing hyper-parameters, long-short skip connections, 3D
scene refinement, building geometry

ABSTRACT:

Detailed digital surface models (DSMs) from space-borne sensors are the key to successful solutions for many remote sensing prob-
lems, like environmental disaster simulations, change detection in rural and urban areas, 3D urban modeling for city planning and
management, etc. Traditional methodologies, e.g., stereo matching, used to generate photogrammetric DSMs from stereo imagery,
usually deliver low-quality results due to the matching errors in homogeneous areas or the lack of information when observing the
scene under different viewing angles. This makes the tasks related to building reconstruction very challenging since in most cases it
is difficult to recognize the type of roofs, especially if overlaid with trees. This work represents a continuation of research regarding
the automatic optimization of building geometries in photogrammetric DSMs with half-meter resolution and introduces an improved
generative adversarial network (GAN) architecture which allows to reconstruct complete and detailed building structures without neg-
lecting even low-rise urban constructions. The generative part of the network is constructed in a way that it simultaneously processes
height and intensity information, and combines short and long skip connections within one architecture. To improve different aspects
of the surface, several loss terms are used, the contributions of which are automatically balanced during training. The obtained results
demonstrate that the proposed methodology can achieve two goals without any manual intervention: improve the roof surfaces by
making them more planar and also recognize and optimize even small residential buildings which are hard to detect.

1. INTRODUCTION

1.1 Problem Statement

For humans, it is usually an easy task to understand the realistic
shape and appearance of real objects in an image due to accumu-
lated experience and knowledge. For computer algorithms, on the
other hand, it is not a trivial task to estimate the true 3D geometry
from 2D object representations, since the information extracted
from an image is very limited and usually many constraints or
conditions are predefined. Therefore, it is common to combine
the knowledge from different data sources to compensate for the
lack of information in a single data source.

In remote sensing, for example, intensity and height informa-
tion is usually paired to reconstruct building geometries which
are one of the prominent objects on the ground surface. This
is necessary since digital surface models (DSMs) generated from
high-resolution satellite images with different viewing angles still
feature noise, inconsistency, and sometimes non-realistic build-
ing appearances due to occlusions or errors of stereo matching
algorithms. However, combining different data sources is not
enough to solve the building reconstruction task since those ob-
jects vary a lot in shapes and sizes. Traditional methods incorpor-
ate different constraints, usually assuming only primitive forms,
to get closer to the realistic building appearances. In this work,
we propose a machine learning approach that can automatically
eliminate the vegetation and refine 2.5D building geometries in
elevation models after processing pan-chromatic (PAN) and DSM
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images. Elevation models with optimized building shapes can be
further utilized as input for 3D city model generation. In continu-
ation of our previous work (Bittner et al., 2019b), we introduce
an improved version of the generative part of a conditional gener-
ative adversarial network (cGAN)-based architecture which can
reconstruct better building roof structures not only of big residen-
tial and industrial buildings but also of low-rise ones. Moreover,
the contributions of multiple loss terms constructing our object-
ive function are automatically weighted, to escape their tedious
manual tuning.

1.2 Related Work

There have already been several attempts to reconstruct build-
ing geometries as close as possible to their real appearances in
the cities from remote sensing imagery. One way to approach
the task of obtaining realistic building shapes is to improve the
low-quality of DSMs, precisely, to reduce the number of out-
liers and inconsistencies resulting from low-textured or shadowed
areas. (Felicı́simo, 1994; Wang, 1998; López, 2000) propose to
use statistical criteria to identify anomalous height values within
neighboring pixels. Although those strategies provide more con-
tinuous surfaces, the major drawback is that they oversmooth the
steepness of building walls. Some methodologies, after detect-
ing uncorrelated points, suggest applying different interpolation
techniques. Among a variety of interpolation strategies Inverse
Distance Weighting (IDW) (Goovaerts et al., 1997), kriging (An-
derson et al., 2005) and spline-based methods (Smith et al., 2005)
are well known. The recent work of (Chen and Li, 2013) demon-
strates that methods based on multi-quadric interpolation con-
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structed as the objective functions can achieve better results. Des-
pite interpolation-based methods accomplishments within rural
areas, in case of complex urban landscapes, where discontinuit-
ies between the ground and building constructions are very strong
and should be kept, the methods fail to preserve the sharpness of
building edges.

