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Abstract
Variability of solar surface irradiances in the 1-minute range is of interest especially for solar energy
applications. Eight variability classes were previously defined for the 1 min resolved direct normal irradiance
(DNI) variability inside an hour. In this study spatial structural parameters derived fromsatellite-based cloud
observations are used as classifiers in order to detect the associated direct normal irradiance (DNI) variability
class in a supervised classification scheme. A neighbourhood of 3×3 to 29×29 satellite pixels is evaluated to
derive classifiers describing the actual cloud field better than just using a single satellite pixel at the location
of the irradiance observation. These classifiers include cloud fraction in a window around the location of
interest, number of cloud/cloud free changes in a binary cloud mask in this window, number of clouds, and
a fractal box dimension of the cloud mask within the window. Furthermore, cloud physical parameters as
cloud phase, cloud optical depth, and cloud top temperature are used as pixel-wise classifiers. A classification
scheme is set up to search for the DNI variability class with a best agreement between these classifiers and the
pre-existing knowledge on the characteristics of the cloud field within each variability class from the reference
data base. Up to 55 % of all DNI variability class members are identified in the same class as in the reference
data base. And up to 92 % cases are identified correctly if the neighbouring class is counted as success as
well – the latter is a common approach in classifying natural structures showing no clear distinction between
classes as in our case of temporal variability. Such a DNI variability classification method allows comparisons
of different project sites in a statistical and automatic manner e.g. to quantify short-term variability impacts
on solar power production. This approach is based on satellite-based cloud observations only and does not
require any ground observations of the location of interest.

Keywords: Variability, global horizontal irradiance, direct irradiance, automatic classification, satellite-
based, clouds, textural parameters

1 Introduction

Time series of surface solar irradiance are character-
ized by high variability on various scales. Obviously,
there are seasonal cycles and daily extra-terrestrial cy-
cles due to sun geometry. These are well known and
can be described in a deterministic manner based on
astronomical laws (e.g. Iqbal, 1983). The variability
of cloud free (also called clear sky) irradiances at the
earth’s surface with respect to aerosol, water vapour, and
atmospheric trace gas variations is described in clear
sky models as e.g. the Copernicus Atmosphere Moni-
toring Service (CAMS) McClear model (Lefévre et al.,
2013; Gschwind et al., 2019). In general, the variabil-
ity of irradiances caused by aerosols or water vapour
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is small on time scales of minutes, while strong intra-
hour variability results from extinction in clouds (e.g.
Skartveit and Olseth, 1992 or Tovar et al., 2001).
Ramping events may even occur on time-scales as short
as seconds (Tomson, 2010; Perez et al., 2011; Lave
et al., 2012). For global irradiances, overshooting com-
pared to clear sky irradiances or even to extra-terrestrial
irradiances is observed as a result of three-dimensional
scattering in clouds (Schade et al., 2007).

The introduction of the companion paper Schroe-
dter-Homscheidt et al. (2018) provides an overview
on studies discussing the impact of fast fluctuations in
surface solar irradiance for the solar energy sector. Over-
all, sub-hourly variability is an important issue for any
coupled system of a solar energy system with storage
as e.g. a battery. There is a general interest in obtaining
correction factors to derive long-term time series of ef-
fective hourly irradiation as input to solar power models.
Such correction factors depend on the respective solar
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energy technology as well as on individual use cases in-
tegrating solar energy into the energy supply chain. An
automatic classification of minute-to-minute variability
at any location of interest could serve as good basis in es-
timating correction factors for individual hours. A daily
assessment of a variability status is not sufficient, as dis-
cussed e.g. by Tomson (2010).

Nouri et al. (2019) are reporting that for solar power
plant operations even knowledge of variability within
one hour is not sufficient. They emphasize that vari-
ability should be monitored at least in 15 min intervals,
which is basically possible with satellite imagery. Simi-
lar conclusions are expected for other online monitoring
and control application as e.g. in electricity grid control.

Besides the temporal distribution, also spatial distri-
bution of irradiance variability is important for electric-
ity grid operations. Theoretical studies as e.g. Elsinga
et al. (2017) provide deterministic correlation functions
versus distance or time for a group of single ideal-
istically shaped clouds passing over photovoltaic sys-
tems. Nevertheless, realistic cloud fields are often multi-
layered with strong geometrical variability. Several stud-
ies (e.g. Kato et al., 2011; Hoff and Perez, 2012; Lave
et al., 2012; or Anvari et al., 2016) investigated spatial
distributions of actually observed irradiance variabilities
within ground-based pyranometer networks. They de-
rived empirical parameterizations which can be applied
for long-term statistics. Such an observational network
with many instruments is technically very demanding
and therefore hard to apply in daily operations over large
spatial regions as requested in monitoring or for analy-
sing the effects for a country or a continental region.
Alternatively, a number of spatially distributed photo-
voltaic (PV) systems can be evaluated, but this approach
provides information on generated power only and not
solar radiation itself. Generated power is amongst others
a function of individual PV-specific technical parameters
and not directly a measure on solar radiation. These sys-
tem parameters include orientation, size, technical effi-
ciency and soiling state, as well as module temperature.
Additionally, it requires initially the installation and me-
tering of PV systems and does not provide the required
information on radiation characteristics in a planning
stage.

Fernandez-Peruchena and Bernardos (2015)
emphasize that the distribution of 1 min clearness index
values depends significantly on local cloud character-
istics. Satellite observations are providing on a global
scale a good spatial as well as long-term temporal data
coverage. That setting is offering information at any lo-
cation of interest within the field of the view of the satel-
lite. Furthermore, it allows the quantification of spatial
distribution of irradiance variability compared to adja-
cent areas. As limiting factor, satellite-based observa-
tions from geostationary orbits are available only in tem-
poral resolutions of 10, 15, 30, 60, or 180 min depend-
ing on the data period and region of the world. The op-
erational Meteosat Second Generation Satellite (MSG)
nowadays operates in a temporal resolution of 15 min.

Satellites as Himawari-8 (launched 2014) and GOES-16
(launched 2017) are providing 10 min and 15 min tem-
poral resolution, respectively. Regional subsets of rapid
scanning satellite observations are available every 5 min
for Europe or the continental USA or 2.5 min for Japan,
but these services are not available on a global scale and
even may be re-focused depending on actual weather
hazards. Therefore, it is currently impossible to directly
derive statistical properties of a selected location from
a satellite in higher temporal resolutions of one or few
minutes. Note, that even with a potential 1 min resolv-
ing satellite observation mode the pixel size would still
cover several square-km. The physical quantity mea-
sured by the satellite is thus a spatial average, where
high frequency fluctuations present in the 1 min ground
measurements are smoothed out.

