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Abstract: Information about land use/land cover (LULC) and their changes is useful for different
stakeholders to assess future pathways of sustainable land use for food production as well as for
nature conservation. In this study, we assess LULC changes in the Kilombero catchment in Tanzania,
an important area of recent development in East Africa. LULC change is assessed in two ways: first,
post-classification comparison (PCC) which allows us to directly assess changes from one LULC
class to another, and second, spectral change detection. We perform LULC classification by applying
random forests (RF) on sets of multitemporal metrics that account for seasonal within-class dynamics.
For the spectral change detection, we make use of the robust change vector analysis (RCVA) and
determine those changes that do not necessarily lead to another class. The combination of the
two approaches enables us to distinguish areas that show (a) only PCC changes, (b) only spectral
changes that do not affect the classification of a pixel, (c) both types of change, or (d) no changes
at all. Our results reveal that only one-quarter of the catchment has not experienced any change.
One-third shows both, spectral changes and LULC conversion. Changes detected with both methods
predominantly occur in two major regions, one in the West of the catchment, one in the Kilombero
floodplain. Both regions are important areas of food production and economic development in
Tanzania. The Kilombero floodplain is a Ramsar protected area, half of which was converted to
agricultural land in the past decades. Therefore, LULC monitoring is required to support sustainable
land management. Relatively poor classification performances revealed several challenges during
the classification process. The combined approach of PCC and RCVA allows us to detect spatial
patterns of LULC change at distinct dimensions and intensities. With the assessment of additional
classifier output, namely class-specific per-pixel classification probabilities and derived parameters,
we account for classification uncertainty across space. We overlay the LULC change results and the
spatial assessment of classification reliability to provide a thorough picture of the LULC changes
taking place in the Kilombero catchment.
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1. Introduction

Land use and land cover (LULC) and their change are key drivers of global change [1]. Over
the past two decades, land-use change has accelerated, particularly in sub-Saharan Africa. The main
reasons for this are growing population and consequently increasing demand for food and space. LULC
change puts ecosystems under pressure. Hence, wetlands—traditionally untouched landscapes—were
discovered as potential food production zones due to their capacities to reliably provide clean water
and therefore good conditions for agricultural production and numerous other ecosystem services [2].
Natural wetlands, however, are among the most threatened ecosystems with a decline in area of approx.
35% between 1970 and 2015 [3–5]. Within the multi-disciplinary research project “GlobE—Wetlands in
East Africa”, challenges of stagnating or declining trends in food production and nature protection
were addressed for four representative wetland sites in Kenya, Rwanda, Uganda and Tanzania.
The objectives of the project were the assessment of wetland contribution to food security and of the
sustainability of current wetland uses, as well as the spatio-temporal extrapolation of results through
simulation modeling and scenarios. Knowledge of land cover holds quantified and spatially explicit
information as an imprint of socio-economic activity in wetland landscapes and can be integrated in
hydrological and agricultural modeling [6]. However, such data is particularly scarce in many African
regions. Earth Observation provides the means for detailed inventory, status and trend analysis, and
long-term monitoring [7,8]. The present study therefore focuses on the remote sensing based long-term
LULC change assessment in the Tanzanian Kilombero catchment.

Knowledge of the land surface is crucial, since primary production takes place at the land surface,
making it the key resource for all animals and human beings. In turn, LULC become central ecosystem
indicators [9]. However, extensive and repeated information on LULC for the Kilombero catchment is
limited. First scientific assessments of the Kilombero valley ecosystem characterizing geology as well
as LULC and economic specifications emerged in the 1960s [10,11]. Attention was put on the Kilombero
area again since it became increasingly important for Tanzania’s agricultural production. Recent
publications focus on hydrological impacts of LULC change within the Kilombero catchment [6,12,13].
They reveal a high dependency of the wetland on baseflow contribution from the enclosing catchment
and demonstrate strong impacts of anthropogenic LULC change on water balance components at
subcatchment scale.

LULC classification in the context of wetlands is often complicated by frequent, sometimes
persistent cloud cover and high air moisture content leading to reduced data availability of optical
images compared to other regions. Wetlands are dynamic systems with sometimes substantial intra-
and interseasonal variation [14]. Therefore, optimal acquisition times for repeated assessments usually
do not exist. To capture specific events such as floods or specific features such as peak season it is
most beneficial to take into account all available information. Although various approaches to assess
wetlands were published recently [15,16] their analysis is often limited to the actual wetland area and
usually a buffer around it. Catchment-wide studies are rare, in particular in East Africa. LULC change
in the Kilombero valley was addressed in several case studies [6,12,17–26]. Only a few of these studies
explored the whole catchment and only few provided an exhaustive evaluation of the generated LULC
change maps. LULC maps are needed, however, to balance the different interests in the catchment, to
support local authorities and to implement policies [20].

With this study we want to assess and quantify LULC of the Kilombero catchment, Tanzania, and
their changes over the past 45 years. The underlying research questions are to which extent and where
LULC changes have occurred and of which nature these changes are. This spatially explicit information
is needed to address land management in the Kilombero valley. Our objective is further to address
major challenges occurring during the classification and change detection process. Post-classification
comparison (PCC) is a common technique to assess LULC changes [27,28]. This well-established
technique is prone to error propagation because errors from both the first and the second classification
translate into the resulting map. Therefore, change tends to be overestimated. To reduce this source of
error, PCC can be combined with spectral change detection methods [29]. Applying a threshold allows
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us to differentiate changed from unchanged areas. Assuming that only areas with strong spectral
changes translate in a new classification, map update is often applied only to changed areas [30]. A
further objective of this study is hence to analyze the correlation of PCC and spectral changes in order
to achieve better understanding of the results. In addition, we explore the per-pixel classification
probabilities to identify regions of different classifier reliability. Even though many machine learning
algorithms provide probabilities as secondary output, these are not considered in most studies. The rest
of the paper is organized as follows. In Section 2, we introduce the study site and describe satellite
and field data and their processing. This section also includes a description of the LULC mapping
and change detection approach and a protocol of the accuracy assessment. Section 3 presents major
findings of this study and a thorough discussion; Section 4 briefly presents a conclusion.

