Generating Test Cases from Real Field Data to ensure V2X Interoperability

Lennart Asbach lennart.asbach@dlr.de

Prof. Frank Köster frank.koester@dlr.de

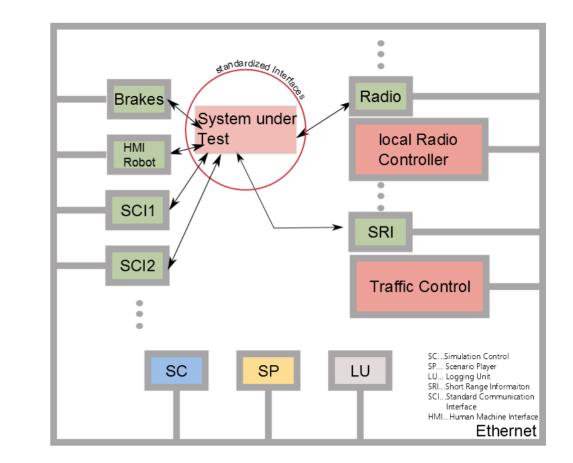
Knowledge for Tomorrow

Motivation – Need for Testing

- V2X is one of the main parts of traffic system's digitalization,
- It is feature-rich and complex,
- Many stakeholders are involved in the system, (Automaker, Infrastructure-Supplier and –Manager, Authorities, etc.)
- Conformity and especially Interoperability/Compatibility are crucial for the system's function,
- Although not yet in operation, safety-critical use of V2X is a must to increase road-traffic's capacity (e.g. Signal Phase and Timing),
- The situation gets even more critical when it comes to automated and co-operative driving.

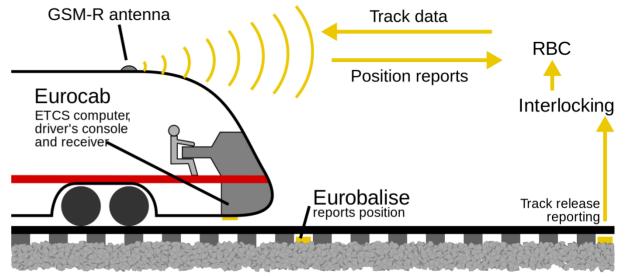
→ Comprehensive Testing, especially in-lab testing is one of the most-common methods to ensure interoperability, conformity and (functional-) safety.

DLR


Motivation – Need for Testing

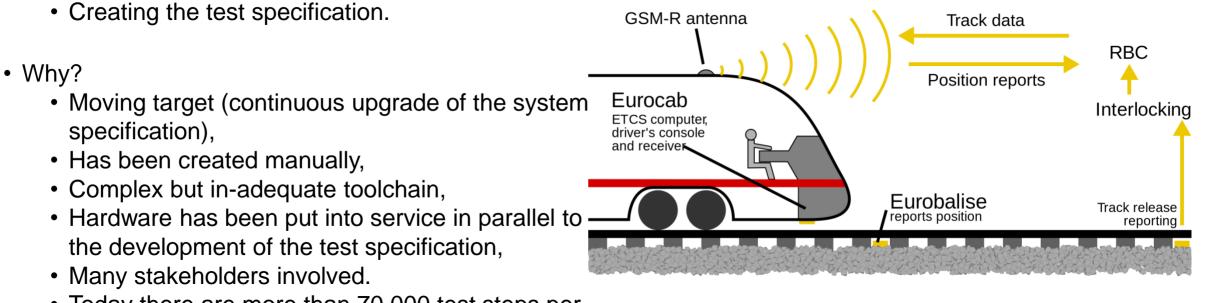
Abbildungen: acatech Studie - Neue autoMobilität I

Motivation – Lab Testing


- Due to digitalization in-lab testing for V2X is simple. At least the interface between car and road is standardized (ETSI). Of course, backside between communication unit and car/infrastructurecomponents is manufacturer-dependent.
- Common and applicable testing-setups are Hardware/Software-in-the-loop.
- In combination with a test-adapter to interface between communication unit and the system behind (car/traffic light/etc.) the technological setup is complete and available.
- But what about the test specification?

