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Abstract
We present a sparse representation of model uncer-
tainty for Deep Neural Networks (DNNs) where
the parameter posterior is approximated with an
inverse formulation of the Multivariate Normal
Distribution (MND), also known as the informa-
tion form. The key insight of our work is that
the information matrix, i.e. the inverse of the co-
variance matrix tends to be sparse in its spectrum.
Therefore, dimensionality reduction techniques
such as low rank approximations (LRA) can be
effectively exploited. To achieve this, we develop
a novel sparsification algorithm and derive a cost-
effective analytical sampler. As a result, we show
that the information form can be scalably applied
to represent model uncertainty in DNNs. Our
exhaustive theoretical analysis and empirical eval-
uations on various benchmarks show the competi-
tiveness of our approach over the current methods.

1. Introduction
Whenever machine learning methods are used for safety-
critical applications such as autonomous driving, it is crucial
to provide a precise estimation of the failure probability
of the learned predictor. Therefore, most of the current
learning approaches return distributions rather than single,
most-likely predictions. However, in case of DNNs, this
true failure probability tends to be severely underestimated,
leading to overconfident predictions (Guo et al., 2017). The
main reason for this is that DNNs are typically trained with a
principle of maximum likelihood, neglecting their epistemic
or model uncertainty with the point estimates of parameters.

Imposing Gaussians on model uncertainty is arguably the
most popular choice as Gaussians are for approximate in-
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ference what linear maps are for algebra. For example,
once the posterior distribution is inferred, the majority of
computations can be performed using the well known tools
of linear algebra. For DNNs however, the space complex-
ity of using MNDs is intractable as the covariance matrix
scales quadratic to the number of parameters. Consequently,
approximate inference on DNNs posterior often neglects
the parameter correlations (Wu et al., 2019; Kingma et al.,
2015; Graves, 2011; Herandez-Lobato & Adams, 2015) or
simplifies the covariance matrix into Kronecker products of
two smaller matrices (Sun et al., 2017; Louizos & Welling,
2016; Zhang et al., 2018; Park et al., 2019) regardless of the
inference principles such as variational inference.

Instead, inspired by Thrun et al. (2004), we advocate to
explore the dual and inverse formulation of MNDs:

x̄ ∝ exp
{
−

1
2

(x̄−µ)T Σ−1(x̄−µ)
}

= exp
{
−

1
2

x̄T Σ−1 x̄ +µT Σ−1 x̄
}

= exp
{
−

1
2

x̄T I x̄ +µIV x̄
}

or x̄ ∼ N−1(µIV , I)

where the Gaussian random variable x̄ is fully parameterized
by the information vector µIV and matrix I as opposed to
mean µ and covariance matrix Σ. Our major findings are that
this so-called information form has important ramifications
on developing scalable Bayesian Neural Networks. Firstly,
we point out that the approximate inference for this formu-
lation can be simplified to scalable Laplace Approximation
(LA) (MacKay, 1992b; Ritter et al., 2018a), in which we
improve the state-of-the-art Kronecker factored approxima-
tions of the information matrix (George et al., 2018) by
correcting the diagonal variance in parameter space.

More importantly, DNNs offer a natural spectral sparsity
in the information matrix (Sagun et al., 2018) as oppose to
the covariance matrix. Intuitively, the information content
of each parameters become weaker with increasing num-
ber of parameters and thus, sparse representations can be
effectively exploited. To do so, we propose a novel low-
rank representation of the given Kronecker factorization
and devise a spectral sparsification algorithm that can pre-
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serve the Kronecker product in its eigenbasis. Based on
this formulation, we further demonstrate low rank sampling
computations which significantly reduces the space com-
plexity of MND from O(N3) to O(L3) where L is the chosen
low-rank dimension instead of parameter space lying in
high dimensional N manifolds. Lastly, we also exhaustively
perform both theoretical and empirical evaluations, yielding
state-of-the-art results in both scalability and performance.

Our main contribution is a novel sparse representation for
DNNs posterior that is backed up by scalable mathematical
foot-works - more specifically: (i) an approximate infer-
ence that estimates model uncertainty in information form
(section 2.2), (ii) a low-rank representation of Kronecker
factored eigendecomposition (section 2.3), (iii) an algorithm
to enable a LRA for the given representation of MNDs (al-
gorithm 1) and (iv) derivation of a memory-wise tractable
sampler (section 2.4). With our theoretical (section 2.5)
and experimental results (section 4) we further showcase
the state-of-the-art performance. Finally, a plug-in-and-play
code is attached for enabling adoptions in practice.

2. Methodology
2.1. Background and Notation

A neural network is a parameterized function fθ :RN1→RNl

where θ ∈ RNθ are the weights and Nθ = N1 + · · ·+ Nl. This
function fθ is in fact a concatenation of l layers, where
each layer i ∈ {1, ..., l} computes hi = Wiai−1 and ai = φ(hi−1).
Here, φ is a nonlinear function, ai are activations, hi linear
pre-activations, and Wi are weight matrices. The bias terms
are absorbed into Wi by appending 1 to each ai. Thus,
θ =

[
vec(W1)T ... vec(Wl)T

]T
where vec is the operator

that stacks the columns of a matrix to a vector. Let gi =
δhi, the gradient of hi w.r.t θ. Using LA the posterior is
approximated with a Gaussian. The mean is then given by
the MAP estimate θMAP and the covariance by the Hessian
of the log-likelihood (H +τI)−1 assuming a Gaussian prior
with precision τ. Using loss functions such as MSE or cross
entropy and piece-wise linear activation ai (e.g RELU), a
good approximation of the Hessian is the Fisher information
matrix (IM) I = E

[
δθδθT

]
for the backpropagated gradients

δθ 1 and is typically scaled by the number of data points N
(Martens & Grosse, 2015). IM is of size Nθ ×Nθ resulting
in too large matrix for moderately sized DNNs.

To make the computation tractable, it is first assumed that the
weights across layers are uncorrelated, which corresponds
to a block-diagonal form of I with blocks I1, . . . , Il. Then,
each realisation of block Ii is represented as a Kronecker
product δθiδθT

i
= ai−1aT

i−1 ⊗gigT
i

. Then, matrices Ai−1 and

1The expectation herein is defined with respect to the paramert-
erized density function pθ(y|x) assuming i.i.d. samples x.

