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Nomenclature

Ay = flight altitude (equal to O equivalent to straight legs, feet
on ground), m

Cp = drag coefficient of aircraft

C;, = lift coefficient of aircraft

Cy = longitudinal moment coefficient about aerodynamic
center, 1/rad

Cp = pressure coefficient

c = chord length, m

E = glide ratio C; /Cp

0 = pitch rate, deg/s

g = dynamic pressure, Pa

U, = [freestream velocity, m/s

a = aircraft’s angle of attack, deg

As = flight distance, m

n = geometric tail plane angle of attack, deg

p = air density, kg/m?

vy = flight speed, m/s

aircraft. He received a United States patent for his monoplane glider
[1] in 1895. Several copies of this Normal Soaring Apparatus were
sold to customers in America and Europe. In the same year, he
developed his designs further into two different biplane aircrafts,
of which the Large Biplane (Grofier Doppeldecker) showed the most
promise. Lilienthal’s idea behind the transition from his monoplane
design to the biplane depicted in Fig. 1 was to increase the wing
surface without enlarging the wing span, as this would have made
controlling the aircraft in roll more difficult. Countless flights with
both biplanes have been photographically documented, making them
the first successful, man-carrying biplanes in history. Lilienthal’s
flight demonstrations and his theory of cambered wings, developed
and published in his book [2], contributed to the epochal shift in the
rapid development of aeronautics. Culick [3] also notes that he was
the first aeronautical engineer to combine the accepted concepts of
equilibrium and stability with his ideas of control in order to maintain
equilibrium in the face of disturbances. Among other experts and
flight enthusiasts, the American railroad engineer Octave Chanute

corresponded with Lilienthal. According to Crouch [4], Chanute
served as the focal point of the international community of aviation
pioneers at the time by corresponding with leaders of the field such as
Lilienthal and Langley. He supported the cause of aviation by spread-
ing news, holding lectures, and establishing a baseline of shared

I. Introduction

ORE than 125 years ago, the aviation pioneer Otto Lilienthal
was the first person to invent, build, and publicly fly several
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Fig. 1 1902 Wright glider (top) and its precursors: 1895 Lilienthal’s
Large Biplane (left) and 1896/1897 Chanute-Herring glider (right).

knowledge through publications such as his classic book on flying
machines [5]. In the period between 1894 and 1904, Chanute decided
to begin his own experiments. By following Lilienthal’s approach
of carefully performing increasingly advanced flight tests, he guided
several young men, among them Augustus Herring, toward success-
ful flight performances. He introduced bridge building techniques
to the truss structures of his bi- and multiplanes to improve their
structural integrity as shown in Fig. 1. In his experiments in 1896, this
biplane flew as stable as Lilienthal’s biplane [6] with a larger wing
span and improved structural rigidity. Chanute focused on maintain-
ing equilibrium in flight by incorporating automatic stability in his
designs, which led him to make first steps toward active controls.

Finally, the Wright brothers combined the existing body of expe-
rience and knowledge with their own innovations in the field of active
pilot controls and aerodynamics in their extensive glider tests between
1900 and 1902. Applying Lilienthal’s step-by-step approach, they
were able to achieve the first powered flights in late 1903. Actually
acquiring pilot skills before attempting powered flight, made the
airmen so much more successful than the preceding attempts of the
chauffeurs. Culick [7] states that most of the Wrights’ predecessors
focused on intrinsically stable aircraft and did not progress far enough
to be concerned with the problem of maneuverability. According to
Perkins [8], the Wrights believed from the beginning that powerful
controls were mandatory and would allow the pilot to maintain the
necessary equilibrium. Their breakthrough became possible because
their designs exhibited reduced stability complemented by reason-
ably effective pilot controls around all three spatial axes.

The present Paper is intended to give insights into the aerodynamic
and handling properties of Lilienthal’s Large Biplane. The goal is to
further the understanding of Lilienthal’s achievements as one of the
greatest of the precursors, as Jakab [9] calls him. The current work is a
continuation of the authors’ investigation into its monoplane prede-
cessor presented in [10,11].