Return of Experience: Functional testing in the railway domain

- In the railways there has to be a communication between track and train due to high masses and low friction.
- In the past there was a (more or less) dedicated and specialized system for every track.
- Today cross-boarder traffic across Europe is needed and the system has been standardized and harmonized (called ETCS: European Train Control System).
- Tech: max. 830 Bit per message, safe.
- Interoperability became one of the main issues during the deployment of ETCS.
- Lab-Testing the Eurocab in independent Laboratories
 has been put into the law, to resolve the interoperability issues.

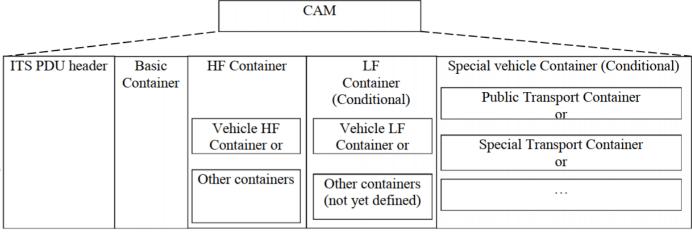


Von ETCS_L2_w_RBC.jpg: bukkderivative work: Mickdermack - Diese Datei wurde von diesem Werk abgeleitet: ETCS L2 w RBC.jpg:, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=19740905

Return of Experience: Functional testing in the railway domain

• Main issue:

- Today there are more than 70.000 test steps per test campaign...
 Von ETCS_L2_w_RBC.jpg: bukkderivative work: Mickdermack - Diese Datei wurde von diesem Werk abgeleitet: ETCS L2 w RBC.jpg:, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=19740905
- Sounds familiar?
 → Back to V2X.



Focus: Cooperative Awareness Message (CAM)

- Probably the CAM message will be the first message implemented by many vehicles.
- Specification is available (ETSI EN 302 637-2),
- Main purpose: Inform other road users about each others position, dynamics and attributes.

A.28 DE_ExteriorLights

Descriptive Name	ExteriorLights	
Identifier	DataType_28	
ASN.1 representation	<pre>ExteriorLights ::= BIT STRING lowBeamHeadlightsOn highBeamHeadlightsOn leftTurnSignalOn rightTurnSignalOn daytimeRunningLightsOn reverseLightOn fogLightOn parkingLightsOn } (SIZE(8))</pre>	<pre>{ (0), (1), (2), (3), (4), (5), (6), (7)</pre>

B.19 referencePosition

Description	Position and posi originating ITS-S. B.37 exteriorLights							
	generationDeltaT If the station type		Status of the most important exterior lights switches of the vehicle ITS-S that originates the CAM.					
	the bounding box present	etting and tation requirements	The DE shall be presented as specified in ETSI TS 102 894-2 [2] ExteriorLights.					
	The positionConfiguration B.22 speed							
	If semiMajorOrientation is corresponds to the positio	Description	Driving speed and speed accuracy of the originating ITS-S. The speed accu provided in the DE speedConfidence shall provide the accuracy of the speed					
	semiMinorConfidence cor direction. This definition in	-	value with a confidence level of 95 %. Otherwise, the speedConfidence shall be set to unavailable.					
	than the semiMinorConfid	Data setting and presentation requirem	The DE shall be presented as specified in ETSI TS 102 894-2 [2] Speed.					
Data setting and presentation requirements	The DE shall be presented ReferencePosition.		t be a difference between the speed in moving direction and the driving speed.					

From: ETSI EN 302 637-2 V1.4.1 (2019-04)

Existing test specification

- TTCN-3 Test cases from ETSI:
- <u>https://forge.etsi.org/rep/ITS/ITS/</u> (former <u>https://forge.etsi.org/svn/ITS/trunk</u>)
- Advantages:
 - formal
 - TTCN-3, simple execution, more or less humanreadable.
- Is there a need for more test cases?
 - Depends on the current coverage:
 - Checkout the current test cases,
 - Search, sort the referenced requirements,
 - Check the coverage.

