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ABSTRACT In multipath assisted positioning, multipath components (MPCs) are regarded as line-of-sight
(LoS) signals from virtual transmitters. Instead of trying to mitigate the influence of MPCs, the spatial
information contained in MPCs is exploited for localization. The locations of the physical and virtual
transmitters are in general unknown but can be estimated with simultaneous localization and mapping
(SLAM). Recently, a multipath assisted positioning algorithm named Channel-SLAM for terrestrial radio
signals has been introduced. It simultaneously tracks the position of a receiver and maps the locations
of physical and virtual radio transmitters. Maps of estimated transmitter locations can be augmented by
additional information. Within this paper, we propose to extend the Channel-SLAM algorithm by mapping
information about the visibility of transmitters. A physical or virtual transmitter is visible, if its signal is
received in a LoS condition. We derive a novel particle filter for Channel-SLAM that estimates and exploits
visibility information on transmitters in addition to their locations. We show by means of simulations in
an indoor scenario that our novel particle filter improves the positioning performance of Channel-SLAM
considerably.

INDEX TERMS Channel-SLAM, indoor navigation, multipath assisted positioning, particle filter, simulta-

neous localization and mapping, transmitter visibility, virtual transmitter.

I. INTRODUCTION

Precise localization in indoor and other global navigation
satellite system (GNSS) denied scenarios has been both a
requirement and an enabler for a variety of services and
applications.

For indoor localization, various radio signal based
approaches have been introduced, such as fingerprinting [1]
or approaches based on the estimation of signal parameters
of signal of opportunitys (SoOs) [2], [3]. The SoOs are
often network or cellular signals, such as from wireless local
area network (WLAN) routers or telecommunication base
stations [4], for example. Such signals are available in the
majority of scenarios of interest, and no additional infrastruc-
ture needs to be deployed to utilize them.

Especially in indoor scenarios, signal propagation delay
based positioning methods suffer from multipath and non-
line-of-sight (NLoS) propagation [5]. When the transmit sig-
nal is reflected and scattered by objects in the environment,
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it arrives at the receiver as a superposition of signal com-
ponents with different delays. A signal component can be
the LoS component or a MPC. Due to bandwidth limitations
in practical systems, multipath propagation might lead to
biased propagation time estimates. Standard techniques try to
remove the influence of MPCs on the LoS path [6]. If there
is no LoS signal component present, the receiver may untruly
deem a MPC to be the LoS signal.

An inherent solution to problems caused by multipath
propagation is to exploit the spatial information contained in
MPCs. In multipath assisted positioning, each MPC arriving
at a receiver is regarded as a LoS signal from a virtual
transmitter. Thus, with virtual transmitters, a receiver may
be localized with only a single physical transmitter. If the
location of the physical transmitter and the geometry of the
environment in terms of reflecting and scattering objects is
known, the locations of virtual transmitters can be calculated.
One of the challenges remaining is the correct association
of virtual transmitters to actual MPCs, a problem which
is referred to as data association [7], [8]. Various papers
have addressed multipath assisted positioning with different
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technologies and applications such as Long Term Evolution
(LTE) [9], ultra-wideband (UWB) [10] or fifth generation
(5G) [11], [12] signals, radar [13], or cooperative users [14].
Theoretical bounds were provided in [15], [16].

In a more general case, the environment and the locations
of physical transmitters are unknown to the user. Though,
the locations of physical and virtual transmitters can be esti-
mated jointly with the receiver position with SLAM [17],
[18]. In SLAM terminology, the user equipped with a receiver
is localized simultaneously with mapping the transmitter
locations as in [19]-[27]. In the following, the term user may
refer to the actual receiver depending on the context.

The authors of [28], [29] have introduced a multipath
assisted positioning algorithm named Channel-SLAM which
does not require knowledge about the environment. In a first
step, a channel estimator estimates the parameters of signal
components and tracks them over time. Such parameters
can be the time of arrival (ToA), angle of arrival (AoA),
or phase, for example. In a second step, theses estimates are
used to obtain the positions of the user and the locations of
the transmitters with SLAM. The signal model in Channel-
SLAM integrates multiple reflections and/or scattering of
the transmit signal at reflecting walls and point scatterers.
Geometrical considerations show that the locations of virtual
transmitters are static as a user moves through a scenario.

In addition to the locations of transmitters, visibility infor-
mation, i.e., the information from which positions the LoS
signal from a physical or virtual transmitter can be received,
can be mapped by a user. In [30], we have shown how
visibility information can improve the robustness of data
association, i.e, the association among signal components and
transmitters, in Channel-SLAM. However, visibility informa-
tion was not used for estimating the user location. If the user
returns to a previously visited location, we expect the same
transmitters to be visible as before. Thus, visibility informa-
tion can be used to improve the positioning performance of
Channel-SLAM.

Within this paper, we extend the Channel-SLAM algorithm
by mapping and exploiting visibilities of transmitters. A map
of transmitter locations created by a user is augmented by the
information from where these transmitters are visible. The
visibility information can then be used to facilitate the esti-
mation of the user position. We derive a novel particle filter
for Channel-SLAM that incorporates visibility information of
transmitters by mapping and exploiting this information in a
hexagonal grid map. For each hexagon, the probability that a
transmitter is visible is estimated. We show with simulations
that visibility information does improve the positioning per-
formance of Channel-SLAM considerably.

The remainder of this paper is organized as follows.
Section II discusses the idea of multipath assisted positioning
and Channel-SLAM. In Section III, we introduce visibility
maps and their representation, and derive a novel particle
filter for Channel-SLAM exploiting visibility information.
Evaluations based on simulations are presented in Section ['V.
Section V concludes the paper.
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Throughout the paper, we use the following notation:

o As indices, i identifies a user or user-map particle, j a
transmitter or a signal component, and £ a transmitter
particle.

o h denotes the index of a hexagon.

o k is a time instant.

e N(x; u,C) denotes the probability density function
(PDF) of a normal distribution in x with mean g and
covariance C.

o o denotes the speed of light.

« ()T denotes the transpose of a matrix or vector.

o |||l denotes the Euclidean norm of a vector.

o 4(-) denotes the Dirac delta distribution.

o E[-] denotes the expectation value.

Il. MULTIPATH ASSISTED POSITIONING

A. MULTIPATH ASSISTED POSITIONING AND VIRTUAL
TRANSMITTERS

The idea of multipath assisted positioning is depicted in
Fig. 1, where one physical transmitter Tx transmits a radio
frequency (RF) signal isotropically. For clarity, a possible
LoS signal from the physical transmitter to the user is ignored.
The transmit signal from the physical transmitter arrives at the
user via three different propagation paths.

vTx3 (313\ .

