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Abstract

This PhD project is concerned with the development of compact local stencils

based on integrated radial basis functions (IRBFs) for both spatial and temporal

discretisations of partial differential equations (PDEs), and their applications in

heat transfer and fluid flows. The proposed approximation stencils are effective

and efficient since (i) Cartesian grids are employed to represent both rectangular

and non-rectangular domains; (ii) high levels of accuracy of the solution and

sparseness of the resultant algebraic system are achieved together; and (iii) time

derivatives are discretised with high order approximation.

For spatial discretisation, a compact non-symmetric flat-IRBF stencil is de-

veloped. Significant improvements in the matrix condition number, solution

accuracy and convergence rate with grid refinement over the usual approaches

are obtained. Furthermore, IRBFs are used for Hermite interpolation in the so-

lution of PDEs, resulting in symmetric stencils defined on structured/random

nodes. For temporal discretisation, a compact IRBF stencil is proposed, where

the time derivative is approximated in terms of, not only nodal function val-

ues at the current and previous time levels, but also nodal derivative values at

the previous time level. When dealing with moving boundary problems (e.g.

particulate suspensions and fluid structure interacting problems), to avoid the

grid regeneration issue, an IRBF-based domain embedding method is also de-

veloped, where a geometrically-complex domain is extended to a larger, but

simpler shaped domain, and a body force is introduced into the momentum

equations to represent the moving boundaries.
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The proposed methods are verified in the solution of differential problems de-

fined on simply- and multiply-connected domains. Accurate results are achieved

using relatively coarse Cartesian grids and relatively large time steps. The rate

of convergence with grid refinement can be up to the order of about 5. Con-

verged solutions are obtained in the simulation of highly nonlinear fluid flows

and they are in good agreement with benchmark/well-known existing solutions.
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Chapter 1

Introduction

This chapter starts with an overview of numerical methods, including those

based on radial basis functions (RBFs), for fluid dynamics. The motivation

and objectives of this PhD project are then presented. Finally, the structure of

the dissertation is outlined.

1.1 A brief review of numerical methods for

fluid dynamics

Fluids exist all around us and we can see many different types of fluid flows.

Most fluid flow problems cannot be solved in an analytic/exact manner, and

one should rely on numerical methods to obtain their approximate solutions.

Examples of numerical methods include the finite difference methods (FDMs),

finite element methods (FEMs), finite volume methods (FVMs) and spectral

methods. These methods, although apparently different, have some common

features: (i) reducing the infinite degrees of freedom of a continuous system

to a finite set and (ii) converting the governing equations (GEs) into sets of

algebraic equations from which a computer solution to GEs can be obtained.
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The process of discretising GEs is based on a set of elements in FEMs and

FVMs, and a Cartesian grid in the FDMs and spectral methods. For the RBF

methods and spectral methods, the problem domain can simply be represented

by a set of unstructured and structured nodes, respectively.

1.1.1 Finite difference

FDM is a commonly used method for solving ordinary differential equations

(ODEs) and partial differential equations (PDEs). In FDM, derivative terms of

the field variables in differential equations (DEs) are approximated using Taylor

series expansions. The set of DEs are discretised by means of point collocation

(strong form) on grid nodes of orthogonal coordinate systems (e.g. Cartesian

systems). This method was used in commercial software such as HEC-RAS

which allows the user to perform one and two-dimensional steady/unsteady

flow calculations, sediment transport/mobile bed computations and water tem-

perature/water quality modelling (Brunner, 2004) and Mike 11 developed by

DHI (2003) which is a software package for simulation flows, water quality

and sediment transport in estuaries, rivers, irrigation channels and other wa-

ter bodies. A FDM for solving initial boundary value problems in the form of

a non-linear system of one dimensional (1D) differential equations describing

shallow water flows was suggested by Rasulov et al. (2005). A FDM for a two-

dimensional (2D) hybrid numerical model for sediment transport based on the

lattice Boltzmann method was presented by Liu et al. (2015), where the GEs

for water model and sediment transport are the shallow water equations and

the advection-diffusion equations, respectively. In FDMs, the computational

domain needs to be a rectangular one that is usually represented by a uniform

grid. In the case of irregular domains, there might exist suitable coordinate

transformations to achieve a rectangular computational domain and the GEs

are then transformed into new forms that are usually more complicated.
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1.1.2 Finite element

FEM discretises the domain into a set of small elements that are non-overlapping.

In elements, shape functions (linear, polynomial, bilinear, piecewise, Hermite,

etc.) are used to approximate the field variables. The PDEs are then trans-

formed into integral equations. Different from FDM, here the PDEs are discre-

tised by means of weak form. FEM is well suited to the simulation of PDEs

defined on complex geometries. The method has increasingly been applied to

surface water and soil transport problems (Carey, 1995). The major potentials

and perspectives of applications of finite element analysis in solving shallow

water wave equations were discussed in (Young, 1991). In this paper, FEM

was also utilised in the hydraulic simulation during heavy rain in the Dan-Shui

River system and the Te-Chi reservoir of Taiwan. A FEM based CFD software

is TELEMAC (Galland et al., 1991). TELEMAC-2D for a 2D hydrodynam-

ics module was used to analyse a shallow water model using the finite-element

or finite-volume method with a mesh of triangular elements, and TELEMAC-

3D for a 3D hydrodynamics module uses the same horizontally unstructured

mesh as TELEMAC-2D but solves the Navier-Stokes equations, whether in hy-

drostatic or non-hydrostatic mode so allowing shorter waves than those in a

shallow water context (where wavelengths are required to be at least 20 times

the water depth). FEM for the analysis of transport and deposition of cohe-

sive sediments in a two-dimensional flow field was developed by Ariathurai and

Krone (1976).

1.1.3 Finite volume

FVM is widely used in CFD. Similar to FEM, the domain in the FVM is discre-

tised into non-overlapping elements called finite volumes. The PDEs are then

transformed into algebraic equations by integrating them over each volume. One

then employs the Gauss’s theorem to transform the volume integrals to surface
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integrals across the boundaries. This is to guarantee that the fluxes of the field

variables across the boundary of the volumes are conserved. In practice, for

fluid simulation, one might prefer FVM over FD because FVM has better phys-

ical conservation due to its law (to conserve the fluxes). Some of the popular

CFD commercial codes using FVM are ANSYS Fluent (www.ansys.com) and

Flow-3D (www.flow3d.com), to name a few. FVM is also employed in research

of free surface and multiphase flows. For example, Toro (2001) developed a

shock-capturing scheme based on FVM for the solution of free-surface flows

which satisfy the shallow-water assumption; Zhang et al. (2014) set up a FVM

based dynamically linked 1D and 2D hydrodynamic and sediment transport

models for dam break flow and Wu et al. (2000) presented a three dimensional

numerical model for calculating flow and sediment transport in open channels

in which the convection-diffusion equation and flow equations were solved nu-

merically with a finite-volume method on an adaptive, non-staggered grid.

1.1.4 Spectral methods

Like FDM, spectral methods are based on strong form. However, spectral meth-

ods make use of global approximation functions (eg. Fourier series or high

order polynomials) to represent the variable fields rather than local approxima-

tion (e.g. Taylor series) in FDM. The spectral methods, possessing exponential

convergence rate, are known as the most accurate approximation for smooth

solutions. Spectral methods were, thus, applied widely in simulations in the

early days of CFD when computer memory was expensive. The use of spectral

methods for meteorological problems was first reported in (Silberman, 1954).

In the field of CFD, spectral methods are continually being developed. For

example, water wave simulation (Dalrymple et al., 1994), solving the shallow

water equation on the sphere (Swarztrauber, 1996), simulation of mudslides

(non-Newtonian fluid) due to periodic surface pressure (Huang et al., 2006),

global weather modelling (Canuto et al., 2007), and investigating multiphase
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flows such as wave propagation in water and mud layers (Hejazi et al., 2014).

For large scale simulations, a new domain decomposition Chebyshev method

for parallel computation was also proposed in (Tsai et al., 2012).

1.1.5 Radial basis function methods

Radial basis function (RBF) network based methods are high-order discretisa-

tion methods (e.g. Kansa, 1990; Power and Barraco, 2002; Power et al., 2007;

Šarler, 2005, 2009; Šarler et al., 2010; Divo and Kassab, 2007, 2008; Kosec and

Šarler, 2008a,b; Mai-Duy and Tran-Cong, 2001). They have the characteristic

of universal approximation, i.e. an arbitrary continuous function can be approx-

imated to a guided degree of accuracy by raising the number of nodes (Poggio

and Girosi, 1990; Park and Sandberg, 1991, 1993). They also require just a set

of unstructured discrete points to support the approximation, which generally

offers the benefit of being meshfree (Fasshauer, 2007). The methods are able

to provide reliable simulations for highly nonlinear problems such as buoyancy

flows with very thin boundary layers using relatively coarse grids/meshes. A

detailed review of these methods can be found in (Liu and Gu, 2005; Liu, 2009).

These books provide the fundamental knowledge of meshfree methods in much

detail and classify them in different function approximation schemes such as

meshfree methods based on the moving least squares approximation, meshfree

methods based on the point interpolation method, meshfree methods based on

the other interpolation schemes.

Unlike spectral methods, RBF methods can work with a set of unstructured dis-

crete points, so these methods have emerged as a powerful approximation tool

and become one of the main fields of research in numerical analysis (Haykin,

1999). Approximation schemes based on some RBFs, such as the multiquadric

and Gaussian functions, can offer an exponential rate of convergence (Madych

and Nelson, 1990). Wang and Liu (2002) presented a point interpolation mesh-
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less method based on RBFs in which the radial and polynomial basis functions

are incorporated. Numerical results showed that the accuracy and convergence

rate are high through patch tests and some problems in solid mechanics. RBF-

based methods have been developed and applied to solve different types of dif-

ferential problems encountered in applied mathematics, science and engineering

(e.g. Zerroukat et al., 1998; Šarler et al., 2004; Šarler, 2005; Šarler et al., 2006;

Šarler, 2009; Šarler et al., 2010; Divo and Kassab, 2005, 2006, 2007, 2008; Vert-

nik and Šarler, 2006; Vertnik et al., 2006; Yun-Xin and Yong-Ji, 2006; Kosec

and Šarler, 2008a,b, 2009; Bernal and Kindelan, 2007; Khattak and Tirmizi,

2008; Zahab et al., 2009; Chen, Ye and Sun, 2010; Roque et al., 2010).

Global RBF/IRBF methods

For global RBF methods, all RBFs are employed for the function approximation

at a node. Calculation of a field variable and its derivatives in terms of RBFs

can be built through the differential process (DRBF) (Kansa, 1990) or the in-

tegral process (Mai-Duy and Tran-Cong, 2003). In the DRBF approach, the

function to be approximated is first decomposed into RBFs, and its derivatives

are then calculated by differentiation. In order to avoid the problem of reduced

convergence rates caused by differentiation, the integral collocation formulation

was proposed in (Mai-Duy and Tran-Cong, 2001). For the integral formulation,

highest-order derivatives of the field variable in the partial differential equation

(PDE) are discretised into RBFs and these RBFs are then integrated to obtain

formulations for its lower-order derivatives and the variable itself (integrated

RBFs (IRBFs)). RBF based methods are capable of producing a numerical

solution that can converge at a high rate with respect to grid/mesh refinement.

Nevertheless, their matrix is not as sparse as those produced by low-order meth-

ods. The system RBF matrix is thoroughly populated, and its condition number

rises quickly with the growing number of nodes. Li and Hon (2004) showed that

the system matrix becomes unsolvable when the entire number of collocation



1.1 A brief review of numerical methods for fluid dynamics 7

points are beyond 1000. Straightforward applications of RBFs for large-scale

problems can thus be seen to be restricted. Several efforts to bypass these chal-

lenges/limitations have been suggested in the literature. They involve the use

of domain decomposition and local approximation.

Domain decomposition RBF/IRBF

RBFs were additionally consolidated with domain decomposition (e.g. Li and

Chen, 2003; Li and Hon, 2004; Divo and Kassab, 2006; Chinchapatnam et al.,

2007a; Power et al., 2007). A region of interest is segmented into a set of sub-

domains reaching to a series of linked smaller subproblems. These subproblems

can be calculated independently, and are appropriate for parallel computing.

Li and Chen (2003) manipulated RBF collocation methods in conjunction with

domain decomposition for working convection-diffusion problems at high Péclet

numbers. Li and Hon (2004) showed both overlapping and non-overlapping

domain decomposition schemes united with the meshless RBF method. Divo

and Kassab (2006) developed a domain decomposition RBF based method for

viscous incompressible fluid flow problems. Chinchapatnam et al. (2007a) intro-

duced a numerical procedure, based on RBFs and Schwarz domain decomposi-

tion technique, to solve time-dependent problems. Power et al. (2007) examined

the impact of the non-overlapping domain decomposition method on the sym-

metric RBF collocation method.

Local RBF/IRBF

It is recognised that the global RBF system matrix is thoroughly populated and

its condition number increases quickly with an increasing number of nodes. To

avoid this problem, several researchers developed local RBF methods, where

only a small subregion, specifically the influence domain, is examined for the

formation of the RBF approximations at a nodal point. Local methods lead to
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a sparse and better-conditioned system matrix. Wu and Liu (2003) suggested

the local radial point interpolation method for incompressible flows. Liu et al.

(2002) proposed a local radial point interpolation method based on local residual

formulation using RBF and applied it for solving solid mechanic problems. Shu

et al. (2003) combined local RBFs into the differential quadrature method to

calculate incompressible flows. Divo and Kassab (2007) introduced a localised

RBF meshless method for coupling viscous fluid flow and convective heat trans-

fer problem. Šarler and Vertnik (2006) developed localised RBF approxima-

tions using a set of overlapping subregions. Vertnik and Šarler (2006) produced

a meshless local RBF collocation method for convective-diffusive solid-liquid

phase change problems. Skouras et al. (2011) coupled local multiquadrics RBFs

with moving least square. Chinchapatnam et al. (2009) suggested a mesh-free

computational method based on RBFs in a finite difference mode (RBF-FD).

Li et al. (2011) employed Hardy multiquadrics for localised RBF expansions.

On the other hand, local IRBF methods were developed by Mai-Duy and Tran-

Cong (2009), Mai-Duy and Tran-Cong (2011), Thai-Quang et al. (2013). There

is a notable improvement in the matrix condition number, but the accuracy of

the solution is reduced. This can be overwhelmed by using compact approxima-

tions which include, not only the field variable but also its derivatives, (Wright

and Fornberg, 2006; Mai-Duy and Tran-Cong, 2011; Tien et al., 2015). The

sparseness of the system matrix and high level of the solution accuracy can

be accomplished simultaneously with compact RBF approximation. The nu-

merical practice has shown that the accuracy of an RBF solution is completely

controlled by the shape parameter ai. When ai is grown (or εi decreased), the

RBF solution becomes more accurate (Fornberg and Wright, 2004).

1.2 Research gaps

It can be seen that FVMs and FEMs need elements to support their approx-

imations of the field variables and their discretisations of PDEs. Generating
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a mesh is the most costly and time-consuming part of the solution process:“A

very time-consuming portion of overall computation is the mesh generation from

CAD input data. Typically, more than 70 per cent of overall computing time

is spent by mesh generators” (Griebel and Schweitzer, 2000). FDMs, which are

based on Cartesian grids, are shown to produce accurate results for problems

defined on rectangular domains. For non-rectangular domains, there is a need

for conversion into rectangular domains through coordinate transformations,

which may not be feasible in many cases. Furthermore, the approximations in

the standard FEMs, FVMs and FDMs are based on low-order polynomials. As a

result, their solutions are only first/second order accurate, and a fine mesh/grid

is typically required to achieve a high level of accuracy. To avoid mesh generat-

ing process, one can employ meshless methods such as RBF methods. The use

of RBFs for solving PDEs has received a great deal of attention in the last 30

years. RBF methods are meshless and have the ability to offer a high order accu-

racy. These attractive features are accompanied by densely populated matrices.

Such systems are costly to solve and, more importantly, their condition number

grows rapidly with the number of RBFs used, which limits the application of

global RBF methods. Local RBF methods are then developed. Since only lo-

cal regions are considered for the construction of the RBF approximations, the

resultant algebraic systems are sparse. Although the matrix condition number

is improved, the accuracy of the RBF solution is observed to deteriorate.

1.3 Motivation

In this PhD project, a new RBF approach is proposed to overcome the dis-

advantages of global and local RBF methods. In comparison with FVMs and

FEMs, there is no finite-element mesh required. In comparison with FDMs and

spectral methods, Cartesian grids are also employed, but the proposed approach

can work for problems defined on non-rectangular domains.
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Salient features of the proposed RBF approach include:

1. The RBF approximations are constructed through integration, which avoids

the reduction in the convergence rate caused by differentiation and en-

hances the stability of a numerical solution

2. Not only function values, but also derivative values, are incorporated into

the local RBF approximations (compact local approximations), which can

achieve both high levels of accuracy and sparseness of the system matrix

3. Compact local IRBF stencils are employed in both spatial and temporal

domains, allowing relatively low numbers of nodes and relatively large

time steps to be employed for a given accuracy

4. Compact local IRBF stencils are incorporated into the domain embed-

ding method, allowing multiply-connected domains to be converted into

rectangular domains

5. An IRBF scheme for time derivative discretisation can achieve consistency

in discretisation in both space and time. Thus, the numerical solutions

are not limited by the accuracy of the time discretisation scheme (e.g.

FD)

6. An advanced domain embedding scheme allows one to solve moving bound-

aries problems without regenerating grids.

