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ABSTRACT

Using the W3C PROV data model, we present a general provenance

model for software development processes and—as an example—

specialized models for git services, for which we generate prove-

nance graphs. Provenance graphs are knowledge graphs, since they

have defined semantics, and can be analyzed with graph algorithms

or semantic reasoning to get insights into processes.
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1 INTRODUCTION

Today,many research fields—including computer science—use Prove-
nance [5] to verify data products and to analyse processes that led

to them. Provenance can be used to form assessments about quality,

reliability or trustworthiness of a piece of data. The knowledge of

provenance includes aspects such as sources and processing steps

as well as dependencies and contextual information.

Provenance can be expressed in many formats. We focus on

the standard W3C PROV [2], which defines the provenance data

model PROV-DM [6] to support the interoperable interchange of

provenance in heterogeneous environments such as the web. The

core structure of PROV-DM relies on the definition of the model

class elements entities Entity , activities Activity , and agents Agent that are

involved in producing a piece of data or artifact and on definitions

of relations to relate these class elements, such as wasGeneratedBy,
wasAssociatedWith, wasAttributedTo, and used. Each of the class

elements and relations can have additional attributes.
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Recorded or generated provenance of an entity (i.e., a file, a data

set, or any other type of artifact) is a directed acyclic graph (DAG).

Since all nodes and edges of this graph have a defined semantics,

the provenance graph is a specific knowledge graph. That means for

specific uses of PROV-DM, each class element (i.e., entity, activity,

and agent) has a least one specialization with a certain semantics.

Our work aims to standardize, generate, and use provenance of
software artifacts and—closely related to that—provenance of soft-
ware development processes by defining a general PROV model for

software developments processes. This includes specializations for

all PROV class elements. Our goal is to be able to trace and deter-

mine the origin of artifacts such as issues, source code files, build

results, or documentation, and to understand and get insights into

the process as a whole using requirement specification, developer

actions, design decisions, or tools invocations. We distinct between:

• Prospective provenance captures how workflows produce

artifacts in general (i.e., the “recipe” or possible workflow

description), which in our case is covered by a general PROV

model for software development (Section 2).

• Retrospective provenance is the result of particular ex-

ecuted workflows (e.g., provenance for artifacts that are

produced in practice). Our example is provenance for git
services (Section 3).

2 PROVENANCE OF SOFTWARE ARTIFACTS

Due to the complexity of today’s software many development pro-

cess models evolved, together with many tools. A typical tool suite

consists of an integrated development environment (IDE), a version

control system, an issue tracker, a continuous integration frame-

work, and a documentation management system.

Based on previous work [10], where we developed a provenance

model for software development processes using the Open Prove-
nance Model (OPM) notation, we develop an extensible PROV model

that currently covers issue tracking (requirements, bugs), develop-

ment (planning, design, coding, testing), continuous integration,

documentation (developer, user), and release (Figure 1).

The general model can be extended with further activities such

as editing or deployment and further actors such as software bots

or software analytics tools. If used for concrete processes, each of

the PROV class elements must be defined with specialized class

elements. For example, the generic actor role “User” has to be

specialized to roles such as “Author” or “Test Manager”.
To get knowledge from provenance graphs, one has to query the

provenance database. Examples queries include questions related to

quality assurance (e.g., “How many releases have been produced this
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Figure 1: PROV model for software development processes

(excerpt; for clarity, some relation types andmost attributes

are left out).

year?”), process compliance (e.g., “From which revision was release
𝑋 built?”), or developer performance (e.g., “Which developer is most
active in contributing documentation?”).

3 PROVENANCE FOR GIT SERVICES

As a practical example for retrospective provenance, we consider

the distributed version-control system git, which tracks changes in
a file system. Nowadays, git is used in many developer workflows.

Especially Open-Source projects use git via hosting services such

as GitHub or GitLab.

Based on the general PROV model (Section 2), we model all

actions that are possible with git services with more specialized

PROV models. Our work relies on the previous works Git2PROV

by Nies et al. [7] andGitHub2PROV by Packer et al. [8]. We provide

a PROV model for GitLab, GitLab2PROV [1]. For example, for a

commit it contains the specialized PROV activity gitlab_commit
and the PROV entities for the modified file file_v-1 and file_v
(Figure 2).

Figure 2: PROV model for commit of a new file version in

GitLab.

To practically extract the PROV graph from repository’s, the re-

spective implementations use the command “git log” (Git2PROV)
or theAPI’s (GitHub2PROV,GitLab2PROV).GitLab2PROV stores

the PROV graph either in a text file (.provn format)
1
or in a graph

database (Neo4j).

1
As an example, see the PROV file for the GitLab project https://gitlab.com/gitlab-org/

gitlab-runner-docker-cleanup at https://openprovenance.org/store/documents/1990.

Performing queries, graph reasoning, or extracting knowledge

otherwise is possible by using Cypher queries (Listing 1) or graph

algorithms in Neo4j. For knowledge, we consider the semantics

and an ontology for git [4].

Listing 1: Cypher query for the number of files that were

edited by an agent.

MATCH

( u s e r : Agent ) − [ : wasAt t r i bu t edTo ]− ( f i l e V e r s i o n : E n t i t y ) ,

( f i l e V e r s i o n : E n t i t y ) − [ : s p e c i a l i z a t i o n O f ]−>( f i l e : E n t i t y )

WHERE

f i l e V e r s i o n . prov : type = " f i l e _ v e r s i o n " AND

f i l e . prov : type = " f i l e "

RETURN

use r . name , COUNT(DISTINCT f i l e ) AS f i l e _ c o u n t

ORDER BY f i l e _ c o u n t DESC

4 CONCLUSIONS AND FUTUREWORK

We presented a draft PROV model for software development pro-

cesses and an example for retrospective provenance. The resulting

provenance graphs are knowledge graphs given their specified

semantics for nodes and edges.

Future work includes to add more sources to the provenance

graph. For example, from design documents (UML2PROV [9]) or

IDE’s. The provenance graph can also be extended with provenance

for (running) algorithms, data, or machine learning processes [3].
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