FIGURE 1. The transmit signal from the physical transmitter Tx arrives at
the user via three different propagation paths. The MPC reflected at the
wall is regarded as the LoS component from the virtual transmitter vTx1.
Likewise, the MPC scattered at the point scatterer is regarded as the LoS
component from the virtual transmitter vIx2 located at the scatterer
location. The MPC that is first scattered and afterward reflected at the
wall is interpreted as a LoS signal from the virtual transmitter vTx3.

Onits first path drawn red, the signal is reflected at the wall,
corresponding to a specular reflection of the electromagnetic
wave. The user regards the corresponding MPC as a LoS
signal from the virtual transmitter vTx1 to the receiver. The
location of vTx1 is the location of the physical transmitter
mirrored at the wall. The virtual transmitter vTx1 is inher-
ently time synchronized to the physical transmitter.

On the second propagation path drawn brown, the signal
is scattered at a point scatterer. A point scatterer distributes
the energy of an impinging electromagnetic wave uniformly
to all directions. Again, the arriving MPC is interpreted as
a LoS signal, now from the virtual transmitter vTx2 to the
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receiver. The location of this transmitter is at the point scat-
terer. In the case of scattering, there is an additional propa-
gation distance between the physical transmitter and vTx2,
which is the Euclidean distance between the two. Thus, this
propagation distance depends on the location of the scatterer.
It translates to a time offset 79 by dividing by the speed of
light ¢g. The time offset can be interpreted as a clock offset
or an additional propagation distance between the physical
and the virtual transmitter.

On its third propagation path drawn teal, the transmit signal
is first scattered at the point scatterer and afterward reflected
at the wall. In this case, the location of the resulting virtual
transmitter vTx3 is obtained by applying the corresponding
two cases iteratively. The location of Tx3 is thus the scatterer
location mirrored at the reflecting wall. Accordingly, the time
offset between the physical transmitter and vTx3 is again 9.

The third case can be generalized to any number of con-
secutive reflections and/or scattering. If the transmit signal
undergoes only specular reflections at plane surfaces, the cor-
responding virtual transmitter is time synchronized with the
physical transmitter, and accordingly 7o = 0 s. If the transmit
signal is scattered at least one time, the traveled distance
of the signal between the physical transmitter and the last
involved scatterer is the additional propagation distance and
determines the time offset.

If the signal is only reflected at straight surfaces and scat-
tered at point scatterers, the virtual transmitters are static and
independent from the user position. In the sense of virtual
transmitters, the effect of diffraction of an electromagnetic
wave can be regarded as scattering.

B. SIGNAL MODEL

Within the scope of this paper, we consider a linear and
time-variant multipath channel. We assume only one physical
transmitter, which is time synchronized to the receiver. The
generalization to multiple physical transmitters is straightfor-
ward, if the transmit signals are separated in time, frequency
or code domain. The transmit signal s(¢) from a physical
transmitter arrives at the user via different propagation paths
and can be modeled at the receiver as a superposition of signal
components. At time instant k, the j® signal component is
described by a complex amplitude a;(k) and a delay t;(k),
and arrives at the receiver with an AoA 6;(k). Both additive
white Gaussian noise (AWGN) and dense multipath com-
ponents (DMCs) [31] are contained in the colored noise
sequence 7, (7). Considering an antenna array at the receiver,
the received signal y,,(t, k) at time instant k at the m element
of the array in the baseband is hence

ym(T, k)= Z aj(k) am (6;k)) s (Tt =7m(k)) +ne(o), (1)

J

where ay, (9;(k)) is the response of the m™ antenna element.

The user samples snapshots of the received signal at time
instants k. During the short time interval when the user sam-
ples a snapshot, the channel is assumed to be static. While the
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number of signal components is infinite in theory, it is limited
by the sensitivity of the receiver in practical systems.

C. CHANNEL-SLAM

Channel-SLAM exploits the spatial information contained
in MPCs for positioning. An overview of the algorithm is
depicted in Fig. 2. In the first step, samples of the received
signal are used by a channel estimator, which estimates
and tracks the parameters of signal components. The results
from the channel estimator serve as measurement inputs for
the second step, where the user state and the transmitters’
states are jointly estimated with SLAM. In the second step,
we may use additional sensors such as from an inertial mea-
surement unit (IMU), for example. In addition, prior maps of
transmitter locations may be incorporated [32].

Position

Received

[ Channel

Signal Estimation

Position

Estimation Estimate

FIGURE 2. Overview of the two steps of Channel-SLAM. First,

the parameters of signal components are estimated based on the
received signal. Second, the states of the user and the transmitters are
estimated using these estimates. Additional sensors, such as an IMU,
or prior information, for example in form of a map of transmitter
locations, may be used.

In the first step in Channel-SLAM, a channel estima-
tor estimates the parameters of signal components arriving
at the receiver. These parameters include the ToA, ampli-
tude or phase, for example. Within the scope of this paper,
we use the Kalman Enhanced Super Resolution tracking
(KEST) estimator [33]. KEST works in two stages. In the
inner stage, the parameters of signal components are esti-
mated and tracked with a Kalman filter. In the update stage
of the Kalman filter, a maximum likelihood (ML) estima-
tor such as the Space-Alternating Generalized Expectation-
Maximization (SAGE) algorithm [34] is used to obtain
estimates of these parameters. The SAGE algorithm is a vari-
ant of the Expectation-Maximization (EM) algorithm [35]
and estimates the signal parameters jointly. In the outer stage
of KEST, the number of signal components is tracked over
time by a number of Kalman filters running in parallel. Each
Kalman filter carries a different hypothesis on the number of
signal components in the received signal. Thus, the estimate
of the number of signal components is an additional output of
KEST. The tracking nature of the Kalman filters inherently
yields associations among signal components for adjacent
time instants. Though, KEST cannot find correspondences
among signal components that are not tracked continuously.
For example, if track of a signal component is lost and the sig-
nal component is detected again at a later time instant, KEST
cannot associate this newly detected with the original signal
component. We denote the number of signal components that
KEST tracks at time instant k by Ntx k. The overall number of
signal components that have been detected from time instants
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zero to k and tracked by KEST is denoted by N%X’k. Every
time a new signal component is detected, N%X’k is increased
by one.

There is no differentiation between physical and virtual
transmitters in Channel-SLAM, and therefore no differenti-
ation between the LoS component and MPCs of a received
signal. Accordingly, the term transmitter comprises both
physical and virtual transmitters. Since each signal compo-
nent corresponds to one transmitter, Ntxx and NTax,k also
denote the number of visible transmitters at time instant k,
and transmitters that have been visible during time instants
zero to k, respectively.

Within the scope of this paper, we assume that the receivers
are equipped with rectangular antenna arrays that are aligned
with the user orientation, allowing to exploit the AoA infor-
mation of signal components. Thus, the ToA estimates Ty
and AoA estimates 0 of the signal components estimated by
KEST at time instant k are stacked in the radio measurement
vector

T
we =7l OF] . @
where

TNTX,k»k]T 3)

contains the ToA estimates of the Ntx x detected signal com-
ponents, and

=[x ...