1.4 Objectives of the thesis

The main objectives of this PhD research project are:

1. To develop a compact flat IRBF stencil for spatial discretisation, where

large RBF widths are employed to improve the accuracy of the RBF so-

lution for smooth problems without needing to use denser grids
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2. To develop an IRBF-based Hermite interpolation for obtaining the resul-

tant symmetric system, where one can save computer storage space and

use a more efficient algebraic solver

3. To develop a compact IRBF stencil for time discretisation, where larger

time steps can be used

4. To incorporate compact local IRBF stencils into the domain embedding

method for an improved simulation of fluid flows defined on complex do-

mains (e.g. multiply-connected domain)

5. To apply the proposed stencils to some practical heat transfer and fluid

flow problems.

1.5 Outline of the thesis

The thesis has a total of seven chapters including this chapter (Introduction),

and each chapter is self-explanatory. Brief descriptions of the remaining chap-

ters are as follows.

Chapter 2 presents the fundamental background of the research comprising

basic GEs, the formulation of IRBF approximation and a brief review of RBF

numerical methods for solving fluid equations.

Chapter 3 reports several new techniques for constructing compact integrated

RBF stencils based on extended precision, definite integrals, higher-order IRBFs

and a minimum number of derivative equations to enhance their performance

over a large value of RBF width. The proposed techniques are numerically

verified in analytic tests.

Chapter 4 presents IRBFs employed for Hermite interpolation in the solu-

tion of differential equations which leads to a new meshless symmetric RBF
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method. Both global and local schemes are derived. The proposed method

is applied to solve some elliptic boundary-value problems governed by Pois-

son and convection-diffusion equations. High levels of solution accuracy are

obtained using relatively coarse discretisations.

Chapter 5 reports a new compact two-point approximation based on IRBFs for

time discretisation, and a numerical scheme based on compact IRBF stencils

only for solving time-dependent problems. The use of the RBF width as an

additional parameter to enhance the approximation quality with respect to

time is also explored. Various kinds of test problems of heat transfer and fluid

flow are conducted to demonstrate the attractiveness of the present compact

approximations.

Chapter 6 reports the incorporation of compact IRBF stencils into a domain

embedding technique for numerical simulation of viscous flows in multiply-

connected domains. The basic feature of the domain embedding technique is

to extend the problem defined on a geometrically-complex domain to that on a

larger, but more simply shaped, domain. Several kinds of linear and nonlinear

test problems are conducted to demonstrate the effectiveness of the proposed

technique.

Chapter 7 concludes the present research and suggests some possible future

research developments.



Chapter 2

RBF methods for fluid flows

In this chapter, conservation laws for mass, momentum and energy over a control

volume V are first summarised. The basis equations governing the motion of

incompressible fluids are then reviewed. Finally, a brief discussion of RBF

numerical methods for solving the fluid equations is given.

2.1 Fluid governing equations

2.1.1 Mass conservation

Mass conversation requires that the rate of change of mass within the control

volume V is equal to the mass flux crossing its surface S

∂

∂t

∫

V

ρdV = −
∫

S

ρu · ndS, (2.1)
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where ρ is fluid density, u the velocity vector, and n the unit normal vector.

By applying Gauss’s divergence theorem, this is stated as

∫

V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0, (2.2)

Since equation (2.2) is valid for any size of volume V , the implication is that

∂ρ

∂t
+∇ · (ρu) = 0. (2.3)

2.1.2 Momentum conservation

The law of momentum conservation is

∂

∂t

∫

V

ρudV +
∂

∂t

∫

V

ρuu · ndS =

∫

V

ρgdV +

∫

V

σ · ndS, (2.4)

where g is a body acceleration field, σ the total stress; and the first term is

the rate of accumulation of momentum in V and the second term is the flux of

momentum across S. Their sum is equal to the rate of change in momentum

due to body forces and surface stresses.

2.1.3 Energy conservation

The law of energy conservation is

∂

∂t

∫

V

ρQdV +

∫

S

ρQ(n · u)dS = −
∫

S

n · qdS +

∫

S

n · (σ · u)dS, (2.5)

where the first term is the rate of accumulation of energy Q in V and the second

term is the flux of energy across S. Their sum is equal to the flux of heat coming

in through S and the rate of change in energy due to surface stresses; q the

heat flux vector which is related to temperature gradients q = −k∇T , where k
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the thermal conductivity. One can employ the Gauss’s divergence theorem to

(2.5) in an arbitrary volume V to obtain

∂

∂t
(ρQ) +∇ · (ρQu) = −∇ · q+∇ · (q · u). (2.6)

2.1.4 Navier-Stokes equations

In this study, incompressible fluids are considered. Since their mass densities

are constant, the term ∂ρ/∂t is always 0 regardless of whether the flow is steady

or unsteady. The conservation law of mass (2.3) thus reduces to

∇ · u = 0. (2.7)

Applying Gauss’s divergence theorem to (2.4) obtains

∫

V

[
∂

∂t
(ρu) +∇ · (ρuu)

]
dV =

∫

V

(ρg +∇ · σ) dV . (2.8)

Due to the arbitrariness of V, we have

∂

∂t
(ρu) +∇ · (ρuu) = ρg +∇ · σ. (2.9)

Applying the continuity equation we have

ρ
∂u

∂t
+ ρu · ∇u = ρg +∇ · σ, (2.10)

or

ρ
Du

Dt
= ρg +∇ · σ, (2.11)
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where D[.]/Dt the material derivative is defined as

D[·]
Dt

=
∂[·]
∂t

+ (u · ∇)[·].

For a Newtonian fluid, the stress tensor can be represented by

σ = −p1 + 2ηD, (2.12)

where p is the hydrodynamic pressure, 1 the unit tensor, η the viscosity and D

the strain rate tensor

D =
1

2
[∇u+ (∇u)T ]. (2.13)

One can write the governing equations (2.7)-(2.11) in the following dimension-

less form in 2D

∂u

∂x
+
∂v

∂y
= 0, (2.14)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx, (2.15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ fy, (2.16)

where u, v are the components of u, f = (fx, fy) the body force vector, and

Re is the Reynolds number defined as Re = UL/ν in which ν is the kinematic

viscosity, L a characteristic length, and U a characteristic velocity. Since there is

no transport equation for the pressure in (2.14)-(2.16), velocity equations (2.15)-

(2.16) need to be solved iteratively towards the satisfaction of the continuity

condition (2.14). Several implementations have been reported, including the

projection method (Chorin, 1968), the semi-implicit method for pressure-linked

equations (SIMPLE) (Patankar and Spalding, 1972), and the pressure-implicit

with splitting of operators (PISO) (Issa, 1986).

The pressure solver problem can be eliminated by introducing two new variables,
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namely the stream function (ψ) and the vorticity (ω),

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

ω =
∂u

∂y
− ∂v

∂x
, (2.17)

the primitive variable form, (2.14)-(2.16), reduces to

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (2.18)

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (2.19)

In comparison with the u − p formulation, the continuity equation is satisfied

automatically and the number of the field equations is reduced to two. The given

velocity boundary conditions can be transformed into two boundary conditions

on the stream function and its normal derivative

ψ = γ,
∂ψ

∂n
= ξ,

where n is the direction normal to the boundary, and γ and ξ are prescribed

functions. It can be seen that boundary conditions are over-prescribed for (2.18)

and under-prescribed for (2.19). In practice, the boundary condition on ψ is

used to solve (2.18), while the boundary condition on ∂ψ/∂n is employed to

derive a computational vorticity boundary condition to solve (2.19). It is noted

that the employment of the ψ−ω formulation are restricted to two-dimensional

(2D) problems only.

2.2 Basic RBF formulations

With RBF approximation, calculation of a field variable and its derivatives can

be built through the differential process (DRBF) or the integral process (IRBF).

The integral formulation significantly improves the accuracy of the RBF scheme,
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especially for evaluating derivative functions (Mai-Duy and Tran-Cong, 2003).

In the direct approach (DRBF), a function can be represented by RBFs as

follows

f (x) =

m∑

i=1

wiGi (x), (2.20)

where m is number of RBFs, {wi}mi=1 are RBF weights to be determined, and

{Gi (x)}mi=1 are known RBFs. The RBFs can be written in a general form as

Gi (x) = Gi (‖x− ci‖), where ‖·‖ denotes the Euclidean norm and {ci}mi=1 is a

set of RBF centres.

Several types of RBFs contain a free parameter. The following are some common

types of RBFs that are of particular interest in the study of RBF methods:

1. Multiquadric function (MQ)

Gi (x) = Gi (‖x− ci‖) =
√
r2 + ai2 (2.21)

2. Inverse multiquadric function

Gi (x) = Gi (‖x− ci‖) =
1√

r2 + ai2
(2.22)

3. Gaussian function

Gi (x) = Gi (‖x− ci‖) = exp

(
− r2

ai2

)
(2.23)

where ai is usually referred to as the width of the ith basis function and r =

‖x− ci‖ =

√
(x− ci)

T (x− ci).

One of the most widely used RBFs is the multiquadric function (2.21) which

can be also written as

Gi(x) =

√
εi(x− ci)

T (x− ci) + 1, (2.24)
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where εi is the shape parameter.

The MQ function becomes increasingly flat when ai → ∞ or εi → 0.

In the DRBF approach, the function to be approximated is first decomposed

into RBFs as in (2.20), and its derivatives are then calculated by differentiation

f (x) =
m∑

i=1

wiGi (x) (2.25)

∂kf (x)

∂αk
=

m∑

i=1

w[α]iy
(k)
[α]i (x) , (2.26)

where α is a component of the independent spatial variable x, the subscript [α]

is used to differentiate the approximations with respect to each coordinate, k is

the order of the derivatives of f , and y
(k)
[α]i (x) = ∂kGi (x)/∂α

k.

On the other hand, the integrated RBFs (IRBFs) method was proposed in

(Mai-Duy and Tran-Cong, 2003), where the highest-order derivatives are first

decomposed into RBFs and expressions for lower-order derivatives are then

obtained through integration. Highest-order derivatives of the field variable f

in the ordinary/partial differential equations (ODEs/PDEs) are decomposed

into RBFs, from which expressions for lower-order derivatives and the variable

itself are derived through integration

∂qf (x)

∂αq
=

m∑

i=1

w[α]iGi (x) =

m∑

i=1

w[α]iI(q)
[α]i (x) , (2.27)

∂q−1f (x)

∂αq−1
=

m∑

i=1

w[α]iI(q−1)
[α]i (x) + c[α]1, (2.28)

. . . . . . . . .

f (x) =

m∑

i=1

w[α]iI(0)
[α]i (x) +

αq−1

(q − 1)!
c[α]1 +

αq−2

(q − 2)!
c[α]2 + ... + c[α]q, (2.29)

where m is the number of RBFs, (w[α]1, w[α]2, ..., w[α]m) the coefficients, Gi (x)

the RBF, I(q−1)
[α]i (x) =

∫
I(q)
[α]i (x)dα, ..., I

(0)
[α]i (x) =

∫
I(1)
[α]i (x)dα, and (c[α]1, ..., c[α]q)

the integration constants that are functions of variables other than α. Making
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use of (2.27)-(2.29) and point collocation, one can transform the ODE/PDE

into a set of algebraic equations, from which the coefficients and integration

constants can be acquired (Mai-Duy and Tran-Cong, 2003).

This approach has some strengths over the conventional approach (DRBF). It

was developed to: (i) avoid the reduction in the convergence rate caused by

differentiation, and (ii) make the numerical solution more stable.

Meshfree methods use both RBF and Moving Least Square (MLS) for inter-

polation/approximation purposes. In RBF based methods, since the shape

functions have the Kronecker delta function property, the boundary conditions

can be enforced in a direct manner (Liu and Gu, 2005). Here we made a com-

parison between the IRBF interpolation method and the MLS method using

Gauss shape functions. Considering a simple function f(x) = sin(x), its first

derivative f ′(x) = cos(x) and second derivative f ′′(x) = − sin(x) . The domain

of interest is of [0, 10]. Number of nodes for both IRBF and MLS are {11,
21, 31,· · ·, 411}. In Figure 2.1, it can be seen that IRBF technique provides

more accurate results for function approximation as well as its first and second

derivatives. The convergence rate of IRBF method is O(h3.54) and that of MSL

is O(h1.42) for the case of function approximation (Figure 2.1a). Similarly, Fig-

ure 2.1b and 2.1c show that the convergence rate of IRBF method is O(h3.16)

and O(h1.68) and that of MSL is O(h1.09) and O(h0.81) for the case of first and

second derivative approximations, respectively. Thus, the integral RBF meth-

ods are much more accurate than the methods using MLS shape functions in

term of function and derivative approximations.
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Figure 2.1: Function (a), first (b) and second (c) derivative approximation,
double precision: Comparison of accuracy between the IRBF scheme and the
MLS method

2.3 Review of RBF discretisations of the Navier-

Stokes equations

As stated above, the basic equations governing the motion of a fluid can be

written in different dependent variables, including the velocity - pressure (u −
v − p) formulation, the stream function - vorticity (ψ − ω) formulation and

the stream function (ψ) formulation. The last two formulations are limited

in two dimensional (2D) problems. Special attention should be given to the

handling of the vorticity boundary condition for the ψ−ω formulation and the

double boundary conditions as well as high-order derivatives including the cross

derivatives for the ψ formulation.

Furthermore, in some cases, the pressure field needs be computed after solv-

ing the governing equations, which is generally regarded as a complicated pro-

cess. In the case of multiply-connected domains, an added difficulty is that the

stream-function variable generally has different and unknown values, on sepa-

rate boundaries. On the other hand, the u− v − p formulation is able to work

for two- and three-dimension flows in a similar manner. One main concern is

that there are no explicit transport equations and boundary conditions for the
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pressure variable. The resultant algebraic system could be solved iteratively

where the pressure value is obtained using the continuity equation.

2.3.1 RBF discretisations of the stream function and

stream function- vorticity formulation

With the introduction of the stream function variable, the pressure variable

does not have to be considered, resulting in an easy implementation. However,

several issues arise, to which special attention should be paid. For example, in

the stream function approach, one has to cope with fourth-order derivatives and

double boundary conditions. Fourth-order systems are known to have higher

matrix condition numbers than first- and second-order systems. Errors for ap-

proximating higher-order derivatives are generally larger. In the implementa-

tion of double boundary conditions, special treatments are required because of

two values given at a boundary point. To avoid the noise when approximating

the high order derivative, IRBF methods have been employed in (Mai-Duy and

Tran-Cong, 2001; Mai-Duy et al., 2008; Mai-Duy and Tran-Cong, 2008; Le-Cao

et al., 2010). For the stream function - vorticity formulation, one has to derive

computational boundary conditions for the transport vorticity equation. The

boundary vorticity values are defined through the Poisson’s equation, which

needs to be solved discretely on the boundaries. The stream function - vorticity

approach requires approximations for derivatives of an order up to 2 (instead

of 4), leading to a significant improvement in the matrix condition number over

the stream function approach. Le-Cao et al. (2009) proposed an IRBF method

to solve the boundary problems for vorticity in a Cartesian grid for the stream

function-vorticity formulation. This feature is very attractive when dealing with

flows with a fine structure as a large number of nodes is usually required for

an accurate simulation. Yun-Xin and Yong-Ji (2006) applied a RBF meshless

scheme for unsteady vorticity-stream function formulation. In (Wu and Liu,

2003), a local radial point interpolation method (LRPIM) was adopted to sim-
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ulate the two-dimensional natural convection problems with different geometries

of domains. The numerical results showed that the accuracy achieved by the

LRPIM method is considerably higher than that of the FD method. Chincha-

patnam et al. (2007b) discretised the stream function formulation with RBF,

and employed a trust-region method for solving the nonlinear problem. The

no-slip boundary conditions are imposed using ghost nodes. Kim et al. (2007)

introduced a meshfree point collocation method for the stream- vorticity formu-

lation. The vorticity boundary condition was approximated linearly with the

boundary velocity and the stream function. In (Fan et al., 2013), the local RBF

collocation method was applied for solving the double-diffusive natural convec-

tion in porous media. The local RBF-based differential quadrature method was

proposed by Shu et al. (2003), Shu et al. (2005) was employed for incompressible

Navier-Stokes equations. In this method, the weighting coefficients were calcu-

lated by the RBFs rather than high order polynomials as the test functions.

Wang et al. (2015a) employed a local RBF method for both velocity-pressure

and stream function-vorticity formulations. The distributed nodes used to store

the variables were obtained by the philosophy of an unstructured mesh.

2.3.2 RBF discretisations of the velocity-pressure formu-

lation

Since there is no transport equation for the pressure in (2.14)-(2.16), veloc-

ity equations (2.15)-(2.16) need be solved iteratively towards the satisfaction

of the continuity condition (2.14). Several implementations were reported, in-

cluding the projection method (Chorin, 1968), the semi-implicit method for

pressure-linked equations (SIMPLE) (Patankar and Spalding, 1972), and the

pressure-implicit with splitting of operators (PISO) (Issa, 1986). Vertnik and

Šarler (2006) developed a meshless local RBF collocation method for convective-

diffusive solid-liquid phase change problems. Divo and Kassab (2007) presented

a localised RBF meshless method for coupled viscous fluid flow and convective
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heat transfer problems. Chinchapatnam et al. (2009) proposed a mesh-free

computational method based on RBF in a FD mode (RBF-FD). Skouras et al.

