# Quieter and Greener Rotorcraft: Concurrent Aerodynamic and Acoustic Optimization

Gunther Wilke DLR Institute of Aerodynamics & Flow Technology Helicopter September 2<sup>nd</sup> 2020





# Knowledge for Tomorrow

# **Motivation**

- Current design cycles are still lengthy
- ERATO  $\rightarrow$  Blue Edge ~ 20 years
- Still a need for quieter & greener helicopters
- CleanSky <u>1</u> GRC 1 5% power reduction + 10 dB noise reduction w.r.t to rotor blades of the year 2000 fleet
- DLR's VicToria aimed at accelerating the aerodynamic and aeroacoustic design through numerical optimization



#### AirbusHelicopters.com



https://www.cleansky.eu/green-rotorcraft-grc



https://www.dlr.de/as/en/desktopdefault.aspx/tabid-11460/20078\_read-47033/



# **Overview**

- Simulation Methodology
- Validation
- Surrogate Based Optimization Process
- Optimization Results
- Off-Design analysis
- Summary & Outlook





# **Simulation Setup**

- Fully coupled process: aerodynamics, elastics, flight dynamics & acoustics
- Use of comprehensive code HOST to compute trim settings & deformation
- Use of legacy CFD solver FLOWer for blade loads and acoustic surfaces (use of 4<sup>th</sup> order method & empirical transition prediction)
- FW-H code APSIM for acoustic "postprocessing"





# Validation

- Three flight conditions investigated
  - Hover
  - Forward flight / cruise
  - Descent flight
- Use of two mesh setups
  - Periodic mesh in hover with a single blade
  - Chimera setup with four blades and fuselage embedded in a background mesh
- Validation against various wind tunnel tests with up to three grid sizes

|                          | Hover                  | Forward /<br>descent flight |
|--------------------------|------------------------|-----------------------------|
| Blade                    | 161x161x161<br>= 4.1e6 | 129x129x129<br>= 2.1e6      |
| (embedded)<br>Background | 33x33x129<br>= 1.4e5   | 161x321x401<br>= 20e6       |
| Fuselage                 | -                      | 161x129x129<br>= 2.6e5      |
| Total                    | 4.4e6                  | 3.2e7                       |

Number of Grid points On finest mesh (L1)





# **Validation: Hover**



L1 solution match experiment well, L2 yields fair results, L3 too far off (each grid level skips one grid point in each direct w.r.t to the previous grid level)



# **Validation: Forward flight**

- 2 rotors and 3 flight conditions investigated
- L3 setup also drops the fuselage as not enough Chimera overlap exists anymore
- Again L1 mesh in matches relatively well, with L2 mesh delivering a fair result, L3 is far off



#### Runtimes: L1 1 week 320 cores, L2 2 days 64 cores, L3 10 hours 64 cores



# **Validation: Descent Flight**

- Most noisy flight condition of current helicopter generations
- Noise is created when the blade pass the previous tip vortices parallel → quick change in AoA → fast pressure fluctuation
- Good vortex preservation necessary
- L3 grid not investigated as L2 grid already far off





#### **Validation: Descent Flight**



# **Surrogate Based Optimization Process**

- Use of numerical approximation (surrogate models) to speed up optimizer

 Application of Differential Evolutionary Process to find Pareto front (multi-point & multi-objective optimization!)



## **Parameters and Goals**

- HARTII rotor as reference blade (rectangular blade with linear twist)
- 8 design variables that determine the planform & twist of the blade
- Cubic spline parameterization
- 3 independent goal functions
  - Required power hover
  - Required power cruise
  - Emitted noise descent
- 3 constraints
  - Eigenfrequencies
  - Noise in cruise
  - Maximal torsion in cruise



Quarter chord line parameterization



# **Optimization Results**

- Evaluated 151 rotors
  - Untrimmable rotors
    - 1 in hover
    - 24 in cruise
    - 2 in descent
- 19 Pareto optimal rotors
  - 12 improve in all goal functions w.r.t to the reference blade
- 5 blades selected from front
  - The 3 anchor points
  - 2 trade-off designs