Gi are assumed to be statistically independent:

Ii ≈ Ii,kfac = E
[
ai−1aT

i−1

]
⊗E

[
gigT
i

]
= Ai−1⊗Gi. (1)

We refer to Martens & Grosse (2015) for details on KFAC.
Here, Ai−1 ∈ Rni×ni and Gi ∈ Rmi×mi , where the number of
weights is Ni = nimi. Typically IM is scaled by the number
of data points N and incorporates the prior τ. The herein
presented parameter posterior omits the addition of prior
precision and scaling term for simplicity. Here, N and τ are
treated as hyperparameters (Ritter et al., 2018a) similar to
tempering in (Wenzel et al., 2020). KFAC scales to big data
sets such as ImageNet (Krizhevsky et al., 2012) with large
DNNs (Ba et al., 2017) and does not require changes in the
training procedure when used for LA (Ritter et al., 2018a).

2.2. Approximate Inference in Information Form

We first employ an eigenvalue correction in the Kronecker
factored eigenbasis (George et al., 2018) for LA. Layer
indices i are omitted and explanation applies layer-wise.

Let I = VtrueΛtrueVT
true be the true eigendecomposition of

IM per layer. From this it follows Λtrue = VT
tureIVtrue =

E
[
VT

trueδθδθ
T Vtrue

]
and Λtrue,ii = E

[
(VT

trueδθ)
2
i

]
where i ∈

{1, · · · ,N} and N is the number of parameters of this layer.
Defining the eigendecomposition of A and G in (1) as
A = UAS AUT

A and G = UGS GUT
G, it further follows Ikfac ≈

A⊗G = (UA ⊗UG)(S A ⊗ S G)(UA ⊗UG)T from the proper-
ties of the Kronecker product. Now, this approximation can
be improved by replacing (S A ⊗ S G) with the eigenvalues
Λtrue, where Vtrue is approximated with (UA ⊗UG) result-
ing in Λii = E

[
[(UA⊗UG)Tδθ]2

i

]
. We denote this as the

eigenvalue corrected, Kronecker-factored eigenbasis (EFB):

Iefb = (UA⊗UG)Λ(UA⊗UG)T (2)

This technique has many desirable properties. Notably,
‖I− Iefb‖F ≤ ‖I− Ikfac‖F wrt. the Frobenius norm as the
computation is more accurate by correcting the eigenvalues.

However, there is an approximation in EFB since (UA⊗UG)
is still an approximation of the true eigenbasis Vtrue. In-
tuitively, EFB only performs a correction of the diagonal
elements in the eigenbasis, but when mapping back to the pa-
rameter space this correction is again harmed by the inexact
estimate of the eigenvectors. Although an exact estimation
of the eigenvectors is infeasible, it is important to note that
the diagonals of the exact IM Iii = E

[
δθ2

i

]
can be computed

efficiently using back-propagation. This motivates the idea
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to correct the approximation further as follows:

Iinf = (UA⊗UG)Λ(UA⊗UG)T + D where

Dii = E
[
δθ2

i

]
−

nm∑
j=1

(vi, j

√
Λ j)2.

(3)

In (3), we have represented (UA ⊗UG)Λ(UA ⊗UG)T
ii as∑nm

j=1(vi, j
√

Λ j)2 where V = (UA ⊗UG) ∈ Rmn×mn is a Kro-
necker product with row elements vi, j (see definition 1 be-
low). It follows from the properties of the Kronecker prod-
uct that i = m(α−1) +γ. The derivation is shown in supple-
mentary materials. Note that the Kronecker products are
never directly evaluated but the diagonal matrix D can be
computed recursively, making it computationally feasible.

Definition 1: For UA ∈ Rn×n and UG ∈ Rm×m, the Kro-
necker product of V = UA ⊗ UG ∈ Rmn×mn is given by
Vi, j = UAα,βUGγ,ζ , with i = m(α−1) +γ and j = m(β−1) + ζ.
α ∈ {1, · · · ,n} and β ∈ {1, · · · ,n} are row and column indices
of UA. So as γ ∈ {1, · · · ,m} and ζ ∈ {1, · · · ,m} for UG.

Now, the parameter posterior distribution can be represented
in an information form N−1 of MND as shown below:

p(θ | x,y) ∼ N(θMAP, I−1
inf)

=N−1(θIV
MAP, (UA⊗UG)Λ(UA⊗UG)T + D).

This shows how an information form of MND can be com-
puted using LA, and from its graphical interpretation, keep-
ing the diagonals of IM exact has also a consequence of
obtaining information content of the parameters accurate
(Paskin, 2003). We note that, similar insights have been
studied for Bayesian tracking problems (Thrun et al., 2004)
with wide adoptions in practice (Bailey & Durrant-Whyte,
2006; Thrun & Liu, 2005; Eustice et al., 2006).

For a full Bayesian analysis with DNNs, however, the sam-
ples of the resulting posterior are to be drawn from the
information matrix instead of the covariance matrix. For
this, an efficient sampling computation is proposed next.

2.3. Model Uncertainty in Sparse Information Form

Sampling from the posterior is crucial. For example, an
important use-case of the parameter posterior is estimat-
ing the predictive uncertainty for test data (x∗,y∗) by a full
Bayesian analysis with Kmc samples. This step is typically
approximated with Monte-carlo integration (Gal, 2016):

p(y∗|x∗, x,y) ≈
1

Kmc

Kmc∑
t=1

y∗(x∗, θs
t ) for θs

t ∼ N
−1(θIV

MAP, Iinf).

However, this operation is non-trivial as the sampling com-
putation requires O(N3) complexity (the cost of inversion
and finding a symmetrical factor) and for matrices that lie
in a high dimensional space, it is computationally infeasible.
While previous works (Martens & Grosse, 2015) showed
that Kronecker products of two matrices can be exploited
along a fidelity-cost trade-off, our main aim is to introduce
an alternative form of the Gaussian posterior family.

Observing that the eigenvalues of IM tends to be close to
zero for the overparameterized DNNs (Sagun et al., 2018),
information form can naturally leverage dimensionality re-
duction in IM (in oppose to the covariance matrix). Intu-
itively speaking, as more and more parameters are used to
explain the same set of data, information of these parameters
tends to be smaller, and we can make use of this tendency.

