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Abstract 

Remote Access Laboratories provide students with access to learning resources without 

the need to be in-situ (with the assets). The technology endows users with access to 

physical experiments anywhere and anytime, while also minimising or distributing the 

cost of operation for expensive laboratory equipment. Augmented Reality is a 

technology which provides interactive sensory feedback to users. The user experiences 

reality through a computer-based user interface with additional computer-generated 

information in the form applicable to the targeted senses. 

Recent advances in high definition video capture devices, video screens and mobile 

computers have driven resurgence in mainstream Augmented Reality technologies. 

Lower cost and greater processing power of microprocessors and memory place the 

resources in the hands of developers and users alike, allowing education institutes to 

invest in technologies that enhance the delivery of course content. This increase in 

pedagogical resources has already allowed the phenomenon of education at a distance 

to reach students from a wide range of demographics, improving access and outcomes 

in multiple disciplines. Incorporating Augmented Reality into Remote Access 

Laboratories resources has the benefit of improving overall user immersion into the 

remote experiment, thus improving student engagement and understanding of the 

delivered material.  

Visual implementations of Augmented Reality rely on providing the user with seamless 

integration of the current environment (through mobile device, desktop PC, or heads up 

display) with computer generated artificial visual artefacts. Virtual objects must appear 

in context to the current environment, and respond in a realistic period, or else the user 

suffers from a disjointed and confusing blend of real and virtual information. 

Understanding and interacting with the visual scene is controlled through Computer 

Vision algorithms, and are crucial in ensuring that the AR systems co-operate with the 

data discovered through the systems. 

While Augmented Reality has begun to expand in the educational environment, 

currently, there is still very little overlap of Augmented Reality technologies with 

Remote Access Laboratories. This research has investigated Computer Vision models 



that support Augmented Reality technologies such that live video streams from Remote 

Laboratories are enhanced by synthetic overlays pertinent to the experiments. 

Orientation of synthetic visual overlays requires knowledge of key reference points, 

often performed by fiducial markers. Removing the equipment’s need for fiducial 

markers and a priori knowledge simplifies and accelerates the uptake and expansion of 

the technology.  

These works uncover hybrid Computer Vision models which require no prior 

knowledge of the laboratory environment, including no fiducial markers or tags to track 

important objects and references. Developed models derive all relevant data from the 

live video stream and require no previous knowledge regarding the configuration of the 

physical scene. The new image analysis paradigms, (Two-Dimensional Colour 

Histograms and Neighbourhood Gradient Signature) improve the current state of 

markerless tracking through the unique attributes discovered within the sequential 

video frames. Novel methods are also established, with which to assess and measure 

the performance of Computer Vision models. Objective ground truth images minimise 

the level of subjective interference in measuring the efficacy of CV edge and corner 

detectors.  

Additionally, locating an effective method to contrast detected attributes associated 

with an image or object, has provided a means to measure the likelihood of an image 

match between video frames. In combination with existing material and new 

contributions, this research demonstrates effective object detection and tracking for 

Augmented Reality systems within a Remote Access Laboratory environment, with no 

requirement for fiducial markers, or prior knowledge of the environment. The models 

that have been proposed in the work can be generalised to be used in any cyber-physical 

environment that facilitates peripherals such as cameras and other sensors. 
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1Introduction 

The study of Science, Technology, Engineering and Mathematics (STEM) subjects 

within Australia is critically important to continue to drive innovation, and underpin 

our communities and culture [19]. The vast reach of the internet allows educational 

institutions to connect with students anywhere and anytime in the world. Accessing 

experimental apparatus at a distance helps to deliver course content without the need 

for the student to be in-situ with the equipment. Remote Access Laboratories (RAL) 

provide the mechanism for improved delivery of education from a distance. Augmented 

Reality for Remote Access Laboratories is a new technology amalgamating the fields 

of Augmented Reality (AR) and RAL for the purpose of improving the engagement of 

students in remote laboratory environments. Both individual technologies have a rich 

history spanning forty to fifty years, but have recently experienced increased growth as 

a result of cheap and readily accessible Information and Communication Technology 

(ICT). Today, ‘online’ is ubiquitous, pervasive in all aspects of daily life, and provides 

a convenient backdrop for these rapidly developing technologies.  

Experimentation is an important aspect of engineering and science education, allowing 

students to engage with practical work to gain experience and reinforce learnt 

knowledge [20]. However, most laboratory equipment is costly to purchase as well as 

to maintain for the limited time it is in actual use. Financially, improving the utilisation 

of test equipment becomes a motivating factor to develop online capabilities. Providing 

students with access to physical laboratory resources, but from a distance and at a time 

of their choosing, shifts the onus to them for their education experience. While no 

definitive definition of RAL exists, it shall be defined here as any physical learning 

resource operated at a distance. This excludes virtual laboratories (as they are not 

physical resources) but can include experiments as well as hardware relevant to the 

field such as medical equipment. 
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In a world where students are always online, the inexpensive nature of computers or 

personal communication devices provides a rich environment for accessing educational 

resources anywhere, anytime. University e-Learning assets are now common and 

invaluable for delivering course content to students in a timely manner suitable to their 

needs. On-demand access to resources applies also to experimental configurations 

through use of RAL. With resource costs offset by improved usage rates of physical 

equipment, and greater access by students to the requisite experiments, only the 

pedagogical outcomes are a potential countering factor [21-23].  

1.1 Remote Access Laboratories 

Delivering practical course content has many pathways. Real, virtual and remote 

laboratories deliver course content, but decidedly in different forms, as shown in Figure 

1-1. Traditional physical presence experimentation is the baseline by which other 

delivery methods are compared: where the student is in-situ and directly operates the 

equipment. Remote Access Laboratories function through the interfaces provided by 

the existing control systems. While proximal experiments are purely hands-on, RAL 

requires customized hardware and software to connect with the equipment, control 

access and provide an online interface. Actions performed by a student, such as 

initiating actions or adjusting operating parameters, can be performed with virtual 

controls, depending on the necessary pedagogical requirements. Virtual Laboratories 

(VL) exist wholly in software. Complete VL experiments are simulations, based on 

mathematical representations, logical functionality or parametric equivalencies of real 

devices.  

Not every experiment configuration lends itself to a remote implementation [21]. Many 

factors determine the suitability of a practical lesson such as the equipment used by the 

 

Figure 1-1. Real, Virtual and Remote Laboratory environments 
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student cohort, the curriculum requirements and accreditation boards. Accreditation 

boards dictate the level of knowledge and skill required of graduates, and review 

compliance with the boards policies [24]. Building VL experiments requires highly 

skilled developers or the use of prefabricated modules which generally provide near 

ideal results that do not reflect the peculiarities of physical devices. Visually, virtual 

devices do not give the participants an experience of handling real apparatus, and may 

not support the necessary learning outcomes. Studies have shown that students engage 

with experiments differently, and focus on different aspects when faced with real, 

virtual or remote environments [22]. A strong sense of interaction with the remote 

equipment helps to engage the users into the experiment environment and take into 

account human factors [25].  Improving the engagement of the student with enhanced 

sensory information through AR may improve the students experience and level of 

comprehension.  

Remote Access Laboratories are currently an important resource employed by many 

universities and other learning institutions around the world. Initially developed by 

electronic and control engineering faculties, they were didactic tools demonstrating 

theoretical knowledge. The basis of the technology stems from control systems used to 

instruct on tele-operated robotic arms [26] , and electronic circuit emulation software 

[27]. Expenses associated with such laboratory equipment, such as the purchase, 

management and maintenance costs, limited many institutions accessing the necessary 

resources. Additionally, previously computer and network resources, at the time, were 

rare, expensive and underwhelming. Improving the utilization of existing resources, or 

accessing external resources became possible with the advent of simple Remote 

Laboratories (RL). Once the dependency on expensive mainframe computing resources 

was broken, smaller mini and micro computing resources opened the door to science 

and engineering departments to experiment with the new devices. The fascination with 

the new resources has driven the imaginations of both the students and lecturers to 

produce innovative RAL implementations [28]. 

Several standards helped to improve the uptake of remotely accessible hardware. The 

IEE488 (HPIB/GPIB) [29] gave developers of electronic control and test equipment a 

consistent interface. At the same time, graphic processing became possible on desktop 

computers and simulated versions of real world devices provided users with a visual 

experience. Better control over RAL development was necessary and a RAL model was 
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created which defined the framework for stages such as control and management [30]. 

The next ten years saw rapid development of numerous RAL systems with each region 

creating their own unique systems such as Second Best To Being There (SBBT) [31], 

and the SCARA robotic [26] systems. 

Early works Remote Laboratories fail to mention any measure of pedagogical 

outcomes, [27, 32-34], therefore it can be assumed that pedagogical outcomes for RAL 

systems were initially a secondary consideration. Gradually accreditation board 

requirements promoted research into the effectiveness of RL from the point of view of 

the learning outcomes. While there has been comprehensive reporting of the pros and 

cons for hands-on versus remote access laboratories, no research has stated definitively 

that RAL does not deliver comparable results. Many works attribute outcome 

differences to the attitudes of the various stakeholders [35], while others report little or 

no differences [36, 37] in the outcomes. 

1.2 Augmented Reality 

The general public has had very little awareness of Augmented Reality until the release 

of the Nintendo game, Pokémon Go! [38], which quickly gained popularity. While 

public access to AR type technologies is growing, they have limited concepts of what 

AR is or that they are even interacting with AR systems. Because of the Virtual Reality 

(VR) technology explosion in the 1960’s [39], and with movies such as Videodrome 

[40], there is already an understanding of enhancing our sensory information. Enhanced 

sensory information(mixed reality) describes a condition where the real and virtual 

worlds overlap [41]. The level of computer-generated sensory content presented to 

users is classified by the virtual continuum of Figure 1-2. Figure 1-2 demonstrates that 

the virtual continuum is not discrete, but combines in a manner where pure reality and 

virtual reality are at opposite ends of a spectrum. These descriptions initially applied 

only to visual aspects of reality, but soon mixed reality environments engaged with 

some of our other senses, such as our aural or tactile senses. 

From the first Heads-Up-Display’s used in military aircraft in the 1960’s to the first 

head mounted display [39], enhancing our visual senses with additional data had been 

the goal of augmented sensory technology. Improvements with ICT resources quickly 

allowed comprehensive AR applications in the entertainment, medical, maintenance 

and warehousing industries. Guided needle biopsies [42] are performed with real-time 
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visual feedback cues to the medical practitioner. Aircraft manufacturing [43] and 

maintenance [44] also benefit from AR systems, reducing costs and operating 

overheads. Each of the above systems has focussed on just our visual sense, which has 

been sufficient to engage the user in the mixed reality environment and improve current 

methods. Whilst there is no one answer to developing an AR solution, the majority of 

systems, included from the fields above, are purpose built [45] and rely on the in-house 

capabilities of AR promoters.  

1.3 User Immersion and Remote Access Laboratories    

Remote Access Laboratories involve a certain level of interaction with the user in order 

for the user to feel as though they are veridical. Whilst the vision supplied can be from 

high-definition multi-camera systems, real-time vision is the best that most remote 

laboratories provide to the student. It has been shown that students utilising RAL 

systems require the perception of influencing reality [46]. The student needs to feel they 

are in-front of the experiment, and through their interactions and the sensory feedback, 

they can feel immersed [25] in the environment. 

Students are now used to accessing all their educational resources online from either 

the institutions web site, or from secondary online sources. Online learning experiences 

are now ubiquitous; including what was previously mandatory in-situ laboratory time. 

The tech savvy and object orientated students expect a level of collaboration and 

interactive functionality to engage them with the learning material. Remote learning 

may cause students to feel detached and requires new methods to engage and 

compensate for the lack of a physical presence [35]. Additionally, RL are conceived, 

developed and maintained by the very cohort who intends to use them. Such 

 

Figure 1-2. Virtual Continuum with Discrete Augmented Reality Example 
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constructions serve a learning purpose during development and may achieve some 

simplified objectives, but the project generally remains in the prototype stage [47, 48]. 

For this reason, developed RL systems can fail to fully involve the student in as many 

aspects of the remote experience as possible. Engaging student’s sensory systems 

allows students to feel involved with the apparatus and the processes of the experiment. 

Without the appropriate level of student engagement, the learning outcomes are not 

fully met, and further methods to immerse the students into the environment becomes 

necessary [49]. Important aspects of the experiment can be highlighted and 

demonstrated through the subtle and simple convergence of student / experiment 

sensory feedback. 

1.4 Augmented Reality for Remote Access Laboratories 

Augmented Reality varies as a consequence of the framework it operates within. 

Augmented Reality for gaming and entertainment has very different capabilities and 

needs. Specifically, for Remote Access Laboratories, Augmented Reality exists as a 

technology to support student interaction with the didactic experiment. This may 

manifest itself as a series of visual overlays on the real-time video streams supplied 

from camera’s monitoring the experiment unfolding. Object models for both AR and 

RAL are discussed and catalogued to understand the requirements of any future 

supporting framework. This research work focuses on the Vision Analysis module of 

the Augmented Reality sub-system. 

The amalgamation of Augmented Reality and Remote Access Laboratories aims to 

provide students with an environment that enhances their experience of accessing 

laboratory resources from a distance. Current properties of an AR environment, within 

the RAL framework, mostly consist of visual sensory feedback in the form of computer 

enhanced live video streams. Data delivered from remote experiments, including the 

live video stream, are used to create computer generated imagery which is overlayed 

with the video stream to provide the student with additional information. When the 

computer-generated imagery and live video stream are properly coordinated, the 

student can become involved at a deeper level with the learning exercise. The 

immersive environment is conducive to improved pedagogical outcomes [50].  
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Engaging students through new learning tools and methods such as quest-based 

gamification [51] has provided a rich learning environment which has become accepted 

as the new normal. Interactive sensory feedback may manifest itself in many forms and 

from numerous sources within the experimental rig. Figure 1-3 [52] demonstrates a 

simple but effective remote laboratory application of a microprocessor centric control 

system. The left image (A) appears as the user views it, with virtual overlaid objects 

included to improve the student’s interaction with the experiment. The right image (B) 

consist of a large fiducial marker to identify and orientate the AR system. This system 

provides the user with computer generated objects which are combined with reality in 

such a way that the user perceives them as part of the environment. Interaction with the 

virtual objects initiates actions that would be expected from an in-situ action. The use 

of virtual visual images within the video stream is an effective AR application to a 

control systems remote experiment. 

Aside from improving student engagement with the content, AR provides other 

important aspects. Many current RAL systems convey only enough data to validate 

theoretical models, but do little to familiarise the students with the equipment they may 

be using once they graduate. For example, nursing students struggle to gain physical 

access to important equipment they are expected to be familiar with once on-site in 

hospitals. Remote laboratory systems have helped to provide nursing students with 

online access to the equipment, which allows them to establish and maintain familiarity 

and confidence with the equipment. However simply clicking an on-screen virtual 

button, representing a function, may not be sufficient for the student to become 

  

                                      (A) User View                                                                              (B) Actual View 

Figure 1-3. An augmented remote FPGA control laboratory ©2011 IEEE 
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competent with the device [53]. It is not always about the function, but how the 

equipment responds. While a message on a display might appear, operationally, other 

stimuli may also be present, such as sounds to indicate the current operating state. Fully 

engaging the student’s senses creates an invaluable experience that supports not just the 

students’ confidence in the theoretical validation, but the familiarization with their tools 

of trade. Associating computer generated sensory information to user interactions with 

the remote experiment becomes a critical AR function; this is critical because our 

understandings of theory and device operations exist in many different contexts. 

An augmented reality system must interpret real-world data from the environment, and 

as such must then acquire some understanding the various input signals. An Analytical 

Control System (ACS), depicted in Figure 1-4, perceives the real-world and derives 

limited understanding. The ACS receives raw data from the remote experimental rig, 

including sensor data and the live video stream, to develop information sets regarding 

the state or processes being performed. Inputs may consist of analogue and digital 

signals from the rig, plus secondary data from other sources such as GPS sensors. Audio 

has been shown as an important source of data, reflecting the sounds and noises 

expected from the operation of equipment. Other sensory information, such as tactile 

data that could be expected from sensing temperature combines to improve the sense 

 

Figure 1-4. Analytical Control System - augmented reality functional model 
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of being present with the rig.  Both a priori and/or posteriori knowledge shapes the 

conclusions of the ACS, and creates computer generated feedback to the user.  

An experimental rig provides a range of data signals to the user, and the goal of the data 

is confirmation of the theoretical lessons. But the data can also be used to improve the 

method in which the didactic proof is delivered. Shown in Figure 1-5, an AR system 

may accept information from a number of physical laboratory resources. The ACS real 

world feedback in Figure 1-4 becomes the Virtual Object Generator (VOG) and 

determines the necessary virtual objects to produce as well as managing 

synchronisation between real and virtual world objects. Enhanced outputs consist of 

virtual objects that become the source of sensory enhancement to immerse the student 

into the laboratory environment. 

The simplified AR RAL interface model of Figure 1-5, accounts for all categories of 

data streams. Input data arrives from RL devices such as thermocouples, strain gauges, 

etc and provides key information to the VOG. Mechanical or tactile/haptic inputs to the 

model arrive from human interface devices such as sensor load gloves [54] and are also 

inputs to the VOG. Both two or three-dimensional video streams require sub-processing 

by the Vision Analysis (VA) system. Depth data is vision data retrieved from 3D vision 

source such as gesture sensing components [55]. Any data extracted from the VA 

system is applied to the VOG. The VA system is the focus of these works. Computer 

 

Figure 1-5. Augmented reality interface for remote laboratory 
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generated information, pertaining to the experiment, is built and synchronised by the 

VOG and dispatched back to the user, incorporating both real and virtual objects. 

Different senses are engaged for each of the three outputs of Figure 1-5. The sense of 

touch for effects such as tension, force [56] or temperature [57] are commandeered, and 

the user may feel the forces necessary to turn a handle, or the heat from a chemical 

process. Spatially synchronised computer-generated audio signals are powerful to give 

the student a three-dimensional sense of the environment. Of the three output 

augmentations, vision is arguably the most important, as it is the primary source of our 

understanding of the real world. 

This interactive feedback may manifest as synthetic input devices or measurements, 

such as instances of virtual stimulus or measurement devices. Purpose built hardware 

devices are also developed to act as either source or sink of the interactive systems. 

1.4.1 Student Engagement 

Enhancing video streams through the inclusion of virtual objects is intended to improve 

the user’s engagement with the experiment, yet there is a concern that technology may 

get in the way of learning outcomes [58, 59]. Research has demonstrated that AR 

enhanced RAL creates an environment in which the students become immersed with 

the experiment [60]. It has been speculated that AR RAL systems provide a scenario 

more closely matching the hands-on experience. Improvements in technology allow 

high quality sensory feedback to the video stream. The psychological effect of quality 

immersion into the environment is then linked to improved learning outcomes [61]. 

Additionally, there is research which indicates that employing AR sub-systems affects 

students motivation and satisfaction [62]. The use of augmented systems must improve 

the student’s experience, and not become a burden to the pedagogical outcomes. 

1.4.2 Concept of Presence 

While technology supports and interfaces the remote systems to the remote user, a sense 

of presence in-situ is how student engagement evolves. Ideally, augmented reality will 

mitigate perception of the technology interface. That is, in the RAL situation, the user 

will not sense the use of technology to perform the experiments. From works of 

IJsselsteijn et al. [63], key considerations define the concept of presence.  
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• Prominent and valuable sensory feedback is presented to the user in an 

appropriate manner, 

• Feedback between users’ actions and the activation of remote devices must 

respond in real-time, 

• Data presented to the users must be consistent with the nature of the objects 

and respond as expected. 

Ignoring the concept of presence when developing AR RAL systems risks the loss of 

all AR enhancements. Tracking failures, timing and synchronisation errors, plus the 

poor application of virtual objects (as listed above) destroy the continuity with reality. 

1.5 AR RAL Challenges 

Augmented Reality vision systems, in isolation or within the Remote Access 

Laboratory framework, incorporate seven different types of technology [64]; object 

detection, object matching, object tracking, scene registration, camera calibration, 

display devices and three dimensional modelling. These technologies in combination 

raise two main difficulties for current AR systems. For users of visual AR systems to 

achieve immersion into the mixed environment, the computer-generated objects must 

be in synchronisation with reality. Secondly, a visual AR system must be able to 

understand the video scene. To perform the second task, CV processes must first locate 

reference points to obtain the appropriate registration, thus aligning virtual and real 

objects within the video stream. Discovery of reference points and locating objects 

between consecutive frames for CV systems, is a very complex and difficult to achieve. 

Without reliable discovery of selected points or objects, as frames arrive to the CV 

processes, AR effectiveness is diminished. 

1.5.1 Synchronisation Challenges 

Computer Vision (CV) techniques are the key to visual AR success [65]. For live video 

streaming, achieving synchronisation within the enhanced video stream (see Figure 

1-5) between the real and virtual objects, requires efficient processing by the Vision 

Analysis (VA) systems. The VA system performs the necessary CV processes, and 

requires fast and accurate examination of the video stream so that as video frames arrive 

to the system, they perform their required functions, and pass the extracted knowledge 

along to sub-processes. 
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Ideally, VA systems should operate at the incoming video frame rate to ensure perfect 

synchronisation between real and virtual objects. In reality, matching the video frame 

rate is not always necessary. There is not always a case to process all incoming video 

frames, nor is there always a need to operate at the maximum possible frame rate. 

Immersive visual AR must still be veridical, and so requires adequate frame rates for 

virtual objects, such that they appear to be an integral part of the scene. Critical primary 

systems may find that frame rates cannot be compromised, and require fast refreshes. 

Assessment of less critical AR systems can benefit from shortcuts within the VA 

system, which may operate on limited frames. Shortcuts can reduce the effectiveness 

and capabilities, so should be assessed to determine their suitability for the AR system 

implementation.  

Worst case scenario for AR RAL will require some level of real-time video processing. 

By this, it means that processing is not performed offline, but as video frames arrive, 

depending on the operational requirements of the system. For this works, real-time 

processing is indicative of online processing at the frame rate required by the AR RAL 

systems. While most AR RAL is not considered safety critical, there are still many 

complex VA processes that require careful development to ensure an appropriate level 

of user immersion. Computer Vision processes, designed to improve the 

synchronisation of real and virtual objects are outside the scope of this research. 

Computer Vision techniques reviewed to achieve the research question have been 

chosen to meet AR RAL requirements. 

1.5.2 Registration Challenges 

A visual AR system requires basic knowledge about the video scene. The view from 

the camera represents a certain pose in which the orientation of the camera and the 

location of objects within the scene are understood. Unfortunately, the camera pose is 

rarely known to the AR system and must be determined through CV processes. If the 

registration between real and virtual objects is out of alignment by a small amount, it 

will be detectable to the user [66]. It is generally believed that without a priori, the 

visual environment is too complex for effective registration [67]. Discovering the 

camera pose or locating Objects of Interest (OoI) require methods for extracting 

meaningful data from the video frames. Locating and isolating primary reference points 



 

13 

is a complex process and a limiting factor for any AR system[68], which can be reduced 

to two main methodologies.  

1.5.2. (a) Fiducial Markers 

Fiducial markers are unique images placed within the environment to identify key 

locations or objects. Augmented Reality systems use fiducial markers as two or three-

dimensional registration/reference points. Initially, fiducial markers consisted of a 

combination of colours in a geometric pattern [69], which is unique within the video 

scene. Scanning the scene locates the solid regions of unicolour where the shape can be 

determined. Using markers consisting of multiple colours and shapes aid’s in the 

triangulation of the known reference points. Unicolour markers suffer with reliability, 

so multi-ringed coloured markers [70] where used to improve the detection process. 

Colour markers require colour processing and an understanding of geometric shapes 

which reduces their reliability. High false positive detection rates and inter-marker 

identification mistakes called for greater robust fiducial markers. 

Bi-tonal binary fiducial markers provide a simplified detection and identification 

system [71]. Utilising black and white patterns as fiducial markers allows a larger image 

to be quickly segmented, filtering aspects of the scene that are irrelevant to the 

registration processes. Figure 1-6 shows an ARTag [71] fiducial marker which has a 

unique binary combination: that is rotating the image does not generate a combination 

that will represent any other marker pattern. The unique nature of the binary marker 

 

Figure 1-6. Bi-Tonal binary ARTag fiducial marker 
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allows camera pose to be ascertained as the combination of binary marks are only 

relevant in one orientation. 

The problem with fiducial markers is the artificial nature of the item. Markers have to 

be placed at key locations to ensure proper two or three-dimensional referencing. 

Adding markers to objects within the video scene creates its own set of challenges. 

Some environments will not be suitable for fiducial markers. Moving items are not 

suitable specifically because of the constantly changing reference point. Other marker 

locations may affect the operation of the devices within the scene. Within a RAL 

environment, adding fiducial markers can render the experiment invalid. For example, 

experimental results for a pendulum are invalidated if a fiducial marker has to be 

applied to the pendulum. Determining the frame of reference or locating objects without 

adding artificial markers to the scene requires a better solution. 

1.5.2. (b) Feature Points 

Every object and shape within an image generate a series of interest points such as 

colours, patterns, edge, corners and vertices. Complex mathematical convolution is able 

to uncover some of these feature points, but at a significant processing cost. Feature 

point detection models produce significant data sets which still require post-processing 

before information about the current frame can be extracted. Filtering or associating the 

large number of feature points, such as the SUSAN [16] corner detected feature points 

in Figure 1-7, requires some prior knowledge or methods to extract points relevant to 

the task at hand. 

Using feature points to calculate the frame of reference can be unreliable from frame to 

frame within the video sequence due to the variances in image capturing and 

  

Figure 1-7. Left - Original laboratory configuration, Right - SUSAN corner detection 
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compression. Other forms of image distortion consist of lighting variations, lens 

distortion, noise within the image capture device (CCD) and process errors. Image 

variations from frame to frame are significant to overcome, necessitating additional 

complex image processing. The pixel attribute differences from the first frame to the 

second frame within the laboratory experiment of Figure 1-7 can be demonstrated in 

Figure 1-8. During frame subtraction, if frame one and two were truly identical, then 

the image in Figure 1-8 should be black. However, because the SUSAN corners 

detected in one frame are significantly different to the next frame Figure 1-8 shows a 

myriad of different detected corners. This becomes a problem for accurately assessing 

any possible frame of reference, as key reference points can be unstable. 

1.5.3 Object Detection Challenges 

Tomasi and Kanade [72] pose two seemingly simple questions regarding object 

detection challenges; how to select features within a video stream and then how to track 

them from frame-to-frame. This is the crux of the problem facing all computer vision 

research and a key factor in effective Augmented Reality systems. With this difficulty 

in mind, this works discovers Computer Vision models which reliably locate and track 

objects within the video stream, without the use of fiducial markers. 

Addressing AR within the RAL framework is a relevantly recent application, and there 

has been little Augmented Reality principles applied to current Remote Access 

Laboratories systems. Research combining both fields has been mostly limited to static 

configurations where a video stream displays an experiment unfolding while video 

overlays of sensor measurements are displayed [52, 73, 74]. These implementations are 

clever and add worth as a demonstration of the capabilities for the combined fields. 

Some implementations are developed for their particular research needs or domain, and 

 

Figure 1-8. Difference in SUSAN Corner Detection between two consecutive frames 
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are not practical for normal use. Engaging the user in an immersive interactive 

environment has had limited delivery. Augmented Reality is capable of delivering 

sensory feedback of remotely delivered content, such that any deficiency a Remote 

Access Laboratories user may suffer as a result of their isolation from the resources, is 

counterbalanced.  

Most Augmented Reality systems rely on vision feedback. Remote Access Laboratories 

provides live video streams of the operating experiment. Feature extraction is a key 

aspect of image analysis within computer vision fields. It is also a key aspect for 

Augmented Reality systems in which the features of an image must be discovered 

before further sub-processing is possible. This research builds the basis for future AR 

RAL systems; as a result, models to extract key object features from live video streams 

(of remotely operated experiments) are developed, without relying on prior 

setups/configurations (such as fiducial markers), such that AR processes can enhance 

the video stream to the user. 

1.6 Scope of the Thesis 

Incorporating Augmented Reality with the Remote Access Laboratory framework 

produces many features to monitor and control. The challenges exist with regard to the 

real-time response of AR to the RAL events, and the collection of data from the 

experiments for the construction of virtual objects. This work is motivated by both 

problems in that solutions must interpret the visual cues from the video streams yet 

operate within a real-time environment. Real-time operations are constrained by the 

frame-rate and data update times required by the remote experiment. Collection of data 

from the experiment is achieved via the sensor devices of the remote apparatus and 

Computer Vision analysis systems operating on the video stream. Visual AR relies 

extensively on CV functionality, and is central focus of research discussed in this thesis. 

Computer vision object detection and tracking systems, suitable for an AR RAL 

environment, are the primary motivation and focus for this research. This research 

focuses on the functionality displayed in green within Figure 1-9, which builds from 

VA object analysis and detection functionality. Important aspects of object detection 

can be simplified to three primary features: the detection and selection of important 

features within an image, using discovered features to identify objects, and utilising 

some detected features to manage registration control. Object analysis distils non-trivial 
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functionality to three key methods; construction of efficient and effective tracking 

models, determining what attributes from various object detection schemes provide 

good features to track, and building models suitable to track features without additional 

fiducial markers. 

1.6.1 Research Outcomes 

Outcomes from this research are framed around known computer vision problems. This 

research aims to find CV solutions in context to the AR RAL framework. Extensive 

work is associated with the various CV models in recreating, testing and measuring 

their attributes and responses. During the course of this research, many issues with 

existing CV models initiated follow-on or lateral research, which led to additional 

contributions, aside from the primary works. 

• Improved efficient image pixel colour interpretations, based on alternative 

colour space models such as HSL/HSB colour spaces. The novel colour 

representation reduces computational costs through reduced memory 

requirements and smaller computational footprint. 

 

Figure 1-9. Scope of thesis: Contributions to AR RAL research 
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• Incorporating the novel colour model provided a means to build an improved 

colour histogram image segmentation method. Reducing the impact of colour 

noise and lighting variations in object detection and tracking becomes a major 

goal, which the new histogram model has been able to achieve. 

• Identifying core attributes of RAL systems that can be provided through generic 

frameworks such as open source gaming engines. 

• Objectively measuring the effectiveness of CV models initiated an innovative 

method to build ground truth test images, capable of reducing the 

subjectiveness, and the time and effort to construct such images. While an 

element of subjectiveness still exists within the process, this contribution 

removes a considerable amount of human intervention. 

In the process of discovering effective CV models for AR RAL systems, the above 

contributions provided the necessary tools or models to progress the research, which is 

discussed in the Research Question sub-section. 

1.7 Thesis Outline 

The document is structured to present the results of the research through the description 

and illustration of the various CV models, their functionality and methods when applied 

to AR and RAL environments. This works is presented in an incremental form 

(chapters) as a number of building blocks to achieve the eventual goals of this research. 

The chapters consist of the following information. 

Chapter 2; Consists of the literature review of Remote Access Laboratories, Augmented 

Reality and relevant Computer Vision research. The review is discussed as a broad 

summary of the current state of the research. 

Chapter 3: Develops the narrative for AR RAL research, and describes the framework 

for current vision analysis systems. The shortcomings of the current computer vision 

models in respect to AR RAL systems are presented and builds the requirements for 

this research. From the requirements, the research questions are posed. 

Chapter 4: Discusses the various sources of noise within digital images, and defines a 

number of image filter functions which improve the signal-to-noise ratio within the 

images. The types of CV filters, their nature and mathematical representations are 

described. The purpose of filter functions is explained in relation to these works. Also 
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provides a series of test results regarding the processing time constraints of the CV 

models, and their suitability for use within the AR RAL environment. 

Chapter 5: Introduces a contribution regarding the objective performance testing of CV 

edge detection models via ground truth models. This novel method has removed a 

significant level of subjectiveness in image output assessments after undergoing CV 

edge detection processes. 

Chapter 6: Discusses the various Computer Vision image analysis functions, which 

covers digital image segmentation, colour indexing and edge or feature detection. The 

nature of the models, mathematical representation, response functions and key features 

are described. The testing regime is defined and the means to validate the performance. 

Each of the CV image analysis model is tested and its performance measured. The needs 

and suitability for AR RAL systems are explained. 

Chapter 7: Introduces a contribution defining a method to create a unique signature 

associated with an image object. This approach calculates a gradient vector from 

neighbourhood pixel gradients, to create a unique vector representing the object of 

interest. The performance of the contribution is evaluated in follow-on chapters. 

Chapter 8: Introduces a contribution for object segmentation and/or object detection 

through colour histograms. The method employed reduces current colour histograms to 

two-dimensions instead of the normal three, improving processing speeds and also 

improving the relationship between colour spatial distances. Use as a segmentation 

process and for object matching is verified in follow-on chapters. 

Chapter 9: Defines the methods available to determine the extent to which two objects 

match. Object matching methods are key to successful object tracking, therefore fast 

and efficient mathematic comparison methods are required to measure the likelihood 

that two object signatures match. Methods discussed are implemented within the object 

detection and object tracking chapters. 

Chapter 10: Defines one of the major experimentation portions of this research. Object 

detection models are selected for testing, based on previous chapter reviews. Test 

scenarios are defined which includes the testing regime and results. Validation and 

verification of model performance is included. 
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Chapter 11: Defines the second major experimentation portion of this research. Key 

requirements for CV object tracking within the AR RAL environment is discussed. The 

object tracking testing regime is defined and the selected CV object detection methods 

are assessed as to their suitability as an object tracking agent. Performance measures 

for candidate object tracking mechanisms are reviewed to ascertain models that are 

suitable for the AR RAL environment. 

Chapter 12: Summarises and concludes this research. 
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2 

2 Literature Review 

This chapter lists the development pathways for remote access 

laboratories and augmented reality, providing the key literature 

associated with the investigation of the research question. 

Remote Access Laboratories provide a mechanism for students to access teaching 

resources from a distance. The capabilities and implementations of Remote Access 

Laboratories vary and are determined by the institution implementing the system. 

Science and Engineering faculties generally lead the ventures as a result of the nature 

the cohort’s training and skill base. (Engineers are more likely to build the hardware 

and software required). Developing and building Remote Access Laboratories benefits 

both the student and institution through greater access of expensive laboratory resources 

[37]. Equipment utilisation is able to reach 100%, greatly enhancing the cost benefits 

of such equipment. Students are able to access and interact with the equipment at any 

time in any location. Students also develop a sense of independence through 

autonomous learning and confidence by means of familiarity with the equipment and 

the experiment. 

Augmented Reality is built upon reality. It involves enhancing our senses and 

experience of reality through the interactive computer-generated feedback of 

information not normally available or formatted for our senses. Without the user 

modifying parameters of the environment to interact with the interface, then any 

presented data is modeless. Key to the AR definition is the user interactivity with the 

environment [68]. The differing realities can be seen on Figure 1-2 in which Augmented 

is located between Reality and Virtual Reality. Milgram [41] places Augmented Reality 

within the left half of the continuum, and Augmented Virtuality on the right half. For 
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many tasks, user interfaces could be considered to move anywhere along the continuum 

[75].  

The difference between Augmented Reality and Virtual Reality is that Virtual Reality 

replaces our sense of reality while Augmented Reality maintains it, but enhances it in a 

homogeneous environment. 

Augmented Reality within the Remote Access Laboratory framework is a very new 

area of research, and consequently has very little literature available. The aspects of the 

research question rely upon the current work undertaken in the fields of remote 

laboratories, augmented reality and more specifically, computer vision. A review of 

relevant aspects for each field in relation to the research question follows. 

2.1 Evolution of Remote Access Laboratories 

Accessing laboratories remotely developed through the needs of electronic and control  

engineering  education [29, 32]. Remote laboratories have allowed access to expensive 

laboratory equipment to geographically distinct student locations [31]. Evolution of 

RAL systems have become a crucial aspect of undergraduate studies [22] and are seen 

as a supplement rather than replacing proximal learning [76]. The pedagogical 

outcomes have been debated for some time, with both the benefits and disadvantages 

argued as proof for each positional camp.  

Benefits from RAL environments are immediately seen by the diverse demographic 

range of students accessing systems. Many current online learning systems have simply 

duplicated the lesson structures of the classroom [53], which have also allowed students 

to learn at their own pace. Some RAL systems also provide a social aspect through 

collaborative work [77], which has been reported as one of the key aspects of 

maintaining student motivation [78]. Access to RL’s allows the student to repeat 

experiments until they feel they have reached a level of proficiency and confidence, 

generally not possible with in-class proximal access [76]. 

Access to RAL systems has successfully expanded into primary and high-school levels 

[79-81]. For technology savvy young students, RAL does not seem out of place. 

Surveys comparing real, virtual and remote experimental configurations have described 

students feeling detached from the learning process [82].  Engaging students within 

RAL environments at all levels and across multiple disciplines, requires careful 
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consideration of the users’ needs as well as the experimental outcomes to ensure 

students receive the appropriate level of engagement [83]. 

2.1.1 Virtual Laboratory Influences 

Initially remote laboratories consisted of virtual instruments displayed on a computer 

monitor, which represented real apparatus. Circuit simulation programs such as 

Simulation Program with IC Emphasis (SPICE) [27] provided a complete virtual 

environment to design and test all manner of analogue and digital circuits. This new 

method of human/machine interface promoted science and engineering faculties to look 

for bigger and better projects [84]. Constraints of physical apparatus, such as cost and 

maintenance, were no longer a factor for virtual environments [85]. Prototyping through 

the design and testing phases of development became easier and cheaper, which 

allowed previously impractical projects [86]. However, development costs and 

complexities still limit some implementations, as each system is unique in both concept, 

design and implementation [45]. 

Virtual laboratories become especially useful for real-world environments that are 

dangerous, or where operating the experiment incorrectly may cause catastrophic 

damage to real apparatus [87]. A virtual chemical engineering project [87] allows users 

to simulate the operation of a chemical plant, engaging the user with a visual 

environments similar to real-world configurations. Additionally, simulated or virtual 

systems provide a means to test theoretical limits and outcomes with real-world data. 

However, the virtual environment can be its own downfall, as users still do not feel they 

are within the environment [37]. For the chemical plant, the perspective was not that of 

a person standing within the plant. Virtual systems also suffer from idealised 

representations. Real equipment generates noise, suffers from tolerance errors, and 

other issues, however simulations are ideal and are not always representative of the 

real-world outcomes [60]. 

2.1.2 Remote Laboratory Expansion 

Control engineering cohorts operating robotic systems remotely [26] utilised fledgling 

World Wide Web (W3) [88] capabilities to extend the range outside their facility. It 

was realised that physical control of other experiment types could be controlled 

remotely, providing access to a greater student base. Internet access and quality 

improved globally and became the backbone for RAL growth. The range of RAL 
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configurations has quickly expanded to provide remote practical sessions for a range of 

activities such as: 

• Physics; testing and verifying relationships such as Hooke’s Law [79, 89], 

Thermodynamics [90], Fluid/Hydrology [91], and Coulombs Law (and 

associated electrical component models) [92]. 

• Control Theory; employing Robotic systems [81, 93], Programmable Logic 

Controllers (PLC) or other control systems such as testing Power 

Transmission [94], or novel languages such as Java [95]. 

• Nursing; rehearsing professional skills with key equipment [53], and 

improving critical thinking and reasoning skills [76]. 

• Gamification; providing alternative methods of delivering course material 

while also creating an environment to support collaboration and cooperation 

[77, 96]. 

Surveys of RL’s report a similar issue to virtual laboratories, relating to the student’s 

sense of detachment [60, 97] from the experiment. Users are never quite ignorant of the 

technology separating them from the real apparatus, and for full engagement the 

perception of being on-site is necessary [63]. 

2.1.3 Engineering Education 

Original RAL systems evolved out of the needs of engineering undergraduate students 

[98] to access scarce resources, with little consideration to any pedagogical 

requirements. Virtual and remote laboratories, as a means for student familiarisation 

and experience, were considered sufficient [99] but were not subject to meaningful 

research regarding efficacy. Some newly developed RL systems attempted to list their 

pedagogical goals and outcomes [46, 100], but failed to test if they were ever met. 

Ensuring engineering graduates met accreditation standards, it became vital to validate 

the pedagogical outcomes when RAL systems are utilised [101]. 

It was not until 2006 when Ma et al. [35] produced in-depth research mapping 

engineering accreditation requirements to the various attributes of real, virtual and 

remote laboratories. Surveys and follow-on research began measuring quantitative and 

quality values of RAL for students [102]. New RAL implementations have included 

surveys of student reactions to the remote environment to validate the development. 
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While there have been detractors of RAL, the various accreditation boards are confident 

of the effectiveness of RAL to deliver appropriate course content to a suitable standard 

[101, 103].  

2.2 Evolution of Augmented Reality 

True augmented reality must provide enhanced information to the users’ senses which 

they are then able to interact with. Many systems exist which state they are AR systems, 

but are really only presenting data in novel ways [104-106]. Direct interaction of the 

sense is not necessary; interaction with the environment, which in-turn presents new 

sensory data, is appropriate. The chemical experiment found in [106] could be 

considered lacking in substance. While manipulating chemical structures, via fiducial 

markers, provides students with a novel way of viewing 3D models, does it provide 

enhanced information? To engage visual and tactile sensors, the user could have been 

'handling' atoms to create molecules, with a sense of heat to reflect endo- or exo-thermic 

reactions. The published method is little different to using a mouse to scroll a 3D 

structure, so offers little value other than a demonstration of the technology. For 

example, data presented to military pilots through the Head’s Up Display (HUD), is a 

visual representation of information not previously sensed [107], such as target 

information. The pilot is able to move the aircraft (interact with the environment) to 

successfully engage a target (modify the visual information). Overall, the system 

provides creates a new sensory system which the pilot is immersed within. The purpose 

of the HUD has given the military confidence in AR technology, and produced further 

advances, reflected in today’s F-35 fighter jet which relies on a helmet-mounted HUD 

[108] for significant pilot interaction with their aircraft and environment. Today, AR 

continues to grow in areas as diverse as manufacturing [109] where AR reduces training 

and technician errors, medical [42] practices providing x-ray vision for simple 

procedures, and entertainment [110] through AR games.  

2.2.1 Industry AR Developments 

Uptake of AR within the manufacturing and construction industries has produced cost 

benefits by improving worker efficiency and reducing human errors. For both 

industries, the servicing and maintenance of equipment has improved through AR 

support [111, 112]. Beginning with VR to create walk-throughs of complex 

environments [113], AR has evolved to allow maintenance staff to service or repair 
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equipment after a significant reduction in the number of training hours [114]. With a 

head mounted display (HMD), technicians are able to locate key aspects of an 

assembly; where they may be prompted to perform a series of steps to operate the 

equipment [44], or to connect or complete the assembly with secondary components 

[109, 115]. 

Apart from aircraft HUD usage, the military has also assessed AR as a battlefield 

assistant [116]. Soldiers on the ground wearing HMD’s, are given greater situation 

awareness, with visual feedback of critical tactical knowledge such as routes, enemy 

positions and strength, and real-time updates. Soldier interaction with the system 

ensures well-coordinated and well communicated goals are achieved while increasing 

survivability. Interpreting large real-time data sets used for medical diagnosis are also 

improved through AR. Surgical procedures such as guided needle biopsies [42] or 

laparoscopy [117] supply visual representations to the surgeon, of the region of interest 

and their actions as if they has x-ray vision.  

2.2.2 Gaming AR 

Opportunities for AR within the gaming community have interesting and varied 

implementations. Conceptual development of the popular game Quake [110] 

demonstrated how gaming and  AR can be taken out of darkened rooms and into the 

real world. Using HMD’s and backpack computing, the real world becomes the playing 

arena. Pokémon Go! [38] generated wide-spread enthusiasm, and its implementation 

required only minimal AR methods utilising very little computer vision processing. A 

novel approach to game creation involves utilising fiducial markers representing 

objects within the game space [118]. The players steer vehicles using a controller 

covered with fiducial markers. Detecting the motion and pose of the steering markers 

directs the vehicle through the user create obstacle course. The number of 

configurations is enormous, allowing unlimited game play. New hardware systems such 

as Microsoft’s Kinect 3D [55] depth sensing camera offers new resources to further 

promote AR gaming. 

2.2.3 AR in Education 

As this work has previously stated: there is little research available on AR for RAL, 

and only a handful of systems such as the very clever implementation shown in Figure 

1-3 by Andujar et al[52]. The use of AR within education has really only been 
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demonstrated at conception level, with little work to define and construct working 

toolsets. Manipulating three-dimensional objects through the movement of fiducial 

markers has been common, such as with the magic lens [119] venture, but offers very 

little in actual course content delivery. 

To avoid the initial pitfalls of RAL, the pedagogical value of AR needs to be 

understood, instead of creating AR environments for the sake of the technology. Salmi 

et al. [120] and Lee [121] have created an understanding and measures necessary for 

AR to progress and improve the delivery of course content. While the conclusions 

highlight the difficulty of AR (which is the difficulty applied to AR in every field) the 

value was also recognised. Some research suggests that AR in learning environments 

might provide the impetuous to re-conceptualise some of the key concepts in education, 

such as context, engagement and authenticity [122]. Studying the factors that affect 

content delivery and the effectiveness of AR in the learning environment has been 

called for and is an area of intense review [50]. 

2.2.4 Other AR Sensory Systems 

Visual AR systems are the dominant method of interfacing our senses, but our other 

senses have had successful research too. Haptic interfaces, which provide feedback on 

touch [54], or the sense of temperature [57], or the application of force [56], help to 

improve the user experience and perception of immersion; however, aural feedback has 

not been a studied feature of current AR systems. Within a remote laboratory 

environment, sound is presented to the student as a consequence of the video streaming. 

Taking advantage of audio cue’s or simulating the sounds of remote apparatus such as 

the intravenous infusion pump [76] provide an improved sense of presence with the 

device. 

2.2.5 Object Tracking Systems 

Object tracking within AR systems relies on one or several Computer Vision 

techniques. Creating an understanding of the video scene is a non-trivial exercise, 

requiring complex analysis of each and every frame arriving to the CV/AR processing 

systems. Locating key reference points is vital for active registration. Unless the AR 

system knows the location of strategic landmarks, real and virtual objects will not 

properly align [41], creating confusion and loss of user immersion. Proper alignment 

of real and virtual visual objects is the critical problem to solve for AR systems [123]. 
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Computer vision image processes such as edge detection and corner point or feature 

point detection are used to locate and isolate important landmarks. 

Detecting and isolating feature points, whether as part of an object or reference point 

requires comprehensive image processing. Corner and Edge detection models are the 

framework for the majority of CV processes. Baseline models such as Moravec [17] 

and Harris [124] have been consistently used because of their simplicity and 

effectiveness. Interpretations of pixel intensities or energy levels are the focal for many 

CV image processes. Energy levels are used by Moravec: see Equation 2-1, in which 

energy (𝐸) is summed in a floating window (𝑤).  

Moving the floating window creates an energy response such that a central pixel will 

generate an energy map minimal when placed at a corner. 

2.2.6 Markerless Tracking 

Object tracking without the use of fiducial markers, in real-time processing, has been 

consistently difficult to achieve. Achieving spatial relationships based solely on 

discovered natural markers becomes challenging. Pre-training or learning features 

within the video scene provides a means to gain an understanding of the environment 

prior to operational actions [6, 44, 125]. Markerless tracking without fiducial markers 

and without prior knowledge of the environment is not a normal consideration. Novel 

methods to ascertain camera pose and reference points have considered planar structure 

within the scene [126], structure from motion [127, 128] to build a three-dimensional 

model, and identifying natural features [129]. 

2.3 Computer Vision Systems 

Problems abound with automated visual object detection and scene interpretation. 

Computer vision systems attempt to make sense of the seemingly random data sets that 

make up a digital image. This section highlights the research associated with various 

CV methodologies and how they build knowledge from digital images. 