With the appearance of deep learning techniques, it became pos-
sible to automatically solve regression problems and generate
continuous sets of values. Apart from the computer vision field
where many works have been done and a great success for gen-
erating depth images was achieved, in remote sensing, it is still
under intensive research. Several studies have recently appeared
at the same time. The work of (Mou and Zhu, 2018) investig-
ates the DSMs generation from monocular aerial images using
an end-to-end Fully convolutional network (FCN) with skip con-
nections. The authors were able to reconstruct building shapes
with a high degree of accuracy since aerial imagery has more
detailed information about object boundary, but with an only re-
lative height of buildings which does not face the reality. Like
us, (Ghamisi and Yokoya, 2018) utilize generative adversarial
networks (GANs) for DSMs generation, but as input data they use
aerial images consisting of near-infrared, red and green bands.
Although the approach can generate reasonable results similar to
the training data, it fails to generalize over images with different
spatial-spectral information. Our previous approaches (Bittner
et al., 2018, 2019b) pursuit not only automatic height images cre-
ation from photogrammetric half-meter resolution satellite DSMs
but also a simultaneous building shapes refinement on them in-
volving cGANs. (Bittner et al., 2019a; Liebel et al., 2020) invest-
igate mutli-task learning for improving the mutual information
between different but correlated problems like roof type classi-
fication and building shape refinement. The work of (Bittner et
al., 2019b) propose to incorporate several types of information,
precisely intensity, and height, to gain both detailed roof ridge
lines reconstruction and the compilation of building structure if
they are badly represented in photogrammetric DSMs. Follow-
ing those goals, in this work, we integrate short skip connections
together with long skip connections in the improved architecture
to increase the network confidence of detecting and reconstruct-
ing also low-rise buildings—the challenge which the previous
network was not able to achieve. Moreover, since the objective
function we aim to minimize consists of several terms, we make
their balancing hyper-parameters learnable, to allow the system
itself to decide which contribution is more valuable for better re-
construction. By incorporating the strategy of learnable weight-
ing parameters for multiple terms, we aim to further improve the
building forms and the planarity of their roof surfaces.

2. METHODOLOGY

2.1 Network Architecture

Our earlier network architecture (Bittner et al., 2019b) proved
the effectiveness of the method to refine building geometries in
DSMs. However, some notable issues, like roof surface uneven-
ness or a lack of low-rise buildings reconstruction, remain in the
prediction results. We revise this architecture with a more com-
prehensive GAN concept, which incorporates identity shortcut
connections, also known as residual connections, together with
long skip connections within the generative part of the network.
The strength of residual connections is their ability to prevent the
vanishing gradient problem which gives us the potential to train
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Figure 1. Schematic overview of the proposed architecture for
building shape optimization in low-quality photogrammetric

DSMs. The generative module G is represented by an
encoder-decoder network which consists of two separate
encoders, processing the depth and intensity information

simultaneously, and a single decoder module.

deeper networks and, as a result, to get a better semantic under-
standing of the scene. The power of long skip connections is
reflected in their ability to carry detailed information from lower
layers to upper ones, improving the up-sampling results of the
decoder lost during hierarchical down-sampling in the encoder.

The idea of a combination of long and short skip connections
within one network structure is not new. (Drozdzal et al., 2016;
Zhang et al., 2018) have already explored it for different semantic
image segmentation tasks. Following their strategy, we investig-
ate a so-called ResNet-in-UNet architecture based on a residual
network (ResNet) as an encoder which codes back the process
with five up-sampled decoder layers combined with five long skip
connections resembling the U-shaped structure. This UResNet
forms the generative model G of the basic cGAN structure intro-
duced by (Isola et al., 2016) which builds the main approach for
height image optimization in our work. The general concept of
the DSM optimization approach proposed in this work is illus-
trated in Fig. 1.

