

Supported by:

Knowledge for Tomorrow

on the basis of a decision by the German Bundestag

Methods to reduce computation times of linear optimising Energy System Models

Kai von Krbek, Karl-Kiên Cao, Manuel Wetzel

DLR, Department of Energy Systems Analysis WeatherAggReOpt, Essen (online) 2020-04-03

Content

- Motivation
- What systems were investigated and their characteristics and dimensions
- Model based speed up methods
 - Downscaling (temporal and spatial)
 - Rolling Horizon and heuristics
- Conclusion

Motivation

- Highly temporal and spatial resolved models are computationally intensive.
- How can we reduce computation times?
- If we simplify the models, how much accuracy do we lose?
- What are the best speed-up methods and how much faster do we get?

How can we speed-up energy system models (ESM)

- Efficient coding
- Solver parameterisation tuning
- Buy a bigger/better computer
- Reduce the size of the ESM

What systems were investigated

- linear optimising energy system models
 - computing times > 12h (dominated by solver)
 - storage and transmission as characteristic components of the ESM
 - dispatch and investment models
- shared memory hardware
- usage of standard solvers (e.g. CPLEX)
- formulated in GAMS

Main dimensions of ESM

- temporal dimensions
 - typical-days / typical periods
 - hours in year (8760h)
- spatial dimensions
 - NUTS 0/1/2/3
 - extra high voltage transmission network
- technological dimension
 - power plants
 - conventional power plants
 - VRE plants (hourly feed-in time series)
 - transmission
 - storage

Evaluated system

Model name	RFMix
Author (Institution)	German Aerospace Center (DLR)
Model type	Linear programing
	minimization of total costs for system operation
	economic dispatch / optimal dc power flow with expansion of storage and transmission capacities
Sectoral focus	Electricity
Geographical focus	Germany
Spatial resolution	> 450 nodes (reference model)
Analyzed year (scenario)	2030
Temporal resolution	8760 time steps (hourly)

Solver	Commercial
Algorithm	Barrier
Cross-over	Disabled
Max. parallel barrier threads	16
Scaling	Aggressive

DLF

Recapture: solver based improvements and general improvements

- Reduce the accuracy of the result
 - i.e. reduce the solver tolerance
- don't do crossover, if it is not necessary
 - this leads to results that is very close to the optimum (solver tolerance)
 - you will not get the basic feasible solution
 - caveat: there might be negative numbers in results of positive variable
 - · additional effort with analysis of the results
 - if results are used for a "warm-start" of another solve, this might lead to infeasibilities

Model based speed up methods

- pure model reduction (downscaling)
 - temporal (averaging time-steps)
 - spatial
- rolling horizon and temporal zooming heuristics

Spatial and temporal scaling

- the parameterisations will be investigated with and without expansion of transmission and storage
- spatial aggregation
 - aggregation through hierarchical clustering of the nodes
 - · the transmission lines will be summed accordingly
 - within one region, a copper plate is assumed
 - at full aggregation, Germany is one big copper plate
- temporal aggregation
 - temporal averaging of feed-in time series and demand

Spatial scaling without expansion

CPLEX ticks 16.3 Mio. Total memory 79 GB GAMS time 0.6 h Total wall-clock time 3.6 h Objective 21.9 Bio € Wind 162 TWh Gas 174 TWh; Coal 105 TWh Storage 4.1 TWh Transmission 434 TWh

Spatial scaling with expansion

CPLEX ticks 381.3 Mio. Total memory <256 GB GAMS time 6.6 h Total wall clock time 50.9 h

Objective 23.2 Bio € Wind 175 TWh Gas153 TWh; Coal 115 TWh Storage expansion 123 GWh; Transmission expansion 28.8 GW

Temporal scaling without expansion

CPLEX ticks 16.3 Mio. Total memory 79 GB GAMS time 0.6 h Total wall-clock time 3.6 h Objective 21.9 Bio € Wind 162 TWh Gas 174 TWh; Coal 105 TWh Storage 4.1 TWh Transmission 434 TWh

Temporal scaling with expansion

CPLEX ticks 16.3 Mio. Total memory 79 GB GAMS time 0.6 h Total wall-clock time 3.6 h Objective 21.9 Bio € Wind 162 TWh Gas 174 TWh; Coal 105 TWh Storage 4.1 TWh Transmission 434 TWh

Speed up

spatial

- transmission has a strong deviation
- without expansion
 - speed-up 4. accuracy ~70-95%
- with expansion
 - speed-up 8. accuracy ~70-95%

temporal

- storage has a strong deviation
- without expansion
 - speed-up 6. accuracy ~80-95%
- with expansion
 - speed-up 10. accuracy ~85-95%

- The larger the system is, the greater the speed-up will be.
- For small systems the speed-up might be negligible.

Rolling horizon

- Implemented on the temporal scale
- Pure rolling horizon
 - only dispatch, no expansion planning
 - variable overlap of the intervals for more realistic boundary conditions
 - with higher number of interval the accuracy gets worse
- Temporal zooming heuristics
 - low resolution (8 hourly) initial run to fix the boundary conditions (b.c.)
 - sub-intervalls in the year will be calculated with 8h-run as b.c.
 - expansion possible

Rolling horizon

Temporal zooming heuristics

Rolling Horizon - Summary

- Speed-up of factor five
- Less accurate than full model (up to 30%)
- storage usage is more accurate than simple down-sampling
- bigger memory usage
- better representation of actual operation => full year optimisation is not realistic

Key take-aways

- Temporal or spatial scaling work best
 - use appropriate scaling for the chosen question
 - temporal reduction works well for transmission (expansion)
 - spatial clustering works well for storage (expansion)
- Rolling horizon can improve the result performance, but uses more RAM
- First steps should be the improvement of lean formulation of the ESM

Thank you for your attention

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Kai von Krbek Kai.Krbek@dlr.de https://www.dlr.de/tt/

Recapture: source code improvement (example GAMS)

- input data should not differ much in order of magnitude
- use adequate precission of input data
- use of "option kill", e.g. for long time-series input data, saves memory
- abundant use of contraints (dolar condition) over domain of defintion
- avoidance of consideration of technologies providing power at same costs
 - i.e. no decisions of equal options
- Helpful reference for GAMS: "Speeding up GAMS Execution Time" by Bruce A. McCarl <u>https://www.gams.com/mccarl/speed.pdf</u>