2. Materials and Methods

2.1. Study Area

The Kilombero catchment (Figure 1) is located in southern Tanzania and covers an area of
40,240 km2. It contains a vast floodplain wetland at an elevation of about 200–250 m above sea level.
The Udzungwa mountains adjacent to the floodplain in the north and northwest reach an elevation
of approx. 2500 m above sea level [31]. The Mahenge mountains further bound the valley zone in
the south, and an undulating peneplain borders it to the west [11]. According to the Köppen-Geiger
climate classification [32,33], the study area lies in the bioclimatic zone of “tropical savannah” (Aw),
and the mean temperature and annual rainfall are 25◦C and 1418 mm in Ifakara, the largest town in
the catchment. Woodlands and edaphic grasslands compose the natural vegetation [34]. However,
due to the large extent of the catchment spanning across various topographic zones, rainfall patterns
change with more orographic rainfall towards the Great Escarpment mountains and less rainfall in
flatter areas [11]. There are two rainy seasons: a short one between November and January and a long
one from March to May. A distinct dry season stretches from July to October [35,36]. The Kilombero
river is a naturally shaped tributary of the Rufiji river with a high yearly discharge variability of
about 92–3044 m3/s—as observed at the Swero gauging station situated close to the outlet of the
catchment—and regular extensive flooding of the wetland during the long rainy season [20,37,38].
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The Kilombero wetland is classified as an important bird area and was included in the Ramsar
Convention on Wetlands list of wetlands of international importance in 2002.

The only connection of the Kilombero and Ulanga districts north and south of the Kilombero River
was a ferry until 2017, when a bridge was finally installed after several attempts. With the recently
established bridge and hence improved accessibility of the southern part of the valley, an increased
population growth can be expected in the Ulanga district.

The road network inside the Kilombero valley is very loose, and access in particular to the
south is limited although the road network is being developed (Figure 1). Rice cultivation in the
Kilombero valley began in the mid of the last century. Today, rice production provides the main
economic value of the Kilombero floodplain followed by sugarcane, forest products, fishing and
livestock [39]. Over the past decades, pastoralist and agro-pastoralist groups of Maasai, Sukuma, and
Barbaig have migrated from other Tanzanian regions into the catchment [40]. Consequently, both
agricultural and livestock productivity have experienced considerable growth in the 21st century [40].
In the multi-stakeholder setting, land conflicts are sometimes attributed to these recent immigrants
as they are often seen as intruders by local villagers and blamed for environmental degradation and
threatening of resources. Large-scale farming and large protected areas are further competitors for
land. During the past years, teak (Tectona grandis) plantations were installed in the uplands mainly
south of the Kilombero river [24]. Additionally, smallholder forest plantations are a quickly developing
phenomenon throughout south-western Tanzania [41].

2.2. Satellite Data and Pre-Processing

Landsat is the only operational medium spatial resolution earth observation (EO) system providing
data covering the last 45 years. Therefore, this study relies on data from the Landsat system.
The challenge of wetland monitoring with optical data is that they are often obscured by clouds due
to higher evaporation rates caused by higher water availability compared to drylands. Additionally,
the mountain ranges surrounding the Kilombero floodplain act as a cloud trap. In this study, we
produced decadal LULC maps for 1974, 1994, 2004, and 2014. Since it was not possible to generate a
gapless dataset for the 1980s even when the whole decade was considered and different compositing
approaches were tested, we had to skip this period. All images from the three time periods (1994, 2004,
2014) ± 1 year with less than 80% cloud cover were downloaded from the United States Geological
Survey (USGS) earth explorer (https://earthexplorer.usgs.gov/). Additional 17 images were downloaded
for the 1970s. The satellite imagery as of Landsat 5 possesses the same spatial resolution of 30 m, and
although bandwidths differ slightly between sensors, the products are nevertheless compatible [42].
The dataset properties are presented in Table 1. Cloud masking was performed using the function of
mask (Fmask) output included in the pixel quality files appended to each dataset [43,44]. For each
Landsat image we calculated the normalized difference built-up index (NDBI) [45], the normalized
difference vegetation index (NDVI) [46], the normalized difference water index (NDWI) [47], and the
Tasseled Cap [48,49] components brightness, greenness, and wetness as defined for Landsat surface
reflectance data [50]. Image tiles from one orbit (i.e., with identical acquisition dates) were mosaicked
to avoid double occurrence of along-track overlapping areas.

Temporal variability is often a challenge of wetland classification since some classes are changing
dynamically their condition [14,51–53], e.g., through flooding, pronounced dry phases, or cropping
cycles. Several image compositing approaches were developed in the past years [54–62]. The general
idea of those methods is to select on a per-pixel basis the most suitable observations from a predefined
selection of images that fulfill different quality criteria and represent spectral reflectance of one
particular day of year in the best way. As a result, one gapless and cloud free image composed of
most suitable observations from multiple – possibly partly clouded – images is generated. However,
both high seasonal class variability and high cloud coverage make conventional mosaicking and
compositing approaches inadequate for the study area at the given data availability. Therefore,
we made use of multitemporal metrics to generate gapless and cloud free synthetic images from a

https://earthexplorer.usgs.gov/
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selection of images with noise (e.g., clouds, cloud shadows, gaps from Landsat 7 scan line corrector
failure) [63–68]. Since extreme values may be caused by artifacts such as missed clouds and cloud
shadows, percentiles are usually preferred, although actual extreme values may be missed (Figure 2).
We used multitemporal metrics (10th percentile, 25th percentile, mean, 75th percentile, 90th percentile)
of the six reflective Landsat bands (blue, green, red, near infra-red, and two short-wave infra-red),
NDVI, NDBI, NDWI, Tasseled Cap brightness, greenness, and wetness. NDBI and TC brightness are
sensitive to non-vegetated areas and settlements; NDVI and TC greenness are useful for discriminating
vegetation properties; and NDWI and TC wetness highlight open water bodies.

Table 1. Overview of the applied datasets (MSS = multispectral scanner, TM = thematic mapper, ETM+

= enhanced thematic mapper plus, OLI = operational land imager, SR = surface reflectance).