Since we are additionally interested in height and intensity in-
formation fusion from photogrammetric DSM and PAN images,
the generative part G of our GAN architecture consists of two
identical encoders E1 and E2, each for one data modality, which
are concatenated at the bottleneck of U-shape structure. The com-
bined information propagates then through the common decoder.
The long skip connections at identical stages of each encoder
are concatenated together with up-sampled features at the certain
stages of the decoder forming the input for the next block.

To find the most appropriate network structure for our task, we try
various existing ResNet architectures as encoders: 18-layer, 34-
layer, 50-layer, 101-layer, and 152-layer. The number of features
of 18-layer and 34-layer ResNets used as long skip connections
stay equal to the original number of features of a certain network
stage. On the other hand, the number of features of 50-layer, 101-
layer, and 152-layer ResNets in long skip connections (depicted
in magenta color in Fig. 1) is reduced twice for each stream which
carries spectral and height information, respectively, to keep the
number of total parameters as small as possible for fitting the
capacity of GPU and prevent the overfitting.

The discriminator D of the proposed GAN architecture con-
sists of 5 convolutional layers with a sigmoid activation function
σsigm(z) = 1

1+e−z placed on the top layer. As a result, the output
of the discriminator D represents the probability that the input
sample either resembles the real distribution of data or the fake
one.
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2.2 Objective Function

One of the significant achievements in computer vision in 2014
was the introduction of GANs (Goodfellow et al., 2014)—
generative models that can learn to mimic any distribution of
data. The problem is framed through the adversarial manner of
learning by training two sub-models pitting against each other:
a discriminative model D which tries to determine whether input
samples are real or produced by generative modelGwhich in turn
tries to fool the discriminatorD by creating fake samples as close
to reality as possible. Often, it is also required to generate fake
samples with specific characteristics rather than a generic sample
from an unknown noise distribution. (Mirza and Osindero, 2014)
proposed cGANs which utilize some external information for re-
stricting both the generator G in its output and the discriminator
D in its expected input. In this way, a condition gives the control
on modes of the data being generated.

Mathematically it is defined as following: The generator G aims
to learn a mapping function from a latent vector z ∼ pz(·) to data
space y∗ ∼ preal(·) as G(z|x) = y. The discriminator outputs
a single scalar D(y|x) ∈ [0, 1] representing the probability that
y came from real data rather than generated. The generator G
and the discriminator D are trained simultaneously following a
two-player min-max game

min
G

max
D
LcGAN(G,D) = Ex,y∼preal(y)[logD(y|x)]+

Ex,z∼pz(z)[log(1−D(G(z|x)|x))], (1)

where G adjusts the parameters to minimize log(1 −
D(G(z|x)|x)) and D attempts to minimize logD(y|x).

In our earlier work (Bittner et al., 2018), it has been already ex-
amined that changing the negative log-likelihood in Eq. (1) to a
least square loss L2 leading to a conditional least square gener-
ative adversarial network (cLSGAN)

min
G

max
D
LcLSGAN(G,D) = Ex,y∼preal(y)[(D(y|x)− 1)2]

+ Ex,z∼pz(z)[D(G(z|x)|x)2] (2)

which manages to overcome the problem with instability during
the training.

To adjust the objective function for achieving the main goal of
this work—to generate a height image with detailed building geo-
metries in it—the loss function in Eq. (2) is extended with two
additional terms: commonly used L1 distance

LL1(G) = Ex,y∼preal(y),z∼pz(z)[‖y −G(z|x)‖1], (3)

which is responsible for building ridgelines to be as sharp as pos-
sible, and normal vector loss term from (Bittner et al., 2019a)

Lnormal(N t,N p) =
1

m

m∑
i=1

(
1−

〈
nt

i,n
p
i

〉
‖nt

i‖ ‖n
p
i‖

)
, (4)

which is responsible for the planarety of roof polygons. This
normal vector loss represents the angle between the set of surface
normals N p = {np

1, . . . ,n
p
m} of an generated DSM and the set

of surface normals N t =
{
nt

1, . . . ,n
t
m

}
of the reference height

image. The smaller the angle, the more straightforward and plain
the estimated roof surfaces.