The AIAA 1903 Wright “Flyer” project [12] pursued similar goals
of constructing and testing a full-scale model as well as performing
manned flights with a minimally modified replica of the historic
Wright flyer. Further research such as virtual reality simulations
based on the test data followed [13]. Another investigation into the
Wrights” 1901 and 1902 gliders was published by Kochersberger
et al. [14,15], who evaluated the aerodynamic performance from
full-scale wind tunnel tests. They were able to derive simulation
models, which were used in preparation of manned flights in a replica
of the 1902 glider. Lawrence and Padfield [16] performed further
investigations into the handling qualities of the Wrights’ 1902 glider
and powered 1905 flyer 3 [17]. They derived simulation models from
their reduced scale wind tunnel data to evaluate their flight dynamics
behavior and maneuverability. A thorough discussion of the handling
qualities was based on piloted simulation trials. They conclude that
the flight control system was the Wright brothers’ most important

innovation in their early development, followed by continuous
improvements toward the powered 1905 flyer.

II. Glider Reconstruction and Dimensions

Earlier DLR, German Aerospace Center wind tunnel tests demon-
strated the influence of the permeability of the fabric, which has been
woven on an original loom using a formula that was developed based
on a careful analysis of a fabric sample taken from an original glider
wing [10]. The lower wing of the Large Biplane is the exact same
size as the one used in Lilienthal’s patented monoplane glider. Unlike
the lower wing, the upper one is not foldable but is divided in the
middle. Besides increasing lift, the upper wing also changes the flight
mechanical properties in comparison to the monoplane, which will
be discussed in the following. The original Large Biplane glider did
not survive. However, there are several preserved specimens of the
original monoplane, on which the biplane was based. The authentic
replica of the Large Biplane used for the tests described in this Paper
was built by the Otto Lilienthal Museum in Anklam (Germany). It
is reported that Lilienthal modified his gliders to a certain extent
during his experiments [18]. In conjunction with the wood and fabric
construction reinforced by steel wires, it can be assumed that the
glider geometries were subject to various alterations. The geometry of
the replica (main dimensions given in Table 1) is based on surviving
drawings by Lilienthal [1] as well as on drawings by Nitsch [18].
Circular arc airfoils were manufactured with a thickness to chord ratio
of 1/20, which is in line with the thickness ratios documented by
Lilienthal (Ref. [7] p. 271). Special attention was paid to the tension
of the steel wires connecting the willow longerons of the wings to the
mainframe as depicted in Fig. 2. Their lengths greatly influence the
overall trim of the glider. During all balance measurements and later
flight tests, the wing fabric was sealed with a coating of diluted wood
glue. This treatment resulted in a flexible coating, which was easier
to apply than the collodion coating originally used by Lilienthal.
Using glue instead of collodion for coating has no aerodynamic
consequences because the remaining permeability to air of both
treatments is negligible.

There are some minor differences between the replica and Lilien-
thal’s Large Biplane, which are intended to reduce the pilot’s risk
during the flight tests. To prevent the mainframe from digging into
the ground during landing mishaps, skids were fitted to the ends of the
mainframe. Their aerodynamic effect is negligible due to their small
size. The original solid wires, bracing the wing longerons against the
mainframe, were replaced by stainless steel cables. Their tension has
been permanently fixed using compression sleeves instead of adjust-
ing it using the custom tension locks, which Lilienthal patented for

Table 1 Glider dimensions

Length 5.25m (17 ft 3 in.)
Wing span 6.60 m (21 ft 8 in.)
Wing area 24 m? (259 sq ft)
33.5kg (74 1b)
2.03m (6 ft 8 in.)