Target Year Spatial Resolution Sensor Specifications No. of Images

1974 ± 5 year 60 m resampled to
30 m Landsat-1/2 MSS Pre-Collection

Level-1 17

1994 ± 1 year 30 m Landsat-5 TM SR Level-2 Science
Products 100

2004 ± 1 year 30 m Landsat-5 TM,
Landsat-7 ETM+

SR Level-2 Science
Products 209

2014 ± 1 year 30 m Landsat-7 ETM+,
Landsat-8 OLI

SR Level-2 Science
Products 462
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Figure 2. (a) Time series of normalized difference vegetation index (NDVI) with colored lines as
indicator of minimum, maximum, mean, median, 10th percentile and 90th percentile, (b) NDVI 10th
percentile, (c) NDVI mean, and (d) NDVI 90th percentile. Intra-class variability is reflected through
the percentiles. However, actual extremes might be missed by percentiles as compared to the extreme
values in the time series.
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Although the use of NDBI, NDVI, NDWI, and the Tasseled Cap components may appear
redundant, the approaches to calculate them are different and make them complementary. Figure 2
exemplary shows the multitemporal minimum, mean and maximum NDVI composites and a schematic
presentation of their calculation.

Earlier Landsat products from MSS sensor have a coarser spatial resolution (60 m) and crudely
different radiometric characteristics, and were therefore processed in a different way. Individual images
were radiometrically normalized to a master image using the iteratively re-weighted multivariate
alteration detection (IR-MAD) algorithm [69,70]. Clouds were masked based on manually selected
thresholds of image brightness (i.e., the squared root of the sum of all spectral bands) and manual
corrections. Finally, the resulting images were mosaicked to one gapless and cloud free image that
represents the 1974 period. From that we calculated NDVI and the TC components.

The 30 m resolution shuttle radar topography mission digital elevation model (SRTM DEM)
was used to account for the distinct morphology of the Kilombero catchment. The near-global DEM
is composed from C-band radar data acquired in 2000 [71]. The data is widely used because of its
relatively high and spatially coherent accuracy compared to other global datasets and its availability
free of cost [72]. The floodplain wetland developed on the lower part of a fault, whereas the Udzungwa
Mountains represent the upper part, leading to harsh differences in elevation and inclination across
morphological zones. Since these are associated with land use, land cover, and species composition [73],
the main Landsat dataset was complemented with the SRTM DEM and a number of derivatives: the
morphometric indices calculated from the SRTM DEM were the terrain ruggedness index (TRI) [74],
slope variability (SV) [75], the topographic position index (TPI) [76,77], and for potential soil moisture
the topographic wetness index (TWI) [78], which all combine different derivatives of elevation.
In addition to those four variables, slope and elevation were used in the classification. TRI, SV, and TPI
were calculated using the ArcGIS geomorphometry and gradient toolbox [79].

2.3. Field Data and Other Reference Data

Several field campaigns and uncrewed aerial vehicle (UAV) flight campaigns were conducted
between 2013 and 2016 to collect ground information. During three UAV campaigns in 2014 and
2015 a fixed-wing drone took images of ~20 cm spatial resolution in the area around Ifakara (approx.
10 × 3 km2). The field campaigns covered dry and rainy season and included trips by foot, motorbike
and car, during which global positioning system (GPS) points and photos of regions of interest were
taken. We recorded LULC data as well as information about vegetation cover along paths (roads,
footpaths, flight paths) for a subset of points. Independently, between 2015 and 2016 the Belgian
Development Agency (Enabel, https://www.enabel.be/) conducted flight and road campaigns using a
small aircraft and a jeep to collect high resolution imagery of the floodplain. The photos were taken
with an action camera tied to the vehicles, and a handheld GPS at 2-second intervals.

Another 28 high-resolution RapidEye scenes were obtained via the RapidEye science archive
(RESA) of the German aerospace center (DLR). They were used to complement the ground reference
database. The images were captured between 25/08/2013 and 06/06/2015, thus covering almost two
years’ wet and dry season cycles. The spatial coverage, however, is limited to the northern part of
the catchment, including the town of Ifakara. The commercial RapidEye sensors provide a spatial
resolution of 6.5 m, 5 spectral bands, and an approximate revisit time of 6.5 days [80]. To complement
the ground information, we subdivided the catchment in a regular grid of 25 × 25 km2 cells and selected
10 points per grid cell using random sampling. Each point was labeled based on photo interpretation
of GoogleEarth and RapidEye images.

2.4. LULC Mapping

To assess long-term LULC changes, we performed a classification based on historical records
of remote sensing data. We used a robust classification scheme targeting environmentally and
socio-economically important classes, based on an approach that can handle data scarcity and that

https://www.enabel.be/
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can capture variable classes. Our classification scheme includes 11 classes: montane forest, closed
woodland, open woodland, teak plantation, swamp, grassland, savanna, upland agriculture, rice,
built-up area, and water (Table 2). Open woodland mainly refers to Miombo dry forests (Brachystegia
longifolia). Upland agriculture comprises maize, vegetables and other food crops usually grown in
mosaics of small patches and in crop rotation. In contrast, floodplain agriculture comprises rice fields
that rely on the water of the annual Kilombero flooding and its tributaries. Grassland refers to natural
flood grassland dominated by sedges such as Cyperus distans as described in [11] whereas savanna
comprises all non-flooded open grasslands with isolated trees.

Table 2. Description of land cover classes used in this study.

Class Description

Montane forest Closed-canopy evergreen forests of the Eastern Arc Ecoregion [81]

Closed woodland Areas Dominated by closed tree vegetation; tree plantations other than teak
may be included

Open woodland Sparse tree vegetation, mainly Miombo dry forests (Brachystegia longifolia),
and to a minor degree plantations in early stages of afforestation

Teak plantation Commercial teak plantation (Tectona grandis); few other species may be
present in the understory, but to a negligible degree

Swamp Shrubby vegetation adapted to waterlogged soils
Grassland Natural flood grassland dominated by sedges such as Cyperus distans [11]
Savanna All non-flooded open grasslands; usually with isolated trees [11]

Upland agriculture Maize, tubers, vegetables and other food crops usually grown in mosaics of
small patches and in crop rotation

Rice Lowland rice agricultural fields
Built-up Man-made artificial surfaces like metals or tarmac