The final objective function combines three above-described loss

terms

Ltotal =wcLSGANLcLSGAN(G,D) + wL1LL1(G)

+ wnormalLnormal(N t,N p) , (5)

where parameters 0 ≤ wl ∈ R are playing the role of balan-
cing hyper-parameters between individual losses l ∈ L. Below
we introduce the way of finding a balance between individual
losses when they play together as a team towards objective func-
tion minimization.

2.3 Finding A Balance Between Multiple Losses

The wish to automatically adjust the influence of various loss
terms on the final objective function is not new. For example,
(Kendall et al., 2018; Liebel and Körner, 2018) introduced the
approach for balancing multiple losses for different tasks dur-
ing training. Precisely, the authors proposed to learn those bal-
ancing hyper-parameters along with model parameters to find a
good trade-off between multiple outputs.

Several experiments have been already done by us for obtaining
multiple remote sensing tasks from deep network architecture ap-
plying this methodology (Liebel et al., 2020). Based on these
experiments, we have decided to incorporate the learning of bal-
ancing hyper-parameters wl in Eq. (5) instead of their manually
tuning as it was done before by (Bittner et al., 2019a,b). Mainly,
together with learning usual network parameters θ with each iter-
ation during the training, the balancing hyper-parameters wl are
also inserted in the optimization process with

wl =

{
0.5 · exp (− log(σ2

l )) for LL1 and Lnormal

exp (− log(σ2
l )) for LcLSGAN

However, in situations like σ2
l < 1, the loss can yield negative

values. To avoid it, the regularization term Rl = 0.5 · log(σ2
l )

should be inserted to Eq. (5) as it was proposed by (Kendall et
al., 2018) and supported by further investigation of (Liebel and
Körner, 2018). As a result, the final loss of this work is formu-
lated as

Ltotal =
∑
l

wl · Ll +Rl , (6)

combining three individual losses l ∈ L for the most effective
task loss minimization.

3. STUDY AREA AND EXPERIMENTAL SETUP

3.1 Datasets

We experimented on three datasets consisting of PAN images
showing close to nadir view and photogrammetric DSMs both
with ground sampling distance (GSD) of 0.5 m.

The first dataset shows 410 km2 of Berlin city, Germany, and
was used for training (353 km2), validation (6 km2) and testing
(50 km2) of the proposed model. The photogrammetric DSM
was generated using semi-global matching (SGM) (Hirschmuller,
2008) utilizing six PAN images acquired by the WorldView-
1 satellite on two different days, following the workflow
of (d’Angelo and Reinartz, 2011). Those DSMs and one of six
PAN images were inputs to our model. To perform a learning pro-
cess, we generated a ground truth by interpolating height inform-
ation on building roof polygons utilizing the constructed them
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(a) DSM from Coupled-UNet with fixed
hyper-parameters (Bittner et al., 2019b)

(b) DSM from Coupled-UNet with learnable
hyper-parameters

(c) Ground truth DSM

52.68 m 65.46 m

Figure 2. Visual analysis of DSMs, generated by Coupled-UNet cLSGAN with (a) fixed balancing hyper-parameters (Bittner et al.,
2019b) and (b) learnable balancing hyper-parameters in comparison to (c) referenced surface model over selected urban area. DSM

images are color-shaded for better visualization.

points from city geography markup language (CityGML) data
freely available on Berlin3D portal 1. We refer to it as level of de-
tail (LoD)2-DSM. More detailed information about LoD2-DSM
generation is given by (Bittner et al., 2018).

