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Abstract— For the introduction of new automated driving
functions, the systems need to be verified extensively. A
scenario-driven approach has become an accepted method for
this task. But, to verify the functionality of an automated
vehicle in the simulation in a certain scenario such as a
lane-change, relevant characteristic of scenarios need to be
identified. That, however, requires to extract these scenarios
from real-world drivings accurately. For that purpose, this work
proposes a novel framework based on a set of unsupervised
learning methods to identify lane-changes on motorways. To
represent various types of lane-changes, the maneuver is split
up into primitive driving actions with a Hidden Markov Model
(HMM) and Divisive Hierarchical Clustering (DHC). Based on
this, lane-change maneuvers are identified using Dynamic Time
Warping (DTW). The presented framework is evaluated with a
real-world test drive and compared to other baseline methods.
With a F1 score of 98.01% in lane-change identification, the
presented approach shows promising results.

Index Terms— Lane-change Maneuver, Hidden Markov
Model, Dynamic Time Warping, Divisive Hierarchical Cluster-
ing, Automated Driving

I. INTRODUCTION

In the last decades, the domain of autonomous driving has
gained much attention from the research community. The
primary focus was on developing and improving automated
driving functions, whereas the topic of testing these systems
was only a niche. In recent years, however, that changes
drastically, and more effort was put into developing new
validation methodologies [1]. This was due to vague legal
specifications and the enormous overall effort to verify the
system’s functionality. Indeed, the research focus on testing
methods shifted to scenario-based validation approaches.

For a scenario-based validation methodology, however, a
set of scenarios is essential as pointed out by Damm et al.
[2]. Although several studies attempt to identify scenarios
[3], [4], [5], [6], [7] and describing them appropriately with
formal languages by Bagschik et al. [8], this topic is still an
open issue and demands further investigation.

A typical scenario or maneuver on motorways are lane-
changes. The analysis of lane-changes is broadly discussed
in the academic domain for several decades. Vehicles per-
forming lane-changes can affect the overall traffic flow [9]
and are one of the main reasons for accidents on highways
[10]. Thus, they pose a severe risk to traffic participants.
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With an increasing level of automation, the Automated
Vehicle (AV) has to conduct lane-changes safely—even un-
der uncertainty. Due to this, studies focused on analyzing
lane-change maneuvers to derive driving models that can
be integrated into the AV for trajectory planning [10] or
to assess the AV’s performance and safety [11]. For both
research fields, however, the identification of lane-changes in
large-scale databases from naturalistic field operational tests
is a prerequisite.

An established methodology for lane-change detection
is to employ supervised learning methods, e.g. Support
Vector Machine (SVM) [12], [13], [14] or Artificial Neu-
ronal Network (ANN) [15]. The data needs to be prepared
with a sliding window approach, which size is, however,
another hyperparameter to tune. Another drawback of using
supervised learning methods are the required ground truth
information for training. To overcome this, unsupervised
learning methods were employed recently. Kruber et al.
use random forest combined with hierarchical clustering to
identify scenarios in simulation data [6]. Probabilistic-based
methods such as the HMM were also proposed for, e.g.,
driving style analysis [16]. Nevertheless, the final cluster
interpretation has to either be performed manually by an
expert [6] or compared to predefined characteristics [16]
since the semantic meaning is lost after clustering.

A. Contribution

This work presents a novel framework for offline identifi-
cation of lane-change maneuvers in real-world driving data.
Instead of using supervised learning methods to extract lane-
change maneuvers, in this work, test-drives are clustered
with an HMM into more trivial driving actions, the driving
primitives (DP) and pattern matching is employed for the
identification.

Since a significant drawback in clustering with non-
deterministic methods such as the HMM is the different
labeling, a method is proposed to recover the semantics
of DPs. Moreover, to model lane-change maneuvers based
on the DPs, this work employs a pattern-recognition based
approach. That is, for each maneuver to identify, specific
patterns are created and the driving sequence is clustered
according to the DPs using Divisive Hierarchical Clustering
(DHC). DTW is then employed to find the most likely
maneuver for each interval based on the defined patterns.