 

𝐸𝑥,𝑦 = ∑ 𝑤𝑢,𝑣|𝐼𝑥+𝑢,𝑦+𝑣 − 𝐼𝑢,𝑣|
2

𝑢,𝑣

 

Equation 2-1. Moravec corner detection model 
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2.3.1 Segmentation 

Image segmentation divides the digital image scene into sub-regions or features 

classified as homogeneous. Bitonal segmentation reduces an image to just foreground 

or background regions, based on pixel intensity compared to threshold value. Threshold 

values contribute to the effectiveness of all similar segmentation methods. Clustering 

techniques, taken from Knowledge Development in Databases [130], classify data 

based on a pre-set criteria, while also incorporating and involving pixel spatial 

relationships. Large spatial datasets such as digital images, represent a data subset 

suitable for clustering models such as Density Based Spatial Clustering of Applications 

with Noise (DBSCAN) [5], which is capable of locating homogeneous pixels making 

up any shaped object. Other clustering techniques such as k-means [131], and fuzzy c-

means [132] are also effective for image segmentation. 

2.3.2 Boundary Detection 

Edge or corner detection systems have long been one of the main methods for obtaining 

information regarding the features within a digital image. Localisations of boundary 

conditions, through the convolution of a derivative kernel, have consistently provided 

robust solutions. Early edge detector operators such as Sobel [10], Prewitt [12] or 

Kirsch [11] rely on two partial derivatives, one along the X-axis and the other along the 

Y-axis, in convolution with the image. This form of edge detector is considered a first 

derivative and is anisotropic. Sudden changes in image intensities can occur either 

because of the change from one object to the next within the image, or because of image 

noise. Filters such as the Gaussian filter, smooth high frequency noise, but also impede 

the localisation of the edge detection models [133]. 

Zero-crossing edge detection models, based on second-order derivatives, such as 

Laplacian [14]or Laplacian of Gaussian also suffer from localisation errors, producing 

detected corner or edge points which are not aligned to the physical location. Non-

quantifying boundary detectors such as the Canny [15] edge detector, still perform 

convolution with the image, but also utilise non-maximum-suppression as well as 

hysteresis thresholding, for improved results. Processing times are much longer for 

non-quantifying model, and are also considered quite robust [134]. 
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2.3.3 Object Detection 

From the initial building blocks of image segmentation, edge or corner detection 

systems, objects may be determined from derived feature maps of pixels of interest. 

Attributes of the pixels associated with objects, receive attention to create unique 

signatures. Object histograms [135] are successful at matching the signatures, but are 

restricted in their use due to the loss of spatial data [136]. Some popular genres of object 

detectors are based on a family of statistical classifiers. Gaussian Mixture Models 

(GMM) [137, 138] build knowledge of the digital video scene through statistical 

analysis of historical values of each pixel. Assuming a Gaussian distribution, pixels can 

be classified as foreground or background, allowing the foreground objects to be 

detected. Statistical classifiers are built on training data sets, and can consume 

significant ICT resources while also converging slowly when used for object tracking 

[139, 140]. 

Template and shape matching algorithms are effective object detection systems [141]. 

Measuring the similarity between shapes while also ensuring their uniqueness when 

compared to other shapes, is a key factor for template matching [142]. Comprehensive 

libraries of objects are maintained, with object images stored in various orientations, 

scales and translations [143] to improve affine transformations during template 

matching. Simple geometric shapes can also help to locate objects within the video 

scene when matched with objects of similar shape. Generalising Hough Transforms 

[144] compare detected object boundaries with Hough space shapes, mapping possible 

geometric shapes within the image. Hough Transforms are computationally expensive, 

and are unreliable in natural scenes which lack geometric shapes and high impulse noise 

[145, 146]. 

2.3.4 Fiducial Markers 

Fiducial markers are employed as an attempt to reduce tracking errors from mis-

registration within the video scene. Building unique fiducial markers to create a series 

of known reference points is simplified through basic geometric shapes and colour 

coding [69]. Unfortunately, this level of simplification did not provide the 

sophistication required to understand camera pose and object scaling factors. 

Improvements in fiducial markers incorporated multi-concentric circles of different 

colours and sizes to create unique markers which also communicates three-dimensional 
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information [70]. Finally, markers based on bitonal digital data tags [71] revolutionised 

the field, producing tags which conveyed camera pose information, and also produced 

distinctive digital numbering system (in any orientation) to deliver additional spatial 

information and indexing to the image processing sub-systems. 

2.3.5 Object Tracking 

Object tracking has been achieved at varying levels of efficiency for a number of years 

and with a range of methods. Simple segmentation methods for object tracking such as 

GMM’s [139] or frame subtraction [147] isolates foreground objects as a means to 

locate the object in each frame. While the above models’ function in some 

environments, they are not robust in environments that suffer from clutter or noise 

[140]. Segmentation has not been a popular choice in tracking models, in recent times. 

Apart from colour histogram object tracking [148], other segmentation methods such 

as clustering techniques (k-means  and fuzzy-c means) suffer from resource utilisation 

problems, which make it difficult to apply in a tracking scheme [149]. 

Feature points; including edge gradients, corners and invariant feature points, are the 

preferred image attribute discovery for object tracking. Scale Invariant Feature 

Transform (SIFT) [150], initially an object recognition method, has been successfully 

employed in object tracking [129] due to its robust nature in matching objects of 

different scales and transformations. Tracking algorithms based on SIFT feature points, 

such as Simultaneous Localisation and Mapping (SLAM) [151] and Structure from 

Motion (SfM),[127] have produced robust systems with very little, if any, prior 

knowledge of the environment. Some SLAM systems such as Davidson’s [152], 

managed to operate reliably before SIFT was utilised, by locating SIFT-like structures 

within the image. 

Tomasi & Kanade [72] clearly define the problems of object tracking, and have 

developed coherent concepts for future developers to follow. The notion of the inter-

frame motion: that is, the assumed level of motion from objects between frames is an 

important factor for all successful tracking schemes. Rediscovering objects from an 

entire frame is time consuming, and real-time tracking of object must be accurate and 

fast. Finding an object when the expectation is that it will be close by to its previous 

location, is fundamental [72]. 
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2.3.6 Performance Measurements 

Determining the effectiveness of computer vision models has mostly been performed 

subjectively, through the judgement of the researchers or a small select panel of 

reviewers. The assessment of models’ performance generally revolves around:  

• the processing costs (or speeds) [153, 154], 

• if the model is capable of locating edge, corners or objects of sample images 

[155-157]. 

Performance assessment of a model has little regard to its ability to improve in 

comparison to other models. 

Undertaking impartial validation of CV models is relatively uncommon. Research on 

edge detection models has been achieved through the use of ground truth images to 

compare model results against known pixel classifications [158]. Ground truth images 

are constructed from subjective choices on the location of edges, and regions that are 

deemed unimportant in the assessment of the detectors capabilities. While CV model 

validation remains subjective, ground truth testing at least provides some quantitative 

measures. Performance classifiers are selected from Receiver Operating Characteristics 

(ROC) analysis [159]. Numerous classifiers are available from ROC analysis; however, 

there is no clear solution for classifier selection. Common ROC metrics provide 

researchers with a combination of classifier scores [160] which must be assessed with 

regard to the context and the consequences of selecting a bad classifier [161]. 

2.4 Summary 

While RAL systems have been in place for many years, incorporating AR into the RAL 

framework is relatively recent. The full benefits of an AR RAL system are yet to be 

realised, and to promote the compound technology, further understanding of the 

interfaces and internal mechanisms are required. Computer vision is a key contributor 

for effective and immersive AR. For RAL base AR, the working environment offers 

unique difficulties and opportunities which are yet to be fully revealed. Barriers for the 

continual uptake of RAL depend on the level of difficulty implementing systems for 

facilitators, and the ability to render the technology invisible to the user, ensuring total 

immersion into the environment. Inductive image processing techniques aim to create 
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simplified methods and models which require minimal implementer configuration, 

while providing improved technological tools for developers.  
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3 

3Research Question 

This chapter provides the description of the technology associated with 

the current state of the work with augmented reality for remote access 

laboratories, and structures contribution pathways in the form of the 

research question. 

The use of Augmented Reality for Remote Access Laboratories is an amalgamation of 

technologies, with little previous research. Many current RAL systems have simply 

added networking functionality to existing equipment to achieve a remote capability 

with little regard to the full advantages the technology may provide [90]. These RAL 

systems provide many benefits such as: practice sessions in which the student rehearses 

in-situ laboratory demonstrations, and access to resources anywhere at any time. 

However, the systems still fall short in providing efficient feedback to students [162]. 

A level of transparency for the technology, such as the current simple remote laboratory 

system infrastructure, may also be distracting [63] to the student, limiting their attention 

to the experiment. Some Remote Access Laboratories may also limit the student social 

interactions, achieved from in-class sessions, which have been shown to be detrimental 

to learning outcomes [163]. 

The application of AR within the RAL framework seeks to break free of the traditional 

didactic processes by creating an environment that better engages the student. 

Supplying an immersive sensory environment generates improved contextual situations 

from which understanding is derived [164]. The immersive environment promotes 

knowledge and experience from the engagement of the students rather than just static 

learning [53]. Vision based AR relies heavily on CV models, which are processor 

intensive and complex to implement. Expanding the reach of AR for RAL requires 

unique CV solutions to the specific object detection and tracking problem within the 
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RAL environment. The application of this research investigates new or existing object 

detection and tracking CV models, which allows AR for RAL to appropriately immerse 

the user into the remote environment, regardless of the quality of hardware available. 

With suitable object detection and tracking models, a reliance on fiducial markers and 

other complex setup requirements is minimised. As such, AR RAL environments will 

not need specialist developers or bespoke hardware to implement immersive AR 

systems.  

Section 3.1 describes the properties of a visual AR system including the interfaces 

required by external systems. Internal to visual AR systems (as shown in Figure 1-9) 

are the CV components, and Section 3.2 discusses the various CV processes necessary 

for gathering knowledge regarding a video sequence. Section 3.3 describes the unique 

object detection and tracking methods. Properties of various CV models necessary to 

support the proposed model and the requirements by the proposed model are also 

explained. The research question is presented in Section 3.4, followed by the original 

contribution in Section 3.5. 

3.1 Visual Augmented Reality  

Augmented Reality systems rely on a vast amount of data to create the correct virtual 

objects, in the appropriate context, at the correct location, at the correct time. For visual 

AR applications, the level of technology to amalgamate and build upon is non-trivial 

and requires an understanding of object detection, object matching, object tracking, 

scene registration, camera calibration, display attributes and 3D models [64]. Computer 

vision systems are able to detect and track objects with varying success, but recognition 

of objects is still very difficult [164]. Core systems for visual AR capabilities generally 

rely on other systems such as GPS with little regard for live video stream image 

processing. Visual AR functionality may operate in one of two modes, which is 

illustrated through Figure 3-1 and expands the Computer Vision Systems of the 

Analytical Control System shown in Figure 1-4. The simplest mode, but the most 

difficult to implement, involves a single data stream which is solely delivered via the 

live video stream. All information must be derived from the video stream, with no other 

input data to help place the context. The second mode of operation uses secondary data 

sets, such as GPS signals or sensor data, to provide evidence of the current environment 

and the support in video scene interpretation. Additional data sets can reduce the 
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complexity of AR systems vision processing, as many times there is only a minimal 

amount of data available, or data required from the video stream. 

The core systems within the visual AR system, shown in Figure 3-1, operate in both 

modes. For simplistic video only modes, Sensor Data is not activated and Object 

Detection relies exclusively on the video stream. Object Detection requires data from 

the video stream, regardless of the mode of operation. All effective visual AR 

applications require a minimum knowledge of the location of key points before any 

artificial artefacts can be applied to the video stream. Object Detection is one of the 

most important and most difficult of all the AR sub-systems. It requires complex CV 

processes to extract information from a vast amount of changing data. Object Tracking 

accepts information from the Object Detection sub-system and the modified video 

stream. Object tracking requires contextual information regarding the environment. For 

three-dimensional tracking, understanding the nature of the 3D positioning for objects 

as well as the camera pose is very important. Reliable tracking of the OoI within a live 

video stream is also a very difficult process. For some CV models, data from the 

 

Figure 3-1. Core Augmented Reality systems 
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tracking process is fed-back to the Object Detection system as knowledge regarding the 

preceding frame. 

Visual AR applications which build on the core AR systems of Figure 3-1 are capable 

of providing immersive environments to their users. Key to successful AR applications 

are robust computer vision algorithms within the Object Identification and Tracking 

sub-systems, which are discussed next. 

3.2 Computer Vision 

The aim of CV models is to build knowledge from the data sets of digital images. The 

value of a single pixel, from a digital image, is highly unlikely to represent a single 

attribute of the analogue world. As such, the single pixel is not significant in isolation 

or out of context, yet it is through the analysis of a single pixel that we make decisions 

regarding the nature of the scene. There are two generic types of CV model: those 

models which require prior knowledge of the environment such as object attributes, or 

models which gather knowledge as the system operates, requiring no prior knowledge. 

Systems abound which provide reliable object detection and tracking because of 

comprehensive training regimes before the operation of the system. To promote AR 

RAL systems across multiple fields and at all levels of education, the implementation 

and operation must be intuitive and as easy as possible for all users. Developing systems 

that are based on a priori adds complexity to the configuration, setup and maintenance 

of the implementation. 

Development of dynamic object detection and tracking becomes a complex process, 

compared to trained or learning systems, and consumes a much greater load of ITC 

resources to extract meaningful information from the video scene. However, the benefit 

to future AR RAL developers is a CV model which can be utilised in any scenario. 

An a posteriori object detection and tracking based system cannot function until useful 

reference points or features can be found [165]. Feature point detection cannot be 

classed as a solved problem, with different model solutions available for different 

classes of vision problems. The biggest CV problem comes from the two-dimensional 

planar image representation of a three-dimensional environment. Some key feature 

points may be derived from corners or edges of an object, but many false feature points 
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exist because of the discontinuity of the depth boundaries. Of course, good features 

could be hand-picked, but then that defeats a posteriori mantra.  

Applications of fiducial markers are also effective to define known locations. Figure 

3-2 demonstrates a control experiment with fiducial markers applied to create not only 

reference points for CV registration systems to located, but also creates identifiable 

objects through the unique coding system of the markers. However, the markers 

become a priori situation, and also generate their own issues. The markers cannot be 

applied in all circumstances, and in the example of Figure 3-2, many key components 

of the experiment are not labelled with markers as the size and resolution of component 

are too small, or are obscured. Insufficient camera resolution, in regard to the fiducial 

marker encoding, renders their application void. The creation, and configuration of an 

AR system utilising fiducial markers, also increases the complexity to setup and 

maintain systems, while also employing a method that is not a holistic solution.  

Most feature point detection models perform mathematical operations on the image, 

such as partial derivatives or convolutions, to discover gradient magnitudes which 

indicate probable edges or are combined in novel ways to detect potential edges. At the 

 

Figure 3-2. Control experiment with fiducial markers applied [3, 6] ©2002 IEEE 
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heart of most edge or corner detectors is the pixel intensity definition shown in Equation 

3-1. 

The energy ( E ) of the central pixel ( vu. ) within the test window, is the sum of the 

difference in intensity levels between the central pixel and the surrounding pixels. 

Processing the entire image produces a gradient map used to locate key feature points. 

The level of cornerness [2] is a measure of the gradient direction changes, and is a 

popular start for many feature detection models. The cornerness can be defined as the 

second directional derivative, or more simply shown in Equation 3-2, where K is the 

measure of cornerness and I is the intensity at the testing pixel location. Unfortunately, 

most foundation processes, such as the Moravec and Harris corner and edge detectors, 

cannot operate at full video frame rates [166], and suffer from repeatability issues as a 

result of inconsistent colour and illumination between consecutive video frames. 

3.3 Proposed Object Detection and Tracking Model 

Research within the Computer Vision community has defined numerous models which 

solve a wide range of image analysis problems. For Augmented Reality within the 

Remote Access Laboratory framework, common CV solutions do not readily fit. Many 

Computer Vision models suffer from high computational costs, restricting real-time 

operation [167-169], or rely on learning/training processes [6]. In some aspects, the 

existing CV models are either overreaching or insufficient to achieve the needs of AR 

RAL. The direct focus of this thesis is not a specific CV model, but to discover a new 

and unique model or a combination of existing Computer Vision models which are 

capable of supporting AR functionality within the RAL framework, to identify and 

track objects, and which do not rely upon prior knowledge such as fiducial markers. To 

achieve this goal, a technical understanding of the problem is first required. As such, 

Eu,v = ∑(Ix+u,y+v − Iu,v)
2

u,v

 

Equation 3-1. Pixel intensity - gradient calculation 

K =
IxxIy

2 + IyyIx
2 − 2IxyIxIy

Ix
2 + Iy

2
 

Equation 3-2. Cornerness as defined by Kitchen and Rosenfeld [2] 
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the work is presented in order of the physical building blocks required to achieve the 

research question. 

3.3.1 Available Image Processing Tools 

Digital images and frames from digital video cameras suffer from significant noise in 

the form of: colour and lighting variations, camera distortions and compression 

algorithm losses. High frequency noise affects the capabilities of vision analysis models 

involved with edge and corner detection [15], as this noise is viewed as interest points. 

Filtering techniques are necessary to reduce high frequency noise.  A number of 

filtering techniques are able to reduce various noise levels within each frame. Low-

pass, high-pass and band-pass filters for image processing remove noise or portions of 

the data set no longer required for processing [14]. Methods to enhance the desired 

features of a particular model can, in some circumstances, improve the overall 

effectiveness, but requires careful consideration. For example, filtering colour images 

to 8-bit greyscale images removes significant noise, yet the loss of colour data may be 

a concern for follow-on sub-processes. Filters are generally a pre-processing phase for 

follow-on image analysis processes.  

Points of interest can be discovered through first or second order derivatives, locating 

local maxima or zero-crossing boundaries.  The basis for corner or edge detection 

within digital images is from analysing the boundary gradients, or searching for a 

measure of cornerness. Of course, noise can generate many false signals and, perhaps 

counter-intuitively, applying a smoothing filter improves the corner or edge detection 

methods. Unfortunately, common methods of feature extraction such as non-maximum 

 

Figure 3-3. Feature point localisation - rounding effects 
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suppression, or derivative approximations create a rounding effect which affects the 

model’s localisation. Figure 3-3 demonstrates a feature point and the rounding effect 

caused by common CV convolutions, which places the feature point at some distance 

from the actual point.  

Image segmentation provides a means to separate portions of the image into different 

classifications. Generally, an image will be segmented into foreground and background 

regions. Background sections are ignored, allowing processing to focus on foreground 

regions. Many segmentation models rely heavily on a priori knowledge, collecting 

statistical information from training data sets to determine the classification of each 

pixel. Other methods perform knowledge discovery through clustering techniques [149, 

170] which aims to classify image pixels into common homogenous groups. All 

clustering techniques are resource hungry and struggle to operate in a real-time 

environment [149]. 

3.3.2 AR RAL Experiment Environment  

From the computer vision tools currently available, no single solution is robust in all 

situations. A typical RAL experiment will comprise of inconsistent lighting 

environments, may contain many moving parts (or none), and be constructed slightly 

differently each time. Experiments may receive a significant amount of 

sensor/measurement data (or none), yet require experiment results accessible to the 

student. The capabilities of the ICT systems will also vary, based on financial 

constraints, while other laboratory resources may be removed or upgraded. 

Competencies and experience will also influence the overall RAL configurations. 

The vision analysis requirements for AR RAL contain only a sub-set of the full CV 

model library. Many complex models are automatically excluded due to the simplified 

RAL environment, or the significant difficult to achieve real-time operations. 

Discovery of new or existing combinations of CV models, which are suitable for AR 

RAL environments, requires consideration of the user’s immersion needs and the nature 

of the RAL environment. Computer vision analysis, for an AR RAL object detection 

and tracking system, centre on four generic environment models: Static Camera & 

Objects (SCO), Static Camera with Moving Objects (SCMO), Moving Camera with 

Static Objects (MCSO), and Moving Camera & Objects (MCO). Each video streaming 

environments creates a specific set of requirements. The implementation difficulties 
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associated with the MCSO method are similar to the MCO method, as a static object 

which is under scrutiny by a moving camera consists of similar processing 

considerations. These considerations centre on determining the camera pose and 

coordinates of the object, in relation to the camera. 

Apart from supporting the four generic RAL environmental models, in the context of 

this research, new object detection models must: 

• Function without the use of fiducial markers. 

• Operate with no previous knowledge of the experiment.  

• Operate within the real-time environment, necessitated by live video streaming. 

• Be simple to implement, so as to support a growing AR RAL framework user 

base. 

This research focuses on the vision analysis aspects of computer vision for augmented 

reality. To support this task, a VA model is proposed. It is shown in Figure 3-4, and 

includes four sub-modules. Each module within the VA model, is capable of operating 

independently or in conjunction of any other module. The VA model was developed 

through the application of different features of each sub-module. For example, a signal 

received by the Pre-Processing module may or may not be utilised by subsequent 

modules, depending on the requirements of the test. Computer vision models within 

each module are switched on or off to provide an analysis of the video stream, and 

record specific attributes, listed in the Testing Methodology section below.  

All attributes recorded for each configuration are assessed to ascertain their suitability 

to resolve the research question. 

 

 

 

Figure 3-4. Vision analysis internal modules 
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3.3.3 Testing Methodology 

Evaluation of current CV models is necessary to ascertain their suitability to support 

AR within the RAL framework. However not every CV model, in isolation, is relevant 

to the identification of objects with a video stream. For example, the Gaussian filter 

provides low pass filtering, removing high frequency noise from an image, and as such 

cannot be tested for suitability by itself. Additionally, the nature of the tests and 

determination of fitness is of a complex nature, requiring careful consideration. Fifty 

existing CV models have been interpreted and constructed, in the course of this 

research, to validate previous research and to then apply them to the AR RAL object 

detection problem. The sheer number of tests required if hybrid models were to be 

constructed from multiple combinations, significant, and is impractical to test. Testing 

of hybrid models has been researched to find the most likely improvement in a single 

CV model when matched with a second or third model. Two testing pathways have 

been selected to match the research question: the object detection testing, and the object 

tracking testing pathways. 

Ground truth images have been selected for object detection testing. Ten images 

(Shown in Test Images) are used because of the nature of their content. The images 

have been selected to test the CV models’ abilities to detect objects with solid colours, 

geometric edges, varying backgrounds, multiple colours, similar objects and varying 

patterns. Some previous CV models validate their functionality through synthetic 

images, such as the SUSAN Feature Detector [16], but real images have been chosen, 

for this research, to validate hybrid models against real-world data. For completeness, 

the SUSAN test image (Shown in SUSAN Test Image) has been included, along with a 

selection of ground truth test images used in performance analysis by Bowyer, 

Kranenburg et al. [158] (Shown in Empirical ROC Test Images). Three types of tests 

are performed, based on the hybrid model under consideration. Segmentation, edge 

detection and feature point detection are measured and calculated, counting the number 

correct, incorrect or missing for each ground truth image.  Tracking tests are applied 

using the hybrid models, against real RAL experiments, where points or items within 

the video stream are identified and tracked. The number of frames successfully tracked 

is counted and compared along with the frames where the models lost track or 

misidentified the object. 
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3.3.4 Vision Analysis Attributes  

Due to the new nature of the blended AR RAL technology, there is no clear pathway 

for developing new systems or upgrading existing RAL systems. Discovered hybrid 

CV models which provide the necessary attributes for the AR RAL system, require a 

clear understanding of the nature of each vision analysis model.  

Each CV model functions in accordance to its mathematical model. For example, one 

suite of edge detection models employs convolution of the image with different kernels 

to simulate and approximate derivatives or partial derivative in the X and Y planes. 

Understanding the underlying mathematics allows the analysis of combining Model A 

and Model B to estimate the outcomes. The suitability for the target environment may 

be approximated from the analysis, and hybrid systems discounted or constructed, as a 

result. A demonstration of the detrimental effects is explained in Section 4.3, Filter 

Techniques, where multiple convolutions of the image, with counteracting CV models, 

cause a considerable loss of data. 

Furthermore, within families of CV models, sub-classification also occurs. The vision 

analysis family consists of sub-classes such as segmentation, edge detectors, corner 

detector, etc. Without appropriate consideration of image and CV model attributes, 

applying an inappropriate sub-class renders the results invalid. For example, highly 

textured images or images with large regions of patterning will cause problems for some 

types of segmentation models and corner detectors. Selecting feature point detectors 

maybe more appropriate, but knowledge of the applicable attributes is critical. 

3.4 Research Questions 

This research investigates methodologies pertaining to the implementation of 

Augmented Reality within a Remote Access Laboratory framework. Specifically, the 

research investigates the following key questions: 

A. What Computer Vision object detection systems provide: 

a. Methods to select features within the video scene? 

b. A means to identify Objects of Interest? 

c. Real-time video frame processing? 

B. What Computer Vision object tracking models provide: 

a. Good features to track? 
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b. Markerless tracking? 

c. Simplified methods of tracking? 

C. What key features allow object tracking to occur without fiducial markers? 

D. What methods support object detection and tracking with no prior knowledge? 

3.5 Research Contributions in Detail 

The research questions listed above have evolved into a series of research contributions, 

which are described below. Each primary question above, is addressed with regard to 

the current problem within the field, and summarises the contribution to the research 

question. 

A. Computer Vision object detection: Object detection for CV models for the AR 

RAL environment, is required to find and locate a user specific object within 

sequential video frames. The activity of finding explicit objects of interest, 

within the CV field, is complex and non-trivial. Many methods have been 

developed for specific conditions, using prior knowledge or training data sets. 

Computer vision image analysis models are able to provide a set of image 

attributes which supply a relationship for specific objects within the image. The 

contributions are hybrid CV models which generate unique object attribute 

signatures, critical in finding and locating the 2D planar coordinates of the 

object within the image. 

User selection of the image feature, which is of interest, is made through 

selecting a bounding box around the object or by clicking on the image feature. 

Research contributions apply the extracted key attributes of the user selected 

features and use them to create image registration references, object location 

information or object tracking systems. Computer Vision image filtering models 

and CV analysis techniques used in this research are explained in Chapter 4 and 

Chapter 6.  

Novel image segmentation model derived from this research, employs two-

dimensional colour histograms, which partitions the RGB colour space into 

related gamut’s. The model provides faster processing and image segmentation 

improvements. 
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B. Computer Vision object tracking: Object tracking using CV models for the AR 

RAL environment, is required to locate a specific object within sequential video 

frames. Successfully locating the object for each frame constitutes a tracking 

ability. Difficulties exist because of the problems associated with CV object 

detection models. 

This research contributes hybrid CV models which analyse 2D digital planar 

object attribute signatures, in order to locate and match signatures between each 

frame. Instead of relying on individual good feature points, this contribution 

creates a conglomerate of feature points which provides redundancy from image 

variations. Reliability associated with a large collections of feature points, 

renders fiducial markers unnecessary. Large collections of feature points also 

simplify collection matching models which are a novel contribution from this 

works. Object tracking models are explained in Chapter 11. 

C. Markerless Tracking: Remote Access Laboratory environments are not 

necessarily conducive for fiducial markers. While fiducial markers improve CV 

object detection rates, and through this, provide image registration; using 

fiducial markers requires experience in producing and managing, as well as 

adding complications to AR RAL that discourages adoption and uptake. 

Creating models which are able to locate reference points or objects of interest 

without the need for fiducial markers, simplifies design and implementation of 

AR RAL systems. 

Important contributions from this research features object attribute signature 

matching, in order to locate key reference points from each frame. Robust CV 

feature point models supply attributes applied to similarity measurement 

algorithms; standard algorithms modified for the unique AR RAL requirements. 

Markerless tracking becomes a factor of the contributions of new object 

detection and tracking models. Both CV object detection and tracking are 

explained in the chapters listed above. 

D. Real-time Operation: Augmented reality must operate with real-time 

constraints; receiving input data sets and creating virtual data sets for interaction 

with our senses. Computer vision processes provide the input data sets to the 

AR systems; requiring CV models to operate within the time constraints 
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imposed by the AR environment. Processing delays of incoming video frames 

causes synchronisation errors when AR systems generate synthetic objects, 

affecting the user’s immersion into the environment. 

Classifying CV filter, analysis and tracking models in accordance with their 

computational loads, is an important component of the overall contribution. 

Many existing CV models have been assessed on high performance graphics 

hardware [150, 171], which is unrealistic when employing AR RAL for generic 

or simple systems. Constructing CV models on standard ICT resources, and 

tuning software implementations of the models for AR RAL style environments, 

produces improved response times to previous works. Resultant CV models 

provide contributions through the final outcomes of the hybrid object tracking 

model, which is suitable for AR RAL environments. 

New object detection or tracking models developed have had their run-time 

operation as the primary concern, ensuring that resultant systems are capable of 

functioning with the AR RAL environment. 

E. Inductive Support: Prior knowledge of the environment within the video stream 

is a common necessity for the majority of CV image analysis and tracking 

techniques, and for AR systems. Training CV models and expecting knowledge 

of the current environment adds complexity to the design, implementation and 

management of AR RAL systems, discouraging the uptake of the technology. 

This research completely discounts CV models which require training, and 

follows pathways which extract knowledge of the video scene when the 

user/implementer selects what is to be known. This research contributes to 

inductive understanding of the scene through methods which discover key 

feature attribute signatures as/when chosen by the user. Object detection 

methods, explained in Chapter 6, create unique signatures on the fly, or as 

required. 

Building effective object tracking for AR RAL environments, without the obligation of 

fiducial markers, requires foundation models and processes. Each research question 

underpins each CV methodology and produces contributions on which to build the 

overall research outcomes. 
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3.6 Methodologies 

Augmented Reality and Computer Vision research directs the focus for this study. 

Reviews of CV image filter technology, object detection methods, and object tracking 

processes are critical for formulating new or novel hybrid CV models and processes to 

solve issues surrounding AR for RAL systems. Each of the three technologies is 

explained in Chapters 4, 6 and 11 respectively. Models from previous research are 

formed into software implementations to trial against baseline test images and video 

streams, measuring their effectiveness and response times. Hybrid and unique solutions 

to various research questions are uncovered through considered analysis of model 

response functions and their performance analysis.  

Analysis of computer (software) implementations of pre-existing CV models, along 

with newly discovered and hybrid models, form the majority of this research and are 

the primary form of the research contributions. Structured development of CV models 

within a test, validation and verification environment is achieved through the 

construction of a development console. The AR RAL Development Console is 

presented in Chapter 1.1Appendix K, which is a C# application, created for this 

research to test individual new and existing models as well as new hybrid CV models. 

Functionality of the AR RAL Development Console is shown in Construction of the 

Augmented Reality Remote Access Laboratory Development Console when detailing 

the capabilities of the various CV models. 

Microsoft’s’ Visual Studio’s 2012 (specifically C# - .NET 4.5) was used to develop all 

the software implementations of existing and new CV research models. Information on 

the methods of software implementation are found in Construction of the Augmented 

Reality Remote Access Laboratory Development Console. It is unsuitable to dedicate a 

chapter to each of the fifty CV models implemented in the course of this research, 

however the test methodology is detailed in each chapter, and the test schedules are 

described and listed in Schedule of Tests. 

There are no specific contributions from standalone CV filter models; however, there 

are pre-processing modules which precede CV image analysis and tracking systems, 

and are included within the research to provide discussion on their effects when applied 

to other systems. Assessment of current CV image analysis and tracking models is 
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necessary to establish baseline measurements for use when assessing new or hybrid CV 

models. Image Analysis is found in Chapter 6. 

Contributions to CV object detection exists with the development of a novel colour 

histogram object identification and image segmentation method. Applying the new 

colour histogram model to object tracking has also produced simple yet robust object 

tracking. Alternative non-segmentation tracking methods, using the newly discovered 

colour histogram models, are also described, in which statistical histogram comparison 

techniques are used. Methods implemented to perform attribute comparison and 

matching within object tracking processes, are also unique to this research. From 

baseline components, the primary contribution of simple, fast and robust object tracking 

is achieved, which is suitable for AR within a RAL framework. 
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4 

4Computer Vision Filter Functions for Augmented Reality 

Systems 

This chapter presents computer vision image filter functions which are 

suitable, within the augmented reality remote access laboratory 

environment, for the improvement of image signal-to-noise ratio’s. 

Computer Vision aims to derive information within the constituent digital data sets of 

a video stream. Computer Vision filter functions provide a service to normalise data 

sets in a consistent manner to ensure that image attributes are durable for post-filter 

processes. Augmented Reality systems, dependant on the analysis of live video streams 

to ascertain properties of the displayed environment, require a stable, reliable and 

speedy CV sub-process to provide real-time interaction with the real and virtual objects 

within the video stream. Consistency of imagery is of primary concern for all vision 

dependant AR systems. Alleviating the sources of irregularity within the images (video 

frames) requires careful consideration of the sources of irregularity, and is a major 

factor within CV research. The major contribution of this chapter is to determine CV 

filters which provide improved signal levels necessary to support AR RAL 

configurations. This involves CV filters which operate within the video stream frame 

rate, and are suitable for object detection and tracking. 

A general understanding of the sources of noise and the consequence they cause within 

images is an important competence when considering effective visual AR development. 

Video streams from RAL experiments contend with many natural sources of noise. 

Image noise contributions appear from two distinct sources; environmental noise and 

internal noise. Should the various signal deficiencies be ignored, AR processes such as 

image analysis, object detection and tracking operating inadequately. Failures in the 

image analysis functions within the AR processes manifest themselves through the user 
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interface; objects fail to track, virtual objects fail to align with real features, and real 

and virtual objects fail to synchronise. Such failures from the AR systems destroy any 

improvements the incorporation of AR was supposed to deliver. This chapter defines 

the sources of irregularity for images sourced from the live video streams of Remote 

Access Laboratories, and discovers the appropriate Computer Vision filter functions, 

both existing and hybrid, to improve the signal-to-noise ratio such that Augmented 

Reality systems may successfully detect and track objects. 

Defining the types and sources of image noise provides the basis for the assessment of 

current Computer Vision image filter models. The processing resources are considered 

within Section 4.1, Filter Function Processing Considerations. Image noise sources are 

defined in Section 4.2, Image Noise Sources, with three primary techniques to address 

image noise detailed in Section 4.4, Filter Techniques - Statistical Filtering and Section 

4.5, Filter Techniques - Colour Filtering. The testing regime and results are presented 

in Sections 4.6 and 4.7. 

4.1 Filter Function Processing Considerations 

Not all CV filter functions are suitable for the requirements of this research, failing to 

meet critical functionality such as the a priori requirement. Evaluation of new and 

hybrid CV models may discover many desirable traits, suitable for the AR RAL 

operating environment. For digital signals, filtering within the frequency domain 

involves the application of a Fourier Transform to convert to-and-from the time domain. 

This is a computationally expensive undertaking. A digital image is within the spatial 

domain and even Fast Fourier Transform (FFT) calculations are incredibly time 

consuming [167]. Using FFT for real-time CV applications is not viable. Fortunately 

convoluting the digital image as is, in the spatial domain achieves the same result with 

a greatly reduced computational load. 

4.2 Image Noise Sources 

The application of noise filters, within image analysis, generally works to smooth 

regions or entire images to obtain an improvement in the overall signal-to-noise ratio. 

Smoothing an image seems counter-intuitive when follow-on Computer Vision 

processes may need to isolate features or objects within an image, but boosting the 

signal-to-noise ratio provides benefits for many image analysis models. Noise 

contributions appear from two distinct sources: environmental and internal.  
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4.2.1 Environmental Noise Sources 

Environmental noise occurs as a result of the analogue world we live in. Branches 

move, shadows fluctuate and most importantly, lighting varies. Whether artificially or 

naturally lit, changes in the brightness and colour across an image (and also between 

each frame of a video stream) varies greatly. Colour intensity is also a common problem 

associated with changes in environmental lighting, varying the relationship between 

colour values. Filtering such noise sources is already an extremely involved and 

multifaceted field of research, but has little relevance for this research other than the 

variations in lighting sources. Lighting variations are explained in Section 4.2.3, 

Interframe Noise Source. 

4.2.2 Internal Noise Sources 

Internal noise is created from several sources. Video cameras become the initial source 

of internal noise, with distortion from the lenses, CCD noise, dynamic range [172] and 

compression errors. The conversion of analogue signals to digital data is the first major 

noise source, in the form of quantisation noise: limiting the continuous analogue signal 

to specific discrete values. Image artefacts arise from the compression codec used. 

When transform coders (lossy codec) are applied, small scale details are removed 

which cannot be reproduced upon reconstruction. Codec’s are designed to reduce image 

data sizes, producing blurred edges, and non-specific coloured pixels artefacts. A 

number of transform coders exist, with differing advantages and disadvantages, 

therefore reiterating all significant codec derived errors is beyond the scope of this 

research. While the quality of camera and selection of the codec are factors for the level 

of image noise, appealing to base level AR RAL implementers also needs to be 

considered; hence methods to handle poor quality images are an important factor in this 

research.  

Figure 4-1 demonstrates common image artefact issues. The edges between the red and 

green pixels, within the semi-circle of the left image, become a variation of the two 

colours as shown in the right image, and below the green arc is a series of pale pixel 

artefacts. This is also demonstrated during the CV image boundary gradient detection 

process shown in Figure 4-2, where artefacts disrupt the apparent smooth circle. 

Internal noise sources may be reduced through integration and/or differentiation. A 
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series of convolutions are implemented to enhance the signal from the noise within the 

image.  

4.2.3 Interframe Noise Source 

When processing video streams, noises present in adjacent image frames will vary. 

Inconsistency in pixel attributes across an image and between frames creates interframe 

noise. Interframe noise is the primary source of Computer Vision object tracking 

difficulties. Changes to pixel colour and intensity vary from frame-to-frame. Figure 4-3 

shows the variation to the red and green channels at pixel location X:200, Y:47: an 

apparent static area of the RAL Gear Experiment, but which varies from colour values 

226-237 (red) and 196-206 (green). Over the series of 2328 frames, the pixel colour 

value remains unchanged (over successive frames) only 49 times, demonstrating a 

serious concern for providing stable image attributes to Augmented Reality systems 

[173]. 

  

Figure 4-1. Blurring effects and visible colour artefacts between colour edges 

 

Figure 4-2. Image artefacts (Noise associated with compression algorithms) 
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4.3 Filter Techniques 

Improving signal-to-noise ratio’s, extracting signals, or selecting through a range of 

signal values are common signal analysis tools. The convolution property of the Fourier 

is the basis for filtering [174]. Filtering techniques aim to highlight some feature of the 

digital data set, that might otherwise be underrepresented within the clutter of noise. 

From the variable noise sources defined above, there are several CV filter models exist 

to enhance desired signals. These CV models are reviewed to ascertain their suitability 

to operate within the AR in RAL environment. 

4.4 Filter Techniques - Statistical Filtering 

Providing consistent video frames to follow-on Computer Vision and Augmented 

Reality processes, the problems associated with interframe noise must be addressed. 

Reducing this interframe noise and boosting the signal-to-noise ratio of an image may 

occur through the use of statistical modelling. Assuming that the distribution of pixel 

colours throughout an image conforms to normal statistical distribution patterns is 

central to the CV filter model theories described below. Interframe (colour) noise 

should be associated with the outliers within the distribution, and through statistics 

modelling, the noise can be limited or reduced to improve the clarity of the signal pixels. 

Care must be taken with statistical filtering models, as the process is iterative on each 

pixel in the image, and can become processor intensive, eliminating the model as a 

candidate for real-time processing. 

 

 

Figure 4-3. Colour variation for a single pixel over 2328 frames (Red & Green channels only) 
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4.4.1 Gaussian Filters 

A Gaussian Probability Density Function (PDF) is an important aspect in statistics as it 

is used to model natural distributions, and is defined as  

where 𝜇 is the mean and 𝜎2 is the variance [133]. For image processing, the Gaussian 

filters, or any other statistically based filters, rely on the central limit theory [175] which 

models a series of random effects to a normal distribution.  

High frequency noise is a problem within digital images, and observable as salt & 

pepper effects or where there are fast changes from different colours. Gaussian filters 

are an effective method to reduce the high frequency noise because pixel intensities can 

be modelled by a Gaussian distribution. Applying a Gaussian distribution smooths the 

pixel colour distributions to fit a Gaussian distribution curve, with the effect of reducing 

high frequency values. Gaussian filters require careful consideration of the image 

analysis requirements, as there is not just one style. Shown in Equation 4-1, the mean 

and standard deviation are variables which affect the outcome of any statistical filter. 

Selection of variance affects edge smoothing, and is an important factor to decide on 

an appropriate value. Many CV models use a common 3x3 Gaussian filter with a 

standard deviation of 𝜎=0.85. Convoluting the matrix 
1

16
[
1 2 1
2 4 2
1 2 1

]with a digital 

image, applies a Gaussian filter with the standard deviation of 𝜎=0.85. The degree of 

image smoothing is a factor of the standard deviation.  

To increase the standard deviation, a larger kernel is required to maintain a level of 

accuracy across the image. Filters based on 5 x 5 Gaussian kernels (shown in Figure 

4-4) are also common. However, the time complexity for convolution with larger filters 

begins to impeded the real-time processing. Digital image sizes already have a bearing 

on the processing time, as does the convolution kernel size. For each dimension 

direction, the overall time complexity can be O(N log M) where N is the image size, 

and M the kernel size. As can be seen from the timing results of Figure 4-11, Gaussian 

5x5 kernel sizes (test F-02 & F-03) execute twice as slow as the 3x3 Gaussian kernel 

f(x) =
1

√2πσ2
e

−
(x−μ)2

2σ2  

Equation 4-1. Gaussian Probability Distribution Function 



 

56 

(Test F-01). As a matter of confirmation, image testing also employed a M x M 

Gaussian, where M was selected as 7. Figure 4-11 shows a runtime of 41ms for the 7 x 

7 kernel (Test F-4), far too time consuming for effective Augmented Reality uses. 

Gaussian convolution matrixes are important also, as a means of extracting edge 

information. This will be discussed later in Chapter 6, Computer Vision Image Analysis. 

To create a valid Gaussian filter, the convolution matrix must be calculated. The AR 

RAL Development Console (defined in Construction of the Augmented Reality Remote 

Access Laboratory Development Console) provides a method to create a matrix based 

on user criteria. Figure 4-4 shows the matrix values which are applied to a user selected 

image, imparting the results of such a selection, with the preview to the right. From the 

displayed figure, it can be seen the standard deviation has been selected as 𝜎=1.40 for 

a 5 x 5 kernel, and that the sum of all the cells within the Gaussian kernel are equal to 

one. 

4.4.2 Mean / Median Filters 

Adjusting pixel values based on its neighbourhood is popular in a number of CV filter 

models and is capable of providing alternative statistical filtering modes. Mean image 

filtering simply combines the colour values surrounding the target pixel and averages 

the result for the new pixel value. The new colour values applied to each pixel, reduces 

the amount of intensity disparity between neighbouring pixels. Image convolution with 

 

Figure 4-4. AR RAL Gaussian Kernel calculator 
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a unity 3 x 3 matrix performs mean filtering. Mean filters reduce high frequencies 

associated with edges. The time complexity of the mean filter is also dependant on the 

image and kernel sizes. A time complexity of O(N log M) where N is the image size, 

and M the kernel size results in a similar execution time to Gaussian filtering. Figure 

4-11 shows test F-12 execution time as 21ms, possibly usable as a filter for real-time 

Augmented Reality systems.  

Median filtering collects the colour values of the surrounding pixels, sorts the values 

and selects the median value as the new target pixel colour. Averaging the pixel values 

removes much of the impulse noise (colour artefacts) shown in Figure 4-1 and Figure 

4-2, but also removes many pixels which are clearly signal (or interest) pixels, 

potentially reducing subsequent image analysis models from detecting objects. The 

parameter choice available for developers, when selecting mean or median style filters, 

is the size of the matrix kernel. Selecting a 3 x 3 matrix averages the eight pixels 

immediately surrounding the target pixel, while a 5 x 5 matrix averages an extra layer 

of pixels out from the target pixel. Averaging matrix kernels can be as large as 

necessary, but as the matrix size increases, the processing time increases exponentially.  

Unfortunately, the median filter has an additional level of iteration to sort and locate 

the median pixel value. This manifests as a significantly longer processing time, and 

precludes median filters as a suitable AR RAL image filter. 

4.4.3 Sharpening Filters 

Applying CV sharpening models subjectively improves image clarity, enhancing 

details, even to the point of creating a less accurate image. Sharpening models can 

improve the detail level, but at the cost of increasing unwanted high frequency noise. 

For this reason, sharpen models are not generally utilised in isolation. Reversing some 

of the smoothing effects of the statistical filters such as the Gaussian or averaging 

filters, sharpening can restore many of the strong colour gradients within the image. 

Edge detection analysis, described later in Section 6.2, Edge Detection, is very 

dependent on colour (or intensity) gradients, which can be improved by preceding 

processing with a sharpening model.  Re-establishing edges requires a spatial filter such 

as the Laplacian filter [133]. Creating a Laplacian filter requires the partial second order 

derivatives as shown in Equation 4-2. 



 

58 

The convolution matrix derived from derivatives can vary based on the gradient 

intensity requirements of the follow-on image processing systems. Figure 4-5 displays 

the various kernels employed by some Laplacian image sharpening models. Laplacian 

convolution is so effective at sharpening image edges, that a slight variation on Matrix 

A of Figure 4-5, actually produces edge detection. Matrixes B and C in Figure 4-5 

enhance edges in a specific direction based on the target pixels values compared to the 

pixels on axis (matrix B) and off-axis (matrix C). 

Increasing the neighbourhood pixel influence requires Laplacian matrix kernels larger 

than the 3 x 3 matrixes shown in Figure 4-5. As with the Gaussian and averaging filters, 

increasing the size of the matrix increases the time for processing an image. 

Considering the sharpening model is used in conjunction with a smoothing model, a 

balance must be achieved between the processing time and the desired image 

enhancement. The sharpening model used in these test (Matrix B of Figure 4-5) 

adequately performs within the real-time constraints (Test F-10). 

4.5 Filter Techniques - Colour Filtering 

Interpretation of the scene within a digital image relies heavily on the colours; yet from 

our day-to-day experiences, we pay little attention to the spectral variations as we move 

from dawn to dusk, or to artificial lighting. Computer Vision has attempted to simulate 

our natural abilities to remain consistent when perceiving colours, with some success 

within specific parameters. Colour Constancy [176] defines the ability to adapt to the 

ever changing colours by moderating the perceived colours. The limited success comes 

at the cost of complex mathematical models of physical object surface reflectance 

parameters [176, 177], or comprehensive lookup tables for mapping attributes [178]. 

∇2f =
∂2f

∂x2
+

∂2f

∂y2
= f(x + 1, y) + f(x − 1, y) + f(x, y + 1) + f(x, y − 1) − 4f(x, y) 

Equation 4-2. Laplacian second order derivatives (derived from [3, 4]) 
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Figure 4-5. Laplacian convolution matrixes 
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For this research, highly complex colour models are not necessary, as each individual 

RAL environment is confined to small variations in artificial lighting conditions. Of 

course, there are still some issues with colour consistency, as discussed in Section 4.4, 

Filter Techniques - Statistical Filtering. 

4.5.1 Greyscale 

Creating a level playing field in regard to consistent colour intensities is somewhat 

achieved through greyscale conversion of an image. The aim of greyscale conversion, 

for CV processes, is to maintain the image’s absolute luminance, while reducing the 

image to an 8-bit grey-scale colour space. Grey-scale images are sometimes called 

intensity images, for this reason. Within a standard digital gamma-compressed RGB 

image, three channels (Red, Green, and Blue) determine the pixel colour, but the 

luminance of the pixel can be calculated in a number of ways. The question arises: for 

a specific pixel, what is the weighting for each channel? Simply choosing a maximum 

red value for a pixel does not determine the luminance, intensity or energy. 

Greyscale colour space is important because of the information it uncovers within the 

digital image. For this reason, many CV image analysis models are only effective when 

working with greyscale images. Edge detection models, described in Section 6.2, Edge 

Detection, search for intensity gradients which are discovered within greyscale images.  

Converting a colour image to greyscale requires a decision about the coefficients used 

to determine the greyscale values. Four common models are shown in Table 4-1 with 

BT709 the most common of the models. The perception of human sight, specifically, 

the perception of luminance, is estimated through the BT709 RGB coefficients [179] 

and is a subset of the CIE1931 specification [180] (see Figure 9-4).  Each model 

(excepting the Average model) de-emphasizes the blue channel, and places greater 

weight on the red and green channels, as these are the most responsive within human 

vision. 