[asba_le@ts-rlst0001-dev trunk]\$ ls asn1 data javasrc ne-countries-50m.json patches requality taconfig.xml tools ttcn unittests [asba_le@ts-rist0001-dev trunk]\$ pwd /home/asba_le/ITS/trunk [asba_le@ts-rlst0001-dev trunk]\$ grep -ri "@reference ETSI EN 302 637-2" | sort -u tcn/AtsCAM/ItsCam TestCases.ttcn: @reference ETSI EN 302 637-2 v1.3.2. Annex B.1 ttcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2. Annex B.11 tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, Annex B.12 * @reference ETSI EN 302 637-2 v1.3.2. Annex B.13 ttcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2. Annex B.14 ttcn/AtsCAM/ItsCam TestCases.ttcn: tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, Annex B.15 ttcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2. Annex B.16 ttcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2. Annex B.17 tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, clause 4.2.2 * @reference ETSI EN 302 637-2 v1.3.2, clause 5.2 tcn/AtsCAM/ItsCam TestCases.ttcn: tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, clause 5.3.4.1 tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, clause 6.1.3 tcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2. clause 6.1.3 ttcn/AtsCAM/ItsCam TestCases.ttcn: * @reference ETSI EN 302 637-2 v1.3.2, clause 6.1.4

ttcn/AtsCAM/ItsCam TestCases.ttcn:

[asba_le@ts-rlst0001-dev trunk]\$

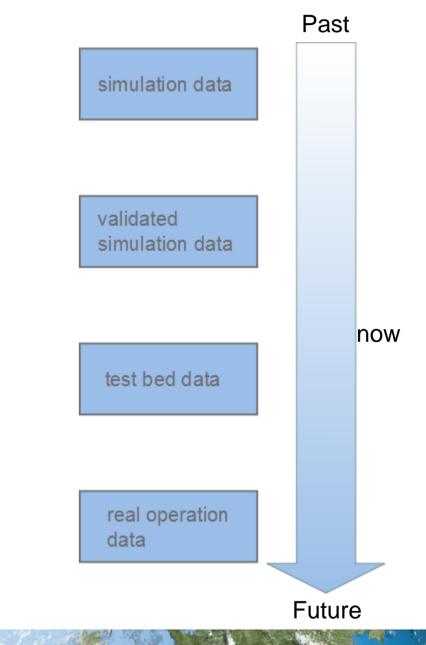
* @reference ETSI EN 302 637-2 v1.3.2, clause 6.2.2.1

Coverage in the CAM specification

- Example CAM, based on ETSI EN 302 637-2.
- Documented coverage::
 - Annex B.1, 6.1.3, 5.2, Annex B.11, B.12, B.13, B.14, B.15, B.16, B.17, 5.3.4.1,6.2.2.1,4.2.2
 - Important note: Only documented requirements have been take into account.
- Currently only few requirements are covered. There is no parameter set to invoke the test cases in different scenarios. Even the covered requirements are only tested in certain situations.