3D Pareto Front



#### **Optimization Results – Best hover blade**

- Recovered a winglet with a high-twist gradient at the tip, moderate forward sweep and taper
- Most improvement in hover, least in forward flight with a good noise reduction in descent flight
- Winglet is from a structural point of view questionable

| Merits relative to | Req. Power hover | Req. power cruise | Noise descent flight |
|--------------------|------------------|-------------------|----------------------|
| baseline           | 92.6 %           | 102 %             | 97.6 %               |
|                    |                  |                   |                      |
| Bost hovor         |                  |                   |                      |
| Dest nover         |                  |                   |                      |
| top view           |                  | back view         |                      |



#### **Optimization Results – Best cruise blade**

- Strongly reduced twist w.r.t to the hover blade, also the winglet has almost vanished. Yet stronger forward sweep and thicker inboard blade. Similar twist to baseline blade
- Best forward flight blade, also improves in descent flight, but sacrifices hover performance

| Merits relative to | Req. Power hover | Req. power cruise | Noise descent flight |
|--------------------|------------------|-------------------|----------------------|
| baseline           | 104 %            | 90.2 %            | 96.7 %               |
|                    |                  |                   |                      |
| Bost oruiso        |                  |                   |                      |
| Dest ciuise        |                  |                   |                      |
| top view           |                  | back view         |                      |

### **Quietest descent flight blade**

- Strong forward-backward swept blade with little change in chord length distribution. Twist in-between the hover and cruise blade zero gradient at tip
- Quietest blade in descent flight, but also improves in hover and forward flight. Already a good trade-off blade itself

| Merits relative to  | Req. Power hover | Req. power cruise | Noise descent flight |
|---------------------|------------------|-------------------|----------------------|
| baseline            | 98.9 %           | 92.8 %            | 96.1 %               |
|                     |                  |                   |                      |
| Bost doscont flight |                  |                   |                      |
| Dest descent night  |                  |                   |                      |
| top view            |                  | back view         |                      |

#### **Trade-off blades**

- Small changes in geometry between them  $\rightarrow$  small changes in goal functions  $\rightarrow$  smooth region of Pareto front
- Improve in both flight conditions

| trade-off        | Req. Power hover | Req. power cruise | Noise descent flight |
|------------------|------------------|-------------------|----------------------|
| hover            | 93.8 %           | 92.7 %            | 98.1 %               |
| cruise           | 94.9 %           | 92.5 %            | 97.1 %               |
|                  |                  |                   |                      |
| Trade-off hover  |                  |                   |                      |
| top view         |                  | back view         |                      |
|                  |                  |                   |                      |
| Trade-off cruise |                  |                   |                      |
| top view         |                  | back view         |                      |

# **Off-design analysis: Hover**

- Except for the cruise blade, all blades improve in hover w.r.t to the baseline blade
- However, point design, after design thrust they drop-off in performance
- Likely the thrust/weighted solidity 'ensured' this in GRC it was set free and therefore good hover blades had an increased chord length giving them a wider area of improvement



FM = figure of merit is ideal power requirement over actual power requirement



# **Off-design Analysis: Cruise**



- Except for the hover blades, all blades reduce the power requirement in forward flight
- At intermediate advance ratios, only the cruise blade is superior  $\rightarrow$  better climb capability



# **Off-Design Analysis: Descent flight**

- At the design point, all blades are quieter than the baseline blade
- At lower descent angles, all blades are quieter than the baseline blade
- At the steepest descent angle, the baseline blade becomes the quietest blade





# **Summary & Outlook**

- Successfully validated the optimization setups against various rotors
- Applied a multi-objective surrogate based optimization approach to concurrently optimize 3 goal functions with 3 constraints
- Retrieved 19 Pareto optimal designs 5 investigated in more detail
- Off-Design analysis revealed that the parameterization might need to be revisited and that more flight conditions need to be included (simple Uncertainty Quantification – the average of 3 variations for each flight condition)
- Inclusion of more disciplines is planed in the next project UrbanRescue: dynamics considerations & manufacturability of the blade