(2011) coupled local multiquadric RBFs with moving least square (MLS). Lo-

cal IRBF methods for velocity-pressure formulation are also developed (Thai-

Quang et al., 2012). Flyer and Wright (2009) reported a numerical shallow

water model on the sphere using RBF spatial discretization. Divo and Kassab

(2007) applied the method to viscous fluid flow and conjugate heat transfer

(CHT) modelling. The incompressible Navier-Stokes is time marched using a

Helmholtz potential decomposition for the velocity field. In (Divo and Kassab,

2008), a localised RBF collocation meshless method is produced for natural

convection heat transfer problems in completely viscous fluid flow. The ex-

tension method is based on the localized collocation of polynomial-augmented

Hardy multiquadric RBF. In (Šarler et al., 2004), the authors represented the

solution of a steady state natural convection problem in porous media with

the RBF collocation method (RBFCM). The solution is expressed in primitive

variables and required iterative treatment of pressure, and pressure correction.

Thai-Quang et al. (2013) presented a high-order approximation scheme based

on compact integrated RBF (CIRBF) stencils and second-order Adams Bash-

forth/Crank Nicolson algorithms for solving time-dependent problems such as

torsionally oscillating lid-driven cavity flows. Demirkaya et al. (2008) reported

an RBF approach with a direct technique for solving pressure fields instead of

using an iterative algorithm for the primitive variables by using the Levenberga

Marquardt method. Mramor et al. (2013) solved a more complex problem in

which natural convection was influenced by a magnetic field. The fractional step

method was also employed to link the pressure and velocity fields. The mass,

momentum, energy and induction equations were couple into one system and

then solved by a local RBF collocation method. Low Reynolds number, creeping

flow problems were solved by a global meshless collocation particular solution

method in (Bustamante et al., 2013). In this approach, the continuity equation

is not explicitly imposed for pressure computing. The velocity components and

the pressure are approximated by a linear superposition of particular solutions
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of the non-homogeneous Stokes. Waters and Pepper (2015) made a comparison

between global and localized RBF meshless methods to solve viscous fluid flows

with heat transfer. Numerical results show that the local approach is much

more efficient but has the same order of accuracy as the global approaches.

2.4 Concluding remarks

This chapter has provided the elemental background of the research topic com-

prising basis governing equations of fluid dynamics, the IRBF formulation and

a brief review of RBF methods. In general, each numerical method has some

advantages and disadvantages. Therefore, this research is a further development

of IRBF approach combining a high level of accuracy of IRBF and sparseness

system of local approximation.



Chapter 3

Compact non-symmetric IRBF

stencils for spatial

approximations

For smooth problems, a high level of accuracy occurs at large value RBF width,

however, corresponding RBF matrices become ill-conditioned. In this chapter,

very large values of the RBF width are utilised with some special treatments

to handle the interpolation matrix condition number. These effective treat-

ments will be further discussed in the section on methodology. This chapter

presents improved ways of constructing compact integrated RBF (CIRBF) sten-

cils, based on extended precision, definite integrals, higher-order IRBFs and a

minimum number of derivative equations to enhance performance over large

values of the RBF width. The proposed approaches are numerically verified

through second-order linear differential equations in one and two variables. Sig-

nificant improvements in the matrix condition number, solution accuracy and

convergence rate with grid refinement over the usual approaches are achieved.
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3.1 Introduction

Several types of RBFs contain a free parameter. This type can exhibit an

exponential rate of convergence with the number of RBFs and the RBF’s width

(Madych, 1992). One of the most widely used RBFs is the MQ function (2.21)

or (2.24). The MQ function becomes increasingly flat when ai → ∞ or ǫi → 0.

When all RBFs are employed for the approximation at a point, the RBF method

is regarded as a global method. It is easy to implement global RBF methods

since no mesh (i.e. no connection between nodes) is involved. A highly accurate

solution is typically obtained. Furthermore, the system matrix is fully populated

and as a result, only a relatively low number of nodes can be employed in

practice. Global approximations can work with small values of ai only, typically

the minimum distance between the ith RBF and its neighbours.

When only a few RBFs are activated for the approximation at a point (local ap-

proximation), there is a significant improvement in the matrix condition number

but the solution accuracy is significantly reduced. The latter can be overcome by

using compact approximations, where the approximation involves nodal values

of not only the field variable, but also its derivatives (Tolstykh and Shirobokov,

2003, 2005; Wright and Fornberg, 2006; Mai-Duy and Tran-Cong, 2011; Tien

et al., 2015). With compact RBF approximations, high levels of the solution ac-

curacy and sparseness of the system matrix can be achieved together. They are

capable of providing a very efficient solution to a differential problem. In con-

trast to global RBF methods, larger values of ai can be employed here. It was

shown in (Fornberg and Wright, 2004; Fornberg and Flyer, 2011) that the RBF

approximation is more accurate when ai is increased (or ǫi is reduced) and the

most accurate approximation occurs before ai approaches infinity (or ǫi → 0).

Furthermore, in the limit of ǫi → 0, the RBF approximation for a set of cen-

tres in one dimension reduces to the Lagrange interpolating polynomial on that

set of nodes (Driscoll and Fornberg, 2002). Numerical experiments indicated

that the interpolation matrices for local compact RBF stencils at large values
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of the RBF width are ill-conditioned and special treatments are needed. Effec-

tive treatments for compact RBF Hermite interpolation schemes (differentiated)

were reported in (Wright and Fornberg, 2006), where the Contour-Pade algo-

rithm is employed. This work presents several simple but effective approaches

to extend the working range of ai for compact integrated RBF approximations.

The chapter is organised as follows. A brief overview of CIRBF stencils is given

in Section 3.2. In Section 3.3, some numerical investigations are conducted to

identify numerical issues due to the use of large values of ai. In Section 3.4,

improved constructions for CIRBF stencils to extend the working range of ai

are presented and then numerically verified in analytic tests. Section 3.5 gives

some concluding remarks.

3.2 Compact local IRBF stencils

Consider a 3-point stencil [x1, x2, x3]. On the stencil, the second derivative of

the dependent variable f is decomposed into

d2f(x)

dx2
=

3∑

i=1

wiGi(x) (3.1)

where {Gi(x)}3i=1 is the set of RBFs and {wi}3i=1 the set of weights to be found.

In one dimension, the MQ function takes the form Gi(x) =
√

(x− ci)2 + a2i .

We choose the width according to ai = βdi, where β is a scalar and di is the

smallest distance between ci and its neighbours.

Its first derivative and function are then obtained through integration

df(x)

dx
=

3∑

i=1

wiI(1)
i (x) + C1 (3.2)

f(x) =

3∑

i=1

wiI(0)
i (x) + C1x+ C2 (3.3)
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where I(1)
i (x) =

∫
Gi(x)dx and I(0)

i (x) =
∫
I(1)
i (x)dx are integrated basis func-

tions and C1 and C2 the constants of integration.

For compact approximations, nodal values of the derivative (or the differential

equation) at the side nodes of the stencil are also incorporated into the process of

converting the RBF space into the physical space. Assuming that the differential

equation takes the form d2f(x)/dx2 = f(x) (f(x) is a prescribed function), the

mapping can be constructed as




f1

f2

f3
d2f1
dx2

d2f3
dx2




=




I(0)
1 (x1), I(0)

2 (x1), I(0)
3 (x1), x1, 1

I(0)
1 (x2), I(0)

2 (x2), I(0)
3 (x2), x2, 1

I(0)
1 (x3), I(0)

2 (x3), I(0)
3 (x3), x3, 1

G1(x1), G2(x1), G3(x1), 0, 0

G1(x3), G2(x3), G3(x3), 0, 0




︸ ︷︷ ︸
C




w1

w2

w3

C1

C2




(3.4)

where C is a 5 × 5 matrix that will hereafter be called the conversion matrix.

Solving (3.4) leads to




w1

w2

w3

C1

C2




= C−1




f1

f2

f3
d2f1
dx2

d2f3
dx2




(3.5)

The second derivative of function f at the middle node is thus computed as

d2f2
dx2

= [G1(x2), G2(x2), G3(x2), 0, 0] C−1

(
f1, f2, f3,

d2f1
dx2

,
d2f3
dx2

)T

(3.6)

or

d2f2
dx2

= η1f1 + η2f2 + η3f3 + η4
d2f1
dx2

+ η5
d2f3
dx2

(3.7)
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where d2f1/dx
2 = f(x1), d

2f3/dx
2 = f(x3) and {ηi}5i=1 are known values. In

the case of Dirichlet boundary conditions and the domain represented by a set

of N nodes, the collocation of the differential equation at the interior nodes

results in the following system

A−→
f =

−→
b (3.8)

where A is the system matrix of dimensions (N − 2)× (N − 2),
−→
f the vector

consisting of values of f at interior nodes and
−→
b the vector formed by the

RHS of the differential equation and the boundary conditions. Like the central

finite-difference method, the structure of A is tri-diagonal and the system can

be efficiently solved for the nodal variable values.

3.3 Numerical investigation

We apply the CIRBF solution procedure to the following second-order ODE

d2f

dx2
= − exp(−5x) (9975 sin(100x) + 1000 cos(100x)) , 0 ≤ x ≤ 1 (3.9)

subject to Dirichlet boundary conditions. The exact solution can be verified to

be

fe(x) = sin(100x) exp(−5x) (3.10)

and is displayed in Figure 3.1.

Two 3-point stencils, IRBF and compact IRBF (CIRBF), are implemented.

The two system matrices have the same structure (tri-diagonal) but, as shown

in Figure 3.2, the latter is much more accurate than the former. The RBF

solution converges as O(h4.79) for CIRBF and O(h1.95) for IRBF, indicating

that the inclusion of nodal second derivative values significantly enhances the

performance of local IRBF stencils.
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Figure 3.1: Second-order ODE, fe(x) = sin(100x) exp(−5x): Exact solution.
The function is smooth and varies significantly over the domain. Such a varia-
tion requires a relatively large number of nodes for an accurate interpolation.

Figure 3.3 shows variations in the condition number of the conversion and sys-

tem matrices against the MQ width represented by β for a fixed grid size

(Nx = 1001). For the system matrix A, the condition number is rather low

(O(105)) and it has similar values over a wide range of β. In contrast, the

condition number of the conversion matrix C grows fast at a rate of 4.5 and the

matrix becomes ill-conditioned at large values of β. Therefore, in using CIRBF

stencils, attention should be paid to the handling of matrix C resulting from

flat MQ functions.
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Figure 3.2: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, 91 ≤ Nx ≤ 601,
β = 20: Solution accuracy by IRBF and CIRBF. The solution converges as
O(h1.95) for IRBF and O(h4.79) for CIRBF. Note that the 3-point stencil is
constructed on a unit length.

3.4 Improved constructions for compact IRBF

stencils

Below are several treatments proposed to stably compute C at large values of

β.

3.4.1 Approach 1: Extended precision

As shown in (Fornberg and Wright, 2004), by constructing the RBF interpo-

lation with the Contour-Pade algorithm, the numerical solution still behaves
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Figure 3.3: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, Nx = 1001: Condi-
tion numbers of the system matrix A and conversion matrix C as functions of β
representing the RBF width. When β increases, the growth rate is about 4.46
for cond(C) and 0.00 for cond(A). Note that the 3-point stencil is constructed
on a unit length.

stably when the basis functions become increasingly flat. The trade-off between

accuracy and stability, which has been widely reported in the RBF literature,

is due to the use of finite (double) precision in computation. In this regard,

the employment of higher precision is expected to improve the stability of the

RBF solution, which was verified in (Huang et al., 2007, 2010). Our program is

written in Matlab and we employ function vpa (variable-precision arithmetic)

to increase the number of significant decimal digits from 16 to 50 in construct-

ing the conversion matrix C and computing its inverse. Higher computational

cost is required. On the other hand, as shown in Figure 3.4, the IRBF solution

is stable at large values of β and the optimal value of β is also clearly detected.

It is noted that: (i) by defining a stencil on the unit length, one may need
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to compute the inversion of the conversion matrix once and the result can be

applied for any grid size to be employed, and (ii) in the present code, parts

other than the computation of C are carried out using double precision, and

numerical results indicate that the same level of accuracy is obtained as in the

case of using extended precision for the entire computation.
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Figure 3.4: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, Nx = 1201: Solu-
tion accuracy by using double precision and extended precision (50 digits) in
constructing and computing the conversion matrix.

3.4.2 Approach 2: Definite integral

We propose to compute the integrals in their definite form rather than indefinite

in constructing the conversion matrix C. The advantage of this approach is that

the size of C is reduced from 5× 5 to 3× 3, and the numerical stability is thus
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expected to be improved.

The integrals in (3.2)-(3.3) can be rewritten as

df(x)

dx
− df1
dx

=

3∑

i=1

∫ x

x1

wiGi(x)dx

=

3∑

i=1

wi

[
I(1)
i (x)− I(1)

i (x1)
]

(3.11)

f(x)− f1 − (x− x1)
df1
dx

=
3∑

i=1

∫ x

x1

wi

[
I(1)
i (x)− I(1)

i (x1)
]
dx

=
3∑

i=1

wi

[
I(0)
i (x)− I(0)

i (x1)− (x− x1)I(1)
i (x1)

]

(3.12)

Letting I(1)d(x)
i = I(1)

i (x)−I(1)
i (x1), I(0)d

i = I(0)
i (x)−I(0)

i (x1)− (x−x1)I(1)
i (x1)

and f ′(x) = df(x)/dx, expressions (3.11) and (3.12) reduce to

f ′(x)− f ′
1 =

3∑

i=1

wiI(1)d(x)
i (3.13)

f(x)− f1 − (x− x1)f
′
1 =

3∑

i=1

wiI(0)d
i (x) (3.14)

Our objective now is to express the weights w1, w2 and w3 in terms of f1, f2, f3, f
′′
1

and f ′′
3 . The conversion system is generated by collocating the function expres-

sion (3.14) at x = x2 and x = x3, and the second-derivative expression (3.1) at

x = x1




f2 − f1 − (x2 − x1)f
′
1

f3 − f1 − (x3 − x1)f
′
1

f ′′
1


 =




I(0)d(x1)
1 , I(0)d(x1)

2 , I(0)d(x1)
3

I(0)d(x2)
1 , I(0)d(x2)

2 , I(0)d(x2)
3

G1(x1), G2(x1), G3(x1)




︸ ︷︷ ︸
C




w1

w2

w3




(3.15)



3.4 Improved constructions for compact IRBF stencils 36

Solving this system for the weights yields




w1

w2

w3


 = C−1




f2 − f1 − (x2 − x1)f
′
1

f3 − f1 − (x3 − x1)f
′
1

f ′′
1


 (3.16)

A next step is to incorporate f ′′
3 into the vector on the RHS of (3.16). We first

collocate the second-derivative expression (3.1) at x = x3

f ′′
3 = [G1(x3), G2(x3), G3(x3)] C−1




f2 − f1 − (x2 − x1)f
′
1

f3 − f1 − (x3 − x1)f
′
1

f ′′
1


 (3.17)

and then solve this equation for f ′
1. Making substitution into the RHS of (3.16),

the mapping of the RBF space into the physical space takes the form




w1

w2

w3


 = C−1T




f1

f2

f3
d2f1
dx2

d2f3
dx2




(3.18)

where C is of dimension 3 × 3 and T is of 3 × 5, which is constructed using

results from solving equation (3.17).

Figure 3.5 concerns the conversion matrix C and shows a significant improve-

ment in the condition number of the present definite-integral approach over the

usual indefinite-integral approach. The former grows as O(β3.88) only while the

rate of the latter is much higher; up to 6.32. Figure 3.6 indicates that the

present approach makes the solution accuracy significantly less fluctuating over

large values of β.
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Figure 3.5: 3-point stencil, Nx = 3: Condition number of conversion matrix C
computed through indefinite integrals, resulting in a matrix of 5×5 and through
definite integral, resulting in a matrix of 3 × 3. The matrix condition number
grows as O(β6.32) for the former and O(β3.88) for the latter.

3.4.3 Approach 3: Higher-order IRBF approximations

The MQ function Gi(x) is now integrated four times (IRBF4) instead of twice

(IRBF2). We employ the integrated basis function I(0)
i (x) instead of Gi(x) to

approximate the second-order derivative

d2f

dx2
=

3∑

i=1

wiI(0)
i (x) (3.19)

df

dx
=

3∑

i=1

wi

∫
I(0)
i (x) + C1 (3.20)

f =
3∑

i=1

wi

∫ ∫
I(0)
i (x) + C1x+ C2 (3.21)
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Figure 3.6: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, Nx = 1201: Solution
accuracy by the two methods (indefinite and definite integrals) of constructing
matrix C.

It was reported in (Sarra, 2006) that the matrix condition number of IRBF4 is

higher than that of IRBF2. However, with only three RBFs involved, the trend

is reversed. As RBFs are integrated, the corresponding interpolation matrix

has a lower condition number, particularly over a large range of β (Figure

3.7). When second-derivative values are added, as shown in Figure 3.8, the

observation is similar. CIRBF4 is more stable than CIRBF2. This interesting

property of higher-order IRBFs with 3 centres will be utilised here to construct

compact IRBF stencils. The conversion system in this approach is formed as
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Figure 3.7: 3-point stencil: Condition numbers of the interpolation matrix gen-
erated by RBF, IRBF2 and IRBF4.




f1

f2

f3
d2f1
dx2

d2f3
dx2




=




∫ ∫
I(0)
1 (x1),

∫ ∫
I(0)
2 (x1),

∫ ∫
I(0)
3 (x1), x1, 1

∫ ∫
I(0)
1 (x2),

∫ ∫
I(0)
2 (x2),

∫ ∫
I(0)
3 (x2), x2, 1

∫ ∫
I(0)
1 (x3),

∫ ∫
I(0)
2 (x3),

∫ ∫
I(0)
3 (x3), x3, 1

I(0)
1 (x1), I(0)

2 (x1), I(0)
3 (x1), 0, 0

I(0)
1 (x3), I(0)

2 (x3), I(0)
3 (x3), 0, 0




︸ ︷︷ ︸
C




w1

w2

w3

C1

C2




(3.22)

It can be seen from Figure 3.9 that, for a given β, a much more stable solution

is obtained with the present approach as the grid size is reduced. At a very

small grid size, the present approach is much more accurate and more stable

over a large value range of β than the usual approach (Figure 3.10).
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Figure 3.8: 3-point stencil, indefinite integral, Nx = 3: Condition numbers of
the interpolation matrix generated by compact IRBF2 (indefinite integral) and
compact IRBF4.