 Average BT709 RMY Y 

Red 0.3333 0.2126 0.5000 0.2990 

Green 0.3333 0.7152 0.4190 0.5870 

Blue 0.3333 0.0722 0.0810 0.1140 

Table 4-1. Greyscale conversion factors, for gamma-corrected RGB colour space 
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4.5.2 Colour Variation 

For some CV image analysis models, greyscale imagery is insufficient to ascertain the 

necessary level of understanding of the objects and scene. Some method of extracting 

meaningful information from the full colour image is required. From the distribution of 

colours demonstrated in Section 4.4.1, Gaussian Filters, and the colour histogram of 

Figure K-4, a sub-set or gamut can be used to filter colours. Additionally, stabilising 

colour channels across an image or between video frames is also required by some 

common CV image analysis and object detection systems. 

4.5.2. (a) Euclidean Filter 

The colour range selected by an Euclidean filter, is a sphere constructed within an RGB 

colour space. Shown in Figure 4-6, the Euclidean filter requires an RGB three-

dimensional centre point and radius (r). The RGB colour gamut within the sphere 

created by the Euclidean filter parameters become the colours either filtered or passed. 

A Euclidean filter is convenient to replace a colour range with a specific colour within 

an image to remove artefacts and is also practical to group similar colours together as a 

homogenous collection. 

4.5.2. (b) Tint/Shade Filter 

Boosting, saturating or reducing a complete colour channel highlights features in 

images that may be of interest to the image analysis processes. Adjusting red or green 

channels aid’s gradient intensity algorithms, and will emphasise or de-emphasis 

 

Figure 4-6. RGB colour space cube with Euclidean sphere representing filter parameters 
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gradients that may have been lost in the original colour scheme. Tinting or shading will 

limit the effects of selected colours and allow less dominate colours to become of 

interest to image analysis processes. 

4.5.2. (c) Bitonal Filter 

A bitonal filter reduces a full colour image to a binary image. Every pixel is converted 

to one of two colours (usually black or white). As shown in Equation 4-3, each pixel’s 

RGB values (px,y) are compared to a user selected threshold value (t); if the threshold 

is exceeded, the pixel is turned ‘on’; otherwise it is unset to ‘off’. 

Bitonal filters are important for image segmentation processing, discussed later in 

Chapter 6, Computer Vision Image Analysis, as it converts an image into two separate 

classifications based on the threshold value. A similar model filters an image based on 

two threshold values, reducing the image to three distinct classifications.  

The process is similar to methods that utilise the Otsu [7] threshold model, in which an 

optimum threshold value is determined to segment the image into meaningful 

classifications. Bitonal filtering presents problems as a result of the variation between 

different video scenes, and the inconsistency in lighting levels. Threshold values need 

to be determined for each scene, and in many cases, re-calculated during a scene due to 

lighting variations. Such calculations would require ROC calculations [160] each time 

to compensate for lighting changes. While actual operational run-times are fast, the 

requirements of extensive pre-operation calculations preclude bitonal filtering from the 

AR RAL suitability criteria. 

4.5.2. (d) Frequency Filter 

Fourier Transform analysis of an image extracts a selected range of frequencies, 

ignoring anything outside of the range. Frequency filters require a comprehensive 

understanding of the Fourier Transform and the spectrum of energy within an image. 

Applying a frequency filter to an image can reduce the noise, or enhance aspects of an 

image such as colour or edges. Frequency filters are also capable of finding intensity 

gradients, and extracting edges. As stated in Section 4.1, Filter Function Processing 

px,y = {
0, ≤ t
1, > t

 

Equation 4-3. Bitonal pixel model 
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Considerations, the use of Fourier Transforms in real-time image processing is drain 

on ICT resources, which makes the frequency filter ineligible as a suitable AR RAL 

image filtering technique. 

4.5.3 Normalisation 

External conditions such as changes in ambient lighting conditions, and differences in 

camera lenses or the CCD, produce inconsistent colours within the image. The 

perceived colours appear constant for our visual senses, but the digital signal actually 

varies dramatically between frames, or over a short period of time, as shown in Figure 

4-3. Computer Vision image analysis processes may find it difficult to reliably discover 

features or objects in consecutive data sets which vary so significantly. Colour and 

intensity normalisation models attempt to even-out large value fluctuations in order to 

keep data value levels uniform.  Three primary methods of normalising colour or 

intensity levels are described below. 

4.5.3. (a) Colour Constancy 

Normalising an image through colour constancy relies heavily on knowledge of the 

object surface reflectance, and the spectrum of the light source [176]. This is beyond 

the requirements of image analysis for RAL systems. A simplified method has been 

developed called Colour Constancy Normalisation [181]. Equation 4-4 normalises each 

RGB channel by scaling with the sum of the three channels. While it is unknown, in 

rn =
r

r + g + b
,   gn =

g

r + g + b
,    bn =

b

r + g + b
 

Equation 4-4. Colour constancy normalisation calculation 

 

Figure 4-7. Colour constancy normalisation 
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this research, if the colour constancy application shown in Figure 4-7 is indicative of 

the surface reflectance of the objects, the image appears abnormal as far as representing 

the perceived image. But what occurs is a consistent range of colours over the course 

of the video scene, which supplies strong attributes for follow-on Computer Vision sub-

processes. 

Applying colour constancy to an image is extremely fast. From the results shown in 

Figure 4-11, test F-15 produces the fastest processing of the trial images. 

4.5.3. (b) Gamma Correction 

The Gamma Correction function was originally used to compensate for our human non-

linear vision system [177], and allocates more emphasis to the lower colour frequencies. 

Gamma correction is a power function, and for CV purposes will enhance higher 

intensity colours while demoting the darker colours. Typical RGB images are 

automatically gamma-compressed to ensure our human vision perceives the correct 

colour levels to suit our optical sensitivities. Decompressing gamma-compressed RGB 

colour spaces creates a linear luminance which may represent the true scene, but lower 

luminance regions become lost, while some edges are more defined.  

Figure 4-8 demonstrates the three types of gamma influenced image. A standard 

gamma-compressed RGB image (on the left of Figure 4-8) has gamma-correction 

applied; in the middle image, higher intensities are obviously enhanced. Decompressing 

the standard gamma-compressed RGB image returns the image to some semblance of 

how the image (and perhaps the scene) would have really appeared, without human 

vision peculiarities. The edges of the chairs appear to be more defined as the higher 

intensities standout against the darker regions.  

   

Figure 4-8. Gamma Correction.  

Left - Gamma compressed RGB image  

Centre - Gamma corrected image  

Right - Decompressed gamma image 
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Normal values for gamma compression are 2.2, but values of 2.4 are currently utilised 

in high definition television systems. 

4.5.3. (c) Histogram Correction 

Colour histograms of pixel colours within an image, describe each RGB channels 

distribution. Commonly, histogram equalisation is performed on greyscale images, 

assuming the pixels are independent and randomly distributed. A normal distribution is 

considered to be more informative [182], and histogram normalisation transforms 

random distributions to a model closer to normal distribution. Figure 4-9 shows the 

colour distribution for the gear experiment image shown in Figure 4-10. The nature of 

an image colour distribution, as shown in the left image of Figure 4-9, is randomly 

distributed through the colour space. Reallocating the RGB colour channel values 

improves the image contrast, as shown in the right image of Figure 4-10, which 

improves the image colour/intensity gradient. Improved image colour/intensity 

gradients allow edge and corner analysis processes to extract important image 

information.  

Computational loads for histogram normalisation are minimal. Histogram 

normalisation is listed in the top three fastest (Test F-16) Computer Vision filters shown 

  

Figure 4-9. Colour histogram normalisation results for Gear Experiment 

Left: Standard response 

Right: Redistributed colour 

  

Figure 4-10. Histogram colour equalisation results 
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in Figure 4-11. From a processing point of view, histogram normalisation has minimal 

processing impact when incorporated into AR RAL systems. 

4.6 Testing Regime 

This section provides the method employed to gauge the computational load for the 

selected Computer Vision image filter models. Table 4-2 lists the Computer Vision 

image filters tested to gauge their suitability for use within the Augmented Reality 

Remote Access Laboratory environment. 

Each image filter was applied to ten frames of the gear experiment, used for this 

research, and the average processing time recorded. The processing times are recorded 

in milliseconds. 

4.7 Test Results 

Each trial of the Computer Vision image filter models resulted in a processing time 

used to determine if the model would be able to supply pre-processed data to a follow-

Filter Name Test  Runtime (ms) 

None F-00 2.249582 

Gaussian 3 x 3 F-01 11.16071 

Gaussian 5 x 5 (Type 1) F-02 22.61789 

Gaussian 5 x 5 (Type 2) F-03 21.32743 

Gaussian M x M F-04 40.45759 

Quadratic F-05 21.34487 

Convolution F-06 16.75851 

DoG 3 x 5 (Type 1) F-07 44.62542 

DoG 3 x 5 (Type 2) F-08 43.56166 

Downhill F-09 22.33887 

Sharpen F-10 11.16071 

Blur F-11 21.2228 

Mean F-12 21.17048 

Median F-13 73.22475 

Motion F-14 21.72852 

Constancy F-15 1.63923 

Histogram F-16 3.627232 

Boundary Extraction F-17 10.0272 

Dilate F-18 7.8125 

Erode F-19 6.469727 

Boundary Sharpen F-20 24.18736 

Boundary Trace F-21 11.0212 

Table 4-2. Computer Vision image filter test summary 
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on AR RAL sub-process. Assuming video frame rates within the 16.7ms to 40ms range, 

for systems with video streams of 25-60 frames per second, each CV filter model is 

classified as acceptable, potentially acceptable, or rejected. Figure 4-11 summaries the 

effectiveness of each CV filter model through colour coding. Green represent 

acceptable results, while orange is potentially acceptable, and red are rejected models.  

4.7.1 Acceptable Models  

Computer Vision image filter results that are acceptable are based on the runtime value 

placed under 16.7ms. This threshold indicates that the filter computational load is 

sufficiently low enough to allow real-time video processing, regardless of the incoming 

video stream frame rate.  

4.7.2 Potentially Acceptable Models 

Potentially acceptable Computer Vision filter models are classified due to their runtime 

values falling inside a range of times from 16.7ms to 40ms. Many video frame rates 

exist, such as 25fps, 30fps, 50pfs or 60fps. While these frame rates are not the only 

available selections, and it may not be necessary to process every frame, it was decided 

to remain with the stated runtime ranges to classify the CV model operational ranges. 

All of the potentially acceptable image filters operate approximately between 20-24ms; 

 

Figure 4-11. Runtime (mS) for each computer vision filter function 
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while not able to be used on 60fps and 50fps vision systems, they are still potentially 

able to be used in AR RAL systems that do not require updates on each frame. For 

example, processing every second frame of the 50/60fps video stream may be sufficient 

to provide acceptable results, or operation with 25/30fps systems. 

4.7.3 Rejected Models 

Reject Computer Vision filter models’ function outside the operational requirements of 

real-time video processing. These models perform at processing times greater than 

40ms. Considering the additional processing required post-filtering, their limitations 

are beyond the needs of the research. 

4.8 Summary 

Computer Vision image filtering models provide the mechanisms to reduce unwanted 

noise. While some high frequency noise is undesirable, other high frequencies help to 

provide clearer/sharper images. Apart from unwanted noise, video frames consist of 

inconsistent colour distributions. The application of normalisation models improves the 

colour consistency between consecutive video frames. 

This chapter uncovers the performance of Computer Vision filter models. The 

performance of the CV models is critical when associated with the additional Computer 

Vision image analysis processing requirements. As such, this research determines 

suitable CV image filters which provides both an acceptable processing cost and 

effective image noise reduction.  

Consideration of the combination of CV models is also a prominent need. For example, 

it is possible to select the bitonal colour filter, and also apply a gamma correction. This 

is a superfluous operation, but is allowable and could be considered.  As an example, 

the Laplacian of Gaussian (LoG) (∆2𝐺(𝑥, 𝑦)) edge detectors employ Gaussian 

smoothing prior to the Laplacian convolution. Performing Gaussian filtering with a 

LoG convolution, as shown in Equation 4-5, by associative rules becomes a 

multiplicative noise filter with two separate frequencies, convoluted with a Laplacian 

edge filter.  The result is not a successful edge detection system, producing imperfect 

results. From this demonstration, the selection of complimentary hybrid filters becomes 

apparent.  
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This research has highlighted several CV image filter models which are available to 

support the implementation of Augmented Reality processes with the Remote Access 

Laboratory environment. Models based on larger convolution kernels have been shown 

to consume larger resources, and are only marginally suitable for purpose. Larger 

kernel-based models or highly iterative models perform poorly. Investigation of 

acceptable models, in the context of CV image analysis processes such as object 

detection and tracking, are necessary before their definitive fitness for AR RAL systems 

can be established. 

𝐆𝛔𝟏
=

𝟏

𝛔𝟏√𝟐𝛑
𝐞

−(
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Equation 4-5. Gaussian, Laplacaian of Gaussian 
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5 

5Ground Truth Image Analysis Model Performance 

Measures 

This chapter defines a unique contribution to the method of Ground 

Truth construction, utilised as a means to validate Computer Vision 

image analysis models, such as edge detectors. 

Within metrology, validation and verification of test results requires a golden standard 

with which to compare. Within the Computer Vision field, the design and assessment 

of new image analysis models has mostly relied on the subject examination of the 

resultant spatial data. At best, the appearance, as analysed by the researcher or a panel, 

is observed and rated as a measure of the model’s effectiveness [183]. Attempts to 

improve the scientific rigor still required human assessment of image pre and post 

processing [184]. While traits such as model speed and resource utilization can be 

quickly compared to existing models, evaluation of the efficacy of the models feature 

detection is based solely on subjective decisions. 

Both qualitative and quantitative measures are used for performance testing. Image 

analysis performances generally rely on quantitative measures. Literature complains on 

the lack of objective quantitative measures for model evaluation [185], yet no solution 

has been presented. Empirical analysis of raw data requires data that holds some level 

of authority. Inspired by Bowyer et al. [158], in which ground truth images are 

constructed to provide a gold standard, this research improved on the concept. Bowyer 

et al., created ground truth images from subjective human classification of edge, corners 

and other regions of interest. This chapter wholly discusses the contribution made by 

this research in developing a ground truth construction system in which a significant 

portion of the subjective stages are removed or minimised.  
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5.1 Edge Detector Outputs 

Computer Vision edge detection models struggle to work with digital data sets that 

consist of noise and interference from inconsequential artefacts. Artefact that are of no 

interest to the analysis of the image contribute to spurious points or edges. The clean 

and tight lines we view on an image are an illusion. The left image of Figure 5-1 

demonstrates a simple series of lines and circles in which the edges seem apparent. 

However, zooming into the highlighted area reveals that the edges quickly blur 

together. Locating an actual edge from the blended edges becomes difficult, as shown 

in the right image of Figure 5-1. 

The level of edge detection becomes difficult to ascertain when comparing CV models 

which have seemingly similar results. However, there are also certain extremes of edge 

detection as shown in Figure 5-2. From the original image (top), The right image of 

Figure 5-2 appears to have found all edges we would subjectively consider. However, 

there is also an obvious over processing. Subjectively, which edge detector is the most 

effective? 

5.2 Gold Standards 

When deciding on the effectiveness of newly created models, or attempting to 

determine the capabilities of an existing model, researchers must rely on either a small 

cohort of judges, or create ground truth images to baseline their results. At the standard 

image resolution, human assessment of the valid edges seems simple, but in reality, 

those judging the location of the boundary limits will differ in their decisions. The 

  

Figure 5-1. Edge Detection 

Left (Colour): Edge and Colour Blur 

Right (Black/White): Edge Detection Result 
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inconsistency occurs not only between judges, but from the same judge over similar 

regions of the image. Ground truth images must specify where valid features are 

required. 

Involving ground truth data sets provides a level of empirical assessment of the 

efficiency associated with the model under test. Confidence in the ground truth data set 

builds the confidence in the overall outcomes of the tests. Manual selection of ground 

truth attributes is common [186] and very subjective [187]: relying on painstaking 

human assessment of what is a valid edge or feature point, and leaves the certainty of 

the results in question. 

5.3 Validation and Verification 

This research builds ground truth images using a novel approach, to minimise the 

subjective nature of defining ground truth features. This approach applies multiple 

Computer Vision edge detection models to the image, building an extended edge map 

of potential interest points. A trend of edges (or votes) develops as each CV model is 

applied, with the raw trend data for ground truth image. Test image GT-03 is shown in 

Figure 5-3 as it accumulates votes from the fifteen edge detectors listed below.  

• Laplacian 3 x 3 [13] 

• Gradient Derivative  

• Gradient Edge (First Derivative) 

 

  
Figure 5-2. Extreme edge detection results of Airplane Image (top) 

Left: Gradient (Second Derivative) Edge Detector 

Right: Kirsch Edge Detector 
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• Gradient Edge (Second Derivative) 

• Laplacian 5 x 5 [13] 

• Laplacian of Gaussian [14] 

• Sobel 3 x 3 [10] 

• Sobel (Absolute) 

• Prewitt 3 x 3 [12] 

• Kirsch 3 x 3 [11] 

• Canny [15] 

• Homogeneity 

• Compass Sobel 

• Compass Prewitt 

• Compass Kirsch 

Pixels assigned to edge maps, for each CV model, increment the corresponding pixel 

votes within the ground truth image. This effect is visible in the images shown in Figure 

5-3. Additionally, the clarity of the ground truth image degrades as noise from each CV 

edge detection model builds up. This is apparent from the minimal detail remaining in 

the first image (top-left) to the overexposed last image (bottom-right). However, 

accumulating pixel votes uncovers the primary concentration of common detected edge 

pixels.  

     
 

     
 

     
 

   

Figure 5-3. Composite ground truth image building progression 
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As can be seen in Figure 5-3, there is significant noise from the accumulated edge 

detection process. The distribution of votes across the ground truth image, shown in 

Figure 5-4, could be considered to follow a single-sided Gaussian distribution, so two 

methods were considered to improve the raw vote trend data: manually remove the 

noise, or apply a filter to the data. Filtering the accumulated edge votes by removing 

pixels with votes outside one standard deviation can minimise some of the subjective 

choices. Figure 5-5 shows the clarity achieved between the raw trend edge data, and the 

Gaussian distribution filtered data. Between the two sets of data, it is simple to complete 

a ground truth image set. 

Human intervention is still required to assess the trends and hardcode the ground truth 

regions. But from the trends, the effects of human subjectiveness can be minimised. It 

was felt that the combination of both multiple CV model trends and human decisions 

would provide the best of both capabilities to develop the ground truth images. 

  

Figure 5-5. Ground Truth images, comparison against Gaussian weighted hits 

 

Figure 5-4. Edge Detector voting distribution 
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Colour coding of the ground truth images allows true and false positives classifications, 

along with true and false negatives measurements. Black dots or lines represent true 

positives (TP) pixels, representing valid corners, feature points or edges. Red areas are 

regions which should not have any hits from a CV detector, so will record a false 

positive (FP) if a CV model places anything in the region. White represents regions 

where spurious results may appear, but we do not care about the data. For example, 

areas that may appear white can be associated with textured backgrounds or 

inconsistent lighting and is not of any interest for testing. Any point, line or features 

point located within the don’t care region is not recorded. Human intervention was 

necessary to determine unimportant regions (don’t care areas), but equally important 

was the assessment of whether important features were all accounted for. 

Within the ground truth image, pixels are allocated a membership to one of three 

possible classifications, as defined by their colour coding. 

• Key Point: This is a pixel that indicates an edge or feature point that the model 

under review must detect. 

• No Point: This is a pixel that is not an edge or feature point, and the model 

under review must not detect. 

• Don’t Care: Represents pixels that are not relevant to the detection process. In 

most situations this represents regions or features that are unimportant to the 

goals of the model 

Pixels classified as Don’t Care are primarily selected in regions of the image which are 

not analysed by the CV model. For example, a CV system monitoring road traffic does 

not care about edge detection of the nearby trees. While the CV models may detect the 

trees to varying degrees, the application of the model means that the region will not be 

considered as part of the effectiveness score. 

5.4 Summary 

The reduction of subjective decisions regarding appropriate features of an image 

enhances the reputation of the golden standard. Through Computer Vision image 

analysis model voting on the location of key features, reliable validation, verification 

and classification of model trials is possible, with little human intervention. Some 

subjective decision may be performed, if necessary. 
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Further improvement of the ground truth image may occur manually, if desired, 

depending upon the requirements of the work. Figure 5-6 demonstrates some additional 

subjective work on the intermediate composite statistically filtered image. Some lines 

have been completed, and regions have been marked as Don’t Care (in white) as, for 

the current tests, these regions where not important in object detection of an aeroplane. 

This method was employed to create all the ground truth CV image analysis files for 

this research. The original image and the matching ground truth images can be seen in 

Test Images and Ground Truth Images. 

With access to reliable ground truth image files, testing edge detection models becomes 

possible with binary performance classifiers to score measures such as accuracies, 

precision, and sensitivity. This methodology is discussed in the relevant chapters. 

 

 

 

Figure 5-6. Completed ground truth image 
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6 

6Computer Vision Image Analysis for Augmented Reality 

Systems 

This chapter describes the current Computer Vision models associated 

with extraction of key interest points such as edge, corner and feature 

points. Computer Vision models are assessed to measure their 

capabilities to operate within the Augmented Reality Remote Access 

Laboratory environment. 

Analysis of digital images occurs to gather knowledge from the image data set. 

Knowledge gathered from the digital image allows an understanding of the components 

with the image, for use by higher function processes. Within visual AR systems, image 

analysis interprets the raw information sets for follow-on processes such as object 

tracking or other AR sub-systems. The major contributions from this chapter comprise 

of ascertaining the performance classifiers for edge detection models, and the validation 

and verification of object detection models within digital images, which support the 

requirements of AR RAL environments.  

Recent advances with high definition video screens and monitors, plus the use of multi-

chip digital image capture devices have allowed vast improvements in Computer Vision 

systems, but at the cost of increased data sets sizes. The distribution of pixel colours 

throughout an image, is processed in an attempt to understand the scene, and extract 

details of objects and their relationship to other objects. Three primary methods are 

employed as a first step towards information discovery; segmentation, edge/corner 

detection, and feature detection.  

• Segmentation involves classifying pixels as either foreground or background, 

based on the criteria of the current model [7].  
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• Edge or corner detection locates boundaries associated with geometric 

discontinuities [188]. 

• Feature detection isolates key aspects of the image in order to identify objects 

or key reference points [189]. 

Many image analysis models are computationally expensive, and even with current 

high end graphic workstations, real-time processing is difficult to achieve [190]. This 

research performs CV image analysis on real-world images, to locate key interest points 

in support of follow-on CV object detection and tracking systems. Computer Vision 

models are also assessed to determine their ability to operate in real-time, a requirement 

of AR RAL systems. 

This chapter is structured as follows: Section 6.1 explains the experimentation 

methodology, while sections 6.2, 6.3 and 6.4 define the edge, corner and feature point  

image analysis models. Section 6.5 provides the results of CV image analysis 

verification and validation, while section 6.7 summarises the research. 

6.1 Experimentation Methodology 

A suitable means to evaluate the effectiveness of the various Computer Vision image 

analysis models requires a consistent framework to ensure that models are each 

subjected to the same criteria and environment. All CV models have been constructed 

in-house as part of this research, with no secondary or out-sourced third-party 

components. 

All experiments were conducted on a dual Intel Quad Core i7-4790 CPU @ 3.6 GHz 

computer, with 8GB of RAM, running the 64-bit Windows 8.1 (build 9200) operating 

system. The video card is an AMD Radeon R7 200 Series with 38.97fps OpenGL 

CINEBENCH R15 score and 709 CPU score. 

6.1.1 Infrastructure 

As a large number of CV models are needed for the validation and verification of their 

AR RAL suitability, the Augmented Reality Remote Access Laboratory Development 

Console (see Construction of the Augmented Reality Remote Access Laboratory 

Development Console for details) was constructed. The AR RAL Development Console 
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provides the necessary infrastructure to perform all the necessary CV model trials. All 

CV models were designed and implemented using the C# programming language.   

6.1.1. (a) Model Structures 

Approximating mathematical models, function and algorithm in software can be 

problematic. Reliably reproducing the purpose of a CV model is one issue, with the 

other on the interpretation of functionality when applied to the two-dimensional image 

data sets. Each CV model involved in this research has been interpreted and written into 

software code. 

6.1.1. (b) Convolutions 

Convolution theorem provides an efficient short-cut in the complex and time-

consuming image transforms within the Time-Space domain, and allow for simple 

multiplications in the Frequency domain space [3]. A significant portion of the CV 

filters from this research are first, second or partial derivatives which must be applied 

to the two-dimensional digital image data set. Representation of common derivatives 

can be performed quickly using convolution theorem. The improvement in 

computational cost can be seen by the time complexity improvements, where applying 

CV filters in the Time Space Domain has a time complexity cost of ( )2nO  yet only 

( )nnO log  for convolutions in the Frequency Domain. The AR RAL Development 

Console includes a range of generic convolution functions to apply kernel matrixes to 

the current image memory array. 

6.1.1. (c) Matrixes 

Mathematical transforms with digital images require a kernel as an operator in the 

convolution process. Kernels for convolution are matrixes, and are implemented in this 

research as arrays of object type double. The Laplacian kernel shown in Figure 6-9 is 

 

Figure 6-1. C# Representation of a Laplacian kernel 
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represented in C# code shown in Figure 6-1. Matrixes of the form used in this research, 

are compatible with memory mapped images, so as to improve the performance of all 

CV processes. 

A large number of CV processes are supported by the AR RAL Development Console 

in matrix format. Computer Vision image filters such as: Gaussian, Laplacian, and 

Mean as well as edge detection systems; Sobel, Prewitt, Kirsch, LoG and other 

derivatives are all represented as matrixes in C# code. A series of other image 

processing tools are represented in software matrixes as well, such as blur and 

sharpening functions. 

6.1.1. (d)  Model Attributes 

Many CV models require adjustment or fine-tuning with user selectable values. As 

hybrid models are considered as part of this research, the stacked nature of hybrid 

models means that a single set of attributes are insufficient. Each CV model also 

contains its own complete list of user selectable attributes. The ability to quickly and 

instinctively adjust model parameters was also important. For this reason, a parameter 

interface was added to the console, and shown in Construction of the Augmented Reality 

Remote Access Laboratory Development Console Figure K-2. Values stored within the 

parameter interface are associated with the current active model and session of tests. 

6.1.1. (e) Software Operations 

The AR RAL Development Console provides a software framework for the realisation 

of the CV models listed in  Computer Vision Model Summary Table F-. Testing each 

CV model occurs through the construction of a program. The program is a sequential 

list of CV models (Actions) to be applied to the current image. Each element (CV 

model) of the program list is dispatched to the underlying processing sub-systems, in 

sequence. Figure 6-2 shows a program of three ‘stacked’ actions, two of which involve 

convolution operations. Processing sub-systems call upon generic modules to perform 

the majority of image filtering or analysis such as Convolution processes. 

Image or frame processing is summarised in Figure 6-3 and involves first converting 

the bitmap representing the current frame or test image into a byte array within main 

memory. This provides at least an order of magnitude speed increase when reading and 

writing the image attributes such as pixel colours. All operations and tests on the current 

image/frame are performed against the image memory array. Which CV model is to be 
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applied against the data array is decided by a large series of logic switches. Each model 

type of operation is grouped into enumeration families, shown by  Computer Vision 

Model Summary Table F-. Functionality allows multiple re-entries into the logic switch, 

based on the CV models (Actions) listed within the current session’s program. 

Once all selected Actions have been applied to the image data array, the array is 

converted back to a bitmap format for displaying. Testing CV models will generally 

return the results of the model, as a visual verification of the model’s effect. 

Operationally, the result should continue to be the original image, and within an AR 

environment, the returned image would include any visual enhancements. Additionally, 

to the resultant bitmap image, data may be available such as tracking information, or 

key reference/feature points. 

6.1.1. (f) Model Attributes 

 

Figure 6-3. AR RAL Image data processing pathway 

 

Figure 6-2. Standard experiment view (Shows 'stacked' program) 
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Default parameters are initially loaded when the application loads, and variations for 

different model selections (such as the weighting for a 3 x 3 or a 5 x 5 Gaussian 

convolution kernel) are automatically changed. Manual adjustments are instantly 

applied to the current image/frame, which provides an instant view of the results of 

such a change. Parameters are parsed to the various CV models (Actions) listed in the 

program of the session object, which follow through the logic switch. 

Every function accessed through the logic switch consists of a set of generic parameters 

and function specific parameters. The ability to stack multiple models relies on each 

function returning a byte array consisting of the memory mapped bitmap image. Each 

CV function requires, as a minimum, pointer to the memory mapped image 

(sourcebuffer) and the attributes of the image including the dimensions, the colour 

depth (bytesPerPixel) and number of bytes per row (stride). 

Function specific parameters are supplied by the attribute collection associated with the 

current test. 

6.1.2 Validation and Verification 

This section describes sound methods for performance evaluation of the CV image 

analysis models. Experimentation aspires to discover Computer Vision models which 

are sufficiently robust as a foundation for supporting AR functionality within the RAL 

framework, to identify and track objects, and which do not rely upon prior knowledge 

such as fiducial markers 

6.1.2. (a) Methodology 

Trials for all CV models (and combinations) follow the same pathway for their creation 

and execution. Attributes required for each trial must be applied prior to the execution 

of the trial. The Attribute panel of the AR RAL Development Console is preconfigured 

with the most conventional model settings, but may require adjustment for some trials. 

As each trial is created, the session is saved to store the configuration of the trial.  

The setup and execution stages are described in terms of the operation of the AR RAL 

Development Console operation. 

byte[] functionName(byte[] sourceBuffer, int width, int height, 

int bytesPerPixel, int stride) 
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6.1.2. (b) Setup 

Figure 6-4 defines the stages to create a new trial. To create a new trial, the user is 

required to select File | New Session from the AR RAL Development Console. The list 

of actions is now available for selection. The user should now select the file name from 

the File | Load Image menu selection. The image will be displayed in the console. The 

complete list of attributes for each CV image analysis trial are listed in Configuration. 

The user is expected to select from Configuration Table H- for each trial. 

Each test consists of a program: built from individual CV image filters or analysis 

models to be applied to the current image. The user must now construct that program 

and select the necessary Actions to be applied. As the user double clicks the required 

Action (see Figure 6-4), the action is added to the test program. 

At this stage, the session is saved to maintain the trial parameters. The filename for the 

saved session is as listed in Schedule of Tests with a suffix of *.AR RAL. 

6.1.3 Test Measures 

Apart from the AR RAL Development Console functionality shown in Figure 6-3, CV 

model testing involves significant infrastructure to support each of the CV models. The 

testing regime is divided into three main sections, edge & feature point detection, object 

detection and object tracking. Static images are the source for the various CV image 

 

Figure 6-4. Trial/Test Creation Flow Diagram 
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analysis model verification and validation processes.  The computer vision models 

listed in  Computer Vision Model Summary Table F- are tested against a series of 

benchmark images shown in Test Images, which have associated ground truth test 

images shown in Ground Truth Images, to ascertain their effectiveness. Combinations 

of CV models (hybrids) are also included in the schedule of tests listed in Schedule of 

Tests, as complimentary CV models are able to improve the outcomes. Likewise, some 

combinations of CV models are antithesis, producing meaningless results. These 

combinations are also tested for completeness. 

6.1.3. (a) Edge and Feature Point Detection Metrics 

Edge detection, on its own, has limited purpose as an object detection mechanism. 

However, edge detection is a foundation block for higher level CV processes such as 

determining the frame of reference with a video scene through the construction of 

feature points, object shapes and contours. Effective edge and feature point detectors 

are an important step for up-stream CV systems and require careful consideration when 

selecting models for future development. 

For comparison, pixel-level performance calculations score the effectiveness of each 

CV image analysis model against a known baseline for comparison. Shown in Test 

Images are ten real-world images which have been selected as test subjects, consisting 

of varying content. The images were intentionally selected because of the complex 

nature of the scenes and the known difficulties associated with many CV analysis 

processes. Only one synthetic image was selected, as it has been the reference image 

within other research. The SUSAN [16] Edge and Corner image is shown in SUSAN 

Test Image. Variations in CV model results requires a method to gauge the effectiveness 

of each CV image and this research is inspired by Bowyer et al. [158]. Ground truth 

testing with binary performance classifiers are used to score model measures such as 

accuracies, precision, and sensitivity. As a results of Bowyer et al. research [158], three 

images from that research are included as a form of baseline testing. These images, 

along with their ground truth images are shown in Empirical ROC Test Images. 
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6.2 Edge Detection 

Edge detection is a common first stage process for many CV analysis systems. 

Significant research on edge detection methods have been performed over the decades. 

Edges are mostly resolved with the application of full or partial derivatives to detect 

zero-crossings, or maxima’s within the local environment. Pixel intensity across an 

entire image varies considerably, causing inconsistent detection results. This is 

illustrated in Figure 6-5 which shows a portion of the Ground Truth test image GT-08, 

where the red horizontal line indicates the data points used to map the image intensities 

in the graph superimposed over it. This demonstrates the complex nature of pixel 

intensities and the core problems with most CV image analysis processes of extracting 

meaningful signal data. (Note: The image has been stretched so that it aligns with the 

image intensity graph.) Different edge detection models capture different aspects of the 

intensities to realise object boundaries. Some obvious signal points correspond to the 

variations shown in the image segment. But determining which peak or trough 

corresponds to valid edges is still an issue. For example, between points 88 and 97 in 

Figure 6-5, is noise which could be falsely identified as an edge boundary. Some of the 

noise can be seen manifested as interest points in Figure 6-10. However, any system 

that uses a derivative kernel suffers from additional noise because derivatives amplify 

noise[191].  

Extracting edge data is achieved through three main methods, which are described 

below.  

 

Figure 6-5. Image intensity variations from image GT-08 (coordinates 100, 51 to 200, 51) - 

highlighted in red 



 

85 

6.2.1 Gradient Strength 

Object boundary detection models function mostly through the calculation of image 

intensity gradients. Gradient vectors indicate the rate of change for the object boundary 

intensity, and the direction of change. Second derivatives (or convolution) of an image 

with a kernel, such as a Laplacian or Gaussian, produce gradient intensity response 

maps (shown in Figure 6-6). Shown in Figure 6-7, object boundary intensity gradients, 

when convoluted with a kernel, creates a local-maxima. Figure 6-7 shows a typical 

response to a step edge (the change in image intensity as an object boundary is crossed) 

in convolution with the derivative kernel. The result is a local-maxima point to mark 

the edge. Other kernel types may produce zero-crossing points, or a sudden change in 

the gradient orientation may indicate points of interest, depending on the CV models 

employed. From viewing the varying pixel intensities of Figure 6-5, derivatives of such 

regions of an image result in a response function similar to Figure 6-6, which 

 

Figure 6-6. Second derivative response function of GT-08 

 

Figure 6-7. Step edge detection with derivative kernel 
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demonstrates the gradient magnitudes and zero crossing points. Figure 6-6 also 

demonstrates the significant complexity in extracting relevant response outputs. 

The response functions for each edge detection model are presented as each model is 

defined. The synthetic object shown in Figure 6-8 (which is part of the SUSAN [16] 

test pattern) is used to visually present the results of each model’s convolution or 

method. 

Image convolution with a kernel provides simplified full or partial derivative 

approximation methods to discover edges within an image, and these common methods 

are described below. 

6.2.1. (a) Laplacian 

Laplacian filter kernels, as shown in Chapter 4, Figure 4-5, are effective at sharpening 

image edges. However, applying the variation shown in Figure 6-9, in convolution with 

the image, approximates the second-derivative of the image, where zero-crossing points 

are identified as object boundaries, which effectively produces an image edge map. 

Figure 6-10 demonstrates the Laplacian edge detection kernel’s effect when in 

convolution with ground truth test image GT-08. Substantial noise is present in the left 

image of Figure 6-10, with many artefacts visible (for example, visible around the 

chimneys) which have no bearing on the actual edges of object boundaries.  

 

Figure 6-8. Test object used for response function demonstration 
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Figure 6-9. Laplacian kernel 
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Noise within the image edge map causes hard edges to merge with weaker nearby 

edges, confounding the results and providing less than ideal data for any secondary 

image processing functions. Applying image filtering to reduce high frequency noise, 

also reduces the effectiveness of the edge detection process, as can be seen in the right 

image of Figure 6-10. Edge detection results occur specifically from the high 

frequencies of object boundaries. 

The results of the Laplacian filter can be readily seen within the response function 

shown in Figure 6-11. Strong responses appear from high contrast boundaries such as 

the black border regions adjacent to the brighter regions. The vertical central line and 

the right oblique of the test image, show lower intensity gradients, which also appear 

quite weak in the filters edge detection results. Also visible on the response function, is 

some noise along the left oblique edge, hidden by the strength of the edge detection. 

Filter edge detection results. 

 

Figure 6-11. Laplacian response function to test object 

  

Figure 6-10. Laplacian edge detection. No filter (Left), Gaussian filter (Right) 
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6.2.1. (b) Laplacian of Gaussian 

The Laplacian of Gaussian (LoG) filter is a second order operator proposed by Marr 

[14] to detect intensity changes over different scales. It combines the benefits of 

Gaussian filtering and the Laplacian edge detector. A rapid change in image intensity 

is the focus for the LoG models. Equation 6-1 is a variation of the LoG edge detector 

used for this works, where the response curve is demonstrated in Figure 6-12. For the 

response curve of Figure 6-12, 𝜎 has been set to 1.2. Calculating the LoG kernel is a 

similar process to generating the Gaussian kernels in that there are several ways to 

achieve an effective kernel.  

From the response function of the test object, shown in Figure 6-13, a similar result to 

the Laplacian response seems apparent. While the edge detection results appear to be 

stronger, the response function does not appear to have visibly changed. Closer 

examination shows that all edges have a stronger gradient affect (gradient magnitude) 

than the standard Laplacian response, but the normalisation functions of the graphing 

functions have minimised the apparent effect. The LoG response has also created larger 

gradient signals for each of the four outer corners.  

∇2𝐺 =
1

2𝜋𝜎6
((𝑥2 + 𝑦2) − 2𝜎2)𝑒

−(
𝑥2+𝑦2

2𝜎
)
 

Equation 6-1. Laplacian of Gaussian spatial edge detector 

 

Figure 6-12. Laplacian of Gaussian spatial filter response curve 
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The kernel of Figure 6-14 is used for all LoG applications within this works. Intensity 

variations from the second-order derivative correspond to zero-crossing points, and the 

isotropic nature of the LoG operator provides detection regardless of the intensity 

gradient direction.  

6.2.1. (c) Difference of Gaussian 

When an image is convoluted with a Gaussian filter, and the original image is 

convoluted again with a second Gaussian filter of a different frequency, then when the 

two resultant images are subtracted, an edge map of the image is produced. Each 

Gaussian kernel filters high frequency data differently based on the values of σ. When 

the two convolution images are subtracted, in combination they effectively become a 

band-pass filter. The filter maintains the information which exists in-between the two 

selected frequencies and disregards the data outside the frequency range. Equation 6-2 

highlights the process, where the image to be convoluted is I, and 𝜎1 and 𝜎2 are the 

standard deviations of each Gaussian filter. 
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Figure 6-14. Laplacian of Gaussian convolution kernel 

 Filter edge detection results. 

 

Figure 6-13. Laplacian of Gaussian response function for test object 
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The effectiveness of Difference of Gaussian (DoG) filters can be attributed to the 

frequency ranges chosen, which will vary from scene type to scene type, requiring 

careful consideration for each image environment. For example, values selected for 

effective edge detection with Ground Truth image GT-09, are not as effective for image 

GT-03. Convolution kernels must be pre-calculated for the desired results, which make 

this model type ineffective for the basis of this research. 

6.2.1. (d) Canny 

A Canny [188] edge detection system acknowledges the noise returned from standard 

image convolutions, and seeks to reduce the reporting of false edges generated from 

noise, through a series of sub-processes. Implementations of the Canny method can 

vary slightly from the original model, but the primary functional steps, shown in Figure 

6-15, are all similar, and listed below.  

• Greyscale Conversion: All early image analysis models operated within the 

image intensity colour space, converting colour images to greyscale for 

Eσ1,σ2
(x, y) = I ∗

e
−

x2+y2

2σ1
2

2πσ1
2 − I ∗

e
−

x2+y2

2k2σ2
2

2πk2σ2
2 

Equation 6-2. Difference of Gaussian calculation 

 

Figure 6-15. Canny Edge Detector sub-processes 
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convolution. Greyscale image intensity levels boost the ability of edge detectors 

to locate object boundaries. 

• Gaussian Smoothing: Noise reduction occurs through the application of a 

Gaussian kernel to the greyscale image. The size (dimensions) of the kernel and 

the sigma (σ) values are selected for the optimal frequency range, with images 

containing a lot of thin object boundaries affected by higher frequency filters. 

• Prewitt Edge Detection: The Prewitt [12] edge detector is an isotropic image 

gradient operator, similar to the Sobel [10] edge detector, which could also be 

used in this situation. Prewitt utilises two kernels for the cardinal directions, as 

shown in Figure 6-17. Prewitt also has a strong response to boundary gradient 

variations, demonstrated by the Prewitt response function of Figure 6-16.  

• Gradient Convolution: The non-maximum suppression process requires first 

order derivatives of the image’s edge gradients. Gradient convolution performs 

an operation on the two separate Prewitt results to produce an isotropic edge 

map with gradient directional data. 

[
−1 0 1
−1 0 1
−1 0 1

]      [
1 1 1
0 0 0

−1 −1 −1
] 

Horizontal               Vertical 

Figure 6-17. Standard Prewitt kernels 

 Filter edge detection results. 

 

Figure 6-16. Prewitt response function for test object 
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• Non-maximum Suppression: Post processing of edge detection data, such as 

non-maximum suppression, is applied to perform fine-tuning on the results such 

as edge thinning. For this variation of the Canny edge detector, non-maximum 

suppression is implemented by using first-order derivatives to gather the 

gradient directions, and then in 45° increments, compare the magnitudes to the 

gradient direction. There is also a known rounding effect [155] with the 

convolutions, affecting edge localisation. 

• Hysteresis Thresholding: The strength of an edge is considered through 

thresholding, and to improve the process, two hysteresis levels are used. An 

edge is traced through the image and added to the edge map if it is within the 

hysteresis levels. 

 Due to the image intensity convolution processes, Canny edge detection is still 

considered an edge strength model, regardless of the additional signal boosting 

methods. Noise is not completely removed from a Canny implementation, but false 

positive edges are significantly reduced. 

6.2.2 Gradient Orientation 

Instead of isotropic kernels used in other edge detection models, the orientation of the 

gradients becomes the primary feature in the gradient orientation boundary detection 

model. Conventional edge detector kernels such as Prewitt shown in Figure 6-17, are 

modified to calculate image intensity gradients from angles of 0°, 90°, 180° and 270°. 

Alternative orientations along the diagonals (45° increments) provide additional edge 

attributes. Diagonal gradient intensities reduce the cubic style of the edge map from 

only the cardinal orientations, and the results closer represent the nature of real object 

boundaries. Noise still contributes to a good many false positive edges and a Gaussian 

filter, preceding the kernel convolution, does improve the false signal rate. 

Directional gradient edge processing achieves greater clarity in the constructed edge 

maps. Shown in Figure 6-18, the comparison between the isotropic Prewitt edge 

detector and the gradient orientation implementation of Prewitt demonstrates that 

strong edges remain, but they exhibit cleaner lines as a result of homogenous gradient 

direction on boundaries. The response function and edge detection results, as shown in 

Figure 6-19, also shows tighter/cleaner reactions to the filter, with less influence from 

noise. 
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6.3 Corner/Vertex Detection 

Detection of boundary intersections, or the intersection of polyhedral objects, reveals 

important corners or points of interest within an image. Orthogonal shapes within the 

image, generated from man-made objects, are usually the source of many corner points, 

and tend to impart information regarding the features within the image [192]. To begin 

with, edge detection models produce one-dimensional data sets. It is initially assumed 

that all edges are a single dimension [193], and require the generation of two-

dimensional surface structures before corners or vertices can be detected. Two primary 

model variations support detection of corners, which is still a major area of research 

within the CV community.  

Raw edge maps are a series of unlinked and un-associated data points from the image’s 

intensity gradient calculations. Generating geometric structure from the individual 

boundary gradient directions is derived from linked boundary points. Selecting an edge 

  

Figure 6-18. Prewitt kernel results (Left - Standard Prewitt) (Right - Directional Prewitt) 

Filter edge detection results 

 

Figure 6-19. Gradient direction (using Prewitt) response function for test object 
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point, neighbour points with homogenous gradient directions are a factor for the 

boundary (shape) construction. Finally, analysis of the shape boundary may then 

identify corners from rapid changes in boundary directions, or the intersection with 

other polyhedral shapes.  

6.3.1 Grey Level Corners 

To remove the need for CV systems to perform pre-processing of images before the 

detection of corners or vertices, Kitchen & Rosenfeld [2] researched a number of 

models to extract points of interest directly from the image. Early corner detection 

systems relied on the pre-processes of edge detection systems such as Sobel [10] or 

Prewitt [12], from which linked boundaries are constructed to find sharp turning 

boundaries. Unfortunately, the nature of high frequency noise for digital images 

produces many false positive corners. False corners appear for any change in immediate 

direction instead of changes from the line direction.  

Function fitting produced initial rudimentary but successful results [2], and formed the 

foundation for many follow-on works. This method was not incorporated into these 

tests as some of the CV models described below utilise and expand on the research, 

producing more effective detectors. 

6.3.2 Moravec Corner Detector 

The Moravec corner/edge detector is a key model in the design of follow-on corner 

detectors, and was first applied for robot obstacle avoidance research [17, 194]. The 

method utilises masks to assess the image intensities within the mask window. The 

mask is applied to the image to calculate the average image intensity within the mask. 

Average intensity is compared to the sum of the average intensities as the mask is 

moved around the central pixel, see Figure 6-20. The values of the differences in the 

 

Figure 6-20. Moravec edge and corner detection 
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averages calculation, determine whether the central pixel is an edge, corner, or of no 

interest at all. Corners are indicated when the differences are large.  

The response function for the Moravec model is shown in Figure 6-21, and clearly 

shows the detection of the key reference points of the test objects corners. Previous 

response functions have shown noise in the left-hand oblique line and the Moravec 

model also produces noise points in that region, which appear as discrete points along 

both oblique lines. As a corner detector, Moravec produces a strong response to the 

presence of the objects corners, however does not respond strongly to oblique corners. 

Moravec models also provide a measure of the quality for detected edges or corners 

supplying the user with some control to select corners that have a stronger response 

function. Adjusting the threshold reduces the level of false positives, and spurious 

noise. Additionally, the model utilised within this works allows the size of the mask to 

be specified: the effect of which is to affect the sensitivity, but improve the selectivity 

of the model. 

6.3.3 Harris/Plessey Corner Detector 

Literature seems to confuse the development of two corner detectors: the Plessey corner 

detector [145, 193, 195] and the Harris corner detector [150, 196]; however they appear 

 Filter edge/corner detection points 

 

Figure 6-21. Moravec response function for test object 
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to be the same models. While many refer to the Harris corner detector, it is actually 

called the Plessey detector because of the name of the research group. 

In isolation, individual boundary points do not provide sufficient information to 

perform corner or vertex assessments. Moravec attempts to reduce that problem by 

detecting both edges and corners. However, noise still plays havoc with locating 

vertices or corners, and applying Gaussian filtering causes a localisation mismatch 

between the actual and discovered interest point, as shown in Figure 3-3. Moravec is 

also anisotropic [124] which means that only changes of increments of 45°  are possible 

to detect. The anisotropic nature is apparent in Figure 6-21 where oblique edges do not 

respond strongly. Plessey is tolerance to noise and is isotropic in nature [197]. The 

Plessey detector has used the response function, derived from the Moravec corner and 

edge detector, to calculate a pair of eigenvalues. The eigenvalues are calculated from 

the symmetrical matrix used to describe the change in energy from the mask, as shown 

in Equation 6-3. A corner is defined when both eigenvalues are large.  

The common principle used by the Plessey model, and followed by many other 

researchers has the local gradient calculated as: 

So, let 𝜆1 and 𝜆2 be the eigenvalues of 𝐴, then they are to satisfy Equation 6-3. 