Water Open water, including streams, ponds, and lakes

The 60 image bands (five multitemporal metrics for each of the six spectral bands and the six
spectral indices) were stacked together with the topographic properties of the DEM (elevation, slope,
TPI, SV, TRI, TWI) and subjected to a random forest (RF) supervised classification [82]. Yielding
high accuracy rates, RF classifier is more and more used in different domains, including wetland
monitoring [83,84]. In this study, we used the free and open-source randomForest package [85] in the
R statistical software [86]. RF is an ensemble classifier based on decision trees, contributing to a ‘forest’.
For each tree, a random and independent bootstrapped sample (in bag) from the original input dataset
is used to determine the tree’s split values, best-reducing entropy among the samples’ values, and
the result is evaluated with the remaining samples (out of bag). From these, the so-called out of bag
error (OOB) is estimated as an internal validation. Among its advantages are the convergence instead
of overfitting when using large numbers of trees [82] and the non-parametric nature, which means
independence from strong a priori assumptions about the statistical characteristics of a class [87]. RF
have proven to handle categorical data, imbalanced data, and data with missing values and insignificant
features well with similar performances than other classifiers like Support Vector Machines (SVM) [88].
Also, it provides the relative importance of predictive variables by removing a variable for each tree
and subtracting the resulting accuracy from the original one. For normalization of that value, the raw
variable importance is divided by its standard deviation. High values indicate high importance for
the whole RF model [89,90]. The ability to evaluate the model internally with the OOB error can
be seen as an advantage, but with caution. Although this error can serve as an approximation, this
estimation can differ significantly from an independent accuracy assessment and should in any case be
complemented by one, as shown by [84]. As a general advantage of ensemble classifiers, along with
the final classification, the classifier provides the option to draw a probability map that consists of the
distribution of votes of the single tree classifier components. The vote distribution across classes, for
example measured as entropy, can be seen as an estimate of classification uncertainty across the study
area and used as additional quality criterion [91]. For the classification reference, we split the data
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randomly into 60% for training and 40% for validation. Thus, in a stratified context, small classes were
intentionally oversampled, a common practice in the use of imbalanced training data [92]. We found
that buffering the reference points resulted in consistently higher classification accuracies and therefore
buffered built-up and water by 30 m (in order to retain pure pixels we kept the buffer small) and all
other classes by 75 m. All other tests to improve the classification performance (e.g., feature selection,
different training/validation data splits) resulted in negligible differences. The number of trees was set
to 500; the number of variables tried at each split was 6 for 1974, 24 for 1994 and 32 for 2004 and 2014.

2.5. Change Assessment

We used PCC to quantify the changes of the 40-year study period [27]. Interpretation of the
resulting maps is simple and statistics can be calculated based on ‘from-to’ classes independently from
the original data used for the classifications [93]. Subtle land-cover changes can be interpreted as
modification of a landscape unit without necessarily changing its classification. Hence, spectral changes
may occur due to anthropogenic activity or climate variability that does not translate in a different
land use class. Therefore, we also assessed spectral changes in addition to the PCC. Multitemporal
metrics represent pseudo-spectral bands rather than spectral measurements. We achieved spectral
comparability between the time steps by selecting the most appropriate bands with an all-against-all
correlation analysis. We used percentiles of TC brightness, greenness, and wetness at 5% intervals and
correlated them between consecutive time steps (e.g., minimum brightness 2004 against minimum
brightness 2014, 5th percentile brightness 2004 against minimum brightness 2014 and so forth). The TC
components were selected because of their physical interpretability and their comparability across
Landsat sensors. Based on the assumption that the highest correlation includes least spurious changes,
we calculated Pearson’s correlation coefficient and selected those band pairs that showed highest
correlation. With only a few exceptions the mean values yielded highest correlation. For each
consecutive reference year, we generated a TC component stack from the bands that showed the highest
correlation and performed change detection based on the robust change vector analysis (RCVA) [94], a
modification of the well-known change vector analysis (CVA) [95]. For example, the 40th percentile
brightness 2004, mean greenness 2004, and mean wetness 2004 were assessed against the 35th percentile
brightness 2014, mean greenness 2014, and mean wetness 2014. This variant of the well-known change
vector analysis provides information about change intensity expressed as magnitude, and the nature of
change expressed as direction [94,96–98]. Change direction can be calculated in different ways. Here,
we applied coding according to increase or decrease in each index band difference [98]. Using three
bands, this results in only eight values (directions), each of them providing a unique combination
of increase or decrease in the TC components. We applied the Otsu threshold method [99] on each
magnitude image to separate changes from unchanged areas and applied the resulting binary mask
on both images, magnitude and direction. A combination of PCC and RCVA change results allowed
us to distinguish areas that show no change, areas where only PCC or only RCVA recorded changes
and those where both methods detected changes. PCC reveals changes related to the conversion of
land use classes to other classes, whereas RCVA is more suited to detect within-class spectral changes.
These can be related for example to forest growth or selective logging and other forms of degradation.
Sometimes these spectral changes indicate the beginning of land conversion at sub-pixel scale and are
therefore important to locate potential future LULC changes.

2.6. Accuracy Assessment and Evaluation of Classification Results

We calculated overall accuracy, user’s accuracy, and producer’s accuracy, well-established
measures of accuracy which are all averaged across space [100], following the suggestions by
Olofsson et al. (2014) [101]. Also, authors increasingly explore map quality and spatial uncertainty,
which complement regular accuracy measures [91]. Many studies applying RF do not further
consider the class probabilities. In contrast, we calculated individual class probabilities within the
RF classification to account for the level of classifier-internal uncertainty [84]. As additional measure,
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we calculated Shannon’s entropy which shows how distinct the class votes for each pixel are. Low
entropy indicates only little confusion between classes and a concordant decision whereas high entropy
denotes ambiguity. Hence, sources of uncertainty crystallize in low probability levels for the resulting
class and high entropy, whereas areas of high probability and low entropy values for the resulting class
can be called areas of low internal uncertainty. Here, we additionally calculate the highest probability
per pixel from the per-class probabilities to identify areas with high and low classification confidence.
In addition, we determined the second highest probability and calculated the difference between
highest and second highest probability. This difference shows how dominant a class score is. Low
probabilities do not necessarily translate into misclassification, but understanding misclassification can
help to interpret mapped LULC changes.