The second dataset shows 3.8 km2 of Munich city, Germany,
and was used to investigate the model’s generative capacity over
a different urban landscape. The input photogrammetric DSM
was generated from three pairs of PAN images acquired from
different viewing angles by a space-borne sensor distinctive to
the Berlin dataset. Precisely, PAN images from the WorldView-
2 satellite with a GSD of 0.5 m were processed with SGM
algorithm (Hirschmuller, 2008) to obtain the photogrammetric
DSM, following the same procedure of (d’Angelo and Reinartz,
2011). For evaluation, the ground truth LoD2-DSM simulated,
similar as before, from CityGML data provided by Bavarian
Agency for Digitisation, High-Speed Internet and Surveying was
used.

Since Berlin and Munich are both European cities and their in-
frastructures have similarities, we tested the generalization capa-
city of the proposed model on a third dataset showing 2.7 km2

of Istanbul city, Turkey. PAN images with a resolution of 0.5 m
and a derived photogrammetric DSM come from the same space-
borne sensor as the Munich dataset—the WorldView-2 satellite.
There exists no CityGML data for this area. Therefore, we solely
use it for visual evaluation.

3.2 Implementation Details

Our implementation is a PyTorch-based extension of the GAN
architecture developed by (Isola et al., 2016). The training was
performed on 21 480 samples of 256×256 px. The samples
were augmented not only by horizontal and vertical flipping but
also tiled from the original image with a random overlap every
epoch to give the model a clue about building geometries which
happened to be on the patch border in previous epochs.

The Coupled-UNet and Coupled-UResNet networks, used in this
paper for comparison were trained with minibatch stochastic
gradient descent (SGD) using the Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of α = 0.0002 which was

1 http://www.businesslocationcenter.de/downloadportal

dropped by a factor of 10 after 100 epochs and momentum para-
meters β1 = 0.5 and β2 = 0.999. The starting values of bal-
ancing hyper-parameters in Eq. (6) were equally initialized with
0.3, making wcLSGAN unchangeable and wL1 , wnormal learnable,
as proposed by (Liebel et al., 2020). The network was trained
on a single NVIDIA TITAN X (PASCAL) GPU with 12 GB of
memory.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we investigate the influence of learnable balan-
cing hyper-parameters between multiple loss terms, explore the
effect of combination of short and long skip connections within
one network architecture, and inspecte the planarity of roof sur-
face as their smoothness is one of our main concerns. Moreover,
the proposed model is tested for its generalization capability for
different urban aerials, distinctive from the training dataset.

In cases, where ground truth data was available, the obtained res-
ults was quantitatively evaluated using the root mean squared er-
ror (RMSE)

εRMSE(h, ĥ) =

√√√√ 1

n

n∑
j=1

(ĥj − hj)2, (7)

and the normalized median absolute deviation (NMAD)

εNMAD(h, ĥ) = 1.4826 ·median
j

(|∆hj −m∆h|), (8)

where h = (hj)j and ĥ = (ĥj)j , 1 ≤ j ≤ n, denote the
observed and the predicted heights, respectively, height errors
are defined as ∆hj , and the median error is m∆h. In cases,
when data errors are normally distributed, the constant 1.4826
in the NMAD metric is comparable to the standard deviation.
NMAD metric is assumed to be more robust to outliers in the
dataset (Höhle and Höhle, 2009).

4.1 Inserting Learnable Balancing Hyper-Parameters

We have started our experiments with integrating learnable balan-
cing hyper-parameters into the already appeared Coupled-UNet
architecture proposed by (Bittner et al., 2019b) to confirm its
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(a) DSM from Coupled-UNet with learnable
hyper-parameters

(b) DSM from Coupled-UResNet50 with
learnable hyper-parameters

(c) Ground truth DSM

33.68 m 43.29 m

Figure 3. Visual analysis of DSMs, generated by (a) Coupled-UNet cLSGAN with fixed balancing hyper-parameters (Bittner et al.,
2019b) and (b) Coupled-UResNet50 cLSGAN with learnable balancing hyper-parameters in comparison to (c) referenced surface

model over selected urban area (first row) and the zoomed version of highlighted area for corresponding models (second row). DSM
images are color-shaded for better visualization.