0 =[01k - Onrk] 4)

the corresponding AoA estimates. The ToA estimate tj
describes the propagation time of the signal traveling from
the j transmitter to the user. The AOA estimate 0k is the
angle between the user heading and the incoming signal from
the /1 transmitter.

In the second step of Channel-SLAM, the locations and
clock offsets of the transmitters and the user position and
velocity are estimated jointly with SLAM. Each signal com-
ponent detected by KEST corresponds to one transmitter.
As described in Section II-A, the locations of the physical
and virtual transmitters are static when the transmit signal is
reflected at straight walls and/or scattered at point scatterers.
Thus, the transmitter model in Channel-SLAM is the same
for both the physical and virtual transmitters: each transmitter
can be described by a location ptx in two dimensions and
an additional propagation distance corresponding to a clock
offset 7o. '

The state vector xggk of the j transmitter at time instant

k includes its two-dimensional location p;;ik in Cartesian

coordinates and its clock offset r0<',/<>,

. . . . T T . T
<J> _ <J> <J> <J> _ <J> <J>
Yrxh = [xTX,k Yrxk Tok ] = [pTX,k 0.k ] NS
The user state vector x,, x at time instant k consists of the
.. . T
position p, ; = [x¢ yk]” and velocity vy = [vxx vyi] of
the user in two dimensions each. It is expressed as

T
T T T
Xuk = [pu,k Vu,k] =[x Yk vk vyi] - (6)
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The entire state vector consists of the user state and the state
of the Ntx  transmitters, given by

T
T <1>T <Nrx>T
X = I:xu’k xTX)k N xTX’k
T
T T
= [xu,k XTX, k ] . @)

It is clear from the dimension of the user state vector
in (6), the transmitters’ state vector in (5), and the radio
measurement vector in (2) that Channel-SLAM considers
an underdetermined system in each snapshot, as there are
more unknowns than measurements. Thus, it is crucial that
the channel estimator finds correspondences among signal
components in consecutive snapshots of the received signal.
Only when such correspondences are found, the entire system
becomes overdetermined over time due to the static nature of
the transmitters. As a consequence, signal components that
can be tracked for a long traveled distance of the user can
contribute much to Channel-SLAM.

Channel-SLAM seeks to find the minimum mean square
error (MMSE) estimator X.; for the user and the transmitter
states from time instants O to k with SLAM. It is expressed in
terms of the posterior PDF p (xo;k |ZR, 1k ulzk), where Zr 1.k
denotes the measurements from time instants 1 to k, as

Xox = /XO:kP(XO:k 2R, 1k W1 ) AX0:k - (®)

The variables u;.; denote the user control input from time
instants 1 to k and will be examined later in this section. The
posterior PDF of the state vector can be factorized as

p (xO:k ZR, 1:k ul:k) =Pp (xTX,O:k » Xu,0:k |ZR, 1k » ul:k)
= p (*u,0k2R, 1:k, W1:k)
X p (X0 w06 2R, 1) s (9)

separating the user space from the transmitter space.

The second term in the last line of (9) denotes the transmit-
ters’ posterior PDF conditioned on the user state. We assume
no correlation among the estimates of the parameters of signal
components, and therefore among the measurements for the
single transmitters. The latter assumption does not hold if
the parameters of two or more signal components are close
to each other in all estimated domains. For example, if the
respective differences in the ToA, phase, amplitude and AoA
of two signal components are very small, the estimates are
correlated. However, if such a situation occurs, we expect it
to last for only a very short period of time. Thus, we expect
only short term biases in the channel estimator, and unbiased
estimates in the long term.

It can be shown [36] that the transmitters’ conditional
posterior PDF can be written as

Ntxx

<j>
P (7. 0:% [¥u, 0 ZR, 1) = l_[ P XX 0 Xu,05 ZR 1k ) -
J=1
(10)

155213



IEEE Access

M. Ulmschneider et al.: Multipath Assisted Positioning With Transmitter Visibility Information

To calculate the posterior PDF, Channel-SLAM applies
Bayesian recursive estimation [37], which works in two
stages. In the prediction stage, the state evolves following a
movement model. In the update stage, the state is updated by
measurements, which are the estimates from KEST as in (2).

The transmitters are static in the model of Channel-SLAM.
The probabilistic model of the transmitter state evolution is
expressed by

X3k = *¥Txr—1 T VTX ks (11)
where v1x « is a noise sample from a zero-mean distribution
with very small variance. While the transmitters are consid-
ered static, vTx x is added for numerical stability.

For the prediction of the user state, we incorporate heading
change rate measurements from a gyroscope with the control
input u;. The model of the user state evolution is expressed
by

Xuk = FuiXuk—1+vuk, (12)

where the heading change rate measurements are incorpo-
rated in the matrix Fy as in [29], and v, is a noise
sample from a distribution with a covariance matrix as
described in more detail in [38]. It depends on the assumed
dynamics of the user, who is assumed to be a pedestrian in
Channel-SLAM.

In the update stage, we assume two types of radio measure-
ments, which are ToA and AoA. As mentioned above, they
are obtained from the channel estimator in the first stage of
Channel-SLLAM as in (2).

The likelihood of the measurements from the j transmitter
is calculated by

<>\ .2 2 v 2
p (zR,k|xu,kaxTX,k) = N(Tj,kv Tks Ur,j) N<9jak’ ef’k’ 0—9,]') >

13)
where the predicted measurements are given by
A 1 <j> j
e = P —piill + 7ok (14)

for the ToA, and by

N <j> <j>
6; x = atan2 (yng,k — Vis xT)](,k - xk) — atan2 (vyk, Ve k)
(15)

for the AoA, respectively. The four quadrant inverse tangent
function atan2 (y, x) returns the unique counter-clockwise
angle between the positive x-axis and the line connecting
the origin with the point given by the coordinates (x,y).
The measurement noise samples are assumed to be drawn
from zero-mean Gaussian distributed noise sequences. The
variance for the ToA measurement is denoted by oﬁ i and
for the AoA measurement by 002, .. They are obtained from
the covariance matrices of the Kalman filters in the KEST
estimator as in [33].

The actual implementation of Channel-SLAM uses a Rao-
Blackwellized particle filter to estimate the user and trans-
mitter states jointly. Following (9), a user particle filter tracks
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the user position and velocity over time. The posterior PDF
of the user state is modeled by

N,
p (xu,O:k |ZR, 1:k » ul:k) = Z W(;;:(S (xu,O:k - x§6>k> , (16)
i=1

where xi’@k is the i of the N, user patrticles, w0<j(> its
associated weight, and § () the Dirac delta distribution. For
each user particle, the transmitter states are estimated inde-
pendently from other user particles by particle filters as well.
The state of the j™ transmitter for the i user particle is

therefore expressed by the model

]

<i,j> | <i>
p (xTX,O:k 0k zR,l:k)
Np,Tx
_ <i,j,l> <i,j> <i,j, >
= Woy 0 (xTX,O:k ~XTX.0 ) Y
=1

thee x;)l(] 0£k> is the ¢! of the Np, T« transmitter particles and
ng(’] "7 its associated weight. A detailed derivation of the

Channel-SLAM algorithm can be found in [29].

