
Modelling Knowledge about Software Processes using
Provenance Graphs and its Application to Git-based Version

Control Systems
Andreas Schreiber

German Aerospace Center (DLR)

Cologne, Germany

andreas.schreiber@dlr.de

Claas de Boer
∗

German Aerospace Center (DLR)

Berlin, Germany

claas.deboer@dlr.de

ABSTRACT

Using the W3C PROV data model, we present a general provenance

model for software development processes and—as an example—

specialized models for git services, for which we generate prove-

nance graphs. Provenance graphs are knowledge graphs, since they

have defined semantics, and can be analyzed with graph algorithms

or semantic reasoning to get insights into processes.

KEYWORDS

provenance, software development process, knowledge graphs,

git, version control systems

ACM Reference Format:

Andreas Schreiber and Claas de Boer. 2020. Modelling Knowledge about

Software Processes using Provenance Graphs and its Application to Git-

based Version Control Systems. In IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.

1145/3387940.3392220

1 INTRODUCTION

Today,many research fields—including computer science—use Prove-
nance [5] to verify data products and to analyse processes that led

to them. Provenance can be used to form assessments about quality,

reliability or trustworthiness of a piece of data. The knowledge of

provenance includes aspects such as sources and processing steps

as well as dependencies and contextual information.

Provenance can be expressed in many formats. We focus on

the standard W3C PROV [2], which defines the provenance data

model PROV-DM [6] to support the interoperable interchange of

provenance in heterogeneous environments such as the web. The

core structure of PROV-DM relies on the definition of the model

class elements entities Entity , activities Activity , and agents Agent that are

involved in producing a piece of data or artifact and on definitions

of relations to relate these class elements, such as wasGeneratedBy,
wasAssociatedWith, wasAttributedTo, and used. Each of the class

elements and relations can have additional attributes.

∗
Also with Technische Universität Dresden.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7963-2/20/05.

https://doi.org/10.1145/3387940.3392220

Recorded or generated provenance of an entity (i.e., a file, a data

set, or any other type of artifact) is a directed acyclic graph (DAG).

Since all nodes and edges of this graph have a defined semantics,

the provenance graph is a specific knowledge graph. That means for

specific uses of PROV-DM, each class element (i.e., entity, activity,

and agent) has a least one specialization with a certain semantics.

Our work aims to standardize, generate, and use provenance of
software artifacts and—closely related to that—provenance of soft-
ware development processes by defining a general PROV model for

software developments processes. This includes specializations for

all PROV class elements. Our goal is to be able to trace and deter-

mine the origin of artifacts such as issues, source code files, build

results, or documentation, and to understand and get insights into

the process as a whole using requirement specification, developer

actions, design decisions, or tools invocations. We distinct between:

• Prospective provenance captures how workflows produce

artifacts in general (i.e., the “recipe” or possible workflow

description), which in our case is covered by a general PROV

model for software development (Section 2).

• Retrospective provenance is the result of particular ex-

ecuted workflows (e.g., provenance for artifacts that are

produced in practice). Our example is provenance for git
services (Section 3).

2 PROVENANCE OF SOFTWARE ARTIFACTS

Due to the complexity of today’s software many development pro-

cess models evolved, together with many tools. A typical tool suite

consists of an integrated development environment (IDE), a version

control system, an issue tracker, a continuous integration frame-

work, and a documentation management system.

Based on previous work [10], where we developed a provenance

model for software development processes using the Open Prove-
nance Model (OPM) notation, we develop an extensible PROV model

that currently covers issue tracking (requirements, bugs), develop-

ment (planning, design, coding, testing), continuous integration,

documentation (developer, user), and release (Figure 1).

The general model can be extended with further activities such

as editing or deployment and further actors such as software bots

or software analytics tools. If used for concrete processes, each of

the PROV class elements must be defined with specialized class

elements. For example, the generic actor role “User” has to be

specialized to roles such as “Author” or “Test Manager”.
To get knowledge from provenance graphs, one has to query the

provenance database. Examples queries include questions related to

quality assurance (e.g., “How many releases have been produced this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/335014131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3387940.3392220
https://doi.org/10.1145/3387940.3392220
https://doi.org/10.1145/3387940.3392220

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Andreas Schreiber and Claas de Boer

Issue

Commit

User

Revision

type=prov:Person

Issue
Change

wasGeneratedBy

wasAssociatedWith

Change Set

Release Release

Build

Coverage

Test

Document
Change

Documen-
tation

Version
Control

type=prov:SoftwareAgent

Build
Result

Test
Result

Coverage
Report

CI/CD
System

type=prov:SoftwareAgent

wasAssociatedWith

wasGeneratedBy

used

wasGeneratedBy

Figure 1: PROV model for software development processes

(excerpt; for clarity, some relation types andmost attributes

are left out).

year?”), process compliance (e.g., “From which revision was release
𝑋 built?”), or developer performance (e.g., “Which developer is most
active in contributing documentation?”).

3 PROVENANCE FOR GIT SERVICES

As a practical example for retrospective provenance, we consider

the distributed version-control system git, which tracks changes in
a file system. Nowadays, git is used in many developer workflows.

Especially Open-Source projects use git via hosting services such

as GitHub or GitLab.

