The effect of neutral mass density data assimilation on the quality of the thermosphere-ionosphere estimation

Knowledge for Tomorrow

Isabel Fernandez-Gomez¹, Timothy Kodikara¹, Stefan M. Codrescu², Frank Heymann¹, Claudia Borries¹ and Anja Schlicht³

- (1) Institute of Solar-Terrestrial Physics, German Aerospace Center (DLR)
- (2) University of Colorado Boulder Vector Space LLC
- (3) Technical University of Munich (TUM)

Outline

- Insight II project
- Objective
- Physics-based models: CTIPe and TIE-GCM
- Assimilation schemes: TIDA and DART
- Thermosphere-Ionosphere analysis
- Conclusions

INSIGHT II: Interactions of Low-orbiting Satellites with Surrounding Ionosphere and Thermosphere

Objective

To investigate the **impact of assimilation of in-situ measurements on the Thermosphere-lonosphere** (TI) system.

DLR.de • Chart 5 > SPP2020 > I. Fernandez-Gomez > 3.6.2020

Physics-based models and Assimilation schemes

Physics-based models: CTIPe

Assimilation Scheme: CTIPe – TIDA (neutral mass density)

Physics-based models: TIE-GCM

Assimilation scheme: TIE-GCM – DART (electron density)

[Anderson, 2009]

Thermosphere – lonosphere Quiet solar geomagnetic conditions 5 March 2008

Assimilation of neutral mass density into CTIPe

Effect on the lonosphere: TEC 5.3.2008 12:00

CTIPe (reference)

TIDA (analysis)

Assimilation of electron density into TIE-GCM

Effect on the thermosphere: CHAMP and GRACE-A/B neutral mass density

Conclusions

- In this case study, the assimilation of both ρ and Ne during a geomagneticaly quiet period is studied. As expected, the results reveal that the assimilation has a bigger impact in the TI state near the assimilated data points.
- In case of ρ , **large biases between model and observations** are visible, which are also partly attributed to calibration errors in the observations. The results indicate only minor improvement of the ρ model estimates through data assimilation during quiet time.
- For the TEC, CTIPe-TIDA shows **significant differences** of the model estimates compared to observations even in larger distances from the assimilated data points. More investigation is needed to determine if the TEC difference between the reference and the analysis are due to assimilation of ρ or the forcing estimation or both.
- More work will follow with different scenarios for both models. Assimilation of different parameters and storm time will be considered.