IIl. CHANNEL-SLAM WITH VISIBILITY INFORMATION
A. VISIBILITY MAPS
In Channel-SLAM, we map the locations of physical and vir-
tual transmitters. Such maps can be augmented by additional
information. As a user moves through a scenario, different
physical and/or virtual transmitters are visible from different
user locations. We say that a transmitter is visible from a
certain user position, if the signal from that transmitter is
received by the user in a LoS condition. Following the idea
of multipath assisted positioning in Section II-A, a MPC
is regarded as the LoS component from a different virtual
transmitter. In the rationale of multipath assisted positioning,
there is by definition no NLoS propagation. Considering
static scenarios, we expect that if a user returns to a previously
visited location, the same transmitters are visible as before.
For mapping visibility information, we use a location based
map. In particular, visibility information is stored in a hexago-
nal grid map. The two-dimensional space is discretized with a
grid of adjacent hexagons. Each hexagon is assigned a unique
index. The entire visibility map M can thus be described as a
set of hexagon visibility states,

M={M,....My,}, (18)

where Ny is the number of hexagons. Each hexagon state M},
in turn contains information on the visibility of each of the
Niy i transmitters,

<N32
M, = {M,fl>,...,Mh TX"‘>}. (19)

The value Mh< 7~ represents probabilistic information on
whether the j transmitter is visible from the 2™ hexagon or
not. We use probabilities since due to the discretization of
the space, a transmitter might be visible at one position in
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the hexagon, but not at another position in the same hexagon.
Thus, we have

m” = v v L (20)

where Vh<] ~ donates the probability that the j® transmitter
is visible from an arbitrary position in the h™ hexagon, and
‘_/h<'/ T =1- Vh<" ~ that it is not.

Fig. 3 depicts a simple scenario with a physical transmitter
Tx and dark gray lines representing walls that block the signal
from the transmitter Tx. Each hexagon is filled according to
the probability that the transmitter is visible from an arbitrary
user position within that hexagon. In hexagons filled dark,
the probability that the transmitter is visible is small, whereas
in bright hexagons, the probability is high. In hexagons filled
gray with a wall cutting them into two equal halves, the prob-
abilities of the transmitter being visible and being not visible
are equal.

FIGURE 3. The dark gray lines in the scenario represent walls blocking RF
signals. The two-dimensional space is sectioned into single hexagons.
The brightness in each hexagon indicates the probability that the
transmitter Tx is in a LoS condition, i.e., visible, from an arbitrary location
inside the hexagon. A darker hexagon suggests a low probability,

a brighter hexagon indicates a high probability.

The probabilities V,”~ and V,”~ are unknown. We denote
the corresponding random variables at time instant k by V;/k>
and ‘7;],:, respectively. Likewise, the random variables for
the entire visibility map, for a hexagon /4, and for the visibility
of the jth transmitter in hexagon /4 at time instant k, are

denoted by My, M, ., and M ;’;, respectively.

The conditional PDFs p (M ;J,: |%u,0:k» 2V, 1:k | can be esti-
mated, though, where zv_1:x are observations on the transmit-
ters visibilities from time instants one to k and will be covered
in more detail later. We assume that each of these PDFs
follows a Beta distribution [39]. They represent the belief that
a transmitter is visible in a hexagon or not. In general, a Beta
distribution with parameters p and ¢ is defined by the PDF

Bx;p.q) = xP7H(1 = x)! (21)

B, 9

for x € (0,1), and B (x;p,q) = 0 otherwise. The Beta
function normalizes the Beta distribution, and it is defined
by

TP

B, q) = Tota (22)
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where I (+) is the Gamma function [39]. Fig. 4 shows the PDF
of the Beta distribution for different parameters.

—p=l;g=1
———p=10; =10
5 p=1; q=3
—p=2;q=6
———p=10; q=30

FIGURE 4. The PDF of the Beta distribution is plotted for different
parameters.

Intuitively, the Beta distribution as defined above may rep-
resent the belief in the value of the random variable x € (0, 1).
If the value of the parameter p is high and ¢ is low, the value of
x is likely to be high and vice versa. In addition, if the sum of
the parameters p and ¢ is high, the degree of trust that we have
in our belief of x is high as well. If the sum of the parameters
is low, the degree of trust in our belief of x is low. Thus, if the
parameters p and g are obtained from observations following
abinomial distribution, the number of observations represents
how reliable the belief in the random variable x is.

The PDF at time instant k of the 1 transmitter being visible
in hexagon / is given by the Beta distribution

<j>
p (Mh,k w04 ZV,1;k)

_ <>, <j> -<j>
=B <Mh,k Yk o Yk )

1 Nk L (o< \ Tk ]
_ <ji>\"h o <i>\"h,
) ) e
Yk > Yk
where vh< 7~ and 1')h< f are parameters regarding the visibility

)

of the transmitter. They are obtained from observations zv 1.k
on the transmitter visibilities. Initially, the parameters are set

<j> <j> -<j> _ =<j> . .
vy = o .a'nfi Vo = @, to incorporate prior
knowledge on visibility regions. If no prior information is
available, ah<1> = &;P. The parameters ah</> and 61h<‘1>

prevent overconfident conclusions about the transmitter visi-
bilities if only few observations are available.

We denote the expectation value of the Beta distribution
in (23) by E;7;, where

<j>
. . . ; v
<j> ._ <j>. <> s<i>\ | _ h.k
By =E B(Mh,k Vnk o Vnk ) == =
vy 5
h,k h,k

(24)
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and its counterpart by

—<j>

_ . . v
<j> <j> _ hk
Eh,k =1 ]Eh,k - <]> + 9 _<]> (25)

B. MEASUREMENTS

In Section II, we used the ToA and AoA estimates from the
inner stage of KEST as measurement inputs in the recursive
Bayesian estimation scheme. The correspondences among
signal components at adjacent time instants were assumed to
be known implicitly. In the following, we drop this assump-
tion, and explicitly introduce an additional measurement vec-
tor zv for mapping the visibilities of transmitters. This vector
zy is an output of the outer stage of KEST and has N%X,k

entries, where the /™ entry at time instant k is denoted by zf/ ;
If the j‘h of the N{EX « transmitters is visible at time instant k,
the value of z’; is the index of the ToA measurement for

that transmitter in zg . Otherwise, z\</k> is zero. Thus, zv
has Ntx x non-zero entries.