Contents				4	ETSI EN 302 637-2 V1.3.2 (2014-11)
tellectual Property I	7.6.1 7.6.2				
oreword	Ann	ex A (normative):	ASN.1 sp	ecification of CAM	
odal verbs terminol	Ann	ex B (normative):	Descripti	on for data elements a	nd data frames25
troduction	B.0		•		
Scope	B.1	-			
References	B.2	cam			
l Normative rei 2 Informative re	B.3	generationDeltaTime			5 E
Definitions, syn	B.4	camParameters			
Definitions	B.5	basicContainer	B.34	· ·	
2 Symbols 3 Abbreviation:	B.6	highFrequencyContain	B.30		
CA basic servic	B.7	<i>.</i> . ,	B.30	vehicleWidth	
Background		lowFrequencyContaine	B.3/	exteriorLights	
2 Services prov 3 Sending CAN	B.8	specialVehicleContaine	B.38	pathHistory	
4 Receiving CA	B.9	basicVehicleContainer	B.39	ptActivation	
CA basic servic		basicVehicleContainer	B.40	specialTransportType	
CA basic serv CA basic serv	B.11	publicTransportContair	B.41	dangerousGoodsBasic	
3 Interfaces of t	B.12	specialTransportContai	B.42	roadworksSubCauseC	ode
3.1 Interface t 3.2 Interface t	B.13	dangerousGoodsContai	B.43	closedLanes	
3.3 Interface t 3.4 Interfaces	B.14	roadWorksContainerBa	B.44	trafficRule	
3.4 Interfaces 3.4.1 Interfa	B.15	rescueContainer			
3.4.2 Interfa 3.5 Interface t	B.16	emergencyContainer		•	
3.6 Interface t	B .17	safetyCarContainer		-	
CAM dissemina	B.18	stationType			
l CAM dissemi 1.1 CAM diss	B.19	referencePosition			uency
1.2 CA basic	B.20	performanceClass			ionZoneRSU
1.3 CAM gen 1.4 CAM gen	B.21	heading			
1.5 CAM time	B .22	speed			
1.5.1 CAM 1.5.2 CAM	B.23	vehicleRole		-	
2 CAM dissemi 2.1 General C	B.24	lanePosition		protectedZoneLongitu	de
2.2 Security c	B 25	driveDirection	Anne	ex C (informative):	Protocol operation of the CA basic service
2.2.1 Introde 2.2.2 Servic		longitudinalAcceleratio	C.1		
2.3 General p		accelerationControl	C.2		ration rules
CAM Format S		lateralAcceleration	C.2.2	T_CheckCamGen	
l General Struc 2 ITS PDU hea		verticalAcceleration	C.2.3		essage table ration
Basic contain		embarkationStatus	C.2.5		sception.
4 Vehicle ITS-5 5 RSU ITS-5 co		curvature	C.3		ation
6 CAM format		curvatureCalculationM	0.5.1		rules
			C.3.3	Exception handling	
	B.33	yawRate	C.3.3	1 CAM decoding et	xception
			Anne	ex D (informative):	Flow chart for CAM generation frequency
			Anne	ex E (informative):	Extended CAM generation

...Coverage documented.

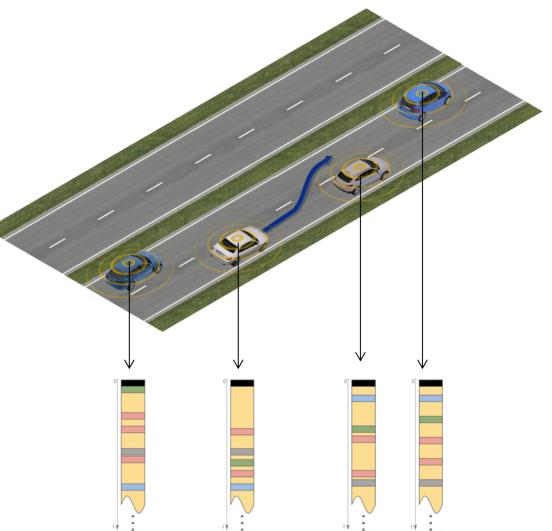

C

7.4 7.5

76

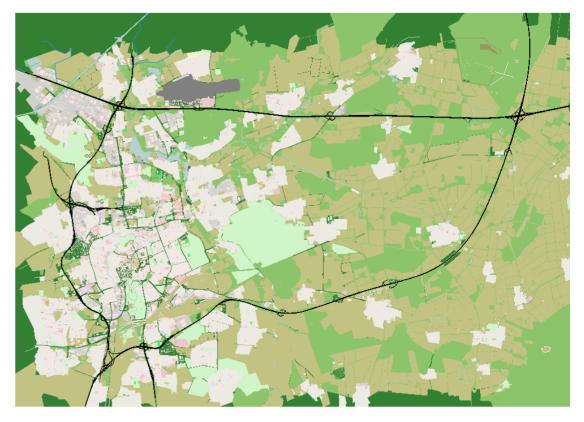
Approach

- Several test tracks (C-Roads, AIM, Test bed lower saxony, TAF, etc.) are available, equipped with road-side-units.
- First manufacturers are rolling out on-board-units in their production lines.
- Furthermore there are sophisticated simulations (e.g. SUMO) for traffic simulation available, which can be validated with the data from the real test tracks.
- Collecting all received/sent messages in a database leads to more and more growing database of real V2Xcommunication.
 - Certain scenarios will appear with a lot of different constraints,
 - Different manufacturers are involved in the communication
 - In the beginning there will be almost no safety-criticality



Approach – in detail.