The Plessey model has improved on the Moravec model, and is still one of the baseline 

corner detection models used in today’s research. However, the Plessey model is still 

based upon first-order derivatives, and as such suffers from similar problems of the 

other first or second order derivative models, in the form of noise amplification and 

poor localisation [198]. Additionally, the Plessey model may be problematic for real-

time operations [199]. For this reason, the model was not included as a test model for 

this research, even in light of works expressing the superior results of the Plessey model 

[187]. The Moravec model sufficed as a reliable baseline model and was helpful with 

comparisons against advanced models. 

𝜆1 + 𝜆2 = 𝐼𝑥 + 𝐼𝑦 > 0,     𝜆1𝜆2 = 𝐼𝑥𝐼𝑦 − (𝐼𝑥𝑦)
2

> 0 

Equation 6-3. Plessey eigenvalues 
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6.3.4 SUSAN Corner Detector 

Of the advanced corner detection models available, the SUSAN corner detector has 

very detailed research associated with it [16]. The SUSAN method does not employ 

any order derivatives, and is not reliant on boundary gradients, so is robust against many 

of the forms of noise affecting alternative models. As the SUSAN detector does not 

rely on boundary gradients, it also becomes a good secondary source for hybrid image 

analysis, tested later in Section 11.2.2, Segmentation Matching. While the SUSAN 

model is considered a feature detector, it is described in this section because it is 

primarily a corner detector. 

Expanding on the Moravec principle, a circular mask is applied to each pixel, as shown 

in Figure 6-22. Each pixel’s intensity, within the mask, is compared to the pixel under 

test (nucleus). Areas within the mask of similar or greater brightness are keyed as 

Univalue Segment Assimilating Nucleus (USAN). The USAN contains structural 

information including two-dimensional attributes.  

The response function for the SUSAN model, in Figure 6-23, clearly reduces the 

influence of spurious data from the image, and yet produces strong results at the test 

objects corner points. Unfortunately, it also produces noise at each of the key points, as 

shown by the multiple spikes in the response function of Figure 6-23 and the multiple 

dots within the filter corner detection image. Aside from these issues, the SUSAN 

corner detector model is still a very robust system. 
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Figure 6-22. SUSAN sample masks 
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6.4 Feature Point Detection 

Digital imagery initially consists of many undetected features such as textures, shading, 

edges, colours and shapes. While edge and corner detection reveal some attributes of 

individual pixels, feature point detection attempts to determine additional attributes of 

naturally occurring image features. From the additional feature attributes, more can be 

understood about the image, and key reference points or key objects, obtained for 

follow-on processes. 

6.4.1 Natural Features 

Detected naturally occurring features within a digital image, signify points of interest 

because they are generally unambiguous and unusual in their characteristics. 

Employing naturally occurring features, within an image, as reference points is the ideal 

solution for computer vision systems, as there is no need to utilise fiducial markers or 

secondary referencing systems such as GPS. This is an important trait for markerless 

tracking in AR systems. Methods such as Scale Invariant Feature Transform (SIFT) 

[150] utilises natural features as key points within an image stream, for tracking 

purposes. 

SIFT builds feature details in scale space, and may achieve scale invariance through 

implementing DoG as the initial feature detection stage, producing SIFT keys. The 

 Filter corner detection points 

 

Figure 6-23. SUSAN response function for test object 
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SIFT keys are used to capture characteristics, or descriptors, of the candidate feature 

point. While there are slight variations in SIFT implementations, a simple descriptor 

method maps gradient directions in the pixels immediately surrounding the feature 

point. Gradient orientation maps provide a reasonably unique signature for the feature 

point, if the mask surrounding the central pixel is sufficiently large enough. If the mask 

is too large, processing time hinders the effectiveness: too small and ambiguous 

signatures may also reduce the efficiency. While the process is very effective at locating 

key feature points, the processing requirements initially deemed it unsuitable for real-

time video processing, hence its primary use in robotic navigation. New 

implementations of the model have improved the processing costs and the 

implementation used in this works has skipped functions which would do little to 

improve its efficacy in an AR RAL environment. 

A common method for feature selection involves the Plessey [124] corner detector. The 

eigenvector/eigenvalues of the Plessey detector are similar to the feature detection 

methods of the SIFT model. As the Plessey model is derived from the Moravec [17] 

model, this research implementation employs the Moravec corner detection model 

within the SIFT process. In addition to the identified corners, this SIFT style 

implementation incorporates gradient magnitude and orientation attributes, calculated 

for each pixel as shown in Equation 6-4 [169]. 

Within a single image, there could be hundreds of different SIFT keys, providing a rich 

source of distinctive references to exploit. Because of the potential sizeable source of 

features, SIFT is invariant to scale, rotation, translation, partial occlusion, illumination, 

and also local affine distortion. It has been utilised in many CV object detection and 

tracking systems.  

𝑀(𝑥, 𝑦) = √(𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦))
2

+ (𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1))
2
 

𝜃(𝑥, 𝑦) = tan−1 ((𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1))/(𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦))) 

Equation 6-4. Boundary magnitude and orientation 
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6.5 Results – Edge Detection 

Computer Vision models associated with edge detection are assessed within this 

section. All trails within this section are performed on the ten test images listed in Test 

Images as well as the SUSAN [16] test image shown in SUSAN Test Image.  

Additionally, images used for empirical baseline edge detection testing [158] have been 

included to both compare the implementation of each CV model within this research, 

and to link results with associated research. Each image is subjected to the 352 trials 

listed in Schedule of Tests. Each trial listed in Table G-1. Edge detector schedule of 

tests (includes test numbers) is associated with a trial number, which indicates the type 

of test. The prefix ‘E’ indicates the trial is an Edge detection trial. The second number 

indicates the CV model under test. A number from ‘01’ to ‘16’ indicate the sixteen 

various edge detection models, down the left column. The suffix represents the type of 

filter applied to the trial. For example, the number ‘00’ represents no filtering, while 

‘02’ indicates a Gaussian 5x5 matrix filter. Parametric values for each of the trails is 

indexed by the test number and listed in Configuration. Any setting required for the 

operation of the CV models is listed in this appendix. A summary of the full 4928 trial 

results for Image Analysis assessments, are listed in  Trial Results.  

Results for each trial listed in Schedule of Tests, are saved in a common file and are 

identified according to the names associated with the test images. Within the common 

results file, records represent individual trials against the test image, which are labelled 

by the trial number and includes the results when compared to the ground truth images, 

as well as the runtime for the model (in milliseconds).  

Interpretation of raw data provides a partial measure of the effectiveness of the CV 

models’. Additionally, information regarding the suitability of a particular CV model 

for AR and RAL applications can be gained from the error image. An example of an 

error image is shown in Figure 6-24 which shows the output from the CV edge detection 

model, plus an image which displays the total population of true and false detected 

conditions. In the error image of Figure 6-24, green points indicate True Positive values, 

while red indicates a False Positive pixel. Purple points represent False Negatives where 

an edge should have been detected, but was not. True Negative pixels remain white. 
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6.5.1 Statistical Analysis 

Evaluation of effectiveness for the image analysis trials is achieved through 

examination of the ‘confusion matrix’ and its measure of the pixel population. Each 

pixel in the image is classified as either True Positive or False Negative when tested 

against the ground truth images. The confusion matrix, shown in Table 6-1, defines the 

performance analysis measures, which are explained below.  

True positives (TP) are detected edge or feature points which correspond to the stated 

edge points of the ground truth image. False positives (FP) are detected edge or feature 

points which are found in non-edge positions. Additionally, true negative (TN) are 

locations which should not have edge or feature points, and do not, while false negatives 

(FN) represent points not detected as edge or feature points but are supposed to be. The 

relationship between the four classifications can be seen in the confusion matrix of 

Table 6-1. Within the confusion matrix, actual positive (AP) are pixels which should 

be detected as edges or feature points. The opposite is true for actual negatives (AN) 

which are pixels not associated with edges or feature points. Detected values (on the 

  

Actual 
Positive (AP) 

Actual 
Negative 

(AN)  

Detected 
Positive 

(DP) 

True Positive 
(TP) 

False 
Positive (FP) 

PPV = 
TP/(TP+FP) 

Type I Error 

Detected 
Negative 

(DN) 

False 
Negative 

(FN) 

True 
Negative 

(TN) 

NPV = 
TN/(FN+TN) 

Type II Error 

 

Recall = 
TP/(TP+FN) 

Specificity = 
TN/(FP+TN) 

 

Table 6-1. Binary classifier ‘confusion matrix’ 

   

Figure 6-24. Edge detector model output and corresponding error map (Image GT-02-1 and 

test E-04-14) 
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left side) are the detected results. Detected positive (DP) indicates that the CV model 

has detected an edge or feature point. How detected results correspond to the real values 

determines the classification. 

6.5.2 Performance Classifiers 

Selection of a performance classifier requires consideration of the type of data 

collected, and the context of the data. Some CV models have been assessed through the 

use of ROC analysis [158], which is a popular analysis tool for many fields of research. 

ROC analysis also employs the confusion matrix for their assessment. The majority of 

edge detection models tested as part of this research are not suitable for ROC curve 

analysis due to their lack of parameter variation involved in their operation. As such, 

single discrete classifiers are employed which yield the one confusion matrix [160] per 

trial. Testing against ground truth images requires an effective binary classifier which 

is capable of differentiating the limitations of each model. A number of statistical 

analysis measures are available with which to ascertain differing concepts of effective 

results. Discussion on performance measures excludes the synthetic SUSAN image of 

SUSAN Test Image, and remains on the ten ground-truth and baseline images selected 

for this research, unless specifically stated. This must be the case due to the ideal nature 

of the SUSAN image. A significant portion of the highest scores are associated with 

the SUSAN image. Performance analysis of the previous empirical research [158], as 

listed in Empirical ROC Test Images, are compared alongside of the those of Test 

Images. 

6.5.2. (a) Accuracy 

The accuracy score of a trial may be calculated from accumulating the valid edge pixels 

from the CV model process. Equation 6-5 shows the accuracy (ACC) calculation, where 

the true values (both the TP and TN values) sum is divided by the total pixels assessed 

within the image. 

From the collected trail results, the best performing trial overall (E-09-00) returned a 

staggering 98.67% accuracy score of correct edge detection for the test image GT-10-

1. All the best performance results occurred against either image GT-10-1 or SUSAN, 

ACC =
TP + TN

Total Pixel Count
 

Equation 6-5. Accuracy 
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which is more about the type of image rather than the effectiveness of the image 

processing models. Image GT-10-1 consists of mostly clean straight lines, contributing 

to its high accuracy. With this in mind, a total of 1647 trials were performed with an 

accuracy score rated over 90%; however, 560 (34%) of them are associated with the 

synthetic test images GT-10-1 & SUSAN. This clearly does not give a comprehensive 

demonstration of one CV process over another, especially when also considering that 

there are only 352 trials per test image. 

Trials with the second number “09”, associated with the First Order Gradient edge 

detector, are consistently among the highest accuracy scores for each test image.  

6.5.2. (b) Recall 

The recall score (also called the True Positive Rate) of a trial result, is the ratio of the 

TP edge pixels in relation to pixels that should be an edge (both TP and FN) as shown 

in Equation 6-6. A high recall score is an indication of a high probability for correctly 

identifying edge pixels when edge pixels are expected. 

Assessment of CV edge detection model effectiveness based on the recall score 

assumes that the cost of the model’s failure to detect FP events is minimal. For example, 

test image GT-01-1 when processed by the Gaussian filter Circular edge detector (trial 

E-15-01) affects a recall score of 100%. This would seem an ideal result, however the 

ACC score is a poor 21%, and the reason is apparent when viewing the error map shown 

in Figure 6-25 (Red pixels indicate FP points and green pixels are TP points). Almost 

the entire image has been classified as an edge, causing almost 100% recall detection, 

TPR =
TP

TP + FN
 

Equation 6-6. Recall score calculation (True Positive Rate)  

 

Figure 6-25. Error map for image GT-01-1, trail E-15-01 
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but 100% failure to account for the massive FP detection rate. In isolation, the recall 

value has little relevance, and must be used in appropriate context along with additional 

measures. 

6.5.2. (c) Specificity 

Complementing the recall assessment is the specificity score (also called the True 

Negative Rate), which calculates the ratio between the correct absence of edge pixels 

(TN) and all the actual non-edge pixels (both TN and FP), as shown in Equation 6-7. 

Both the specificity and recall scores are common operators when plotting ROC curves, 

which provide a visual measure of the trade-off between good edge detection rates and 

good non-detection rates. 

Returning to the example used in Section 6.5.2. (b), Recall above (GT-01-1 E-15-01), 

the specificity value of 0.30% is an indication of the CV models very poor ability to 

correctly isolate non-edges from the image. A further indication of the unsuitability of 

the specificity scores in isolation are what an occurrence of 100% means to the edge 

detectors effectiveness. This would seem to demonstrate that such a model is perfect at 

correctly identifying non-edge pixels while also never incorrectly locating a pixel that 

is a true edge. Looking at Figure 6-26 and comparing the recall score, it becomes 

apparent that this could only happen when no edges are detected and the TN values 

reach 100% (Purple pixels indicate FN points). Predictably, the recall score for these 

situations is 0%. 

 

TNR =
TN

TN + FP
 

Equation 6-7. Specificity score calculation (True Negative Rate) 

 

Figure 6-26. Error map for image GT-01-1, trial E-16-05 
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6.5.2. (d) Positive Predictive Value 

Important to understanding positive predictive value (PPV) scores (also known as 

precision), is the concept of prevalence. The prevalence of edges within an image is the 

number of actual edge pixels (AP) out of the total pixel count. A positive predictive 

value is dependent on the prevalence for each image. As such, the PPV score is the ratio 

between the found actual edges (TP) and the detected edges (sum of TP and FP), as 

shown in Equation 6-8. 

Understanding that PPV is basically measuring how often the CV model is correct when 

it identifies an edge (DP), is critical when interpreting the results. Higher values indicate 

a high level of edge detection over the FP rate. Demonstrated in Figure 6-27, is a 

comparison between the lower PPV score (39%) (left image) in which it is apparent 

that TP and FP values are widespread, and the left image where the PPV score (63%) 

is higher and the ration to TP and FP is significantly improved (Full scores shown in  

Trial Results - Edge Detection (Single Classifier Scores). Positive preventative value 

scores seem an effective performance analysis method to gauge edge detectors 

effectiveness. However, taken without appropriate context, using PPV scores in 

isolation may lead to a breakdown in CV model selection. As evidence, test image GT-

01-1, during trial E-10-05, produces an error map which is very similar to Figure 6-26 

except for a single small TP edge pixel. Effectively, this produces a PPV of 100%. 

However, reviewing the results in  Trial Results, TP=1 and FP = 0, so from Equation 

6-8, the result will be 100%: a clear misrepresentation of the real effect of the CV 

model. 

PPV =
TP

TP + FP
 

Equation 6-8. Positive predictive value calculations (precision) 

   
                GT-01-1 E-01-00               GT-01-1 E-02-00 

Figure 6-27. Comparison between low value (Left) and high value (Right) PPV results 
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6.5.2. (e) Negative Predictive Value 

Balancing the PPV measure, the negative predictive value (NPV) is also linked to the 

prevalence of the classifiers true population. The NPV score is the ratio between the 

correct assessment of non-edges (TN) against the complete set of non-edge detection 

(sum of TN and FN), as shown in Equation 6-9. 

Accepting performance assessment of the NPV score results in isolation to other results, 

such as the PPV score, is detrimental to the evaluation of the CV edge detection models.  

For the error maps of Figure 6-27, both images have very high NPV score results (99%) 

demonstrating the CV models’ ability to acknowledge non-edges of the image.  

Because of the reliance both PPV and NPV scores have with the prevalence of the edges 

of an image, it is common to only use PPV and NPV in special circumstances which 

are difficult to align with the binary nature of image edge detection. For this reason, the 

PPV and NPV measures together will no longer be discussed. 

6.5.2. (f) Diagnostic Odds Ratio 

Ideally, a single value performance analysis measure is required. Single value indicators 

for test performance supply a need to quickly assess a binary classifier result. The 

diagnostic odds ratio (DOR) score provides the strength of association through the ratio 

of the odds that an edge is detected if it is an actual edge, to the odds of an edge not 

being detected if it does not exist, as shown in Equation 6-10. 

Unfortunately, the DOR score is an open-ended score, with a range of undefined results 

as well as zero scores. Theoretically, the higher the score, the increased chance that the 

CV edge detection model is more likely to correctly detect edges than not. Even though 

the DOR score is not prevalence dependant, the measure may also produce ambiguous 

results through improper understanding of what the values represent. As a diagnostic 

NPV =
TN

TN + FN
 

Equation 6-9. Negative predictive value (NPV) calculations 

DOR =

TP
FP

FN
TN

⁄  

Equation 6-10. Diagnostic odds ratio (DOR) calculations 



 

107 

tool, DOR scores may be effective, but as a performance assessment of edge detector 

models, the confusion matrix values can produce counter intuitive results. Shown in 

Figure 6-28 is an example of faulty performance analysis. This model (E-04-08) has 

ranked DOR highest for the GT-01-1 image, but has clearly failed to identify most of 

the edges (purple pixels represents FN). 

Reviewing the data in  Trial Results shows that when edge detector models are unable 

to discover boundary pixels, both TP and FP score low, which forces an abnormal DOR 

result. Similar DOR scores are regularly similar for very different edge detection 

outcomes, as shown in Figure 6-29. While the DOR scores are very similar for the trial 

results shown in Figure 6-29, trial E-01-08 has a far greater failure at isolating valid 

edge pixels. In isolation, the results demonstrate a level of dependence on severity of 

edge detection failure modes, which fails to assess the actual error rates.  

Confidence intervals for the DOR score results are achieved by the standard error 

calculation of Equation 6-11 [200]. The 95% confidence interval (CI) for the DORlog  

can be calculated by Equation 6-12. Including the confidence interval alongside the 

DOR score result, improves the performance assessment of the edge detection models. 

 

Figure 6-28. Highest ranking DOR score for image GT-01-1, trial E-04-08 

SE(ln DOR) = √
1

TP
+

1

FP
+

1

FN
+

1

TN
 

Equation 6-11. DOR Standard Error (for Confidence Interval) 

log 𝐷𝑂𝑅 ± 1.96𝑆𝐸(log 𝐷𝑂𝑅) 

Equation 6-12. 95% Confidence Interval 
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Selecting trials with the highest DOR score, but with CI values approximately 5% or 

less, uncovers trials which are consistently scoring high across all other performance 

measures, and which are also arguably subjectively improved outcomes.  

6.5.2. (g) F-Measure (F-Score) 

A single value measure, with context, is required to simplify the performance 

assessment of the of the individual edge detection trials. An improvement on DOR 

score estimations of CV models is the F-Measure. Calculations vary in publications, 

but for this works, the F-Measure is determined by the values commonly called 

precision and recall. When recollecting the confusion matrix of Table 6-1, the F-

Measure focuses on TP results in relation to both the actual positive pixels (AP), and 

the predicted/detected positive pixels (DP). The F-Measure includes the cost of failure, 

to produce a measure of the overall effectiveness of the model.  

Managing the balance between precision and recall (which balances the differing costs 

of failure), raises the necessity for weighting within the F-Measure. The method shown 

in Equation 6-13 is commonly called the 𝐹1 Score, or balanced F-Measure, whereas 

precision and recall weighting can be applied via the 𝐹𝛽 Score, shown in Equation 6-14 

[161]. Maintaining the score balance with 𝛽 = 1, produces Equation 6-13. Increasing 

the influence of recall is achieved through the 𝐹2.0 Score, while decreasing the influence 

by the  𝐹0.5 Score. 

FMeasure =
2

1
recall

+
1

precision

=
2 × recall × precision

recall + precision
 

Equation 6-13. Balanced F-Measure score 

  

     E-01-08 (DOR: 94.5)        E-09-00 (DOR: 93.6) 

Figure 6-29. Similar DOR scores (in brackets) but different outcomes 
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While the 𝐹1 Score does not solve the entire performance assessment issues, the result 

can be used to determine the possibility that the higher rated CV models are the better 

choices as edge detectors. The relevance of the 𝐹1 Score is purely about context and the 

comparison between similar datasets, which fits with the requirements of this works. 

Consistently, from the results shown in  Trial Results, then 𝐹1 Score reveals very 

effective CV models. 

6.5.3 Observations 

Assessing the performance of edge detector models cannot be distilled to a single 

number without consideration of the cost of failure of such models. Successful detection 

of edges and successful non-detection of non-edges are only one aspect when 

considering the Augmented Reality implementations of CV models. What is the cost of 

failure? What are the AR implications when pixel classification results in Type I or 

Type II errors? 

• False positive pixels will cause additional edge pixels to appear, which may be 

accepted as noise, or in the worst-case scenario, deform any boundary shapes to 

an extent that the OoI is no longer recognisable. Excessive FP error results can 

saturate objects or boundaries causing the signal-to-noise ratio to drop to an 

extent that discriminating a valid signal is unachievable.  

• False negative pixels will degrade the borders of selected objects. Boundaries 

may become limited to such a degree that it is impossible to ascertain any shape 

or key edges. Augmented Reality systems will fail to locate any reference point 

or OoI.  

 

Fβ =
(1 + β2) × recall × precision

(β2 × precision) + recall
 

Equation 6-14. General F-Measure (Score) 

Image Trial # ACC PPV DOR F-Measure 

GT-02-1 E-04-14 85.44% 42.02% 12.55 50.01% 

GT-03-1 E-12-00 92.14% 63.41% 30.31 55.90% 

GT-03-1 E-13-01 90.75% 62.47% 18.13 27.97% 

Table 6-2. Binary classifier performance analysis summary 
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Understanding failure modes and determining what level and what type of failure is 

acceptable is challenging. 

For the trail shown in Figure 6-24, the summaries of scores are displayed in Table 6-2 

(full records found in  Trial Results - Edge Detection (Subjective Analysis Error). The 

ACC score for the CV model of 85.44% could be considered a reasonable result, but it 

is clear that there is also a significant level of FN errors. This is reflected by the PPV 

score of 42.02% and the F-Measure score of 50.01% as a result of edge detection 

models failing to discriminate the clear but low contrast edges. Subjectively, many 

models also appear to result is similar data sets. This highlights the benefits of empirical 

measurements of the effectiveness for each model. When viewing the images shown in 

Figure 6-30, they initially appear to be very similar, and indeed the ACC score of Table 

6-2 has them nearly identical. However, trial number E-13-01 produces edges with 

significantly lower gradient magnitudes than E-12-00, causing a 64% increase in FN 

pixel detection, reflected by the F-Measure score. The associated CV edge detection 

models respond to gradient intensity changes differently (as shown in Figure 6-30), 

producing significant FN results. 

When comparing the test results for the images of Empirical ROC Test Images, they 

readily out-score the test results for the images of Test Images. The top 256 results are 

reflected by the Empirical ROC images, excluding a single result for image GT-06-1 

(test E-09-01). This can be explained by the large sections of the Empirical ROC images 

containing areas of non-detection classifications. 

  
             E-13-01           E-12-00 

Figure 6-30. Comparison between CV edge detection model results 
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Validation and verification of the CV models must assess signal quality. Quality is a 

difficult measure when considering the magnitude of error states against the true signal. 

No single score seems to highlight a performance measure above any other. Each edge 

detection model exhibits different responses based on the genre of test images. 

Computer generated images such as the SUSAN and GT-10-01 images achieves high 

scores in most performance analysis models (98.69% and 98.67% respectively), across 

a large range of trial types. Across the entire schedule of tests and test images, Table 

6-3 summarises the top edge detection performers, assessed as scoring 90% accuracy 

or above. Orientation edge detection models account for over 30% of the top 

performers, an indication of the isotropic nature of object boundary gradients. 

Considering the AR object tracking needs, edge detection models based on object 

boundary gradients appears to be beneficial as object tracking models based on feature 

point attributes such as gradient orientation and magnitude, are featured heavily. 

Excluding synthetic images from the results in Table 6-3, hybrid models score 

consistently higher across all measures (see Section I.4 - Edge Detection Best Overall 

(Non-Synthetic)), and can be attributed to six CV image analysis models. Sobel 

(Absolute), Prewitt, Gradient, Gradient first derivative, and Orientation (Sobel and 

Prewitt) edge detectors perform reliably for many image types. From these edge 

  All Trials Non-Synthetic Trials 

Sobel 77 4.68% 53 4.88% 

Sobel Absolute 142 8.62% 100 9.20% 

Kirsch 35 2.13% 12 1.10% 

Prewitt 109 6.62% 69 6.35% 

Laplacian 3 x 3 60 3.64% 23 2.12% 

Laplacian 5 x 5 29 1.76% 6 0.55% 

LoG 41 2.49% 13 1.20% 

Gradient 109 6.62% 69 6.35% 

Gradient First 178 10.81% 136 12.51% 

Gradient Second 134 8.14% 91 8.37% 

Canny 99 6.01% 58 5.34% 

Orientation Sobel 178 10.81% 135 12.42% 

Orientation Kirsch 155 9.41% 112 10.30% 

Orientation Prewitt 179 10.87% 136 12.51% 

Circular 5 x 5 10 0.61% 5 0.46% 

Homogeneity 112 6.80% 69 6.35% 

Table 6-3. Top edge detection models (accuracy scores above 90%) 



 

112 

detection models, all produce effective edge detection with no filtering applied. This is 

interesting due to the fact that many CV filters generally removes the high frequency 

image noise, which is also an indication of boundary conditions. High frequency noise 

associated within the image will produce false positive (FP) edge pixel results, but the 

actual trial scores indicate that overall, the signal-to-noise ratio is sufficiently high to 

still produce highly effective edge detection. 

6.6 Results - Corner Detectors 

Point and corner detectors are assessed within this section. Trials described within this 

section are performed only on the synthetic SUSAN [16] test image shown in SUSAN 

Test Image for the following reasons.  

• Ground truth construction for corner detection, on real-world images is 

technically feasible, but practically problematic. Two primary factors inhibit 

construction of a ground truth test framework: 

o The highly subjective nature of selecting appropriate corner points. 

o The complexity from the natural environment, imposing interesting 

overlays of geometric shape, causing a raft of possible corner points. 

• Lack of corner detection models. Ground truth images for edge detection were 

constructed after a series of edge detection models voted on potential edges. 

With a limited number of corner detection models available, subjective manual 

ground truth construction would be necessary. 

• Within each image, there are potentially thousands of corner points. Too many 

to choose and select manually for ground truth image creation. This assumes 

that the subjective nature of corner point selection achieves a suitable level of 

point identification. Not identifying sufficient points will bias results when CV 

models seem to locate valid points, but are not recognised as such. Over 

identification of corner points also biases results when CV models are unable to 

unlock the details of the image. 

6.6.1 ROC Curve Analysis 

Due to the form of the SUSAN and Moravec corner detectors, parameters are necessary 

for tuning their functionality and efficiency. Ascertaining the optimal values for the CV 
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models, a series of tests are performed against the ground truths with varying parameter 

values. No image filtering is used at this stage. 

For SUSAN optimisation, two parameters are necessary. The first parameter 

(brightness threshold) defines the level of intensity to trigger a potential edge/corner. 

The second parameter (USAN threshold) provides the threshold for the number of 

pixels within the USAN area before the pixel under test is no longer considered an 

edge/corner. SUSAN optimisation consists of 480 tests with the brightness threshold 

ranging from between 20 to 50 (full range 0 - 255), while the USAN threshold ranges 

from 4 - 20. ROC curves are used to discover the optimum parameter values for the 

final corner detection trials. 

As visible within Figure 6-31, the yellow ROC curve displays the higher fitness 

outcome. This curve is attributed to a brightness threshold of 22 and a USAN threshold 

of between 14 and 19. For the final SUSAN corner trials, the parameter values selected 

are 22 and 16 respectively. 

6.6.2 Statistical Analysis 

Further problems exist with statistical analysis of corner detection models as a result of 

the small population of actual points within the test images. For the SUSAN image, 

only 61 corners are specified out of a total of 364,816 pixels. The CV models under test 

do not need a very large signal-to-noise ratio before the signal is swamped within 

spurious noise. Both TP and FP values are significantly smaller values compared to the 

TN values, rendering the majority of binary classifier scores meaningless, or at the very 

least requiring a review of the least significant digits with each score. 

Classifier scores are presented in the table from  Trial Results - Corner Detection (ROC 

Analysis), in which the accuracy for the two displayed trails appear to be identical, 

regardless of the actual visual results. The TP values are three times higher for the 

second trail but are not reflected in the ACC score. It is only after verifying the data 

past three decimal points that the difference is apparent (99.954638% and 99.945120% 

respectively). The issue continues when TN values are used in the classifier, or if the 

classifiers are dependent on prevalence. 

Without a clearly valid method of selecting a performance classifier, the selection 

criterion becomes a process of elimination. Accuracy, recall, precision, specificity and 
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 the F-Measures are all dependant on the TN counts, or the prevalence. However, the 

ACC score seems to be the only classifier that provides valid values across all results. 

Unfortunately, the higher recorded ACC scores still suffer from small TP values, 

counterproductive to effective scoring. Shown in  Trial Results - Corner Detection 

(ACC Score Results) is a demonstration of similar accuracy scores, but at opposite ends 

of the detection spectrum. A complete failure of the detection model can still score high 

enough to be considered for further consideration.  

Analysis of the CV corner detection model trial results, provides figures that represent 

extreme ends of a multi-dimensional classifier problem, but with no single solution. 

After deliberating on the performance classifier problem, finding the middle ground for 

three ROC attributes with the greatest impact seems the only solution. Shown in the  

Trial Results - Corner Detection (Elite Fitness Scores) table, trials recording the best 

detection of corner points contain FP’s from between 6-14 times greater than the TP 

values. Locating CV models capable of detecting a portion of corners, while also 

minimising FP rates does not produce high value TP detection rates. 

The relationship between the TP and FP values is shown in Figure 6-32, and 

demonstrates the main problem. Low FP rates are also related to low TP rates. As stated 

earlier, TP rates at a value considered acceptable (50 out of 61 points or higher) are 

rare, but also result in FP rates significantly higher, swamping the signal. For 

Augmented Reality systems, this manifests itself through the loss of key reference 

points, or difficult feature point location. 

 

Figure 6-32. True Positive vs. False Positive values for corner detection trials 
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6.6.3 Observations 

Validation and verification of Computer Vision corner point detectors against ground 

truth images is non-trivial [198]. As described above, the statistical insignificance of 

actual corner points (signal) within the detected population is excessive. The signal-to-

noise ratio is negligible, rendering any trials invalid. No further standalone testing of 

the corner detection models delivers meaningful information to further the 

understanding and determination of appropriate object tracking models. The benefits of 

corner detection will be assessed during the object tracking phase of testing. 

6.7 Summary 

Computer Vision image analysis manifests in many forms, providing multiple layers of 

image and object attributes. Interpretation of the attributes is a matter for object 

identification, matching and tracking systems. For this research, matching objects from 

real-time video streams is necessary for the object tracking mechanisms of AR RAL 

systems. Review of works for existing CV image analysis models has provided the 

majority of the assessment regarding the suitability of each model for use within the 

AR RAL environment. Some models have required evaluation through testing, along 

with validation and verification of the accepted models.  

Object detection models screened and accepted for use in this research are listed in   

Computer Vision Model Summary. Each Computer Vision model has been selected for 

its ability to operate while supporting AR functionality within the RAL framework, and 

to provide the ability to identify and track objects, and which do not rely upon prior 

knowledge, such as fiducial markers and operate in real-time. 
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7 

7Image Object Gradient Signature  

This chapter describes the current Computer Vision models associated 

with extraction of key digital image attributes. Existing Computer Vision 

models are reviewed to assess their capabilities to operate within the 

Augmented Reality Remote Access Laboratory environment, including a 

unique method developed as part of this research. 

Computer Vision research concerned with object tracking in video streams includes 

significant work involving off-line processing. Real-time object tracking video streams 

exist in two primary forms. Fiducial markers, indicating known reference points, allow 

computer vision models to gain knowledge of key feature of the video scene 

environment. Discovery of natural features within the video scene also provides a 

source of reference points, used to calculate camera pose and spatial information. 

Most Computer Vision object tracking models require prior knowledge of the video 

scene to construct an understanding of attributes such as spatial relationships between 

objects. The penetration of Augmented Reality (AR) into multiple fields such as 

Remote Access Laboratories (RAL) [201] requires CV models which do not require 

specialised CV knowledge to implement. Applications of markerless tracking becomes 

an important quality for both the CV and AR fields. Unfortunately, markerless tracking 

is not a solved problem, with considerable efforts currently employed to reduce the 

difficulty. 

For Augmented Reality systems within a Remote Access Laboratory environment, it is 

necessary to operate in real-time to provide the level of synchronisation between the 

real setting and the virtual overlays. Many CV object detection models depend on 

processes such as segmentation, edge/corner detection or natural feature point 
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detection. Object detection and object tracking relies on the discovery of robust image 

attributes. Both object detection and tracking within live video streams is a non-trivial 

task, requiring CV models capable of operating on widely varying data sets. 

With less than ideal video streaming environments and equipment, image variations 

from frame-to-frame generate difficult circumstance in which to evolve consistent 

results. Image differences, such as colour and illumination variations, noise and 

compression losses contribute to the difficulties while matching attributes. Features 

from the detected object are selected for their suitability as good features to track [165]. 

Natural feature points such as object boundaries, colour and texture all provide a rich 

source of interest points. 

Segmentation of digital images is capable of classifying background and foreground 

regions, allowing foreground regions to be identified as objects of interest. Detection 

of object boundaries or a conglomerate of pixels associated with an object in the image 

also requires a means to identify these attributes as belonging to the object. Attributes 

of the edges/corners/BLOBs are expected to be the source for uniquely identifying the 

object again, in a later image or in a video sequence. 

The purpose of object detection within this research, is to support object tracking within 

the Augmented Reality Remote Access Laboratory environment. This chapter defines 

contributions of a novel Computer Vision model which supports markerless tracking 

for RAL systems in an AR framework. The contribution of a unique feature point 

signature, built upon the territory surrounding the pixel of interest, results in a novel 

object detection and tracking system. 

This chapter is structured as follows: Section 7.1 defines object features relevant to this 

object detection model, while section 7.2 details the model. Sections 7.3 summarises 

results of the new model and section 7.4 concludes the research. 

7.1 Feature Extraction 

Many features are discoverable within an image, and each feature type offers both 

advantages and disadvantages. Object tracking relies on effective and dependable 

object detection. Edge and corner point detection features heavily when creating object 

detection models. Edge maps and vertices are easily located from kernels estimating 

first or second order derivatives. Edge detectors such as Sobel [10] and Laplacian of 
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Gaussian (LoG) [202] perform partial derivatives on the image to discover local 

extrema. Alternative edge and corner detectors, not based on partial derivative, such as 

the SUSAN [16] detector, provide improved protection against noise within the image. 

Maintaining the boundary properties is not an aspect of all edge detection models, so 

models which produce features such as gradient data are important for further 

applications. Scale Invariant Feature Transform (SIFT) [150] depends on the 

application of edge detection models to generate reliable feature points. Important work 

considered by this research is that of Li & Lui et al. [169] which builds histograms of 

neighbourhood boundary gradient information. As with most feature point and SIFT 

models, matching the key points remains an important issue to solve, currently with 

significant research still underway [166, 203]. 

7.1.1 Limiting Factors 

Drastic changes with individual pixel colour or brightness is likely as a result of noise, 

and can be the major source of unreliable object detection and tracking. However, the 

application of image filters aides edge detection systems to continue to uncover object 

boundaries under varying conditions. The attributes of the boundaries also change from 

noise sources, but not significantly. Colour and illumination variations, from frame-to-

frame, continue to remain a factor for all tracking models. As shown in Figure 7-1, two 

consecutive frames of the same red gear assembly show different gradient orientations 

and magnitudes. If the only concern is the nature of the boundary gradients, such as 

direction and strength, then the effects of colour and illumination variations can be 

minimised. 

  

Figure 7-1. Red gear assembly gradient orientation differences 

Left: Frame One gradient attributes 

Right: Frame Two gradient attributes 
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7.1.2 Feature Attributes 

Assuming Computer Vision object detection models that are a posteriori, (requiring no 

training or fiducial marker systems) then feature point detection is the primary CV 

model. Features within an image consist of edges, corners, textures and colours. Edge 

and corner detection are common methods to build knowledge of an images 

environment, and provides a rich source of nature features. Object detection becomes 

possible through the discovering and interpretation of various feature points associated 

with the object, which can be used to locate the object in a secondary image. 

7.2 Gradient Signatures 

As colour varies across an image, and specifically along object boundary edges, image 

intensity gradients can be calculated from Equation 7-1. A location of interest within 

the video frame image will consist of a gradient magnitude and orientation. The red 

gear assembly shown previously in Figure 4-10 produces the gradient map shown in 

Figure 7-2. Again, a single pixel is unlikely to be unique across an image; however, 

 

Figure 7-2. Gradient map for red gear assembly 

𝑀(𝑥, 𝑦) = √(𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦))
2

+ (𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1))
2
 

𝜃(𝑥, 𝑦) = tan−1 ((𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1))/(𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦))) 

Equation 7-1. Boundary magnitude and orientation 
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considering the immediate neighbourhood of the location of interest allows the varying 

gradient magnitudes and orientations to combine for a unique signature.  

Characteristics such as boundary orientation and magnitude are fast and simple to 

calculate, and provide useful feature points [204]. Comparing feature points is the basis 

for markerless or feature point tracking systems. Pixel values, in isolation, are too 

dissimilar between frames, to find a correlation. For example, the reference point (at 

coordinates 158, 104), used for many tracking tests of the RAL gear experiment, has a 

gradient orientation and magnitude of 7 at 213°, while very the next frame records a 

magnitude of 1 at 180° for the same location. A method to quantise each discrete vector 

is required to build resilience 

7.2.1 Signature Model 

Instead of processing the entire image, and all gradients within an image, additive 

vector calculations of nearby pixel gradients will create an object signature. 

Constructed around the eight cardinal points shown in Figure 7-3, each pixel’s 

boundary attributes are summed into two of the cardinal points. As shown in Figure 

7-3, the gradient (in red) has values on the x-axis and the 45°-axis, adding to any 

existing values along those axis’s.  

Each vector value is added to two of the eight cardinal points, and are calculated through 

Equation 7-2, where 𝑚𝑎𝑔 and 𝜃 are the gradient magnitude and orientation, and 𝑛 is 

 

Figure 7-3. Radial distribution 
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the sector number (shown in Figure 7-3) containing the vector.  When a pixel vector is 

closer to the x-axis, the 𝑥𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 45𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 calculations are as used. When the 

vector is closer to the y-axis, the 𝑦𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 45𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 are applied. 

7.2.2 Signature Model Application 

Instead of processing the entire image, selecting a grid surrounding the Point of Interest 

(PoI) and summing all the vectors within the grid creates a multi-prong vector signature 

(see Figure 7-4). Choosing a 3 x 3 or 5 x 5 grid centred on the PoI constructs a unique 

vector signature, representative of the features associated with the object of interest. 

Vector arithmetic follows the rules defined in Equation 7-2.  

𝑥𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑚𝑎𝑔 × cos((−1)𝑛 × (𝑚 × 45°) + (−1)𝑛+1 × 𝜃) 

𝑦𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑚𝑎𝑔 × cos((−1)𝑛 × (𝑚 × 45°) + (−1)𝑛+1 × 𝜃) 

45𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
° = 𝑚𝑎𝑔 × cos((−1)𝑛+1 × (𝑝 × 45°) + (−1)𝑛 × 𝜃) 

Where, 

𝑚 = {
𝑛 𝑚𝑜𝑑 2 = 0 , 𝑛

𝑒𝑙𝑠𝑒 , 𝑛 − 1
 

and 

𝑝 = {
𝑛 𝑚𝑜𝑑 2 = 0 , 𝑛 − 1

𝑒𝑙𝑠𝑒 , 𝑛
 

Equation 7-2. Cardinal point vector components 

 

  

Figure 7-4. Neighbourhood gradients and compounded resultant vector signature 
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Comparison of vector signatures provide a means to match object signatures from 

frame-to-frame. Magnitudes of each of the cardinal vectors differ significantly for each 

pixel within the search area. Comparison of vector signatures is fast and reliable, with 

a degree of flexibility when matching between consecutive video frames. The 

combination of multiple gradient vectors provides some relief from variations in single 

pixel colour noise, averaging across all elements considered in the signature.  

Validating the gradient signature model functionality is achieved through object 

tracking trials, measuring the capability of the model to follow an object (or object 

signature) through a complete video sequence. Additionally, the model is compared 

against the model on which it was inspired, the Histogram of Gradients (HoG) [205], 

to verify its efficacy. A point on the object of interest is selected as the PoI to track 

(coordinates 158,104) and the video stream initiated. At each frame, the PoI is 

compared to the ground truth tracking path for the video stream, recording the success 

at maintaining a tracking lock on the object. Signature comparisons are achieved using 

the Sum of Squares Difference (SSD) to determine the closeness of a match between 

signatures in the new frame, to the object signature from the previous frame. The 

technique is explained in detail in Section 11.2, Experimentation Methodology. 

Complete trials of this model, in conjunction with CV image filters, against all tracking 

methods used in this research, are also defined in Chapter 11, Computer Vision - Object 

Tracking. 

7.3 Results 

The new contribution (territory feature point signature) object detection and tracking 

model, is initially deemed capable of creating a unique signature that is representative 

of the object of interest. Operational trials to demonstrate the capability of locating 

matching signatures in sequential video frames, operating in real-time, support the 

theoretical position. Employing the standard tracking methodologies, detailed in 

Section 11.2, Experimentation Methodology, used for this research, has recorded the 

results shown in Table 7-1. The territory signature model is configured as a 3x3 grid. 

Comparison against the HoG model, shown in Figure 7-6, with the same data set, 

reveals a slight improvement by the new contribution model (Figure 7-5) in tracking. 

However, the major improvement appears to be with the computational loading.  
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The HoG model builds a 128-dimensional vector, requiring a larger series of 

calculations. The proposed model has initially utilised a 3x3 neighbourhood grid to 

generate the feature point signature. During development, it became apparent that 

additional reliability could be obtained if the neighbourhood increased to a 5x5 grid. 

The larger neighbourhood did increase overall computational times, but was still well 

within the real-time operations conditions. Expanding the neighbourhood did not 

impact the improvement in processing time when compared against the HoG model.  

Deploying image pre-processing filters is common for many CV image analysis 

systems. Computer Vision filters suppress high-frequency noise at the cost of 

smoothing boundary gradients. It was found that many smoothing techniques reduced 

the effectiveness of both the territory signature and HoG models due to the nature of 

the filters to produce homogenous neighbourhood pixels. Both models require strong 

demarcation in the boundary gradients to produce unique and resilient signatures. 

Tracking scores and processing times for the territory signature and HoG models are 

recorded in Table 7-1. Overall tracking precision for the proposed model at 99.52% is 

an improvement over the HoG model at 98.19%. However, as mentioned previously, 

the time to process all 2328 video frames was significantly longer for the HoG model. 

Applying a 5x5 Gaussian filter has a dramatic effect on the HoG model’s processing 

times, with the model will no-longer operating in real-time. The territory signature 

model displays vastly improved processing times when compared against the HoG 

model. 

Territory feature point signature tracking, with a Gaussian 5x5 filter, produces the 

tracking results shown in Figure 7-5, which records a 99.52% precision for successful 

tracking. The HoG model results, demonstrated in Figure 7-6, show some additional 

outliers beyond those of the territory signature model, as indicated by its slightly lower 

precision scores. Both tracking methods achieve reasonable precision scores, but 

Model 
Frames Time 

(seconds) Total Tracked Lost 

Vector Signature 2328 2317 11 70 

HoG 2328 2286 42 183 

Table 7-1. Tracking scores for new model and HoG model 
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subjectively, the new contribution appears to have smoother tracking lines, an 

indication that the model provides an improved stable output. 

7.4 Conclusion 

The territory signature model creates a novel modification to the HoG object tracking 

model through the use of feature point gradient vector attributes. Creating a unique 

eight-point vector signature, representative of the tracked object is possible. The 

proposed territory feature point signature tracking model appears to improve on the 

Histogram of Gradients object tracking model, utilising the feature point attributes of 

the pixel gradient vectors of nearby neighbour pixels. 

Improvements in the accuracy and stability of tracked objects may be achieved through 

the incorporation of the territory signature model in areas such as Augmented Reality. 

 

Figure 7-5. Proposed model tracking result (with 5x5 Gaussian filter) 

 

Figure 7-6. Histogram of Gradients (HoG) tracking result (with 5x5 Gaussian filter) 
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The stability of the proposed model indicates that it is probably suitable for AR 

applications requiring placeholders for virtual information. Using outputs from a CV 

process which consists of slight jitters, causes disconcerting jittering of the computer-

generated imagery, affecting the users experience. Selection of key reference points or 

objects of interest within a video stream, is simplified as a result of the model’s ability 

to produce a unique territory signature.  

Improvements exist in the methods applied for signature matching. A standard Sum of 

Squares Difference used in this works could be replaced with alternative variance 

analysis in order to improve situations where the model may lose track. 

 

 



 

127 

8 

8Two-Dimensional Colour Histogram Object Signatures 

This chapter presents an alternative method to segment image data sets. 

Exploiting the relationship between colour spaces allows the 

contribution of reducing standard RGB colour spaces to a two-

dimensional space which improves the relationship between colour 

values and reduces run-time functionality.  

Isolating an item of interest from within the large complex two-dimensional digital 

array of an image suffers from two major problems. The two-dimensional image is a 

representation of a three-dimensional environment where most objects are 

unconstrained in the six degrees of freedom. Therefore, its shape and size have an 

infinite number of possible representations presented to the image capture device. 

Additionally, the item of interest on the two-dimensional image is just one occurrence 

in a finite sequence of digital frames. Changes in any degrees of freedom from both the 

object and the camera may change between frames. The second major problem is 

perhaps more complex: the recording of colour. Colour is perceived differently from 

person to person, and also varies when recorded with different devices. A digital 

approximation of an analogue environment is further hampered from issues such as 

noise as explained in Section 4.2, Image Noise Sources. Within video streams, no two 

frames capture the same colour attribute for the same pixel for the same scene. 

Image segmentation can be successful at extracting meaningful information for specific 

types of video images; however, each differing family of segmentation model are 

deficient in some manner. Clustering techniques are generally slow and have 

difficulties with arbitrary shapes [206]. Colour histogram object signatures or colour 

histogram segmentation suffer from the loss of spatial data, but of greater concern is 

that there is very little correlation between similar colour values within the RGB colour 
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space. RGB colour differences have a minimal relationships to the distance between the 

colours within the colour space [182]. Colour variation from noise or lighting variations 

then have little connection to the dominate frequency (dominate colour), and are a cause 

for concern when performing image analysis or object detection. 

8.1 Colour Space Definitions 

Alternative colour spaces, such as Hue, Saturation, Brightness (HSB) or Hue, 

Saturation, Intensity (HSI) (see Figure 8-1) offer a cyclic model where hue is defined 

on a circular wheel. The RGB colour space encodes brightness into all discrete points 

within the three dimensional channels, whereas HSI or HSB colour space channels 

operate independently [207]. Combining HSI colour space with clustering models 

provides a unique segmentation method which is superior to similar techniques within 

the RGB colour space [208].  

It is possible to convert between the both colour spaces, but users must be aware that 

the two colour-spaces are not completely compatible, and do not overlap in 100% of 

cases.  As such, conversion of RGB to HSI colour space can produce complications in 

the accuracy of the HSI colour representation. Within Figure 8-1, rotating the RGB 

colour cube so that the origin (black-0,0,0) is the pivot point, the RGB cube could be 

projected into a planar hexagonal colour wheel with colour representations similar to 

the HSI colour space model. This is further apparent when considering that the discrete 

points from black to white of the RGB cube mimic the achromatic intensity line of the 

 

Figure 8-1. RGB and HSI colour space comparison 
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HSI model. Unfortunately, the cube cannot fit the cylinder, so there is not a one-to-one 

correlation between the RGB and HSI models. 

8.2 Histograms 

A sub-group of greyscale and colour segmentation models employ histograms to 

determine the distribution through the colour space. As mentioned in Section 4.5.2. (c), 

Bitonal Filter, Otsu [7] analyses greyscale histograms to determine the threshold for 

binary segmentation. Colour histograms segment an image from the user selection of a 

colour gamut. All pixel colours falling outside the gamut are classified as background 

and discarded. 