Since direct point observations of irradiances on
1 min basis are not available from current satellites, there
is still the need performing an indirect satellite evalu-
ation to derive the 1 min variability status. Having de-
veloped such an automated analysis offers then the op-
portunity to use the already existing long-term observa-
tion datasets from satellites and take advantage of their
global coverage. Perez et al. (2011) showed that tem-
poral variability metrics based on clearness index incre-
ments can be statistically estimated from the clearness
index at the time of the hourly satellite observation and
a spatial variability measure of clearness indices in the
surrounding 3×3 pixels. This spatial area corresponds to
a 30×30 km2 area. This conclusion was found for vari-
ous intervals of e.g. 20 sec, 1 min, 5 min, or 15 min but
also a dependency of the statistically best fit from the
chosen geographical location was found.

Hinkelman et al. (2013) show that 1 min GHI ramps
as observed by ground-based observations are related to
different cumulative distribution functions for varying
cloud types. In their study, cloud types were separated
into fog, water phase, super-cooled, opaque, and thin cir-
rus clouds as detected from GOES satellite-based obser-
vations. The structure of this dependency is comparable
at all stations investigated in the United States. Hinkel-
man’s work underlines the approach of our study that
local and regional weather patterns observed by satel-
lites can be classified automatically and as follow up
contribute to typical irradiance variability classes. In a
similar work, Reno and Stein (2013) quantify hourly
variability of 1 min GHI ramp rates of ground-based
time series in relation to cloud types classified from
GOES satellite imagery. These cloud types according
to the NOAA GOES Surface and Insolation Product
(GSIP) discriminate between clear, partly cloudy/fog,
water cloud, super-cooled/mixed phase cloud, optically
thick ice cloud, optically thin ice cloud, and finally
multi-layered clouds which correspond to cirrus above
lower level clouds. Even these cloud type classifica-
tions of both papers differ in its level of detail while
both schemes are based on multi-spectral satellite ob-
servations and classification on individual pixel level.
The study presented here is going beyond this approach,
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as it couples similar multi-spectral cloud retrievals for
neighbouring pixels into spatial features derived from
the cloud mask. Such an approach allows an automatic
assessment of overall meteorological cloud patterns on
the mesoscale range towards a DNI variability assess-
ment.

In the companion paper Schroedter-Homscheidt
et al. (2018) and based on the underlying master the-
sis Jung (2015), a reference data base of single hours
using 1 min resolved ground observations was created.
These individual hours were divided in eight DNI vari-
ability classes comprising information on high to low
ramping in DNI as well as high to low clear sky index.
Clear sky index is defined as ratio of observed irradi-
ance to a cloud-free case and can be seen as a mea-
sure of the energy provided in the hour. The individ-
ual classes are defined to describe different impacts on
ground-based radiation due to cloud cover and cloud
features. In Schroedter-Homscheidt et al. (2018) this
database is used to derive a supervised DNI variability
classification for 1 min resolved ground-based DNI time
series. By using the same reference data base as training
set, this paper investigates hourly and 15 min resolved
satellite-based observations of clouds and their spatial
structures to derive DNI variability class information.

Combining spectral and textural features was al-
ready widely used in cloud remote sensing for detect-
ing clouds in satellite imagery (e.g. Ebert, 1987 or
Garand, 1988). Using multi-pixel satellite information
to implement cloud type classification was used in the
past for nowcasting natural hazards, such as thunder-
storms affecting air traffic (as summarized and presented
in an own approach by Berendes et al., 2008) or in
Jakob and Tselioudis (2003) for global climate model
development. Irradiance variability patterns from 15 min
resolved spectral and textural features were classified by
Jung (2015) and for spatially higher resolved, but only
once or twice per day available polar orbiting satellites,
by Watanabe et al. (2016). The work presented in the
current paper elaborates the approach presented by Jung
(2015).

Section 2 shortly describes the reference data base
as well as the satellite-based cloud observations and
derived spatial structure parameters. Section 3 provides
the description of the automatic classification scheme
and its validation. Example results at various stations are
provided and discussed in Section 4. Section 5 finally
concludes the paper.

2 Data

2.1 Reference database of DNI variability
classes

This study uses a reference data base for eight irradi-
ance variability classes with different variability struc-
tures in 1 min resolved GHI and DNI time series. These
already classified hours with different variability con-
ditions were derived based on a visual classification

of 1 min DNI ground observations by three indepen-
dent experts and derived as the training basis for a su-
pervised variability classification for DNI time series
(Schroedter-Homscheidt et al., 2018). The data base
aims at classifying 1 min resolved variability within one
hour by using generic irradiance variability classes. It
consists of 300 cases in total and is distributed with num-
ber of cases for each class ranging from 16 to 54. It was
provided as a supplement in Schroedter-Homscheidt
et al. (2018).

The reference data base was derived from observa-
tions between 9 and 14 UTC in 2012 at the Baseline Sur-
face Radiation Network (BSRN, Ohmura et al., 1998)
station Carpentras in Southern France. Hours with tran-
sitions between two irradiance variability classes were
excluded to provide a useful training dataset. The BSRN
station Carpentras was chosen due to its location rele-
vant for the solar energy sector. It is affected by a large
variety of clouds and DNI variability patterns as it is af-
fected both by typical Mediterranean and Central Euro-
pean climates whereas it is neither a mountainous nor a
coastal station showing only specific cloud features. It is
therefore assumed that these selected variability classes
also serve as generic and universal classes at other loca-
tions.

Fig. 1 illustrates the variability classes with respect
to DNI. Black curves provide the 10 min running mean
DNI while yellow curves provide the 1 min resolved
DNI ground observation. Red boxes mark the hours se-
lected as part of the reference database for each variabil-
ity class. Please note that only a few hours of each day
are selected as other hours are either affected by low sun
conditions, show another variability class or are tran-
sition hours with changing variability conditions inside
the hour. Our previous studies (Glas, 2014) have shown
that a classification of days into variability classes as e.g.
done by Kang and Tam (2013) or Rauscher (2013) is
not justified due to frequent changes in variability con-
ditions during the day. This was further confirmed e.g.
by Nouri et al. (2019) who even claim the usage of a
15 min variability classification as necessity for some
applications as short-term forecasting in concentrated
solar power plants.