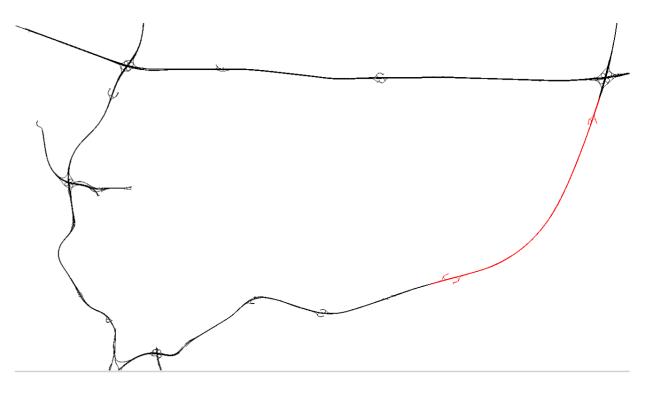
- Assumptions:
 - All cars are emitting CAM messages,
 - Frequency 5Hz,
 - No packet loss,
 - Data Stream of every car is recorded.
- First example: Overtake maneuver, especially first lane change.


• Steps:

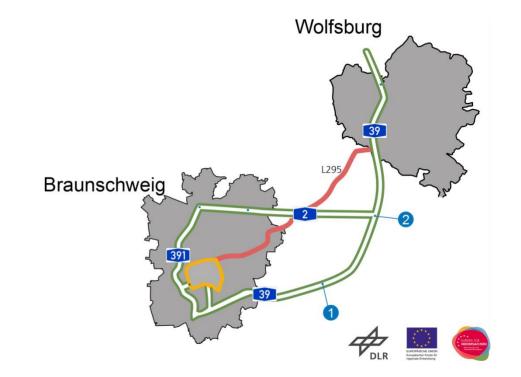
- Generating Test Data
- Pattern matching for maneuver trigger, analyzing trajectory,
- Collecting all different occurrences of the maneuver,
- Inspecting constraints,
- Creating scenarios / test cases.

Current Status // Gathering the data

- Right now, there is no direct access to real data:
 - Only very few cars are quipped with V2X technology and are emitting any messages.
 - Not all test tracks are already in operation or are in upgrading procedures.
- To show the basic function of the method and for later extension of the test-data a simulation based approach is necessary.
- DLR's traffic simulation SUMO has been configured to simulate a certain part of the Test Bed Lower Saxony.
- In a first step only CAM messages have been evaluated, they will be available first.
- The simulation has been configured with real traffic data, acquired by the BAST.

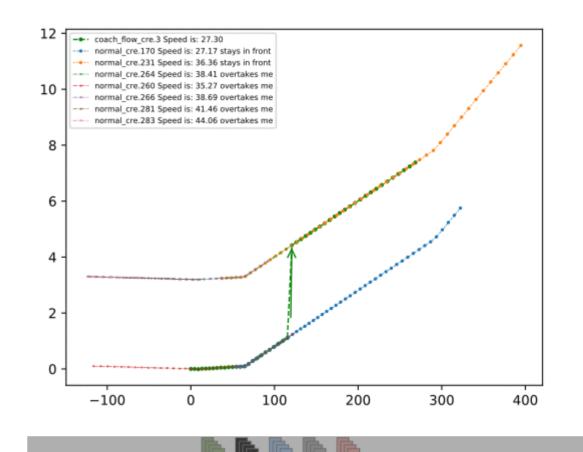

• Simulation time 1 hr.

Current Status // Gathering the data


- V2X CAM Information has been emulated, reduced to:
 - stationID,
 - exteriorLights,
 - speed (w/o accuracy),
 - position.
- Important assumption: stationID stays unchanged for the maneuver.
- Due to performance reasons no live processing has been executed but the data has been stored filebased as floating car data.
- The simulation output has been acquired for approx.
 8km between Exit 30 (Cremlingen) and Exit 28 (AK Wolfsburg/Königslutter). Why this selection?