To this end, we propose the low rank form in (4) 2 as a
first step, in which we preserve the Kronecker product in
eigenvectors. Here, we highlight that the proposed form
differs from conventional LRA which do not preserve the
Kronecker product in eigenvectors (i.e (UA⊗UG)1:L for top
L eigenvalues). Two main advantages of this representation
are that it avoids the memory-wise expensive computation
of evaluating the matrix (Ua ⊗Ug), where Ua and Ug are
sub-matrices of UA and UG, respectively. This formulation
also results in sampling computation that is O(L3) in cost
instead of O(N3), which we demonstrate later in section 2.4.

Iinf ≈ Îinf = (Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D (4)

Here, Λ1:L ∈ RL×L, Ua ∈ Rm×a and Ug ∈ Rn×g denote low
rank form of corresponding eigenvalues and vectors (de-
picted in figure 1). Naturally, it follows that L = ag, N = mn
and furthermore, the persevered rank L corresponds to pre-
serving top K and additional J eigenvalues (resulting in
L ≥ K, L = ag = K + J) as explained with an example.

Why can’t LRA directly be used?: Let a matrix E =

U1:6Λ1:6UT
1:6 ∈ R6×6 with U1:6 = [u1 · · ·u6] ∈ R6×6 with

{ui}
6
i=1 the eigenvectors and Λ1:6 = diag(λ1, · · · ,λ6) ∈ R6×6

in a descending order. In this toy example, LRA with
top 3 eigenvalues results: E1:3 = U1:3Λ1:3UT

1:3 ∈ R
6×6. In-

stead, if the eigenvector matrices are expressed in Kro-
necker product structure, Ekron = (UA1:3 ⊗UG1:2 )Λ1:6(UA1:3 ⊗

UG1:2)T ∈ R6×6. For LRA, it’s not trivial to directly pre-
serve the top 3 eigenvalues Λ1:3 and corresponding eigen-
vectors (UA1:3 ⊗UG1:2)1:3. Because as (UA1:a ⊗UG1:g)1:3 =[
uA1 ⊗uG1 uA1 ⊗uG2 uA2 ⊗uG1

]
, preserving the eigen-

vectors with Kronecker structure results in having to store
more eigenvectors: UA1:2 = [uA1uA2] and UG1:2 = [uG1uG2].
Consequently, additional eigenvalue Λ4 needs to be saved
so that Ekron1:3 = (UA1:2 ⊗UG1:2 )Λ1:4(UA1:2 ⊗UG1:2 )T ∈R6×6.

2D is added after LRA which is computed similar to (3).
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Figure 1. Illustration of algorithm 1. A low rank approximation on Kronecker factored eigendecomposition that preserves Kronecker
structure in eigenvectors have two benefits: (a) reducing directly (UA ⊗UG)1:L is memory-wise infeasible, and (b) sampling costs are
drastically reduced as demonstrated in section 2.4. Notations, low rank structure and a visualization of algorithm 1 are depicted.

Algorithm 1 Spectral sparsification

Input: Matrices UA, UG, Λ and Rank K.
Output: Matrices: Ua, Ug, Λ1:L.
1. Find top K eigenvalues λi on Λ where i ∈ {1, · · · ,K}.
2. For all i, find β = f loor( i

m ) + 1 and ζ = i−m(β−1).
3. Generate sub-matrices Ua and Ug by selecting

eigenvectors in UA and UG according to β and ζ.
4. Find remaining eigenvalues λ j with j = m(β−1) + ζ.
5. Concatenate and diagonalize selected eigenvalues

Λ1:L = diag([λi,λ j]) for all i and j.

Then, how to achieve a LRA that preserves Kronecker struc-
tures in eigenvectors? For this, we propose algorithm 1 (also
illustrated in figure 1). To select the additional eigenvectors
and -values correctly, we need to introduce a definition on
indexing rules of Kronecker factored diagonal matrices.

Definition 2: For diagonal matrices S A ∈ Rn×n and S G ∈

Rm×m, the Kronecker product of Λ = S A ⊗S G ∈ Rmn×mn is
given by Λi = sαβsγζ , where the indices i = m(β− 1) + ζ
with β ∈ {1, · · · ,m} and ζ ∈ {1, · · · ,n}. Then, given i and m,
β = f loor( i

m ) + 1 and given β, m, and i, ζ = i−m(β−1).

Notations in algorithm 1 are also depicted in figure 1. Now
we explain this computation with a toy example below.

Algorithm 1 for a toy example: To explain, the same toy
example can be revisited. Firstly, we aim to preserve the
top 3 eigenvalues, i ∈ {1,2,3} which are indices of eigen-
values Λ1:3 (step 1). Then, β ∈ {1,2} and ζ ∈ {1,2} can be
computed using definition 2 (step 2). This relation holds as
Λ is computed from S A⊗S G, and thus, UA and UG are their
corresponding eigenvectors respectively. Then we produce
UA1:2 and UG1:2 according to β and ζ (step 3). Again, in

order to fulfill the Kronecker product operation, we need to
find the eigenvalues j ∈ {1,2,3,4}, and preserve Λ1:4 (step
4&5). This results in saving top 3 and additional 1 eigen-
values. Algorithm 1 provides the generalization of these
steps and even if eigendecomposition does not come with a
descending order, the same logic trivially applies.

Next, we describe the last step of the sampling derivation.

2.4. Low Rank Sampling Computations

Consider drawing samples θs
t ∈Rmn from the representation:

θs
t ∼ N

−1(θIV
MAP, (Ua⊗Ug)Λ1:L(Ua⊗Ug)T + D). (5)

Typically, drawing such samples θs
t requires finding a sym-

metrical factor of the covariance matrix (e.g. Chloesky
decomposition) which is cubic in cost O(N3) (here N = mn).
Furthermore, in our representation, it requires first an inver-
sion of IM and then the computation of a symmetrical fac-
tor which overall constitutes two operations of cost O(N3).
Clearly, if N lies in a high dimension sampling becomes
infeasible. Therefore, we need a sampling computation that
performs these operations in the dimensions of low rank L.