The variability classes were extensively described in
Schroedter-Homscheidt et al. (2018) with respect to
clear sky index and variability parameters derived from
1 min resolved ground-based irradiance observations.
Annex A in Schroedter-Homscheidt et al. (2018)
provides a visualisation of all reference database mem-
bers. The variability classes are sorted from large to
small kcDNI. The clear sky index kc is defined as ratio
between actually measured GHI and theoretically ex-
pected GHI in the cloud free case, which is taking only
Rayleigh scattering, trace gas absorption, and aerosol
extinction into account. The beam clear sky index kcDNI
is built in a similar manner as ratio between DNI and
cloud free DNI.

Fig. 2 presents the relative frequency clear sky in-
dex kc and kcDNI increments together with cumulative
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Figure 1: Examples of the variability classes 1 to 8 as used in the
reference database. Hours being classified into one of the classes
are marked by a red box. Minute resolved DNI values (yellow),
10 min DNI moving averages (black) and clear sky DNI values
(thin) are given (taken from Schroedter-Homscheidt et al., 2018,
their Fig. 5).

density of fractional GHI and DNI changes to quantify
ramps. The relative frequency is defined as the num-
ber of occurrences of kc values in histogram boxes with
a defined width of 0.1 and divided by the maximum
frequency of each individual class. Furthermore, cu-
mulative distributions are provided for fractional GHI
and DNI changes, which are minute-wise absolute ramp
rates normalized by 1000 W/m2 and given as percentage.

Frequency distributions of kc and kcDNI increments
differ remarkably between DNI variability classes. Clas-
ses 4 and 6 have largest minute-by-minute increments
and slowly increasing cumulative distributions, while
differing mainly by their mean kc of 0.89 and 0.77 and
mean kcDNI of 0.79 and 0.48, respectively. Classes 1,
2, and 8 have a small width of relative frequency dis-
tributions and steeper increase in cumulative distribu-
tions. Class 3 shows larger tails of large increments
than classes 5 and 7 and a smaller increase in the range
of large absolute ramps in the cumulative distributions.
Both patterns for the GHI and DNI are structurally sim-
ilar as expected but differ in the extreme values as DNI

is more sensitive to clouds and higher variable as it can
reach zero values while GHI always is above zero during
daytime due to the diffuse radiation component.

2.2 Ground-based observations

This study uses ground-based measurements from the
Baseline Surface Radiation Network (BSRN, Ohmura
et al., 1998). BSRN stations provide GHI, DNI, as well
as diffuse sky irradiance in 1 min temporal resolution.
The data base is quality controlled following the proce-
dures described in Long and Dutton (2012). BSRN
stations Cabauw (The Netherlands), Camborne (UK),
Carpentras (France), Izana (Spain), Payerne (Switzer-
land), Sariguen/CENER (Spain), Sede Boker (Israel) are
used below as well as DLR’s PSA (Spain) station.

Furthermore, all classification results are compared
also to ground measurements as obtained in the Ener-
MENA network (Schüler et al., 2016). This includes
EnerMENA stations Adrar (Algeria), Cairo (Egypt), Er-
foud (Morocco), Missour (Morocco), Oujda (Morocco),
TanTan (Morocco), and Zagora (Morocco).

The stations are chosen since they are located in
different climate zones and provide data for the selected
reference year 2012. Finally, they are all located within
Meteosat Second Generation satellite’s field of view.

2.3 Satellite-based cloud parameters

The APOLLO (AVHRR Processing scheme Over
cLouds Land and Ocean; Kriebel et al., 1989; Saun-
ders and Kriebel, 1988; Kriebel et al., 2003) method-
ology delivers cloud mask, cloud type, cloud optical
depth, and cloud top temperature as cloud physical pa-
rameters for all fully cloudy MSG (Meteosat Second
Generation) SEVIRI (Spinning Enhanced Visible and
InfraRed Imager) pixels.

The temporal resolution is 15 min during daytime
and data is available since 1st February 2004. Pixel
size is 3×3 km2 at satellite nadir and increases to 4×5
or 5×6 km2 towards the mid-latitudes. MSG’s 15 min
operating mode is available for more than 10 years now,
while other satellite services do not cover longer time
series so far. Therefore, this study focuses on the field of
view of MSG.

From APOLLO cloud retrievals, a number of pixel-
wise classifiers is used. Furthermore, a group of classi-
fiers is suggested which uses the information in a win-
dow around the pixel of interest.

2.3.1 Pixel-wise classifiers

Fully and partly cloudy pixels are discriminated. Cloud
coverage as the fraction inside a pixel covered by a
cloud, expressed in percent, is derived for each altitude
level and thin clouds separately. Cloud coverage is cal-
culated at daytime by analysing the dependency between
reflectance measured at 0.6 µm and 0.8 µm with aver-
age reflectances for fully covered and cloud-free pixels
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Figure 2: Relative frequency of minute-by-minute kcand kcDNI increments for all eight variability classes (left) and cumulative distributions
of absolute GHI and DNI ramp rates normalized with 1000 W/m2 (right).

in a surrounding box of 58×58 pixels. This size of the
surrounding box was defined in the 1980ies and it dif-
fers from the later found surrounding boxes of 3×3 and
29×29 pixels for the spatial features in Section 2.3.2.
This is accepted as the APOLLO cloud retrievals are
obtained from the operational CAMS radiation service
input dataset which cannot easily be changed.

The cloud type discriminates between low-level,
medium-level, and high-level reaching water or mixed-
phase clouds and high-level thin ice clouds. It is derived
using cloud phase, cloud top temperature, and a compar-
ison against the standard vertical temperature profiles.
The layer boundaries are set to 700 hPa and 400 hPa with
the associated temperatures taken from standard atmo-
spheres. The thin cloud layer exclusively contains thin
pure ice phase clouds with no thick clouds underneath.
For partially cloudy pixels the cloud type is assigned as
the most frequent cloud type in a 58×58 pixel environ-
ment. Literally defined cloud types clear, thin ice, low,
medium, and high-level clouds are set to 0, 1, 2, 3, and
4 as numerical values according to increasing impact on
solar surface radiation.

Cloud optical depth is derived in a first step only
for fully cloudy pixels. A post-processor is applied to
estimate τcloud for partly cloudy pixels. The estimated

optical depth of the partly covered pixel is computed
firstly by taking the average of all τcloud of the fully
covered pixels of same type of cloud in this region, and
then by multiplying this average by the cloud coverage
inside the pixel.