Fig. 5 illustrates the relationship of the vectors zgr x and
Zv x with an example, assuming for clarity that only ToA
measurements are available. The vector zr x holds the ToA
measurements for Ntxx = 3 currently visible transmitters.
The transmitters visible at time instant k have the indices 3, 4
and 7, corresponding to the indices of the entries in zy  that
are non-zero. Each of these non-zero entries denotes the index
of the ToA measurement for the respective transmitter in zR .
For example, zé?,j = 1, meaning that the ToA measurement
of the third transmitter is the first entry in zr . In total,
Nr a Xk = = § transmitters have been visible, i.e., NTXk =38
31gnal components have been tracked by KEST up to time
instant k.

a
Nrx

zvp=[ 00120 030 |7

ZRk = ok T3k )L

Ntx x

FIGURE 5. The relationship of zg  and zy y is exemplarily depicted for
the case that only ToA measurements are available. In 2y, k- the non-zero
entries at indices 3, 4 and 7 indicate which Nyy | = 3 of the N;x k=8
transmitters that have been visible so far are visible at the current time
instant k.

On the one hand, zv x can be regarded as an association
vector, as it associates signal components at time instant k
with signal components from previous time steps. On the
other hand, it can be regarded as a measurement for visi-
bilities of transmitters, as it indicates which transmitters are
visible at which time instant. Hence, the vector zy ; may be
named visibility measurement vector in the following.
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FIGURE 6. The DBN for Channel-SLAM with visibility information. The
dashed rectangle surrounds all involved variables at time instant k.

The overall measurement vector z; comprises the estimates
from both the inner and outer stage of KEST. Thus, we define

T
% = [zﬁ’k z\T,,k] , (26)

where zg i is defined as in (2). It contains the ToA and AoA
estimates from the inner stage of KEST for the currently
visible Ntx x transmitters.

C. BAYESIAN FORMULATION AND RAO-BLACKWELLIZED
PARTICLE FILTER FOR CHANNEL-SLAM

We seek to estimate the states of the user, xy o.x, the locations
of the transmitters xtx o.«, and the visibility map M.x given
the measurements z;.x and the user control input ., with
recursive Bayesian estimation.

The dynamic Bayesian network (DBN) in Fig. 6 shows
the dependencies of the involved variables. We assume a
first-order hidden Markov model. In comparison to the stan-
dard Channel-SLAM algorithm, the visibility measurements
zy and map M are added. The corresponding posterior PDF
can be written as

p o Mok |z1:k, wi:k)
= P (X0 *u,0:k» Mok 1214 U1k
= p (xu,0. Mok l21:%, #1:x)
X P (*1x,0: 1%0,0:6» Mok, 21, Ui:k)
= p (w06 Mok 215 w1k ) P (¥TX 04 X004 21%) . (27)

where we assume that the transmitter states are conditionally
independent from the user control input #1.; and the visibility
map M. The latter assumption is based on that without
knowledge on the geometry of the environment, a virtual
transmitter’s location does not reveal much information about
its visibility. For example, in Fig. 1, the transmitters Tx and
vTx2 are visible in the vicinity of the corresponding transmit-
ter’s location, while vTx1 and vTx3 are not. In addition, we do
not differentiate between physical and virtual transmitters in
our model, and assume no knowledge on the propagation path
of a signal component.
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Given the structure of the last line of (27), we use a Rao-
Blackwellized particle filter [40] to jointly estimate the user
state and the visibility map, and to simultaneously estimate
the transmitter locations. We name the particle filter estimat-
ing the user state and the visibility map the user-map particle
filter, and the particle filters estimating the transmitter states

transmitter particle filters. The history of the i user-map
particle at time instant k is of the form
<i>
[ X3 o M<l>] = [xu0x Mox] (28)

and has an associated weight w<‘> The posterior PDF in the
user-map particle filter, i.e., the first factor in the last line
of (27) is modeled as

p (xu 0k Mok |21k, w1:k)
= ZW

D. DERIVATION OF THE WEIGHTS FOR THE USER-MAP
PARTICLE FILTER

In general, it is hard to draw samples from the PDF on the
left-hand side of (29). Instead, we use the idea of impor-
tance sampling. This idea is to draw samples from an impor-
tance density q (xu,o;k, Mo.klz1:k, ul;k), and compensate for
the mismatch by adapting the weights on the right-hand
side of (29). If we can evaluate the left-hand side of (29),
the weights w<’> at time instant k can be calculated as [41]

(xuOk Mox] — [xu,04 Mo:k]<i>>- (29)

. P( 0k9M()k |Z1kaulk)
Wiz = . (30)

q( lflo>k9M()k |zlkaulk)

If the importance density is chosen such that it can be written
as the product

q (¥u,0, Mok |21:%, w1k
= q (¥uk Mi|xu,06—1, Mok—1, 21 U1:k)

X q (¥u,0k—1, Mox—1lz1k—1, w1k—1), (1)
the weights can be calculated up to proportionality in a recur-
sive way by

Wk<i> X p (Zk |x1i€)?k’ M&;.:, Z1:k—1, ul:k)

<i> <i> <i> <i>
P( X Mgy My 1’”k)

<i> <l> <i> <i>
q( Xuk ,M u():kfl’MO:k—l’zlik’ ul:k)
p( b MLz 1,u1k—1)
q( XS MG 1|Zlk717u1k71)

<i>

= wi_ 1p(z uOk,MOk ) Zlk— 1,u1k>

<> <i> <i> <i>
p(uk’Mk e i1 Mz 17”k>
X

<i> i <i> '
@ (< M W MG 2wz
(32)
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The general derivation of (32) can be found in [41], and
a derivation for the user-map particle filter is presented in
Appendix I.

With (26), the second factor in the second to last line in (32)
can be factorized as

P (2k|%u,04 Mok, 21:k—1, Ui:k)
= P (zv.k|¥Xu0k Mok, Z1k—1, U1:k)
X P (2R, k10,00, Mok, 2V, 1k ZR, 1k =15 U1:k)
= p (zv.ilxu i, M) P (ZR & 1Xu,0:6 2V, 1k 2R, 1:6—1) -
(33)

In the last line of (33), the measurement zv x depends only
on the current map and the user location. In fact, the user
state is needed only to indicate the hexagon in which the user
is located at time instant k. The radio measurement zR i is
independent from the map and the control input.

For the numerator of the last line of (32), we obtain

P (%uk, Milxug—1, Mi_1, ux)
= p (YurlCuk—1. My_1, ur)
X p (My|xug—1k M1, uy)
= p (YurlCuk—1, ) p (Milxur, Mi—1).  (34)

In general, the user position is conditionally dependent on the
estimate of the visibility map. However, without a measure-
ment zy of the visibility, the information in the visibility map
cannot be used, since the association of the currently visible
transmitters to transmitters in the map is not known. Thus,
in the first factor in the last line of (34), the current user state
Xy, 1s independent from the visibility map M _;.

In the second factor in the last line of (34), the information
of the user state xy x—1 that is relevant for My is already
contained in M _;. Thus, M} is independent from the user
state at time instant k — 1. In addition, the visibility map is
independent from any control input uy.