B. Paper Structure

The remaining paper is structured as follows. In Section II,
the proposed framework for lane-change identification based
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on DPs is elaborated. At first, a typical lane-change is
depicted and a set of DPs is derived. They are the basis for
the definition of appropriate features in Section II-A. The
features are used to train a HMM for sequence clustering in
Section II-B. The semantics of the labels are recovered in
Section II-C by employing k-means. The estimated driving
primitive (DP) labels are used in Section II-D to partition
the driving sequence into intervals with DHC and classify
the lane-change with DTW. In Section II-E, an approach is
proposed to find the start and end of each lane-change based
on the intervals provided by DHC. Afterward, the framework
is evaluated with a test drive that includes more than 200 lane
changes in Section III. Finally, the work concludes with a
summary and an outlook on further works in Section IV.

II. LANE-CHANGE IDENTIFICATION FRAMEWORK

The proposed approach for lane-change identification is a
multi-level framework that consists of a set of unsupervised
learning methods for clustering (HMM, DHC and k-means)
into driving primitives (DP) and DTW for the final identifi-
cation (see Fig. 2).

At first, a typical lane-change maneuver is decomposed
into unambiguous stages (see Fig. 1) to identify the DPs
that are used for clustering. In the first state Idle, the vehicle
drives in the center of the lane and transitions into the
state Approach if it approaches either the left or right lane
marking. If any vehicle side crosses the street marking, the
vehicle is in the state Cross until the vehicle’s center crosses
that marking and changes to the Change state. Hence, the
vehicle is changing the lane if the majority of the vehicle is
on the new lane. The maneuver finishes if the second side
of the vehicle crosses that marking, which is indicated by
the Depart state, followed by the Settle state denoting the
vehicle driving in the middle of the new lane.

Idle Approach Cross Change Depart Settle

Fig. 1: A simple lane-change maneuver consists of six
stages. They are used for maneuver sequence partitioning
and classification.

From a lane-oriented point of view, a typical lane-change
maneuver does not consist of six but four states. The states
Idle and Settle, as well as Approach and Depart, are more
or less the same since the absolute relative position of the
vehicle in the lane equal. Hence, the set S of DPs used in
this work only consists of four states.

S = {Idle, Approach, Cross, Change} (1)

Based on this concept of partitioning a lane-change ma-
neuver into DPs, a multi-level framework is proposed to per-
form maneuver classification (see Fig. 2). In the following,
each level is described briefly.

Transformation

Primitive labeling

Primitive matching

Maneuver classification

Maneuver extraction

HMM

k-means +
mapping

DHC +
DTW

Fig. 2: The proposed framework for lane-change identifica-
tion based on driving primitives.

A. Transformation

To divide the lane-change maneuver into the set of driving
primitives and associate each sample in the sequence with a
driving primitive, features need to be selected that appropri-
ately represent the vehicle’s state. In this work, the distances
from the vehicle’s center to the left dcl and right dcr lane
marking are employed that are provided by a camera-based
ADAS. However, instead of using these distances, features
are derived that are independent of the vehicle and lane
width. That allows the presented approach to function on
roads with arbitrary lane widths and for different vehicles.

The first feature is the normalized distance from the
vehicle center to the lane center dc (see Fig. 3). This feature
represents the lateral displacement of the vehicle in the lane.
Based on the distance between the vehicle’s center and the
left lane marking, the normalized lane-center distance dc is
defined as

dc =
wl

2 − dcl
wl

2

= 1− 2dcl
wl

(2)

with dcl as the distance to the left marking and wl the lane
width. The latter is estimated using the distances provided
by the on-board system (dcl and dcr). The lane width wl =
|dcr − dcl| is the absolute sum of the distances dcl ∈ R and
dcr ∈ R to the left and right lane markings since dcr < 0
and dcl > 0.