These improved 3-point CIRBF stencils can be extended to construct 5-point

stencils for solving problems in two dimensions. The implementation process

is exactly the same as that presented in (Mai-Duy and Tran-Cong, 2013). For

elliptic PDEs, the algebraic system, where each row has 5 non-zero entries, can

be solved iteratively using a Picard scheme. For parabolic PDEs, systems of

tridiagonal equations can be formed and solved efficiently with the Thomas al-

gorithm. It requires that the problem domain is represented by a Cartesian grid

(not by a set of scattered points). Thus, for non-rectangular domains, the dis-

cretisation is still based on a Cartesian grid but with non-uniformly-spaced sten-

cils. Consider Poisson’s equation (3.30) defined on a non-rectangular domain

(Figure 3.11) and subjected to Dirichlet boundary conditions. The exact solu-

tion is chosen to be f (e)(x, y) = exp(−(x− 0.25)2− (y− 0.5)2) sin(πx) cos(2πy).
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Figure 3.9: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, β = 50, Nx =
(51, 53, · · · , 901): Solution accuracy against the grid size by CIRBF2 (indefinite
integral) and CIRBF4. For the latter, the solution converges as O(h4.05).

The problem domain is embedded in a Cartesian grid, where the interior nodes

are grid nodes inside the domain and the boundary nodes are the intersections

of the grid lines and the boundary. Figure 3.11 also shows that as the RBF

width increases, the present construction of CIRBF approximations results in

a much more accurate and stable solution than the usual approach.

3.4.4 Approach 4: Separate construction in each direc-

tion and minimum number of derivative equations

This approach is developed for CIRBF stencils based on two-dimensional ap-

proximations. In this section, new compact 9-point IRBF stencils are con-
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Figure 3.10: Second-order ODE, 3-point stencil, 0 ≤ x ≤ 1, Nx = 1201: Solu-
tion accuracy by CIRBF2 (indefinite integral) and CIRBF4.

structed. Unlike our previous work (Mai-Duy and Tran-Cong, 2011), the con-

version process of the RBF space into the physical space is now conducted

independently in each direction, where the size of the conversion matrix is re-

duced by about half. Below is a schematic diagram 9-point stencil associated

with node (i, j) 


x3 x6 x9

x2 x5 x8

x1 x4 x7




The nodes are locally numbered from left to right and from bottom to top, where

node (i, j) is located at the centre (i.e. (i, j) ≡ node 5). In the x direction, the
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Figure 3.11: PDE, non-rectangular domain: Cartesian grid for non-rectangular
domain, where the boundary nodes are the intersections of the grid lines and
the boundary; and solution accuracy by using double precision and extended
precision (50 digits) in constructing and computing the conversion matrix, where
81× 81 grid lines are employed.
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process of approximating the field variable and its derivatives starts with

∂2f(x, y)

∂x2
=

9∑

i=1

wiGi(x, y), (3.23)

where Gi(x, y) =
√

[x− (ci)x]2 + [y − (ci)y]2 + a2i . Integrating (3.23) once and

twice yields

∂f

∂x
(x, y) =

9∑

i=1

wiI(1)
i (x, y) + C1(y) (3.24)

f(x, y) =

9∑

i=1

wiI(0)
i (x, y) + xC1(y) + C2(y) (3.25)

where C1 and C2 are functions of y. It was shown in (Mai-Duy and Tran-Cong,

2011) that the most accurate approximation is achieved when the derivative

values incorporated into the conversion system are taken at nodes 2, 4, 6 and

8. We follow this strategy in the present construction.

The conversion system is formed as




−→
f
−→
∂2f
∂x2


 =


 H

K




︸ ︷︷ ︸
C[x]




−→w
−→
C


 (3.26)
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where C[x] is the conversion matrix;

−→
f = (f1, f2, · · · , f9)T

−→w = (w1, w2, · · · , w9)
T

−→
C = (C1(y1), C1(y2), C1(y3), C2(y1), C2(y2), C2(y3))

T

H =




I(0)
1 (x1), · · · , I(0)

9 (x1), x1, 0, 0, 1, 0, 0

I(0)
1 (x2), · · · , I(0)

9 (x2), 0, x2, 0, 0, 1, 0

I(0)
1 (x3), · · · , I(0)[x]

9 (x3), 0, 0, x3, 0, 0, 1

I(0)
1 (x4), · · · , I(0)

9 (x4), x4, 0, 0, 1, 0, 0

I(0)
1 (x5), · · · , I(0)

9 (x5), 0, x5, 0, 0, 1, 0

I(0)
1 (x6), · · · , I(0)

9 (x6), 0, 0, x6, 0, 0, 1

I(0)
1 (x7), · · · , I(0)

9 (x7), x7, 0, 0, 1, 0, 0

I(0)
1 (x8), · · · , I(0)

9 (x8), 0, x8, 0, 0, 1, 0

I(0)
1 (x9), · · · , I(0)

9 (x9), 0, 0, x9, 0, 0, 1




and

−−→
∂2f

∂x2
= K




−→w
−→
C




are derivative equations. We observe that using a larger number of derivative

equations can lead to a more accurate approximation but also increase the

condition number of C. We investigate the following two typical cases:

1. Case 1: two derivative equations

−−→
∂2f

∂x2
=

(
∂2f2
∂x2

,
∂2f8
∂x2

)T

K =


 G1(x2), · · · , G9(x2), 0, · · · , 0

G1(x8), · · · , G9(x8), 0, · · · , 0
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2. Case 2: four derivative equations

−−→
∂2f

∂x2
=

(
∂2f2
∂x2

,
∂2f4
∂x2

,
∂2f6
∂x2

,
∂2f8
∂x2

)T

K =




G1(x2), · · · , G9(x2), 0, · · · , 0

G1(x4), · · · , G9(x4), 0, · · · , 0

G1(x6), · · · , G9(x6), 0, · · · , 0

G1(x8), · · · , G9(x8), 0, · · · , 0




One can compute ∂2f/∂x2 at node 5 as

∂2f5
∂x2

= [G1(x5), · · · , G9(x5), 0, · · · , 0]
(
C[x]
)−1

(
−→
f ,

−−→
∂2f

∂x2

)T

(3.27)

The approximation in the y direction can be derived in a similar fashion

∂2f5
∂y2

= [G1(x5), · · · , G9(x5), 0, · · · , 0]
(
C[y]
)−1

(
−→
f ,

−−→
∂2f

∂y2

)T

(3.28)

where

−−→
∂2f

∂y2
=

(
∂2f4
∂y2

,
∂2f6
∂y2

)T

for the case of two derivative equations, and

−−→
∂2f

∂y2
=

(
∂2f2
∂y2

,
∂2f4
∂y2

,
∂2f6
∂y2

,
∂2f8
∂y2

)T

for the case of four derivative equations.

At each interior node, there are 3 unknowns, namely f , ∂2f/∂x2 and ∂2f/∂y2,

and one can also establish three independent algebraic equations derived from

collocating the differential equation

∂2f

∂x2
+
∂2f

∂x2
= f(x, y) (3.29)
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and applying the CIRBF equations of second derivative in the x (i.e. (3.27))

and y (i.e. (3.28)) direction at the interior node.

We employ an iterative procedure to reduce the number of unknowns from 3 to

1. Substituting (3.27) and (3.28) into (3.29) and then collocating the obtained

equation at node 5 leads to the following algebraic equation, e.g. for the case

of two derivative equations,

9∑

i=1

fk
i = f5 +

∑

i=(2,8)

γi
∂2fk−1

i

∂x2
+
∑

i=(4,6)

λi
∂2fk−1

i

∂y2
(3.30)

where the superscript k is used to denote the present iteration. The solution

procedure is as follows:

1. Guess a distribution of the field variable fi,j

2. Compute second derivatives at grid nodes using equations (3.27) and

(3.28).

3. Collocate (3.30) at the interior grid nodes, impose the prescribed bound-

ary conditions and solve the obtained system of equations. Note that the

system matrix is sparse as each row contains only 9 non-zero entries.

4. Check the convergence of the iterative procedure

CM =

√∑(
fk
i,j − fk−1

i,j

)2
√∑(

fk
i,j

)2 < 10−12

5. If not, relax the solution and then go back to step 2

fk
i,j = αfk

i,j + (1− α)fk−1
i,j

where α is the relaxation factor (0 < α ≤ 1)

6. If yes, stop and output the solution.
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Consider Poisson’s equation (3.30) defined on 0 ≤ x, y ≤ 1 and subjected to

Dirichlet boundary conditions. The exact solution is chosen to be f (e)(x, y) =

exp(−(x − 0.25)2 − (y − 0.5)2) sin(πx) cos(2πy). Using a grid of 37 × 37 and

β = 35, the iterative scheme reaches CM = 10−12 with 314 iterations for

α = 0.1, 95 for α = 0.3, 51 for α = 0.5, 31 for α = 0.7 and 14 for α = 1.

The larger the value of α the faster the convergence will be. It is noted that

the present iterative scheme can work with the largest value of α. In (3.30),

the values of the second derivative at the side nodes of the stencil are imposed.

Alternatively, one can impose the differential equation by making the following

replacements

(
∂2f

∂x2

)k−1

i−1,j

→ fi−1,j −
(
∂2f

∂y2

)k−1

i−1,j

,

(
∂2f

∂x2

)k−1

i+1,j

→ fi+1,j −
(
∂2f

∂y2

)k−1

i+1,j(
∂2f

∂y2

)k−1

i,j−1

→ fi,j−1 −
(
∂2f

∂x2

)k−1

i,j−1

,

(
∂2f

∂y2

)k−1

i,j+1

→ fi,j+1 −
(
∂2f

∂x2

)k−1

i,j+1

Numerical results indicate that the imposition of PDE rather than second

derivatives results in a much faster convergence of the iterative scheme. For

example, for α = 0.5, the number of iteration is reduced from 51 to 34, as

shown in Figure 3.12. Figure 3.13 shows the effect of the MQ width represented

by β on the condition number of matrix C and the solution accuracy for a given

grid size. Reducing the number of derivative equations leads to a much more

stable calculation over large values of β. At β = 38, the condition number

of matrix C using two derivative equations is about six orders of magnitude

lower than the case of four derivative equations. The former produces highly

accurate solutions at large β. The optimal value of β is clearly detected; the

corresponding error Ne is 1.02 × 10−08. When β is small (i.e. β < 10), it can

be seen that matrix C is well conditioned, and using more derivative equations

results in improved accuracy. Note that at large values of β, better accuracy is

also obtained with the case of more derivative equations if extended precision is

employed. Figure 3.14 shows the effect of the grid size on the matrix condition

number and the solution accuracy at a large value of β. By constructing CIRBF
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Figure 3.12: PDE, 37× 37, β = 35, α = 0.5, 2 derivative equations: Imposition
of PDE converges faster than imposition of second derivatives.

approximations on a stencil defined on [0, 1]× [0, 1], the conversion matrix C is

independent of the grid size. It can be seen that the condition numbers of C by

the use of two and four derivative equations differ by six orders of magnitude

for all grid sizes. However, the matrix A is well-conditioned for the two cases,

where their condition numbers all grow slowly at the rate O(h−2.00). The so-

lution converges as O(h5.12) for the case of two derivative equations and only

O(h2.31) for the case of four equations. At small values of h, the solution by the

former is highly accurate with its error Ne being reduced to O(10−9). The solu-

tion accuracy for the case of four derivative equations is significantly improved

when extended precision is used; it produces greater accuracy than the case of

two derivative equations.
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Figure 3.13: PDE, β = (2, 4, 6, · · · , 38), 31× 31, α = 0.7: Condition number of
C and solution accuracy against the MQ width represented by β for two cases:
four and two derivative equations. The 4 derivative equation case becomes
unstable as β is increased. The fluctuation at large values of β is overcome by
using extended precision or reducing the number of derivative equations.
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Figure 3.14: PDE, 5×5, 7×7, · · · , 61×61, β = 35, α = 0.7: Condition numbers
of C and A, and solution accuracy against grid size for two cases: four and two
derivative equations. The solution converges as O(h2.37) for the former and
O(h4.41) for the latter. The four derivative equation case is much less accurate
due to the fact that its associated matrix C is ill-conditioned; using extended
precision, its performance becomes superior to the case of using two derivative
equations.
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3.4.5 ADI-Compact IRBF

The efficiency of the method can be improved by combining CIRBF with the

alternating direction implicit (ADI): one of the most efficient schemes for solving

time dependent problems. The ADI scheme was proposed by Douglas and

Peaceman (1955). The method is obtained from the Crank-Nicolson scheme

and has second-order accuracy in time. The ADI is efficient and is, therefore,

suitable for large scale problems because it can decompose a 2-D or 3-D problem

into a system of two or three 1-D problems which can be solved in parallel.

This method is usually employed with FDM. To improve accuracy, high order

ADI (You, 2006) or compact ADI (Dai and Nassar, 2002) have been developed.

Applications of ADI schemes in various fluid flow problems can be found in (An

et al., 2011; Navarro et al., 2007; Hejranfar and Khajeh-Saeed, 2011; Singh and

You, 2011).

ADI scheme

We consider a parabolic differential equation subjected to initial solutions and

boundary values

∂f

∂t
−
(
∂2f

∂x2
+
∂2f

∂y2

)
= b(x, y, t), (3.31)

with

f(x, y, 0) = ζ(x, y) (x, y) ∈ Ω

f(x, y, t) = η(x, y) (x, y) ∈ ∂Ω
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where ζ(x, y), η(x, y) are given functions, Ω and ∂Ω the problem domain and

its boundary.

The main idea of ADI scheme is to discretise one dimension implicitly while

using it explicitly in other dimensions. For 2D-problems, the time derivative

can be split as follows

fn+1/2 − fn

∆t/2
=

(
∂2f

∂x2

)n+1/2

+

(
∂2f

∂y2

)n

+ bn+1/2, (3.32)

fn+1 − fn+1/2

∆t/2
=

(
∂2f

∂x2

)n+1/2

+

(
∂2f

∂y2

)n+1

+ bn+1/2. (3.33)

By using local IRBF, the second derivative of f can be represented by the form

∂̂2f

∂x2
= D̂2xf̂ + k̂2x, (3.34)

and

∂̂2f

∂y2
= D̂2yf̂ + k̂2y. (3.35)

Substitution of (3.34-3.35) into (3.32) yields

f̂n+1/2 − f̂n =
∆t

2

(
D̂2xf̂

n+1/2 + D̂2yf̂
n + bn+1/2 + k̂2x + k̂2y

)

or

f̂n+1/2 =

(
1− ∆t

2
D̂2x

)−1((
1 +

∆t

2
D̂2y

)
f̂n +

∆t

2

(
bn+1/2 + k̂2x + k̂2y

))

(3.36)
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For the second step, the value of f̂n+1/2 in (3.36) is used to compute f̂n+1

f̂n+1 − f̂n+1/2 =
∆t

2

(
D̂2xf̂

n+1/2 + D̂2yf̂
n+1 + bn+1/2

)

(3.37)

or

f̂n+1 =

(
1− ∆t

2
D̂2y

)−1((
1 +

∆t

2
D̂2x

)
f̂n+1/2 +

∆t

2

(
bn+1/2 + k̂2x + k̂2y

))
.

(3.38)

It is noted that the solution is obtained on each grid line.

Considering second-order PDE as follows.

∂2f

∂x2
+
∂2f

∂y2
= −18π2 sin(3πx) sin(3πy) (3.39)

As can be seen from Figure 3.15, when β increases, the growth rate is about

3.08 for cond (C) and 0.00 for cond (A).

The present technique is first verified through the solution of a test problem

governed by equation (3.39) and subject to Dirichlet boundary conditions. The

domain of interest is the region inside a square of 1× 1. The exact solution for

this problem is sin(3πx) × sin(3πy) from which Dirichlet boundary conditions

can be derived analytically. A wide range of β, namely {2, 4, · · · , 100}, is em-

ployed to study the convergence behaviour of the solution. In order to apply

the ADI scheme, a pseudo temporal derivative ∂f/∂t is added to the left hand

side of (3.39). The solution is achieved with a tolerance of 1 × 10−9. Results

concerning the error Ne and β are given in Figure 3.16. It can be seen that the

local-Flat-IRBF solution is stable even at a high value of β, and the optimal

value of β is also clearly found. Condition numbers of the system matrix, a

very important property for the direct solver (i.e. inverse of system matrices),

is relatively low (e.g. 104 for a grid of 111 × 111). With a local approxima-
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Figure 3.15: Condition number of system matrix A and conversion matrix C as
a function of β.

tion property, the present method results in a sparse system matrix (Figure

3.17). Comparison of the computational accuracy between the 1D-IRBF,

higher-order compact FD methods (HOC) (Tian et al., 2011), compact IRBF

(CIRBF) (ThaiQuang et al., 2012), couple compact IRBF (CIRBF) (Tien et al.,

2015) and the present flat (IRBF) is shown in Table 3.1, where the grid increases

as {21× 21, 31× 31, ...}. It can be seen that the Flat kernel IRBF provides the

most accurate results. For example, it can reach a low error 1.8× 10−5 at grid

(31× 31). In order to get the same accuracy, 1D-IRBF needs a grid of 81× 81,

and the HOC method, CIRBF and CCIRBF need a grid of 41× 41. The mesh

convergence of 1D-IRBF, HOC, CIRBF, CCIRBF and the present flat IRBF is

illustrated in Figure 3.18. As shown in Figure 3.18 the flat kernel IRBF is the

most accurate.
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Figure 3.16: Investigation of β and Ne 81× 81.