RF final class decision results from the most popular class vote from all trees [82]. The proportions
can be translated to probabilities, where a high probability does not necessarily mean that a pixel is
correctly classified. However, high values indicate a high probability of a pixel to belong to certain
class. A pixel therefore does not need to have probabilities higher than 50% in order to be assigned
to a class. Higher ambiguities can be expected from those pixels that are assigned to a class with
votes of less than 50% of the trees. We looked on all pixels with less than 50% maximum classification
probability, determined the class with second highest classification probability, and calculated for each
class the percentages of the second-placed classes. Whereas this cannot be used as a validation measure
it reveals dominant confusion and hence similarities in feature space.

3. Results and Discussion

3.1. LULC Classification

Most of the selected classes are of continuous nature making it challenging to distinguish them.
For example, floodplain grassland and savanna are both dominated by grass species; rainfed crops
and grasses have similar phenology; and open and closed woodland are at the ends of a continuum.
However, we achieved consistent classification results with reasonable overall accuracies between
64% and 74% based on validation with independent data (Tables 3–6). Internal classifier performance
was good with low OOB errors ranging between 3.28% and 6.67% (see Supplementary Materials).
Most classes had high user’s and producer’s accuracies, in particular the forest classes. Built-up areas
are very small in extent compared to the other classes and therefore show low producer’s accuracy.
Confusion also exists between savanna and grassland, and between upland agriculture and rice crops.
Indeed, it is common practice to grow rice as the main crop and other food crops such as maize and
vegetables during the small rainy season or in the dry season. With the present approach, we are not
able to account for these management practices but rather classify the dominant crop.

Table 3. Error adjusted area estimates of the 1974 classification. Accuracy measures are presented with
95% confidence interval (PA = producer accuracy, UA = user accuracy, OA = overall accuracy).

. Estimated Area (ha) PA UA OA

Built-up 49,986 ± 38,294 NA ± NA 0 ± 0
Closed woodland 1,017,708 ± 129,363 0.79 ± 0.08 0.70 ± 0.09

Upland agriculture 171,522 ± 67,311 0.45 ± 0.18 0.30 ± 0.17
Grassland 307,336 ± 68,440 0.62 ± 0.11 0.62 ± 0.10

Montane forest 225,514 ± 59,647 0.91 ± 0.08 0.65 ± 0.14
Open woodland 1,555,438 ± 172,343 0.60 ± 0.08 0.82 ± 0.06

Rice 43,454 ± 31,315 0.30 ± 0.30 0.12 ± 0.21
Savanna 416,565 ± 109,052 0.39 ± 0.13 0.27 ± 0.12
Swamp 162,247 ± 63,953 0.54 ± 0.19 0.33 ± 0.18
Water 73,495 ± 40,386 0.83 ± 0.15 0.08 ± 0.16

0.63 ± 0.04
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Table 4. Error adjusted area estimates of the 1994 classification. Accuracy measures are presented with
95% confidence interval (PA = producer accuracy, UA = user accuracy, OA = overall accuracy).

Estimated Area (ha) PA UA OA

Built-up 74,992 ± 46,332 0.50 ± 0.27 0.01 ± 0.21
Closed woodland 1,082,929 ± 122,788 0.86 ± 0.07 0.78 ± 0.08

Upland agriculture 226,788 ± 79,338 0.46 ± 0.15 0.38 ± 0.13
Grassland 265,508 ± 51,142 0.65 ± 0.11 0.73 ± 0.09

Montane forest 144,941 ± 37,997 0.88 ± 0.09 0.82 ± 0.11
Open woodland 1,541,533 ± 172,020 0.65 ± 0.08 0.84 ± 0.06

Rice 62,081 ± 30,824 0.40 ± 0.25 0.13 ± 0.33
Savanna 515,816 ± 123,702 0.46 ± 0.12 0.32 ± 0.12
Swamp 60,782 ± 34,791 0.52 ± 0.24 0.35 ± 0.21
Water 48,651 ± 23,308 1.00 ± 0.00 0.18 ± 0.21

0.68 ± 0.04

Table 5. Error adjusted area estimates of the 2004 classification. Accuracy measures are presented with
95% confidence interval (PA = producer accuracy, UA = user accuracy, OA = overall accuracy).

Estimated Area (ha) PA UA OA

Built-up 31,812 ± 21,143 0.78 ± 0.22 0.04 ± 0.14
Closed woodland 840,967 ± 116,981 0.79 ± 0.09 0.80 ± 0.09

Upland agriculture 246,539 ± 73,300 0.52 ± 0.15 0.51 ± 0.14
Grassland 302,467 ± 61,339 0.70 ± 0.11 0.72 ± 0.10

Montane forest 184,132 ± 45,866 0.93 ± 0.07 0.75 ± 0.13
Open woodland 1,724,013 ± 162,458 0.75 ± 0.07 0.90 ± 0.05

Rice 123,057 ± 44,215 0.36 ± 0.18 0.21 ± 0.16
Savanna 386,400 ± 100,687 0.57 ± 0.13 0.40 ± 0.15
Swamp 103,921 ± 61,465 0.55 ± 0.24 0.26 ± 0.20

Teak 62,232 ± 55,031 1.00 ± 0.00 0.09 ± 0.14
Water 18,479 ± 13,236 1.00 ± 0.00 0.63 ± 0.20

0.73 ± 0.04

Table 6. Error adjusted area estimates of the 2014 classification. Accuracy measures are presented with
95% confidence interval (PA = producer accuracy, UA = user accuracy, OA = overall accuracy).

Estimated Area (ha) PA UA OA

Built-up 48,479 ± 33,320 0.90 ± 0.15 0.07 ± 0.17
Closed woodland 869,923 ± 109,986 0.83 ± 0.08 0.84 ± 0.08

Upland agriculture 537,037 ± 117,229 0.54 ± 0.12 0.53 ± 0.12
Grassland 199,111 ± 36,502 0.70 ± 0.13 0.78 ± 0.11

Montane forest 168,713 ± 46,562 0.96 ± 0.06 0.72 ± 0.13
Open woodland 1,459,744 ± 162,273 0.71 ± 0.08 0.86 ± 0.06

Rice 325,361 ± 67,926 0.65 ± 0.12 0.66 ± 0.11
Savanna 252,634 ± 90,657 0.56 ± 0.17 0.23 ± 0.20
Swamp 58,519 ± 35,514 0.78 ± 0.19 0.35 ± 0.23

Teak 63,456 ± 52,939 1.00 ± 0.00 0.09 ± 0.15
Water 41,043 ± 33,020 1.00 ± 0.00 0.21 ± 0.19

0.71 ± 0.04

Figure 3 shows the classification results of the entire catchment for the 1970s, 1994, 2004, and 2014.
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Figure 3. Land use/land cover (LULC) classification results for 1974 (a), 1994 (b), 2004 (c), and 2014 (d)
for the whole catchment.