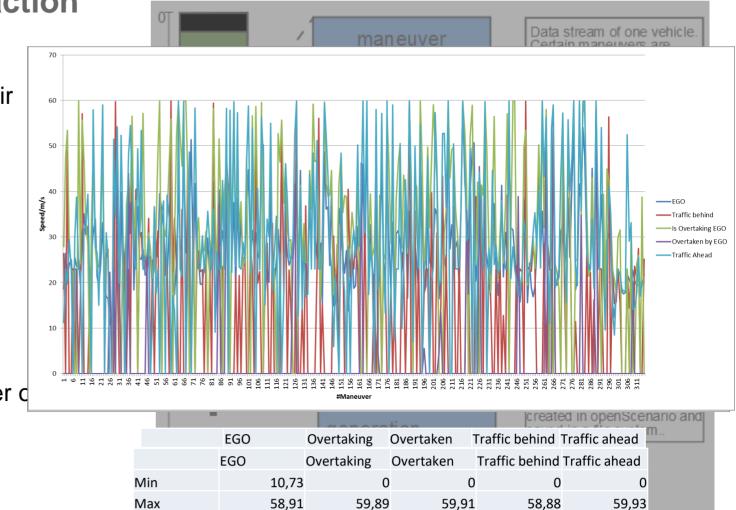
Current Status // Gathering the data (selection)

- Test Bed Lower Saxony (opening 08.01.2020).
- Between exit 30 and exit 28 a very accurate traffic acquisition will be available:
 - Accuracy better than 25cm
 - · Every vehicle will be detected
- For every detected vehicle a V2X-Message (CAM) can be emulated in real time.
- The resulting data stream will be very close to future situations with V2X equipment in every car.



High precision acquisition system between (1) and (2)

Current Status // Maneuver Extraction


- Time-based Floating Car Data has been converted to vehicle-based trajectories (gpx-format),
- Data has been analyzed for Overtake on the highway.
- Exterior lights have been filtered for left flasher.
- Vehicles using the left flasher and changing lane (gradient of trajectory) are selected for EGO-vehicle in the scenario.
- The entire scene with all cars in a certain time scope (e.g. +/- 5 secs), within a certain distance (e.g. 100m) have been selected and added to the maneuver.

Current Status // Maneuver Extraction

- All vehicles in the scene are analyzed for their trajectories in relation to the EGO vehicle:
 - Are overtaken by EGO,
 - Overtake EGO,
 - Traffic behind EGO,
 - Traffic in front of EGO.
- Relevant parameters are extracted:
 - Speed,
 - Distance,
 - Exterior Lights.
- Border identification leads to a limited number of scenarios.