Although the normalized distance dc may be used for
partitioning only, we propose to use another feature crossing
to divide the four states further onto two clusters. Due to this,
the HMM will more likely be able to represent the driving
primitives. The first cluster represents the vehicle moving
within a lane (states Idle and Approach), whereas in the
second one, the vehicle moves between two lanes (Cross
and Change). For that purpose, the normalized distances dl
and dr (see Fig. 3) are used defined as dl =

1
wl

�
dcl − wv

2

�

and dr = 1
wl

�
dcr +

wv

2

�
since the maximum value of dl and

dr is wl −wv/2. That is because if the center of the vehicle
crosses a lane marking, the on-board system changes the left
and right lane markings to represent the new lane boundaries.
In Fig. 1, for instance, the left marking is the dashed one and
the right marking the solid line until the vehicle transitions
in the Change state. Afterward, the left lane is the top solid
line and the right lane marking the dashed one.

The distances from the vehicle sides to the lane markings
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Fig. 3: The features used for the identification of lane-
change maneuvers are derived from the distances between the
vehicle center and the left dcl and right dcr lane markings.

(dl and dr) are employed to mark the vehicle’s current sub-
state with the feature crossing ∈ {−1, 0, 1}. That feature
denotes if the vehicle crosses the left −1, the right 1 or no
marking 0.

B. Primitive labeling

To partition the lane-change maneuver into sequences,
each of which represent one of the four states of the vehicle
defined previously and to associate each sample in the driving
sequence with a DP, this work employs an HMM.

A HMM is typically used if the system’s internal state
is not accessible, but the system emits information. This
information can be used to derive the system’s internal state
under the condition that the number of states is known.
In this work, the system is the vehicle, the internal states
are the driving primitives and the emitted information are
the distance to the next lane markings (see (2)) and the
crossing flag. Hence, the aim is to derive the HMM’s model
parameters based on the driving sequence. For that purpose,
the Baum-Welch algorithm can, according to Bilmes [17],
be employed. Furthermore, since the emitted information is
not discrete, the emissions are modeled with Gaussians [17].
With the derived parameter set and the given sequence, the
aim is to find the optimal matching sequence of driving
primitives. For that purpose, the Viterbi algorithm can be
employed. [17] The result of an exemplary drive with a
duration of fifteen minutes on a motorway that contains 39
lane-changes is shown in Fig. 4. The figure illustrates the
vehicle’s lateral displacement dc distribution from (2) for
each DP with each DP representing a hidden state of the
HMM associated with a label l ∈ {0, 1, 2, 3}.

C. Primitive matching

The estimated model parameters of the HMM can be dif-
ferent for several runs. This is due to the inherent clustering
nature of the used approach. Hence, the DP Idle may not
always be labelled with 0 as in Fig. 4. That is, however,
required in the follow-up steps to model lane-changes based
on DPs. Hence, the aim of the primitive matching step is to
recover the semantic of the labels so that, regardless of the
used driving sequence, the labels {0, 1, 2, 3} always represent
the primitives S as defined in (1).

Let P = {p1, p2, p3, p4} represent the DP clusters with
pi =

�
d1c , d

2
c , . . . , d

n
c

�
as the normalized distances defined

in (2) for each DP. Let L = {0, 1, 2, 3} denote the labels for
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Fig. 4: The result of the Viterbi algorithm applied to a
sequence using HMM model parameters estimated with the
Baum-Welch algorithm assuming four hidden states. Each
hidden state represents a DP. For each DP, the distribution
of lateral displacement dc is shown.

the DP and ML = {(li, pi)| l ∈ L, p ∈ P, 1 ≤ i ≤ |P |} a set
of tuples and each tuple consists of a label l and a DP p.
Furthermore, let ML(p) → l be the label l ∈ L associated
with the DP p. The aim is to determine the correct set of
labels L̄. For that purpose, the mean absolute normalized
distances �dc =

�
�dc,1, . . . , �dc,4

�
with �dc,i = 1

|pi|
�|pi|

j=1 |p
j
i |

are estimated. The correct DP labels L̄ =
�
l̄1, . . . , l̄4

�
are

the indices of the sorted set of means L̄ = arg sort �dc with
arg sort giving the index of the centers in �dc to sort the set in
ascending order. The set of tuples ML̄ now associates each
DP label correctly to its cluster. For the example in Fig. 4,
the correct labels are L̄ = {0, 2, 3, 1}.