Apart from colour histograms, distributions of other image features may be analysed 

by histograms. Region splitting [209] incorporates histograms to iteratively split image 

regions into smaller segments. As each histogram is analysed, the threshold determines 

segmentation, which is then the region to sub-segment, until no further segmentation is 

possible. 

8.2.1 Colour Analysis 

Colour distributions, recorded by an image’s histogram, create unique signatures which 

can be applied to image databases or indexing systems [210]. Identifying images from 

a library becomes much simpler through their distinctive histogram signatures. Factors 

listed previously, such as colour constancy, contribute to difficulties when attempting 

to match histograms of the same image, but under different lighting conditions [181]. 

Figure 8-2 demonstrates the varying pixel colours from the Gear Assembly RAL 

experiment, over the course of the video stream. The red and green channels represent 

a single pixel at X/Y location 200, 47: an apparent static region of the scene. The colour 

values vary from red values 226-to-237 and green values 196-to-206 making it difficult 

to match images. Applying colour constancy methods allows robust image indexing 

[178], image retrieval and matching. Building colour histograms for the RGB colour 

space requires a three-dimensional histogram. Maintaining a histogram bin size of a 

single colour value across the three dimensions creates a very large dataset. Fine 

resolution of the histogram causes issues with respect to the image library indexing, 

matching and retrieval; but more important is the problem with creating a unique 

signature. Larger accumulation bin sizes improve histogram effectiveness. 
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8.2.2 Histogram Definition 

Exploiting the relationship between the RGB and HSI colour space models, has been a 

major contribution of this research. The square pyramid colour histogram model created 

as part of this research, employs polar coordinates to replace the RGB colour values. 

Developing two-dimensional RGB colour histograms provides an improvement in 

processing any of the histogram matching methods. Instead of defining the digital 

image as: 

where 𝑁 is the accumulation bin count, 𝐵 the current bin for the colour coordinates 

(𝑅, 𝐺, 𝐵). The histogram definition of Equation 8-2 creates faster and unique signatures 

of objects by associating a pixel colour from its polar coordinates.  

From Figure 8-3, any pixel along the M line and within the pyramid will be defined by 

its phi (𝜑) and theta (𝜃) values. One of the secondary benefits of this new contribution, 

 

Figure 8-2. Red and Green channel colour variation for a single pixel over 2328 frames  
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H = {𝐻𝑅𝐺𝐵 = 𝑛𝑢𝑚{𝑝|𝐼(𝑝) ∈ 𝐵𝑅𝐺𝐵}, (𝑅, 𝐺, 𝐵) ∈ [0, 𝑁 − 1]3} 

Equation 8-1. Histogram definition for RGB Colour Space image definition 

 

H = {𝐻𝜑,𝜃 = 𝑛𝑢𝑚{𝑝|𝐼(𝑝) ∈ 𝐵𝜑𝜃}, (𝜑𝜃) ∈ [0, 𝑁 − 1]2} 

Equation 8-2. Histogram definition for Polar RGB Colour Space image definition 
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is that each colour point is no longer a discrete RGB value, but is a member of all other 

RGB values within square pyramid defined by 𝜑 and 𝜃. As with the HSI colour space, 

values along the 𝜑 and 𝜃 line are similar to the achromatic line, and share a relationship 

associated with the hue and saturation of the HSI model.  

Histogram accumulation bins are constructed as square pyramids with the face of the 

base along one colour plane of the RGB colour space, as shown in Figure 8-3. Setting 

the base size of the square pyramid defines the resolution of the histogram model. 

During signature construction, each pixel colour is allocated to an accumulation bin 

based on Equation 8-3 and Equation 8-4. The values of 𝜑 and 𝜃 are calculated from the 

pixel RGB values by Equation 8-3, and the accumulation bins are selected by Equation 

8-4 (based on the size of the pyramid base). As shown in Figure 8-3, angles 𝜑 and 𝜃 

each stretch across two faces of the RGB colour space. For instance, 𝜑 moves across 

 

Figure 8-3. Two-dimensional colour histogram model of the RGB colour space 

𝜑 = tan−1 (
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Equation 8-3. Deriving Phi and Theta from RGB values 
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Equation 8-4. Histogram accumulation bin size calculation 
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the blue and red cube faces while 𝜃 moves across the red and green cube faces. As such, 

the angle increment is also a factor of the two RGB colour faces. 

Reducing the histogram dimensionality (bin count) reduces the overall processing costs 

as the time complexity 𝑂(𝑁) is dependent on the number of overall bins. The overall 

number of bins becomes more important once histogram testing occurs. Histogram bin 

size is dependent on the volume of the oblique square pyramid, with the apex at the 

origin of the colour space, (0, 0, 0) (black) to the colour space extremity in which one 

or two colour-channels are at maximum, such as (0.95, 0.95, 1.0) shown in Figure 8-3. 

The bin volume is a factor of the height from the pyramid apex to the base. For a set 

area on the surface of the colour space, each colour pyramid will contain slightly 

different volumes. The variation in volume may cause bias in the data collected for each 

bin, placing greater emphasis on different colour combinations. While adaptive bin 

sizes are able to equalise colour distribution in a histogram, they have been difficult to 

use in practice as histogram comparison methods only work on similar shaped bins. 

Leow [211] provided a possible solution. This work does not follow Leow’s path, but 

it does ensure that all histograms use consistent optimised pyramid base sizes. Figure 

8-4 contains the histograms of colour pyramid altitude distributions. With a base size 

of 5 x 5 colour points, each face of the colour space contains 2601 bins per colour face 

(7803 total bins). Figure 8-4 displays the discrete histogram bin volumes across the 

colour space. As can be seen in the left image of Figure 8-4, there is a disproportionate 

number of histogram bins that account for the majority of the colour space volume. 

There is a 71% increase in bin volume size, from the smallest bin to the largest, but the 

largest bins contribute to less than 0.5% of the total colour space volume. The histogram 

bins containing the largest volumes are centred along the grey-line (achromatic).  

  

Figure 8-4. Histogram bin volume distribution 

Left: Base Size 5 x 5 

Right: Base Size 15 x 15 

 



 

133 

Expanding the colour pyramid base reduces the large disproportionate bin volumes 

between bins along the grey-line and smaller bin volumes. Selecting a pyramid base 

size of 15 x 15 colour points produces histogram bin volumes as shown in the right 

image of Figure 8-4. This pyramid attribute produces 289 bins per colour space face 

(867 total bins), but also an improves (balances) the distribution of pyramid bin volume. 

Two-dimensional histogram distributions create a unique signature, as shown in Figure 

8-5 in which the histogram represents the colour distribution of the green leaf. Higher 

scoring accumulation bins, such as the six or seven large amplitude bins shown in 

Figure 8-5, provide the input parameters for the segmentation of the target image. Pixel 

colours associated with the peak accumulation bins of the object signature, are set as 

foreground while the rest are background, producing a hotspot map.  

Assessing the appropriate square pyramid base size is critical for effective operation of 

the two-dimensional colour histogram model. Apart from compensating for the 

accumulation bin volumes, varying the size of the pyramid base changes the size of the 

colour gamut available for classification. Figure 8-6 demonstrates the changes to the 

image segmentation as the square pyramid base size is adjusted from a size of 10 to 40. 

  

Figure 8-5. Two-Dimensional Histogram of Green Leaf 

    
      base = 10       base = 20         base = 30              base = 40 

Figure 8-6. Histogram segmentation (Varying pyramid base size) 
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Additionally, the number of accumulation bins to use in segmentation is also a valid 

parameter. In the histogram signature shown in Figure 8-5, the user may select a single 

bin or all to affect the final outcome. 

8.2.3 Histogram Matching 

Colour image histograms provide non-spatial data which may be employed in a number 

of ways to reflect objects within an image. The histogram model parameters provide a 

means to control the final outcomes. For fine resolution histograms, it is difficult for 

image colour histograms to successfully match or segmentation due to the slight 

variations which occur because of the colour noises (see Section 4.2, Image Noise 

Sources). Creating histogram bin sizes which accumulate more than one colour value 

results in smaller yet course histograms. Discovering the optimum histogram bin size 

is the subject of much research [182, 211, 212], with the method selection based on the 

type of secondary processing required, and the type of image scene (such as patterns or 

solid colours).  

8.2.3. (a) Segmentation Matching 

Colour histograms created from the template or the image of the object of interest, are 

used to perform colour histogram segmentation, which creates a hotspot of foreground 

pixels, as shown in Figure 8-6. Within the region of interest window, all foreground 

pixels are selected and averaged to generate the hotspot mean point. For each 

consecutive frame, the search window is segmented to locate a new hotspot. This is 

explained in detail in Section 11.2, Experimentation Methodology. The nature of this 

segmentation method allows the greatest density of foreground pixels, within the search 

process, to be selected as the new location of the prototype. This method is used for 

both two-dimensional colour histograms developed as part of this research and HSI 

histogram object detection (Section 10.2.2, Segmentation - Colour Indexing) and 

tracking (Section 11.8, Tracking Metrics). 

HSI Histogram 

User selection of a point on the object of interest initiates a process whereby the RGB 

colour channels of the selected pixel are converted to the saturation and hue values of 

the HSI’s colour space. Brightness is ignored for these purposes, as we are only 

interested in the primary colour frequency. A vertical cylinder within the HSI colour 

space, shown in Figure 8-7, is centred on the user’s selected saturation and hue value. 
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The cylinder is now the range of colours to be accepted as foreground pixels in the 

segmentation process. The base radius of the cylinder provides the user with an option 

for the sensitivity and discrimination of the segmentation. 

Hotspot Matching 

Both the RGB and HSI colour space histogram segmentation and tracking systems 

employ the simple steps shown in Figure 8-8. Once the colour range is initialised, the 

current image is segmented according to the colour range. To improve processing 

speed, segmentation occurs only within the search area mask. The search area is 

scanned to locate masks that are the closest match to the object of interest signature. 

For segmentation models, spatial data matching is ignored. Instead, the ROI mask with 

the greatest foreground pixel density is chosen as the best match. The coordinates for 

the chosen mask are used to adjust the tracking mask, and the procedure awaits the next 

frame to begin the object detection process again. 

Failure to locate any masks with sufficient foreground pixels, results in a failure to 

match to an object. Tracking recovery methods are based on works by Shi & Tomasi  

 

Figure 8-8. Tracking stages for segmentation models 

 

Figure 8-7. HSI Colour Space with User selected pixel colour and associated filter. 
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[165], and are explained in detail within Section 8.3, Operational Parameter Analysis 

Tracking Trials. 

8.2.3. (b) Goodness of Fit 

From the values of phi (𝜑) and theta (𝜃) for the RGB discrete value, along/within the 

square pyramid, two accumulation bin indexes are created. The values of 𝜑 and 𝜃 are 

derived from the RGB values as shown in Equation 8-3 and Equation 8-4. Histogram 

accumulation bin sizes are chosen from the user’s input. User selects the base size of 

the square pyramid. Calculating the angle increments for the accumulation bin sizes, 

assumes the standard 256 (8 bit) colour values. Equation 8-4 provides the calculation 

for the angle increment value and accumulation bins. Employing standard histogram 

testing regimes, such as the chi-squared (𝜒2) testing shown in Equation 8-5, compares 

histograms to ascertain their goodness of fit, a measure of their similarity. The bins 

created from the 𝜑 and 𝜃 values represent the two-dimensional attributes of the 

histogram. 

Test of Homogeneity 

Histogram matching, for the purpose of Computer Vision object matching, may also 

use standard statistical methods to ascertain the level of similarity between two 

histograms. Regardless whether either the two-dimensional colour histogram model, or 

HSI colour histogram model are employed, the chi-squared (𝜒2) test of test of 

homogeneity (or Pearson’s Chi-Squared test [175]) will provide an indication in the 

level of similarity between the signature histogram, and the current test histogram. 

The prototype histogram, created once the user selects a region of the video to track, is 

tested against each of the test regions of the search area. Figure 8-9 shows the example 

of the red gear assembly’s two-dimensional colour histogram, as used during tracking 

tests. The chi-squared test, shown in Equation 8-5, in detail becomes a statistic of the 

null hypothesis, which is that the histogram of the test area is not a match of the 

prototype. 

χ2(v) = ∑
(Observed − Expected)2

Expected
allbins

 

Equation 8-5. Chi-squared histogram testing 
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As the windowed search area scanning process consists of a region exactly the same 

size as the OoI prototype, there can be an expectation of the exact same number of 

elements to include within the histograms accumulation bins. This forgoes the need to 

normalise the histograms prior to the (𝜒2) test. For the tests of object matching, each 

histogram accumulation bin of the test region is subtracted from the OoI prototypes 

bins, squared and divided by the expected (prototypes’ bin total) before being summed 

to the overall total. Once the test region histogram has been tested for test-of-

homogeneity, the value returned is the critical value, used to calculate the p-value of 

the test. A Chi-Squared probability value less than 0.05 usually indicates a rejection of 

the null hypothesis (i.e. the histograms are likely to be the same). 

8.3 Operational Parameter Analysis Tracking Trials 

Four histogram tracking models, developed as a result of this research, require user 

selected parameters to function. The two-dimensional colour histogram model, used for 

image segmentation and also used for chi-squared object tracking, requires a parameter 

to specify the size of the pyramid base. The base size determines the size of the 

accumulation bins, varying the colour sensitivity and selectivity of the model. The HSI 

colour space histogram used for image segmentation, as well as for chi-squared object 

tracking requires a parameter to segment the HSI colour space. HSI colour space 

segmentation defines the accumulation bin colour gamut. To determine the optimum 

parameter for each of the tracking models, a series of trails measuring the tracking 

precision and accuracy at each parameter value. Parameter values where determined 

through the logical association with accumulation bin functionality at the various 

parameter sizes. For segmentation tracking models, the parameter ranged from 4 to 34. 

For chi-squared tracking models, the parameter ranged from 10 to 34.  

 

Figure 8-9. Red gear prototype and corresponding two-dimensional histogram 
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8.3.1 Segmentation Tracking Models 

Analysis of parameter performance results occurred only on models which managed 

precision scores of greater than 99.8%. This score was selected because it represented 

a tracking model which missed less than five frames from the entire sequence: a result 

which falls within the object detection precision scores for known CV models.  

Reviewing the accuracy scores for the selected models provided a means to ascertain 

the optimum histogram pyramid base size parameter. Shown in Figure 8-10 are the 

accuracy results from tracking models which scored a precision of better than 99.8%. 

Initially there does not appear to be any correlation which would isolate a single 

effective histogram base size. The best accuracies have appeared at bin sizes 25-30, 

with four models reaching accuracies within the mid 90% range. Further investigating 

these models reveal that they also scored well at histogram bin size 18. This is an 

important result, as initial research into the 2D Colour Histogram model used a base 

size of 18 due to its simple factor of the colour space region. The initial results provided 

confidence in the models’ ability to isolate objects through the segmentation process. 

From the results of Figure 8-10, a histogram bin size of 30 was selected. The difference 

in results between base size 18 and base size 30 are interesting (see Table 8-1). 

Performing tracking tests with a base size of 18 produces 12 models scoring a precision 

of 100%, while only 3 models score 100% with a base of 30. Further analysis of the 

data, summarised in Table 8-1, shows that the accuracy scores for the base size 18, 

 

Figure 8-10. Test results for 2D Colour Histogram segmentation tracking model 
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where very poor. With only 4 scoring over 50%. However, for models with a base size 

of 30, a total of 12 scored an accuracy over 50%, with some even scoring over 90%. 

A level of consistency with the accuracy scores for the HSI Histogram segmentation 

models is apparent in Figure 8-11. Most accuracy scores begin improving with a 

accumulation bin division factor of 12-14. Consistently, the best scores appear after a 

bin size of 22. A point mid-way (26) between the peaks of the four best results was 

chosen as the histogram bin size for the HSI Histogram segmentation model. 

8.3.2 Chi-Squared Tracking Models 

Chi-Squared comparison methods employed for histogram tracking models have 

produced sensitive results, meaning that parameter values for the models produce 

wildly fluctuating precision scores. It was not possible to select only tracking models 

which scored high precision scores.  

 

Figure 8-11. Test results of the HSI Histogram segmentation tracking model 

 Success Rate (Precision) 

 100% 99.7% 95% 68% 50% 40% 30% 20% 10% 0% 

2D Histogram 
(base:30) 

3 14 0 1 1 0 0 0 0 3 

2D Histogram 
(base:18) 

12 6 0 0 0 1 0 0 0 3 

 

 Success Rate (Accuracy) 

 100% 99.70% 95% 68% 50% 40% 30% 20% 10% 0% 

2D Histogram 
(base:30) 0 0 4 3 5 4 1 0 1 4 

2D Histogram 
(base:18) 0 0 0 1 3 1 0 4 2 11 

Table 8-1. Comparison of 2D Histogram segmentation tracking success rates 
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Analysis of the chi-squared 2D Histogram comparison results, shown in Figure 8-12, 

is only able to associate precision scores due to the variability of the data. It is difficult 

to identify a specific histogram bin size that has the best outcomes for multiple models. 

Peak results for some bin sizes result in the worse-case scenarios for other models. Four 

models peak at bin size 24, with the remaining models having precision scores in the 

top third of their overall variability. 

The HSI Histogram model results shown in Figure 8-13 are also relatively consistent 

across all models. While most models display effective results towards the extreme left 

of the graph, the best results have occurred with a histogram bin size of 18. However, 

investigating the full set of results, and as the histogram bin size increases, so does the 

 

Figure 8-12. Test results of the 2D Histogram chi-squared tracking model 

 

Figure 8-13. Test results of the HSI Histogram chi-squared tracking model 
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run-time for the model. With a histogram bin size of 10, the tracking model is easily a 

real-time mode, but with a bin size of 18, all of the models exceed the time required to 

be considered a real-time model. For this reason, HSI Histogram tracking models using 

the chi-squared method employ a bin size of 10. 

8.4 Summary 

Tracking objects within digital video streams requires consistent and reliable detection 

of the objects and the means to continually recognise the object as it progresses through 

the video scene. Many current tracking systems work well, but only in an offline mode 

where the extensive processing requirements are not impacting the output. For systems 

such as Augmented Reality, real-time object detection and tracking is necessary or the 

system becomes ineffectual for the users. Isolating foreground and background regions 

of the incoming video frames involves segmenting the images based on rules for the 

model. Colour histograms are capable of recognising objects by segmenting video 

images according to the histogram colour frequency distribution. 

Applying colour histogram segmentation to classify foreground and background 

objects is effective. For tracking purposes, the histogram segmented data set requires a 

means to select the appropriate foreground object, and ensure it is able to track the 

object through the video sequence, in real-time. Segmenting video sequences using the 

colour zone of a selected region of the object of interest and applying tracking 

techniques to the foreground objects appears to be effective. 

As demonstrated within Chapter10.2, Segmentation Object Detection, histogram 

segmentation with Centre of Mass (CoM) hotspot tracking is capable of maintaining a 

reliable track of the object of interest; the method, however, does suffer from jitter. The 

tracking box can move plus or minus two pixels off the actual tracked location, causing 

unwanted jitter which can be disconcerting within an Augmented Reality environment. 

To improve jitter, histograms using the HSI colour space instead of the RGB colour 

space should theoretically improve these issues as a result of the psychophysical and 

spatial relationship between colours.  

Bin size has been shown to affect various attributes of the colour histogram such as:  

• increasing the number of bins (reducing their size) increases the histograms 

sensitivity to high frequencies [210, 213].  
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• reducing the number of bins to include in hypothesis testing has been shown to 

have only minor effects on accuracy [210] matching. The image information is 

carried by the largest bins, and as such minimal impact on accuracy is 

achieved by including the tail of the histogram distribution. 

The size and number of bins has some factor over histogram intersections, but for colour 

process, it has been shown that not all bins are required to achieve near perfect matching 

[148, 214]. The tracking precision for both the two-dimensional histogram model is 

clearly demonstrated as an improvement over the HSI histogram model. As measured 

previously, the new model is also more efficient with ICT resources. From the tracking 

results, the new two-dimensional histogram model performance is optimum for 

segmentation tracking when the square pyramid base size is 18, while the model is 

optimal for Chi-Squared tracking when the base size is 24. Due to the statistical 

problems with the ‘goodness-of-fit’ test, the chi-square ‘test-of-homogeneity’ test 

should be used to prove histogram hypotheses. 

The contributions of this research have demonstrated a new colour image histogram 

model, which successfully creates a unique signature for object indexing or 

identification. The new model has been shown to provide object detection through 

image segmentation methods and histogram matching techniques. From the 

contribution, an improvement in operating speed for object detection and tracking 

systems has occurred, supporting the requirements of Augmented Reality within a 

Remote Access Laboratory environment. 

Further Computer Vision tracking metrics are defined and discussed in Section 11.2, 

Experimentation Methodology and Section 11.6, Markerless Object Tracking. 
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9 

9Image Object Detection Output Attributes for Signature 

Matching 

This chapter describes the various attributes available from CV object 

detection methods, and the means to compare and assess their level of 

match against objects of interest. A blend of current methodologies has 

been investigated to provide a CV object matching model which is 

suitable for Augmented Reality systems in a Remote Access Laboratory 

environment. 

Computer Vision object detection has no purpose without a means to identify the object; 

if not as a specific named object, then as an object that is similar to an object of interest. 

Taken in the context of Computer Vision object tracking systems, this chapter defines 

the methods available for image and object attribute comparison for the purpose of 

object tracking, and presents a new novel approach to the object matching process. 

Computer Vision object detection systems provide many varying attributes which are 

to be associated with a chosen object of interest. For Augmented Reality processes 

within the Remote Access Laboratory environment, comparison of selected attributes 

must be performed in a manner that reduces the level of Type I and Type II errors 

(shown in Table 6-1), ensuring that follow-on systems, such as object tracking sub-

processes, reliably locate similar attributes from frame-to-frame. Comparison processes 

must also function in a real-time manner. The failure of a signature matching system 

places a burden upon application systems such as Augmented Reality. Signature 

matching failures produce out-of-sync and out-of-alignment virtual images, wrenching 

the user out of the immersive environment, and drawing the users attention to the 

technology instead of the environment [63]. From the contributions within this chapter, 

methods are presented which impart a metric to assess object attribute collections. The 



 

144 

metrics allow comparison of attribute collections to ascertain the likelihood that two 

collections are similar.  

This chapter is structure as follows: Section 9.1 summarises the requirements of 

Computer Vision object detection mechanisms. Object detection models and the object 

signature construction methods are described in Sections 9.1.1 to 9.1.7. Assessment of 

the object detection signatures are presented in Section 9.2, and the summarised in 

Section 9.3. 

9.1 Object Discovery Methods 

Object detection is the secondary stage in a sequence of Computer Vision processes 

such as edge or feature point detection. The primary vision sub-systems provide 

characteristics of the required features, for detection systems to utilise. Detection or 

recognition occurs as a result of the CV sub-systems matching the selected attributes of 

an object within the image, or video stream. Recognition comes from matching the 

selected characteristics from within a reference library of images and their attributes. 

Not all object detection systems require object recognition. Identifying what the object 

is (for example, a chair) is irrelevant for many tracking systems. Some object tracking 

systems, such as Augmented Reality within a Remote Access Laboratory environment, 

only needs to be able to match objects characteristics from one frame to the next, so as 

to reacquire the location of the object within the next frame. This is at the heart of object 

tracking. 

Several types of characteristics from the primary vision sub-systems can be utilised 

within the object detection systems, and require consideration as to the method of 

comparison or attribute matching. Each sub-system type and its characteristics are 

detailed in the following sub-sections. 

9.1.1 Colour Histogram Indexing 

Objects within an image are able to be recognised through the unique colour 

combinations they exhibit. Effective colour indexing [210] uses histograms to index 

χ2(v) = ∑
(Observed − Expected)2

Expected
allbins

 

Equation 9-1. Chi-squared histogram testing 
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and catalogue images for fast identification. Colour histograms for object identification 

opens the option for employing standard histogram testing regimes, such as the chi-

squared (𝜒2) testing, using Equation 9-1. The chi-squared test is used to determine the 

goodness of fit, a measure of how close the two histograms are to a match. Histograms 

construct a unique signature for matching in subsequent video frames. However, using 

colour to identify objects suffers from variations in spatial and spectral illumination, 

potentially causing object recognition failures. Histogram accumulation bin sizes are 

chosen to provide resilience from noise sources, while also ensuring colour diversity. 

Chapter 8, Two-Dimensional Colour Histogram Object Signatures provides details on 

histogram accumulation bin size outcomes. 

9.1.2 Background Subtraction 

One of the simplest object detection methods segments sequential images based on the 

differences between each frame. Background subtraction works because of the changes 

that occur between frames, such as the movements of key objects [215], which can be 

isolated from the static portions of the frame. Pixels that have not changed between 

frames cancel out, effectively removing the background or static objects. As detailed 

previously in the Section 4.4, Filter Techniques - Statistical Filtering, colour noise 

varies between frames and must be minimised so as to not influence the background 

subtraction results. Figure 9-1 shows two sequential frames, and demonstrates the result 

of frame subtraction between the frames. The colour noise effect in the third image 

(right) is shown as the colour differences between the two frames. Differences have 

been offset in the right image of Figure 9-1, to visually reveal the data discrepancies. 

While the quality of camera is also a factor of the level of image noise, appealing to 

base level AR RAL implementers needs to be considered; hence methods to handle 

poor quality images are employed in this research. Applying filters, such as a Gaussian 

 

Figure 9-1. Frame subtraction results demonstrating colour noise between frames. 
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filter, may alleviate the problem, but adds additional processing costs and may reduce 

the effectiveness of follow-on object detection sub-processes. Attributes from frame 

subtraction, during motion, can be difficult to analyse, as it is not often that the object 

of interest’s motion can be isolated from the motion of other components, as shown in 

Figure 9-2, consequently there is no effective object signature. 

Frame subtraction is only effective when there is motion (or changes between frames) 

and will produce blank datasets for null change frames. Unless compensated, tracking 

software will lose object track during static motion periods of the video stream. 

Understanding the difference between an object leaving the frame and an object ceasing 

to move is trivial. Attempts to locate the signature of the object of interest will fail, as 

there is no data from a static scene. Additionally, an entire video frame has to be 

scanned before it can be confirmed that the signature is absent.  

Alternative frame subtraction methods such as Gaussian [216] learning, and Fourier 

power functions on pixel histories [217] are only useful for video sequences centred on 

the motion of the object of interest. As these methods might be useful in analysing 

human motion, they are limited in their use for Augmented Reality and especially for 

Remote Access Laboratories. Consider that object detection may be utilised in an 

Augmented Reality Remote Access Laboratory environment for the purpose of 

identifying reference points. The reference point location will generally remain static 

over the period of the experiment, and will not appear in frame subtraction output data. 

For this reason, the output data, for frame subtraction, is not suitable for Augmented 

Reality within Remote Access Laboratory environments. 

9.1.3 Key Features 

Feature extraction is currently the primary method in object detection, building on 

features or interest points, edges, corners and shapes discovered within the image. 

 

Figure 9-2. Frame subtraction output signal 
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Förstner and Gülch [218] believe that an interest operator for feature detection requires 

five key requirements: distinctiveness of points, invariance to distortions, stability from 

noise, separation of points/patterns globally and interpretability of feature. Reliability 

is the key factor for all Computer Vision detection models, as well as robustness to 

image structures: this is reiterated in most research [166, 219]. Distinctiveness of points 

has been a primary goal of feature detection systems built for this research. Distortion 

and noise are factors over which we have little control, but must be minimise for 

effective object detection and tracking. 

A single pixel within an image is highly unlikely to be representative of an object with 

the scene. Consequently, extracting useful information from a single pixel can only be 

obtained within the context of the pixel’s surrounding data realm. Object boundaries 

discovered through Computer Vision image analysis methods produce interest points 

associated with key features within the image. Object detection and tracking systems 

based on the object gradient attributes, such as SIFT [150] and HoG [205] are effective 

but are a priori and do not fit with the goals of this research. A contribution from this 

work, the territory signature model (defined in Chapter 7, Image Object Gradient 

Signature) employs the image gradient orientation and magnitude of the neighbourhood 

pixels to construct a unique object signature.  

Selection of key image features for effective object detection has been defined as ‘good 

features to track’ [165] so as to focus on the requirements of the features to provide 

reliability. Output signals from feature point image analysis consists of spatially related 

intensity gradients. The gradients may be associated with object boundary data, or 

selected object reference points. 

9.1.4 Template Matching 

External data, such as two or three-dimensional CAD drawings, geometric shapes or 

sample images, provide the source for template matching models. Revealing objects 

within an image, based on external templates, has produced robust and effective object 

detection models [143, 220]. The spatial relationship of pixels defines the template and 

the potential detected object’s structure.  Variance in digital images from frame-to-

frame dictates the requirements for a threshold of similarity between templates and the 

candidate image segment. Methods for the application of a similarity threshold are 

generally based on pixel sensitivity to the differences.  
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Ignoring the spatial relationship between pixels and employing histograms which focus 

on the distribution of pixel characteristics (e.g. colour) [136] improves detection within 

high object noise images. Images subjected to clutter, variations in object orientation or 

shape receive enhanced detection through histogram template matching, however the 

loss of the spatial relationship between pixels also means that critical spatial 

information such as key location points are also lost. The combination of both systems 

[136] (histogram and template matching) improves the reliability and robustness of the 

system. 

Employed within this works are both forms of template matching. The very nature of a 

template seems to indicate that there must exist a priori. However, the systems have 

been tested in this research because of the methodology used to create the template. 

Simply selecting a region of the video feed, as shown in Figure 9-3, allows the model 

to immediately create either a histogram or spatial template of the selected region. This 

process is ideal for AR within a RAL environment, as it allows users to quickly and 

easily choose the object of interest or the object(s) to track.  

Demonstrated in Figure 9-3, as soon as the user completes the elastic band region 

selection process, the region is dispatched to the appropriate function to generate the 

histogram signature, or to create the image prototype for template matching. The data 

set in immediately available for further object detection or object tracking systems. All 

attributes of the template image may be used for template matching. Template matching 

does not produce any output data sets. The result of template matching is the processes 

itself, and outputs are the determined object location. Match techniques are clarified in 

Section 9.2, Attribute Value Assessment. 

 

 

Figure 9-3. Selection mask of the gear experiment 
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9.1.5 Shape/Colour Matching 

Discovering key geometric shapes or colours and textures within an image has had 

some success, depending on the image set under scrutiny, or the models used. Many 

shape/colour matching systems employed within natural environments, will not 

function within artificial environments, and visa-versa. Colour variation in outdoor 

scenes, along with the random patterns of natural objects becomes problematic for 

computer vision systems. Tackling these issues requires different solutions whether 

working with natural or artificial environments. 

9.1.5. (a) Shape Matching 

Finding and locating geometric shapes within a building or city street is still non-trivial. 

Straight lines and sharp corners, generated by buildings, road, walls, doors, etc is part 

of a Manhattan World [221], as it is sometimes called. The Manhattan World model 

assumes an environment built upon the grid-like and orthogonal nature of man-made 

environments. 

Extracting geometric shapes relies upon effective edge detection methods. As 

mentioned previously, an edge map is simply a series of discrete points within the 

image, which indicates a sharp change in the image intensity gradient. Further 

processing of an edge map is necessary to extract meaningful information. Incomplete 

or missing points within the object boundaries cause issues for shape detection systems. 

The Generalised Hough transforms [222] are used as feature extraction methods to 

determine geometric shapes such as lines and circles. The effectiveness of the Hough 

Transforms is highly dependent on the effectiveness of the edge detector. It also 

impinges on ICT resources if the images consist of numerous potential geometric 

shapes. 

Once a shape has been calculated, verifying that the shape matches a key image feature 

is determined through simple geometric maths. Shape matching has not been 

implemented in this research due to the processing constraints, and the arbitrary, non-

geometric shapes possible in Augmented Reality Remote Access Laboratory 

environments. 

 

 



 

150 

9.1.5. (b) Colour Matching 

Identifying objects from their fundamental colours is well researched [172, 177, 178, 

210, 223], and is used to reference objects contained by an image library. Within an 

image or image stream, identifying a key reference or object by colour alone is still 

challenging. Colour has been a significant aspect in past fiducial marker systems, 

employing geometric shapes along with solid colours [69, 70] as a unique reference. 

These systems have been incorporated into AR systems in a manner which allows for 

ease in isolating and detecting them. However, performing the same function with 

complex natural or inanimate objects within the video scene is a completely different 

scenario.  

As detailed in Section 4.4, Filter Techniques - Statistical Filtering, consistent colours 

for objects between video frames is difficult to accomplish. For colour matching, it is 

usually important to apply colour filtering techniques before attempting to detect 

features. Other methods utilise alternative colour spaces, such as the CIE model [1] of 

Figure 9-4, which is derived from psychophysical research. The CIE-Lab model maps 

 

Figure 9-4. CIE Colour Chromaticity [1] 
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colours that we perceive as similar and aides with consistent colour detection within 

image streams, through their colour signatures [224]. Even with a certain level of colour 

consistency, identifying key reference points/objects by colour alone is still not solved 

by alternative colour spaces. 

Colour signatures of key features has provided some of the best results [225, 226] in 

locating (and tracking) feature points within images and from image streams. Applying 

colour histogram techniques for generating signatures of objects instead of for 

segmentation, builds an effective object detection model. Histogram signatures are 

robust to illumination, and the loss of spatial data automatically allows histogram 

signatures to be robust to object rotation. Colour matching, in this research, employs 

histogram segmentation, detailed in Chapter 8, Two-Dimensional Colour Histogram 

Object Signatures. 

9.1.6 BLOB Detection 

Homogenous regions within an image such as shape, colour or texture are the focus for 

BLOB detection systems. BLOB models could be considered either a segmentation or 

interest point model, depending on the method employed. Considering that BLOB 

detection models attempt to define a region of an image which matches a set of 

parameters: image segmentation is certainly a valid model. However, the majority of 

BLOB detection models employ processes such as previously defined CV models like 

Laplacian kernels.  

Grouping coherent colours seems similar to clustering techniques in which homogenous 

pixels are classified as belonging to the same cluster. However, clustering classifies 

similar discrete pixels into a common group whereas BLOB’s are more unstructured 

while still relating pixel groups. As BLOB output structures vary greatly from frame-

to-frame, they have not been considered for further Augmented Reality Remote Access 

Laboratory research. 

9.1.7 Graham Scan 

When a series of isolated points related to a specific feature have been detected, 

determining the polygon which encompasses the feature can usually be performed by a 

Convex Hull algorithm. One of the most efficient convex hull methods is the Graham 
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Scan [227] which will produce the smallest convex polygon containing all the feature 

points. 

The Graham Scan is convenient as a means to develop a profile for the features that are 

within the polygon. The points and shape can become a signature of the feature, thus 

aiding tracking mechanisms (see Chapter 11, Computer Vision - Object Tracking). The 

Graham Scan performs a simple series of steps beginning with the lowest pixel in the 

y-axis (and smallest x-axis pixel if there is more than one pixel to select).  The 

remaining points are sorted by the angle they make with the current point and the x-

axis. Proceed through the list of sorted points. If the next point constitutes a right-turn, 

then it is discarded. Continue through the list until all the points have been tested. The 

Graham Scan will construct a convex polygon in 𝑂(𝑛 log 𝑛) time. 

In Figure 9-5, from the start point (the lowest point on the y-axis), the convex hull is 

constructed using the Graham Scan method. Several points are discarded as the process 

continues, because they will cause a right-hand turn. Those points still remain 

encompassed by the constructed polygon. Convex Hull construction produces a unique 

shape suitable for object detection. Discovering matching shapes from frame-to-frame 

is possible with reliable point or corner detection algorithms. 

9.2 Attribute Value Assessment 

To function as a foundation for object tracking, Computer Vision image analysis and 

object detection outputs must consist of two features. Not only is knowledge of the 

object of interest required, but the knowledge must be measurable. Measurable outputs 

supply the means to locate and track objects from frame-to-frame. Each Computer 

 

Figure 9-5. Graham Scan convex hull process 
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Vision image analysis model supplies a data set representing attributes of the image 

that subsequent processes may or may not be interested in. When attempting to locate 

an OoI in successive video frames, the likelihood of locating exact attribute values is 

remote. A reliable process is required to match discovered attributes from the current 

windowed search area to the attributes from the prototype. 

For this research, it is assumed that there is minimal interframe motion, allowing only 

a sub-set of an image to be analysed. Utilising selection windows to build up feature 

points can employ multiple pixel attributes such as corner, edge colour, gradient 

direction, etc without the need to interrogate an entire image. The variety of attributes 

available is not a priori and can be discovered in-situ. 

9.2.1 Windowing 

Based on the histogram segmentation method, and inspired by the mean-shift [228] 

object tracking model, windowing improves tracking response times and computational 

costs over existing CV models tested in this research. All tracking methods within this 

works employ windowing to reduce the computational costs, while maintaining the root 

tracking mechanism. The Region of Interest (ROI), or tracking mask, represents a 

rectangle which consists of an area within the image to track. It holds attributes 

 

Figure 9-7. Windowing Region of Interest and Search Area 

 

Figure 9-6. Search Area feature matching 
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pertaining to the OoI. During tracking, the tracking mechanism will scan within the 

search window (see Figure 9-6- Left Image) of the new frame for rectangular regions 

containing similar attributes from the previous frame. That is, a match of the prototype 

signature is searched within the search area. 

As shown in Figure 9-7, in which the tracking windows have been turned on for 

illustration, the Region of Interest (ROI) maintains focus on the OoI (Orange rectangle) 

while the search area (shown in yellow) is used during the search of the next frame. 

Windowing assumes that an object exhibits only small spatial variations between each 

frame; therefore, candidate object positions can be located within the search area. 

Matching the target attributes (whether object attributes are obtained via segmentation, 

feature point or other tracking models) involves tracking matching algorithms. These 

are explained below. 

9.2.2 Segmentation Methods 

Regardless of the image segmentation model, output data will consist of a binary 

classification. Each pixel will be classified as either foreground or background. 

Background pixels are ignored by follow-on image processing systems. Three 

segmentation Computer Vision object detection models are included in this research, 

each listed below:  

• Histogram segmentation (2D Colour Histogram & HSI Histogram) 

• Clustering (DBSCAN) 

• Frame Subtraction 

For each segmentation model, binary pixel classification is the resultant output. Like 

all CV image processing models, there remains outliers to be ignored. From the 

  

Figure 9-8. Square pyramid colour histogram segmentation 
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resultant output, as shown in Figure 9-8, a hotspot is determined and used for further 

processing. With the addition of Windowing techniques (see Section 9.2.1, 

Windowing), attention is focussed so that segmentation and hotspot detection only 

occurs within the search area. Pixels associated with the selected attributes within the 

search area are collected to determine the mean distance between them, which results 

in the discovery of a new centre of mass for the current frame. The ensuing centre of 

mass is determined to be the new location of the OoI, tracking the object throughout 

the successive frames.  

9.2.3 Parametric Methods 

Parametric Computer Vision object detection models provide a unique set of attributes 

associated with the object of interest. Attributes associated with the individual 

Computer Vision image analysis or object detection models consist of comparable 

signal values, ideal for analytical assessments. Output attributes from the following CV 

models require parametric comparisons from one of the methods listed in the flowing 

sub-sections: 

• Histogram (2D Colour Histogram & HSI Histogram) 

• Interest Points (Edge & Corner Detectors) 

• Feature Points & Territory Signatures 

• Template 

9.2.3. (a) Chi-Squared Tracking 

Discrete attribute values for a tracked prototype will very rarely coincide with values 

within a search area. As previously detailed in Section 4.2, Image Noise Sources, 

individual pixel values vary considerably from frame-to-frame, affecting matching 

techniques. Histogram matching creates a tolerance for attribute variations due to 

accumulation bins sizes accepting a range of attribute values. Matching the prototype’s 

histogram to histograms of the search area only requires simple chi-squared (𝜒2) test 

to validate the goodness-of-fit or homogeneity for a successful match. 

9.2.3. (b) Least Sum of Squares Difference 

Overcoming attribute value variation may also be moderated through calculating the 

Sum of the Squares Difference (SSD) for each of the pixel attributes (or feature point), 

and selecting the smallest value as the closest match to the attributes of the prototype. 
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Equation 9-2 shown the sum of each attribute for the X-Y coordinates, where the current 

attribute value for the prototype is 𝑎𝑝, and 𝑎𝑠 is the attribute value for the corresponding 

location within the search area. 

The least Sum of Squares Difference overcomes the difficulty in exact matches between 

the attributes of the prototype and the search area. However, it may perform badly in 

situations where other methods would indicate a loss of track. The smallest value from 

the SSD is not always the appropriate match, and caution must be taken when utilised. 

This is demonstrated in Section 8.3, Operational Parameter Analysis Tracking Trials. 

Selecting poor object features also leads to poor object tracking. Unless tracking models 

employ a sufficient number of robust features, recovery from tracking failures will not 

be possible [129]. Feature point object detection models become robust with a diverse 

range of characteristics, which improves tracking. Highly accurate tracking is very 

difficult [116], so selecting effective registration reference points is just as important to 

successful tracking. 

9.3 Summary 

Computer Vision object detection attribute matching methods are a critical element 

within the object tracking process. Attribute matching is responsible for the location of 

the object within the new video frame. Synchronising knowledge of the attributes from 

the previous frame to current frame is the primary task. Poor attribute matching is 

responsible for losing track of the object of interest, loss of knowledge regarding key 

reference points and the failure of higher level processes such as Augmented Reality 

Remote Access Laboratory systems. 

Classifying object analysis and tracking processes as either segmentation or parametric 

models has produced two primary methods to match object attributes. Contributions 

from this research have determined the types of output data to expect from the various 

CV object detection models, and effective means to measure and compare those values 

for the purpose of object tracking. Knowledge of the parametric measure methods is a 

key factor when applying Computer Vision image analysis and object detection 

SSD = ∑ attribxy(ap − as)
2
 

Equation 9-2. Sum of Squares Difference for prototype attributes 
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processes to Augmented Reality for Remote Access Laboratories. Applying reliable 

and efficient parametric methods supports real-time object tracking for the follow-on 

sub-systems. 
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10 

10 Computer Vision Object Detection  

This chapter describes the current Computer Vision models associated 

with extraction of key digital image attributes. Existing Computer 

Vision models are reviewed to assess their capabilities to operate 

within the Augmented Reality Remote Access laboratory environment, 

including methods developed as part of this research. 

Object detection models within the CV field, are built upon several models which rely 

on separating the signal from the noise. Computer Vision techniques such as edge or 

corner point detection find interest points associated with objects through the detection 

of discontinuities within the image colour or intensity gradients. Instead of attempting 

to map discrete points to features of an object within an image, alternative methods for 

object detection rely on classifying portions of an image as belonging to a group. The 

testing infrastructure, testing regime and the interfaces involved for object detection are 

explained in this chapter. 

Augmented Reality systems require the CV systems to gather information pertaining to 

the environment, to interface with and successfully immerse the user into the 

environment. Object detection is a key requirement for AR RAL systems, and this 

chapter focusses on assessing the variety of CV object detection models that are suitable 

for the application. Contributions of this chapter consist of the testing and assessment 

of several CV object detection models to ascertain their capability of achieving the 

goals of this research; to perform object detection and tracking without the use of 

fiducial markers, in real-time.  

Effective object detection learning algorithm models such as Convolutional Neural 

Networks (CNN) [229], rely upon comprehensive training sets. According to Girshick 
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et al. [230], research into feature detection systems has failed to achieve improvements 

in performance in recent years, even considering the extensive penetration of CNN 

models into the field. While their recent derivative of a CNN system is very effective, 

it is still dependent upon training set data. All Artificial Intelligence (A.I.) systems, 

such as genetic algorithms or neural network systems are precluded from this study 

because of their requirement for extensive training. Histogram of Orientated Gradient 

(HOG) [205, 231] is another source for functional object detection. Based on both 

boundary gradient orientation and image histogram signatures, the system readily 

locates objects/features within an image. The system is effective at discovering key 

objects within an image, but to locate a specific object, it also requires considerable 

training [205]. While these systems are very successful, as stated previously, the goal 

for this research is for the discovery of model(s) to deduce all the necessary information 

directly from the live video stream. Some attributes of the HOG model have been 

retained for a unique SIFT style implementation created as a result of this research, and 

described in Section 11.7 - Markerless Tracking. 

Research contributions from this chapter involve methods to discover objects, within 

the test image, in a manner useable by Computer Vision object tracking systems. 

Additionally, a new histogram mode has been developed (see Chapter 8, Two-

Dimensional Colour Histogram Object Signatures) which provides a medium for 

effective image segmentation and object matching. 

The chapter is structured as follows: Section 10.1 explains the methodology employed 

to validate the various experiments. Section 10.2 defines segmentation CV models, 

while section 10.3 explains parametric object detection methods. The results of 

experimentation are discussed in section 10.4, and section 10.5 summarises the 

outcomes and contributions. 

10.1 Experimentation Methodology 

The ability to identify an object within a digital image data set is non-trivial. 

Understanding the attributes which inhabit an object, extracting the appropriate 

attributes and then matching them to a signature associated with the object is both 

complex and time consuming. Different CV object detection methods determine the 

strategy for validating the model’s capabilities. 
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All experiments were conducted on a dual Intel Quad Core i7-4790 CPU @ 3.6 GHz 

computer, with 8GB of RAM, running the 64-bit Windows 8.1 (build 9200) operating 

system. The video card is an AMD Radeon R7 200 Series with 38.97fps OpenGL 

CINEBENCH R15 score and 709 CPU score. 

10.1.1 Segmentation Validation 

Object detection by image segmentation functions via the collection of homogenous 

attributes within the image. Segmentation produces an array of non-standard shapes, 

which may or may not be linked with the object of interest. Evaluation of the object 

shape becomes difficult, as metrics for non-standard shapes require a method to 

quantify the object’s attributes. In isolation, segmentation can produce an indication of 

the location, shape and size of the required object, but very little other supporting 

information [232] to be useful for follow-on sub-processes such as object tracking. 

This research, as a result of the need to perform object tracking, developed an object 

detection method to locate objects between consecutive video frames. The detection 

method is called the Hotspot method, and filters the image under test with the attributes 

of the specific segmentation method. This object detection method was not interested 

in identifying the object. That is to say, it was not necessary to know that the object of 

interest is a car, or a kangaroo, just that the attributes associated with the object are able 

to create a hot spot within the image, to be found in consecutive video frames. 

Segmentation attributes can be used to perform an additional (secondary) segmentation. 

Classification of each pixel is a binary test of the pixel attributes; matched attributes set 

the pixel classification to foreground, otherwise the pixel is classified as background. 

Hotspots are then easily able to locate the mass of foreground pixels, related with the 

object. Figure 10-1 demonstrate the effects of hotspot detection. The model image’s 

attributes (Figure 10-1 (a)) are used to segment the composition image (Figure 10-1 

(b)) to produce the hotspot image shown in Figure 10-1 (c). The object of interest has 

the highest density (hotspot) of foreground pixels to anywhere else within the 

composition image. 



 

161 

An object associated with a hotspot no longer consists of spatial data. Hotspot detection 

is only interested in locating the region of the image with the highest density of set 

pixels. As this work is focussed on Augmented Reality functionality in Remote Access 

Laboratories, hotspot detection for tracking becomes simpler. See Chapter 11.2.2, 

Segmentation Matching for more details. For this chapter, the assessment of CV object 

detection models, based on segmentation, is concerned with the model’s ability to 

isolate sufficient object pixels to create a density structure. 

10.1.2 Parametric Validation 

Parametric style object detection models provide a unique set of attributes associated 

with the object of interest. The method of identifying the attributes and then measuring 

their kinship to the signature of the object of interest becomes the parametric model. 

Statistical analysis has provided a suite of data comparison tools. Analysing all potential 

tools is beyond the scope of this research, but the tools selected are common industry 

methods and fall inside the requirements of this research in providing fast processing 

for the data sets presented. 

The majority of parametric object detection models provide data sets in a manner that 

is suitable for testing using the Least Sum of Squares Difference (SSD), shown in 

Equation 10-1. Comparing pairs of attributes from the template (prototype) and the 

 

(a) 

  
(b)                                                               (c) 

Figure 10-1. Segmentation example 

Left: Target object, composition image including the target object 

Right: Segmentation showing hotspot locations 

SSD = ∑ attribxy(ap − as)
2
 

Equation 10-1. Sum of Squares Difference 
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searched region sums to a value measuring the closeness in similarity the two images 

have to each other. The smaller the value, the more similar the images should be. 