Let us define Xl ∈Rmn as the samples from a standard MND.
Then, the samples θs

t can be computed analytically as,

θs
t = θMAP + FcXl where

Fc = D−
1
2
(
Inm−D−

1
2 (Ua⊗Ug)Λ

1
2
1:L

(C−1 + VT
s Vs)−1︸             ︷︷             ︸

cost: O(L3)� O(N3)

Λ
1
2
1:L(Ua⊗Ug)T D−

1
2
)
.

(6)
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Firstly, the symmetrical factor Fc ∈ Rmn×mn in (6) is a func-
tion of matrices that are feasible to store as they are diagonal
or small Kronecker factored matrices. Furthermore,

Vs = D−
1
2 (Ua⊗Ug)Λ

1
2
1:L and C = A−T

c (Bc− IL)A−1
c

with Ac and Bc being the Cholesky decomposed matrices of
VT

s Vs ∈ RL×L and VT
s Vs + IL ∈ RL×L such that:

AcAT
c = VT

s Vs and BcBT
c = VT

s Vs + IL.

Consequently, the matrices in (6) are defined as C ∈ RL×L,
(C−1 + VT

s Vs) ∈ RL×L and identity matrix IL ∈ RL×L. In this
way, the two operations namely Cholesky decomposition
and inversion that are cubic in cost O(N3) are reduced to the
low rank dimension L with complexity O(L3). The complete
derivation is in supplementary materials where we further
show how the Kronecker structure in eigendecomposition
can be exploited to compute FcXl using the vec trick.

2.5. Theoretical Guarantees

We outline theoretical guarantees of our approach below.
Note that these properties hold regardless of data and model.

Lemma 1: Let I be the real information matrix, and let
Iinf and Iefb be the INF and EFB estimates of it respectively.
It is guaranteed to have

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

Corollary 1: Let Ikfac and Iinf be KFAC and our estimates
of real information matrix I respectively. Then, it is guaran-
teed to have

∥∥∥I− Ikfac
∥∥∥

F ≥
∥∥∥I− Iinf

∥∥∥
F .

Lemma 2: Let I be the real information matrix, and let
Îinf, Iefb and Ikfac be the low rank INF, EFB and KFAC
estimates of it respectively. Then, it is guaranteed to
have

∥∥∥ diag(I)− diag(Iefb)
∥∥∥

F ≥
∥∥∥ diag(I)− diag(Îinf)

∥∥∥
F =

0 and
∥∥∥ diag(I)−diag(Ikfac)

∥∥∥
F ≥

∥∥∥ diag(I)− diag(Îinf)
∥∥∥

F =

0. Furthermore, if the eigenvalues of Îinf contains all non-
zero eigenvalues of Iinf, it follows:

∥∥∥I− Iefb
∥∥∥

F ≥
∥∥∥I− Îinf

∥∥∥
F .

Proofs along with a further remarks and theoretical analysis
on (i) error bounds of the proposed LRA and (ii) validity of
the posterior can be found in supplementary materials.

3. Related Works
Sparse Information Filters: Thrun et al. (2004) proposed
the extended sparse information filter (SEIF), which is a
dual form of the extended Kalman filter. A key property of
SEIF is that all update equations can be executed in constant
time, which is achieved by relying on the information form
and its sparsity. Our work brings the key ideas of SEIF in
the context of approximate Bayesian inference for DNNs.

Figure 2. Illustration of the main idea and the pipeline sketch.
We demonstrate that approximate Bayesian inference can work
with the inverse covariance matrix - the information matrix. From
its graphical interpretation (Paskin, 2003), the diagonal elements
represent the information content of the node while its off-diagonal
elements represent the link between the nodes. Our approach is
designed with this insight where we sparsify the weak links while
keeping the information content of the node accurate.

Approximation of the Hessian: The Hessian of DNNs is
prohibitively too large as its size is quadratic to the number
of parameters. For this problem, an efficient approxima-
tion is a layer-wise Kronecker factorization (Martens &
Grosse, 2015; Botev et al., 2017) with demonstrably im-
pressive scalability (Ba et al., 2017). In a recent extension
by George et al. (2018) the eigenvalues of the Kronecker
factored matrices are re-scaled so that the diagonal variance
in its eigenbasis is exact. The work demonstrates a provable
method of achieving improved performance. We heavily
build upon these for Bayesian DNNs, as well-built software
infrastructures such as (Dangel et al., 2020) already exists.

Laplace Approximation: Instead of methods rooted in
variational inference (Hinton & van Camp, 1993) and sam-
pling (Neal, 1996), we utilize LA (MacKay, 1992b) for the
inference principle. Recently, diagonal (Becker & Lecun,
1989) and Kronecker-factored approximations (Botev et al.,
2017) to the Hessian have been applied to LA by Ritter et al.
(2018a). The authors have further proposed to use LA in
continual learning (Ritter et al., 2018b), and demonstrate
competitive results by significantly outperforming its bench-
marks (Kirkpatrick et al., 2017; Zenke et al., 2017). Build-
ing upon Ritter et al. (2018a) for approximate inference, we
propose to use more expressive posterior distribution than
matrix normal distribution. Concurrently, Kristiadi et al.
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(2020) provides a formal statement on how approximate
inference such as LA can mitigate overconfident behavior
of DNNs with ReLU for a binary classification case.

In the context of variational inference, SLANG (Mishkin
et al., 2018) share similar spirit to ours in using a low-rank
plus diagonal form of covariance where the authors show the
benefits of low-rank approximation in detail. Yet, SLANG
is different to ours as it does not explore Kronecker struc-
tures. SWA (Maddox et al., 2018), SWAG (Maddox et al.,
2019) and subspace inference (Izmailov et al., 2019) have
also demonstrated strong results by exploring the insights on
loss landscape of DNNs. We also acknowledge there exists
alternatives paradigms. Some examples are the post-hoc cal-
ibrations (Guo et al., 2017; Wenger et al., 2020), ensembles
(Lakshminarayanan et al., 2017) and combining Bayesian
Neural Networks with probabilistic graphical models such
as Conditional Random Fields (Feng et al., 2019).

Dimensionality Reduction: A vast literature is available
for dimensionality reduction beyond principal component
analysis (Wold et al., 1987) and singular value decomposi-
tion (Golub & Reinsch, 1971; Van Der Maaten et al., 2009).
To our knowledge though, dimensionality reduction in Kro-
necker factored eigendecomposition has not been studied.