The next step is to determine the direction of the DP
since we currently only know the type. Despite the Idle
DP, all other follow a bimodal distribution with each cluster
representing the direction of that DP (see Fig. 4). Since the
clusters do not overlap, k-means is employed to cluster each
DP pi ∈ P, i > 0 despite the first one, into two clusters
ci =

�
c1i , c

2
i

�
with cji , j ∈ {1, 2} denoting the cluster mean

and c1i > c2i . The DP direction of a sample x is encoded in
the sign of the label l of the sample’s primitive px with

l(x, px) =

�
ML̄(px) if |x− c1x| < |x− c2x|
−ML̄(px) else

(3)

according to the distance of the sample to the primitive’s
cluster means

�
c1x, c

2
x

�
so that l ∈ {−3,−2 . . . , 2, 3}. The

result of the label matching and primitive direction estima-
tion is depicted in Fig. 5 with the primitives sorted by their
mean distance and the cluster colors denoting the direction.

D. Maneuver classification

The next step in the framework is to find lane-changes
based on the DP and to classify them as left or right lane-
changes. Remark that each driving primitive is represented
with a label l ∈ {−3,−2, . . . , 2, 3} and the sign of the
label denotes the direction according to (3). Hence, the time-
series of labels is divided into lane-change intervals and each
interval is classified as left or right lane-change. That is,
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Fig. 5: The partitioned driving sequence with the correctly
matched primitives, indicated with the names on the ordinate,
and direction information encoded in the cluster color.

we want to find the pattern of a specific lane-change in the
sequence.

For the first step, Divisive Hierarchical Clustering (DHC)
is employed to partition the sequence into intervals w.r.t the
absolute primitive label. Based on a starting label lmin, the
sequence is recursively splitted until a maximum label lmax

is reached. Only the intervals that contain the maximum label
are selected for further processing. An example lane-change
interval is depicted in Fig. 6 with the original sequence (top)
and the sequence after partitioning with lmin = 2 and lmax =
3 (bottom). The next step is to find lane-change pattern in
the extracted intervals. For pattern matching in time-series,
Dynamic Time Warping (DTW) and more specifically, the
nearest neighbor algorithm with DTW, is, although already
proposed in the 70s [18], still the benchmarking algorithms
for time series classification. It allows to compare signals
with different lengths and provides a distance metric for
comparison. That metric allows to select the most likely
pattern that matches the interval. In this work, the fastDTW
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Fig. 6: Divisive Hierarchical Clustering is employed to
split up the sequence into intervals based on the absolute
driving primitive label. Top: The normalized distance dc and
label l before partitioning. Bottom: The same interval after
partitioning.

implementation [19] for DTW is used, which speeds up the
process.

At first, let H = {h1, . . . , hk} be a set of patterns
to match with the previously extracted intervals X =
x1, x2, . . . , xn with each x ∈ X representing only the
driving primitive labels of that time-series. The pattern hl =
{1, 2, 3,−3,−2,−1} represent a lane-change to the left and
hr = {−1,−2,−3, 3, 2, 1} to the right. Furthermore, two
patterns are defined to represent aborted lane-changes to the
left and right. These are required to prevent misclassification
of lane-changes attempts. DTW is now employed to map
the patterns on each extracted time-series xi ∈ X . Let
dtw(h, xi) return the distance mapping the pattern h on the
time-series xi. The overall aim is to find the pattern with the
smallest distance

argmin
h∈H

dtw(h, xi) (4)

for all intervals. An example is depicted in Fig. 7 showing
a lane-change to the left with the normalized distance to the
lane center (in blue) and the driving primitive (green).