applicability even for a single desired output. Samples of gen-
erated DSMs from the Coupled-UNet trained with fixed balan-
cing hyper-parameters and Coupled-UNet with learnable balan-
cing hyper-parameters are depicted in Fig. 2 together with the
corresponding ground truth sample. It can easily be observed
that the proposed learning strategy for the same model can ex-
tract even low-rise densely located buildings. This observation
is also confirmed by quantitative evaluation over the whole test
area using the chosen metrics. The results related to this ex-
periment are presented in the first two lines of Table 1. The
RMSE value for Coupled-UNet with learnable balancing hyper-
parameters was dropped down by 0.36 m revealing the increase
of accuracy by extracting additional building constructions. The
NMAD value also decreased when using the proposed strategy
meaning the reduction of overall outliers in the generated DSM.

4.2 Long-Short Skip Connections Within One Network

Encouraged by the improved results from the above experiment,
the decision was made to elaborate more on the network archi-
tecture and its construction blocks. Mainly, in the next experi-
ments, the backbone structure of the Coupled-UNet was changed
to existing ResNet architectures with different levels of exten-
sion forming the proposed Coupled-UResNet model. The whole
settings were kept similar between the training experiments to
be able to compare networks performance. The quantitative res-
ults are summarized in Table 1. Comparing evaluation metrics
for ResNet-based architectures with different levels of extension,
it can be noticed that going deeper and involving more residual
blocks helped to improve the RMSE and NMAD values. How-
ever, a too deep network with a huge number of parameters can
lead to overfitting. Good examples are the Coupled-UResNet

Table 1. Quantitative results for RMSE and NMAD metrics
evaluated over selected test area of Berlin city.

Method Error

RMSE (m) NMAD (m)

Coupled-UNet (Bittner et al., 2019b) 2.82 0.56
Coupled-UNet modified 2.46 0.53

Coupled-UResNet 18 4.08 0.99
Coupled-UResNet 34 3.92 0.68
Coupled-UResNet 50 2.41 0.48
Coupled-UResNet 101 2.45 0.49
Coupled-UResNet 152 2.46 0.51

models with 101- and 152-layer ResNet as an encoder. The
metrics started growing up again after reaching its minimum by
the network with 50-layer ResNet among all investigated net-
works. Hence, we choose the so-called Coupled-UResNet50
model, which single-stream encoder is based on three-layers deep
residual blocks forming a regular 50-layer ResNet, as it provides
the best results in this experiment.

The RMSE error of around 2.4 m between the ground truth and
the generated surface model can lead to doubts about good per-
formance of the proposed model. The explanation lays in the
time difference between the reference data and the given pho-
togrammetric DSM which we use as input to the model. There
can be cases when in one data source the buildings exist and in
the other not (due to new buildings construction or their destruc-
tion), and vice versa. The model cannot generate new building
construction if no initial building structure is located in the pro-
cessing area. This also reveals, that our model does not hallucin-
ate new structures in surface models. The NMAD metric indic-
ates that the proposed model can generate more continuous DSM
surfaces without sudden deviation of values between the neigh-
boring pixels if its values seeks to zero. Therefore, we can say
that the proposed Coupled-UResNet50 model produces the most
consistent ground surface among others used in the experiment
since its NMAD values is the smallest.

But there is still one open question. How the superiority of
Coupled-UResNet50 over Coupled-UNet can be distinguished?
To demonstrate the visual differences, the samples of DSMs gen-
erated by Coupled-UNet and Coupled-UResNet50 are depicted
in Fig. 3. At first sight, the shown areas between Coupled-
UNet and Coupled-UResNet50 look very similar. The amount
of big buildings is the same and coincides with the ground truth.
The shape of big buildings is also very resembled. However, it
can be observed that, although the Coupled-UNet cLSGAN with
learnable balancing hyper-parameters can already extract more
low-rise residential buildings in comparison to the Coupled-UNet
cLSGAN introduced by (Bittner et al., 2019b), the Coupled-
UResNet can reconstruct even more of them (upper part area
in Fig. 3b).