2.3.2 Spatial features as classifiers

Beside features derived from multispectral satellite ob-
servations for each individual satellite pixel only, also
spatial features describing the relationship of neigh-
bouring pixels in either a close neighbourhood of 3×3
or a wider neighbourhood of 29×29 pixels are applied
(Fig. 3). The selection of 3×3 pixels is motivated by
their characteristic of being direct neighbours. The se-
lection of 29×29 pixels is justified by optimized classi-
fication results presented later. Such features have also
been called textural features in remote sensing literature
before.

Fig. 3 qualitatively illustrates how different scattered
or overcast clouds look from the satellite point of view.
Visually, differences between the four satellite images
on the upper left of Fig. 3 are obvious, but it is not
straight forward to detect different cloud situations auto-
matically and to assess them with respect to variability
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Figure 3: Schematic illustration of spatial features used as classifiers. Example satellite images illustrate the variability of cloud situations
and the classifier ‘number of clouds’ representing spatially connected areas in the cloud field (upper left), the number of cloud/cloud free
changes in the neighbourhood marked in orange (upper right), and examples of typical values of the fractal box dimension (lowest row).

in radiation at the surface. This study is a suggestion for
such a quantitative and automatic approach.

Cloud fraction in the window is derived as the ratio of
all pixels being detected as cloudy and all pixels existing
in the window. Partially cloudy pixels are weighted with
their individual cloud fraction.

The number of clouds is obtained by using an
8-neighbour search strategy using all horizontal, verti-
cal, and diagonal neighbours within a binary cloud mask
in order to identify cloud structures. Fig. 3 (upper left)
illustrates how spatially connected areas of cloudy pix-
els are counted as a single cloud by marking 3 clouds as
examples.

The number of cloud/cloud free changes among pix-
els within the window is calculated from the binary
cloud mask. It sums the adjacent cloud free pixels in
the neighbourhood of a cloud. In Fig. 3 (upper right)
they are marked in orange. Cloud/cloud free changes are
counted for each column and each row first separately
and summed up as the final number of cloud/cloud free
changes in the cloud mask.

Clouds can be described as fractal objects down to a
size of approx. 350 m as shown by Beyer et al. (1994).
This was analysed for sky camera observations with a
pixel size of 7 m and by Pietrapertosa et al. (2001) for

high resolution satellite-based observations with a pixel
size of 16 m. Maafi and Harrouni (2003) applied the
fractal approach to classify daily GHI time series into
cloudy, partly cloudy, and clear sky conditions. In our
study, the fractal box dimension is used as an additional
classifier representing the fractal characteristic of the
cloud field. Artificial example cloud fields and their
typical fractal box dimensions are illustrated in Fig. 3
(lower panel). The fractal box dimension in a window
is calculated as a box-counting dimension as used in
Carvalho and Silva Dias (1998).

Overall the cloud compactness can be summarized
by typical values found for box dimension and the num-
ber of cloud elements (Table 1).

The cloud area type is finally a parameter describing
the nearby 3×3 pixel neighbourhood of the central pixel.
The decision tree is presented in Fig. 4. It was derived
by analysing many situations during the reference years.
Thresholds are arbitrarily chosen from examples and
checked in many other cases visually.

In case the satellite pixel is partly cloudy or cloud
free, cloud area type is set to ‘clear’ if the cloud frac-
tion is below 30 %; to ‘scattered’ if the cloud fraction
is between 30 and 80 %; and to ‘broken/overcast’ if the
cloud fraction is above 80 %. If the pixel is fully cloudy,
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Table 1: Typical values of box dimension and number of clouds for
different cloud compactness cases.

Fractal box dimension Nb of cloud
elements

Cloud compactness

2 1 Overcast
1.7 to 1.9 <=5 Few large clouds
1.8 to 2 >5 Broken clouds
0 to 1.7 <=5 Isolated clouds
0.5 to 1.8 >5 Scattered clouds

Figure 4: Scheme to derive the cloud area type describing the nearby
neighbourhood of a pixel. Cloud fraction is defined here as cloud
fraction in a 3×3 pixel window.

the number of clouds in the surroundings is evaluated.
If the number of clouds is above 10 then the situation
is classified as ‘scattered’ unless the pixel’s cloud frac-
tion is above 80 % which points to a ‘broken/overcast’
situation in the pixel and its nearby surroundings. If
there are only few clouds (less than 10) in the surround-
ings, the situation is classified as ‘broken/overcast’ un-
less there are more than 175 cloud/cloud-free changes
in the 29×29 window which results in a classification
as ‘scattered’. The number of 175 was derived empir-
ically from visual assessment of many satellite images.
The latter selection may again be overwritten by the very
local conditions inside the pixel if the pixel’s cloud frac-
tion is above 80 %. In case the cloud type at the pixel
location was identified as thin ice cloud, this overwrites
all previous findings with the cloud area type ‘thinIce’.
In a final step the occurrence of cloud/cloud free changes
between the centre pixel and its direct neighbours is
checked – if they exist, the cloud area type is set back
to scattered, as local effects are expected to dominate
such cases. The literally defined classes ‘none’, ‘clear’,
‘scattered’, ‘broken/overcast’, and ‘thin ice’ are coded
as numerical values 0, 1, 2, 3, and 4 in the classification
process.

3 Automatic classification

3.1 Irradiance variability classes described by
satellite-based classifiers

In this paper the irradiance variability classes are de-
scribed with respect to satellite-based classifiers related
to all pixel and window-based cloud parameters (Ta-
ble 2 to 4).

The cloud type at a satellite pixel is typically clear
for classes 1 to 4 and includes typically thin cirrus for

Table 2: Hourly irradiance variability class characterisation by
pixel-wise parameters cloud type, cloud optical depth, and cloud
coverage. All median values and the P25 and P75 range (in brackets)
are given.

Class cloud type [-] cod [-] coverage [%]

1 0 (0, 0) 0.0 (0.0, 0.0) 0 (0, 0)
2 0 (0, 0) 0.0 (0.0, 0.0) 0 (0, 0)
3 0 (0, 0) 0.0 (0.0, 0.0) 0 (0, 0)
4 0 (0, 2) 0.0 (0.0, 0.0) 0 (0, 1)
5 1 (0, 1) 0.4 (0.0, 0.4) 1 (0, 10)
6 1 (0, 2) 0.9 (0.0, 2.9) 16 (0, 56)
7 2 (1, 3) 2.0 (0.4, 3.3) 40 (13, 100)
8 3 (3, 4) 22.1 (13.9, 28.5) 100 (100, 100)

Table 3: Hourly irradiance variability class characterisation by
window-based parameters fractal box dimension, number of clouds,
and number of cloud/cloud free changes. All median values and the
P25 and P75 range (in brackets) are given.