The matrix with the accumulated cost to map the value hi

of the pattern h at index i to the value xj at the j index in the
time-series is shown on the right with x as the time-series of
driving primitive labels. The top image represents the matrix
for the left lane-change pattern hl and the bottom for the
right hr with the path of lowest cost represented in red. It
is evident that the path for the left lane-change pattern has a
smaller cost than the one for the right pattern (2.0 vs 85.0),
and thus, the time-series is classified as left lane-change.
The proposed approach for maneuver classification has the
benefit that maneuvers of interest can be identified by merely
adding further appropriate patterns to the list H .

E. Maneuver extraction

The intervals generated by the previous steps may not
represent the real lane-change accurately. A typical case is
if the vehicle is in the state Approach or Cross for a lengthy
period before the actual lane-change (as in the example
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Fig. 7: Lane-change classification using Dynamic Time
Warping. Left: The enlarged time series of the lane-change
and the driving primitives. Right: The accumulated cost
matrix for mapping the left (top) and the right lane-change
(bottom) with the chosen path (in red).



depicted in Fig. 7). Thus, a post-processing step is required
for maneuver interval extraction.

The proposed maneuver extraction approach is elaborated
in the following for the lane-change maneuver depicted in
Fig. 8 with the blue line as the normalized distance from the
vehicle to the lane center. The approach aims at extracting
the interval (ts, te) represented with the two vertical lines in
Fig. 8. Let dc(t) be the normalized distance from the vehicle
center to the lane center as defined in (2) at time t in a time
window w = {t −Δt, . . . , t +Δt} with a duration of 2Δt
so that t ∈ w. Since the aim is to fine-tune the point in time
of the maneuver start and end, the window is equally and
generously enlarged in both directions by �Δt = 8 seconds
or until the vehicle crosses a marking. The latter allows
to divide two consecutive lane-changes properly. Then, let
|dc(t)| represent the absolute normalized distance denoted
as the dotted green line in Fig. 8. The first step is to split
up the signal into two parts representing the time before and
after the lane crossing.

For that purpose, the time and value tmax, dmax of the
signal peak is estimated in the window denoting the point
in time of the lane crossing. To prevent the selection of a
maximum value that does belong to another lane-change in
the enlarged time-series, the search area is restricted to the
interval before enlargement.

Afterwards, the signal is split up into the left wl =
{t1, . . . , tl} and right wr =

�
tr, . . . , t|w|

�
sub-window.

Since the vehicle may drive for a longer period between the
two lanes, the start of the windows (tl, tr) is determined by

tl = max ({t|t ∈ w, t < tmax ∧ |dc(t)| < ζ}) (5)

and

tr = min ({t|t ∈ w, t > tmax ∧ |dc(t)| < ζ}) (6)

that is the earliest and latest time where the signal is
smaller than the threshold ζ = 0.9 (see the upper horizontal
line in Fig. 8). Note that choosing ζ is not critical as long
as the threshold is lower than the maximum distance and
greater than ϑ.

The next step is to find the situation where the vehicle’s
heading recovers to the lane’s heading. For that purpose,
the windows are stripped down to wl = {t0, . . . , tl − to,l}
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Fig. 8: The absolute normalized distance is used to fine-tune
the extracted maneuver interval.
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Fig. 9: The maneuver end is represented as the partition with
the lowest average signal change (blue box). The mean signal
change of each partition is depicted with the green boxes.

and wr =
�
tr + to,r, . . . , t|w|

�
with to,l, to,r as the offsets

in both sub-windows likewise determined by (5) and (6)
with the threshold ϑ (see Fig. 8). Since it is assumed
that the interval contains a lane-change maneuver and that
lane-changes will always end after the vehicle crosses the
lane marking, ϑ is the mean of the cluster in the HMM
represented by the state Crossing.