10.2 Segmentation Object Detection 

Computer Vision image segmentation extracts data sub-sets of the image, based on 

criteria determined by the segmentation method. A number of image segmentation 

methods exist, with varying levels of success as an object detection model. 

Development of the segmentation models used in this research, focusses on three 

primary methods.  

10.2.1 Segmentation - Clustering 

Knowledge Discovery in Databases (KDD) [130] is the field focussed on extracting 

knowledge from large data sets of seemingly unconnected records. Some techniques in 

the KDD field are also suitable in discovering knowledge pertaining to digital images. 

A digital image can be considered a spatial data set with unknown natural groupings; 

performing analysis with this consideration in mind allows for novel approaches in 

image analysis. Clustering is a method of classifying like data sets based on a series of 

rules. For CV clustering systems, each pixel is examined to ascertain if it is more likely 

to belong to a specific group, while also being as dissimilar as possible with any other 

group. Clustering models are highly iterative, examining each pixel and its neighbours 

before moving on to the next pixel. Three clustering techniques have been effectively 

applied to image analysis, and are capable of locating objects or regions of an image. 

10.2.1. (a) DBSCAN Clustering 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is based on a 

density factor, and achieves classification of pixels as a result of the pixels relationship 

with its nearest neighbour, and also its connectedness with the group/cluster in which 

it is to be associated. DBSCAN [5] classifies each pixel as belonging to a cluster in 

which a predefined number of pixels within its radius also belong to the cluster, and is 

directly density reachable to core cluster points. From seemingly random spatial data, 

as seen in Figure 10-2, DBSCAN is capable of classifying not only the homogenous 

pixels, but also pixels that are density reachable to core pixels. Any pixel not associated 

with any group or cluster is considered noise. 
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DBSCAN has a time complexity of 𝑂(𝑛 log 𝑛) as a result of its highly iterative 

processes. A minimal set of user parameters are necessary for DBSCAN to function. 

During classification of each pixel, the eps ( )  value determines the neighbourhood 

radius around the current pixel and the minPts are the minimum number of core points 

required within the radius before the pixel is classified as belonging to the cluster. A 

set of criteria is necessary to reach a decision on pixel suitability. Any pixel not meeting 

the criteria is ignored, while suitable pixels undergo cluster classification. From the 

processes of Figure 10-3, as each UNCLASSIFIED pixel is processed, it is tested 

against its neighbouring pixels. The radius set by eps, is typically valued around two. 

If the central pixel has minPts pixels within its neighbourhood of similar values, it is 

marked as part of the current cluster and each pixel found suitable within the 

neighbourhood cycled through for testing. Pixels which do not reach minPts are marked 

as NOISE. The process then moves on to the next suitable pixel. From this model, a 

cluster quickly grows based on the density of the suitable pixels as shown in Figure 

10-2. 

Density based clustering, where point 𝑝 is density reachable to core point 𝑞, is not a 

symmetrical relationship, which means that a pixel may be suitable for more than one 

cluster. Pixels already classified in a cluster have no method to assess if they should be 

associated with a different (better) cluster. The method is first in - first served, so a pixel 

may be better suited to a different cluster. Selecting the values for eps and minPts can 

become critical for the success of DBSCAN segmentation. Using a priori knowledge 

is ideal as setting eps too small will cause a loss of data, while too large will merge 

neighbouring clusters together. Large values of minPts can reduce the level of noise in 

the final clustered result. 

 

Figure 10-2. Spatial clustering demonstration 

Left: unstructured data 

Right: Clustered data groups 
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10.2.1. (b) k-means Clustering 

The ‘mean’ clustering methods attempt to build clusters where membership depends on 

the pixels distance to the cluster mean. Segmenting images based on k-means clustering 

[131, 233] aims to minimise the distance of pixels within the homogenous group to the 

centre of gravity (K) for the cluster. In real terms, this requires the pixel under 

consideration to be added to the cluster whose mean sum of squares distance value is 

the smallest. Initial pixel classification is randomly created, with each pixel selected for 

one of the k clusters. Clustering with k-means requires a pre-set number of clusters to 

fill, and follows a two-step process. Initially, each pixel is randomly assigned to a 

cluster and the mean (centre) of the cluster is determined. From this point, the two-step 

process is repeated for a set number of iterations, or until the solution converges to a 

stable system. A number of iterations are required for the k-means technique to 

converge on an acceptable solution. 

 

Figure 10-3. DBSCAN pixel classification process 
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Figure 10-4 shows the steps performed to classify pixels using the k-means algorithm. 

A solution may not always be possible if the image does not converge, so a limit on the 

number of iterations is required. Clustering using k-means has a time complexity of  

𝑂(𝑛𝑘𝑖) where 𝑘 is the number of required clusters and 𝑖 the number of iterations. 

Centroid selection is critical to the function of any of the means clustering models. The 

new centroid pixel is selected once all pixels have been allocated to a cluster, by the 

mean distance between pixels within the cluster. The time complexity of the k-means 

clustering model results in excessive processing times, which preclude it from further 

use in AR RAL environments. 

Step one requires each pixel to be reassessed as to whether it deserves to remain in the 

current cluster. This is determined by its distance to the cluster mean. Minimising the 

inter-cluster sum of squares with respect to the current cluster mean drives the new 

assignment. A pixel will be reassigned to reduce the clusters sum of squares value, 

while being placed in a different cluster which should be an improved fit. Step two 

recalculates each cluster mean so that the new centroid is available for the next iteration. 

The process ceases when a predefined number of iterations are completed, or when the 

number of pixel reassignments reaches some pre-set minimum count (convergence). 

 

Figure 10-4. k-means clustering process 
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The time complexity for k-means clustering is computationally expensive, and cited as 

𝑂(𝑛𝐶𝐷𝐼) where 𝐶 is the number of clusters, 𝐷 the number of dimensions and 𝐼 the 

number of iterations [131]. A k-means algorithm can take some time to converge, which 

is unsuitable for real-time video tracking. Additionally, k-means models are unable to 

build non-convex cluster shapes [234].  

10.2.1. (c) Fuzzy C-Means Clustering 

A modified version of the k-mean clustering model is a so-called soft clustering method 

called Fuzzy C-Means (FCM). The Fuzzy C-Means clustering model is similar to the 

k-means method in that a specified number of clusters are pre-defined, and pixels are 

associated with the clusters randomly. The FCM model differs from the k-mean model 

in that a pixel may be a member of more than one cluster, hence fuzzy classification. 

Within the k-means method, a pixel could be assigned to more than one cluster, but is 

forced to only a single cluster. A centroid is determined and then each pixel is 

reassessed as to its suitability for each of the clusters, based on minimising the objective 

function. Fuzzy C-Means clustering is classified as a soft clustering model because a 

pixel can potentially be a member of multiple clusters. The degree of membership is a 

factor with this model. Soft clustering has allowed more detail to be maintained in an 

image [235] in comparison to hard clustering such as DBSCAN. As with the k-means 

clustering model, high iterations become computationally too expensive, which 

precludes it from use with the AR RAL environment. 

The fuzzy nature of the model is convenient for some CV systems such as medical MRI 

[170] or other image interpretation system, but is not suitable for AR systems which 

require clear segmentation of OoI from the general digital clutter for tracking purposes. 

FCM also suffers from the same time complexity issues as the k-mean model. 

10.2.2 Segmentation - Colour Indexing 

Chromo-key segmentation in TV and movies has used colour indexing to remove the 

background and replace it with an alternative, for many decades. Blue-screen or green-

screen backgrounds provide the nightly weather forecasts, substituting the screens with 

relevant information. These two colours where considered due to their distinction when 

compared to human skin colour. This ensured that skin tones where not confused for 

the selected chromo-key colour. Classifying and isolating portions of an image in real 

world video streams is much more difficult to perform. Some CV techniques similar to 
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chroma-keying are modified to remove unwanted aspects of an image. Correctly 

selecting the colour space to work with is an important consideration in colour 

segmentation, and is dependent on the segmentation models used. 

10.2.2. (a) Greyscale 

The majority of colour segmentation methods employ the greyscale colour space. 

Intensity levels, revealed within greyscale converted images, help to simplify the 

classification of foreground or background pixels. Simple binary segmentation is 

contingent on a threshold value set against the image greyscale intensity. Otsu [7] 

attempted to determine the threshold value automatically, by analysing the greyscale 

histogram, and locating optimal thresholds. Setting the threshold to the histogram 

minimum should create a clear demarcation, but the effectiveness varies from image to 

image. The greyscale histogram (Figure 10-5 (a)) of Ground Truth image GT-03 shows 

the Otsu calculated threshold value and the subjective demarcation segmentation value, 

from manual analysis of the histogram. Clearly there is a significant saddle within the 

histogram (at grey level 188) which produces the image in Figure 10-5 (c). This has 

segmented the image far better than the Otsu value (at grey level 37) which produces 

image Figure 10-5 (b). For this particular image, Otsu value calculations are not the 

preferred segmentation point. 

 

(a) 

  

(b)                                                                                    (c) 

Figure 10-5. Otsu/Greyscale threshold segmentation 
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Analysing with greyscale data improves processing speeds, but at the cost of 

information loss. Details regarding other aspects of the image are lost from the analysis. 

As seen in Figure 10-5, effective segmentation is possible, but further image analysis 

is required before objects can be isolated from the data. Due to the need for the threshold 

value to be pre-determined, the Otsu/Greyscale method of segmentation was excluded 

from further testing. 

10.2.2. (b) Colour 

Colour distribution within a digital image provides a means to segment according to 

user selected colour values. Values such as an object colour, or the hues and tones of 

skin are prime examples. As most digital images are bitmaps, the RGB colour space is 

the standard working environment. Of course, colour constancy [176] becomes the 

limiting factor, driving the requirements for robust colour indexing methods.  

The computer vision field has several effective models available which employ 

statistical analysis for pixel classification. Colour mixture models provide segmentation 

through colour probability density estimates [207, 236]. Gaussian Mixture Models 

underpin colour mixture models, and help to alleviate colour constancy issues through 

the smoothing achieved from the historical collection of pixel colours. Bayesian testing 

of a pixel can provide the likelihood of it belonging to a particular class, based on prior 

probabilities. 

10.2.2. (c) Histogram 

Histogram image segmentation has been shown to be effective at isolating the primary 

colour gamut representative of the object of interest. Discussed in Chapter 8, Two-

Dimensional Colour Histogram Object Signatures, colour histograms of objects 

produce a unique signature consisting of the colour distribution of the images pixel 

colours. This is displayed in Figure 10-1 in which the green leaf’s colour distribution is 

then used to perform segmentation on a larger image.  

10.2.3 Segmentation - Statistical 

Statistical segmentation uses probabilistic models to classify background and 

foreground pixels. Training is required to collect sufficient data for the probabilistic 

model to reliably segment the images. The probability density function for pixel colours 

of an image follows a complex distribution. Video frames provide a source of sequential 
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colour distributions. An individual pixel’s colour distribution over the range of selected 

video frames can be used to predict the nature of the pixel. Gaussian Mixture Models 

(GMM) [237] are trained on sample video frames to classify each pixel as either 

foreground or background, segmenting each frame and contributing to further 

assessment of future frames. 

Probabilistic segmentation models have been excluded from this works for two 

important reasons. Firstly, training is required to develop a kernel for pixel 

classification. Training also assumes a level of purpose-built pre-understanding of the 

environment. This is counter to the goals of this works which requires no previous 

knowledge of the remote session. Secondly, mixture models can require considerable 

processing resources. Training a system consumes far more resources than the 

segmentation mode, but training is continued throughout the video sequence, and will 

require additional resources. Segmentation in real-time becomes a contributing factor 

for mixture model’s exclusion from this works. 

10.3 Parametric Object Detection 

As stated earlier, Computer Vision object detection for Augmented Reality within a 

Remote Access Laboratory environment does not require the identification of the object 

of interest. Simply gaining knowledge of the object of interest, specifically, the 

attributes associated with the object is the primary requirement. As explained in Section 

9.2, Attribute Value Assessment, object detection models must provide valid output data 

which is suitable for comparison. As shown in Figure 10-6, choosing good features to 

track [72] can be a challenge. For the red gear assemble shown in Figure 10-6, only six 

SUSAN corner points are common, even though the video frames are consecutive. This 

number reduces for each additional frame, and becomes unusable as an object detection 

model without careful consideration. 

  

Figure 10-6. SUSAN Corner detection for consecutive frames 
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10.3.1 Interest Point Attributes 

Interest point generation models such as edge and corner detectors are capable of 

producing a series of image feature points representing detected aspects of the object. 

Interest points may number into the thousands for a standard image, and filtering the 

noise from the object of interest can become difficult. Computer Vision image analysis 

models such as Canny and Sobel edge detectors or SUSAN corner detectors (See Figure 

10-6) produce interest points through the discovery of changes in image boundary 

gradients and discontinuities within the image. As shown in Figure 10-6, there are 

dozens of interest points within the small area. Reliability becomes the chief concern, 

with noise the source of many false signals. Edge detection models rely on the high 

frequency signal which occurs when there is a rapid change in intensity along an object 

boundary, yet this is also the domain of noise. 

Establishing correspondence from individual feature points becomes a critical process 

[238]. For the interest points shown in Figure 10-6, it is necessary to know which point 

is the matching point in the next frame. Object detection failures develop when there is 

mismatch in interest points from image to image. 

10.3.2 Gradient Attributes 

The weakness of identifying objects through their interest points is the iterative nature 

of scanning a collection of interest points and attempting to find a connection to the 

coinciding point in the target image. Employing a method to combine features into a 

single metric improves object detection and object tracking. Gradient attributes build 

unique signatures from the orientation and magnitude data retrieved from image 

boundary gradients. This technique has been a contribution of this research and is 

described in detail in Chapter 7, Image Object Gradient Signature.  

Signatures constructed from a series of attributes can be compared through the attribute 

comparison technique, Sum of Squares Difference equation shown in Equation 10-1. 

The smaller the return value from the SSD calculations, the greater the likelihood that 

the compared features are associated with the object of interest. Object detection 

processing times are suitably fast to support Augmented Reality features for Remote 

Access Laboratory Environments. 

10.3.3 Histogram Attributes 
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Histogram comparison test are effective to determine the probability that two 

histograms are similar. Histograms created as part of this research may be utilised for 

segmentation or for parametric object detection. All works have ensured that 

histograms consist of the same size accumulation bins which allows them to employ 

chi-squared tests (see Equation 10-2). Due to the statistical problems with the 

‘goodness-of-fit’ test, the chi-square ‘test-of-homogeneity’ test is used to prove 

histogram hypotheses 

10.4 Results 

This section presents the results of experimentation, and interprets the data within the 

context of Augmented Reality for Remote Access Laboratories. Each CV object 

detection model functions in a unique manner, and requires different methods of testing 

to determine its suitability for the required task. Image segmentation is the primary 

technique used in object tracking (see Section 11.2.2, Segmentation Matching) but is 

not necessarily the main performance measure in this chapter. Each sub-section 

describes the requirements for testing for the specific model. 

10.4.1 Object Detection Metrics 

Computer Vision object detection models may be contrasted in a number of ways. 

Quantitative performance measurements for individual object detection models provide 

scores based on artificial test environments. Static testing provides robust results when 

tuned for the environment under test. Scoring values rank model capabilities, but the 

lack of context dictates alternative solutions to gauge the true effectiveness. Valid 

performance evaluation only occurs within a real-world operational environment. 

Synthetic images can be constructed in a manner which suits the metric being measured, 

with real-world datasets providing the variations necessary to evaluate multiple 

features. As such, this research trials object detection effectiveness as a function of the 

object tracking mechanisms. Timing results for each model are shown in Table 10-1, 

where the processing time to scan an entire image and the processing time to scan a 

 

Table 10-1. Object detection run-time comparisons 

 

DBSCAN K-Mean Fuzzy-C Histogram Interest Points Template

Entire Image 4.0029 3323.8 2932.1 18.75 94.82 204.286

Image Window N/A DNF DNF 3.1311 12.04 7.415

Search Times (milliseconds)
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windowed region are listed. Values of DNF indicate that the model did not finish the 

task (see sub-sections for an explanation). 

10.4.2 Clustering Performance 

Out of the major clustering techniques used for image analysis, DBSCAN clustering’s 

time complexity has the least strain on system resources. However, there are many 

variables that still affect the overall run-time operations. The DBSCAN model requires 

two parameters (eps and minPts) to operate. While these two values can be left at the 

semi-official default settings of eps=2 and minPts=4, these values can be confirmed 

through run-time experiments. Figure 10-7 demonstrates the number of clusters found 

in the left image of Figure 10-1 while varying input parameters eps and minPts. As 

minPts increases from 3 to 12, the number of clusters discovered decreased. This is 

apparent in each group of tests. Also, as eps increases, the number of clusters decreases. 

Clustering techniques also require a set of attributes for which to use as a unit of 

measure. Image clustering techniques compare homogenous colour ranges, which also 

affect the run-time operations. Increasing the size of the colour window includes a 

larger population of pixel’s which can be assessed as a core point. Cluster sizes increase 

and the number of clusters increases. Figure 10-8 shows the result when the colour 

range (window) increase. For a set eps (eps=2), the execution time (in milliseconds) is 

shown for varying minPts and colour window sizes. Maintaining a configuration to 

 

Figure 10-7. DBSCAN cluster count versus parameter values (eps and minPts) 
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achieve effective cluster distribution while also ensuring adequate run-time processing 

requires the maximisation of all three parameters. 

While DBSCAN as a CV object detection model for CV object tracking is determined 

in Chapter 11, the results of experimentation in this chapter confirm DBSCAN’s 

performance capabilities. From the results shown in Figure 10-7 and Figure 10-8, the 

most effective outcomes for the DBSCAN clustering algorithm, occur for eps=2, 

minPts=4 and colour window=5. This provides efficiency in both accuracy of cluster 

detection and processing speed. At 4mS operating speed, DBSCAN is more than 

capable of providing object detection data to follow-on Computer Vision object 

tracking mechanisms. 

It is apparent from Table 10-1 that both k-means and fuzzy-c clustering models far 

exceed the real-time processing needs, when processing an entire image. 

Experimentation showed that employing the windowing technique, discussed in Section 

9.2.1, Windowing, was not appropriate for these clustering models. Both clustering 

models require pre-setting the number of clusters within the image. When employing 

windowing, attempting to distribute the smaller population of pixels across multiple 

clusters produces two problems: the models will not converge, or an insufficient 

 

Figure 10-8. DBSCAN cluster run-time vs colour thresholds 
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number of pixels appear in the cluster representing the object of interest. Both issues 

resulted in the models failing to meet the criteria for AR RAL environments. 

10.4.3 Histogram Performance 

Due to the colour histogram’s ability to indicate the colour distribution of an object, 

segmentation of an image will occur quickly. Time constraints on colour histogram 

object detection occurs through the determination of the highest density of classified 

pixels, within the image. Colour histogram segmentation of the left image in Figure 

10-9 based on the colour distribution of the left blue gear item, produces the hotspot 

image shown by the right image in Figure 10-9. 

While two hotspots are clearly presented, it should be apparent that the left hotspot has 

a higher density of segmented pixels. This is as expected, as the colour distribution of 

the two gear assemblies are different, as shown in Figure 10-10. Within the AR RAL 

environment, locating the correct hotspot, and not the first hotspot found on a search, 

is achieved because of the nature of the application. User selection of the item to locate 

  

Figure 10-9. Histogram segmentation hotspot results 

 

Figure 10-10. Gear Experiment Histograms (Base size=18) 

Left: Left Gear Assembly Histogram 

Right: Right Gear Assembly Histogram 
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allows the region of the image to search, reducing processing time, and ignoring other 

potential matches. Colour histogram segmentation of the entire image, with the red gear 

assembly as the object template, occurs with an average execution time of 18.75mS. 

while this value is acceptable for real-time image processing, significant speed 

improvements are possible if only a portion of the image has to be segmented (3.13mS). 

This method is explained in Section 9.2.1, Windowing. 

Histograms can be compared to ascertain their level of similarity through hypothesis 

testing such as ‘goodness-of-fit’ and ‘test-of-homogeneity’ [175] through the chi-

squared test shown in Equation 10-2. This method of histogram modelling is validated 

through trials performed in Chapter 11, Computer Vision - Object Tracking.  

10.4.4 Template Performance 

Selecting the appropriate attributes associated with a template is the primary 

consideration for template object detection models. Choosing between the discrete 

colour values contained within the template image, the detected interest points such as 

edges or corners, or feature point gradients affects the processing times of the model. 

Choosing edge, corner or feature point methods require pre-processing from a CV 

image analysis function, increasing processing times. As a separate CV object detection 

model utilising feature point detection was trialled (see Section 10.4.5, Interest Point 

Performance), research on template object detection employed colour matching 

techniques. 

Time complexity of template matching is O(N log M), where 𝑁 is the size of the image 

and 𝑀 the size of the template. Testing the performance of template matching object 

detection on the standard 320 x 240 pixel image of Figure 10-9, with a template of size 

15 x 16 pixels (red gear assembly), takes an average of 204mS. Scanning the entire 

image for the template is too time consuming. While template matching is effective, 

the time costs are prohibitive for AR RAL environments. Reducing the value of 𝑁 

significantly reduces processing times. Employing the windowing technique described 

in Section 9.2.1, Windowing significantly lowers the operation time. The same template 

χ2(v) = ∑
(Observed − Expected)2

Expected
allbins

 

Equation 10-2. Chi-squared histogram testing 
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object detection experiment produces improved speeds of 7.42mS per frame when 

searching an expected windowed region of the image. 

10.4.5 Interest Point Performance 

Interest point object detection functions differently to segmentation processes, which 

requires alternative methods, other than hotspot detection, to locate objects within the 

image. Feature discovery for this research, involves extracting boundary gradient data, 

consisting of the gradient strength and orientation. Figure 10-11 demonstrates the 

results of discovering the gradient attributes of the red gear assembly of Figure 10-9. 

Unique signatures of the object are possible considering the number of points associated 

with the object and the variation in gradient orientation and magnitude. The object of 

Figure 10-11 consists of 182 points, each with a potential orientation of 360 degrees, 

and a magnitude ranging from 0 to 360, for a probability of 1-in-23,587,200 chance of 

having the same signature. 

Object detection searches the image for a matching signature, utilising the Sum of 

Squared Difference (SSD) shown in Equation 10-1. The difference in the attributes for 

each pixel are squared and summed. Ideally a score of zero represents a match, 

however, image noise prohibits perfect scoring. Understanding that the purpose of the 

object detection system is for AR RAL applications, then coping with the effect from 

slight noise variations means that none of the gradient values will be consistent in each 

frame. The smaller gradient magnitudes become a liability, lost within the SSD 

calculations. It becomes unnecessary to employ all the feature points shown in Figure 

10-11, removing feature points with smaller gradient magnitudes. 

 

Figure 10-11. Object gradient map (red gear assembly) 
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Figure 10-12 shows the result of filtering gradients below a magnitude cut-off of 45. 

Improvements in image search times for locating a matching signature is the natural 

result, and further efficiencies from robust feature point characteristics. Scanning an 

entire image for a matching signature has the same time complexity as template 

matching. A full image scan taking an average of 94.82mS, is greatly reduced to 

12.04mS by employing the windowing technique described in Section 9.2.1, 

Windowing, allowing a top-end frame rate of more than 80fps. 

10.5 Summary 

Of the considered Computer Vision object detection models, there has been 

considerable variation in their capabilities, as well as effective methods to interpret the 

outputs of the models. While segmentation is effective at classifying portions of an 

image, there is still the necessity of locating the object of interest within the segmented 

results. Interest point models provide a rich source of features to utilise, however they 

are also very susceptible to noise sources within the image. Ascertaining each model’s 

suitability for use within an Augmented Reality Remote Access Laboratory 

environment initially becomes an assessment of the model’s ability to operate in real-

time. From the data presented in Table 10-1, only two models (DBSCAN segmentation 

and the contribution from this research, the Histogram segmentation) pass the first trail 

with runtimes capable supplying data to follow-on processes in real-time.  

However, when considering the context in which these models are to operate, there are 

vast improvements to be made. Discussed in Section 9.2.1, Windowing within object 

tracking, it can be assumed that there is only a small inter-frame motion [72]. As such, 

 

Figure 10-12. Object gradient map (filtered) 
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only k-means and fuzzy-c clustering models become excluded from further assessment. 

The remaining object detection models appear to provide the necessary data sets for 

any follow-on processes, and function fast enough to allow real-time operations.  

This chapter has considered the different CV object detection methodologies and 

approaches to locating specific metrics for their identification. The unique contribution 

focuses-in on specific CV object detection models which are compatible with the AR 

policies for RAL environment. Selected CV object models have qualities which can be 

measured and classified: a necessary feature when attempting to locate the object from 

frame-to-frame of a video stream for Augmented Reality processing within the Remote 

Access Environment. 
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11 

11Computer Vision - Object Tracking 

This chapter considers the knowledge obtained from Computer Vision 

object detection models to provide object tracking within a video stream 

suitable to support Augmented Reality for Remote Access Laboratories. 

Empirical validation and verification of the tracking models in the 

context of AR RAL environment is performed. 

This chapter describes and defines Computer Vision object tracking models, assessing 

existing works for suitability within the AR RAL environment through measuring 

performance. Contributions of this work consists of the application of ground truth 

object tracking accounting and novel methods to consolidate the object boundary 

gradients for object matching between video frames. Further contributions include the 

measuring of the effectiveness of object tracking models for operation within a 

markerless environment with no a priori knowledge, and in real-time. Evaluation of 

object matching methods provides a means to decide the likelihood the discovered 

object in the next frame is the same object from the preceding frame. 

It is not until State et al. [42] that the ability to locate and track an object within a live 

data stream is presented. While this is not a live video stream, it demonstrates that object 

detection and tracking has been a complex process for some decades. Many novel 

methods have been advanced, with varying success [239-241]. No single computer 

vision tracking model is capable of functioning perfectly under the multifaceted natural 

environmental conditions. Lighting levels, colour variation, object occlusion (full or 

partial), moving and static clutter, quantisation errors and understanding the spatial 

relationships between the various regions of the image are just some of the major 

difficulties associated with even the simplest CV object tracking systems. External 

issues associated with sequential video frames are: the non-linear responses of video 
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capture devices, the lack of connectedness with feature points and the object, the lack 

of understanding of the two-dimensional data set, and the computational load that 

tracking models consumes. 

A video stream is only a series of digital data patterns, changing from frame-to-frame. 

Computer Vision analysis attempts to isolate the patterns and gain knowledge from 

them. One of the major challenges for CV tracking systems is to match the discovered 

patterns (regardless of the difficulties) between frames, and understand the spatial 

changes that have occurred. Digital images are a discrete representation of a continual 

analogue environment. The value of a single pixel, within a digital image, cannot 

represent a single attribute of the analogue world, because it is the quantised attribute 

of a complex environment. The single pixel is therefore not significant in isolation, yet 

it is through the analysis of a single pixel that we build knowledge of the scene. As 

described in Chapter 6, Computer Vision Image Analysis for Augmented Reality 

Systems, object detection is a difficult and complex process. Tracking a detected object 

within a video stream requires more than just locating the object within each frame of 

the scene. A video stream is a two-dimensional representation of a three-dimensional 

environment, and many tracking systems also require an understanding of the 3D world 

to make informed judgements. Additionally, the environment under investigation may 

be continually changing spatially and temporally. Gathering data pertaining to the key 

spatial reference points becomes critical in determining the motion of, not just the 

tracked object, but the camera as well. Delays in processing the data quickly affect the 

synchronicity of reality with any CV follow-on processes (such as AR systems). 

As previously remarked by Tomasi and Kanade [72]; two basic questions for object 

tracking in video streams must be answered: ‘how to select the right features, and how 

to track them from frame to frame’ [72]. While Chapter 4, Computer Vision Filter 

Functions for Augmented Reality Systems concentrates on the selection of good 

features, this chapter assesses the various tracking mechanisms available for 

Augmented Reality and Remote Access Laboratory systems. Within this chapter, key 

requirements of an object tracking system are outlined, and the difference between 

deductive and inductive systems explained. The testing infrastructure, testing regime 

and the interfaces involved for object tracking are explained. Several object tracking 

mechanisms are detailed, and their functionality assess within the AR RAL framework. 



 

181 

This chapter is structure as follows: Section 11.1 defines the key requirements of a CV 

object tracking model, while section 11.2 defines the testing methodology. Sections  

11.3, 11.4 and 11.5 describe tracking systems and section 11.6 discusses the markerless 

object tracking model. Section 11.7 explains markerless tracking and the metrics are 

defined in section 11.8. The chapter is summarised in section 11.9. 

11.1 Key Requirements 

The key requirements for any video stream feature tracking system may seem simple, 

but have been historically difficult to achieve. A video object tracking system must be 

able to:  

• Function in real-time,  

• Understand the spatial changes between the frames,  

• Locate the required object in each frame (as it appears), and 

• Perform in a consistent and predictable manner. 

The purpose of this research decrees an additional key requirement. Many of the current 

vision analysis systems employ external devices or processes to aid in tracking such as 

magnetic trackers of GPS systems. These CV systems are explained within this chapter 

but are not part of the test environment, as this research involves the discovery of 

tracking methods that requires no external support or a priori knowledge, relying only 

on the vision data sets. Strategies to support the key requirements are described below. 

11.1.1 Real-Time Functionality 

Video frames usually arrive at a steady rate, depending on the video source. Assuming 

low-cost consumer video equipment (in support of inexpensive AR RAL 

configurations), frames rates are generally around 25-60 frames per second. A lot of 

image processing can occur within the 16.6mS-40mS between frames, but not a lot of 

systems are capable of achieving reliable real-time tracking without consideration of 

the context, or prespecified objects [242]. Other systems require offline processing 

before the tracking data is available. New research models compare their ability to 

properly detect and track objects over a range of known difficulties [243], yet forget 

about the computational cost and operating speed to perform the tasks. ‘Fast’ tracking 

systems may only state frame-rates if they are respectable results [129], while other 

systems are more honest about their capabilities [191]. There are also systems which 
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require a long and complex setup process [244] to configure their system before they 

accept data sets of key features. 

Real-time Computer Vision analysis functionality, within an AR environment, may also 

have an alternative methodology to improve processing costs. Exploiting aspects of the 

data sets is possible through strategies to support real-time video processing. 

11.1.1. (a) Time Strategy – Interframe Motion 

The two-dimensional video data sets arrive at the image analysis systems in a regular 

interval, but reacting to each and every frame may not be necessary for every AR 

system. Many object tracking systems rely on the assumption that there are only small 

inter-frame adjustments of their tracked items. Small inter-frame motion will consist of 

only a small number of pixels between each frame. Inter-frame tracking provides 

continuity with the real-time real-world environment. However, omitting alternating 

frames or utilising partial information from multiple frames can still provide acceptable 

visual feedback to an AR based object tracking system. 

11.1.1. (b) Time Strategy – Motion Prediction 

Prediction of motion is a key support mechanism for some CV systems. Predicting the 

approximate location an object of interest for the next frame reduces the time required 

to find the object. Linear quadratic estimation based methods such as the Kalman Filter 

[245] have been applied to CV tracking systems [246] for some time. The Kalman Filter 

is a two-stage system, in which it first performs a prediction based on previous data and 

the current state, and then updates the current state when the new observation is made. 

Other statistical models have also been utilised for predictive tracking including 

effective Bayesian models [247]. Bayesian systems employ a similar method to Kalman 

filters, using a priori to perform a prediction and then observation to update the 

probability density function for the next prediction. The Bayesian prediction model is 

non-linear, which better suits some types of tracking problems. Whether prediction 

filters, such as the Kalman filter, fit into the AR RAL framework for this research, is 

debateable. Remote Access Laboratory systems may not always consist of smooth 

transitions, such as is experienced with the periodic motion within the gear experiment, 

used to test the CV models of this research. 
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11.1.2 Frame of Reference/Spatial Relationships  

Spatial relationships within the two-dimensional image data set are unknown and non-

trivial to solve. Unless the video image is an accurate representation of a two-

dimensional plane or is concerned with only a relatively simplified two-dimensional 

series of motions, then calculating spatial relationships may not be possible. Prior to 

tracking an object within a video stream, information regarding the scene must be 

acquired through the determination of image and object attributes. Object detection 

methods explained within Chapter 6, Computer Vision Image Analysis for Augmented 

Reality Systems and Chapter 10, Computer Vision Object Detection isolate points or 

features within an image, but do not and cannot reveal the three-dimensional 

environment alone. 

A digital image is only a two-dimensional planar representation of a three-dimensional 

environment. It can be defined as 

where 𝐼: [𝑥] × [𝑦] is the RGB colour image, 𝑥 wide and 𝑦 high, consisting of three-

dimension colour bytes data. The only immediate spatial information relates to the 

relationship of individual pixels. As previously mentioned, an individual pixel is 

unlikely to contain an attribute of the physical world. Computer Vision analysis may 

produce interest points based on features that have very little to do with a real 

understanding of the physical environment. However, discovered interest points can 

provide a simple frame of reference with which to improve the underlying mathematical 

model of the environment. 

Fiducial markers have been the primary choice for AR systems when building an 

understanding of the image environment. Fiducial markers helped to provide a source 

of reference for CV and AR systems. However, even with the application of external 

markers, there is no guarantee that the system will be effective. No matter the method 

for spatial referencing, problems can still cause limit its effectiveness, such as slow 

identification [248]. However, knowledge about the marker is not always required. 

Simply using the fiducial marker as a reference point for spatial relationships of an 

object may be sufficient in some situations, such as the experiment shown previously 

I: [0, width − 1] × [0, height − 1] → [0,255]3 

Equation 11-1. Mathematical representation of a digital image 
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in Figure 3-2, which is used to identify components in the equipment. The fiducial 

marker may also provide an indication of an important feature or object. To gain an 

understanding of the 2D or 3D environment, three or more markers are required, and 

the relationship between the markers must be known [249]. Known reference points, 

such as fiducial markers, or previously identified natural features will also provide a 

means to determine the camera pose: the position of the camera in relation to the video 

scene.  

Figure 11-1 demonstrates the spatial relationship between three colour fiducial markers 

(superimposed). With known reference points, further three-dimensional calculations 

are available. Ideally, more than three known points are required for reliable 3D 

location estimates. The distance to the object of interest in Figure 11-1 is accurately 

determined from camera pose calculations and the spatial distances between the known 

markers. With the simplified example in Figure 11-1, the shape of the colour markers 

also helps to identify the camera pose. Figure 11-2 shows the camera and real-world 

coordinate system in relation to a 2D plane. The camera can see point 𝑢𝑖which is located 

in the three-dimensional real-world coordinate point (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖). The camera coordinate 

system is independent of the real-world coordinate system. Rationalising the 

relationships into a two-dimensional planar system of the digital image, maps point 𝑢𝑖 

to 𝑝𝑖. The optical centre of the 2D plane is defined by the coordinates (𝑥0, 𝑦0).  

  

Figure 11-1. Camera pose determination using colour fiducial markers on an anatomical model 
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Conversion from the 3D real-world system to the 2D planar system first requires 3D 

rotation and translation to synchronise the two coordinate systems before any other 

transformation can occur. Equation 11-2 is used to perform the transformation, with 

suffix c indicating the camera coordinate system, and w the world coordinate system. 

The matrixes 𝑅 and 𝑇 perform the rotation and translation, respectively. Rotation 

around the central point consists of roll, pitch and yaw. 

The two-dimensional planar image coordinate system requires the three-dimensional 

camera coordinates to be converted. Perspective projection geometry [250] simply uses 

the focal (𝑓) length and camera coordinate systems to find the image location of 𝑝𝑖, as 

shown in Equation 11-3. 

Stereo vision allows a Computer Vision system to function similarly to our eyes, 

producing depth perception [251, 252]. Access to 3D spatial information becomes 

much simpler computationally, but much more difficult when considering the issues 

associated with dissimilar hardware. For high accuracy spatial information, the optical 

aberrations for each camera and lens must be known, and variations in focal length and 

other data are required for calibration purposes [128, 253].  

 

Figure 11-2. Camera coordinate and real-world coordinate relationship 
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Equation 11-2. World vs. Camera coordinate transformation 
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Equation 11-3. Convert Camera coordinates to image coordinates 



 

186 

This level of detail is unlikely to be necessary for many AR implementations of RAL 

systems for the following reasons: macro scale objects for referencing and tracking, 

cheaper consumer equipment to support AR RAL uptake, and the relevance of a single 

pixel representing a specific real-world object. For most RAL configurations, there is a 

reasonable expectation and understanding of how the rig will function. We present a 

simple planar environment, with little or no need to be concerned with any depth 

perception. Fiducial markers or natural feature points do not require depth recognition 

if their purpose is as a frame of reference within the 2D background, because an AR 

system needs only the X-Y reference to successfully orientate to the RAL equipment. 

For tracking, this also mostly occurs within a two-dimensional setting and is concerned 

with maintaining a reference link to a physical object regardless of any motion in the 

depth field. The 3D referencing shown in Figure 11-1 is unlikely to be necessary for 

most AR RAL configurations. While CV systems may need to understand the 3D 

environment, AR systems are not performing experimentation measurements, but 

simply overlaying computer-generated data over the real-world scene. For instance, In 

the RAL Gear experiment, AR is not measuring the rotational velocity of the gears, but 

it does need to follow the gears to ensure overlays link sensor data to the relevant 

objects.  

11.1.3 Dependability 

Operating Computer Vision tracking systems in real-time has a large computational 

cost [241, 254], and are performed offline, if operational requirements allow. Object 

detection systems and tracking models attempt to replicate and predict the analogue 

world with varying levels of success. Regardless of the processes employed, accuracy 

and dependability are key problems associated with object tracking. The dependability 

is measured by the following criteria. 

• Reliability: Successful tracking requires success in locating key reference 

points as well as the Object of Interest (OoI). Dependant on the object detection 

systems, a tracking models’ ability to locate the OoI from frame-to-frame 

suffers from degradation if any single point fails in the current frame processing. 

Reliability also expects that key reference points are found and are usable for 

the duration of the operation [218]. Characteristics of reference points may vary 

from frame-to-frame, causing some tracking systems to lose track [187]. As also 
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mentioned in regard to model’s repeatability, a model must be reliable to 

function within the expected environments even when it has been utilised in 

alternative settings (i.e. equipment moved to another location). Reliability 

measures the true positive detection and tracking rates against the false positive 

rate. Binary classifier models are used to assess the probability of detection for 

systems tested in this research. The details are explained in Section 11.9, 

Results.  

• Repeatability: Applying object detection and tracking models to a scene should 

return the same results regardless of how many times the model is applied to the 

scene. Repeatability generally applies to systems recognising the same point 

from different locations [166], or isolating the same data/feature [255] 

characteristics from multiple test/operational run. Within an AR RAL 

configuration, a test rig may not always be setup the same way, or in the same 

location. Variation in lighting can be a primary source of system failures in CV 

tracking systems. Repeatability can be validated by testing against stored video 

file, which delivers the same consistent real-world video stream for each trail.  

• Accuracy: Accuracy issues consist of localisation discrepancies (as discussed 

in Section 6.3 - Corner/Vertex Detection) as well as errors induced from object 

detection methods [185, 195]. Reviewing the results of various object detection 

models highlights their ability to maintain a consistent and accurate location 

within the image [185, 256]. Computer Vision object detection models returning 

single pixel reference points are a small portion of the CV image processing 

family, and exhibit issues in detection accuracy [257]. Methods such as BLOB 

detectors (see Section 9.1.6, BLOB Detection) locate Regions of Interest (ROI) 

which can vary slightly between frames as a result of image noise sources, 

causing a jitter as the area covered by the varies. Accuracy of CV models 

constructed as part of this research, are determined through comparisons with 

ground truth images and video sequences.  

• Robust to environment changes: Remote Access Laboratory rigs may consist 

of highly static configurations: not prone to setup and tear down situations, or 

may be constantly built as a means to provide some level of hands-on experience 

for students [258]. Variation in the setup between consecutive test runs may be 

as small as a tiny movement of the camera right through to a complete 
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reinterpretation of how the experiment should be setup. Detection and tracking 

systems must be robust to setup variations and function reliably regardless of 

environmental changes. For example, strong natural light versus fluorescent 

lighting may be a difference from one test to the next, yet the system must be 

robust to function in both situations [243]. Increasing the uptake of AR RAL, 

object detection and tracking systems should function in multiple scenarios with 

no need to allocate a new tracking system to handle a different experimental 

configuration [128]. No specific resources were available for this research, to 

valid CV model’s ability to withstand environmental changes.  

Ideally, the success of an AR RAL system should be independent of the hardware; 

especially the camera. Testing object detection and tracking models against a range of 

cameras was not possible for this works. Dependability has been rated against the 

experimental rigs available, and the hardware installed. 

Evaluation of a models dependability is based on the binary performance characteristics 

describing the ROC curve and the criteria introduced by Schmidt et al. [187]. A full 

description of the evaluation method is provided in Section 11.9, Results. 

11.2 Experimentation Methodology 

Object detection is obviously vital to image object matching processes. Finding and 

locating the OoI, from frame-to-frame, requires not just the object detection process, 

but some means to measure and compare the objects attribute similarity, to gauge the 

closeness of match. Validation of CV analysis models, for digital images, requires 

pass/fail on each pixel when compared to the ground truth images. Computer Vision 

digital image analysis evaluation occurs as a result of defining the false and negative 

pixel assessment. For object tracking, success is measured as a percentage of the 

number of frames where the object of interest is successfully tracked, over the total 

frames involved in the test. 

Moving from object detection processes to object tracking requires methods to 

determine the likelihood that attributes of the object in one frame is found and matched 

in the next frame. All object matching algorithms in this research employ the 

windowing technique described in Section 9.2.1, Windowing, to reduce the size of the 

search data set. The Region of Interest (ROI), or tracking mask, represents a rectangle 
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which consists of an area within the current video frame to track. It holds the attributes 

pertaining to the OoI. Object tracking requires object matching, so subsequent video 

frames require a means to determine the similarity of attributes. In Figure 9-6, the 

attributes from the prototype (𝐴𝑝) are compared to the corresponding attributes in the 

current scanned region (𝐴𝑠). Exact matching of attributes between the prototype and 

new frame is highly unlikely due to the various noise sources. Even between 

consecutive frames of static regions, attribute similarities vary widely, so methods to 

evaluate the degree of attribute/feature similarities is necessary. 

11.2.1 Sum of Squares Difference 

The least Sum of Squares Difference (SSD) is an important method of measuring the 

difference between two data sets and is used to determine which region in the search 

window is the closest match to the prototype signature. The attributes from the current 

test region are matched to corresponding attributes of the prototype signature. 

Differences between each attribute are squared and summed to the total. In Equation 

11-4, the total SSD value reflects this current test fitness in identifying the prototype 

within the current frame. From the sorted list of the resultant SSD totals, the smallest 

value reflects the most likely prototype match. 

Prototype attribute 𝑎𝑝 is the attribute at the x/y coordinate, which is subtracted from the 

corresponding search region attribute 𝑎𝑠. Attribute characteristics determine the 

specific method of the SSD calculation.  

11.2.1. (a) Feature Points 

Feature points described in Section 10.3, Parametric Object Detection and Section 

11.7.1. (b) Object Features, contains boundary gradient orientation and magnitude 

attributes, so SSD calculations may use vector arithmetic. Unfortunately, applying 

vector arithmetic creates anomalies in the results, when the gradients are similar (As 

will be the case within similar regions of the search window). During trials, it became 

evident that smaller gradients magnitudes (shown in Figure 11-3) generated similar 

resultant vectors due to the minor magnitudes. The smaller gradient magnitudes also 

became insignificant when included with a single large magnitude gradient. When 

SSD = ∑ attribxy(ap − as)
2
 

Equation 11-4. Sum of Squares Difference for prototype attributes 
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scanning through each of the search areas, addition of small resultant vectors caused 

irregularities through the vector orientations. Vector cancellations or unanticipated 

resultant gradient directions, during the summing process, produced unexpected small 

totals which become hard to discriminate from general noise: ultimately incorrectly 

identifying a region as the probable location of the prototype. To overcome this 

inconsistency, SSD calculations, for this research, are performed only with the gradient 

magnitude value. 

11.2.1. (b) Template Matching 

The choice of a prototypes’ attributes must be considered when deciding the 

comparison methods during the scan of the search area, as a poor attribute will affect 

tracking results. Template tracking models generally engage the RGB colour channels 

for attribute matching. Scanning the search area in the same manner as shown in Figure 

9-6, each pixel’s colour channel is subtracted from the corresponding pixel within the 

template image. Combining the resultant channel differences produce an error value. 

The smallest error summation value for each of the searched region of interests is 

assumed to be the match objects location. 

11.2.2 Segmentation Matching 

Image segmentation occurs through Computer Vision models such as clustering 

techniques or colour segmenting through histograms. These methods provide a 

conglomeration of foreground pixels, which are evaluated for their density. Hotspot 

generation, described in Section 9.2.2, Segmentation Methods, allows tracking 

processes to find the highest density of foreground pixels within the search area. This 

method reduces search times and also minimises false positive results. 

 

Figure 11-3. Boundary gradient vector calculations 
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11.2.3 Corner Point Matching 

Assuming the prototype used for object matching consists of good features to track 

[72], the spatial relationship between each of the corner points becomes a property of 

the prototype suitable for matching. Ascertaining the spatial relationships between the 

corner points produces the unique signature for the prototype. Robust object matching 

is invariant to object rotation, which can be achieved if each corner point is referenced, 

in polar form, from two other points. Regardless of the objects orientation, the 

relationships remain. This assumes there are a minimum of three corner points in the 

signature. 

Built-in robust detection can be achieved when each point maintains a list of the spatial 

relationships to every other point within the signature, or test object. Should a corner 

point not appear in a future frame, the remaining corner point relationships are still 

valid. As can be seen from the numerous corners detected in Figure 11-4, maintaining 

cross correlation between all points becomes burdensome. Corner points are referenced 

in relation to each other. To reduce the complexity required from each point referencing 

every other point, a Graham convex hull [227] process can be used to select a minimal 

data set of points. Each point need only record the relationship to the next point in the 

convex hull step, as shown in the right image of Figure 11-4. The Graham convex hull 

method simplifies corner point object detection, reducing the processing costs while 

producing fundamental attribute metrics. 

Each point associated with the Graham convex hull belongs to the image signature. 

Object matching needs only to compare the image signature points. Initial candidate 

validation begins with calculating the convex hull perimeter for the image, which is a 

factor of the corner points and the shape and size of the object. Candidates which fall 

  

Figure 11-4. SUSAN Corner Detector with Graham Convex Hull Perimeter 
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within the threshold are further validated by the difference in the key point distances. 

This removes candidates which have included corners generated from noise. 

11.3 Object Tracking 

Each object matching method, described in the preceding subsections, was initially 

used when developing implementations of the various Computer Vision image analysis 

models. Only one method was chosen and employed within the testing regimes of 

Section 11.8, Tracking Metrics, as each method produces varying degrees of successful 

tracking. Tracking trials were performed on existing RAL experiments from the 

University of Southern Queensland, and consist of a pendulum experiment, traffic 

management system, and the gear experiment. 

From the object matching capabilities comes the ability to track objects within a video 

stream. Object tracking validation and verification is performed against video streams 

of real remote experiments. Each video is an existing Remote Access Laboratory 

experiment. Validating each CV tracking model requires that no previous preparation 

has occurred in order to verify the inductive nature of the process and the effectiveness 

of the various models. User selection of an object is performed only once, and stored 

by the AR RAL Development Console, to ensure that all experiments act upon the same 

input data. The specific data point for CV segmentation methods of the gear experiment, 

is located at point X:158, Y:104, while the prototype region is located at X:151, Y:97 

as a rectangle of 15 x 15 pixels. 

The object to track is chosen by selecting the region encompassing the object, or 

through clicking on the object within the ARRAL Development Console. Figure 11-5 

show the orange selection box used to identify the OoI and the yellow search mask for 

 

Figure 11-5. Object selection for tracking tests 
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tracking processes. No other information is provided to the test system. The selection 

mask and prototype information are saved as part of the test session, allowing it to be 

reloaded for each CV object tracking model tested. 