Based on the general PROV model (Section 2), we model all

actions that are possible with git services with more specialized

PROV models. Our work relies on the previous works Git2PROV

by Nies et al. [7] andGitHub2PROV by Packer et al. [8]. We provide

a PROV model for GitLab, GitLab2PROV [1]. For example, for a

commit it contains the specialized PROV activity gitlab_commit
and the PROV entities for the modified file file_v-1 and file_v
(Figure 2).

Figure 2: PROV model for commit of a new file version in

GitLab.

To practically extract the PROV graph from repository’s, the re-

spective implementations use the command “git log” (Git2PROV)
or theAPI’s (GitHub2PROV,GitLab2PROV).GitLab2PROV stores

the PROV graph either in a text file (.provn format)
1
or in a graph

database (Neo4j).

1
As an example, see the PROV file for the GitLab project https://gitlab.com/gitlab-org/

gitlab-runner-docker-cleanup at https://openprovenance.org/store/documents/1990.

Performing queries, graph reasoning, or extracting knowledge

otherwise is possible by using Cypher queries (Listing 1) or graph

algorithms in Neo4j. For knowledge, we consider the semantics

and an ontology for git [4].

Listing 1: Cypher query for the number of files that were

edited by an agent.

MATCH

(u s e r : Agent) − [: wasAt t r i bu t edTo]− (f i l e V e r s i o n : E n t i t y) ,

(f i l e V e r s i o n : E n t i t y) − [: s p e c i a l i z a t i o n O f]−>(f i l e : E n t i t y)

WHERE

f i l e V e r s i o n . prov : type = " f i l e _ v e r s i o n " AND

f i l e . prov : type = " f i l e "

RETURN

use r . name , COUNT(DISTINCT f i l e) AS f i l e _ c o u n t

ORDER BY f i l e _ c o u n t DESC

4 CONCLUSIONS AND FUTUREWORK

We presented a draft PROV model for software development pro-

cesses and an example for retrospective provenance. The resulting

provenance graphs are knowledge graphs given their specified

semantics for nodes and edges.

Future work includes to add more sources to the provenance

graph. For example, from design documents (UML2PROV [9]) or

IDE’s. The provenance graph can also be extended with provenance

for (running) algorithms, data, or machine learning processes [3].

REFERENCES

[1] Claas de Boer and Andreas Schreiber. 2020. DLR-SC/gitlab2prov: Initial release.
https://doi.org/10.5281/zenodo.3624167

[2] Paul Groth and Luc Moreau. 2013. PROV-overview. An overview of the PROV

family of documents. (2013).

[3] Sophie F. Jentzsch and Nico Hochgeschwender. 2019. Don’t Forget Your Roots!

Using Provenance Data for Transparent and Explainable Development ofMachine

Learning Models. In 1st International Workshop on Explainable Software (EXPLAIN
2019).

[4] Dennis Oliver Kubitza, Matthias Böckmann, and Damien Graux. 2019. Towards

Semantically Structuring GitHub. In Proceedings of the ISWC 2019 Satellite Tracks
(Posters & Demonstrations, Industry, and Outrageous Ideas) co-located with 18th
International Semantic Web Conference (ISWC 2019), Auckland, New Zealand,
October 26-30, 2019. 141–144.

[5] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-Salceda, John Ibbotson,

Sheng Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Victor Tan, and

Laszlo Varga. 2008. The provenance of electronic data. Commun. ACM 51, 4

(2008), 52–58. https://doi.org/10.1145/1330311.1330323

[6] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James Cheney, Sam

Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy

Lebo, Jim McCusker, Simon Miles, James Myers, Satya Sahoo, and Curt Tilmes.

2013. PROV-DM: The PROV Data Model. http://www.w3.org/TR/2013/REC-

prov-dm-20130430/

[7] Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens, Paul T. Groth,

Erik Mannens, and Rik Van de Walle. 2013. Git2PROV: Exposing Version Con-

trol System Content as W3C PROV. In Proceedings of the ISWC 2013 Posters &
Demonstrations Track, Sydney, Australia, October 23, 2013. 125–128.

[8] Heather S. Packer, Adriane Chapman, and Leslie Carr. 2019. GitHub2PROV:

Provenance for Supporting Software Project Management. In 11th International
Workshop on Theory and Practice of Provenance (TaPP 2019). USENIX Association,

Philadelphia, PA. https://www.usenix.org/conference/tapp2019/presentation/

packer

[9] Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles, and Francisco

José García Izquierdo. 2018. Automating Provenance Capture in Software Engi-

neering with UML2PROV. In Provenance and Annotation of Data and Processes -
7th International Provenance and Annotation Workshop, IPAW 2018, London, UK,
July 9-10, 2018, Proceedings. 58–70.

[10] Heinrich Wendel, Markus Kunde, and Andreas Schreiber. 2010. Provenance of

Software Development Processes. In Provenance and Annotation of Data and
Processes - Third International Provenance and Annotation Workshop, IPAW 2010,
Troy, NY, USA, June 15-16, 2010. Revised Selected Papers. 59–63.

https://gitlab.com/gitlab-org/gitlab-runner-docker-cleanup
https://gitlab.com/gitlab-org/gitlab-runner-docker-cleanup
https://openprovenance.org/store/documents/1990
https://doi.org/10.5281/zenodo.3624167
https://doi.org/10.1145/1330311.1330323
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.usenix.org/conference/tapp2019/presentation/packer
https://www.usenix.org/conference/tapp2019/presentation/packer

	Abstract
	1 Introduction
	2 Provenance of Software Artifacts
	3 Provenance for git Services
	4 Conclusions and Future Work
	References