3.5 Concluding remarks

This chapter shows that, by taking appropriate ways of constructing approx-

imations in the process of converting the RBF space into the physical space,

compact local integrated RBF stencils based on one- and two-dimensional ap-

proximations are capable of producing a stable solution over large values of

the RBF width. Four approaches, based on extended precision, definite inte-

grals, higher IRBF approximations and minimum number of derivative equa-

tions, have been presented and numerically verified. For differential problems

with smooth solutions, much more stable calculations and highly accurate re-

sults over the usual approaches have been obtained. Each approach has its own

strengths and weaknesses. A more accurate and stable solution is achieved with

extended precision at the expense of higher computational costs and the need

for specialized computational tools such as function vpa in Matlab. However,

in the case of uniform grids, by defining stencils on the unit length (1D) and

the unit square (2D), one may need to compute the inversion once and then

store/apply for any grid to be employed. The other approaches, which are sim-
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Figure 3.17: Local-flat-IRBF yields symmetric and sparse system matrices.

ple and easy to implement, are capable of making the working range of the RBF

witdth much larger. Their computational costs are relatively low. This work

further shows a great potential of compact IRBF stencils in solving differential

problems.
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Table 3.1: Poisson’s equation: Accuracy obtained by the other RBFs (1D-
IRBF, HOC (Tian et al., 2011), CIRBF (ThaiQuang et al., 2012) , CCIRBF
(Tien et al., 2015)) and the proposed flat-IRBF methods. Notice that a(−b)
means a× 10−b.

Grid RMS
1D-IRBF HOC CIRBF CCIRBF Present flat IRBF

21× 21 1.2311(-3) 3.3579(-4) 3.3492(-4) 2.5405(-4) 9.6500(-5)
31× 31 3.6879(-4) 5.6856(-5) 5.6674(-5) 4.2362(-5) 1.8700(-5)
41× 41 1.5624(-4) 1.4589(-5) 1.4594(-5) 1.0997(-5) 5.7300(-6)
51× 51 7.9915(-5) 4.9330(-6) 4.7148(-6) 3.7709(-6) 2.2300(-6)
61× 61 4.6060(-5) 2.0151(-6) 1.9227(-6) 1.5371(-6) 1.0000(-6)
71× 71 2.8837(-5) 9.4467(-7) 9.2935(-7) 7.1799(-7) 4.9300(-7)
81× 81 1.9185(-5) 4.9199(-7) 4.6935(-7) 3.8210(-7) 2.5600(-7)
91× 91 1.3375(-5) 2.7850(-7) 3.0597(-7) 2.0317(-7) 1.3600(-7)
101× 101 9.6748(-6) 1.6869(-7) 1.5204(-7) 1.3230(-7) 7.1600(-8)
111× 111 7.2123(-6) 1.0805(-7) 1.4662(-7) 7.8442(-8) 3.5300(-8)

Figure 3.18: Mesh convergence of 1D-IRBF, HOC, CIRBF, CCIRBF and
present flat IRBF.



Chapter 4

Compact symmetric IRBF

stencils for spatial

approximations

In this chapter, CIRBFs are employed for Hermite interpolation to solve dif-

ferential equations, resulting in a new meshless symmetric RBF method. The

symmetric property allows for the saving of computer storage space and the use

of a more efficient algebraic solver. The focus is on the construction of com-

pact approximation stencils, where a sparse system matrix and a high-order

accuracy can both be achieved. Cartesian-grid-based stencils are possible for

problems defined on non-rectangular domains. Furthermore, the effects of the

RBF width on the solution accuracy for a given grid size are fully explored

with reasonable computational cost. The proposed schemes are numerically

verified in some elliptic boundary-value problems governed by the Poisson and

convection-diffusion equations. High levels of solution accuracy are obtained

using relatively coarse discretisations.
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4.1 Introduction

For a given node distribution, solution accuracy can still be improved by chang-

ing the value of the RBF width. Finding the optimal RBF width for a general

case presents a great challenge. In practice, one may rely on numerical algo-

rithms such as those based on statistics (cross validation and maximum likeli-

hood estimation) for determining this value. For a smooth function, the best

accuracy can often be achieved at a large RBF width (i.e. near-flat RBF). As

the RBF width increases, its matrix condition number grows rapidly and one

needs stable-calculation algorithms to obtain a reliable numerical solution (see,

e.g., Fornberg and Wright, 2004; Wright and Fornberg, 2006; Huang et al., 2007;

Huang et al., 2010; Fornberg and Flyer, 2011; Rashidinia et al., 2016). The issue

of stagnation errors (i.e. failure of convergence under continuing node refine-

ment) was recently discussed in (Flyer and Barnett, 2016) along with several

treatments proposed to overcome it.

For data containing both function and derivative values, one can employ the

RBF Hermite interpolation approach (Hardy, 1975; Wu, 1992; Sun, 1994). Its

applications in the solution of ODEs/PDEs have been reported in studies such as

(Fasshauer, 1997; Power and Barraco, 2002; Larsson and Fornberg, 2003). The

main advantage of this approach is that it can yield an interpolation matrix

that is symmetric and invertible for both function representation and solution

of ODEs/PDEs. The symmetric property also allows for the saving of computer

storage space and the use of a more efficient algebraic solver. In addition, the

RBF Hermite interpolation approach was utilised to construct compact local

approximations (Tolstykh and Shirobokov, 2005; Wright and Fornberg, 2006;

Mai-Duy and Tran-Cong, 2011). This kind of application has attracted more

attention in recent years as both a sparse system matrix and a fast convergence

rate of the solution can be achieved simultaneously.

In the previous chapters, IRBFs have been employed to solve ODEs/PDEs (see,
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e.g., Mai-Duy and Tran-Cong, 2001; Ling and Trummer, 2004; Sarra, 2006; Shu

and Wu, 2007; Chen, Fan. and Wen., 2010; Kansa et al., 2004). In IRBF meth-

ods, basis functions used for the approximation of a field variable are obtained

by integrating RBFs. Numerical experiments have shown that IRBF methods

can yield an improved rate of convergence. In previous reports (Mai-Duy and

Tran-Cong, 2011, 2013; Mai-Duy et al., 2017), we integrated RBFs with respect

to the Cartesian coordinates (i.e. x, y and z). Through integration constants,

nodal derivative values can be incorporated into the IRBF expressions. Their

associated basis functions are generally not radial and the resultant IRBF ma-

trices are nonsymmetric. In this work, RBFs are integrated with respect to the

radius without the addition of integration constants. All derived basis functions

are radial and they are employed for Hermite interpolation. Both global and

local approximations are considered, producing new strong forms of the IRBF

approach. For the former, the interpolation at a point involves function values

at all nodes and, therefore, its system matrix is fully populated. For the latter,

compact IRBF approximations are constructed on small stencils, resulting in a

sparse system matrix. For both versions, the interpolation matrix is symmet-

ric. The obtained IRBF results are compared with those by the classical FDMs,

compact FDMs, and Hermite methods based on differentiated RBFs. The re-

mainder of the chapter is organised as follows. In Section 4.2, relevant basis

functions for DRBFs and IRBFs are provided. Global and local schemes of the

proposed IRBF Hermite-based method are presented and verified in Sections

4.3 and 4.4, respectively. Section 4.5 gives some concluding remarks. In the

Appendix, the process of acquiring the limit of the fourth-order cross derivative

as the radius approaches zero is described.
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4.2 Basis functions for DRBFs and IRBFs

For DRBFs, a function can be represented by a linear combination of RBFs

f(x) =
N∑

j=1

wjG(‖x− xj‖), (4.1)

where N is the number of given data points, {G(r = ‖x − xj‖)}Nj=1 a set of

RBFs, {xj}Nj=1 a set of centres which is normally chosen to be the same as

a set of data points, and {wj}Nj=1 a set of weights to be found. It has been

theoretically shown that the interpolation matrix derived from (4.1) on a set

of distinct points is nonsingular if G is a positive definite function such as the

inverse multiquadric and Gaussian functions, or a conditionally positive definite

function of order 1 such as the multiquadric function (Micchelli, 1986). In this

work, RBF is taken as the MQ function

G(r) =
√
r2 + a2, (4.2)

where a is the MQ width.

Derivatives of function f can then be determined as, e.g., in two dimensions

∂qf(x)

∂xq
=

N∑

j=1

wj
∂qG(‖x− xj‖)

∂xq
, q = 1, 2, 3, · · · , (4.3)

∂qf(x)

∂yq
=

N∑

j=1

wj
∂qG(‖x− xj‖)

∂yq
, q = 1, 2, 3, · · · , (4.4)

∂qf(x)

∂xm∂yn
=

N∑

j=1

wj
∂qG(‖x− xj‖)

∂xm∂yn
, m = 1, 2, · · · , n = 1, 2, · · · , q = m+ n.

(4.5)

Expressions for computing derivatives of (4.2) with respect to r up to the fourth
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order are

dG

dr
=

r√
r2 + a2

, (4.6)

d2G

dr2
=

a2

(r2 + a2)3/2
, (4.7)

d3G

dr3
= − 3a2r

(r2 + a2)5/2
, (4.8)

d4G

dr4
= −3a2 (a2 − 4r2)

(r2 + a2)7/2
. (4.9)

For IRBFs, a function is decomposed into a set of basis functions that are

obtained from integrating (4.2) with respect to r. Below is the case, where the

MQ is integrated 4 times

Ḡ(r) = I(0) =

(
a4

45
− 83a2r2

720
+

r4

120

)√
r2 + a2+

(
−a

4r

16
+
a2r3

12

)
ln

(
r +

√
r2 + a2

a

)
,

(4.10)

dḠ

dr
= I(1) =

(
−13a2r

48
+
r3

24

)√
r2 + a2+

(
−a

4

16
+
a2r2

4

)
ln

(
r +

√
r2 + a2

a

)
,

(4.11)

d2Ḡ

dr2
= I(2) =

(
−a

2

3
+
r2

6

)√
r2 + a2 +

a2r

2
ln

(
r +

√
r2 + a2

a

)
, (4.12)

d3Ḡ

dr3
= I(3) =

r

2

√
r2 + a2 +

a2

2
ln

(
r +

√
r2 + a2

a

)
, (4.13)

d4Ḡ

dr4
= I(4) =

√
r2 + a2. (4.14)

Figure 4.1 illustrates the shape of the MQ (4.2) and the integrated MQ (4.10)

for several values of the MQ width. It was shown in (Sarra, 2006) that the inte-

grated MQ approaches a large constant as 1/a approaches zero. Both DRBFs
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and IRBFs are implemented in this work. For simplicity of notation, expression

(4.1) is now used for the two approaches, where function G(r) is taken in the

form of (4.2) for DRBFs and in the form of (4.10) for IRBFs. We introduce the

concept of order for IRBF. An IRBF is said to be of order α if its (original)

RBF is integrated α times. For function G defined in (4.10), one has α = 4.

As shown in (Sarra, 2006), this IRBF is a conditionally positive definite func-

tion of order (α + 2)/2 = 3 and from a theoretical point of view, one needs

to add to the interpolant a polynomial whose order is less by 1 (i.e. 2) to ac-

quire an invertible interpolation matrix. However, to our best knowledge, from

the numerical experiments reported, a singular interpolation matrix was never

observed when the IRBF approximations were not augmented with polynomial

terms. Furthermore, the addition of a polynomial did not lead to any significant

improvement in the solution accuracy at relatively coarse discretisations.
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Figure 4.1: Variations of the MQ (left) and integrated MQ (right) for several
values of the MQ width a

An effective way to compute derivatives of function G with respect to x and

y on RHS of (4.3)-(4.5) (k = {1, 2, 3, 4}, m = n = 2) is to express them in

terms of derivatives of G with respect to r. Since their expressions in the x

and y coordinates are of similar forms, only pure derivatives with respect to x

together with cross derivatives are given below

∂G

∂x
=
dG

dr

∂r

∂x
, (4.15)
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∂2G

∂x2
=
dG

dr

∂2r

∂x2
+
d2G

dr2

(
∂r

∂x

)2

, (4.16)

∂3G

∂x3
=
dG

dr

∂3r

∂x3
+ 3

d2G

dr2
∂r

∂x

∂2r

∂x2
+
d3G

dr3

(
∂r

∂x

)3

, (4.17)

∂4G

∂x4
=
dG

dr

∂4r

∂x4
+
d2G

dr2

[
4
∂r

∂x

∂3r

∂x3
+ 3

(
∂2r

∂x2

)2
]
+ 6

d3G

dr3

(
∂r

∂x

)2
∂2r

∂x2
+

d4G

dr4

(
∂r

∂x

)4

, (4.18)

∂4G

∂x2∂y2
=
d3G

dr3

[
∂2r

∂y2

(
∂r

∂x

)2

+ 4
∂r

∂x

∂r

∂y

∂2r

∂x∂y
+
∂2r

∂x2

(
∂r

∂y

)2
]
+

dG

dr

∂4r

∂x2∂y2
+
d2G

dr2

[
∂2r

∂x2
∂2r

∂y2
+ 2

(
∂2r

∂x∂y

)2

+ 2
∂r

∂x

∂3r

∂x∂y2
+ 2

∂r

∂y

∂3r

∂x2∂y

]
+

d4G

dr4

(
∂r

∂x

)2(
∂r

∂y

)2

. (4.19)

Since

r = ‖x− xj‖ =
√
(x− xj)2 + (y − yj)2, (4.20)

expressions for computing pure and cross derivatives of r on RHS of (4.15)-(4.19)
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are given by

∂r

∂x
=

x− xj
r

, (4.21)

∂2r

∂x2
=

r2 − (x− xj)
2

r3
, (4.22)

∂3r

∂x3
= −3(x− xj) [r

2 − (x− xj)
2]

r5
, (4.23)

∂4r

∂x4
= −3 [r2 − (x− xj)

2] [r2 − 5(x− xj)
2]

r7
, (4.24)

∂2r

∂x∂y
= −(x− xj)(y − yj)

r3
, (4.25)

∂3r

∂x∂y2
=

(x− xj) [−(x− xj)
2 + 2(y − yj)

2]

r5
, (4.26)

∂3r

∂x2∂y
=

(y − yj) [−(y − yj)
2 + 2(x− xj)

2]

r5
, (4.27)

∂4r

∂x2∂y2
=

2

r3
− 15(x− xj)

2(y − yj)
2

r7
. (4.28)

The limits of derivatives of function G when r → 0 are

∂G

∂x
→ 0,

∂2G

∂x2
→ 1

a
,

∂3G

∂x3
→ 0,

∂4G

∂x4
→ − 3

a3
, (4.29)

∂G

∂y
→ 0,

∂2G

∂y2
→ 1

a
,

∂3G

∂y3
→ 0,

∂4G

∂y4
→ − 3

a3
, (4.30)

∂4G

∂x2∂y2
→ − 1

a3
, (4.31)
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for DRBF and

∂G

∂x
→ 0,

∂2G

∂x2
→ −a

3

3
,

∂3G

∂x3
→ 0,

∂4G

∂x4
→ a, (4.32)

∂G

∂y
→ 0,

∂2G

∂y2
→ −a

3

3
,

∂3G

∂y3
→ 0,

∂4G

∂y4
→ a, (4.33)

∂4G

∂x2∂y2
→ a

3
, (4.34)

for IRBF. Obtaining results (4.29), (4.30), (4.32) and (4.33) is straightforward.

For (4.31) and (4.34), one may need to replace the biharmonic operator with

Laplace ones, and the detailed process is described in Appendix.

As discussed earlier, the quality of approximations by the MQs is dependent on

both their spacing and width. For an easy interpretation, the MQ width a is

expressed in terms of a typical distance from the MQ centre to its neighbours,

denoted by h, as

a = βh, (4.35)

where β is a constant that can run from a small to large positive value. For a

given node distribution, the value of h can be determined. The advantage of

(4.35) lies in its simplicity with β being a dimensionless quantity.

For the node refinement (scheme resolution), the value of h is reduced. In

practice, the RBF width is then chosen to be smaller by, for example, keeping

β fixed. It was shown in (Flyer and Barnett, 2016), this common practice may

lead to the issue of stagnation errors (i.e. failure of convergence in the h → 0

limit), which can be overcome by adding polynomial terms to the interpolant

or keeping the RBF width fixed (i.e. fixed a). On the other hand, for a given

grid size (fixed h), one can change β to improve the RBF approximations. In

this case, it is expected that the addition of polynomial terms will not affect

the solution accuracy very much. In this study, we focus on investigating the

effects of β on the solution accuracy for a given grid size. A wide range of
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β is explored by using the extended precision approach. Grid refinements are

also studied; however, only relatively coarse grids are considered, for which

the formula (4.35) can be applied without causing stagnation errors. Later it

will be shown that the simple formula (4.35) can produce results that are very

close to the ones corresponding to the best values of β over a range of grid sizes.