To find the start and end of the maneuver, each sub-
window w ∈ {wl, wr} is partitioned into mw =

�
|w|
k

�

bins Bw =
�
b1w, b

2
w, . . . , b

m
w

�
with |w| as the size of the

sub-window w and k = max ([3, to]) as at least three or
the previously determined offset. The latter ensures, that
partitions have a valid size for the follow up steps. Also
note that before partitioning, a convolution is applied to
the signal with a box blur kernel of size 7 for smoothing.
Furthermore, the signal is normalized, so that the first value is
one. For each bin b ∈ Bw of the sub-window w the average
signal derivation is determined by b̄ = 1

k

�(i+1)k
j=ik+1 f

�(wj)
with f �(t) as the derivation of f(t), which is the smoothed
normalized distance dc of the window w and wj as the
jth time in the sub-window w since we are interested in
the partition with the lowest average signal change. The
process is illustrated exemplarily for the right sub-window
wr in Fig. 9 with the green vertical lines denoting the
partition borders. The mean signal change for each partition
is illustrated with the color-coded boxes at the top of the
figure. The brighter the box, the lower the average signal
derivation.

The last step is to find the ith bin with the lowest average
signal change in both windows il,r

il = argmin
j∈{1,...,kl}

b̄l,j ir = argmin
j∈{1,...,kr}

b̄r,j (7)

to finally estimate the maneuver interval (ts, te) by

ts = tmax − tl − to,l − (il + 1)kl

te = tmax + tr + to,r + (ir + 1)kr
(8)

depicted as the horizontal arrow in Fig. 8. The images of
the left front-facing camera for the estimated start (left),
maximum normalized distance (middle) and estimated end
(right) are depicted in Fig. 10.



Fig. 10: Images of the front-facing camera for the start (left),
the point in time with the maximum normalized distance
(middle) and the end of the extracted lane-change maneuver.

III. EVALUATION

For the evaluation of the proposed lane-change identifica-
tion framework, a test drive on a motorway with a duration of
approximately 2.5 hours was chosen. The data was collected
as part of the research project FASva [20]. During the drive,
205 lane-changes took place with 101 lane-changes to the left
and 104 to the right. The lane-changes were labeled manually
by inspecting the images of the vehicle’s front camera. The
start of a lane-change is defined as that moment where the
vehicle’s heading is changing towards the target lane or,
in case of multiple consecutive lane-changes, the vehicle
position is near the lane center. The maneuver finishes if
the vehicle is on the target lane and the vehicle’s heading
is recovered to that lane or, in case of multiple consecutive
lane-changes, it reaches the center of the lane.

Since the SVM and ANN are widely used in the liter-
ature for lane-change identification, they are selected for
comparison. To also respect the temporal dependencies in
the classification, the driving sequence X with the same
features as used in Section II-C is partitioned into n windows
w0, . . . , wn according to the window size Δw so that n =
|X| − Δw + 1 with |X| as the number of measurements
in the sequence. That is, a window of size Δw is shifted
over the signal (with a shift length of one and without
padding) and each window represents the feature vector of
the window’s center with the features dc and crossing. The
predicted label li ∈ {−1, 0, 1} is either li = 1 for a left,
li = −1 for a right or li = 0 for no lane-change. Since
the performance of both approaches is related to the proper
selection of parameters, grid-search is employed to find the
best parameter combination (see Table I). The maneuver
intervals are extracted based on series of equal labels with
the first label denoting the start and last one the end time.

TABLE I: The model parameters found using grid-search for
the SVM and ANN with a subset of the evaluation dataset.