Empty weight
Mean aerodynamic chord length

Main frame

~N—1 Y R
Fig. 2 Basic structure of the biplane’s mainframe and lower wing.
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Fig. 3 Balance force and moment measurements with the Lilienthal
glider mounted on the supporting structure of the test vehicle of the
German Hang Gliding Association.

his gliders. The backrests were replaced by two parallel bamboo
rods along the sides of the cockpit for safety reasons. They provide
the pilot with a larger range of motion, while preventing him from
leaning too far backward, allowing him to place some of his weight
on them. The tube-shaped forearm supports of the original were
reduced to sturdier, flat arm pads, located on the lower mainframe
struts. The pilot used these as arm rests during flight, but he did not
have any leverage to lift the rear of the glider during takeoff. During
the final downbhill flights, the head wind was always strong enough to
lift the whole glider by itself after a short takeoff run of only a few
meters. When low wind conditions persisted during the towed flights,
the arm pads were supplemented with shoulder straps that bore
most of the glider’s weight, making the takeoff run less strenuous.
The strongly curved parts of the glider structure, such as the cockpit
frame, stabilizers, and longerons, were manufactured from willow,
just as in the original. However, the three longerons closest to the
leading edge were replaced by pine wood poles, which were pre-
soaked and bent into shape. The improved structural stability at the

cost of an increased glider weight of 33.5 kg was necessary because
one of the test pilots was about 15% heavier than Lilienthal. In
addition, tethered and towed horizontal flights added another 15%
to the required lift forces when compared to free downhill flights at an
incline.

III. Balance Measurements

The full-scale balance tests of the Large Biplane were conducted
with the help of the test vehicle of the German Hang Gliding
Association in Fiirstenfeldbruck, Germany, as depicted in Fig. 3. A
three-component balance was mounted on a sting at the upper end of a
supporting tower structure on top of the vehicle and clamped to the
glider’s mainframe.

Data were recorded at freestream velocities of 20 km/h < U, <
45 km/h at angles of attack between —17 < a < 45 deg. The influ-
ence of the pilot’s drag was estimated by a drag penalty based on
earlier tests, assuming the steady flight body posture shown in Fig. 4b.
The elevator incidence angle was set to the middle position of
1y = —22.5 deg of the three calibrated angles depicted in Fig. 4e.
All data were recorded during measurement runs up and down the
2.7 km long runway. Continuous traverses in angle of attack were
performed at a low angular velocity to obtain quasi-steady data. The
test vehicle records freestream velocity and direction during the test
runs to take current atmospheric conditions into account. The results
were sorted into discrete angle of attack intervals and averaged. The
influence of atmospheric disturbances was further minimized by
repeating the test runs in both runway directions for each freestream
velocity. During the tests, the glider exhibited structural vibrations,
which manifested themselves as noise in the quasi-steady measure-
ment curves. Because the sting and balance system was compara-
tively rigid, the majority of these elastic deformations originated from
the glider’s structure. The wing structure, made of wood and steel
bracing wires, proved itself to be a well-designed truss structure,
exhibiting small and continuous deformations in the form of wing
bending. The tailplane structure was connected to the mainframe by
a single bamboo rod of approximately 30 mm in diameter and braced
with cotton chords against the main structure. This resulted in vertical
up and down bending and longitudinal torsion of the whole tailplane
structure during testing. The tailplane vibrations were strongest at
high angles of attack, when they were triggered by turbulence from
the stalled wing. Changes in the elevator incidence angle due to
deformation of the tail structure under the aerodynamic load have
not been measured. The digital filter described by Savitzky and Golay
[19] was applied to the averaged forces and moments to reduce the
small-scale variations introduced by noise and vibration.

The measured lift coefficients over the angle of attack are shown
in Fig. 5 at several freestream velocities. Up to an angle of attack
of @ = 12 deg, alllift curves exhibit a linear interval with differences
in the order of AC; = 0.12 between the highest and the lowest
freestream velocity. With increased velocity, the lift tends to increase
at a given angle of attack. The stall behavior is benign, with a gradual
departure from the lift curve and low gradients near the maximum lift

¢) Climb

d) Landing

e) Elevator incidence angles

Fig. 4 Pilot postures and elevator incidence angles.
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Fig. 5 Lift coefficients plotted against angle of attack (left) and drag coefficient (right) at different freestream velocities.

coefficientbetween 1.10 < C; < 1.25 atan angle of attack of approx-
imately a ~ 20 deg. The drag polar shown in Fig. 5 has a classical
parabolic shape in the linear lift interval below C; = 1.1. The mini-
mum drag of 0.123 < Cp yin < 0.155 occurs near C; ~0.25. An
increase in freestream velocity results in a reduction of the minimum
drag.