4. Experimental Results
We perform an empirical study with regression, classifi-
cation and active learning tasks. The chosen datasets are
toy regression, UCI (Dua & Graff, 2017), MNIST (Lecun
et al., 1998), CIFAR10 (Krizhevsky, 2009) and ImageNet
(Krizhevsky et al., 2012) datasets. In total, 10 baseline with
default 3 LA-based approaches (Diag, KFAC and EFB) are
compared, and we also study the effects of varying LRA.

Our main aim is to introduce the sparse information form of
MND in the context of Bayesian Deep Learning, and thus,
the experiments are designed to show the insight that spec-
tral sparsification does not induce significant approximation
errors while reducing the space complexity of using an ex-
pressive and structured posterior distribution. More impor-
tantly, we demonstrate that our method scales to datasets of
ImageNet size and large architectures, and push the method
further to compete with existing approaches. Implementa-
tion details can be found in supplementary materials.

4.1. Small Scale Experiments

Firstly, evaluations on toy regression and UCI datasets are
presented. Due to the small scale of the set-up, these ex-
periments have advantages that we can not only evaluate
the quality of uncertainty estimation, but also directly com-
pare various approximations to the Hessian with LRA. The
later empirically validates our theoretic claims and further
connects the qualities of uncertainty estimates and the ap-
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Figure 4. Predictive uncertainty. The black dots and the black
lines are data points (x, y). The red and blue lines show predictions
of the deterministic network and the mean output respectively.
Upto three standard deviations are shown with blue shades.

proximates of the Hessian. For the toy regression problem,
we consider a single-layered network with 7 units. We
have used 100 uniformly distributed points x ∼U(−4,4) and
samples y∼N(x3,32). On UCI datasets we follow Herandez-
Lobato & Adams (2015) in which each dataset are split into
20 sets. A single layered network with 50 units are used
with an exception of protein, where we have used 100 units.

We initially perform a direct evaluation of computed IM with
a measure on normalized Frobenius norm of error errNF
w.r.t the block-wise exact IM. Note that this is only possible
for the small network architectures. The results are shown
in figure 3 and table 1 for toy regression and UCI datasets
respectively. Across all the experiments, we find that INF
is exact on diagonal elements regardless of the ranks while
KFAC and EFB induces significant errors. On off-diagonals,
INF with full rank performs similar to EFB while decreasing
the ranks of INF tend to increase the errors. Interestingly,
INF with only 5% of the ranks, often outperforms KFAC
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Table 1. Evaluating the accuracy of information matrix on UCI datasets. The Frobenius norm of errors for diagonal and off-diagonal
approximations w.r.t the exact block diagonal information matrix are depicted. Reported values are normalized. Here, INF (5%) indicates
that 95% of the ranks are thrown away, and Nr refers to the number of data points for each dataset. Lower the better.

Dataset Diagonals Off-diagonals
Nr KFAC EFB INF INF (5%) KFAC EFB INF INF (5%)

Boston 506 0.238±0.019 0.296±0.015 0.000±0.000 0.000±0.000 0.672±0.021 0.524±0.006 0.524±0.006 0.608±0.009
Concrete 1030 0.185±0.020 0.253±0.008 0.000±0.000 0.000±0.000 0.632±0.018 0.506±0.008 0.506±0.008 0.639±0.008
Energy 768 0.138±0.035 0.335±0.029 0.000±0.000 0.000±0.000 0.646±0.012 0.504±0.006 0.504±0.006 0.619±0.012
Kin8nm 8192 0.077±0.008 0.256±0.020 0.000±0.000 0.000±0.000 0.594±0.005 0.526±0.005 0.526±0.005 0.670±0.003
Naval 11934 0.235±0.024 0.224±0.026 0.000±0.000 0.000±0.000 0.716±0.029 0.465±0.003 0.465±0.003 0.480±0.003
Power 9568 0.113±0.012 0.252 ±0.011 0.000±0.000 0.000±0.000 0.681±0.006 0.492±0.008 0.492±0.008 0.570±0.009
Protein 45730 0.323±0.067 0.332±0.043 0.000±0.000 0.000±0.000 0.779±0.040 0.541±0.021 0.541±0.021 0.548±0.019
Wine 1599 0.221±0.021 0.287±0.022 0.000±0.000 0.000±0.000 0.638±0.006 0.535±0.009 0.535±0.009 0.685±0.006
Yacht 308 0.104±0.007 0.201±0.019 0.000±0.000 0.000±0.000 0.653±0.009 0.516±0.007 0.516±0.007 0.699±0.007

by a significant margin (e.g. Naval, Power, Protein). These
observations are expected by the design of our approach
and highlights the benefits of the information form. As the
exact diagonals of IM are known and simple to compute (as
oppose to the covariance matrix), we can design methods
with theoretical guarantees on approximation quality of IM.
Moreover, as the spectrum of IM tends to be sparse, LRA
can be effectively exploited without inducing significant
errors. For UCI experiments, we further study the varying
effects of LRA in supplementary materials.

Visualization of predictive uncertainty is shown in figure
4 for the toy regression. Here, HMC (Neal, 1996) acts as
ground truth while we compare our approach to KFAC and
Bayes-by-backprop or BBB (Blundell et al., 2015). The
hyperparameter sets for KFAC is chosen similar to (Ritter
et al., 2018a) while INF did not require the tuning of hyper-
parameters (after ensuring that IM is non-degenerate similar
to MacKay (1992b)). All the methods show higher uncer-
tainty in the regimes far away from training data where BBB
showing the most difference to HMC. Furthermore, KFAC
predicts rather high uncertainty even within the regions that
are covered by the training data. INF produces the most
comparable fit to HMC with accurate uncertainty estimates.
In supplementary materials, further comparison studies can
be found. Furthermore, we also report the results of UCI
experiments where we compare the reliability of uncertainty
estimates using the test log-likelihood as a measure, and
demonstrate competitive results as well as limitations.

4.2. Active Learning

We next show that our method can also perform a down-
stream task such as active learning. In this scenario, we fur-
ther study the effects of LRA. For this purpose, we choose 3
UCI datasets (boston housing, wine and energy) closely fol-
lowing Hernández-Lobato & Adams (2015). In details the
model is a neural network with a single layer of 10 hidden
units. We employ the same criterion as MacKay (1992a)
which linearizes the propagation of variance of weights to
the output. Besides comparing with a baseline: random
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Figure 5. Active learning with INF. Average test RMSE over 20
splits and their standard errors in the active learning experiments
with Boston Housing, Wine and Energy datasets. The average
RMSE along 20 iterations of each curve is inside the bracket.

selection strategy, we also compare 3 different number of
ranks (20%, 50%, 100%) to verify the influence of LRA.