Class boxdim [-] num. of
clouds [-]

num. of cloud/cloud
free changes [-]

1 1.14 (0.93, 1.31) 1 (0, 5) 6 (0, 38)
2 1.55 (1.30, 1.75) 4 (2, 6) 94 (27, 136)
3 1.74 (1.65, 1.85) 5 (4, 6) 154 (101, 173)
4 1.79 (1.65, 1.84) 7 (4, 8) 137 (115, 236)
5 1.83 (1.73, 1.95) 4 (1, 6) 146 (75, 183)
6 1.96 (1.83, 1.97) 2 (1, 4) 121 (72, 170)
7 1.97 (1.97, 1.97) 1 (1, 1) 9 (0, 64)
8 1.97 (1.97, 1.97) 1 (1, 1) 0 (0, 0)

Table 4: Hourly irradiance variability class characterisation by fur-
ther window-based parameters cloud fraction in window and cloud
area type. All median values and the P25 and P75 range (in brack-
ets) are given. Additionally, the number of cases in the reference
database is given.

Class cloud area type [-] cloud fraction
in window [%]

num. of cases [-]

1 ‘none’ 0 (0, 2) 54
2 ‘none’ 2 (1, 14) 35
3 ‘none’ 17 (9, 28) 23
4 ‘scattered’ 22 (10, 28) 16
5 ‘clear’ 14 (9, 27) 39
6 ‘scattered’ 42 (21, 55) 51
7 ‘scattered’ 60 (43, 72) 42
8 ‘broken/overcast’ 94 (87, 98) 38
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classes 5 and 6. Low level clouds are dominating class 7
and medium and high level optically thick clouds are
dominating class 8. Statistics of cloud optical depth
shows that classes 5 to 7 have low COD classes with
P75 values around COD of 3 and P90 values of up to 10.
In classes 1 to 4, the COD at pixel location is often zero.
Nevertheless, classes 2, 3, and 4 show some variabil-
ity of direct irradiances even if the COD in the pixel it-
self is zero. This may have various reasons: (a) cirrus
clouds may be sub-visible in the satellite pixel of sev-
eral square km size, (b) local cumulus clouds may affect
a neighbouring pixel in a parallax effect as a function of
cloud height, sun position, and satellite geometry; and
(c) small scale, but optically thick clouds may be over-
looked in the satellite pixel. Therefore, cloud informa-
tion from the surrounding box is useful to discriminate
between classes 1 to 4 and their smaller scale variations
which may be overlooked by the satellite physical re-
trieval inside the individual, best geo-located pixel either
due to spatial resolution or parallax effects.

The fractal box dimension in the 29×29 pixel win-
dow increases systematically from classes 1 to 6 and
remains constant for classes 7 and 8 where the value
of 1.97 occurs as an upper limit. The theoretical value
of 2 is not reached. This is caused by applying the frac-
tal box dimension algorithm on a restricted 29×29 pixel
area only, instead on an indefinite spatial area. The num-
ber of clouds in the surrounding box is largest for classes
2, 3, 4, and 5, while there are only fewer clouds in the
surroundings for classes 1, 6, 7, and 8.

For the number of cloud/cloud free changes, the
classes 3, 4, 5, and 6 show maximum values. It may be
noted that class 6 has a low number of clouds but a large
number of changes between cloud and cloud free pixels.
This represents few larger clouds with many gaps and
a very rough border in the 2-dimensional cloud mask
as seen by the satellite. The cloud area type ‘broken-
Overcast’ dominates class 8 and can be found in the P75
of class 7 but does not occur in all other classes within
the P25 to P75 interval. Scattered clouds are dominating
classes 4, 6, and 7 while class 5 is typically represented
by a clear cloud area type. The window cloud fraction
also increases with class number – with exception of
class 5, which has a median cloud fraction of 14 %. The
P25 and P75 values in classes 3, 4, and 5 are very similar,
but the median value varies between 17, 22, and 14 %.

A corresponding assessment can be made for the
15 min resolved classification using the full temporal
resolution of the satellite data. The average cloud cov-
erage in class 6 increases from 16 to 21 % and in class 7
from 40 to 47 %. The fractal box dimension in clear sky
classes decreases from 1.14 to 1.05 representing more
isolated or scattered clouds which are more visible if
only a single snapshot satellite image is used instead of
averaging 4 consecutive satellite images. Also, the frac-
tal box dimension’s P25 percentiles for classes 2 and 3
are decreasing from 1.3 to 1.24 and from 1.65 to 1.57.
All other parameters change only gradually and non-
systematically.

3.2 Automatic classification scheme

Based on the cloud parameters introduced as classifiers
in Section 2, the typical values of all classifiers are de-
rived and given as Box-Whisker representation show-
ing the median as well as P25 and P75 percentiles for
each cloud parameter (Fig. 5). The distributions are de-
rived for all hours in the reference database. All indices
are scaled to a range of 0 to 1.5 for better visualiza-
tion. The classifier values are far from being constant
for individual classes, but compared to the other vari-
ability classes, the distributions of values within one
variability class differ systematically for most classes.
Classes 3 and 4 differ less systematically than the re-
maining classes and may therefore be difficult to dis-
tinguish with satellite observations. Nevertheless, these
difficult classes 3 and 4 are still considered in the analy-
sis to account for consistency with classification results
obtained from ground-based observations as presented
in Schroedter-Homscheidt et al. (2018) and Nouri
et al. (2019).

The dependencies between the classifiers are evalu-
ated first visually by using scatterplots of each classifier
against each other classifier. There were no redundant
classifiers found. Furthermore, the dependency was fur-
ther quantified by using Pearson correlation coefficients
for an assessment of the reference data set. Correlation
heat maps for all classes are evaluated – individually for
each class and aggregated over all classes (Fig. 6). An in-
dividual correlation heat map for a single class typically
results in a few entries with high correlation values close
to 1 – indicating that two classifiers are redundant for
this variability class. But doing so for all eight variabil-
ity classes, no systematic overall redundancy is found.
This is quantified further by calculating the sum of the
correlation coefficient over all classes. The sum of corre-
lation would reach 8 in case of any two classifiers being
duplicative. Maximum correlation sum values reach the
value of 6. Therefore, it is meaningful to keep all clas-
sifiers as they represent different parts of the observed
irradiance variability.