The pitching moments around the glider’s mainframe center are
shown on the right-hand side of Fig. 6. They exhibit three distinct
intervals. The first interval up to an angle of attack of @ = 10 deg
coincides with the linear lift interval. All freestream velocities exhibit
positive, pitch-up pitching moments around C,; = 0.055, with a
tendency toward smaller values at higher velocity. The change in
pitching moment in the linear interval is too small to confirm a linear
dependency on the angle of attack due to the measurement uncer-
tainty. For 10 < @ <25 deg, the glider transitions into full stall with a
linear decrease in pitching moment and little variation between the
freestream velocities. Above a = 25 deg, the glider is fully stalled,
and the pitching moment tapers off. Lower freestream velocities result
in more negative, pitthdown moments. The glideratio E = C; /Cp is
shown on the left side of Fig. 6. The glider achieves a maximum glide
ratio of E = 3.5 at a freestream velocity of U, = 35 km/h. The
lowest glide ratio of E = 3.1 was measured at a freestream velocity
of Uy, = 25 km/h.

Based on the weights of the two test pilots and the glider, trim
conditions are calculated for the five measured freestream velocities.
They are listed in Table 2, along with the conditions for best glide and
maximum lift, and included as markers in Fig. 5 for freestream
velocities Uy, > 30 km/h. The required freestream velocity for
flight at C; ,,x with a given pilot weight determines the minimum
takeoff velocity U, mi,- The lighter pilot (68 kg) is able to take off
at velocities above 28 km/h, while the heavier pilot (90 kg) requires
atleast 31 km/h. The best glide ratio is achieved at lift coefficients of

3.6 T

3.0

241

1.8

Glide ratio C,/Cp

1.2

0.6

L L
-20 -10 0 10 20 30 40

0.0

Angle of attack a [°]
Fi

[t

Pitching moment coefficient Cr,

Table 2 Trim and best glide conditions

U, [km/h] 25 30 35 40
Eop [] 3.14 3.30 3.50 3.44
CLopt [-1 0.74 0.57 0.70 0.66
CL.max [-1 1.19 1.11 1.14 0.96
CLuim90ke [-] —_ —_ 0.87 0.67
U o min 90 ke [km/h] 30.0 31.1 30.6 334
CLuim.68ke [-] —— 0.98 0.72 0.55
U o min68 kg [km/h] 272 28.2 27.7 30.3

0.57 < C; £0.7 at velocities above 30 km/h. The lighter pilot is
able to fly the glider in its best glide state at 35 km/h, which is only
25% faster than the takeoff velocity, whereas the heavier pilot has to
fly slightly faster. The glider operates close to the stall region with
both pilot weights.

IV. Acquiring Lateral Control Skills: Winch Flights

Initial experiments quickly showed that the lateral control skills of
the pilot are the deciding factor for keeping prolonged flights safely
level because of external disturbances such as gusts. Asymmetric lift
occurred especially at low pitch rates or initial high angles of attack
as depicted in Fig. 7. The influence of the leading edges’ vortices
inherent to dynamic stall at flare landings will be described later.
Lilienthal himself describes the pilot input, which counteracts roll
disturbances, as a lateral shift toward the rising wing in Ref. [20].
The measured data of the winch supported flights is summarized in
Table 3.