Numerical experiments indicate that IRBFs lead to matrices of higher condition

numbers than DRBFs. For a smooth function, accurate approximations by the

former may thus occur earlier as β increases. In this regard, the comparison

of accuracy between DRBFs and IRBFs should be made over a wide range

of β rather than at its some particular values. For the presented numerical

examples, in comparing the two RBF methods, a range of β as wide as possible

is considered.

4.3 IRBF Hermite-based method: global scheme

Consider a differential problem

Lf(x) = b(x), x ∈ Ω, (4.36)

Bf(x) = s(x), x ∈ Γ, (4.37)

where Ω and Γ are a bounded domain and its boundary, L and B some linear

differential operators, and b and s given functions. Let N be the total number

of nodes and Nb the number of boundary nodes (Nb < N). The field variable

is approximated as

f(x) =

Nb∑

j=1

wjBxjG(‖x−xj‖)+
N∑

j=Nb+1

wjLxjG(‖x−xj‖)+
M∑

k=1

vkpk(x), (4.38)

where G is given by (4.10) for IRBFs and (4.2) for DRBFs, the notations Lxj

and Bxj mean that L and B act on G considered as a function of the vari-

able xj , and {pk(x)}Mk=1 is a basis for the M-dimensional space (
∏d

m) of all
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d-variate polynomials that have degree less than or equal to m. The degree of

the additional polynomial in (4.38) is dependent on the form of G employed,

for example, m = 2 for (4.10) and m = 0 for (4.2) as shown in Section 4.2. To

account for the addition of polynomial terms, the following extra constraints

are imposed

Nb∑

j=1

wjBxpk(x)|x=xj
+

N∑

j=Nb+1

wjLxpk(x)|x=xj
= 0, k = 1, 2, . . . ,M. (4.39)

Substitution of (4.38) into (4.37) and (4.36) yield

Nb∑

j=1

wjBxBxjG(‖x− xj‖)+
N∑

j=Nb+1

wjBxLxjG(‖x− xj‖)+

M∑

k=1

vkBxpk(x) = s(x), (4.40)

Nb∑

j=1

wjLxBxjG(‖x− xj‖)+
N∑

j=Nb+1

wjLxLxjG(‖x− xj‖)+

M∑

k=1

vkLxpk(x) = b(x). (4.41)

Collocation of (4.40) at the boundary points and of (4.41) at the interior grid

nodes, together with (4.39), result in a set of (N +M) algebraic equations for

(N +M) unknowns, namely {wj}Nj=1 and {vk}Mk=1, in which the system matrix

is symmetric.

When the augmented polynomial is excluded from the RBF approximations,
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equations (4.40), (4.41) and (4.39) reduce to

Nb∑

j=1

wjBxBxjG(‖x− xj‖) +
N∑

j=Nb+1

wjBxLxjG(‖x− xj‖) = s(x), (4.42)

Nb∑

j=1

wjLxBxjG(‖x− xj‖) +
N∑

j=Nb+1

wjLxLxjG(‖x− xj‖) = b(x), (4.43)

which lead to a set of only N algebraic equations for N unknowns.

4.3.1 ODEs

We apply the methods to the following second-order ODE d2f/dx2 = −4π2 sin(2πx),

0 ≤ x ≤ 1, subject to Dirichlet boundary conditions. The exact solution can be

verified to be ue(x) = sin(2πx).

Equations (4.40), (4.41) and (4.39) take the form

2∑

j=1

wjG(‖x− xj‖) +
N∑

j=3

wj
d2G(‖x− xj‖)

dx2j
+

3∑

k=1

vkpk(x) = sin(2πx),

(4.44)

2∑

j=1

wj
d2G(‖x− xj‖)

dx2
+

N∑

j=3

wj
d4G(‖x− xj‖)

dx2dx2j
+

3∑

k=1

vk
d2pk(x)

dx2
= −4π2 sin(2πx),

(4.45)

2∑

j=1

wjpk(xj) +

N∑

j=3

wj
d2pk(xj)

dx2
= 0, k = {1, 2, 3}. (4.46)

When the RBF approximations are not augmented with the polynomial terms,

the above equations become

2∑

j=1

wjG(‖x− xj‖) +
N∑

j=3

wj
d2G(‖x− xj‖)

dx2j
= sin(2πx), (4.47)

2∑

j=1

wj
d2G(‖x− xj‖)

dx2
+

N∑

j=3

wj
d4G(‖x− xj‖)

dx2dx2j
= −4π2 sin(2πx). (4.48)
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We first compare the numerical performance of (4.44)-(4.46) and (4.47)-(4.48).

The problem domain is discretised using a set of uniformly distributed points.

We take h in (4.35) as the grid size. In the global scheme, the RBF approxima-

tions involve all nodes and therefore their matrix condition number is expected

to grow rapidly. Values of β here should be chosen to be relatively small.

The IRBF and DRBF results concerning the relative L2 error, denoted by Ne,

against the RBF width, displayed through β, are depicted in Figure 4.2, show-

ing that the IRBF/DRBF solutions of the two systems (i.e. (4.44)-(4.46) and

(4.47)-(4.48)) have similar behaviour. However, for IRBFs, the one without

the augmented polynomial is slightly more accurate. It appears that adding

polynomial terms to the interpolants for the case of a fixed h does not lead to

an improvement in accuracy. For both cases (i.e. with and without the poly-

nomial terms), we did not experience any singular interpolation matrix over a

full range of the RBF width. These observations are consistent with remarks of

other computational works in the RBF literature. In Figure 4.3, results by the
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Figure 4.2: Second-order ODE, 151 grid nodes: Effects of the augmented poly-
nomial in the RBF approximations on their solution accuracy over a wide range
of the RBF width by the global DRBF (left) and IRBF (right) Hermite-based
methods

IRBF and DRBF Hermite-based methods are compared for a given grid size.

It can be seen that the former is generally more accurate than the latter over

a wide range of β. As β increases, the computed errors of the two methods

fluctuate due to their higher matrix condition numbers. Several algorithms to

extend the working range of the RBF width have been proposed in the liter-
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Figure 4.3: Second-order ODE, 151 grid nodes, double/extended precision: Ef-
fects of the RBF width on the solution accuracy by the global Hermite-based
methods.

ature (Fornberg and Wright, 2004; Wright and Fornberg, 2006; Huang et al.,

2007; Huang et al., 2010; Rashidinia et al., 2016; Mai-Duy et al., 2017). In this

work, we employ the extended precision approach. Our programs are written

in Matlab with function vpa being utilised to increase the number of significant

figures from 16 to 50. As shown in Figure 4.3, the calculation is now stable

over the full range of the RBF width. Results obtained indicate that the use

of IRBFs leads to a significantly improved accuracy from a small to large RBF

width. The best accuracy by the two methods corresponds to similar values of

β. Figure 4.4 displays the effects of the grid size on the solution accuracy by the

proposed global Hermite-based method for several values of β. The domain is

represented by uniform grids, {101, 111, · · · , 1001}. A relation between Ne and

h in the log-log scale is fitted by a linear function with its slope being regarded

as an average rate of convergence. The IRBF solution converges as O(h2.83) for
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Figure 4.4: Second-order ODE, double precision: Grid convergence by the pro-
posed global Hermite-based method for several values of β.

β = 1, O(h2.96) for β = 3 and O(h2.90) for β = 5. Highly accurate results are

obtained; the relative L2 error is reduced to O(10−10) for β = 5. Also, con-

stant values of β produce similar rates of convergence; larger β corresponds to a

higher level of accuracy. These simple behaviours provide some useful guidance

on how to choose the RBF width in practical applications.

4.3.2 PDEs

We apply the methods to Poisson’s equation with its driving function b =

−2π2 sin(πx) sin(πy) and 0 ≤ x, y ≤ 1. The exact solution can be verified to

be fe(x, y) = sin(πx) sin(πy) from which one can obtain Dirichlet boundary

conditions.
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For Poisson’s equation, Lx and Lxj take the form

Lx =
∂2

∂x2
+

∂2

∂y2
, (4.49)

Lxj =
∂2

∂x2j
+

∂2

∂y2j
. (4.50)

Since x and xj can be interchanged in defining the input r of MQ, one has

LxLxj =

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2j
+

∂2

∂y2j

)
,

=
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
=

∂4

∂x4j
+ 2

∂4

∂x2j∂y
2
j

+
∂4

∂y4j
. (4.51)

We employ four set of unstructured nodes to represent the problem domain

(Figure 4.5). The MQ width is defined here by assuming that the nodes are of

uniform distribution; the distance h in (4.35) is chosen as the equivalent grid

size (i.e. h = 1/(
√
N − 1). Figure 4.6 shows the solution accuracy Ne versus

the grid size h for some constant values of β. Similar remarks to ODEs can

be made here. It can be seen that highly accurate results are obtained. The

relative L2 error is reduced to O(10−7) for β = 4. As β increases, the level of

accuracy is clearly improved; however, their average rates are only about 3, e.g.

3.51 for β = 1, 3.45 for β = 2, 3.22 for β = 3, and 3.10 for β = 4, probably due

to the use of unstructured nodes. In Figure 4.6, for large β, local rates/slopes

are observed to vary with the grid size. Since global approximations result in

full matrices, their computations can be very expensive. The global schemes

are thus not suitable for large-scale applications. There is a need for having

local schemes, which is discussed next.
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Figure 4.5: Domain discretisations using 52, 185, 697 and 2705 unstructured
nodes.

4.4 IRBF Hermite-based method: local scheme

In a local version, only neighbouring nodes are activated for the approximation

at a point. Consider a stencil associated with node i. For the Hermite type,

some nodes on the stencil are selected to include information about ODE/PDE

(Lf = b, L a linear differential operator, b a given function). Let n be the total

number of nodes of the stencil and q the number of special nodes just mentioned

(q < n). A function is approximated as

f(x) =
n∑

j=1

wjG(‖x− xj‖) +
q∑

j=1

w̄jLx̄jG(‖x− x̄j‖) +
M∑

k=1

vkpk(x), (4.52)

where the notation Lx̄j means that L acts on G considered as a function of x̄j ,

{x̄j}qj=1 is a subset of {xj}nj=1, and {pk(x)}Mk=1 is a basis for the M-dimensional

space (
∏d

m) of all d-variate polynomials that have degree less than or equal
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Figure 4.6: PDE, double precision: Grid convergence by the proposed global
Hermite-based method for several values of β

to m. To account for the addition of polynomial terms, the following extra

constraints are imposed

n∑

j=1

wjpk(xj) +

q∑

j=1

w̄jLxpk(x)|x=x̄j
= 0, k = 1, 2, . . . ,M. (4.53)

Unlike Lagrange interpolation (function values only), expression (4.52) contains

q extra coefficients (i.e. {w̄j}qj=1) that allow for the process of converting the
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RBF coefficient space into the physical space to take the form




f(x1)
...

f(xn)

Lxf(x̄1)
...

Lxf(x̄q)

0
...

0




=




C11 C12 C13

C21 C22 C23

C31 C32 C33







w1

...

wn

w̄1

...

w̄q

v1
...

vM




, (4.54)

where the first n equations are for function values, the next q equations for

derivative values (i.e. ODE/PDE), the last M equations for the extra con-

straints to account for the addition of polynomial terms, the square matrix on

RHS is referred to as a conversion matrix, denoted by C, and

(
C11
)
ij

= G(‖xi − xj‖), 1 ≤ i ≤ n, 1 ≤ j ≤ n, (4.55)

(
C12
)
ij

= Lx̄jG(‖xi − x̄j‖), 1 ≤ i ≤ n, 1 ≤ j ≤ q, (4.56)

(
C13
)
ij

= pj(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ M, (4.57)

(
C21
)
ij

= LxG(‖x− xj‖)x=x̄i
, 1 ≤ i ≤ q, 1 ≤ j ≤ n, (4.58)

(
C22
)
ij

= LxLx̄jG(‖x− x̄j‖)x=x̄i
, 1 ≤ i ≤ q, 1 ≤ j ≤ q, (4.59)

(
C23
)
ij

= Lxpj(x)|x=x̄i
, 1 ≤ i ≤ q, 1 ≤ j ≤M, (4.60)

(
C31
)
ij

= pi(xj), 1 ≤ i ≤ M, 1 ≤ j ≤ n, (4.61)

(
C32
)
ij

= Lxpi(x)|x=x̄j
, 1 ≤ i ≤M, 1 ≤ j ≤ q, (4.62)

(
C33
)
ij

= 0, 1 ≤ i ≤M, 1 ≤ j ≤M. (4.63)

When the RBF approximations are not augmented with the polynomial terms,
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the conversion system reduces to




f(x1)
...

f(xn)

Lxf(x̄1)
...

Lxf(x̄q)




=


 C11 C12

C21 C22







w1

...

wn

w̄1

...

w̄q




, (4.64)

It can be seen that C is a symmetric matrix of dimensions [n + q + M,n +

q + M ] if the polynomial terms are included and of dimensions [n + q, n +

q] if the polynomial terms are excluded. Making use of (4.54) and (4.64), a

function and its derivatives at a point on the stencil can be expressed in terms

of function values at {xj}nj=1, which are nodal unknowns to be found, and

derivative values at {x̄j}qj=1, which can be derived from the ODE/PDE. By

collocating the ODE/PDE at the interior grid nodes, and then replacing the

obtained nodal derivative values with nodal variable values on their associated

stencils, the ODE/PDE is transformed into a set of algebraic equations, which

can be solved for the values of f at the grid nodes.

4.4.1 ODEs

We apply the methods to the following second-order ODE

d2f/dx2 = exp(−40x) (1500 sin(10x)− 800 cos(10x)) , 0 ≤ x ≤ 1,

subject to Dirichlet boundary conditions. The exact solution can be verified

to be fe(x) = sin(10x) exp(−40x). The domain is represented by sets of equi-

spaced nodes. A stencil associated with node xi is proposed to have 3 nodes.

We take the distance h as the grid size. In contrast to the global approximation

case, the value of β here can be chosen to be much larger.
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Figure 4.7 shows the effects of β on the solution accuracy Ne. Results by the

DRBF Hermite-based method are also included. For both methods, systems are

tri-diagonal and of the same dimensions. It can be seen that IRBF outperforms

DRBF over a wide range of β. As β increases, the RBF approximations can

be more accurate but its interpolation matrix condition number also grows

quickly, making the computed error Ne fluctuating at large values of β. One

can bypass this issue by using extended precision in computation. In (Mai-Duy

et al., 2017), numerical investigations indicated that the condition number of

the conversion matrix grows much faster than that of the final system matrix.

Here, we only employ extended precision for constructing and inverting small

conversion matrices (other computational parts including the solving of the

final system of equations are conducted using double precision). The obtained

results are also depicted in Figure 4.7. At low values of β, where the matrix

is not ill-conditioned, double and extended precision basically yield the same

errors. At large values of β, by extending the calculation precision, fluctuations

in the computed error are eliminated.

Table 4.1 displays the computed solutions by several numerical methods. When

compared to the classical central difference scheme, the compact approximations

produce much more accurate results. Both compact FD (Collatz, 1966) and

IRBF methods are able to yield high rates of convergence (about fourth-order

accuracy). To this problem, since its exact solution is available, the best values

of β can be determined and their corresponding solutions are also included in

the table, showing that: (i) RBF accuracy can be further improved by varying

β; and (ii) the simple formula (4.35) can work well for relatively-coarse grids.

4.4.2 PDEs

Like the global version, the present local methods are also meshless. However,

our attention will be focused on the case of using a Cartesian grid to represent
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Figure 4.7: Second-order ODE, N = 501, double/extended precision: Effects of
the RBF width (represented through β) on the solution accuracy by the local
Hermite-based methods. Both DRBF and IRBF schemes are examined over a
wide range of β
.

the problem domain. The main reason for us to pursue this kind of discretisation

lies in its economic pre-processing, easy implementation and its ability to work

with non-rectangular domains.

For 2D problems, a stencil associated with node xi is proposed to have 9 nodes




x3 x6 x9

x2 x5 x8

x1 x4 x7


 (4.65)

where the fifth node (i.e. x5) is a node i in a global numbering. Four nodes, 2,

4, 6 and 8 (i.e. nodes nearer to the stencil centre), are selected to include the

PDE information.
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Table 4.1: ODE, double precision: Relative L2 errors of the computed solu-
tions. Compact approximations outperform those based on the classical central
differences. Both compact FD and IRBF schemes are able to yield high rates
of convergence with respect to grid refinement. Given an analytic form of the
solution f , the best values of β can be determined numerically and their corre-
sponding solutions are also included for comparison purposes.

Nx ×Ny FDM Compact FDM Compact IRBF Compact IRBF
β = 20 optimal β

31× 31 1.9807e+00 3.4981e-01 3.4935e-01 3.2995e-01
51× 51 7.4623e-01 4.5186e-02 4.5034e-02 4.0292e-02
71× 71 3.8853e-01 1.1845e-02 1.1760e-02 1.0211e-02
91× 91 2.3735e-01 4.3536e-03 4.3270e-03 3.6870e-03
111× 111 1.5973e-01 1.9559e-03 1.9408e-03 1.6401e-03
131× 131 1.1473e-01 1.0043e-03 9.9094e-04 8.3703e-04
151× 151 8.6348e-02 5.6717e-04 5.4784e-04 4.7088e-04
171× 171 6.7319e-02 3.4403e-04 3.2732e-04 2.8486e-04
191× 191 5.3945e-02 2.2060e-04 2.1582e-04 1.8228e-04
211× 211 4.4191e-02 1.4788e-04 1.3573e-04 1.2193e-04

O(h1.96) O(h3.99) O(h4.02) O(h4.07)

For a stencil associated with an interior node that is near an irregular boundary

(e.g. curved boundary), it is proposed that the stencil consists of regular and

irregular nodes (Figure 4.10). Regular nodes are simply the intersection points

of the stencil grid lines, while irregular nodes are generated from the intersection

of the boundary and the stencil grid lines. As a result, for boundary stencils,

the number of nodes are typically greater than 9. The imposition of information

about PDE is also implemented at side nodes on the horizontal and vertical grid

lines (i.e. four nodes).