Class 1 is characterized by lowest fractal box dimen-
sions, a small number of clouds and cloud/cloud free
changes inside the window, as well as by a low win-
dow cloud fraction. Both cloud type and cloud area type
classifiers are indicated as clear for all cases. The frac-
tal box dimension increases with class number until it
reaches its maximum in full cloud coverage classes 7
and 8. The number of clouds and number of cloud/cloud
free changes is largest for the high variability class 4.
The window cloud fraction shows small and rather sim-
ilar values for classes 1, 2 and then again for classes 3,
4, and 5, before it increases to full cloud coverage in
class 8.

It is remarkable that classes 1 to 4 do not differ in the
single-pixel-only classifiers as cloud type, cloud optical
depth, and cloud coverage. Single-pixel-only classifiers
are only suited to discriminate classes 5, 6, 7, and 8
while the window-related classifiers fractal box dimen-



Meteorol. Z. (Contrib. Atm. Sci.)
29, 2020

M. Schroedter-Homscheidt et al.: Classifying direct normal irradiance 1-minute temporal variability 139

Figure 5: Box-Whisker plots for each satellite-based classifier (scaled for easier visualization) and for each irradiance variability class.
Median values are given as black lines within each box. The box itself reaches from the lower to the upper quartile. The whiskers represent
the maximum values in the distribution that are less than 1.5 times the inter quartile distance away from the median. Further outliers are
marked as circles.

Figure 6: Aggregated correlation heat map for all satellite-based predictors as sum over all 8 classes. Autocorrelation values on the diagonal
are not shown.

sion is better suited to discriminate classes 1 to 5. The
same applies to the window-related classifier ‘number
of clouds’ which only helps to classify classes 1 to 6
but does not discriminate classes 7 and 8 anymore. The
more sensitive window-based classifier of cloud/cloud

free changes as well as the window cloud fraction are
well suited to discriminate the full range of classes but
are less sensitive to discriminate classes 3 and 4 from
each other. Finally, the cloud area type is relevant to dis-
tinguish classes 5 to 8. Per definition this parameter is
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for many cases closely related to the neighbourhood of
the centre pixel and therefore tends to behave similar as
the single-pixel-only classifiers.

All above described cloud parameter distributions are
used in the automatic, supervised classification scheme
as ‘reference distributions’. All classifiers are treated in
a similar way: For each satellite observation the distance
between the classifier value for the actual satellite image
towards the median of the reference distribution is cal-
culated. This is repeated for each variability class and
summed up for all classifiers. The class with the lowest
distance sum is claimed as result for this satellite obser-
vation and for the location of interest which is the central
pixel inside the window.

In general, the automatic classification is performed
every 15 min for each image provided by the satellite.
This is advantageous and needed in user applications
as e.g. shown by Nouri et al. (2019). Nevertheless, the
reference database was set up on an hourly basis, since
daily classifications were found to be not sufficient (e.g.
Tomson, 2010). In order to compare automatic, satellite-
based classification results versus the visually selected
and controlled reference data base, hourly mean auto-
matic classification results are needed. They are derived
as the mean of four quarter-hourly values available dur-
ing each hour.

3.3 Comparing the satellite-based and the
reference classification

For validation the automatic classification scheme is ap-
plied to all hours in the reference database (Fig. 7). The
distributions for all classes peak on or next the 1:1 line.
Overall, 55 % of all hours are placed into the same
class by using the satellite-based compared to the man-
ual expert-based classification scheme. Hit rate in the
satellite-based classification are 70, 37, 48, 50, 51, 31,
60, 92 % for classes 1 to 8, respectively. There are two
groups of classes – class 2 and 6 with low detectability
and the other classes with higher detectability.

This is very much in line with results of Watanabe
et al. (2016) who found average classification results of
56 and 61 % for two classification methods and a similar
spread of results in their 6 variability classes. They used
MODIS 1 km resolved cloud classifiers, which were av-
eraged over 45×45 km2 and compared against 2-hourly
temporal windows with 1 min resolved global horizon-
tal irradiances. Their result was obtained from the one or
two overpass times of the MODIS instrument on board
the polar orbiting satellites AQUA and TERRA and us-
ing ground observations from Japan.

These results are better than those found in a sim-
ilar classification exercise based on artificial neural
networks as discussed in Schreck (2018). The neu-
ral network approach used the same reference dataset
as labelled dataset and the same cloud predictors, but
achieved only a classification result of 40 % due to a very
flat probability function for the intermediate variability
classes as result of the neural network.

Figure 7: Density scatter plot for the satellite-based classification
versus the ground-based reference classification.

Since a visually based definition of variability classes
in the reference database is somewhat arbitrary in tran-
sition zones between two classes, a second evaluation
is made by counting the classification into a neighbour-
ing class as a success. Following Borg et al. (2011) it
is recommended to assess any automatic classification
in comparison to an expert-based classification. In our
case neighbouring classes are classes with consecutive
class numbers, but also classes 4 and 6 which are similar
in their characteristics. Applying these assumptions, the
detection rate is 92 %. This strong improvement in clas-
sification accuracy illustrates the fact that, gross clas-
sification errors are seldom and that in far most of the
cases, variability situations being close to each other are
misclassified. For real data with natural heterogeneity in
cloud conditions this result is therefore very acceptable.

It was furthermore tested to derive all classifiers on
a 9×9 (approx. similar area as in Watanabe et al. 2016),
19×19, or 29×29 pixel subset. Most classifiers remain
very similar. Only the classifiers ‘number of clouds’
and ‘cloud/cloud free changes are increasing in larger
windows – which is obviously expected if using a larger
window. The accuracy of classification is better for the
29×29 pixel area. For the hourly mean classification the
accuracy versus the reference database is 87, 90, and
92 % for the 9×9, 19×19, and the 29×29 pixel subset,
respectively.