Employing known video files for testing guarantees consistent inputs to the CV models. 

Validation of object tracking is measured from the number of frames within the video 

stream, which successfully identify and track the object through the video sequence. 

Ensuring that tracking is in fact locating the proper object, the tracking centre point is 

known prior to testing from the construction of the ground truth data set. Comparing 

the known location against the candidate location ensures that false positive tracking is 

recorded. 

While recovery from the loss of track is not directly related to this research, a method 

was engaged to provide a means to recover from a failure of the tracking system. This 

is an important factor to consider when assessing the overall effectiveness of the 

Computer Vision models, from feature point detection, through to the complete 

tracking system. Simply accounting for the capability of the model in regard to how 

well it performs under favourable conditions does not recognise its performance under 

adverse conditions. The ability of the model to reacquire the target object is critical to 

the suitability within an Augmented Reality system within a Remote Access Laboratory 

environment.  

The reacquisition of the target object is performed by expanding the search window. 

Once the system is aware that it has lost the track, the search window expands. For 

these tests, the size of the expansion is considered by the amount of predicted motion 

within the video scene. All models have an assumption that there is a small amount of 

inter-frame motion; when tracking is considered lost, the search window increases an 

additional 50%. It is considered that this is sufficient to reacquire the object. The object 

matching process is immediately recalled to attempt to continue tracking, instead of 

waiting for the next frame to arrive.  

11.4 External Tracking Systems 

Computer Vision systems rely on interpreting the environment from the 2D planar 

image data sets, yet Augmented Reality systems may also depend on external 

mechanisms to refine the tracking. Such external tracking systems still require CV 
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processes to link the visual cues to the AR sub-system. However, secondary data 

streams such as GPS data, magnetic trackers, RFID tags or digital compasses can supply 

additional data to the AR sub-systems so as to reduce the CV computational load. 

Secondary data streams provide a significant level of detail regarding an objects spatial 

attributes within the world coordinate system. Instead of attempting to determine the 

3D spatial information from only the 2D planar digital data set, secondary data readily 

provides the additional information of the environment, and notifies the AR sub-

systems of the attributes. The primary requirement of the CV system is simplified, and 

becomes responsible to link the secondary data set to the features within the image 

stream. For AR within a RAL framework, sensor data will undoubtedly be available 

from the experimental rigs for the CV/AR sub-systems to utilise. 

11.5 Vision Tracking Systems 

Decisions when building effective Computer Vision tracking systems, depend on the 

key requirements discussed in Section 11.1, Key Requirements of this chapter, but also 

whether the CV systems are inductive or deductive in nature when constructing 

knowledge regarding the video scene. Each type of system is described further below. 

As most vision systems function within a consistent environment, such as security, 

logistics or maintenance, a priori knowledge will benefit object detection and tracking 

models. Learning systems depend on training data to improve both the detection rates 

and computational load, and these deductive models look to a small set of objects that 

are of interest. Functioning inductively is the minority of object detection and tracking 

systems, as they are by far harder to achieve/implement. Both systems are listed in this 

section, but inductive (a posteriori) models are the goal of this works, so deductive 

(endogenous) models will be considered only as for completeness. 

11.5.1 Deductive Tracking Systems 

Training Computer Vision object detection and tracking systems relies on 

understanding the gamut of objects expected within the video scene. Deductive based 

CV models exist in many forms. Neural networks in the form of Convolutional Neural 

Networks (CNN) [229] function by adjusting the neural weights through training on 

predefined images. Recognition rates are very high after sufficient learning, and are 

capable of recognising entire scenes as well as objects. Training a tracking system with 

fiducial markers teaches the systems about the environment so that the markers may be 
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removed during full operations [6]. Statistical models such as Gaussian based systems 

require offline segmentation or feature point identification for supervised learning 

[259]. These systems may dynamically update the statistical model during online 

operations, which can improve tracking over varying environmental conditions. Recent 

research with Histograms of Orientated Gradients (HOG) [260, 261] has supplied novel 

methods for tracking in which both speed and accuracy have been extolled. Learning 

features for early detection and tracking are central to HOG models but it still struggles 

within complex imagery. 

11.5.2 Inductive Tracking Systems 

The focus of this research remains with object tracking without using fiducial markers 

or any other form of a priori knowledge. As such, tracking methods, which are capable 

of inductive processing, are the centre of attention. Included in inductive vision tracking 

systems, are models which allow the user to select the OoI: for example, selecting a 

bounding box around an object, or clicking within an objects boundary. The systems 

nevertheless operate with no other prior knowledge.  

Inductive tracking systems derive knowledge from the current frame data, available 

through methods such as BLOB extraction, or feature point detection. Statistical filters 

such as the Kalman Filter [245] border on falling into the deductive category as it is a 

predictive system based on previous data, however it is a simple time series analysis 

tool and has been allowed within inductive processes. Deductive tracking systems 

perform computationally intensive processes during the training sessions which allow 

operational computation costs to be reduced. Inductive tracking systems must perform 

all processing in real-time, and may suffer from frame-loss, jitter or lag due to 

computational loads. To improve performance, many methods discussed rely on the 

assumption of small object motion between frames, so that tracking processes have a 

reduced computational footprint. With small inter-frame motion, searching the entire 

image becomes unnecessary and the search window for matching the OoI between 

frames is greatly reduced. 

Greater detail for inductive tracking systems are explained below in Section 11.6, 

Markerless Object Tracking. 



 

196 

11.6 Markerless Object Tracking Models 

This section details the many inductive Computer Vision object tracking models which 

do not require artificial reference points (such as fiducial markers). Each model is 

described in detail, providing the structure and function of the model. 

Object tracking does not require object recognition to function. That is to say, that 

object tracking does not require the knowledge that it is tracking, or of what is tracked. 

For example, tracking an apple only requires that the attributes of the tracked object are 

matched from frame-to-frame. As discussed in Section 9.2, Attribute Value Assessment, 

a set of attributes that are obtained from the preceding frame, are rediscovered in the 

current frame, allowing for the attributes (hence the object) to be tracked.  Tracking 

systems match attributes, but do not recognise the object as anything other than the 

matched set of attributes.  

Tracking can be broken down to two types for AR within the RAL Environment:  

• Tracking the current location and/or where the camera is within the environment 

(such as with a mobile robotic system), 

• Tracking objects of interest within the video scene from static camera positions. 

Both types of tracking categories require complex CV processes to extract meaningful 

information from the digital two-dimensional planar data sets. 

11.6.1 Binocular/Stereo Vision 

Imitation of mammalian vision, with stereoscopic vision, provides a method to build an 

understanding of the three-dimensional environment. Important depth perceptive can 

be achieved through dual cameras, stereo vision systems [262] or motion. Depth 

perception becomes an important feature for some AR systems which require the user 

to interact with the three-dimensional environment, such as AR assisted surgery [117]. 

This work has assumed that the majority of RAL configurations consist of static camera 

configurations, and that AR operates in this environment to present feedback to the user 

as they view the 2-D planar scene. This research does not address binocular/stereo 

vision systems, as the AR configurations are not in place to measure experimental 

outcomes and results, but to overlay visual cues of the measurement mechanism values 

and parameters. 
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11.6.2 Structure from Motion 

Mobile robotic systems attempt to map their current environment as they move about 

as a means to discover their current location, and the location of objects within the 

environment. Understanding how and where a Mobile AR (or CV) system is located 

within the video scene is critical for further analysis of the scene and the objects within 

that scene. For many decades, magnetic trackers provided coarse information to aid 

visual alignment of the virtual feedback [196]. However, magnetic trackers are 

susceptible to interference from power lines and metal objects, and do not have the fine 

resolution necessary for many applications. To reduce the reliance on external hardware 

for data sets such as GPS signals, Computer Vision and Augmented Reality have 

created a three-dimensional understanding of the environment through Structure from 

Motion (SfM) [263]. 

Structure from Motion simulates stereoscopic vision. As long as the motion vectors are 

known, the camera movement provides multiple reference locations for the same 

objects within the scene, building up a three-dimensional representation of the 

environment. Key feature points must be well distributed within the environment to 

enhance the 3D model accuracy [263]. As mentioned above, for accurate tracking a 

SfM system requires knowledge of the camera’s current location. Without the ability to 

know the current location and pose, either through key reference points or other a priori 

knowledge, the results can be confusing [264]. Unfortunately, SfM requires 

considerable accuracy in the current camera pose before reliable construction of the 

three-dimensional environment is possible. Without a priori knowledge, detection of 

robust natural feature points becomes critical. Automatically determining the camera 

position is the topic of a SLAM [265] model, discussed further in this section.  

11.6.3 Frame Subtraction 

One of the simplest forms for object tracking involves frame subtraction: isolating 

changes that occur within the video scene since the previous frame. Frame subtraction 

is considered a background subtraction method (discussed in Section 9.1.2, Background 

Subtraction) and filters spatially identical pixels with the same RGB colour value, 

leaving only the differences.  

Three main problems exist for frame subtractions systems: 
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1. Colour noise: Pixel colour values can vary widely (even in static regions), as 

shown in Figure 8-2, as a result of ambient lighting changes, camera noise, and 

compression errors. Colour noise may indicate false positive changes between 

frames that can produce unwanted artefacts. Gaussian filtering of the frames 

prior to frame subtraction can alleviate this problem, and is discussed further in 

Section 9.1.2, Background Subtraction. Applying a threshold to the pixel 

differences can also improve the outcome, as the colour difference must achieve 

the threshold before it is considered a valid signal. Frame subtraction is very 

susceptible to all forms of noise. 

2. Small inter-frame motion: Every frame arrives approximately 16.6-40mS 

apart (depending on the video system) which is not a lot of time for complex 

CV processes to detect and track the motion of an object. Many feature points 

may only move one, two or three pixels between each frame. The value of a 

single pixel within a digital image is unlikely to represent a single attribute of 

an object within the scene, so an OoI will consist of a group of pixels. 

Problematically, small inter-frame motion may also appear to be colour noise, 

which filtering may render irrelevant. Figure 11-6 shows the motion that has 

occurred between the frames 1116 and 1117 of the gear experiment. The images 

have been extracted from the frames at location (152, 97) for a 16x16-pixel 

rectangle. The motion is barely visible and involves a slight rotation and 

translation to the right. Frame subtraction software will usually squelch this 

slight signal as noise. Accurate tracking, however, will require the detection of 

these small inter-frame movements. Improvements may be found by including 

additional frames in the assessment, or considering every second/third/etc 

frame, or comparing the current frame to a reference frame. 

3. Loss of Track: Frame subtraction output relies on the calculated differences 

between video frames. When no differences exist, usually as a result of a static 

scene (no motion), the frame subtraction system produces a null output. 

Visually, the output is blank, representing homogenous frames. Without 

 

Figure 11-6. Small inter-frame motion (frames 1116 and 1117) 
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compensating for the lack of data, CV or AR systems may lose track of the 

object of interest. The grounds for the loss of track of the OoI must be 

considered. The OoI may be occluded, left the scene, or is stationary. These 

conditions are relatively easy to consider, and should be compensated by the 

tracking mechanisms. 

Frame subtraction is trivial, and is suitable for basic tracking requirements. 

11.6.4 Clustering 

Knowledge Discovery from Databases (KDD) [130] provides the framework for 

clustering techniques. Grouping homogenous data from a larger heterogeneous data set 

is an effective method of segmenting images, as detailed in Chapter 10.2.1, 

Segmentation - Clustering. Objects or portions of an object are classified as belonging 

to a cluster and should appear within each frame. Matching the clusters between each 

frame is relatively simple in a non-cluttered scene, or when considering the complexity 

of the environment. Selecting the red gear on the RAL gear experiment, produces an 

obvious solid point of reference, as shown in Figure 11-7, to locate and track. Complex 

objects such as the pendulum in the RAL pendulum experiment, is problematic and 

difficult to resolve with standard clustering techniques. Figure 11-8 demonstrates the 

various clusters identified when the pendulum is selected as the key data group to 

classify. The OoI is not even highlighted among the clusters currently identified by the 

clustering algorithm. This occurs because of the reflective nature of the pendulum, 

which constantly varies in appearance as it moves (or the background changes). 

Three common clustering techniques were reviewed for this works, to determine their 

clustering effectiveness for object tracking. While there are numerous clustering 

 

Figure 11-7. DBSCAN Segmentation of red gear 
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models, three common methods are used in CV applications: DBSCAN, k-means and 

Fuzzy C-Means. These clustering models have been utilised in image segmentation 

processes for some time, and are suitable for object detection and tracking. However, 

the highly iterative nature of cluster construction is time consuming (see Section 10.2.1, 

Segmentation - Clustering) and combined with the a prior requirements of the ‘means’ 

clustering models, then the k-means and Fuzzy C-Means models are precluded from 

these trials. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups 

spatially dense groups of pixels which have similar attributes. The density of candidate 

pixels is the key factor for DBSCAN, and focuses on pixel accessibility (density-

reachable) to other pixels within the cluster. Two parameters are necessary for 

DBSCAN to tune to the data;  (epsilon) to define the radius of the scan, and minPts to 

define the minimum number of pixels required within the radius before the pixel under 

consideration is deemed a core point. 

Clusters are built from any point and expand until the minPts can no longer be achieved. 

Figure 11-9 simplifies the process and demonstrates how outliers are classified as noise 

within the DBSCAN model. Outliers from colour noise and other forms of spurious 

data are ignored within the model [266]. A certain level of iterative access to pixel 

values occurs as each pixel is verified if it has been tested, and will be verified again in 

other cluster searches. The time complexity is stated as 𝑂(𝑛 log 𝑛) which for a video 

stream of frame sizes approximately 320x240 pixels, just allows enough real-time 

processing, with little time remaining for secondary processes. 

 

 

Figure 11-8. DBSCAN cluttered segmentation 
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11.6.5 SLAM 

Simultaneous Localisation And Mapping (SLAM) [265] was initially utilised for 

robotic navigation, solving positioning issues through the identification of key 

reference points and the associated spatial links. Feature point or landmark detection is 

mostly used to build SLAM maps [254] with some SLAM systems also taking 

advantage of edge detection to improve outcomes [267].  

SLAM for AR systems have been applied when there has been a need to track the AR 

camera’s location and provide augmented feedback [252]. These systems work well in 

clearly defined environments such as museums [268] where there are clean edges for 

edge detection systems, possible markers such as RFID tags, and a library of images 

for the systems to compare with. Training a SLAM system with walk-throughs of a 

museum allows the AR system to determine its location within the space, and the items 

of interest throughout the building. Instead of robotic or mobile AR systems, SLAM 

DBSCAN (data, eps, minPts) 

{ 

 cluster = 0 

 for each point p in data 

 { 

  If p is not visited 

  { 

   p = visited 

   regionPts = regionQuery(p, eps) 

   if Count(regionPts) < minPts 

    p = noise 

   else 

   { 

    cluster++ 

    expandCluster(p, regionPts, cluster, eps, minPts) 

   } 

  } 

 } 

} 

regionQuery(p, eps) 

{ 

 region = all points within eps radius of p 

 return region 

} 

expandCluster(p, regionPts, cluster, eps, minPts) 

{ 

 cluster.add p 

 for each q in regionPts 

 { 

  If q is not visited 

  { 

   q = visited 

   newPts = regionQuery(q, eps) 

   if Count(newPts) >= minPts 

    regionPts += newPts 

  } 

 } 

} 

Figure 11-9. DBSCAN pseudo code 
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techniques are well suited to smaller environments such as RAL, with a smaller 

footprint to train, and an easily defined environment. SLAM for a RAL configuration 

maps key feature points of a small area, updating the location of the features at each 

stage. Moving objects within the scene, are observed, and its position also updated. The 

size of the area, uniqueness of the location, and the availability of object data increases 

the ease with which a SLAM system can be trained. 

Implementations of SLAM for robotic systems achieve three-dimensional mapping 

through the inclusion of spatial data as the robot moves. For relatively static 

environments such as a RAL configuration, SLAM still needs some training [269]. 

Providing the spatial relationship between the key feature points sufficiently defines the 

data for a SLAM implementation; otherwise training will involve moving the camera 

around the environment to allow the SLAM processes to map the environment [269]. 

While the training process is not onerous, training a CV model for AR RAL system 

goes against the goals of this research, which is no prior knowledge of the environment. 

11.6.6 SURF 

Speeded Up Robust Functions (SURF) [270] attempts to provide CV tracking by 

simplifying SIFT features. SURF implements a fast-Hessian detector [271] for feature 

point creation, which improves the computational cost and speed of feature vector 

creation and matching.  Essentially, SURF could have utilised any of the CV image 

processing models, such as LoG or Harris edge detectors. As long as feature points are 

distinctive, robust to scale or transformation, and distributed sufficiently to allow 

reliable follow-up detection in continuous frames, then it eventually comes down to the 

method of measuring the match between feature vectors. 

A simple SURF style implementation has been included in this research. Additionally, 

a new tracking method implementing ideas from SIFT and SURF concepts has been 

created. This new method employs multiple modes for measuring the match between 

features. The methods for measuring the match between feature vectors are detailed in 

Chapter 9, Image Object Detection Output Attributes for Signature Matching.  

11.6.7 Template Tracking 

One of the objectives of this research is to perform object detection and tracking without 

involving previous training. Initially, template matching systems required a library of 
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objects with which to compare and match [272]. Recently, template matching models 

have successfully matched and tracked objects selected by the user in-situ [273]. As 

stated earlier, user selection of a point or region of the current scene does not violate 

the goals of this research. User selected points or regions are identified as prototypes 

for the purpose of this research. 

Template matching and tracking is performed when some level of 

comparison/correlation is made between the template/prototype image and the current 

mask within the frame. Simple matching performs a type of linear spatial filtering 

which scans the current image one pixel at a time, and assesses the similarities between 

the region and the prototype image. If the differences/similarities obtain a minimum 

threshold level, a match is considered. Non-Maximum Suppression is then applied to 

locate the local maximums such that the candidate with the highest similarity score 

becomes the chosen matched feature. Multifaceted template matching schemes may 

include deformable templates [274], probabilistic selection of candidates [275], and 

learning models to improve detection and tracking. These complex CV systems exhaust 

computational reserves, and may only provide improvements in specific scenarios [142, 

273, 276].  

To compensate for image artefacts, filters such as a Gaussian blur are appropriate (see 

Section 4.4, Filter Techniques - Statistical Filtering) to minimise image noise. Other 

factors to include when considering a template match are the affine transformations or 

distortions. Affine distortions have been reduced through the application of geometric 

blur[277] while affine transformations are best resolved through the use of three-

dimensional models, which are beyond the guidelines of this research. The model 

chosen for this research is simplistic to allow the addition of pre or post processing 

operations while remaining a real-time system. 

Generally, a template matching algorithm is considered slow [278]. However, many 

methods exist to improve the computational costs such as: only searching a mask, as 

discussed above, scanning a portion of the current frame surrounding the previous 

location or including predictive filters such as the Kalman Filter. Instead of matching 

pixel-for-pixel between the prototype and the current frame, matching key feature 

points found in the prototype to similar feature points provides considerable relief in 
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computational costs. Feature points become robust to affine transformations and scaling 

as the spatial relationship between points remains consistent [274]. 

11.7 Markerless Tracking 

The previous systems described in this chapter are effective concepts for locating and 

tracking objects within a video stream without the use of artificial markers. While the 

Computer Vision field has promoted many a priori and a posteriori tracking system, 

Augmented Reality research has mostly focussed on employing marker-based tracking. 

These systems are cheap and simple to implement, and provide fast and reliable object 

tracking. Markerless systems are very few and usually rely on other sensory data to aid 

in tracking [171] such as inertial sensors in mobile phones or GPS signals. The 

problems in relation to attempting to implement markerless tracking belong to the 

training requirements of the necessary models/templates. Of the current markerless AR 

tracking systems, training or templates are necessary for all of them [6, 125, 279]. The 

high level of reliability and confidence achieved by these systems, is apparent through 

the use of markerless AR systems in the rigorous aeronautical industry [44]. 

Truly markerless object tracking, without training, prior constructed models, or 

templates, have been attempted within this works as a matter of following the natural 

progression of the research. Two effective endogenous models were developed and are 

detailed in Chapter 7, Image Object Gradient Signature and Chapter 8, Two-

Dimensional Colour Histogram Object Signatures. A summary of the contributions, 

which require the user to select the object of interest, either by clicking within the object 

somewhere, or by selecting a bounding rectangle around the object, are described 

below.  

11.7.1. (a) Histogram Segmentation 

Image colour histograms for segmentation or for the identification of a digital image, 

discards spatial information during the construction of the colour signature of the 

object. From existing research on colour histogram tracking [148, 226, 280], many 

issues are apparent such as:  

• reliable object identification requiring a priori knowledge regarding the OoI,  

• colour noise, and  

• illumination variations.  
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Additionally, standard RGB colour space channels are non-intuitive when 

understanding the relationship between colours. The RGB colour space does not reflect 

the natural relationship or associations between colour hues, gamut’s, etc; which is 

shown in the colour chromaticity of Figure 9-4. Overcoming colour and illumination 

disparities has invoked complex correlation calculations and alternative colour spaces 

[182]. Developing a method to improve the association between pixel colours involves 

consideration of the intuitive physical colour relationships, alternative colour spaces 

and colour families. 

The contributed colour histogram model reduces the three-dimensional rectangular 

coordinate RGB colour space to a two-dimensional polar coordinate RGB colour space. 

The full description of this contribution is detailed in Chapter 8, Two-Dimensional 

Colour Histogram Object Signatures. The colour histogram signature for an object is 

considered reliably unique [210] considering there has been the loss of spatial 

information. Figure 11-10 displays the two-dimensional colour histogram using the 

square pyramid accumulation bins with a square base size of 26 for the red and black 

beetle shown beside. 

Comparing object histograms is much faster when utilising the square pyramid colour 

histogram method, and correctly matching objects regardless of their scale or 

orientation is possible because the histograms do not convey spatial information. 

Tracking objects within a video stream, using the square pyramid colour histogram, 

may be performed with the application of segmentation of the individual frames. From 

the dominate histogram accumulation bins, such as those evident in Figure 11-10, the 

scene can be segmented to remove all features excepting the portions that consist of 

similar colours. Figure 9-8 shows the results of segmenting the gear experiment based 

   

(a)                                                                         (b) 

Figure 11-10. Beetle object (a) with Fast Colour Histogram (b) using Square Pyramid bins 
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on the histogram of the red gear. Several methods are available when using this 

segmentation, to isolate the desired object. This method is further explained in Chapter 

8, Two-Dimensional Colour Histogram Object Signatures, Section 9.2.3, Parametric 

Methods and Chapter 10, Computer Vision Object Detection. 

11.7.1. (b) Object Features 

As an alternative to colour histograms, object boundary tracking methods, developed 

in the course of this research (see Chapter 7), is capable of maintaining spatial 

relationships. Computer Vision models such as SIFT or SLAM, utilise multiple object 

features, but rely on prior knowledge. The boundary attributes, within an image, supply 

a large collection of features to employ in the detection of a specific attribute set. The 

boundary gradient strength and orientation is a key factor, and suitable as a unique 

object signature. 

Selecting an object within the video scene collects background data surrounding the 

object as well as the OoI. The background data partially aides in collecting attributes 

such as the boundary features of the user selected prototype (selected object). The red 

gear object shown in Figure 9-8 produces an overly complex gradient map shown in 

the left image of Figure 11-11. This gradient map shows the gradient orientation and 

magnitude, and is colour coded based on each pixel’s orientation angle solely as a 

means to visually assess the model. Applying a filter to remove the weak gradient points 

of the left-hand images produces the right-hand image. The right-hand image is now a 

unique signature, more suitable for tracking. This method is expanded upon within 

Chapter 7, Image Object Gradient Signature. 

Rather than collect discrete colour values for pixels associated with the OoI, the two-

dimensional colour histogram model, described earlier in this section, provides an 

  

Figure 11-11. Prototype gradient map. Left - complete map. Right - filtered map 



 

207 

improved solution. From Figure 11-12, the signature of the user selected prototype (red 

gear of Figure 9-8) is clearly visible. The values within each cell of the prototype are 

the two-dimensional colour histogram phi ( ) and theta ( ) angles used for delivery to 

the accumulation bins. 

Selecting the histogram values associated with a threshold gradient orientation (Figure 

11-12 - Right image) and magnitude filtered map (Figure 11-11 - Right image) supplies 

three unique feature attributes. In conjunction or separately, each object feature method 

provides a means to uniquely identify an object within the video stream.  

11.8 Tracking Metrics 

Each Computer Vision image analysis and object detection model must provide output 

data sets which are suitable for further processing for object tracking purposes. Chapter 

9, Image Object Detection Output Attributes for Signature Matching, defines the data 

required for object tracking processes. The selected object detection models and their 

effectiveness are measured and recorded in the following sections. 

11.8.1 Tracking Failures 

The loss of track or the failure to properly track an object throughout the video stream 

is problematic for computer vision systems. Tracking may fail for a number of reasons, 

and must be countered with robust recovery processes. While tracking an object, partial 

or full occlusion may occur, confusing tracking systems. The reaction of tracking 

systems to this problem must be predictable or else potentially fatal application errors 

may impact the results. For augmented reality environments, the errors will destroy any 

sense of immersion the user is currently experiencing. Failure of the tracking system to 

recognise the tracked object periodically should not be a critical point of failure. Most 

  

Figure 11-12. Prototype 2-D histogram pixel map. Left - complete map. Right - filtered map 
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tracking systems assume small object motion between frames. The loss of a track over 

a single frame should pose no inconvenience to the tracking model, with tracking 

restored on the subsequent frame. Motion prediction filters improve the transition 

between the frame of untracked objects and reacquisition of the object. 

The primary method employed for this works when tracking is lost, is to expand the 

search area window. Continuing to assume only small inter-frame motion, the expanded 

search area shown in Figure 11-13 allows tracking and matching models to locate the 

prototype attributes. 

11.9 Results 

On the surface, validation and verification of CV object tracking models simply 

requires an accountability of each model to locate and track the object of interest 

through a sequence of video frames. In reality, object tracking for AR systems requires 

sensitivity to the variable nature of noisy colour images and a method to locate the 

desired object within the new video frame. Neither of these requirements is trivial. This 

section summarises the results of the various tracking models listed in Table G-2 of 

Schedule of Tests. The tracking trials measure the effectiveness of each tracking model 

to maintain a lock on the target pixel or region throughout the entire video sequence. 

Each trial, for a particular tracking model, varies the image filters applied to the frame, 

as detailed in Table G-2 of Schedule of Tests, to discover potential hybrid tracking 

models. 

The nature of trial requires that the video stream run from end-to-end. For twenty-one 

image filters plus a trial with no filter, and twelve tracking models, trial sequences 

require well over five hours of run time. It was decided to extract each frame of the 

 

Figure 11-13. Tracking process. Expanded search area 
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video sequence, and test the 2328 individual bitmaps representing each video frame. 

Faster processing results could be achieved from preloading each frames bitmap. Each 

trial recorded the processing times, so it is straightforward to determine real-time 

capable models. As each CV model was well known through the development cycle, 

this trial method was used purely as a convenience for the multiple executions of tests. 

All models have also been validated at normal real-time speeds using the video stream. 

11.9.1 Statistical Analysis 

Evaluation of the effectiveness of the object tracking trails is achieved through the 

examination of the tracking history of the CV and hybrid CV models under test. Unlike 

edge detection classifiers, the effectiveness of a tracking model is directly measured 

through its success in maintaining the OoI (whether a pixel, colour point, feature point 

or region) within the tracking window. An actual Remote Access Laboratory video 

sequence, called The Gear Experiment was used as the test bed. 

Ground truth testing requires detailed information regarding the path of the objects to 

track. The Gear Experiment, shown in Figure 11-14, displays the ground truth path (in 

green) for the red gear assembly. Tracking occurs based on a user selection point or a 

user selected mask, surrounding the object of interest. Spatial knowledge of the 

reference point(s) of the red gear assembly (coordinates 158, 104) is utilised to validate 

tracking model effectiveness. Tracking masks are employed for each trial. For 

segmentation models, the tracking mask encompasses the central mass of foreground 

pixels. When testing corner or feature point models, a standard 15 x 15 tracking mask 

is used to contain the points. 

 

Figure 11-14. Ground Truth tracking path 
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True positive (TP) results occur when the tracking model is capable of placing the 

tracking mask over the ground truth reference point of the OoI. False positive (FP) 

results occur when tracking is unable to place the tracking mask over the ground truth 

point for the specified frame. Increasing the sensitivity of the tracking results is possible 

through the comparison of the detected Centre of Mass (CoM) for the current frame, 

with respect to the ground truth point. Averaging all points produced from the CV 

object detection process produces the CoM. Validating at this sensitivity level for the 

quality of video is very challenging. For each trial, the TP and FP values are recorded 

as well as hit counts for when the centre of mass for each ROI matches the reference 

ground truth point to within a single pixel-distance around the specific point. 

11.9.2 Performance Classifiers 

Binary classifiers, defined in Section 6.5.2, Performance Classifiers,  to assess edge 

detection models, are unsuitable for classification of object tracking models. Only TP 

and FP values are available from tracking trials, with TN and FN values unavailable. 

As such, the selection of standard binary classifiers is limited, so only a simplified 

binary classifier is possible.  

Scoring for a single frame is a binary outcome; is it either a hit or a miss of the target 

object. For each frame, the accumulated outcomes build meaningful information from 

a sequential video data stream, which allows tracking model trends to emerge. Of the 

performance measures available from the confusion matrix (see Table 6-1), most 

measures rely on a combination of values which are not collected from the available 

tracking model results. Two key classifier measures: recall and specificity, incorporate 

TN and FN values respectively. If we assume TN and FN are zero (not collected), then 

for the purposes of performance analysis, an unrealistic bias of the performance scores 

will occur. For example, assuming FN is zero ensures that the recall score is 100%. 

This is meaningless in determining the effectiveness of a particular tracking model trial.  

11.9.2. (a) Precision 

From the confusion matrix of Table 6-1, precision is the only directly accessible ratio 

for performance analysis. As shown in Equation 11-5, only TP and FP are necessary to 

calculate a precision score.  
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Complete tracking records for each trial provides TP and FP results, which may provide 

some measure of a satisfaction rating for the model under test. The precision score is 

the ratio of successful tracking (TP) over the entire video sequence (TP + FP).  Higher 

scores indicate improved tracking, maintaining the object of interest within the tracking 

mask. A total of 66 CV hybrid tracking models scored a perfect 100%, indicating an 

ability to maintain the point/feature point/region within the tracking window.  

While high precision scores should indicate a level of reliability in maintaining a track 

of the OoI, the differences between the tracking results shown in Figure 11-15 

demonstrate the need for additional sensitivity for such results. Within Figure 11-15, 

the image on the left is the highest-ranking result (100%) while the right image is a very 

high scoring result (98.58%). Subjectively, the right image should not be considered a 

successful result due to the large distortions shown by the track. The precision score, 

in isolation, is insufficient to completely evaluate the performance of tracking models. 

11.9.2. (b) Accuracy 

Additional information for each trial is necessary to extract vital evaluation and 

performance measures. Recorded as part of the tracking process are the occurrences 

when the ground truth reference point closely aligns with the CoM of the tracking 

window or the detected interest point. The comparison is considered a hit if the pixels 

are within a pixel of each other. Accuracy in this context, is unrelated to accuracy 

derived from the confusion matrix of Table 6-1.  

precision =
TP

TP + FP
 

Equation 11-5. Positive predictive value calculations (precision) 

  
             T-09-00         T-08-00 

Figure 11-15. Sample tracking results 
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Accuracy, for tracking models, is determined by the ratio of hits over the total number 

of frames, as shown in Equation 11-6.  

Including accuracy scores in combination with precision scores separates seemingly 

satisfactory scores from highly effective scores. The right image within Figure 11-15, 

only scores an accuracy of 52.84%, indicating an average ability to track specific 

interest points. While the image on the left of Figure 11-15 records the highest ranking, 

precision score of 100%, it also scores a very high accuracy of 98.58%. 

11.9.3 Observations 

The current measures available for performance analysis of object tracking models are 

limited. Employing precision and accuracy scores, in combination, presents a 

simplified method to validate each model. Performance analysis of object tracking 

model trials highlight several hybrid CV models with excellent outcomes to locate and 

track user select objects throughout the video sequence. Importantly, the models 

initially appear to exhibit characteristics suitable for use with AR within the RAL 

environment. 

Some tracking models displayed tracking paths which do not seem to follow a logical 

path. Shown in Figure 11-16 are examples of tracking failure models (T-06-00 and T-

05-17). While trial T-06-00 initially appears to follow the OoI, but on closer inspection 

and with the comparison against the ground truth image in Figure 11-14, the tracking 

accuracy =
hits

hits + misses
 

Equation 11-6. Tracking accuracy calculations 

  
             T-06-00         T-05-17 

Figure 11-16. Non-typical tracking results 
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model has followed some alternative path. Visually, this is immediately obvious in the 

trial of T-05-17. To understand the underlying causes of these results, the type of 

tracking model must be reviewed. 

11.9.3. (a) Frame Subtraction Tracking Errors 

Frame Subtraction trial, T-06-00, shown in Figure 11-16, incorporates frame 

subtraction segmentation. Any pixel colour differences between frames are present 

within the resultant segmentation image. Threshold values applied to frame subtraction 

models attempt to minimise the level of gain for the difference engine. However, a 

balance must be reached to minimise consequential artefacts while still maintaining the 

presence of the tracked object. Figure 11-17 shows the consequential artefacts 

remaining from the subtraction of sequential frames (1118 and 1119) where the motion 

of the meshed gears produces a higher change difference than the tracked object. The 

frame subtraction model erroneously tracks the artefacts, resulting in the path shown in 

the left image of Figure 11-16. 

11.9.3. (b) SUSAN/Moravec Tracking Errors 

Trial T-05-17 utilises SUSAN corner detection. Applying SUSAN or Moravec corner 

detection to the red gear assembly for tracking is not an effective combination. The red 

gear assembly does not provide clean and clear corner samples. Specifically, only two 

corner points, related to the red gear assembly, are reliably discovered across multiple 

frames, which is insufficient for stable tracking. As feature point reliability is a key 

requirement of object tracking, this is a significant problem. Reviewing the SUSAN 

corner detection of the RAL experiment, in Figure 11-18, shows that significant corner 

points appearing along the horizontal and curved edges of the support assembly, are the 

 

Figure 11-17. Frame Subtraction artefacts 
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tracked points in Figure 11-16. Attempting to control corner points associated with the 

OoI becomes non-trivial, and is an important capability for the tracking models required 

by this research. Methods to minimise unreliable corner detection, as discussed in 

Section 6.6, Results - Corner Detectors, are difficult to measure objectively. While 

eight (8) corner points are directly associated and visible within the first frame of the 

red gear assembly in Figure 11-18, during subsequent frames, this number (with the 

best performing tracking model) reduces to only two stable points. Reliable tracking is 

not possible with such a small number of corner points. However, as a method of 

identifying key reference points, it remains inadequate. 

11.9.3. (c) Feature Point Tracking Errors 

Selection of a point representative of the object to track is of key importance. While 

feature points are generally robust, when used for tracking, they also need to be 

sufficiently unique within the local environment. Tracking errors abound for the current 

feature point tracker for two reasons: 

• Too many pixels exhibit similar attribute traits, making it hard to find the 

specific feature point instead of the first matching feature point within the search 

area. Selecting a pixel in the central area of the red gear, shown in Figure 11-19, 

selects a weak feature point or points which fail to obtain the necessary 

classification of good features to track. 

• Failure of tracking software. Slight variation in feature points traits, ascribed to 

various noises and environmental changes as the object moves, means the 

defined signature eventually has little in common with the initial parameters of 

the tracked object. 

 

Figure 11-18. SUSAN Tracking - Corner Points 
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The results show that when choosing feature points that exhibit strong attributes, 

improved tracking occurs. This is also demonstrated from the results when the colour 

constancy image filter is applied. Colour constancy produces an environment that is 

significantly different to standard tracking signatures, making it easier to locate the 

tracked objects’ signature. Figure 11-20 shows the red gear assembly gradient signature 

after colour constancy filtering. While the overall gradient map differs from Figure 

11-19, the biggest improvement for tracking is that the signature is only unique within 

the object to track region. 

11.9.3. (d) Territory Feature Point Signature Tracking Errors  

Feature points perform a key function in territory signatures. As such, homogenous 

pixels may produce territory signatures too similar to the surrounding environment. 

Shown in Figure 11-21, trail T-08-15 achieves high levels of tracking success, but it is 

 

Figure 11-19. Red gear mechanism gradient map 

 

Figure 11-20. Red gear mechanism gradient map after colour constancy filter 
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only possible because of the highly unique gradient attributes. Territory signatures 

improve on feature point tracking because of the relationship between feature points 

and neighbouring attributes. As with feature point tracking, selecting good features to 

track is critical for successful tracking. 

11.10 Summary 

All object tracking models trialled within this research, required no prior knowledge of 

the video scene other than the user selection of the point or object of interest to track. 

The results of the trials within this chapter are significant in their final conclusions, in 

the context of the research question, identifying methods suitable to track objects 

without the need for fiducial markers within the AR RAL environment. 

For this research, inductive Computer Vision object tracking systems provide the 

necessary capabilities for AR RAL environments. A number of existing CV models are 

proficient in supporting markerless tracking, however require some level of a priori 

knowledge. Expanding the capabilities of existing models, and developing new 

contributions support the requirements of this research for AR RAL object tracking 

solutions. Successful object tracking demands methods to match/locate objects from 

one frame to the next, and several models have been defined which deliver the tracking 

obligations. 

Corner, Feature or Interest Point tracking models suffer from selectivity errors. The 

inability to isolate unique points associated with the OoI from similar points discovered 

throughout the image is the primary factor for the failures exhibited from the tracking 

trials. A segmentation model, with hotspot (CoM) tracking methods, employed using 

interest points (corner or feature), consistently fail due to the ‘lack of mass’. The lack 

 
T-08-15 

Figure 11-21. Territory feature point signature tracking with colour constancy filter 
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of feature points to achieve a reliable concentration for the selected object, is the 

primary cause of failure. The point comparison method, sum of squares difference 

(SSD), suffers from two major tracking issues. Firstly, the signature of the OoI varies 

significantly throughout the video sequence due to changes in aspect, shape, and colour 

noise. Secondly, SSD scanning fails to account for similar scores. While it should be 

considered that the lowest scan score is the target object, when similarly low scoring 

results occur, the method fails to determine the most likely choice, which quickly causes 

a loss of track. 

Current research on new corner point detection (dominant points ) models consider 

strenuous attributes for each point [281, 282]. While the research was conducted on 

binary images, it still exhibited localisation errors which would continue to cause 

tracking failures in the current environment. Segmentation tracking models consistently 

achieved large scores in all tracking trials. This can be mostly ascribed to the underlying 

software method employed to track the foreground pixels. Three of the four primary 

segmentation tracking models (Histogram, HSI Histogram, and DBSCAN) generate 

hotspot masses of pixels, which carry a collective weight indicative of the object’s 

presence within the image. Segmented masses such as shown in Figure 11-22 (Frame 

1 of the red gear train experiment) may change shape or vary in the number of pixels 

within the mass, but overall the centre of mass (CoM) (indicated blue in Figure 11-22) 

remains relatively stable. 

Template tracking achieves significant results, outperforming all other tracking models. 

The standard template tracker achieved an impressive 100% precision as well as 

98.58% accuracy. Even hybrid template tracking models produced high scores. The top 
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Figure 11-22. Histogram segmentation pattern for Red Gear assembly 
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15 scores were all achieved by template tracking models. Unlike the segmentation 

models described above, success is attributed to the large spatially distinct colour 

signature of the prototype. The prototype (red gear assembly) is clearly unique within 

the local environment as the only red object, and simple to locate within the search 

window. 

Shown in Table 11-1, a total of 63 tracking models achieved 100% success rate 

(precision), but none was also able to achieve 100% accuracy, indicating that they were 

not always able to track accurately. This is partially the responsibility of the ground 

truth data sets. Assigning the central point of the red gear assembly is still subjective in 

nature. For some tracking models, it cannot be assumed that the central point of the red 

gear assembly is also the central point of the CoM (from segmentation). Segmentation 

methods will follow the hotspot very successfully, but are not specifically linked to the 

ground truth central points. This is apparent in Figure 11-22 where the blue square 

representing the centre of mass (158, 103), is not the ground truth central point (158, 

104). 

Figure 11-23 demonstrates the distribution of tracking model precisions. From 264 

tracking results, almost 25% (i.e. 63) are highly effective, with satisfactory models 

dropping off quickly. Table 11-1 breaks tracking model performance down into 

precision category success rates. From Table 11-1, it is clear that four tracking models 

(Two-dimensional colour histogram, HSI colour histogram and DBSCAN 

segmentation, and Template) developed from this research, hold their own, or 

outperform other models and attain high tracking scores. Limiting success as a 

precision score greater than or equal to 99.7%, then we find there are almost a third 

(33.3%) of the models (i.e. 87) to obtain the ‘success’ criteria. Of the additional models 

graded as successful, but scoring less than 100% precision, some have accuracy scores 

within the top five of overall tracking models.
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 Success Rate (Precision) 

 100% 99.7% 95% 68% 50% 40% 30% 20% 10% 0% 

2D Histogram 3 14 0 1 1 0 0 0 0 3 

HSI Histogram 18 0 0 1 0 1 0 0 0 2 

Feature Point 0 0 1 1 4 2 0 1 3 10 

Moravec 0 0 0 2 1 2 1 2 0 14 

SUSAN 0 0 0 1 0 0 0 2 0 19 

Frame Subtraction 0 0 0 1 3 13 0 0 0 5 

DBSCAN 15 0 0 2 0 1 0 0 0 4 

Territory Signature 0 2 6 1 2 4 1 0 0 6 

Template 17 1 0 3 1 0 0 0 0 0 

Histogram of Gradient 0 0 2 6 6 3 0 0 2 3 

Histogram Chi Tracking 2 1 8 3 4 1 1 0 0 2 

HSI Chi Tracking 8 6 2 3 1 0 0 0 0 2 

 63 24 19 25 23 27 3 5 5 70 

Table 11-1. Tracking model success rates (as rated by Precision scores) 
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Summarising the tracking results, Chapter 1.1Appendix J -  Object Tracking Model 

Precision Scores) graphs each tracking model scores. Visually, the results presented in 

Chapter 1.1Appendix J confirm the results shown in Figure 11-23 and Table 11-1. The 

quality of each tracking model, in isolation or as a component of a hybrid object 

tracking model, is readily visually displayed. For example, the failure of models such 

as Feature Point tracking is easily demonstrated by Figure J-3 of  Object Tracking 

Model Precision Scores), where no model attains 100% precision, and even the limited 

tracking ability quickly deteriorates. 

However, as there are a large portion of object detection and tracking models, which 

are capable of very detailed tracking of identified objects within a Remote Laboratory 

video stream, it must be concluded that we have identified suitable CV models which 

do not rely upon fiducial markers or other significant a priori knowledge. These 

models, highlighted in Table 11-1, do provide the necessary data sets for AR to function 

within a RAL environment. 

Validation and verification of the hybrid tracking models listed in Schedule of Tests, 

have contributed to the Augmented Reality for Remote Access Laboratory field by 

providing clear Computer Vision models which are successful at locating and tracking 

objects from a live video stream, with no prior information or knowledge of the video 

scene. Models tested are common CV systems, along with new contributions, shown it 

be just as effective in the AR RAL environment as existing models. The results have 

 

Figure 11-23. CV model precision ratings 
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verified several CV hybrid models suitable for applications within the AR RAL 

framework. 
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12 

12Conclusions 

Feedback to users of Remote Access Laboratories exists in many forms; from simple 

summary reports to real-time vision of the experiment unfolding. Synergistic operations 

of Remote Access Laboratories involve real-time interaction with aspects of the 

experiment; this is deemed important to the didactic requirements. Providing interactive 

sensory feedback, in which the user becomes immersed in the laboratory environment, 

reduces the users’ perception of any mediating technology, hence improving 

pedagogical outcomes. Built upon Computer Vision models, Augmented Reality for 

Remote Access Laboratories is able to engage students at a new higher level, where 

distance and the application of technology provides the student with an equivalent sense 

of being physically present with the equipment.  

Construction of Augmented Reality Remote Access Laboratory systems require an 

understanding of each of these fields to ensure that the technological amalgamation 

considers all the necessary interfaces, processes and constraints. Visual Augmented 

Reality systems are also intimately connected with Computer Vision research; as such, 

this research is important for the discovery of Computer Vision models that satisfy the 

unique environment of Remote Access Laboratories. 

Significant Computer Vision research already exists, providing a rich anthology of 

resources for assessment as suitable Augmented Reality tools to be employed within 

the Remote Access Laboratory environment. The features and attributes of each 

Computer Vision model were considered in relation to its predicted capabilities within 

an Augmented Reality Remote Access Laboratory environment. Many models were 

discounted due to the inductive or real-time operation requirements of the works. 

Assessments of previously documented Computer Vision models, required 
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interpretation and implementation for each model, with a testing schedule to validate 

performance. 

During the course of this research, numerous Computer Vision filters and image 

processing models were constructed from previous researchers, as well as new 

contributions from this research. The aim was to discover new and unique Computer 

Vision models, or a combination of existing Computer Vision models, which are 

capable of supporting AR functionality within the RAL framework, to identify and 

track objects, which do not rely upon prior knowledge such as fiducial markers. Images 

and video were intentionally selected for their inherent difficulty when analysed by 

current CV models. This provides a strengthened basis for this researches results. 

Constraints, stated for this research, preclude a number of Computer Vision models 

from the final trials. These precluded models generally required a priori knowledge, 

such as: training, or not operating in real-time. 

This research has revealed hybrid Computer Vision image processing models, which 

allows the tracking of objects within a Remote Access Laboratory video stream, without 

the use of fiducial markers or a priori knowledge. The basis of these discoveries, within 

the RAL environment, allows Augmented Reality systems to be layered and integrated 

to provide improvements to the delivery of didactic material. Discovering Computer 

Vision models to support Augmented Reality RAL systems, without the need for 

fiducial markers, has been the primary goal of this research so as to advance the uptake 

of the technologies in educational institutions.  

For Computer Vision object tracking, image segmentation has demonstrated effective 

object detection and tracking capabilities. Segmentation models’ function in a limited 

manner to fully satisfy Augmented Reality conditions, but are suitable for many Remote 

Access Laboratory situations. For example, as a tracking method on distinct colour 

signature objects within the video stream, segmentation succeeds. However, as a 

method of defining reference points necessary for Augmented Reality camera pose or 

image registration determinations, they fall behind existing superior models.  

From testing, template matching has established outstanding tracking performance. 

Additionally, the template identification and matching processes utilised in this 

research, also allows key reference points, within a video stream, to be located and 

tracked. This is ideal for Augmented Reality systems looking for, or requiring, 
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markerless tracking with no prior knowledge of the video scene. The simplicity of 

template tracking, for the developer or implementer as well as with regard to the ICT 

resources, provides a basis for the uptake of Augmented Reality services to new and 

existing Remote Access Laboratories. Additionally, template tracking is sufficiently 

fast to operate in real-time, consuming minimal computational resources. Through 

template tracking, a pathway to the expansion and uptake of Augmented Reality 

Remote Access Laboratories is achievable. 

New Computer Vision models based on hotspot detection and neighbourhood gradient 

signature tracking have been revealed as effecting for both image registration and object 

tracking. Both models achieved a high standard for object tracking, with little 

consumption of ICT resources. Simplicity in the model’s implementation also aides in 

the uptake of AR within RAL environments. 

Additional contributions from this research help to improve the future exploration and 

uptake of Augmented Reality tools. These contributions are summarised below. 

From this research, a new two-dimensional colour histogram model, which improves 

on existing three-dimensional histogram models in operational speed and image 

segmentation, has been produced. The model is capable of identifying objects through 

their unique two-dimensional colour histogram signature. Both image segmentation and 

histogram matching techniques, centred on this contribution, have successfully tracked 

objects through the video sequence of baseline tests used for this research.  

An eight-cardinal point vector summation model for neighbourhood gradient signature 

generation, as a new contribution, has also been shown to have uses within the 

Augmented Reality environment. The contribution sums image intensity gradients on 

pixels surrounding the pixel of interest. Used as a means to locate key reference points 

within a video environment, the model has effective capabilities in multiple situations. 