Poisson’s equation

A PDE to be employed is Poisson’s equation, where its driving function and

Dirichlet boundary conditions are derived from the following solution fe(x, y) =

e−6(x+y) cos(2πx) sin(2πy). Both rectangular and non-rectangular domains are



4.4 IRBF Hermite-based method: local scheme 82

100 101 102

β

10-5

10-4

10-3

10-2

10-1

N
e

DRBF, double precision

DRBF, extended precision

IRBF, double precision

IRBF, extended precision

Figure 4.8: Poisson’s equation, rectangular domain, 21 × 21, double/extended
precision: Effects of the RBF width (represented through β)
on the solution accuracy by the local Hermite-based methods. Both DRBF and
IRBF schemes are examined over a wide range of β.

considered. For the latter, a quarter of a circle is chosen (Figure 3.11).

The effects of the MQ width on the solution accuracy by the IRBF and DRBF

Hermite-based methods are displayed in Figure 4.8 for the rectangular domain,

and in Figure 4.12 for the non-rectangular domain. It can be seen that the

IRBF solutions are generally more accurate than DRBF solutions over a wide

range of β. As expected, at large values of β, there are some fluctuations in

the computed error Ne. To make the calculation stable, we employ extended

precision in forming the conversion matrix and computing its inverse. Since

other computational parts are carried out with double precision, a full range of

β is explored with a reasonable computational cost. With extended precision,

as shown in the two figures, fluctuations no longer occur in the computed error

at large values of β.
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Figure 4.9: Poisson’s equation, rectangular domain, β = 30, double precision:
Comparison of accuracy between the compact IRBF scheme and FDMs (central
difference (CD) and compact). The computed solution converges apparently
as O(h1.34), O(h4.11) and O(h4.11) for the CD, compact FD and compact IRBF
methods, respectively. The IRBF results at the best values of β are also included
for comparison purposes.

In Figure 4.9, results by the compact IRBF, central difference and compact

FD (Collatz, 1966) methods are displayed. Similar to second-order ODEs, the

compact approximations for PDEs outperform those based on the central dif-

ferences. The compact IRBF and FD methods yield high rates of convergence

(about fourth-order accuracy). Exploiting the exact solution, the best values

of β can be found. It can be seen that the use of a fixed β for relatively coarse

grids can lead to results that are very close to those corresponding to the best

values of β. Since the present (integrated) interpolation process is based on

analytic formulas as shown in Section 2.2, it is expected that this type of inter-

polation does not affect much the computational cost. As can be seen in Figure

4.9, compact FDM and compact IRBF achieve a similar level of accuracy. In

relation to computational time, the present compact IRBF consumes 0.936(s),
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Figure 4.10: Non-rectangular domain: a schematic diagram for boundary sten-
cils. The stencil, which is associated with node 5, consists of regular nodes:
(1,4,5,6,7,8,9) and irregular nodes: (10,11,12). The PDE is imposed at side
nodes: (11,4,6,8).

and compact FDM takes 0.933(s) (CPU Intel Xeon E31245 3.3 Mhz) for the

numerical solutions on grid sizes of 4× 4, 5× 5, · · · , 30× 30. As expected, the

computational costs by the two methods are shown to be similar.

For non-rectangular domains, the problem domain is simply embedded in a

rectangle that is discretised using Cartesian grids of 7 × 7, 9 × 9, · · · , 31 × 31.

Table 4.2 displays the results obtained by the compact IRBF scheme. The

solution converges as O(h3.88) for β = 16, O(h3.99) for β = 18 and O(h4.09) for

β = 20.
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Figure 4.11: Non-rectangular domain: The problem domain is embedded in
a rectangle that is then discretised by a Cartesian grid. Interior nodes are
grid nodes within the problem domain. Boundary nodes are generated by the
intersection of the grid lines and the boundary of the domain.

Convection-diffusion equation

We test the proposed local method with the following steady-state convection-

diffusion equation and boundary conditions

∂2f

∂x2
+
∂2f

∂y2
− Pe

∂f

∂x
= 0, 0 ≤ x, y ≤ 1, (4.66)

f(x, 0) = f(x, 1) = 0, 0 ≤ x ≤ 1, (4.67)

f(0, y) = sin(πy), f(1, y) = 2 sin(πy), 0 ≤ y ≤ 1, (4.68)

where Pe is the Péclet number. The exact solution to this problem is given by

fe(x, y) = exp(Pex/2) sin(πy) [2 exp(−Pe/2) sinh(σx) + sinh(σ(1− x))] / sinh(σ),
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Table 4.2: PDE, non-rectangular domain, double precision: Grid convergence
by the local IRBF Hermite-based scheme for several RBF widths .

Relative L2 error
Nx ×Ny β = 16 β = 18 β = 20
7× 7 1.8576e-02 1.8407e-02 1.8324e-02
9× 9 4.0162e-03 3.9526e-03 3.9217e-03
11× 11 1.4255e-03 1.3987e-03 1.3714e-03
13× 13 6.5265e-04 6.2664e-04 6.1840e-04
15× 15 3.5023e-04 3.3471e-04 3.2295e-04
17× 17 2.1138e-04 1.9490e-04 1.8655e-04
19× 19 1.3937e-04 1.2728e-04 1.2112e-04
21× 21 9.8276e-05 8.8445e-05 8.0223e-05
23× 23 7.3275e-05 6.2924e-05 5.8075e-05
25× 25 5.6198e-05 4.8013e-05 4.4473e-05
27× 27 4.4900e-05 3.8746e-05 3.7525e-05
29× 29 3.6775e-05 3.1344e-05 2.4388e-05
31× 31 3.0377e-05 2.6381e-05 2.2324e-05

O(h3.88) O(h3.99) O(h4.09)

(4.69)

where σ =
√
π2 + P 2

e /4. As Pe increases, the boundary layer will be formed.

Its gradient becomes very steep at large Pe values, presenting a great challenge

for any numerical simulation. We simply employ uniform grids to represent

the problem domain. The optimal RBF width is observed to occur earlier with

respect to the RBF width when Pe increases from 10 to 100 (Figure 4.13). In

contrast to problems whose solutions are smooth, the most accurate approxi-

mation for convection-dominated problems takes place at relatively-low values

of the RBF width, where the RBF system is known to be stable. Note that all

smooth curves depicted here are obtained with double-precision computations.

By simply taking β = {10, 8, 6, 4} for Pe = {10, 20, 40, 80}, respectively, a fast

rate of convergence (i.e. about 4) is achieved (Figure 4.14). Figure 4.15 displays

the present RBF solutions for several Pe values. It can be seen that they are all

captured very well. At high Pe values, there are no oscillations in the solution
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Figure 4.12: Poisson’s equation, nonrectangular domain, double precision: Ef-
fects of the RBF width on the solution accuracy by the local Hermite-based
methods.

near the boundary layer.

4.5 Concluding remarks

In this chapter, we have introduced IRBFs into the Hermite interpolation

method for the numerical solution of ODEs/PDEs. Its main purpose is to

yield a new strong (collocation) form of IRBF whose interpolation matrices are

symmetric and non-singular. Several schemes based on global and local ap-

proximations for rectangular and non-rectangular domains are presented. The

extended precision approach is utilised to extend the working range of the IRBF

width for a given grid size. Numerical examples show an improvement in accu-

racy achieved over conventional compact IRBF Hermite-based methods. The

local version is a preferred option for the handling of large-scale problems as
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Figure 4.13: Convection-diffusion equation, 33 × 33, double precision: Effects
of the RBF width on the solution accuracy for several Péclet numbers by the
proposed local Hermite-based method.

it possesses several attractive features including: (i) sparse system matrix; (ii)

fast convergence rate; and (iii) its ability to also work with large values of the

RBF width with a relatively low computational cost. Highly accurate results

are obtained using relatively coarse grids.

Appendix

The following equation is utilised to derive the limit of the fourth-order cross

derivative of function G as r → 0

∇4G = ∇2∇2G, (4.70)

or

∂4G

∂x4
+ 2

∂4G

∂x2∂y2
+
∂4G

∂y4
=

(
∂2

∂x2
+

∂2

∂y2

)(
∂2G

∂x2
+
∂2G

∂y2

)
. (4.71)
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Figure 4.14: Convection-diffusion equation, double precision: Effects of the
grid size on the solution accuracy for several Péclet numbers by the proposed
local Hermite-based method. Values of β used are {10, 8, 6, 4} for Pe =
{10, 20, 40, 100}, respectively. The solution converges as O(h4.24) for Pe = 10,
O(h4.23) for Pe = 20, O(h4.34) for Pe = 40 and O(h4.61) for Pe = 100.

Taking into account

(
∂r

∂x

)2

+

(
∂r

∂y

)2

= 1,
∂2r

∂x2
+
∂2r

∂y2
=

1

r
, (4.72)

the RHS of (4.71) can be rewritten in terms of derivatives of G with respect to

r only, and the equation becomes

∂4G

∂x4
+ 2

∂4G

∂x2∂y2
+
∂4G

∂y4
=
d4G

dr4
+

2

r

d3G

dr3
− 1

r2
d2G

dr2
+

1

r3
dG

dr
, (4.73)

from there, as r → 0, one can acquire

∂4G

∂x2∂y2
→ − 1

a3
for DRBF,

∂4G

∂x2∂y2
→ a

3
for IRBF.
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Figure 4.15: Convection-diffusion equation, double precision: Numerical solu-
tions by the proposed local Hermite-based method using grid of 41 × 41 for
Pe = 10, 51× 51 for Pe = 20, 61× 61 for Pe = 40 and 71× 71 for Pe = 100



Chapter 5

Compact IRBF stencils for time

approximations

The CIRBF approach used for space discretisation has been reported in the

previous chapters as having the ability to produce a high level of accuracy.

However, for unsteady problems, if low order approximations (e.g. FD) are

employed for time derivative terms, the overall accuracy of numerical solutions

is still of a low order whatever the accuracy of the spatial discretisation scheme.

Therefore, in this chapter, a new numerical procedure, based on high order

approximation (CIRBFs) to discretise both space and time is presented.

For space discretisations, compact five-point IRBF stencils are utilised. For time

discretisations, a two-point IRBF scheme is proposed, where the time derivative

is approximated in terms of not only nodal function values at the current and

previous time levels, but also nodal derivative values at the previous time level.

This allows functions other than a linear one to also be captured well on a time

step. The use of the RBF width as an additional parameter to enhance the

approximation quality with respect to time is also explored. Various kinds of

test problems of heat transfer and fluid flows are conducted to demonstrate the

attractiveness of the present compact approximations.
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5.1 Introduction

Temporal discretisation is a mathematical technique applied to transient prob-

lems that occur in the fields of applied physics and engineering, which require

discretising the governing equations in both space and time. Such problems are

unsteady (e.g. flow problems) and, therefore, require solutions in which position

varies as a function of time. In using RBFs to solve differential problems, the

time derivative terms are usually discretised by means of low-order FDs, for

which small time steps are typically required.

In this study, we propose a discretisation procedure based on compact IRBF

stencils only for time-dependent heat and fluid flow problems in two dimensions.

An IRBF stencil is of two nodes and five nodes (Mai-Duy and Tran-Cong, 2013)

for time and space discretisations, respectively. The remainder of the chapter

is organised as follows. Section 5.2 gives a brief review of IRBFs and their

compact forms for space discretisations. Section 5.3 describes a new compact

two-point approximation based on IRBFs for time discretisations, and a numer-

ical procedure based on compact IRBF stencils only for solving time-dependent

differential problems. Numerical results are presented in Section 5.4. Section

5.5 concludes the chapter.

5.2 Compact approximation scheme

IRBFs have been used to construct the approximations on Cartesian grids rep-

resenting a domain of rectangular/non-rectangular shape (Mai-Duy and Tran-

Cong, 2013, 2007). Advantages of this approach lie in its economic preprocess-

ing. Consider a domain that is embedded in a Cartesian grid as shown in Figure

5.1. Grid points outside the domain (external points) and the internal points

that fall very close - within a small distance - to the boundary, are removed.

The remaining grid points are taken to be the interior nodes. The boundary
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nodes are points that are generated by the intersection of the grid lines with the

boundaries. In this work, second order differential problems are considered and

for a space discretisation a 5-point stencil associated with node (i, j) is employed

with nodes being locally numbered from left to right and from bottom to top

((i, j) ≡ 3) (Figure 5.1). Derivatives of the dependent variable f in the x and y

directions are approximated by IRBFs along the lines defined by 1− 3− 5 and

2 − 3 − 4, respectively. One can utilise the integration constants in the IRBF

formulation to incorporate some nodal derivative values in the approximations.

In the x direction, evaluation of (2.29) at (x1, x3, x5) and of (2.27) at (x1, x5)

using q = 2 result in

1      3     5

2

4

∂Ω

Ω

Figure 5.1: Domain of interest and its Cartesian-grid representation.

f̃ =


 I

B




︸ ︷︷ ︸

C

w̃, (5.1)

where

f̃ =
(
f1 f3 f5

∂2f1
∂x2

∂2f5
∂x2

)T
, (5.2)

w̃ =
(
w[x]1 w[x]3 w[x]5 c[x]1 c[x]2

)T
, (5.3)
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I =




I(0)
[x]1(x1) I(0)

[x]3(x1) I(0)
[x]5(x1) x1 1

I(0)
[x]1(x3) I(0)

[x]3(x3) I(0)
[x]5(x3) x3 1

I(0)
[x]1(x5) I(0)

[x]3(x5) I(0)
[x]5(x5) x5 1


 ,

and

B =


 I(2)

[x]1(x1) I(2)
[x]3(x1) I(2)

[x]5(x1) 0 0

I(2)
[x]1(x5) I(2)

[x]3(x5) I(2)
[x]5(x5) 0 0


 .

The system (5.1) can be solved for the unknown coefficient vector w̃, resulting

in

w̃ = C−1f̃ , (5.4)

where C−1 is the inverse of C.

Expressions for computing f and its derivatives at point x, where x1 ≤ x ≤ x5,

can then be obtained by substituting (5.4) into (2.29), (2.28) and (2.27) with

q = 2

f(x) =
[
I(0)
[x]1(x) I(0)

[x]3(x) I(0)
[x]5(x) x 1

]
C−1f̃ , (5.5)

∂f(x)

∂x
=
[
I(1)
[x]1(x) I(1)

[x]3(x) I(1)
[x]5(x) 1 0

]
C−1f̃ , (5.6)

∂2f(x)

∂x2
=
[
I(2)
[x]1(x) I(2)

[x]3(x) I(2)
[x]5(x) 0 0

]
C−1f̃ , (5.7)

which can be rewritten as

f (x) = φ1 (x) f1 + φ3 (x) f3 + φ5 (x) f5 + φ̄1 (x)
∂2f1
∂x2

+ φ̄5 (x)
∂2f5
∂x2

, (5.8)

∂f (x)

∂x
=
dφ1 (x)

dx
f1+

dφ3 (x)

dx
f3+

dφ5 (x)

dx
f5+

dφ̄1 (x)

dx

∂2f1
∂x2

+
dφ̄5 (x)

dx

∂2f5
∂x2

, (5.9)
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∂2f (x)

∂x2
=
d2φ1 (x)

dx2
f1+

d2φ3 (x)

dx2
f3+

d2φ5 (x)

dx2
f5+

d2φ̄1 (x)

dx2
∂2f1
∂x2

+
d2φ̄5 (x)

dx2
∂2f5
∂x2

.

(5.10)

At x = x3, they reduce to

∂f3
∂x

= µ1f1 + µ3f3 + µ5f5 + µ̄1
∂2f1
∂x2

+ µ̄5
∂2f5
∂x2

, (5.11)

∂2f3
∂x2

= η1f1 + η3f3 + η5f5 + η̄1
∂2f1
∂x2

+ η̄5
∂2f5
∂x2

, (5.12)

where µ1 = dφ1 (x3)/dx, µ3 = dφ3 (x3)/dx, µ5 = dφ5 (x3)/dx, µ̄1 = dφ̄1 (x3)
/
dx,

µ̄5 = dφ̄5 (x3)
/
dx, η1 = d2φ1 (x3)/dx

2, η3 = d2φ3 (x3)/dx
2, η5 = d2φ5 (x3)/dx

2,

η̄1 = d2φ̄1 (x3)
/
dx2, and η̄5 = d2φ̄5 (x3)

/
dx2.

Similarly, on the line 2− 3− 4, one obtains

∂f3
∂y

= ν2f2 + ν3f3 + ν4f4 + ν̄2
∂2f2
∂y2

+ ν̄4
∂2f4
∂y2

, (5.13)

∂2f3
∂y2

= θ2f2 + θ3f3 + θ4f4 + θ̄2
∂2f2
∂y2

+ θ̄4
∂2f4
∂y2

. (5.14)

With nodal derivative values being approximated in the form of (5.11), (5.12),

(5.13) and (5.14), collocating the ODE/PDE at grid nodes will lead to a sparse

system matrix, of which each row has only five entries. Note that the nodal

derivative values on the right hand side of (5.11)-(5.14) can be treated as known

quantities.