0.0750
0.0375
0.0000
-0.0375
-0.0750 H=—U., =20 km/h
— U, =25km/h
||=— Ux=30km/h
0112511 Us, =35 km/h
—— U, =40 km/h
-0.1500 L L L

T i
-20 -10 0 10 20 30 40
Angle of attack a [°]

g. 6 Glide ratio (left) and pitching moment coefficients (right) at different freestream velocities.
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safety cords against
unintended pich up

e )

main towing rope

a) Limited longitudinal control authority due to the
attachment of the towing rope in front

b; Counteracting unintenﬂed roll motions

Fig.7 Practicing lateral control during winch tests.

Table3 Winch flights: August 2018

Flight parameters Measured range
Distance flown As, m 119-380
Altitude while airborne A f> M —-0.1-3.8
Speed while airborne vy, m/s 7.5-8.9
Average wind speed U ,, m/s 0.5-0.9

V. Acquiring Longitudinal Control Skills: Free Flights

After practicing lateral control near Moringen, Germany;
Marina Beach, California; and on the dunes near Kitty Hawk, North
Carolina, the Large Biplane replica has now been flown by three
pilots: Markus Raffel (DLR, German Aerospace Center), Andrew
Beem (Windsports), and Billy Vaughn (Kitty Hawk Kites). Foot
launching gliders in gusty wind conditions requires some practice.
However, by acquiring those skills, it was eventually possible to fly
the glider safely. Strong wind gusts were consequently avoided
because it was assumed that they can lead to a stall, which can exceed
the pilot’s capability to maintain the posture required for a balanced,
controlled flight.

The angle of incidence of the horizontal tailplane was adjusted
along the three angles shown in Fig. 4e to achieve longitudinal trim
for a given pilot mass. A steeper angle of 1, = —22.5 deg was

é) Aé;elerating before takeoff (pilot A. Beem). b) Shifting the
Beem)

suitable for the heaviest pilot (Raffel) at 90 kg, while the lightest
pilot (Beem) at 68 kg achieved the best flights at a shallower angle of
n; = —16.6 deg. The glider responded promptly and predictably to
the pilot’s input in these configurations. As a result, the pilots were
able to easily direct the glider against the wind. This proved valuable
during takeoffs from a sand dune, as shown in Fig. 8a. If one wing
descends (here, for example, the left wing), the intuitive reaction of
an untrained pilot is to also shift the legs to the left in order to land
safely on his feet. However, because the torso is fixed in position with
respect to the Lilienthal glider, this motion moves the center of gravity
to the left, which amplifies the leftward roll angle. This can result
in a flip of the aircraft, potentially causing a dangerous crash with the
arms stuck in the framework of the glider. The correct, but counter-
intuitive, response is to shift the legs toward the rising wing. This is
visible in the takeoff from the sand dune (Fig. 8a), where shear winds
initially pushed the left wing down. After the training in Germany and
California, the pilot instinctively shifted his legs toward the rising
wing, leveling the glider (Fig. 8b).

The lateral control of the roll angle is similar to a modern
hang glider, with two important differences. With a modern glider,
the entire pilot mass is shifted relative to the wing. In addition, the roll
moment is amplified by warping the wing through a shift of the wing
keel [21]. With the historic glider, only the legs can be laterally
repositioned. As a consequence of the smaller shifted mass, the legs
need to be moved farther to the side to achieve a sufficient response
by the glider. Because of the comparatively low control effectiveness

S S

legs to the right (pilot A. c) Establishing straight flight (pilot A.

Beem)

d) Shifting the legs to the right
(pilot O. Lilienthal)

:A’sm 4

e) Establishing straight flight
(pilot O. Lilienthal)

Fig. 8 Foot launch with counterintuitive leg shifting towards the descending wing compared to historical photographs.
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a) Liftoff (pilot A. Beem)

|

c) Initial flight phase with lateral and
longitudinal control (pilot A. Beem)

d) Acceleration (pilot O. Lilienthal) e)Initial flight phase (pilot O. Lilienthal)
Fig. 9 Free flying glider in contemporary and historical photographs.

in roll, it was deemed unsafe to perform turns at low altitude and in
close proximity to a hillside. Therefore, the feasibility of steep turns
could not be investigated during the free flight experiments, although
Lilienthal demonstrated 180 deg turns at higher altitudes. However,
even Lilienthal tried to avoid such maneuvers because he asserted that
safe landings could only be conducted against the wind.