A crucial step in a particle filter is the choice of the impor-
tance density in the denominator of (32), as new particles are
sampled from it. The importance density can be written as

q (xur, Milxy0—1, Moi—1, Z1:%, U1:k)
= q (¥uklXu,0k—1, Mok—1,Z1:k, Ui:k)
X q (Mglxu,0, Mok—1, 21k, U1k
= q (¥uklXu,0k—1. Mok—1,Z1:%, Ul:k)
X q (M|xu,04, Mosk—1, 2R 1k 2V, 1k U1k) - (35)

Following the structure of (35), we define the importance
density such that

q (*u ke, My, 0k—1, Mosk—1, Z1:k, W1k
o= p (YuklXuk—1, ux) p (Mrlxur, Mi—1,zvi), (36)
where the first term on the right hand side of (36) is the

a-priori PDF for the user.

For sampling a new user-map particle, the importance den-
<I> < > |x <>

sity q (xu 7, N S MG ik ul:k) as in (36) is
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evaluated from the left to the right. First, a new user particle
xﬁ: is sampled with the user movement model in (12) given
the old particle x<’> . Then, a new visibility map is sampled
based on the new user particle. To sample a new visibility
map, we proceed as follows. As the user travels through the
scenario, they store counts on how often a transmitter was
visible or not in each hexagon for each particle At time
instant k, the j transmltter has been visible C;; > times
in hexagon h for the i user-map particle, and it has been
not visible C,,’” times. Using these counters, a new map
M k<i ~ is sampled given the map at previous time instant k — 1,
the vector zy 4 indicating which transmitter is visible at time
instant k, and the user state x<’}(>. For sampling a new map,

the counters C ’] Jor Gy k’j | are updated for the current
hexagon A, in Wthh the user-map particle is located, for each
transmitter depending on whether the transmitter is visible or
not.

The Beta distribution is the conjugate prior of the binomial
distribution. Updating a prior Beta distribution with obser-
vations following a binomial distribution results again in a
Beta distribution with new parameters. The observation if a
transmitter is visible in a hexagon at one time instant may
be regarded as a realization of a random variable following
a binomial distribution. Thus, the parameters of the Beta
distribution representing the belief of the i user-map particle
that the /" transmitter is visible in the 4™ hexagon are updated
accordingly to

<j> i,j> <j> <1]> - <j>
ik —Ch +ay, and th —C a,” . (37)

Inserting (33), (34) and (36) into (32) yields
o wilip (zV,kalff}?, M<’>)
X p (ZR,klxlfi)fk, 2V, 1k, ZR,lzkfl)
p ( i m)p (M<z>|x;z,;>,M,;z>1)

<>

<i> <i>
_ Wk_lp(zV,klxu,lk M i )

X

X p (ZR,k 0k > ZV. 1k ZR,]:kfl)

P (Mk<1> |xu<lk>’ M<z>> 38
x <> [4.<i> <i> ’ ( )
p Mk |xu,k aMk_l’ZV,k

The denominator in the last line of (38) can be calculated
with Bayes’ theorem as

p (Milxui, Mi—1.2v.k) = p (av.ileur. Mi—1:k)

p (Mylxux, Mi—1)

. (39)
P (zv.kXur, Mi—1)
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Thus, the weights become

Wi w5 p (zR,klijfk, 2V, 1k ZR,l:k—l)

X p (ZV,k|xu i ,M<’>) . (40)

The visibility measurement zvy x is only dependent on the
hexagon the user-map particle is in at time instant k. We iden-
tify this hexagon by the index 4. In addition, the visibilities
for the transmitters are assumed to be independent from each
other. The factor in the last line of (40) is therefore

p (zV,klfo, M<’>) p (zv,kIM;’kil)
N%Xk

Hp(z<f> M) @

where M ;" refers to the the visibility of the j™ transmitter
for the i/ user-map particle in the hexagon with index % at
time instant k — 1.

The likelihoods with respect to the visibility for the j
transmitter, i.e., the factors in the product in (41), can be
calculated as the expectation value of the belief that the
transmitter is visible or not,

<j> >\ _ E;]kil ifz\</jk> 70
(ZV k |Mh ) I_E<j> <> _ 0

: (42)
nk—1> 2y =

The likelihoods with respect to the radio measurements are

P (zR.& w06 Mok 2V, 15k TR, 1k~ 1, U1k )
Nixx Np.1x

<ij,l> <ij >
= l_[ Wk—1 P<ZRk|ZVk xuk s XTX k ) 43)
j=1 ¢=1

where we set the likelihood p (zR klzv i, x uw N x;)’( /kl>) for

the j transmitter to one if the j entry in Zv.k 1s zero. If that
entry in zy x is non-zero, the likelihood can be calculated
following (13), where the indices for the transmitters need to
be adapted. A derivation of (43) following [29] can be found
in Appendix II.

Finally, plugging (41) and (43) into (40), the weights can
be calculated as

Néi
TX .k
<i> <i> <J> <i,j>
Wi X Wi (ka M, k—l)
j=1
Np,Tx
<ij 0> <ij,l>
X D Wi p (mralevi xak ). @)
=1

From (44) follows the weight update for the transmitters. The
weight of the £ particle in the transmitter particle filter for
the j transmitter and the i user-map particle is

NpTX
<ij > <tj€> <i,j, 0>
Wy X E Wy (ZR,k|Zv,k’ fk ’xTXk NG

VOLUME 8, 2020



M. Ulmschneider et al.: Multipath Assisted Positioning With Transmitter Visibility Information

IEEE Access

The increase of computational complexity in the particle
filter derived above compared to the standard Channel-SLAM
particle filter is limited to evaluating the terms in (42). For
each user-map particle and each hexagon visited by the user-
map particle, the two parameters of a Beta distribution need to
be stored for every transmitter. However, information on the
visibility of transmitters may be used not only in the particle
filter, but also for map matching when maps are exchanged,
and for data association of transmitters as in [30].

IV. EVALUATIONS

A. SIMULATION SCENARIO

A top view of a mall serving as the indoor simulation scenario
is depicted in Fig. 7. In the scenario, there is one physical
transmitter, which is depicted by the red triangle and labeled
Tx. It continuously transmits a signal which is known to
the receiver and has a bandwidth of 100 MHz. The center
frequency of the signal is at 1.9 GHz. The signal energy is
spread uniformly across the signal bandwidth around the cen-
ter frequency. The thick black lines in the scenario represent
walls which reflect the transmit signal. Likewise, the thick
black dots model point scatterers which spread the energy of
an impinging signal uniformly to all directions.

60 ¢

y [m]

90 -

120 |

150 [

30 60 90 120 150 180 210

FIGURE 7. Top view on the simulation scenario with one physical
transmitter Tx indicated by the red triangle. The black lines and points are
walls and point scatterers, respectively. There are five different user
tracks plotted with different colors in the scenario. The start and end
points of the uth track are labeled Su and Eu, respectively.