SVM ANN

Window size 39 Window size 35
Kernel rbf Hidden Layers 3
Gamma 0.001 Neurons per Layer 10
C 100 Activation function tanh
- - Alpha 1.0

A. Metrics

To qualitatively evaluate the performance of the presented
approach, lane-change classification is treated as a binary
classification problem. For that purpose, the approach used

in a previous work [21] is adopted to state whether a lane-
change was correctly classified or not. Let tc,i = [tsc, t

e
c]

denote the ith interval represented as start and end time
of the lane-change identified by a classifier c with c ∈
{ANN,SVM,HMM+DTW,HMM+DTW-Ex} and tg = [tsg, t

e
g]

the manually identified start and end times. HMM+DTW
represent the intervals using only the primitive labels and
HMM+DTW-Ex the extended interval extraction method from
Section II-E.

A maneuver tc,i is correctly identified, a true positive
(tp), if both interval overlaps and the difference between
the ground truth and extracted interval is smaller than a
threshold Δt. If the time difference is, however, greater
than Δt or do not overlap, the maneuver is a false positive
(fp). Furthermore, all maneuvers that were not found by a
classifier are false negatives (fn). Based on these metrics,
the precision and recall are estimated

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(9)

for each classifier and combined using the harmonic mean
(F1 score) given with

F1 = 2 · precision · recall
precision + recall

(10)

for the final performance evaluation.

B. Results

The classification performance is evaluated w.r.t the devi-
ation of the extracted interval from the ground-truth interval
since it affects the classification precision as described in the
previous section. In Fig. 11, the F1 score for each classifier
and different deviations Δt is depicted.

Contrary to our expectations, the figure shows that the
MLP and SVM lack precision compared to the proposed HMM-
based approaches for all Δt with a maximum F1 score of
38.66% and 37.35%, respectively. Possible reasons for this
discrepancy might be that maneuvers are extracted based
on series with equal labels. Hence, the interval is created
incorrectly if there is only one misclassification in the series.
Additionally, the features used by the SVM and ANN are the
same as by the HMM. Although the feature set seems to be
well-designed for the proposed approach, this may not be
the case for the SVM and ANN.

The proposed approach with the interval extraction method
HMM+DTW-Ex as described in Section II-E is superior to
the HMM+DTW method, although both approaches tend to the
same maximum F1 score of 98.01% with an increasing Δt.
This is consistent with our expectation since the HMM+DTW
uses the results after clustering with DHC as shown in Fig. 6
and tend to shorten the interval compared to HMM+DTW-Ex.
This is the reason for the shift between the results in Fig. 11
and that both approaches reaches the same maximum F1

score with an increasing Δt.
Concluding, the results show that the proposed framework

is able to identify lane-change with high accuracy. Our
dataset was, however, limited to find lane-changes of the
ego vehicle since only the signals of the next left and right



marking relative to the ego-vehicle are available. Hence,
future studies will have to explore if the framework can be
employed for other datasets with multiple vehicles as well.
Additionally, a more detailed analysis of the results is part
of future work.

Fig. 11: The classification performance of the proposed
approach compared with two state-of-the-art approaches for
different maximum maneuver interval deviations Δt.

IV. CONCLUSION

For the validation of automated driving functions, a
scenario-driven approach is a widely accepted method.
Therefore, solutions are required to find specific scenarios
in real-world drivings. Due to the adverse impact of lane
changes on the overall traffic, this work proposes a multi-
level framework to identify lane changes on motorways
providing information for follow-up analysis. Therefore, a
drive is partitioned into driving primitives which are the basis
for the maneuver identification using a set of unsupervised
learning methods and DTW for lane-change classification.

The proposed approach is evaluated using a test drive on
a motorway with 204 lane-changes, and the results are com-
pared with two baseline methods showing the efficacy and
superiority of the proposed framework with an identification
F1 score of 98.01%.

In follow-up works, the scalability of the approach and
adaptation to other data sources is verified. Therefore, infor-
mation of the Testfeld Niedersachsen [22] will be employed
to find lane changes for multiple and different types of vehi-
cles with the proposed approach and to assess the criticality
of the maneuvers by relating it to other vehicles. Further-
more, the extracted maneuver intervals of lane-changes will
be analyzed in future studies to derive parameter distributions
that can be employed to model lane-changes on motorways
for, e.g., simulation-based testing.
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