Since rice is usually planted within the areas regularly flooded during the rainy season, it can be
seen as contrasting to upland agriculture even though typical upland agriculture crops (e.g., maize,
vegetables, cassava, sugar cane) are often planted as secondary crops in the same places.

Since the statistical figures of the confusion matrix represent aggregated information over the
whole study area, it is useful to assess spatially explicit classifier performance. Figure 4 shows the
highest per-pixel probability, the difference between highest and second-highest probability, and
entropy. Classification of a pixel is reliable when its highest probability is high, the difference to the
second-highest probability is high, and entropy is low (in Figure 4 good performance is indicated by
blue colors).

Distinct patterns show across all classifications with higher uncertainty in the floodplain where
savanna, grassland, open woodland and upland agriculture are more likely to be confused. This
can be explained by higher variability as compared to stable classes like montane forest and teak, by
co-occurrence of those classes in small-sized mosaics, crop rotation as well as by spectral similarities.
On the one hand, the use of multitemporal metrics over the period of three years leads to robust data to
be analyzed. On the other hand, multitemporal metrics reduce the spectral contrast between spectrally
related classes, potentially contributing to class confusion. Other studies confirm that temporal
aggregation does not necessarily lead to higher classification accuracies compared to well-chosen
two-date images [102]. However, in our study selection of appropriate images was not an option due
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to persistent cloud cover and due to the size of the study area. To get a better understanding of the
per-class RF performance, the reader is referred to the supplementary material that shows the per-pixel
classification probability per class.
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Figure 4. Maximum probability per pixel (Pmax) achieved by the random forest (RF) classifier for each
year (left column). The higher the value, the more reliable the classification. The difference of the
highest and the second highest probability per pixel (pdiff) are shown in the center column. Higher
values indicate less confusion with one or more other classes. The right column shows entropy per
pixel scaled between 0 and 1 (Hscaled), where 0 indicates unambiguous classification and high values
indicate that other classes are to be considered. In all columns red indicates ambiguous results and
blue indicates good performance and unambiguous results.
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The assessment of the pixels with less than 50% classification probability considered the
second-placed class. As a result, it is possible to plot confusion percentages per class (Figure 5).
It can be seen that the similarity in feature space is rather stable over time, e.g., the second-placed
classes of all montane forest pixels classified with less than 50% probability are open and closed
woodland with only a few swamp and water pixels in 1974 and 1994 (Figure 5a,b).
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Figure 5. Percentages of classes with second highest classification probability in areas with less than
50% classification probability, (a) 1974, (b) 1994, (c) 2004, (d) 2014. Please note: teak was not classified
in 1974 and 1994.

This is in line with gradient nature between dense montane forests, closed woodland and open
woodland. Hence, open woodland has similarity with montane forest, closed woodland, and savanna.
Most likely because there are only scattered trees in the floodplain grassland only little similarity
exists with this class. There is however increasing similarity with upland agriculture. Small-scale
agricultural fields are often covered by trees and might lead to this kind of confusion. Exploring pixels
with less than 50% classification probability focuses on pixels that are likely to be confused with other
classes. In turn, if we explore pixels with high probabilities, confusion is likely to include classes
that are less well defined. This mainly refers to built-up, which has the largest probability to include
mixed pixels. The general pattern of similarity between first and second-ranked classes of pixels with
high classification probability (>75%, Figure 6) and those with higher ambiguity (probability <50%,
Figure 5) is identical with the exception of higher shares of built-up when the classification probability
of the first class is high. The percentage of pixels with classification probabilities lower or higher than
50% is shown in Table 7. It can be seen that more than 80% of all pixels are classified with more than
50% of the votes for a particular class. Some classes are more challenging and show a high percentage
of pixels with less than 50% classification probability, e.g., built-up, grassland and rice.



Remote Sens. 2020, 12, 1057 14 of 25

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 25 

 

Table 7. Percentage of pixels with classification probabilities lower and higher than 50%. 

 1974 1994 2004 2014 

 < 50% > 50% < 50% > 50% < 50% > 50% < 50% > 50% 

Open Woodland 9,94 90,06 9,74 90,26 11,36 88,64 17,13 82,87 

Closed Woodland 5,71 94,29 5,37 94,63 5,18 94,82 8,10 91,90 

Montane Forest 8,61 91,39 11,18 88,82 14,79 85,21 14,30 85,70 

Teak - - - - 54,46 45,54 62,19 37,81 

Upland Agriculture 36,53 63,47 34,63 65,37 34,74 65,26 29,58 70,42 

Rice 62,04 37,96 77,76 22,24 80,64 19,36 30,92 69,08 

Grassland 24,17 75,83 27,69 72,31 30,78 69,22 28,54 71,46 

Savanna 46,71 53,29 51,29 48,71 53,46 46,54 48,64 51,36 

Swamp 53,06 46,94 55,09 44,91 49,57 50,43 33,60 66,40 

Water 35,85 64,15 19,58 80,42 18,38 81,62 24,70 75,30 

Built-up 89,56 10,44 69,80 30,20 62,36 37,64 14,28 85,72 

Total 14,63 85,37 15,76 84,24 17,78 82,22 19,56 80,44 

 

 

Figure 6. Percentages of classes with second highest classification probability in areas with more than 

75% classification probability, (a) 1974, (b) 1994, (c) 2004, (d) 2014. Please note: teak was not classified 

in 1974 and 1994. 

Figure 7 shows snippets of the classification depicting consistency despite remaining image 

artifacts. 

Figure 6. Percentages of classes with second highest classification probability in areas with more than
75% classification probability, (a) 1974, (b) 1994, (c) 2004, (d) 2014. Please note: teak was not classified
in 1974 and 1994.

Table 7. Percentage of pixels with classification probabilities lower and higher than 50%.