There are five users who walk through the scenario on
different tracks with a constant speed of 1m/s. The user
tracks are depicted as lines in different colors, where the
start and end position of the u™ user are denoted by Su and
Eu, respectively. The users are equipped with planar antenna
arrays consisting of nine elements. The antenna elements are
aligned in a regular 3 x 3 quadratic grid with a spacing
of a quarter of the wavelength. The signal-to-noise ratios
(SNRs) at the receiver averaged over each of the five tracks
are 13.07 dB, 14.99 dB, 10.47 dB, 15.31 dB and 7.48 dB,
respectively.
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Based on the locations of the physical transmitter and
the walls and scatterers, we can calculate a channel impulse
response (CIR) for every user location with ray-tracing. For
the simulations, we incorporate virtual transmitters of orders
one and two, corresponding to single and double reflec-
tions and/or scattering of the transmit signal. For each user
location, the CIR is convolved with the transmit signal and
AWGN is added to create the received signal.

The update rate of the receiver is 10 Hz. A sampled snap-
shot of the received signal is thus fed to the KEST estimator
every 100 ms. We also use a gyroscope at the receiver. The
gyroscope is incorporated as control input in the user move-
ment model in (12). For the evaluations, we assume the start-
ing location and velocity of the user to be known within their
local coordinate system. The locations of the walls, scatterers
or any transmitters are unknown to the user.

A large hexagon size in the visibility map leads to a
large discretization error. If the hexagon size is very small,
it becomes unlikely that a user revisits hexagons, and the
memory requirement for the map is large. We have found in
our simulations that a hexagon side length of 2 m is a good
tradeoff and set the size accordingly.

The number of user-map particles in the simulations is 800.
The number of transmitter particles is different for every user
or user-map particle, for every time instant and for every
transmitter. When a new transmitter is initialized, the number
of transmitter particles is based on the radio measurement.
This number is subsequently adapted to the uncertainty about
the transmitter’s state with a grid based particle reduction
method from [42] as the user traverses through the scenario.
The lower the uncertainty about a transmitter state, the less
particles are used. For the first user track depicted in blue
in Fig. 7, the maximum number of transmitter particles we
have observed for one transmitter and one user-map particle
was 864. The mean of transmitter particles for that transmitter
while it was visible was 492. The physical transmitter in
the first user track is initialized with 89 particles for each
user-map particle. Averaging over the user-map particles,
this number drops down to 11 after a traveled distance of
approximately 77 m, and stays at approximately 10 after a
traveled distance of approximately 139 m.

During the first user track, 47 different transmitters were
detected by KEST. For the other four tracks, the overall
number of transmitters detected by KEST were 34, 23, 33,
and 30, respectively.

B. SIMULATION EVALUATIONS

The simulation results are depicted in Fig. 8. For each of the
five tracks, the positioning error, namely the mean absolute
error (MAE), of the user is plotted by the solid lines versus the
traveled distance for two cases. The curves in blue, denoted
by *Without Visibility Mapping’, are the MAEs of the stan-
dard Channel-SLAM algorithm if no visibility mapping is
performed. For the curves in red, denoted by *With Visibility
Mapping’, the new particle filter derived in Section III is
used. It incorporates the visibility information from a prior
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FIGURE 8. The simulation results in terms of the user MAE versus the
traveled distance for the five user tracks. For each track, the MAE is
plotted without and with mapping and using the information about
transmitter visibilities by the solid blue and red line, respectively.

In addition, the 951 and 5th percentiles are indicated by the dotted and
dashed lines, respectively.

transmitter map that is created based on the scenario. We use
a prior map to exploit the full potential of visibility mapping.
This prior visibility map could stem from a different user and
is structured in hexagons as described in Section III-A. If the
7™ transmitter in the map is visible from the center of the
h'h hexagon, the parameters of the corresponding Beta distri-
butions in the prior map are set to v,’~ = 1.01 and ¥,”” =
0.01. If the transmitter is not visible, the parameters are
vh<‘/> = 0.01 and 17h<1> = 1.01. Hence, this prior map is only
an approximation to the actual visibilities of the transmitters,
since only the centers of the hexagons are regarded. The prior
map comprises visibility information for all transmitters up to
an order of two. For associating signal components detected
by the KEST estimator in Channel-SLAM with transmitters
from the prior map, the data association method from [30] is
used.

In addition to the MAEs, the 95™ and 5™ percentiles are
plotted for each track by the dotted and dashed lines, respec-
tively. Hence, the MAE was below the dotted lines in 95% of
the simulation runs, and below the dashed lines in 5% of the
runs.

Since the starting location and velocity are assumed to be
known, all MAE curves in Fig. 8 start at an error of zero at
the first time instant, and increase. The error with visibility
mapping is then in almost all tracks considerably below the
error without visibility mapping. The increasing error near the
end of Track 1, Track 3 and Track 5 can be explained with
a high geometrical dilution of precision (GDoP). At these
positions, all detected signal components arrive at the user
from a similar direction.

All error curves in Fig. 8 are averaged over 250 simulation
runs.

The MAE:s at the end of the first track are in the order
of four to ten meters. For comparison, we also performed
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simulations where a user does not perform Channel-SLAM,
but estimates their state only based on the gyroscope and
the movement model. L.e., no radio signals are used in this
case. Even if the velocity is known perfectly at the beginning
of the track, the corresponding MAE grows quadratically
and finally is in the order of 320 m for the first track. The
positioning performance is thus dominated by the movement
model only for a short distance at the beginning of a run,
when the uncertainty for all transmitters is high. Once the
transmitter state estimates have converged, the influence of
the movement model is small.

The evaluations above consider an approximation of a
converged prior map of transmitter visibilities that is known
to the user to illustrate solely the effect of mapping of and
using information about transmitter visibilities. In reality,
such a prior map is created by users with crowdsourcing.
A first user maps the transmitter states and visibilities with
Channel-SLAM and hands the map over to a second user.
Since the second user does in general not know their starting
location, they need to estimate the translation and rotation
relating the coordinate system of the two users in order to
be able to use the map. This estimation is referred to as
map matching and can be done based on transmitter states
estimated by the second user and in the map as in [43]. Once
a map match has been found, the second user exploits the
information in the map, updates it with own observations. The
map is then handed over to a third user, who again performs
map matching, uses and updates the information in the map,
hands the map on to the fourth user, and so on. We refer to
this approach as collaborative Channel-SLAM.

We have evaluated collaborative Channel-SLAM for ten
different users walking on tracks that are plotted in Fig. 9.
The start and end positions of the u'™ track are labeled Su and
Eu, respectively.
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FIGURE 9. Top view on the simulation scenario with ten different user
tracks to evaluate the collaborative approach. The start and end positions
of the uth track are labeled Su and Eu, respectively.