As shown in figure 5, uncertainty estimates of INF enable
the model to learn more quickly and lead to statistically
significant improvements when compared to the random
selection strategy. Further, even after cutting the ranks
significantly, the performance can be maintained. This can
be clearly seen on both Boston Housing and Energy dataset:
the mean RMSE of lower percentage version decreased,
while their standard deviation mostly overlap. On Wine,
there is nearly no decrease in performance with lower ranks.
To summarize, our experiments show that INF can perform
active learning, and LRA does not jeopardize the task.

4.3. Classification Tasks

Next, we evaluate predictive uncertainty on classification
tasks where the proposed LRA is strictly necessary. To
this end, we choose the classification tasks with known and
unknown classes, e.g. a network is not only trained and eval-
uated on MNIST but also tested on notMNIST. Note that
under such tests, any probabilistic methods should report
their evaluations on both known and unknown classes with
the same hyperparameter settings. This is because Bayesian
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Table 2. Results of classification experiments. Accuracy and ECE are evaluated on in-domain distribution (MNIST and CIFAR10)
whereas entropy is evaluated on out-of-distribution (notMNIST and SHVN). Lower the better for ECE. Higher the better for entropy.

Experiment Measure NN Diag KFAC MC-dropout Ensemble EFB INF

Accuracy 0.993 0.9935 0.9929 0.9929 0.9937 0.9929 0.9927
MNIST vs notMNIST ECE 0.395 0.0075 0.0078 0.0105 0.0635 0.012 0.0069

Entropy 0.055±0.133 0.555 ± 0.196 0.599 ± 0.199 0.562 ± 0.19 0.596 ± 0.133 0.618 ± 0.185 0.635 ± 0.19

Accuracy 0.8606 0.8659 0.8572 N/A 0.8651 0.8638 0.8646
CIFAR10 vs SHVN ECE 0.0819 0.0358 0.0351 N/A 0.0809 0.0343 0.0084

Entropy 0.245 ± 0.215 0.4129 ± 0.197 0.408 ± 0.197 N/A 0.370 ± 0.192 0.417 ± 0.196 0.4338 ± 0.18

Neural Networks can be always highly uncertain, which
may seem to work well for out-of-distribution (OOD) de-
tection tasks but overestimates the uncertainty, even for the
correctly classified samples within the training data distribu-
tion. For evaluating predictive uncertainty on known classes,
Expectation Calibration Error (ECE Guo et al. (2017)) has
been used. Normalized entropy is reported for evaluating
predictive uncertainty on unknown classes. LeNet with
ReLU and a L2 coefficient of 1e-8 has been chosen for
MNIST dataset, which constitutes of 2 convolution layers
followed by 2 fully connected layers. The networks are
intentionally trained to over-fit or over-confident, so that we
can observe the effects of capturing model uncertainty. For
CIFAR10, we choose VGG like architecture with 2 convo-
lution layers followed by 3 fully connected layers. We used
batch normalization instead of dropout layers.

The results are reported in table 2 where we also compared
to MC-dropout (Gal, 2016) and deep ensemble (Lakshmi-
narayanan et al., 2017), which are widely used baselines in
practice. For CIFAR10, we omitted MC-dropout as addi-
tionally inserting dropout layers would result in a different
network and thus, the direct comparisons would not be dif-
ficult. For LA-based methods, we have reported the best
results after searching 300 hyperparameters each. We find
this evaluation protocol to be crucial, as LA-based methods
are sensitive to these regularizing hyperparameters. Im-
portantly, these results demonstrate that when projected to
different success criteria, no inference methods largely win
uniformly. Yet these experiments also show empirical evi-
dence that our method works in principle and compares well
to the current state-of-the-art. Estimating the layer-wise pa-
rameter posterior distribution in a sparse information form
of MND, and demonstrating a low rank sampling computa-
tions, we show an alternative approach of designing scalable,
high performance and practical inference framework.

4.4. Large Scale Experiments

To show the scalability of our method, we conduct an ex-
tensive experimental evaluation on the ImageNet dataset,
using 5 DNNs. This result alone is a key benefit of esti-
mating model uncertainty of DNNs in sparse information
form since approximate Bayesian inference only involves
the computations of the information matrix in a training-free
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Figure 6. Reliability diagram of ResNet18 on ImageNet Show-
ing a calibration comparison of a deterministic forward pass (SGD)
against Diag, KFAC, EKFAC, INF as well as SWA and SWAG.

manner and the method boosts relaxed assumptions about
the model when compared to MC-dropout (e.g. no specific
regularizer is required). We also emphasize that the pro-
posed diagonal correction requires only back-propagated
gradients. EFB also uses the same gradients in their update
step, and the whole chain takes around 8 hours on ImageNet
with 1 NVIDIA Volta GPU. This means that one can store
the exact diagonals of the Fisher during EFB computations
and simply add a correction term without involving any data.
Thus, the added computational overhead due to the diago-
nal correction is negligible in practice. Similar to section
4.3, we evaluate the both calibration and OOD detection
performances. SWAG and SWA are the chosen baselines, as
Maddox et al. (2019) demonstrated that these methods scale
to the ImageNet dataset. Moreover, to achieve comparabil-
ity for large-scale settings, we scaled the other LA-based
methods up so that they are applicable to ImageNet. This
was not available in the original papers, and it constitutes an
advance in evaluating LA-based methods for realistic sce-
narios. More importantly, we perform an extensive hyperpa-
rameter search over 100 randomly selected configurations
for each LA-based methods. We believe that such protocols
are required for fair evaluations of LA-based methods.

To directly compare the calibration across different methods,
a variant of the reliability diagram (Maddox et al., 2019) is
used (figure 6 for ResNet 18). We present results for all other
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Table 3. Network Space Complexity Comparison: The total number of information matrix parameters and its size in MB are reported
for ResNet and DenseNet variants. Lower the better. Here, we also check if the methods take into account the weight correlations (corr).