1974 1994 2004 2014
< 50% > 50% < 50% > 50% < 50% > 50% < 50% > 50%

Open Woodland 9.94 90.06 9.74 90.26 11.36 88.64 17.13 82.87
Closed Woodland 5.71 94.29 5.37 94.63 5.18 94.82 8.10 91.90
Montane Forest 8.61 91.39 11.18 88.82 14.79 85.21 14.30 85.70

Teak - - - - 54.46 45.54 62.19 37.81
Upland

Agriculture 36.53 63.47 34.63 65.37 34.74 65.26 29.58 70.42

Rice 62.04 37.96 77.76 22.24 80.64 19.36 30.92 69.08
Grassland 24.17 75.83 27.69 72.31 30.78 69.22 28.54 71.46
Savanna 46.71 53.29 51.29 48.71 53.46 46.54 48.64 51.36
Swamp 53.06 46.94 55.09 44.91 49.57 50.43 33.60 66.40
Water 35.85 64.15 19.58 80.42 18.38 81.62 24.70 75.30

Built-up 89.56 10.44 69.80 30.20 62.36 37.64 14.28 85.72
Total 14.63 85.37 15.76 84.24 17.78 82.22 19.56 80.44

Figure 7 shows snippets of the classification depicting consistency despite remaining
image artifacts.
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Figure 7. Details of the classification for three different locations (a–c). Each upper row shows RGB
false color composites (mean NIR – mean red – mean green), the lower rows show the respective
classification result. (a) Conversion of a swamp at the northern margins of the Kilombero floodplain to
agricultural land (here: rice). (b) Forest plantation in the western part of the catchment. (c) Conversion
of swamps, floodplain grassland, and savanna to cropland used for rice cultivation (southern part
of the floodplain). Even though some artifacts are visible, the RF classifier is capable of producing
consistent and useful maps. Only a few isolated pixels are visible.
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3.2. LULC Change

We assessed two different types of change: 1. LULC conversion, i.e., replacement of a LULC
class by another, and 2. spectral changes. The latter usually apply for LULC conversion but also for
modification, i.e., within-class changes that do not necessarily translate in a different classification.
LULC conversion is visible in Figure 3 which reveals most pronounced changes within the Kilombero
floodplain where natural grasslands, savanna vegetation and swamps were converted to agricultural
areas with rice dominating in the flood prone areas. It also becomes obvious that the changes accelerated
between 2004 and 2014. Apart from the obvious LULC conversion, spectral changes are evident in
huge parts of the study site (Figures 8 and 9).
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Figure 8. Robust change vector analysis (RCVA)-based spectral change detection results: change
magnitude (a–c), and change direction (d–f). Change direction is indicated only in places where change
magnitude exceeds a threshold (TC = tasseled cap).

High values of RCVA magnitude indicate strong spectral changes whereas values close to zero
indicate unchanged areas. The thresholds separating change from no-change were calculated based on
the magnitude histograms using the Otsu thresholding method [99]. Figure 8 shows that pronounced
spectral changes between 1974 and 1994 appear in the floodplain and the eastern part of the catchment,
but also the western part shows some change. These changes might result from undesired atmospheric
effects caused by high water vapor concentration within the Kilombero valley, as indicated by the
respective change direction. Changes in the western part (blueish-greenish colors in Figure 8d) are
characterized by decreasing TC greenness–most likely due to dryer conditions or due to removal of
vegetation that might be attributed to agricultural activities and clearing of natural vegetation. This
area (Njombe region) is comparably well developed with infrastructure (Figure 1) and well known for
maize, Irish potato, tea and flower production. There are, however, only a few areas affected by LULC
conversion between 1974 and 1994. The central southern and northern parts of the catchment show



Remote Sens. 2020, 12, 1057 17 of 25

little spectral changes between 1994 and 2004, and between 2004 and 2014 (Figure 8b,c). The areas
showing changes are located within the Kilombero floodplain and in the western part of the catchment.
The change directions reveal increasing brightness and decreasing greenness and wetness within the
Kilombero floodplain indicating replacement of natural vegetation and pronounced periods with
land left bare. A comparison of PCC results and RCVA-based change results shows that both do not
entirely overlap. If classes are spectrally similar it may happen that their classification changes from
one period to the next, e.g., closed woodland is replaced by open woodland. The respective spectral
change, however, may lie below the threshold and is therefore not recorded as change. In other places
spectral changes may occur without necessarily changing the classification of a pixel. However, areas
where PCC and spectral changes overlap are very likely to show distinct alterations of the bio-physical
properties. Areas with highest ambiguities (Figure 4) correlate with areas of most pronounced spectral
changes (Figure 8a–c).
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Figure 9. Post-classification comparison (PCC)-based (left) and spectral (center column) changes, and
overlay of both (right). The bottom row shows the overlay of all periods (i.e., 1974–2014); the bottom
right plot shows the overlay of all periods and both methods. White areas experienced no change,
magenta areas denote PCC-based changes, brown areas show RCVA-based spectral changes, and green
areas show both PCC and spectral changes.

Maps of the overlaps of the PCC results, the overlaps of the spectral RCVA-based changes, and
the overlaps of both of them are shown in Figure 9. There are only a few larger areas that have not
changed at all during the observation period (white areas in Figure 8f). They amount to 927,739 ha
corresponding to less than one-quarter of the catchment. At the same time, about 1,440,899 ha show
both, PCC-based and spectral changes corresponding to about one-third of the catchment area. Those
areas are dominant in the Kilombero floodplain and in the west. Fluxes of LULC classes are depicted in
the Sankey plots of Figure 10. Looking at the entire catchment area reveals that extension of agricultural
areas (upland agriculture and rice cultivation) is the dominant type of change (a). However, a closer
look to the Ramsar site shows that rice became the dominant LULC class in this protected area over
the past period (b). The Sankey plots also reveal that rice extension is at the expense of savanna and
grassland whereas upland agriculture takes place mainly at the expense of open woodland.

