High Performance Computing vs. Heuristic

A performance benchmark for optimization problems with linear power flows

by Karl-Kiên Cao & Manuel Wetzel

Background: Solving Energy System Models is associated with high computing times

Methodology: Benchmark analysis of two speed-up approaches based on parallelization

Key results:

- Speed-up factor: 10
- Heuristic outperforms parallel solver for medium-sized models

Outlook

- Benchmarks for large-scale models
- New PIPS-IPM++ version: more stable, MIP

High Performance Computing vs. Heuristic

A performance benchmark for optimization problems with linear power flows

Karl-Kiên Cao & Manuel Wetzel

MOTIVATION

Energy System Transition

What needs to be modeled

What can be modeled

Number of time steps

Number of regions

Number of technologies

What can be modeled

?

Number of time steps

Number of regions

Number of technologies

Solving large optimization models

min $c^T x$ s.t.: $Ax \le b$ $x \ge 0$

Solving large optimization models

 $\min c^T x$

s. t.:

$$Ax \leq b$$

$$x \ge 0$$

Solving large optimization models

 $\min c^T x$

s. t.:

Objective

How to deal with increasing computing times?

Speed-up approaches (parallelization)

Objective

How to deal with increasing computing times?

Speed-up approaches (parallelization)

Which approach performs better?

High performance computing

or heuristics?

METHODOLOGY

Model factsheet

Model type	 Energy System Optimization Model Multi-regional Economic Dispatch (Transmission and storage expansion planning) 		
Number of regions (zones)	120		
Number of time steps	8760		
Scope	Scenario of the German power system		
4 Model instances and reference computing times		Capconstrained transport	DC power flow
	Dispatch	15 min	20 min
	Expansion	75 min	127 min

Approach I: Heuristics

Approach II: PIPS-IPM++

Model annotation

Approach II: PIPS-IPM++

RESULTS

Heuristics

Heuristics

PIPS-IPM++

PIPS-IPM++

CONCLUSIONS

Discussion

- Heuristic beat PIPS-IPM++
 - Faster and more stable across model instances
- But
 - Accuracy loss: up to 3% deviation of objective value
 - Intermediate-sized model (reference computing times <24h)
 - Memory may become also a bottleneck

Conclusion & Outlook

- Energy Systeme Optimization: more complex and thus computational heavy
- 2 approaches exploiting parallelization
- Observed speed-up: 10
- More stable versions of PIPS-IPM++
 - Large models: >48 h reference computing time
 - + Neural Networks → Mixed Integer Programs

Karl-Kiên Cao

Institute of Networked Energy Systems Department of Energy Systems Analysis karl-kien.cao@dlr.de

THANK YOU!