Therefore, all classifiers are from now on derived
from a 29×29 pixel cloud mask subset resulting in a
classification accuracy of 92 %. This setting is also in
line with findings from cloud type detection by Ebert
(1987). They use 32×32 AVHRR GAC pixels which is
the same km pixel range as 29×29 MSG SEVIRI pixels
as each AVHRR GAC pixel is about 3×5 km2 large.
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3.4 Visual assessment of the satellite-based
classification

The automatic satellite-based classification result was
visually assessed for DNI time series measured at En-
erMENA stations Adrar, Cairo, Erfoud, Missour, Oujda,
TanTan, and Zagora; BSRN stations Camborne, Carpen-
tras, Payerne, Sede Boker; and DLR’s PSA station for
the year 2012. The 1 min resolved ground observations
of DNI were plotted as a time series with the correspond-
ing satellite-based class coded as background colour in-
side each hour. Classification errors were identified vi-
sually and analysed by comparing these situations with
colour composites of SEVIRI data to interpret the me-
teorological and geographical conditions.

Restrictions were found in regions with orograph-
ically induced clouds as e.g. at the Plataforma Solar
de Almeria (PSA, Spain) where clouds are frequently
caused by surrounding mountains. Such clouds are not
representative for the PSA, which is located in the valley
between the mountains. Especially, for PSA a frequent
selection of class 3 with high DNI but some variability
was observed in clear sky situations with low DNI vari-
ability. The same effect is observed in Carpentras in the
case of fog in the surroundings.

The algorithm is sensitive to clouds only. Thin cirrus
clouds can typically be detected due to the satellite’s in-
frared channels and the situation will be correctly iden-
tified as a non-clear variability class. On the other hand,
atmospheric aerosols typically have a similar magnitude
of DNI extinction and will result in a variability class 2
in ground-based DNI observations. But as the cloud re-
trieval is made to not detect aerosols, our method may
overlook such DNI situations. This can be observed in
stations as e.g. Adrar (Algeria) which are affected by
desert dust.

Optically thin, low level clouds over deserts may be
overlooked as well in the cloud masking, resulting in a
clear-sky assumption, while the DNI would be classified
as class 2 or 3. This is observed in many cases e.g.
in Cairo with optically thin low-level clouds coming in
from the ocean. During their solution over the warm land
and therefore during their optically thinning process,
they are still visible by the DNI ground observation as a
small variability, but not by the satellite image anymore.

4 Example classification

As an illustration of classification results, the method is
applied for 2012 at four BSRN stations located in Car-
pentras (France), Cabauw (The Netherlands), Sariguen
(the station name is CENER, Spain), and Izana (Ca-
nary Islands, Spain). Fig. 8 illustrates the frequency his-
togram of irradiance variability classes for hourly day-
time satellite-based cloud observations (top) as well as
derived from ground-based DNI observations as dis-
cussed in Schroedter-Homscheidt et al. (2018). Day-
time hours are defined by a minimum solar elevation an-
gle of 5° for the whole hour.

Figure 8: Comparison of classification results as obtained from
satellite and ground-based observations at 4 BSRN stations and the
year 2012.

In order to interpret the classification results, Fig. 9
describes the stations Carpentras, Cabauw, and Sariguen
(CENER) with respect to the relative frequency of clear
sky index kc and beam clear sky index kcDNI as well
as the relative frequency of their increments in 1 min
temporal resolution. The station Izana is omitted due
to restrictions in the satellite-based classification as dis-
cussed below.

Carpentras has a maximum occurrence in variabil-
ity classes 1 and 2, but also in class 8. The satellite-
based classification identifies more often class 1 than
class 2, while the ground-based classification derives
15 % more class 2 cases than class 1 results. Counting
both classes together results in 38 % and 44 % for the
satellite-based and the ground-based classification, re-
spectively. Classes 3 and 4 are detected more often in the
satellite-based classification than from ground, while the
ground-based classification retrieves more often class 5.
Especially, class 3 identification can be attributed to low
cloud/fog situations in the surroundings. For classes 6, 7,
and 8 the results are very similar. Overall, the low vari-
ability classes 1, 2, 5, and 8 are dominating in Carpen-
tras, which explains the smaller kc and kcDNI increments
observed in the annual statistics (Fig. 9, upper row).

For Cabauw as Northern station, variability classes
4, 6, 7, and 8 occur more frequently. Classes 1 and 2
are very rare. The estimates of satellite- and ground-
based classifications are very similar with deviations
below 2 % for classes 1, 3, 4, 5, 7, and 8; while classes
2 and 6 are classified 6 and 4 % more frequently by the
ground-based methods.
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Figure 9: Relative frequency of kc and kcDNI increments observed in 1 min resolved ground observations (upper row) for the year 2012 –
together with relative frequency distributions of kc and kcDNI itself.

CENER shows a similar pattern as Carpentras, but
with less classes 1 and 2 and more frequent classes 6
to 8. The variable classes 4 and 6 are frequent. As for
Carpentras and Cabauw, the occurrence of class 2 is un-
derestimated compared to the ground-based classifica-
tion by −12 %.

Cabauw and CENER stations show a very similar
pattern in kc and kcDNI increments with larger incre-
ments both for global and direct irradiances than the sta-
tion Carpentras. This reflects the larger occurrence of
classes with higher variability. Nevertheless, the vari-
ability class distribution looks very different for both
stations, while the increment statistics are very simi-
lar. This can be explained by the overall statistics of kc
and kcDNI as given in Fig. 9 (lower row). Cabauw has a
higher occurrence of cloudy skies with low kc and kcDNI
values which is consistent with a larger occurrence of
variability classes 6, 7, and 8. CENER on the other hand
has a higher occurrence of clear skies with large kc and
kcDNI which is reflected by a larger occurrence of vari-
ability classes 1 and 2 than Cabauw.

Overall, it can be seen that variability class 2 is cho-
sen much more frequently by the ground-based classifi-
cation scheme than by the satellite-based classification.

The latter prefers either class 1 or class 3 in such cases.
As discussed in Section 3.2, in the satellite-based clas-
sification the discrimination of classes 1 to 4 is done
only by the adjacent cloud situation while the actual
satellite including the ground observation is retrieved by
the satellite as cloud-free. Furthermore, any influence
by aerosols is not considered. On the other hand, the
ground-based classification uses the time series of DNI
at the ground observation as information source. So, in-
accuracies are expected, and it is overall interesting to
see that the lower classification rate of class 2 is consis-
tent at Carpentras, Cabauw, and CENER.