Diag KFAC EFB INF

Model #Parameters Size Corr #Parameters Size Corr #Parameters Size Corr #Parameters Size Corr

ResNet18 11,679,912 44.6 X 95,013,546 362.4 X 106,693,458 407.0 X 12,317,373 47.0 X
ResNet50 25,503,912 97.3 X 153,851,562 586.9 X 179,355,474 684.2 X 27,614,896 105.3 X
ResNet152 60,041,384 229.0 X 389,519,018 1485.9 X 449,560,402 1714.9 X 65,558,402 250.1 X
DenseNet121 7,895,208 30.1 X 103,094,954 393.3 X 110,990,162 423.4 X 9,711,081 37.0 X
DenseNet161 28,461,064 108.6 X 379,105,514 1446.2 X 407,566,578 1554.7 X 32,329,191 123.3 X
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Figure 7. Entropy histograms ResNet50: From left to right: SGD, SWA, SWAG and INF. While SGD, SWA and SWAG fail to separate
in- and out-of-domain data, INF is able to almost completely differentiate between known and unknown data.

architectures in supplementary materials. Here, we observe
that all LA variants significantly outperform SGD, SWA
and SWAG. Results of OOD detection tasks are reported
in figure 7 where we also show the predictive uncertainty
of the in-domain data for checking the under-confident be-
havior (Grimmett et al., 2015; Mund et al., 2015; Grimmett
et al., 2013). We use artistic impressions and paintings of
landscapes and objects as OOD data. Again, SGD, SWAG,
and SWA are in turn significantly outperformed by INF,
which clearly separates in-distribution and OOD data. These
results show the competitiveness of our approach for the
real-world applications. However, we also find that all the
LA-based methods almost identically yield strong results,
clearly separating the in-distribution and OOD data.

While our method scales to ImageNet, we do not find that
improvements in terms of Frobenius norm of error translates
to performance in uncertainty estimation. This is the effects
of regularizing hyperparameters (τ and N) which is a limi-
tation of LA based approaches. We find a counter-intuitive
result that Diag LA performs similar to ours and KFAC. It is
therefore a strong alternative in practice where its complex-
ity is superior than others (see table 3). Yet, ours, as we use
rank 100 in the experiments, are significantly superior in
space complexity when compared to EFB and KFAC, while
modeling the weight correlations. Therefore, we find the
main use-case of INF: the applications such as aerial sys-
tems (Lee et al., 2018; 2020) and medical devices (Petrou
et al., 2018a;b) which cannot afford much more memory due
to the limited on-board computations, and requires struc-
tured form of model uncertainty, unlike Diag. Last but not

least, the mathematical tools we develop and the idea of
working on the inverse space of MND can also be useful in
the context of variational inference as an example.

5. Conclusion
This work introduces the sparse information form as an
alternative Gaussian posterior family for which, we pre-
sented novel mathematical tools such as a sparsification
algorithm for the Kronecker factored eigendecomposition,
and demonstrated how to efficiently sample from the result-
ing distribution. Our experiments show that our approach
yields accurate estimates of the information matrix with the-
oretical guarantees, compares well to the current methods
for the task of uncertainty estimation, scales to large scale
data-sets while reducing space complexity, and can also be
utilized for downstream tasks such as active learning.

Acknowledgements
We thank the anonymous reviewers and area chairs for their
time and thoughtful comments. The authors also acknowl-
edge the support of Helmholtz Association, the project
ARCHES (contract number ZT-0033) and the EU-project
AUTOPILOT (contract number 731993). Jianxiang Feng is
supported by the Munich School for Data Science (MUDS)
and Rudolph Triebel is a member of MUDS.



Estimating Model Uncertainty of Neural Networks in Sparse Information Form

References
Ba, J., Grosse, R. B., and Martens, J. Distributed second-

order optimization using kronecker-factored approxima-
tions. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

Bailey, T. and Durrant-Whyte, H. Simultaneous localization
and mapping (slam): Part ii. IEEE robotics & automation
magazine, 13(3):108–117, 2006.

Becker, S. and Lecun, Y. Improving the convergence of
back-propagation learning with second-order methods.
In Touretzky, D., Hinton, G., and Sejnowski, T. (eds.),
Proceedings of the 1988 Connectionist Models Summer
School, San Mateo, pp. 29–37. Morgan Kaufmann, 1989.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. In Proceedings
of the 32Nd International Conference on Machine Learn-
ing - Volume 37, ICML’15, pp. 1613–1622. JMLR.org,
2015.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 557–565, Interna-
tional Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR.

Dangel, F., Kunstner, F., and Hennig, P. Backpack: Packing
more into backprop. In International Conference on
Learning Representations, 2020.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Eustice, R. M., Singh, H., and Leonard, J. J. Exactly sparse
delayed-state filters for view-based slam. IEEE Transac-
tions on Robotics, 22(6):1100–1114, 2006.

Feng, J., Durner, M., Marton, Z.-C., Balint-Benczedi, F., and
Triebel, R. Introspective robot perception using smoothed
predictions from bayesian neural networks. In Interna-
tional Symposium on Robotic Research (ISRR), 2019.

Gal, Y. Uncertainty in Deep Learning. PhD thesis, Univer-
sity of Cambridge, 2016.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vin-
cent, P. Fast approximate natural gradient descent in a
kronecker factored eigenbasis. In Advances in Neural In-
formation Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada., pp. 9573–
9583, 2018.

Golub, G. H. and Reinsch, C. Singular value decomposition
and least squares solutions. In Linear Algebra, pp. 134–
151. Springer, 1971.

Graves, A. Practical variational inference for neural net-
works. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,
Pereira, F., and Weinberger, K. Q. (eds.), Advances in
Neural Information Processing Systems 24, pp. 2348–
2356. Curran Associates, Inc., 2011.

Grimmett, H., Paul, R., Triebel, R., and Posner, I. Know-
ing when we don’t know: Introspective classification for
mission-critical decision making. In IEEE International
Conference on Robotics and Automation (ICRA), 2013.

Grimmett, H., Triebel, R., Paul, R., and Posner, I. Introspec-
tive classification for robot perception. The International
Journal of Robotics Research (IJRR), 2015.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 1321–
1330, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

Herandez-Lobato, J. M. and Adams, R. P. Probabilistic
backpropagation for scalable learning of bayesian neural
networks. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learn-
ing - Volume 37, ICML’15, pp. 1861–1869. JMLR.org,
2015.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning,
pp. 1861–1869, 2015.