11,45

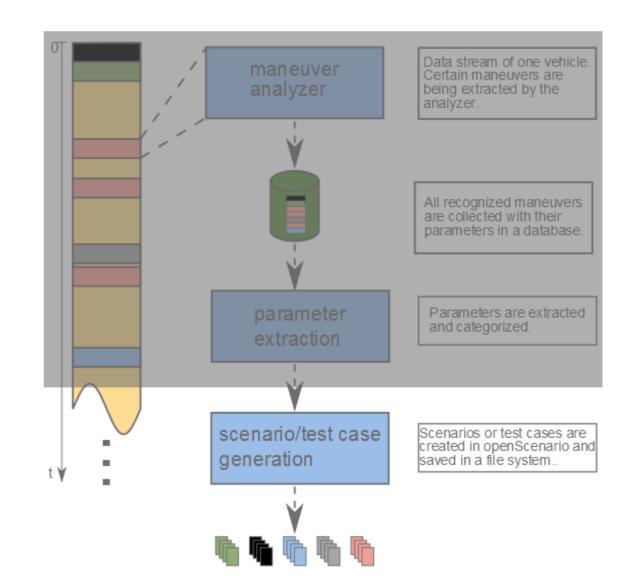
30,72

28,5019683 14,3743175 30,7541587 2,93177778 29,4564762

25,55

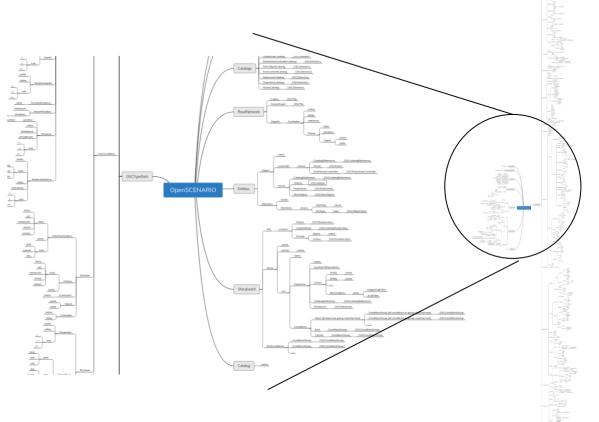
0

25,69


Median

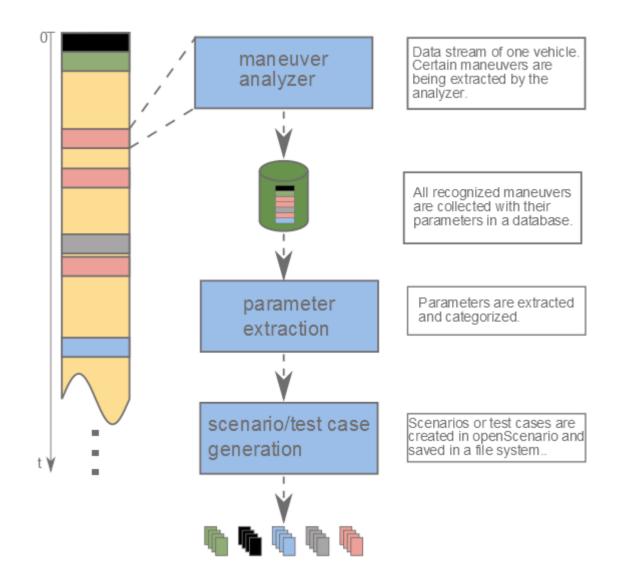
Average

Current Status // Maneuver Extraction


- Tool-chain has been executed with one hour simulation time (including warm-up phase), 200ms sample rate (~ 5 CAM/s).
- 231 maneuvers have been identified
- For verification purpose for every SCENARIO a graphical representation has been generated.
- Scenarios have been exported to OpenSCENARIO (v 0.9.1).

Current Status // Test Case Format

- OpenSCENARIO:
 - \checkmark Well known in the automotive domain
 - ✓ Toolchain for creating and editing is currently under development, many projects ongoing/done (Pegasus/SETLevel4to5).
 - Can be read by many simulators (VTD/Carmaker/etc.)
 - Lot of potential / human-readable / text base (for easy versioning)
 - ✓ first version available (incl. scheme definition)
 - * Not a real test case format: Difficult to describe expected reactions of System-under-Test
 - ✗ really complex

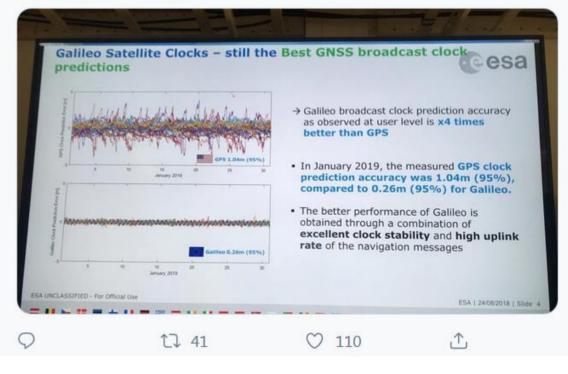

Summary

Open Points:

- Simulation is not yet calibrated,
- Almost no co-operative behavior (by intention),
- Some drawbacks by using openSCENARIO,
- Coverage not yet available.

Done:

- Simulation results usable,
- Maneuver detection works,
- Parameters can be extracted,
- Scenarios are created in openSCENARIO,
- Ready for real data (when available).


Potential of the scenarios

- Maybe there is not only V2X-testing possible, is it possible to use the scenarios also for testing automated driving functions?
- Many parameters are known in good or at least medium quality, e.g. coming to Galileo the quality of the position signal will enhance significantly.

Violeta Bulc 📀 @Bulc_EU · 23h This is the difference between GPS and #Galileo. Bravo @GalileoGNSS @EU_GNSS, bravo @esa.