The MAE:s for five different users averaged over 250 sim-
ulation runs are exemplarily plotted in Fig. 10 for two cases
with the solid lines. The u™ track is labeled Track cu. In the
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first case represented by the blue lines, no visibility mapping
is performed. In the second case represented by the red lines,
the visibilities of transmitters are mapped and exploited as in
Section III. The dotted and dashed lines represent the 95" and
5t percentiles, respectively.

The positioning errors for the cases where visibility infor-
mation is used is in almost all cases below the error for the
case without visibility. In the collaborative approach, visi-
bility information on the one hand improves the positioning
performance directly as in Fig. 8. On the other hand, a better
positioning performance leads to a more accurate and robust
map matching, which in turn improves the positioning per-
formance as well.

The 5™ percentiles are very similar for most of the tracks in
Fig. 10, while the 95" percentiles are most of the time lower
if visibility information is used. We see in the simulations
that user particles with a large bias in the position estimate
are resampled faster in the particle filter. This leads to the
conclusion that visibility information mainly improves the
robustness of Channel-SLAM by preventing large biases in
the user position estimates.
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FIGURE 10. The simulation results in terms of the user MAE versus the
traveled distance for five of the ten user tracks with collaborative
Channel-SLAM. For each track, the MAE is plotted with and without
mapping and using the information on transmitter visibilities with the
solid lines. The dotted and dashed lines denote the 95" and

5th percentile, respectively.

V. CONCLUSION

Channel-SLAM is a multipath assisted positioning SLAM
algorithm. The position of the user is estimated jointly with
building a map of physical and virtual transmitter locations
based on the estimated parameters of signal components.
Within this paper, we have augmented such a transmitter loca-
tion map by the information from which locations a transmit-
ter is visible. Information on transmitter visibilities is mapped
in a hexagonal grid map. For each hexagon, the probability
that a transmitter is visible is represented by a Beta distri-
bution. We have derived a new particle filter for Channel-
SLAM that incorporates both the signal components’
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estimated parameters as well as estimates on transmitter
visibilities. If a user revisits a hexagon, or if a prior map with
transmitter visibilities is available, the visibility information
is used to update the weights in the particle filter. For trans-
mitter visibilities, no new measurements as such are required.
Instead, the visibilities are estimated based on information
that is already available from the channel estimator.

Our simulations show that if a converged map of visibility
regions is available as prior information, it increases the posi-
tioning performance of Channel-SLAM for a single user con-
siderably. In the case of collaborative Channel-SLAM, where
a map of visibility regions is estimated by different users
subsequently, visibility information additionally increases
the positioning performance by a higher map matching
robustness.

APPENDIX I. WEIGHT DERIVATION
In the following, we derive (32) from (30). The numerator
in (30) can be written as

P (X0 Mok |z1:6, w1:x) = P (2k X004 Mok, Z1k—1, Ui:k)

P (0,0 Mok |Z1k—1. 11
P @klzik—1, Wi:k)
(46)

using Bayes’ theorem. The numerator in the second line
of (46) can be factorized as

P (¥u.0%> Mok |21:4—1, U1k
= P (Yuk» MilxXu 0k —1. Mok—1. 2141, U1:k)
X P (0,061, Mok—1|21:4—1, U1:k—1)
= p (xuk. Milxuk—1, Mi_1, u)
X P (Xu,0k—1. Mox—11Z1:%—1, U1:6-1) . (47)

where we make use of the fact that the current user-map par-
ticle does not depend on previous measurements and control
inputs if its state at time instant k — 1 is known. In addition,
we do not incorporate information from future time instants.
Inserting (47) into (46) yields

P (*u,0: Mok |21:x, w1:x)
o P (zk 1Xu,04 Mok, Z1:k—1, Uik
X p (Y, Milxyg—1, Mi—1, ui)
X P (Xu,0k—1. Mox—1|z1k—1. w1:%-1) . (48)
exploiting that the denominator in the second line of (46) is

not dependent on the user or the visibility map. The weights
in (32) result from inserting (48) and (31) into (30).

APPENDIX Il. RADIO MEASUREMENT LIKELIHOOD
In this section, the likelihood in (43) is derived. First,
we marginalize over the transmitter state at time instant k.
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With the assumption of independent transmitter measure-
ments the radio likelihood is

p <ZR,k|x§6Tk, 2V 1:ks ZR,l:k—l)

N%X,k
i <i,j>
= H /p <ZR,kIZV,1:k,ZR,1:k—1,xﬁfk,xTX,k)
j=1

<i,j>

<ij>,_<i>
X p (xTX,k Ixu,():k,zv,];k,ZR,l:kfl) deryy - (49

The first factor in the integral of (49) is

[ <i,j>
p (ZR,k|ZV,l:ks 2R, 1k— 15 Xy 0k XTX )

=p (zR,kIZV,k, XX ) . (50)
The radio likelihood zR x is conditionally dependent on the
visibility measurement zy ; for a correct association of the
radio measurements to the transmitters. It is independent from
any previous states or measurements. The second factor in the
integral of (49) is marginalized over the transmitter state at
time instant k — 1, yielding

<i,j> i
p (xTX,k |x.ffofk,zv,1;k,ZR,1:k—1>
<ij> <ij> <i>
= /p (xTX,k |xTX,k—1’xu,0:k’zV,1ikvzR,ltk—l)
<ij> <i> <ij>
*P (xTX,k—l a0k 11:k—1> drry -1

_ <ij>, _ <ij>
= [P {*xx Prxa—1
<i,j> <i> <i,j>
xPp (xTX,k—1|xu,0:k71 g Zl:k—1> dery -
The second factor in the integral in the last line of (51)
corresponds to the posterior PDF of the transmitter state at
time instant k& — 1. This posterior is represented by a set of

. i .0 . . . s
particles x| with associated weights w, ", yielding

&1V}

<i,j> 1
p (xTX,k ey 0k 2V, 1k ZR,lzkfl)

_ <i,j>, <i,j>
= | P(*rxk Prxa—1
Np,Tx
<ij > <i,j> <ij > <i,j>
X w8 (xTX,k—l - xTX,k—l) drry i
(=1
Np,Tx

<ij > <ij>, <ijl>
Wil P AF Kk X1 )
=1

The last term in the last line of (52) is obtained from the
movement model of the transmitter given by (11). Thus,
inserting (50) and (52) into (49) yields

(52)

<i,j> i
p (xTX,k |x1it)>:k’ 2V, 1:k» ZR, lzk—l)

a
N. TX.k

i <i,j>
=] /p <ZR,k|zv,k, x;f,xTX,k>
J=1
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Np,Tx

<ij,l> <i,j>, <i,jl> <ij>
* L Wk-1 P (xTX,k |xTX,k71) dery i
=1

a
Nrxk Np 1x

<i,j,€> i <ij,l>
= [T 2wt p (zralevio o i) 53)
j=1 =1
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