4.3 Roofs planarity

To make quantitative evaluation of roofs planarity, we evaluate
the flatness and orientation of 3D planes πp

k fitted to predicted
roof surface points P p

k;m,n in comparison to 3D planes πt
k fit-

ted to the ground truth roof surface points P t
k;m,n, as proposed
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Figure 4. Selected polygons for planarity metrics evaluation
overlaid on the pan-chromatic image.

by (Koch et al., 2019). Mainly, the flatness error

εflat(G(I1, I2)� P) =
1

k

∑
Pk;m,n∈Pk

1

|Pk|
d(πk,P k;m,n)

(9)

is computed over a predicted depth imageG(I1, I2) masked with
binary image P containing a certain number of planes and rep-
resents a standard deviation of averaged distances between the
predicated 3D points and fitted 3D plane to them. The orientation
error

εorie(G(I1, I2)� P) = arccos(nt
i · ňp

i) , (10)

is defined as the angle difference between the normal vectors of
3D planes fitted to the predicted surface points and the given
ground truth points.

For the scene depicted in Fig. 3b we select some roof poly-
gons from CityGML for which appropriate 3D planes can be
estimated. The evaluated flatness and orientation metrics for
the Coupled-UResNet model (Bittner et al., 2019b), Coupled-
UResNet and Coupled-UResNet50 models with learnable hyper
parameters are presented in Table 2. Obtained quantitative res-
ults support the previous study and show that the model, precisely
Coupled-UResNet50, which includes both the short and long skip
connections and trained to minimize the multi-term loss with
learnable hyper-parameters can predict the improved building
roof planes among the currently developed models. Moreover,
one can see that the flatness and orientation of building roof sur-
faces in comparison to initial photogrammetric DSM is improved
more than twice. This leads to the conclusion that the goal of
DSM optimization applying the neural networks is achieved.

4.4 Model Generalization

To investigate how well the developed Coupled-UResNet50
model can generalize to diverse urban landscapes, different from

Table 2. Quantitative results for flatness and orientation metrics
evaluated over selected test area of Berlin city.

Method Error

εflat(cm) εorie(
◦)

Photogrammetric DSM 68.59 14.11
Coupled-UNet (Bittner et al., 2019b) 37.19 7.14
Coupled-UNet modified 28.03 5.76
Coupled-UResNet 50 25.53 5.51

the training dataset, we perform a building shape refinement task
over city areas of Munich, Germany, and Istanbul, Turkey.

Munich dataset: Even though Munich and Berlin belong to the
same country and their building appearances can have a similar
style, it is impossible to meet identical building constructions.
Since there is a time difference of several years between our satel-
lite images and CityGML data, many inconsistencies in terms of
newly built or demolished city constructions exist over the avail-
able scene (Liebel et al., 2020). Therefore, we select a smaller
area depicted in Fig. 5 which shows no changes in between the
acquisition of the photogrammetric DSM and the city model to
perform a quantitative evaluation.

Similar to the previous study, the RMSE drops down even
stronger between Coupled-UNet and Coupled-UResNet50 in the
advantage of the last. This indicates that the proposed model
is more general. The next example with a detailed view can
demonstrate it better. An area shown in Fig. 6 also establishes
the strong outperformance of the proposed Coupled-UResNet50
over the Coupled-UNet (Bittner et al., 2019b), as reconstruc-
ted building shapes are more complete and demonstrate close re-
semblance to the ground truth. It is worth to mention that, in
general, the input photogrammetric DSM is very challenging for
the model. First of all, it comes from a different sensor. Second,
this dataset has more and bigger areas that were filled by inter-
polation in a post-processing step after the stereo-matching pro-
cedure. This influences the appearance of buildings and makes
them have slightly distinctive characteristics in comparison to
the ones learned by models from Berlin dataset. However, from
the demonstrated results we can say that the proposed Coupled-
UResNet50 is more generic and resistant to the bad quality of
input data. Besides, PAN images enormously influence the real-
istic reconstruction of building appearances, since from spectral
information one can identify the ridge lines for such roof types,
like hip, gable, mansard, etc. This statement was earlier investig-
ated by (Bittner et al., 2019b).