After steady downhill flight depicted in Fig. 9, the pilot initiated the
landing phase by shifting his weight rearward to pitch the glider up
and slow it down when it comes close to the ground. The biplane
glider exhibited a similar sensitivity to longitudinal weight shifts
as the monoplane so that the pilot only had to lean his torso backward,
as shown in Fig. 10. A premature and tentative weight shift resulted
in a slow but pronounced stall of the flow over the wings. Because
massively separated flow is always unsteady and three dimensional in
nature, the glider rolls toward the wing, which stalls first and creates
less lift and more drag. The resulting, involuntary turn at touchdown is
well known in the case of modern hand gliders as well.

To achieve a good landing of Lilienthal’s biplane, the pitch rotation
needed to be delayed, and the pitch rate increased to have the wings

Y e

lot A. Beem)

d) Pitch up (pilot O. Lilienthal)

e) Controlled landing (

Table 4 Free flights: July 2019

Flight parameters Measured range
Distance flown As, m 20-104
Altitude while airborne A f> M 0.1-5.5
Speed while airborne vy, m/s 4.5-7.6
Average wind speed U, m/s 1.8-6.9

stall dynamically. The result was a short lift overshoot coupled
with an additional pitch-up moment [22], which was caused by the
two-dimensional flow over the wings due to dynamic stall vortices
along their leading edges [23,24]. With these lessons learned, Otto
Lilienthal’s 125 year old feat of landing the glider on one foot was
reproduced by Andrew Beem, as depicted in Fig. 10b. Different pilots
were able to perform smooth and safe flights followed by gentle
landings in the replica, thereby achieving flight durations of up to 15 s
over distances given in Table 4.

..», i = .
ot landing (pilot A. Beem)

Lt i
pilot O. Lilienthal)

Fig. 10 Comparison of contemporary and historical of landing procedure.
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VI. Conclusions

Free flights from hillsides as well as winch tows close to the ground
were performed using an authentic replica of Otto Lilienthal’s Large
Biplane glider, achieving free flight distances of up to 104 m. The
structural integrity of the design has been verified through balance
measurements using a hang glider test vehicle, which demonstrated
that the glider can lift and sustain loads of more than 240 kg.

Some modifications to the historic original were made to increase
pilot safety. The increased takeoff weight and the reduced wing
flexibility due to the use of pine wood for some of the longerons
proved an acceptable compromise. Changing and improving the
various adjustment options of the glider gave new insights into the
likely learning process of Lilienthal and reinforced the authors’
respect for his ingenuity. For example, changing the inclination
of the support posts of the upper wing can increase the dihedral of
the wings as well as the static margin of the glider [25]. This improved
the control behavior and helped less experienced pilots to cope with
pitch and roll disturbances. However, the alignments used to achieve
this might have led to reduced performance during flight and balance
tests of the replica, compared to the flight performance obtained by
Lilienthal in 1895/1896.

Longitudinal trim was achieved for pilot weights between 68 and
90 kg by adjusting the elevator incidence angle. The lateral control
required athleticism from the pilots because they had to be able to
keep their legs extended to the side to have control input through
weight shift. This limited the use of the glider to wind conditions of
only moderate gusts because the lateral control authority was deemed
too low for strong wind gusts.

-

Fig. 12 2019 Andrew Beem, Sand City near Monterey, California.

A comparison of photographs from [26] of Lilienthal’s Large
Biplane from 1895 (11) to its replica from 2018 (Fig. 12) suggests
that Lilienthal’s original glider had a little less dihedral, a stronger
wing curvature in the center of the lower wing, and less wing washout
on the upper wing. The aerodynamic center of Lilienthal’s Larger
Biplane is higher than that of his patented monoplane, increasing the
flight stability while reducing the lateral control authority. Therefore,
the biplane’s stability is greater, but flight speed and agility are higher
in the monoplane.
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