Izana is located in a unique geographical situation
as a mountaintop station on an island. In this region of-
ten surrounding clouds occur above the ocean area while
the station itself lies mostly in cloud-free conditions.
Therefore, the classification result with large frequency
of classes 3 and 4 based on the satellite classification and
the large frequency of class 1 by the ground-based clas-
sification is expected. Class 1 is underestimated by 50 %
and classes 3 and 4 are overestimated by 27 % each
compared to the ground-based classification. Izana is a
station illustrating the effect of non-representativeness
of surrounding cloud structures for a specific location.
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Similar overestimation of class 3 was found in the vi-
sual interpretation in Section 3.4 for the stations PSA
due to convective clouds over surrounding mountains
compared to the station located in a valley being often
without these clouds.

5 Conclusions

A new automatic detection scheme of 1 min re-
solved surface solar irradiance variability classes from
satellite-based cloud physical properties is presented.
The method evaluates the surroundings of a loca-
tion to describe the actual cloud situation and its
impact on irradiance variability. The method pro-
vides an estimate of variability classes, which are
each described by previously suggested variability met-
rics (Schroedter-Homscheidt et al., 2018). The vari-
ability classes are also characterized with respect to
direct normal and global horizontal irradiances in
Schroedter-Homscheidt et al. (2018). Therefore, the
method is capable to describe various characteristics of
irradiance variability being of interest for different user
groups.

Multi-spectral cloud retrieval methods are applied
in the satellite-based cloud retrieval scheme APOLLO
(Saunders and Kriebel, 1988; Kriebel et al., 2003).
APOLLO is used to derive cloud physical parame-
ters from Meteosat Second Generation (MSG) satellites.
This database starts in February 2004 and is available for
Europe, Africa, the Middle East and parts of Brasilia.

Additionally, satellite-based textural features are ad-
ded as classifiers in the automatic classification scheme.
They describe spatial cloud structures. These classifiers
are selected and developed with focus on the needs of
solar energy users for the detection of ramping irradi-
ance conditions in either global or direct irradiances.

Textural features are derived from a group of pixels
around the location of interest and cover a wider geo-
graphical region. Such classifiers are therefore less sen-
sitive to parallax errors within the window, which are
caused by solar viewing geometry and cloud height in
single pixel classifiers. They may even take clouds into
account which are overlooked in a single-pixel assess-
ment due to the parallax error. On the other hand, textu-
ral features may cover a too large region to be represen-
tative for the pin-point like variability at the location of
interest. Both effects are observed and cause individual
misclassification in some satellite images.

Restrictions in classification accuracy are observed
in cases with clouds in the surroundings which are
not moving horizontally as e.g. static convective clouds
forming above nearby mountains or steady fog in nearby
regions. In such cases the spatial representativity as ba-
sic assumption of the method is not valid anymore.
It will be investigated to detect such cases from the
temporal variability from one cloud mask to the next
cloud mask. Furthermore, the method is only sensitive
to clouds and may overlook variability as introduced by
aerosols in desertic regions.

It is obvious that exact irradiance observation at a
single point is not accessible from space-borne sensors
with a much lower spatial and temporal resolution, but
the aim of this study is to assess the type of variability
rather than to quantify each 1 min value exactly.

Time series of irradiance variability classes can be
derived from 2004 onwards at each location of inter-
est in Europe, Africa, and the Middle East. They have
been used in extended site auditing for several test cases
(e.g. Schroedter-Homscheidt et al., 2016; Schreck,
2018; Nouri et al., 2019). Similar satellite-based capaci-
ties became available in recent years for Asia and for the
Americas with the Himawari and GOES-16/-17 satel-
lites.

Based on the satellite temporal resolution of 15 or
even 5 min in the rapid scanning mode, several consec-
utive estimates of the irradiance variability class inside
each hour are feasible. Several strategies are possible in
the future development and application of the method:
use of a moving hourly estimate over time with updates
every 5 or 15 min, monitoring of the stability of the vari-
ability class identification inside the hour of interest, or
the integration of the temporal variability of cloud sta-
tistical parameters itself as a classifier in the irradiance
variability classification.

Nouri et al. (2019) showed how a DNI variability
classification can be used to assess a method’s uncer-
tainty systematically. Classifying variability classes for
a historical time series at any location can help to esti-
mate the uncertainty of a forecast scheme for the loca-
tion of interest depending on the typical cloud patterns
and variability classes. Nouri et al. (2019) applied it for
a sky camera based nowcasting system, but the same
principle can be applied to any numerical weather pre-
diction based solar irradiance forecast or to any other
method to retrieve solar irradiance data.

The variability classes may furthermore be suitable
to derive efficiency factors for renewable energy tech-
nologies. They can be used for the power output cal-
culations of both photovoltaic and concentrating solar
thermal power plants for each irradiance variability class
separately. Or they can be used to derive life time correc-
tion factors for storage systems – quantifying the effect
that a larger percentage of highly variable conditions at
a location will reduce the system’s life time.

The automatic characterization of each hour may
avoid the need for a system simulation in a temporal
resolution of 1 min which is computationally costly and
may not exist in all simulation software packages al-
ready. Replacing nowadays hourly irradiance time series
values by modified irradiance values, taking additionally
into account the variability effects is currently under in-
vestigation.

The knowledge of variability classes at a location to-
gether with their properties can also be used to derive
synthetic 1 min resolved time series with an artificial
1 min variability. Previous studies using Markov pro-
cesses to derive global irradiance time series were e.g.
based on daily clearness index (Ngoko et al., 2014) or
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long-term meteorological parameters as sea level pres-
sure, wind speed, cloud base height, and cloud cover
(Bright et al., 2015). A similar approach based on the
spatial cloud features used in this study was tested
(Schreck, 2018). This results in realistic time series for
each meteorological situation and each point in a time
series – and not just in a time series created from statis-
tical mean properties only.

For several textural features a conditional suitabil-
ity as classifiers were found as e.g. the number of
cloud/cloud-free changes which is relevant only if there
a few clouds in the surroundings of a location. These
findings are currently combined in the decision tree for
the cloud area type but this finding of conditional suit-
ability may be elaborated further in future.

Changes in cloud masks from one image to another
image are also not yet included in the classifiers. Any
cloud motion vector may serve as additional classifier on
the horizontal replacement of the clouds – causing vari-
ability just by passing by while not changing the cloud
shape necessarily as well. Nevertheless, this ‘frozen at-
mosphere’ assumption is often not valid in situations
with convective clouds causing high variability cases.
The value of such classifiers derived from consecutive
images needs to be evaluated in future as well.

Furthermore, the approach will be tested for spatially
higher resolved satellite imagery as provided by the
Meteosat Third Generation satellites.
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