Istanbul dataset: The generalization results of Coupled-UNet
and Coupled-UResNet50 are presented in Fig. 7. From the inputs
PAN and DSM, depicted in Fig. 7a and Fig. 7b respectively one
can see that the building structures are very different from the
European style; the houses are lower in height and their place-
ment is very dense. However, both networks were able to general-
ize over this area. Under close investigation, it can be recognized
that the Coupled-UResNet50 was able to generate better building
shapes in terms of smooth roof planes, distinctive roof types (in-
dependent from their complexity) and more complete structure,
which supports the observation of previous studies.

5. CONCLUSION

In this paper, the influence of long skip connection combined
with short skip connections within the generative module of con-
ditional generative adversarial networks (cGANs) towards the
improvement of building geometries in photogrammetric digital
surface models (DSMs) was investigated. Since photogrammet-
ric DSMs are the product of processing stereo imagery, in our
case from space-borne sensors, they are usually of low-quality:
partially or badly reconstructed building, strong discontinuities,
etc. Therefore, the intensity information from the closest to the
nadir view pan-chromatic (PAN) images was involved for a bet-
ter understanding of building borders and roof ridge lines by the
developed system. Moreover, instead of manual tuning of hyper-
parameters related to the weighting of contributions of different

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-383-2020 | © Authors 2020. CC BY 4.0 License.

 
388



(a) Photogrammetric DSM (b) Coupled-UNet (Bittner et al.,
2019b), RMSE: 3.16

(c) Coupled-UResNet50 (ours),
RMSE: 2.86

(d) Ground truth

549.69 m 567.87 m

Figure 5. Visual analysis of DSMs, generated by (a) Coupled-UNet cLSGAN with fixed balancing hyper-parameters (Bittner et al.,
2019b) and (c) by the proposed Coupled-UResNet50 in comparison to (d) referenced surface model over Munich area. (a) depicts the

initial photogrammetric DSM. DSM images are color-shaded for better visualization.

(a) Pan-chromatic image (b) Photogrammetric DSM (c) Ground truth DSM

(d) DSM from Coupled-UResNet (Bittner et al., 2019b) (e) DSM from Coupled-UResNet50 (ours)
548.60 m 567.69 m

Figure 6. Detailed visual analysis of DSMs, generated by (d) Coupled-UNet cLSGAN with fixed balancing hyper-parameters (Bittner
et al., 2019b) and (e) the proposed Coupled-UResNet50 in comparison to (c) referenced surface model over selected Munich area. (a)

and (b) depict the initial PAN and DSM images, respectively. DSM images are color-shaded for better visualization.

loss terms constructing the main objective function for the train-
ing, their automatic learning by the system was implemented.

The obtained results demonstrate that the proposed Coupled-
UResNet50 model can extract more buildings, including chal-
lenging low-rise constructions, improves the surfaces of building
roofs making them smoother and better co-inside with ground
truth data and generalize to different urban areas, even very dis-
tinctive from the training dataset. A 3D visualization of predicted
elevation models illustrates their resemblance to the real urban
scenes making them useful for different remote sensing applica-
tions.
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ods. In: L. Leal-Taixé and S. Roth (eds), Proceedings of the
European Conference on Computer Vision Workshops (ECCV-
WS), Springer International Publishing, pp. 331–348.

Liebel, L. and Körner, M., 2018. Auxiliary tasks in multi-task
learning. arXiv preprint arXiv:1805.06334.

Liebel, L., Bittner, K. and Körner, M., 2020. A generalized multi-
task learning approach to stereo dsm filtering in urban areas. to
appear.
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