Simplified operational tracking is possible because of the new model. However, the 

greatest benefit is as a reference marker to register camera pose, resister a scene, or to 

maintain knowledge regarding the location of key reference points. 

Measuring and assessing the outputs of Computer Vision object detection models, for 

the purpose of tracking objects, has been aided through the contributions of this 

research. A number of mathematical processes have been reviewed, which are used to 
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compare complex object attributes, with the aim of determining their closeness of fit 

(how similar the objects are to one another). Contributions have identified and utilised 

effective methods to evaluate the similarity of object attributes sufficiently to achieve 

object tracking. 

Subjective assessments of Computer Vision image analysis models have limited the 

quantitative evaluation of models. A further contribution of this research has been the 

development of a highly objective means to assess the edge detection capabilities of 

Computer Vision edge detection models. As a result of objective model validation and 

verification, Computer Vision object analysis models, such as edge and corner point 

detection, can be assessed through clear performance measures. This result removes the 

previous issues surrounding the assessment of new Computer Vision models. 

Computer Vision techniques, constructed for this research, have multiple Augmented 

Reality applications. Built with simplicity in mind, the models do not require expensive 

hardware or high-end systems. Consequently, Augmented Reality applications for 

mobile devices will benefit from the available undemanding models. This research has 

opened Augmented Reality markerless tracking to become ubiquitous in many arena’s 

such as interactive teaching tools, real-world gaming, internal imagery for general 

medical practitioners and real-time tactical combat information. A compact and 

versatile software library, consisting of extensive Computer Vision operations, and 

object tracking processes will provide a baseline for further AR applications and 

research. 

Prior to this research, a number of rules (or considerations) were required when 

developing AR framework systems. The requirements for fiducial markers in many 

instances have been removed, and the CV image filters and analysis models minimise 

consideration of the video environment. A number of conditions must still be 

considered, such as camera configurations (as discussed in section 3.3.2). Maintaining 

the simplicity of AR RAL systems naturally requires only a limited base set of rules, 

and further research could be conducted in this area. 

Prior to this research, highly subjective assessment methods determined Computer 

Vision model effectiveness. The ground truth image construction methodology 

provides a means for future CV image analysis models to be assessed through improved 

objective testing. Users of the new methodology will achieve quantitative measures for 
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comparison with other or baseline CV models, thus improving the reporting of model 

efficacy. A line of investigation could be centred on the processes associated with 

ground truth production, which increases the density of edge points. Increased edge 

density may benefit follow-on CV object and shape detection processes, thereby 

improving overall CV object detection systems. 

Object identification requires reliable attributes to distinguish and isolate one object 

from another. The two-dimensional colour histogram model is suitable as a tool for 

object identification, creating unique histogram signatures which are fast and efficient 

to search and match objects. Image library database systems will benefit from improved 

indexing accuracy and object search/matching speeds. However, there are still many 

aspects of the model which could be explored to improve matching outcomes, such as; 

automatic methods to obtain optimal histogram accumulation bin sizes, determining the 

effects of the accumulation bin distribution through the colour space, and whether chi-

square tests are the most efficient means of histogram signature matching. 

Two-dimensional colour histogram segmentation simplifies current segmentation 

processes, providing low ICT resource solutions for locating objects within an image 

or video sequence. Applications derived from this contribution are associated with 

image processing systems which require fast filtering of irrelevant data such as graphic 

editing tools, or tracking mechanisms. Systems which attempt to filter complex 

backgrounds may find an advantage, from the model, by switching focus to isolating 

the foreground instead of processing and interpreting complex image background data 

sets. Additional research may be conducted to assess optimal accumulation bin sizes, 

and the number of accumulation bins to use for effective, efficient segmentation. 

This work shows that Augmented Reality systems, relying on identifying key reference 

points within a video stream, can be achieved through the neighbourhood gradient 

signature model. Due to the model’s pedigree of Scale Invariant Feature Transforms 

(SIFT) and Histogram of Gradients (HoG), the neighbourhood gradient signature model 

is suitable for use in CV and AR applications which rely upon the identification of key 

reference points within a video stream. Reference points associated with maintaining 

knowledge of camera pose, feature positions and object tracking may utilise the new 

model. The model has demonstrated fast and effective markerless tracking, suitable for 

use in both stable laboratory environments and diverse environments such as 
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navigation, equipment maintenance, warehousing or gaming. However, there is still 

considerable work which can be done to improve the model, such as the operation when 

feature points have homogenous neighbourhood pixels, or on methodology to resolve 

poor attribute matching. Future work in this area will advance the simplistic model for 

precision AR applications such as required within surgical environments.  

This research has highlighted the need for effective methods to measure and rank 

detected object attributes. Methods employed as sub-components for object matching 

and object tracking models have resulted in simplistic matching measures. As a result 

of this primitive attribute matching model, basic image matching of detected object 

attributes can be applied to a number of image detection models. As such, a number of 

differing object detection models are able to be utilised in an object tracking process, 

expanding the variety of object tracking models and the environments in which they 

can be employed. Improvements to the attribute matching processes will benefit object 

tracking mechanisms. Significant research is required to improve the model when: 

dealing with ambiguous object matching signals, resolving poor signal to noise ratio 

signals, and tracking failures. 

Online content in the education framework is ubiquitous, usurping existing terminology 

in many regards. While Remote Access Laboratories (RAL) is also known as Remote 

Laboratories (RL), Virtual Remote Laboratories (VRL), Virtual Laboratories (VL) or 

Online Experimentation (OE), even these terms may disappear under generic terms. 

While OE encompasses all online content, the underlying technology remains 

important. The overall goal for AR, and especially AR within the RAL environment, is 

to engage as many senses as possible, to make the ‘invisible visible’, and to immerse 

the student within the experience. Amalgamation of AR and RAL technologies from 

this research will further promote uptake of online educational content, along with other 

interactive systems not included in this research.  

The most important contribution of this research is the ability for Remote Access 

Laboratory implementors to have ready tools available to quickly and easily apply 

Augmented Reality overlays to the video streams. Markerless reference point 

identification and object tracking greatly reduces the need for implementors to have 

substantial knowledge regarding Computer Vision and Augmented Reality systems. 
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From this contribution, setup and management of AR RAL systems is within the reach 

of educators from all fields and at multiple education levels, with basic hardware. 
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Appendix A. Test Images 

 Images employed for Computer Vision image analysis trials

 
Ground Truth Image GT-01 

 
Ground Truth Image GT-02 

 
Ground Truth Image GT-03 

 
 

Ground Truth Image GT-04 

 
Ground Truth Image GT-05 

 
Ground Truth Image GT-06 

 
Ground Truth Image GT-07 

 
Ground Truth Image GT-08 

 
Ground Truth Image GT-09  

Ground Truth Image GT-10  
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Appendix B. Ground Truth Images 

Ground Truth images created for validation of Computer Vision image analysis 

 
Ground Truth Image GT-01 

 
Ground Truth Image GT-02 

 
Ground Truth Image GT-03 

 
Ground Truth Image GT-04 

 
Ground Truth Image GT-05 

 
Ground Truth Image GT-06 

 
Ground Truth Image GT-07 

 
Ground Truth Image GT-08 

 
Ground Truth Image GT-09  

Ground Truth Image GT-10 
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Appendix C. SUSAN Test Image 

Synthetic image employed to analyse Computer Vision edge detection and corner 

detection models. 

 

Figure C-1. SUSAN Baseline Test Image [16] 
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Appendix D. Empirical ROC Test Images 

Original images from Bowyer et al. [158] for Empirical ROC evaluation, and Ground 

Truth images created from processes in this research, utilised in this works for baseline 

assessments. 

 
Airfield Image ROC-01 

 
Ground Truth Image ROC-01 

 
Airplane Image ROC-02 

 
Ground Truth Image ROC-02 

 
Baseball Field Image ROC-03 

 
Ground Truth Image ROC-03 
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Appendix E. Computer Vision Filter Models 

Image filter’s models employed for pre-processing prior to Computer Vision image analysis operations 

Filter Name Size Type Comments 

Gaussian 3 x 3 Statistical  Low pass filter 

Gaussian 5 x 5 Statistical  Low pass filter 

Mean 3 x 3 Statistical  Low pass filter 

Mean 5 x 5 Statistical  Low pass filter 

Median 3 x 3 Statistical  High pass filter 

Median 5 x 5 Statistical  High pass filter 

Quadratic 3 x 3 Statistical  Non-linear filter 

Quadratic 5 x 5 Statistical  Non-linear filter 

Sharpen 3 x 3 Laplacian  High frequency enhancement 

Greyscale pixel Colour Space  Colour space conversion - conversion to 8-bit colour 

Gamma pixel Normalisation  Power function - Boost high intensity colours 

Euclidean radius Colour Range  Filter colours within the Euclidean radius within the colour space 

Colour Constancy pixel Normalisation  Equalise colour intensity 

Shade pixel Colour Range  Adjust colour levels - Manual/Static system 

Tint pixel Colour Range  Adjust colour levels - Manual/Static system 

Colour Range pixel Colour Range  Adjust colour levels - Manual/Static system 

Balance pixel Colour Range  Adjust colour levels - Manual/Static system 

Histogram image Normalisation  Redistribute colour levels according to normal distribution 

Bitonal pixel Threshold  Intensity threshold 

Dilate 3 x 3  Threshold  Remove high frequency noise 

Erode 3 x 3  Threshold  Remove low frequency noise 

Table E-1. Computer Vision Filter models 
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Appendix F.  Computer Vision Model Summary 

Computer Vision image analysis models employed within trials for inclusion inside the 

incremental construction of effective object tracking models. 

 

 

Model Type Model Name Ref  Model Type Model Name Ref 

Convolution Gaussian 3 x 3   Image Processing DBSCAN [3, 5] 

Convolution Gaussian 5 x 5   Image Processing Frame Subtraction  

Convolution Gaussian 5 x 5   Image Processing OTSU Thresholding [7] 

Convolution Gaussian M x M   Image Processing Zero Thresholding  

Convolution Quadratic Averaging   Image Processing Non-Maximum Suppression  

Convolution Convolution   Image Processing BLOB Detection  

Convolution Difference of Gaussian 3 x 5   Image Processing Histogram Colour Point  

Convolution Difference of Gaussian 3 x 5   Image Processing Gabor Wavelet [8] 

Convolution Downhill   Image Processing Boundary Orientation  

Convolution Sharpen   Colour Filter Grey Scale  

Convolution Blur [9]  Colour Filter Euclidean Colour  

Convolution Mean   Colour Filter Gamma Correction  

Convolution Median   Colour Filter Colour Range  

Convolution Motion   Colour Filter Colour Balance  

Edge Detector Sobel [10]  Colour Filter Colour Tint  

Edge Detector Sobel (Binary)   Colour Filter Colour Shade  

Edge Detector Kirsch [11]  Colour Filter Bitonal  

Edge Detector Prewitt [12]  Colour Transform Invert  

Edge Detector Laplacian 3 x 3 [13]  Colour Transform Rotate  

Edge Detector Laplacian 5 x 5 [13]  Colour Transform Shear  

Edge Detector Laplacian of Gaussian [14]  Colour Transform Edge Extraction  

Edge Detector Gradient   Colour Transform Edge Sharpen  

Edge Detector Gradient (First Derivative)   Colour Transform Edge Trace  

Edge Detector Gradient (Second Derivative)   Colour Transform Dilate  

Edge Detector Canny [15]  Colour Transform Erode  

Edge Detector Orientation Sobel   Colour Normalisation Colour Constancy  

Edge Detector Orientation Prewitt   Colour Normalisation Histogram Equalisation  

Edge Detector Orientation Kirsch   Colour Normalisation Gamma Correction  

Edge Detector Circular 5 x 5   Tracking Methods Histogram Tracking  

Edge Detector Homogeneity   Tracking Methods SUSAN Tracking  

Edge Detector SUSAN Corner [16]  Tracking Methods Hotspot Tracking  

Edge Detector Moravec Corner [17]  Tracking Methods Mean-Shift Tracking [18] 

Edge Detector Trace Path   Tracking Methods Feature Point Tracking  

    Tracking Methods Window Tracking  

Table F-1. Vision models built into the AR RAL Development Console 
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Appendix G. Schedule of Tests 

Matrix of Computer Vision image filtering and image analysis models, showing the combination of models and their associated trial numbers, as 

recorded in edge detection trial results. 

Table G-1. Edge detector schedule of tests (includes test numbers)  
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Orientation Kirsch E-13-00 E-13-01 E-13-02 E-13-03 E-13-04 E-13-05 E-13-06 E-13-07 E-13-08 E-13-09 E-13-10 E-13-11 E-13-12 E-13-13 E-13-14 E-13-15 E-13-16 E-13-17 E-13-18 E-13-19 E-13-20 E-13-21

Orientation Prew itt E-14-00 E-14-01 E-14-02 E-14-03 E-14-04 E-14-05 E-14-06 E-14-07 E-14-08 E-14-09 E-14-10 E-14-11 E-14-12 E-14-13 E-14-14 E-14-15 E-14-16 E-14-17 E-14-18 E-14-19 E-14-20 E-14-21

Circular 5 x 5 E-15-00 E-15-01 E-15-02 E-15-03 E-15-04 E-15-05 E-15-06 E-15-07 E-15-08 E-15-09 E-15-10 E-15-11 E-15-12 E-15-13 E-15-14 E-15-15 E-15-16 E-15-17 E-15-18 E-15-19 E-15-20 E-15-21

Homogeneity E-16-00 E-16-01 E-16-02 E-16-03 E-16-04 E-16-05 E-16-06 E-16-07 E-16-08 E-16-09 E-16-10 E-16-11 E-16-12 E-16-13 E-16-14 E-16-15 E-16-16 E-16-17 E-16-18 E-16-19 E-16-20 E-16-21
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Matrix of Computer Vision image filtering and object tracking models, showing the combination of models and their associated trial numbers, as 

recorded in object tracking trial results 

 

Table G-2. Object tracking schedule of tests (includes test numbers)  
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2-D Histogram T-01-00 T-01-01 T-01-02 T-01-03 T-01-04 T-01-05 T-01-06 T-01-07 T-01-08 T-01-09 T-01-10 T-01-11 T-01-12 T-01-13 T-01-14 T-01-15 T-01-16 T-01-17 T-01-18 T-01-19 T-01-20 T-01-21

HSI Histogram T-02-00 T-02-01 T-02-02 T-02-03 T-02-04 T-02-05 T-02-06 T-02-07 T-02-08 T-02-09 T-02-10 T-02-11 T-02-12 T-02-13 T-02-14 T-02-15 T-02-16 T-02-17 T-02-18 T-02-19 T-02-20 T-02-21

Feature Point T-03-00 T-03-01 T-03-02 T-03-03 T-03-04 T-03-05 T-03-06 T-03-07 T-03-08 T-03-09 T-03-10 T-03-11 T-03-12 T-03-13 T-03-14 T-03-15 T-03-16 T-03-17 T-03-18 T-03-19 T-03-20 T-03-21

Moravec T-04-00 T-04-01 T-04-02 T-04-03 T-04-04 T-04-05 T-04-06 T-04-07 T-04-08 T-04-09 T-04-10 T-04-11 T-04-12 T-04-13 T-04-14 T-04-15 T-04-16 T-04-17 T-04-18 T-04-19 T-04-20 T-04-21

SUSAN T-05-00 T-05-01 T-05-02 T-05-03 T-05-04 T-05-05 T-05-06 T-05-07 T-05-08 T-05-09 T-05-10 T-05-11 T-05-12 T-05-13 T-05-14 T-05-15 T-05-16 T-05-17 T-05-18 T-05-19 T-05-20 T-05-21

Frame Subtraction T-06-00 T-06-01 T-06-02 T-06-03 T-06-04 T-06-05 T-06-06 T-06-07 T-06-08 T-06-09 T-06-10 T-06-11 T-06-12 T-06-13 T-06-14 T-06-15 T-06-16 T-06-17 T-06-18 T-06-19 T-06-20 T-06-21

DBSCAN T-07-00 T-07-01 T-07-02 T-07-03 T-07-04 T-07-05 T-07-06 T-07-07 T-07-08 T-07-09 T-07-10 T-07-11 T-07-12 T-07-13 T-07-14 T-07-15 T-07-16 T-07-17 T-07-18 T-07-19 T-07-20 T-07-21

Territory Signature T-08-00 T-08-01 T-08-02 T-08-03 T-08-04 T-08-05 T-08-06 T-08-07 T-08-08 T-08-09 T-08-10 T-08-11 T-08-12 T-08-13 T-08-14 T-08-15 T-08-16 T-08-17 T-08-18 T-08-19 T-08-20 T-08-21

Template T-09-00 T-09-01 T-09-02 T-09-03 T-09-04 T-09-05 T-09-06 T-09-07 T-09-08 T-09-09 T-09-10 T-09-11 T-09-12 T-09-13 T-09-14 T-09-15 T-09-16 T-09-17 T-09-18 T-09-19 T-09-20 T-09-21

Histogram of Gradient T-10-00 T-10-01 T-10-02 T-10-03 T-10-04 T-10-05 T-10-06 T-10-07 T-10-08 T-10-09 T-10-10 T-10-11 T-10-12 T-10-13 T-10-14 T-10-15 T-10-16 T-10-17 T-10-18 T-10-19 T-10-20 T-10-21

Histogram Chi-Squared T-11-00 T-11-01 T-11-02 T-11-03 T-11-04 T-11-05 T-11-06 T-11-07 T-11-08 T-11-09 T-11-10 T-11-11 T-11-12 T-11-13 T-11-14 T-11-15 T-11-16 T-11-17 T-11-18 T-11-19 T-11-20 T-11-21

HSI Chi-Squared T-12-00 T-12-01 T-12-02 T-12-03 T-12-04 T-12-05 T-12-06 T-12-07 T-12-08 T-12-09 T-12-10 T-12-11 T-12-12 T-12-13 T-12-14 T-12-15 T-12-16 T-12-17 T-12-18 T-12-19 T-12-20 T-12-21
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Appendix H. Configuration 

Parameters applied to each of the Computer Vision models when applied to edge detection trials. 

 

 

 

 

Table H-1. Attribute settings for each Edge Detection trial 
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Nil KernalSize=3

Factor=16

KernalSize=5

Factor=159

KernalSize=5

Factor=159

KernalSize=7

Factor=255

Nil Nil Nil Nil Nil Factor=1 Factor=62 KernalSize=5 KernalSize=5 KernalSize=5

Angle=0

Nil Nil KernalSize=3 KernalSize=3 KernalSize=3 KernalSize=3 KernalSize=3

Sobel Nil (Kernal) E-01-00 E-01-01 E-01-02 E-01-03 E-01-04 E-01-05 E-01-06 E-01-07 E-01-08 E-01-09 E-01-10 E-01-11 E-01-12 E-01-13 E-01-14 E-01-15 E-01-16 E-01-17 E-01-18 E-01-19 E-01-20 E-01-21

Sobel (Abs) Nil (Kernal) E-02-00 E-02-01 E-02-02 E-02-03 E-02-04 E-02-05 E-02-06 E-02-07 E-02-08 E-02-09 E-02-10 E-02-11 E-02-12 E-02-13 E-02-14 E-02-15 E-02-16 E-02-17 E-02-18 E-02-19 E-02-20 E-02-21

Kirsch Nil (Kernal) E-03-00 E-03-01 E-03-02 E-03-03 E-03-04 E-03-05 E-03-06 E-03-07 E-03-08 E-03-09 E-03-10 E-03-11 E-03-12 E-03-13 E-03-14 E-03-15 E-03-16 E-03-17 E-03-18 E-03-19 E-03-20 E-03-21

Prewitt Nil (Kernal) E-04-00 E-04-01 E-04-02 E-04-03 E-04-04 E-04-05 E-04-06 E-04-07 E-04-08 E-04-09 E-04-10 E-04-11 E-04-12 E-04-13 E-04-14 E-04-15 E-04-16 E-04-17 E-04-18 E-04-19 E-04-20 E-04-21

Laplacian 3 x 3 Nil (Kernal) E-05-00 E-05-01 E-05-02 E-05-03 E-05-04 E-05-05 E-05-06 E-05-07 E-05-08 E-05-09 E-05-10 E-05-11 E-05-12 E-05-13 E-05-14 E-05-15 E-05-16 E-05-17 E-05-18 E-05-19 E-05-20 E-05-21

Laplacian 5 x 5 Nil (Kernal) E-06-00 E-06-01 E-06-02 E-06-03 E-06-04 E-06-05 E-06-06 E-06-07 E-06-08 E-06-09 E-06-10 E-06-11 E-06-12 E-06-13 E-06-14 E-06-15 E-06-16 E-06-17 E-06-18 E-06-19 E-06-20 E-06-21

LoG Nil (Kernal) E-07-00 E-07-01 E-07-02 E-07-03 E-07-04 E-07-05 E-07-06 E-07-07 E-07-08 E-07-09 E-07-10 E-07-11 E-07-12 E-07-13 E-07-14 E-07-15 E-07-16 E-07-17 E-07-18 E-07-19 E-07-20 E-07-21

Gradient Nil (Kernal) E-08-00 E-08-01 E-08-02 E-08-03 E-08-04 E-08-05 E-08-06 E-08-07 E-08-08 E-08-09 E-08-10 E-08-11 E-08-12 E-08-13 E-08-14 E-08-15 E-08-16 E-08-17 E-08-18 E-08-19 E-08-20 E-08-21

Gradient (1st) Nil (Kernal) E-09-00 E-09-01 E-09-02 E-09-03 E-09-04 E-09-05 E-09-06 E-09-07 E-09-08 E-09-09 E-09-10 E-09-11 E-09-12 E-09-13 E-09-14 E-09-15 E-09-16 E-09-17 E-09-18 E-09-19 E-09-20 E-09-21

Gradient (2nd) Nil (Kernal) E-10-00 E-10-01 E-10-02 E-10-03 E-10-04 E-10-05 E-10-06 E-10-07 E-10-08 E-10-09 E-10-10 E-10-11 E-10-12 E-10-13 E-10-14 E-10-15 E-10-16 E-10-17 E-10-18 E-10-19 E-10-20 E-10-21

Canny WindowSize=3 E-11-00 E-11-01 E-11-02 E-11-03 E-11-04 E-11-05 E-11-06 E-11-07 E-11-08 E-11-09 E-11-10 E-11-11 E-11-12 E-11-13 E-11-14 E-11-15 E-11-16 E-11-17 E-11-18 E-11-19 E-11-20 E-11-21

Orientation Sobel 3 x 3 x 4 Kernal E-12-00 E-12-01 E-12-02 E-12-03 E-12-04 E-12-05 E-12-06 E-12-07 E-12-08 E-12-09 E-12-10 E-12-11 E-12-12 E-12-13 E-12-14 E-12-15 E-12-16 E-12-17 E-12-18 E-12-19 E-12-20 E-12-21

Orientation Kirsch 3 x 3 x 4 Kernal E-13-00 E-13-01 E-13-02 E-13-03 E-13-04 E-13-05 E-13-06 E-13-07 E-13-08 E-13-09 E-13-10 E-13-11 E-13-12 E-13-13 E-13-14 E-13-15 E-13-16 E-13-17 E-13-18 E-13-19 E-13-20 E-13-21

Orientation Prewitt 3 x 3 x 4 Kernal E-14-00 E-14-01 E-14-02 E-14-03 E-14-04 E-14-05 E-14-06 E-14-07 E-14-08 E-14-09 E-14-10 E-14-11 E-14-12 E-14-13 E-14-14 E-14-15 E-14-16 E-14-17 E-14-18 E-14-19 E-14-20 E-14-21

Circular 5 x 5 Nil (Kernal) E-15-00 E-15-01 E-15-02 E-15-03 E-15-04 E-15-05 E-15-06 E-15-07 E-15-08 E-15-09 E-15-10 E-15-11 E-15-12 E-15-13 E-15-14 E-15-15 E-15-16 E-15-17 E-15-18 E-15-19 E-15-20 E-15-21

Homogeneity Nil E-16-00 E-16-01 E-16-02 E-16-03 E-16-04 E-16-05 E-16-06 E-16-07 E-16-08 E-16-09 E-16-10 E-16-11 E-16-12 E-16-13 E-16-14 E-16-15 E-16-16 E-16-17 E-16-18 E-16-19 E-16-20 E-16-21
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Parameters applied to each of the Computer Vision models when applied to object tracking trials. 

 

 

 

 

Table H-2. Attribute settings for each tracking trail 
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Factor=16
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2-D Histogram BaseSize=30

TopX=4

Colour=211,68,131
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HSI Histogram BaseSize=26

TopX=4

Colour=211,68,131

T-02-00 T-02-01 T-02-02 T-02-03 T-02-04 T-02-05 T-02-06 T-02-07 T-02-08 T-02-09 T-02-10 T-02-11 T-02-12 T-02-13 T-02-14 T-02-15 T-02-16 T-02-17 T-02-18 T-02-19 T-02-20 T-02-21

Feature Point Threshold1=40 T-03-00 T-03-01 T-03-02 T-03-03 T-03-04 T-03-05 T-03-06 T-03-07 T-03-08 T-03-09 T-03-10 T-03-11 T-03-12 T-03-13 T-03-14 T-03-15 T-03-16 T-03-17 T-03-18 T-03-19 T-03-20 T-03-21

Moravec Threshold1=500

WindowSize=3

T-04-00 T-04-01 T-04-02 T-04-03 T-04-04 T-04-05 T-04-06 T-04-07 T-04-08 T-04-09 T-04-10 T-04-11 T-04-12 T-04-13 T-04-14 T-04-15 T-04-16 T-04-17 T-04-18 T-04-19 T-04-20 T-04-21

SUSAN Threshold1=22

Threshold2=16

T-05-00 T-05-01 T-05-02 T-05-03 T-05-04 T-05-05 T-05-06 T-05-07 T-05-08 T-05-09 T-05-10 T-05-11 T-05-12 T-05-13 T-05-14 T-05-15 T-05-16 T-05-17 T-05-18 T-05-19 T-05-20 T-05-21

Frame Subtractions Threshold1=53 T-06-00 T-06-01 T-06-02 T-06-03 T-06-04 T-06-05 T-06-06 T-06-07 T-06-08 T-06-09 T-06-10 T-06-11 T-06-12 T-06-13 T-06-14 T-06-15 T-06-16 T-06-17 T-06-18 T-06-19 T-06-20 T-06-21

DBSCAN Threshold1=24

Colour=211,68,131

T-07-00 T-07-01 T-07-02 T-07-03 T-07-04 T-07-05 T-07-06 T-07-07 T-07-08 T-07-09 T-07-10 T-07-11 T-07-12 T-07-13 T-07-14 T-07-15 T-07-16 T-07-17 T-07-18 T-07-19 T-07-20 T-07-21

Territory Signature Threshold1=0 T-08-00 T-08-01 T-08-02 T-08-03 T-08-04 T-08-05 T-08-06 T-08-07 T-08-08 T-08-09 T-08-10 T-08-11 T-08-12 T-08-13 T-08-14 T-08-15 T-08-16 T-08-17 T-08-18 T-08-19 T-08-20 T-08-21

Template Nil T-09-00 T-09-01 T-09-02 T-09-03 T-09-04 T-09-05 T-09-06 T-09-07 T-09-08 T-09-09 T-09-10 T-09-11 T-09-12 T-09-13 T-09-14 T-09-15 T-09-16 T-09-17 T-09-18 T-09-19 T-09-20 T-09-21

Histogram of Gradient Threshold1=0 T-10-00 T-10-01 T-10-02 T-10-03 T-10-04 T-10-05 T-10-06 T-10-07 T-10-08 T-10-09 T-10-10 T-10-11 T-10-12 T-10-13 T-10-14 T-10-15 T-10-16 T-10-17 T-10-18 T-10-19 T-10-20 T-10-21

Histogram Chi-Squared BaseSize=24 T-11-00 T-11-01 T-11-02 T-11-03 T-11-04 T-11-05 T-11-06 T-11-07 T-11-08 T-11-09 T-11-10 T-11-11 T-11-12 T-11-13 T-11-14 T-11-15 T-11-16 T-11-17 T-11-18 T-11-19 T-11-20 T-11-21

HSI Chi-Squared BaseSize=10 T-12-00 T-12-01 T-12-02 T-12-03 T-12-04 T-12-05 T-12-06 T-12-07 T-12-08 T-12-09 T-12-10 T-12-11 T-12-12 T-12-13 T-12-14 T-12-15 T-12-16 T-12-17 T-12-18 T-12-19 T-12-20 T-12-21
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Appendix I.  Trial Results 

Summary of results for Computer Vision edge detection and corner detection trials 

I.1 Edge Detection (Best Accuracy Scores) 

File Test # TP TN FP FN Pixels Runtime ACC Precision Recall Specificity NPV DOR CI F1-Score F2-Score F0.5 

GT-10-1 E-09-00 6783 119445 475 1223 127926 3158.697 98.67% 93.46% 84.72% 99.60% 98.99% 1392.737 5.55% 88.88% 86.34% 91.57% 

GT-10-1 E-12-00 5745 119911 9 2261 127926 3179.277 98.23% 99.84% 71.76% 99.99% 98.15% 32067.75 32.54% 83.50% 76.04% 92.60% 

GT-10-1 E-14-00 5722 119913 7 2284 127926 3193.877 98.21% 99.88% 71.47% 99.99% 98.13% 40049.9 36.60% 83.32% 75.78% 92.52% 

GT-10-1 E-09-01 5787 119532 388 2219 127926 3281.648 97.96% 93.72% 72.28% 99.68% 98.18% 802.289 5.66% 81.62% 75.75% 88.47% 

 

I.2 Edge Detection (Single Classifier Scores) 

File Test # TP TN FP FN Pixels Runtime ACC Precision Recall Specificity NPV DOR CI F1-Score F2-Score F0.5 

GT-01-1 E-15-00 20253 471 74904 6 95634 3195.377 21.67% 21.28% 99.97% 0.62% 98.74% 19.61374 39.50% 35.10% 57.47% 25.26% 

GT-01-1 E-01-00 20110 44044 31331 149 95634 3064.418 67.08% 39.09% 99.26% 58.43% 99.66% 189.1003 8.24% 56.09% 75.90% 44.49% 

GT-01-1 E-02-00 19749 63974 11401 510 95634 3106.517 87.55% 63.40% 97.48% 84.87% 99.21% 217.0727 4.60% 76.83% 88.02% 68.17% 

GT-01-1 E-10-05 1 75375 0 20258 95634 3745.484 78.82% 100.00% 0.00% 100.00% 78.82% 11.16206 163.30% 0.01% 0.01% 0.02% 

GT-01-1 E-04-08 137 75375 0 20122 95634 4049.499 78.96% 100.00% 0.68% 100.00% 78.93% 1030.104 141.68% 1.34% 0.84% 3.29% 
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I.3 Edge Detection (Subjective Analysis Error Scores) 

File Test # TP TN FP FN Pixels Runtime ACC Precision Recall Specificity NPV DOR CI F1-Score F2-Score F0.5 

GT-02-1 E-04-14 3318 35603 4578 2056 45555 4745.579 85.44% 42.02% 61.74% 88.61% 94.54% 12.54823 3.22% 50.01% 56.44% 44.89% 

GT-03-1 E-12-00 5364 93877 3095 5367 107703 3174.158 92.14% 63.41% 49.99% 96.81% 94.59% 30.31014 2.66% 55.90% 52.20% 60.18% 

GT-03-1 E-13-01 1934 95810 1162 8797 107703 3305.308 90.75% 62.47% 18.02% 98.80% 91.59% 18.12298 3.87% 27.97% 21.01% 41.83% 
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I.4 Edge Detection Best Overall (Non-Synthetic) 

Bitmap Test # Accuracy Precision Recall Specificity NPV DOR CI F1-Score F2-Score F0.5-Score 

GT-08-1 E-02-00 86.75% 74.28% 98.39% 79.88% 98.82% 242.709802 3.99% 84.65% 92.39% 78.11% 

GT-01-1 E-02-00 87.55% 63.40% 97.48% 84.87% 99.21% 217.07273 4.60% 76.83% 88.02% 68.17% 

GT-06-1 E-09-00 95.26% 85.90% 86.59% 97.05% 97.21% 212.493288 4.41% 86.25% 86.45% 86.04% 

GT-04-1 E-04-00 91.40% 56.99% 95.52% 90.88% 99.38% 212.075055 4.75% 71.38% 84.14% 61.99% 

GT-04-1 E-08-00 91.40% 56.99% 95.52% 90.88% 99.38% 212.075055 4.75% 71.38% 84.14% 61.99% 

GT-08-1 E-04-00 80.86% 66.26% 98.76% 70.29% 98.97% 188.182885 4.49% 79.31% 89.94% 70.93% 

GT-08-1 E-08-00 80.86% 66.26% 98.76% 70.29% 98.97% 188.182885 4.49% 79.31% 89.94% 70.93% 

GT-04-1 E-02-00 93.08% 63.00% 93.01% 93.09% 99.06% 178.965516 3.96% 75.12% 84.92% 67.35% 

GT-06-1 E-09-04 94.74% 87.31% 81.15% 97.55% 96.15% 171.657037 4.32% 84.12% 82.31% 86.01% 

GT-09-1 E-12-00 91.90% 93.87% 57.95% 99.19% 91.66% 167.965228 4.58% 71.66% 62.75% 83.51% 

GT-06-1 E-09-06 94.60% 87.94% 79.44% 97.74% 95.82% 166.962069 4.36% 83.47% 81.00% 86.10% 

GT-09-1 E-14-00 91.69% 93.84% 56.71% 99.20% 91.43% 162.337963 4.61% 70.70% 61.59% 82.97% 

GT-05-1 E-09-00 94.67% 80.98% 80.89% 96.91% 96.89% 132.599777 3.17% 80.94% 80.91% 80.96% 

GT-06-1 E-02-04 91.51% 68.88% 92.25% 91.36% 98.27% 125.616878 4.51% 78.87% 86.38% 72.55% 

GT-04-1 E-02-10 87.20% 46.59% 95.26% 86.18% 99.31% 125.302692 4.59% 62.57% 78.80% 51.89% 

GT-05-1 E-12-00 93.02% 89.70% 56.67% 98.94% 93.35% 122.106641 4.07% 69.46% 61.17% 80.34% 

 

I.5 Edge Detection (Empirical ROC Images) - Aircraft 

Test # Accuracy Precision Recall Specificity NPV DOR CI F1-Score F2-Score F0.5 

E-04-06 96.57% 94.50% 61.68% 99.68% 96.68% 500.5935 4.86% 74.65% 66.29% 85.41% 

E-08-06 96.57% 94.50% 61.68% 99.68% 96.68% 500.5935 4.86% 74.65% 66.29% 85.41% 

E-04-01 96.49% 90.71% 63.74% 99.42% 96.85% 299.7605 3.81% 74.87% 67.77% 83.63% 

E-08-01 96.49% 90.71% 63.74% 99.42% 96.85% 299.7605 3.81% 74.87% 67.77% 83.63% 

E-02-00 96.45% 98.25% 57.72% 99.91% 96.36% 1479.489 8.62% 72.72% 62.91% 86.15% 
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I.6 Corner Detection (ROC Analysis) 

Test # Bright USAN TP TN FP FN Total Time Accuracy Precision Recall Specificity NPV DOR CI F1 F2 F0.5 

C-01-00 20 4 9 356954 110 52 357125 124.0705 99.95% 7.56% 14.75% 99.97% 99.99% 58454.09 36.52% 10.00% 12.40% 8.38% 

C-01-00 20 5 28 356916 163 33 357140 124.2267 99.95% 14.66% 45.90% 99.95% 99.99% 185715.83 26.66% 22.22% 32.18% 16.97% 

 

 

I.7 Corner Detection (ACC Score Results) 

Test # Bright USAN TP TN FP FN Total Time Accuracy Precision Recall Specificity NPV DOR CI F1 F2 F0.5 ACC 

C-01-00 40 18 41 356912 180 20 357153 169.3211 99.94% 18.55% 67.21% 99.95% 99.99% 400293.73% 28.00% 13.49% 27.16% 8.98% 0.1831% 

C-01-01 40 4 0 357055 0 61 357116 250.9684 99.98% NaN 0.00% 100.00% 99.98% 580578.05% 200.41% NaN NaN NaN 0.0171% 

 

I.8 Corner Detection (Elite Fitness Scores) 

Test # Bright  USAN TP TN FP FN Total Time Accuracy Precision Recall Specificity NPV DOR CI F1 F2 F0.5 

C-01-10 22 15 51 356452 644 10 357157 1398.589 99.82% 7.34% 83.61% 99.82% 100.00% 271266.82% 34.09% 13.49% 27.16% 8.98% 

C-01-10 22 16 51 356279 817 10 357157 1398.792 99.77% 5.88% 83.61% 99.77% 100.00% 213757.32% 34.04% 10.98% 22.93% 7.22% 

C-01-07 24 13 18 357051 18 43 357130 923.5693 99.98% 50.00% 29.51% 99.99% 99.99% 820808.05% 36.21% 37.11% 32.14% 43.90% 

C-01-07 21 13 19 357049 19 42 357129 906.5359 99.98% 50.00% 31.15% 99.99% 99.99% 840116.47% 35.51% 38.38% 33.69% 44.60% 
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I.9 Object Tracking (Elite Fitness Scores) 

 Tracking Mask  Point Correlation    

Test # TP  FP  TP FP Time Precision Accuracy 

T-01-00 2328 0  1677 651 1441.28 100.00% 72.04% 

T-07-00 2328 0  1396 932 297.9736 100.00% 59.97% 

T-01-00 2328 0  1390 938 221.4628 100.00% 59.71% 

T-02-14 2328 0  1365 963 1782.736 100.00% 58.63% 

T-02-05 2328 0  427 1901 1870.494 100.00% 18.34% 

T-02-03 2322 6  1014 1314 1640.891 99.74% 43.56% 
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Appendix J.  Object Tracking Model Precision Scores 

Graphs representing performance scores for associated key Computer Vision object 

tracking models. 

 

  
Figure J-1. Precision scores for Two-Dimensional Colour Histogram Tracking 

 

 

  
Figure J-2. Precision scores for HSI Colour Histogram Tracking 
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Figure J-3. Precision scores for Feature Point Tracking 

 

 

 
Figure J-4. Precision scores for Moravec Corner Point Tracking 
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Figure J-5. Precision scores for SUSAN Corner Point Tracking 

 

 

 
Figure J-6. Precision scores for Frame Subtraction Tracking 
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Figure J-7. Precision scores for DBSCAN Segmentation Tracking 

 

 

 
Figure J-8. Precision scores for Territory Feature Point Signature Tracking 
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Figure J-9. Precision scores for Template Tracking 

 

 

 
Figure J-10. Precision scores for Histogram of Gradient Tracking 
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Figure J-11. Precision scores for 2D Colour Histogram Chi-Squared Tracking 

 

 

 
Figure J-12. Precision scores for HSI Histogram Chi-Squared Tracking 
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Appendix K. Construction of the Augmented Reality 

Remote Access Laboratory Development Console 

To achieve the goals of this research, a testing platform was necessary. This chapter 

provides detailed information regarding the infrastructure constructed to test the 

implemented CV models. This chapter defines and describes the Augmented Reality 

Remote Access Laboratory Development Console, constructed to support Computer 

Vision model implementations. Testing CV analysing models differs from testing CV 

tracking models, so details of the testing regimes for each testing variation are explained 

and detailed in separate sections. 

As a large number of models were needed for investigation and testing during the 

course of this research, a reliable and intuitive user interface was necessary. The testing 

infrastructure was specifically designed for this research to support unique CV 

solutions to Augmented Reality for Remote Access Laboratories (AR RAL) specific 

object detection and tracking problems. Validation and verification of each CV model 

and unique hybrid models, requires construction of ground truth and golden standard 

resources, along with the support systems to assess the viability of the potential 

solutions. It is also important to provide a system in which to develop the specific 

software libraries which mathematically represent the CV models. The ARRAL 

Development Console was wholly constructed by the author using Microsoft’s Vision 

Studio’s .NET package, and written in Visual C#. Key requirements for the 

development framework were the ability to: 

Select and load images of any type. 

• Load video streams 

• Apply image filters 

• Apply image analysis 

• Easily build hybrid models 

• Easily adjust CV model parameters 

• Collect key data sets 

• Detect objects 

• Track objects 

• Provide static testing  
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To ensure all CV models operate in a consistent manner, a common software 

framework was necessary. Supporting infrastructure was necessary to ensure each and 

every computer vision model had the same level of access to resources and operated 

within a ‘level playing field’. Additionally, each model required a consistent interface 

between both the framework, and other CV models. Assuming that tests consist of at 

least one CV model at a time, through to multiple ‘stacked’ models, then developing 

standalone programs for each test configuration would potentially require over two 

thousand five hundred separate test programs just for image analysis. Creating separate 

test programs also involves a tremendous level of duplication. Instead, the ARRAL 

Development Console was created to allow for a single consistent framework in which 

to operate a test environment. 

The most important capability for the ARRAL Development Console is the collection 

of test results. Any image displayed can be quickly captured, at any stage of testing, for 

further evaluation offline. Generic data logging is available for all models, providing 

time stamped information regarding the data set, and the resources utilised at the 

discrete time period. The ARRAL Development Console also provides the entry point 

for static function testing, which allows additional research pathways, such as exploring 

the new concepts contributed as part of this research. Static testing also permits the 

collection of supporting data such as: extracting colour histogram data, or calculating 

model response functions. 

K.1 Console Operation 

Construction of the ARRAL Development Console required careful consideration to 

ensure that it is easy and intuitive to operate. Not only must the user interface provide 

all the necessary control, but the software interface is critical to primary testing 

concerns, such as efficient image processing. Analogous to other software development 

projects, the ARRAL Development Console evolved over several iterations before 

settling on the current user interface shown in Figure K-1.  

Functionality of the ARRAL Development Console is divided into various regions 

within the main window. Static operations (described in K.2.2 - Static Functionality) 

are accessed through the toolbars along the top of the main window. The toolbars 

provide access to processes such as: graphing data, drawing response functions, 

creating/editing ground truth images, exploring image histogram techniques, and 
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performing conversions of properties such as colour spaces. Central to the Console, is 

the image/video screen where output of CV model tests is viewed. Figure K- also 

demonstrates a remote gear experiment with a tracking box surrounding the red gear 

assembly. User selection of features such as: point of interest, region of interest or 

colour signature is also performed in the image/video screen. All CV image processes 

are listed in the Actions region. Each CV model is classified as belonging to one or 

more of the following categories: Convolution, Image Processing, Edge/Corner 

Detection, Colour Filter, Colour Transform, Colour Normalisation, or Tracking. 

Models listed in the Action region can be drag-n-dropped to the Program region to be 

processed by ARRAL Development Console libraries. Programs, and loaded images or 

video streams, can be saved as a session for later use. 

K.2 User Operation 

Functionally, a user of the ARRAL Development Console requires little knowledge of 

the CV image processing models, which are the primary function of the application. 

The steps for applying any CV model to an image or video stream are simplified, and 

listed below. 

1. The user is required to select an image or video stream from the file menu. 

2. From the choice of approximately fifty CV models listed in the Action panel 

to the right of the application, the user can add as many models to the 

Program as required. 

3. The user presses the Play button on the left of the application, on the toolbar. 

Processing Hybrid models created in the Program panel occurs in sequential order, 

from top to bottom of the CV model list program. 

Additional to image processing is a requirement to quickly and easily adjust the 

parameters of the CV models. While the ARRAL Development Console is open, the 

Parameters panel shown in Figure K-2 is also available. Each and every CV model 

receives their parameters from this window, providing a single point for quick and easy 

operation. All parameter changes are updated in real-time so as to immediately record 

the results of the change. 
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Figure K-1. ARRAL Development Console 
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K.2.1 Image Processing 

Computer Vision image processing techniques were the focus for this research, 

however the housekeeping routines, which are not intended to form part of the research 

results, are an important capability. However, for the sake of completeness and to 

demonstrate the significance attributed to the processing requirements, a limited 

explanation of the image processing methods is provided. 

 

Figure K-2. AR RAL Development Console Parameter Panel 
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Paramount to all image processing within this research was the requirement to ensure 

that successful models could operate in real-time. Consequently, fast image processing 

techniques were highly desirable. Two methods have been critical in obtaining this goal. 

K.2.1. (a) Memory Mapping 

All images and video frames are converted from a standard bitmap format [283] into a 

memory mapped array. As this application is based upon the Microsoft operating 

system and programmed with the Microsoft tools, this method is common among 

Microsoft Windows programmers. Accessing specific pixel information requires 

between one to four reads from memory, depending on the colour depth of the image. 

The X-Y coordinates are determined by the colour depth and the stride of the image. 

The stride is the number of bytes across an image, limited to four-byte memory 

boundaries. The index to the array is found in Equation K-1, where i is the index to the 

image memory array, b is the number of bytes per pixel, and s is the stride for the image. 

Figure K-3 consists of a source code listing of the function to convert bitmap images 

into a memory array called sourceBuffer. Processing images in this manner provides a 

significant improvement in the speed of image analysis. All CV models access common 

functions to administer the memory array when extracting or modifying data sets, 

further improving the efficiency of the ARRAL Development Console. 

𝑖 = (𝑥 × 𝑏) + (𝑦 × 𝑠) 

Equation K-1. Index calculation for image array 

Rectangle rect = new Rectangle(0, 0, sourceBitmap.Width, sourceBitmap.Height); 

BitmapData sourceData = sourceBitmap.LockBits(rect, ImageLockMode.ReadOnly, 

sourceBitmap.PixelFormat); 

 

// Get memory address of sourceData 

IntPtr sourcePtr = sourceData.Scan0; 

 

// Declare an array to hold the bytes of the bitmap.  

int bytes = sourceData.Stride * sourceData.Height; 

byte[] sourceBuffer = new byte[bytes]; 

int pixelDepth = Image.GetPixelFormatSize(sourceData.PixelFormat) / 8; 

 

// Copy the RGB values into the array. 

Marshal.Copy(sourcePtr, sourceBuffer, 0, bytes); 

sourceBitmap.UnlockBits(sourceData); 

 

 

Figure K-3. Bitmap to Memory Mapped Array source code 
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K.2.1. (b) Single point model entry 

Further reducing the processing costs of image analysis is the single-entry point 

interface for all CV models. Common processing overheads such as the image bitmap 

conversion to memory mapped arrays, occur only once regardless of the number of 

stacked CV (hybrid) models applied to the image. The memory mapping of a bitmap 

becomes the common entry point for all image processing and analysis. 

Each CV model is able to operate directly on the memory mapped array, operating at 

significantly faster speeds than applying filters or analysis directly to the individual 

bitmap images. The memory mapped array simplifies processes on the image, for 

example, convolutions are performed using matrix operations. 

K.2.2 Static Functionality 

Apart from the testing of CV models, and analysis of the results, information regarding 

the statistics, characteristics and attributes of images are also required to better 

understand the nature of the datasets. For this reason, a set of tools are included in the 

ARRAL Development Console to discover the necessary information. For example, the 

distribution of colours throughout an image is important for understanding the statistics 

required by Gaussian Mixture Models (GMM) [139], a form of segmentation. 

Uncovering the Otsu Threshold [7] for an image is a key value for some forms of image 

segmentation, discussed later, and is uncovered by the graphing form demonstrated in 

Figure K-4. 

The static features of the ARRAL Development Console provide a resource to ascertain 

sufficient knowledge regarding the functionality of many of the tested CV models. 

Testing the response of CV models is necessary. However, not every CV model 

developed is included within this works for various reasons such as, static testing 

revealing a characteristic that renders the model unsuitable for the AR RAL 

environment. Static functionality also provides a means to collect information such as 

the response function of nominated CV models (see 6.2 - Edge Detection for response 

function graphs), and boundary gradient maps (see 11.6 - Markerless Tracking for 

typical gradient maps).  

Fundamental to this research is a method to quantify the performance of the CV models. 

The creation of ground truth test images and ground truth tracking objects are 



 

274 

manufactured and edited from static functionality processes (see Ground Truth Images 

for ground truth images). Unique and novel techniques were also initially developed 

and measured through the creation of static functions, such as the original two-

dimensional colour histogram object matching model detailed in Chapter 8, and feature 

point signature object detection model. 

 

 

 

Figure K-4. Image statistics - RGB Colour histogram data 
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