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 25 

 

Maps of the overlaps of the PCC results, the overlaps of the spectral RCVA-based changes, and 

the overlaps of both of them are shown in Figure 9. There are only a few larger areas that have not 

changed at all during the observation period (white areas in Figure 8f). They amount to 927,739 ha 

corresponding to less than one-quarter of the catchment. At the same time, about 1,440,899 ha show 

both, PCC-based and spectral changes corresponding to about one-third of the catchment area. Those 

areas are dominant in the Kilombero floodplain and in the west. Fluxes of LULC classes are depicted 

in the Sankey plots of Figure 10. Looking at the entire catchment area reveals that extension of 

agricultural areas (upland agriculture and rice cultivation) is the dominant type of change (a). 

However, a closer look to the Ramsar site shows that rice became the dominant LULC class in this 

protected area over the past period (b). The Sankey plots also reveal that rice extension is at the 

expense of savanna and grassland whereas upland agriculture takes place mainly at the expense of 

open woodland. 

 

Figure 10. Sankey plots of the LULC changes (a) within the whole Kilombero catchment, and (b) 

within the Kilombero Ramsar site. 



Remote Sens. 2020, 12, 1057 19 of 25

Figure 10. Sankey plots of the LULC changes (a) within the whole Kilombero catchment, and (b) within
the Kilombero Ramsar site.

Land cover conversion in the Kilombero catchment strongly accelerated within the past two
decades, resulting in a range of documented effects. LULC changes within the whole catchment have
an impact on the hydrological and energy budget of the Kilombero floodplain [12,25]. The feedback
loops between LULC change, hydrology and climate are yet to be understood [12,13]. Drivers of
change were not addressed in this study but were examined by Msofe et al. (2019) [22] and addressed
by Daconto et al. (2018) [103] in the Kilombero valley integrated management plan. According to
our findings most intense LULC changes are visible within the Ramsar site, whose extent coincides
with the floodplain for the most part. The detected changes are dominated by increased conversion
to agriculture, in particular by rice cultivation after 2004. This LULC conversion mostly affected
savanna and floodplain grassland, which declined over the past years. Only 1900 km2 of floodplain
grassland remain. This trajectory can be explained by the growing population in-situ as well as through
migration, but also reflects governmental strategies [22,40]. While there is a lack of wetland inventories
in Africa and hence only limited knowledge about wetland extent and change, a general decline of
wetlands is evident [3,5,104], which is in line with our results. A recent LULC change assessment in
the Wami river basin in Tanzania revealed similar results to our study with a remarkable decline of
grassland and woodland resulting from a conversion to cultivated land [105]. By buying the land,
domestic and foreign investors push the local farmers into the wetland and the forests. Increased forest
use intensity does not necessarily translate into LULC change between forest classes or in forest loss.

Food production is of high priority in Tanzania, as reflected by Tanzania’s kilimo kwanza (agriculture
first) strategy entailing modernization of agriculture. In particular, this manifests in the implementation
of the SAGCOT in the Kilombero catchment. However, the cropland area within the Kilombero
floodplain spreads along the margins of the floodplain, leaving only little space for further changes.
Crop production increasingly extends inside the flooded areas with the risk of drowning crops. About
7250 km2 of the catchment’s natural vegetation, predominantly grassland and savanna were converted
to cropland since the 1970s (=̂ 18% of the catchment area); most of the changes occurred between
2004 and 2014. Suitable food production areas are exploited almost to their limits. Further LULC
conversion can only take place at the expense of natural woodland or within the floodplain. Going
further inside the floodplain will only work if the Kilombero floods are regulated, which could have
dramatic negative impacts on the ecosystem. For the study period, agricultural expansion into forests
is of minor importance. Converting forest to cropland impacts hydrological processes since the forests
are the place where runoff and groundwater discharge are generated [12]. In addition, forest loss
would directly translate into further habitat loss, biodiversity loss and negative impacts on local
livelihoods that depend on their ecosystem services. Hence, further agricultural development must
rely on measures to increase productivity, e.g., moderate irrigation, use of fertilizer, leveling, weeding,
bunding [106,107]. Such options must be weighed carefully, as also agricultural intensification without
areal extension can have detrimental effects on the environment, if not done in a sustainable manner,
causing soil compaction, erosion or pollution through input of chemicals [108]. Nevertheless, good
agricultural practices can improve yields but are currently not common practice in the Kilombero
area [107]. Intensification, however, requires financial capital, access to fertilizer, and capacities. All
these measures must be balanced with the guidelines of the different protected areas that cover vast
areas of the Kilombero catchment. A management plan was established in late 2018, which outlines
various scenarios depending on the funding [103]. It forms a policy framework for future sustainable
development in the region. Our LULC maps are integral part of it, and continuous monitoring may
support those efforts [20]. LULC often results in extensive loss of ecosystem services [23,109]. Hence,
our LULC change assessment may serve to quantifying related ecosystem services.
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4. Conclusions

Long-term LULC change assessments with dense time series of satellite imagery are often used to
generate a comprehensive understanding of landscape changes and natural resources management.
Despite a large historical data record provided by the Landsat program, change analyses carried out
in tropical wetlands face limited availability of usable data due to persistent cloud cover triggered
by excessive moisture. It is precisely in these environments where LULC change analyses are
needed the most, due to the intense expansion of agriculture and urban environments experienced
during this century. In this study, we demonstrate an appropriate approach to LULC analysis using
multitemporal metrics of Landsat data. We generated decadal gapless composites that reflect seasonal
patterns and are comparable between years, achieving reasonable classification accuracies for these
dynamic environments. The analysis of per-pixel classification probabilities and derived parameters,
as performed here, is well suited to detect spatial patterns of classification reliability and to support the
interpretation of the results. Our combined approach of spectral change detection and PCC revealed
complementarity, since LULC conversion and subtle within-class changes could be identified. Using
least correlated multitemporal metrics of TC components allowed us to minimize spurious changes.
Our results also showed that the area of land per capita for agricultural development is becoming
increasingly scarce in the Kilombero catchment. Almost half of the Kilombero Ramsar site, a protected
area with international importance, was converted from natural to anthropogenic land use, mostly
during the 21st century. Located alongside a widely unregulated river system the Kilombero wetland
is still a precious ecosystem. Under the current situation of constant economic and population growth
and accelerating LULC change over the past decades it is likely that anthropogenic land use expansion
will further increase. A regular LULC monitoring may serve as a means to guide decision makers
through the process of sustainable land resource management, and to facilitate the implementation
and success of such plans.
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