Hinton, G. E. and van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the Sixth Annual Conference
on Computational Learning Theory, COLT ’93, pp. 5–13,
New York, NY, USA, 1993. ACM. ISBN 0-89791-611-5.

Izmailov, P., Maddox, W., Kirichenko, P., Garipov, T.,
Vetrov, D. P., and Wilson, A. G. Subspace inference
for bayesian deep learning. In Proceedings of the Thirty-
Fifth Conference on Uncertainty in Artificial Intelligence,
UAI 2019, Tel Aviv, Israel, July 22-25, 2019, pp. 435,
2019.

Kingma, D. P., Salimans, T., and Welling, M. Variational
Dropout and the Local Reparameterization Trick. In
Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28, pp. 2575–2583. Curran Asso-
ciates, Inc., 2015.

http://archive.ics.uci.edu/ml


Estimating Model Uncertainty of Neural Networks in Sparse Information Form

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. Overcoming catas-
trophic forgetting in neural networks. Proceedings of
the National Academy of Sciences of the United States of
America, 114 13:3521–3526, 2017.

Kristiadi, A., Hein, M., and Hennig, P. Being bayesian,
even just a bit, fixes overconfidence in relu networks.
In Proceedings of the 37th International Conference on
Machine Learning, Proceedings of Machine Learning
Research, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Canadian Institute for
Advanced Research, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States.,
pp. 1106–1114, 2012.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 6402–6413, 2017.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, pp. 2278–2324, 1998.

Lee, J., Muskardin, T., Pacz, C. R., Oettershagen, P., Stastny,
T., Sa, I., Siegwart, R., and Kondak, K. Towards au-
tonomous stratospheric flight: A generic global system
identification framework for fixed-wing platforms. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6233–6240. IEEE, 2018.

Lee, J., Balachandran, R., Sarkisov, Y. S., De Stefano, M.,
Coelho, A., Shinde, K., Kim, M. J., Triebel, R., and
Kondak, K. Visual-inertial telepresence for aerial manip-
ulation. In IEEE International Conference on Robotics
and Automation (ICRA), 2020.

Louizos, C. and Welling, M. Structured and efficient varia-
tional deep learning with matrix gaussian posteriors. In
Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings
of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Re-
search, pp. 1708–1716, New York, New York, USA, 20–
22 Jun 2016. PMLR.

MacKay, D. J. Information-based objective functions for
active data selection. Neural computation, 4(4):590–604,
1992a.

MacKay, D. J. C. A practical bayesian framework for back-
propagation networks. Neural Computation, 4(3):448–
472, 1992b.

Maddox, W. J., Garipov, T., Izmailov, P., Vetrov, D., and
Wilson, A. G. Fast uncertainty estimates and bayesian
model averaging of dnns. In Uncertainty in Deep Learn-
ing Workshop at UAI, 2018.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for bayesian uncertainty
in deep learning. In Advances in Neural Information
Processing Systems, pp. 13132–13143, 2019.

Martens, J. and Grosse, R. B. Optimizing neural networks
with kronecker-factored approximate curvature. In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, pp. 2408–2417, 2015.

Mishkin, A., Kunstner, F., Nielsen, D., Schmidt, M. W.,
and Khan, M. E. SLANG: fast structured covariance
approximations for bayesian deep learning with natural
gradient. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montreal, Canada., pp. 6248–6258, 2018.

Mund, D., Triebel, R., and Cremers, D. Active online
confidence boosting for efficient object classification. In
Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2015.

Neal, R. M. Bayesian Learning for Neural Networks.
Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Park, Y., Kim, C., and Kim, G. Variational Laplace autoen-
coders. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5032–5041, Long Beach, Califor-
nia, USA, 09–15 Jun 2019. PMLR.

Paskin, M. A. Thin junction tree filters for simultaneous lo-
calization and mapping. In in Int. Joint Conf. on Artificial
Intelligence. Citeseer, 2003.

Petrou, A., Kuster, D., Lee, J., Meboldt, M., and Daners,
M. S. Comparison of flow estimators for rotary blood
pumps: An in vitro and in vivo study. Annals of biomedi-
cal engineering, 46(12):2123–2134, 2018a.



Estimating Model Uncertainty of Neural Networks in Sparse Information Form

Petrou, A., Lee, J., Dual, S., Ochsner, G., Meboldt, M., and
Schmid Daners, M. Standardized comparison of selected
physiological controllers for rotary blood pumps: in vitro
study. Artificial organs, 42(3):E29–E42, 2018b.

Ritter, H., Botev, A., and Barber, D. A scalable laplace
approximation for neural networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings, 2018a.

Ritter, H., Botev, A., and Barber, D. Online structured
laplace approximations for overcoming catastrophic for-
getting. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pp. 3742–3752, 2018b.

Sagun, L., Evci, U., Güney, V. U., Dauphin, Y., and Bottou,
L. Empirical analysis of the hessian of over-parametrized
neural networks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Workshop Track Pro-
ceedings, 2018.

Sun, S., Chen, C., and Carin, L. Learning Structured Weight
Uncertainty in Bayesian Neural Networks. In Singh, A.
and Zhu, J. (eds.), Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pp. 1283–1292, Fort Lauderdale, FL, USA, 20–22 Apr
2017. PMLR.

Thrun, S. and Liu, Y. Multi-robot slam with sparse extended
information filers. In Robotics Research. The Eleventh
International Symposium, pp. 254–266. Springer, 2005.

Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z.,
and Durrant-Whyte, H. Simultaneous localization and
mapping with sparse extended information filters. The
international journal of robotics research, 23(7-8):693–
716, 2004.

Van Der Maaten, L., Postma, E., and Van den Herik, J.
Dimensionality reduction: a comparative. Journal of
Machine Learning Research, 10(66-71):13, 2009.

Wenger, J., Kjellström, H., and Triebel, R. Non-parametric
calibration for classification. In Proceedings of the 23rd
International Conference on Artificial Intelligence and
Statistics (AISTATS), Proceedings of Machine Learning
Research, 2020.

Wenzel, F., Roth, K., Veeling, B. S., Świątkowski, J., Tran,
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