5.3 Proposed IRBF-based method

5.3.1 An IRBF-based two-point time discretisation scheme

In the proposed scheme, the variation of the dependent variable f on each

interval (time step) defined by two points, tk−1 and tk, is represented by IRBFs.
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Without loss of generality, we consider the following parabolic PDE

∂f

∂t
(x, y, t)−

(
∂2f

∂x2
(x, y, t) +

∂2f

∂y2
(x, y, t)

)
= b (x, y, t) , (5.15)

defined on the domain Ω and subjected to initial values and boundary condi-

tions. In (5.15), b is a given function (the source). Using the conventional finite

difference method, one can reduce the PDE to

fk
ij − fk−1

ij

∆t
−λ
(
∂2fk

ij

∂x2
+
∂2fk

ij

∂y2

)
−(1− λ)

(
∂2fk−1

ij

∂x2
+
∂2fk−1

ij

∂y2

)
= bk−1+λ

ij , (5.16)

where the subscript ij is used to denote the function at grid node (i, j), the

superscript k the function evaluated at the time level tk, ∆t = tk − tk−1, and

λ = 0 and λ = 1 correspond to the explicit and implicit schemes, respectively.

Our goal here is to construct an approximating function from RBFs, which can

capture a curved line rather than a straight line over two nodes tk−1 and tk. It

is proposed that the first-order derivative of f with respect to t is decomposed

into RBFs

∂f(t)

∂t
= wk−1Gk−1(t) + wkGk(t), (5.17)

where, for the MQ case, Gk−1(t) =
√
(t− tk−1)2 + a2k−1 andGk(t) =

√
(t− tk)2 + a2k

in which ak−1 and ak are the MQ widths. Expression for computing f is then

derived as

f (t) = wk−1Qk−1(t) + wkQk(t) + c1, (5.18)

where Qk−1 (t) =
∫
Gk−1 (t) dt, Qk (t) =

∫
Gk (t) dt, and c1 is the constant of

integration. It should be emphasised that function f in (5.18) is defined with

three coefficients (i.e. wk−1, wk and c1) over two nodal points (i.e. tk−1 and

tk). This allows one to add an extra equation in the system of converting the

RBF space into the physical space. Here we use this extra equation to include

the derivative value of f evaluated at the previous time level. Its details are as
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follows




fk

fk−1

∂f
∂t

k−1


 = Ct




wk−1

wk

c1


 , (5.19)

where Ct is the conversion matrix defined as

Ct =




Qk−1 (tk) Qk (tk) 1

Qk−1 (tk−1) Qk (tk−1) 1

Gk−1 (tk−1) Gk (tk−1) 0


 .

Making use of (5.19), the three coefficients can be expressed in terms of the

nodal variable values and the derivative value at the previous time level




wk−1

wk

c1


 = C−1

t




fk

fk−1

∂f
∂t

k−1


 . (5.20)

Expression for computing the first-order derivative at the current time level

thus becomes

∂f

∂t

k

=
[
Gk−1 (tk) Gk (tk) 0

]



wk−1

wk

c1


 , (5.21)

=
[
Gk−1 (tk) Gk (tk) 0

]
Ct−1




fk

fk−1

∂f
∂t

k−1


 , (5.22)

which can be rewritten as

∂f

∂t

k

= D1f
k +D2f

k−1 +D3ḟ
k−1, (5.23)
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with D1, D2, D3 being computed from the RBFs and the inverse of Ct - they
are known values. The time derivative term is now expressed in term of values

of f at tk−1 and tk (i.e. fk−1 and fk) and its time derivative at tk−1 (i.e. ∂f
∂t

k−1

or simply ḟk−1). An alternative to the discretisation scheme (5.16) is

D1fij
k+D2fij

k−1+D3ḟ
k−1
ij −λ

(
∂2fij
∂x2

k

+
∂2fij
∂y2

k
)
−(1− λ)

(
∂2fij
∂x2

k−1

+
∂2fij
∂y2

k−1
)

= bk−1+λ
ij .

(5.24)

As shown in Figure 5.2, a function approximated by IRBFs on a time step

can be of nonlinear form. It is expected that larger time steps can be used in

simulating time-dependent differential problems, where the slope of the solution

varies between time levels.

t

f

∂f
∂t

k−1
fk−1fk

tk−1tk

Figure 5.2: Information used to approximate the time derivative term on a time
step includes the variable values at tk−1 and tk, and the derivative value at tk−1.

5.3.2 An IRBF-based space-time discretisation scheme

The combination of the proposed compact 2-point stencil for time and the

presented compact 5-point stencil for space results in a numerical procedure,

which is based on IRBFs only, for solving time-dependent differential problems.
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With the explicit scheme (i.e. λ = 0), the calculation is based on the solution

of (5.12) and (5.14) evaluated at the previous time level

− η̄1
∂2f1
∂x2

k−1

+
∂2f3
∂x2

k−1

− η̄5
∂2f5
∂x2

k−1

= η1f
k−1
1 + η3f

k−1
3 + η5f

k−1
5 , (5.25)

− θ̄2
∂2f2
∂y2

k−1

+
∂2f3
∂y2

k−1

− θ̄4
∂2f4
∂y2

k−1

= θ2f2
k−1 + θ3f3

k−1 + θ4f4
k−1.

(5.26)

These two equations for nodal derivative values lead to systems of tridiagonal

algebraic equations on the x and y grid lines that can be solved efficiently

by the Thomas algorithm. Note that nodal values of second derivatives on

the boundary can be calculated using any 1D approximation scheme on their

associated grid lines. In some cases such as rectangular domains, instead of using

1D approximations, one can directly derive these values from the governing

equation and the given boundary conditions.

With the implicit schemes (i.e. 0 < λ ≤ 1), there are three unknowns at an

interior grid node (i.e. values of f and its second derivatives in the x and y

directions). A set of three algebraic equations needed for each node consists of

the two equations (5.12) and (5.14) evaluated at the current time level, i.e.

− η̄1
∂2f1
∂x2

k

+
∂2f3
∂x2

k

− η̄5
∂2f5
∂x2

k

= η1f
k
1 + η3f

k
3 + η5f

k
5 , (5.27)

− θ̄2
∂2f2
∂y2

k

+
∂2f3
∂y2

k

− θ̄4
∂2f4
∂y2

k

= θ2f2
k + θ3f3

k + θ4f4
k. (5.28)

and the equation directly derived from the PDE (i.e. equation (5.24)). It is

possible to combine these three equations to form two tridiagonal algebraic

equations through the implicit elimination approach as discussed in (Mai-Duy

and Tran-Cong, 2013).
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5.4 Numerical examples

In this study, IRBFs are implemented with the MQ function in the form of

Gi(α) =
√

(α− ci)2 + a2i , (5.29)

where ci and ai are the centre and the width of the ith MQ, respectively and α

can be x or y in the spatial approximation and t in the temporal approximation.

The MQ width is simply chosen according to the relation

ai = βsdi for space, (5.30)

ai = βt∆t for time, (5.31)

where βs and βt are positive values, di the smallest distance between the centre

ci and its neighbours, and ∆t the time step. Different types of time-dependent

problems are chosen to study the performance of the proposed numerical proce-

dure. The first three examples are concerned with the heat transfer, convection-

diffusion and shallow water equations, for which analytic solutions are available.

In the fourth (final) example, the proposed method is applied for the simulation

of natural convection flows in the region between a square outer cylinder and

a circular inner cylinder. Some standard FD schemes are also employed where

appropriate to provide the base for the evaluation of accuracy of the proposed

time stencil. Note that a distinguishing feature of the RBF solution is that its

accuracy can be controlled not only by the grid size/time step but also by the

RBF width. For all numerical examples, the problem domain is simply discre-

tised using a uniform Cartesian grid. The value of di in (5.30) thus becomes a

grid size. In the case of curved boundaries, a distance to the boundary used for

the removing of interior nodes is chosen as di/8. When the analytic solution is

available, the numerical error is measured in the form of:



5.4 Numerical examples 101

1. Discrete relative L2 norm

Ne =

√∑m
i=1(f

e
i − fi)2√∑m

i=1(f
e
i )

2
, (5.32)

2. Root-mean-square error (RMSE)

RMSE =

√√√√ 1

nt

nt∑

i=1

(f e
i − fi)

2, (5.33)

3. Maximum of absolute error (MAE)

MAE = ‖f e
i − fi‖max, (5.34)

where m is the number of nodal points, nt the number of time steps, and f e and

f respectively denote the exact and approximate solutions. In the last example,

the flow is considered to reach the steady state when the following condition is

satisfied

CM =

√∑nip

i=1

(
fk
i − fk−1

i

)2
√∑nip

i=1

(
fk
i

)2 < ǫ, (5.35)

where nip is the number of interior points, k the time level, f the stream function

and ǫ the tolerance. In this study, ǫ is taken to be 10−12.

5.4.1 Example 1: Parabolic PDEs

One dimensional space

The proposed method is first verified in the following PDE

∂f

∂t
(x, t) =

∂2f

∂2x
(x, t) + b (x, t) , 0 ≤ x ≤ 1, (5.36)
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with b (x, t) = 50xe50t. Its exact solution is given by

f e(x, y, t) = xe50t, (5.37)

from which one can derive the initial values and Dirichlet boundary conditions.

As shown in Figure 5.3, function f grows very quickly with time. To assess

t

f
(x
,t
)

Figure 5.3: Example 1.1, parabolic PDE: Variation of f(x, t) with time at
x = 0.5.

accuracy of the time discretisation only, we approximate the time derivative

term in (5.36) explicitly using the forward differences and the proposed compact

time stencils, and employ the same spatial approximation for the two schemes.

The second derivative ∂2f/∂2x is approximated by compact IRBF stencils on

a set of 10 nodes with βs = 3.5. Figure 5.4 displays the solution error by the

two schemes at ∆t = 10−3. It can be seen that the IRBF solution is much more

accurate than the FD one. To achieve the same accuracy level of the IRBF time

scheme, as shown in Figure 5.5, the FD time scheme needs a much smaller time

step (i.e. ∆t = 10−6). The obtained results of this example demonstrate that
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the proposed compact time stencil has the ability to work with relatively large

time steps for a given accuracy.

t

N
e

Figure 5.4: Example 1.1, parabolic PDE, spatial compact IRBF stencils, ∆t =
10−3: Comparison of the solution accuracy between the FD (‘−’) and IRBF (‘-
-’, βt = 18) time discretisations.

Two dimensional space

The PDE to be considered here is in the form of

∂f

∂t
(x, y, t)−

(
∂2f

∂x2
(x, y, t) +

∂2f

∂y2
(x, y, t)

)
= 3et sin (x) sin (y) , (5.38)

The exact solution is given by

f e(x, y, t) = sin(x) sin(y)et. (5.39)



5.4 Numerical examples 104

t

N
e

Figure 5.5: Example 1.1, parabolic PDE, spatial compact IRBF stencils: Com-
parison of the solution accuracy between the FD (‘·’, ∆t = 10−6) and the IRBF
(‘×’, ∆t = 10−3, βt = 18) time discretisations.

This function grows exponentially with time and thus provides a good test for

the proposed compact time stencil. The initial values and Dirichlet boundary

conditions can be derived from (5.39).

We consider two types of domains, a unit square and a multiply-connected

domain that is a region lying between a unit square and a circle of radius 0.2.

The explicit approach is employed to obtain the numerical solutions of (5.38).

For the unit square, to examine the accuracy of the proposed compact time

stencils, we also implement the forward differences. These two time approxi-

mation schemes are employed with the same time step of 10−3 and the same

spatial approximation that is based on central differences on a grid density of

10× 10. Figure 5.6 shows that a much improved accuracy is obtained with the

proposed scheme (βt = 12). It is noted that the accuracy is computed over the
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whole spatial domain. As also shown in the figure, a further improvement can

be achieved by replacing the spatial central differences with the compact 5-node

IRBF stencils using βs = 3.5. For the multi-connected domain, because of its

t

N
e

Figure 5.6: Example 1.2, parabolic PDE, rectangular domain, ∆t = 10−3: Nu-
merical errors obtained by the FD time-FD space (‘·−’), IRBF time-FD space
(‘−’) and IRBF time-IRBF space (‘- -’) discretisations.

non-rectangular shape, we only employ the compact 5-node IRBF stencils for

the spatial approximation. The obtained results on a grid density of 22 × 22

and with ∆t = 10−4 are displayed in Figure 5.7. Again, it can be seen that

results by the proposed compact time stencil are more accurate than those by

the forward differences.

5.4.2 Example 2: Convection-Diffusion equations

The proposed method is further verified with the convection-diffusion equations

in one and two dimensional space.
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t

N
e

Figure 5.7: Example 1.2, parabolic PDE, non-rectangular domain, spatial com-
pact IRBF stencils, ∆t = 10−4 and βt = 10: Numerical errors obtained by the
FD time (‘−’) and IRBF time (‘- -’) discretisations.

One dimensional space

Consider the following equation

∂f

∂t
(x, t)+f (x, t)

∂f

∂x
(x, t) =

∂2f

∂x2
(x, t)+2 sin (x) et+sin (x) cos (x) e2t, (5.40)

on an interval [0, 1] with the initial and boundary conditions

f (x, 0) = sin (x) , (5.41)

f (0, t) = 0, (5.42)

f (1, t) = sin (1) et. (5.43)

The exact solution to this problem can be verified to be f e(x, t) = sin(x)et.
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We employ compact 3-point IRBF stencils on a grid of 10 nodes with βs = 3.5 for

the spatial approximation, and compact 2-point IRBF stencils for the temporal

approximation. Attention here is given to the effects of the RBF width in the

time domain on the solution accuracy. The obtained results at a time step

of 10−3 are shown in Figure 5.8. Results by the forward differences are also

included for comparison purposes. It can be seen that better accuracy can be

achieved by changing the RBF width. The effect of increasing βt here is similar

to the effect of reducing ∆t however, changing βt does not lead to any increase

in computational cost.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-8

10-7

10-6

10-5

10-4

FD time

IRBF time (
t
=10)

IRBF time (
t
=12)

IRBF time (
t
=15)

IRBF time (
t
=17)

t

N
e

Figure 5.8: Example 2.1, 1D convection-diffusion equation, ∆t = 10−3: Effect
of the temporal RBF width, represented through βt (βt= 10, 12, 15, 17), on
the IRBF solution accuracy. Results by the conventional FD method are also
included.



5.4 Numerical examples 108

Two dimensional space

An unsteady convection-diffusion equation in two dimensional space for a vari-

able f can be expressed as

∂f

∂t
(x, y, t)+cx

∂f

∂x
(x, y, t)+cy

∂f

∂y
(x, y, t) = dx

∂2f

∂x2
(x, y, t)+dy

∂2f

∂y2
(x, y, t)+b (x, y, t) .

(5.44)

Here, we choose cx = cy = 0.01, dx = dy = 1 and

b (x, y, t) = 3 sin (x) sin (y) r + 0.01r (cos (x) sin (y) + cos (y) sin (x)) .

The domain of interest is of [0, 1]×[0, 1] and the initial and boundary conditions

are given by

u (x, y, 0) = sin (x) sin (y) , (5.45)

u (0, y, t) = u (x, 0, t) = 0, (5.46)

u (1, y, t) = sin (1) sin (y) r, (5.47)

u (x, 1, t) = sin (x) sin (1) r, (5.48)

where

r = 1 + t+
t2

2
+
t3

6
+
t4

24
+

t5

120
.

This problem has the following exact solution

f e(x, t) = sin(x) sin(y)r. (5.49)

The problem domain is represented by a Cartesian grid of 10 × 10. Other

parameters employed are βs = 3.5 and ∆t = 10−3. As shown in Figure 5.9,

with the same spatial approximation employed, the proposed compact time

scheme outperforms the conventional forward differences. Similar remarks to

the case of one dimensional space can also be made here. In particular, the
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solution accuracy can be enhanced by changing the MQ width (βt) without any

additional computational cost.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-8

10-7

10-6

10-5

10-4

10-3

FD time

IRBF time (
t
=3)

IRBF time (
t
=7)

IRBF time (
t
=10)

IRBF time (
t
=12)

t

N
e

Figure 5.9: Example 2.2, 2D convection-diffusion equation, ∆t = 10−3: Effect of
the temporal RBF width, represented through βt (βt= 3, 7, 10, 12), on the IRBF
solution accuracy. Results by the conventional FD method are also included.

5.4.3 Example 3: Shallow water equations (SWEs)

In the case of problems concerning a thin layer (compared to its length scale)

of fluid of constant density in hydrostatic balance, bounded from below by the

bottom topography such as a sea floor and from above by a free surface, the

shallow water equations (SWEs) are utilised. SWEs are a system of hyperbolic

partial differential equations (PDEs) governing the flow of water in an area in

which the horizontal dimension significantly exceeds the depth such as coastal

regions, estuaries, rivers and channels, and horizontal velocity that dominates

the flow field. The vertical momentum exchange is negligible and the vertical
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velocity component w is a lot smaller than the horizontal components u and v.

These equations arise from the basic equations of fluid mechanics for an inviscid

and incompressible fluid. For an incompressible fluid, the change in the density

of a fluid is zero, which means that

dρ

dt
= 0. (5.50)

The continuity equation becomes

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (5.51)

where velocity field ~u(~x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) .

Integrating this equation over the vertical extent of the fluid yields

∫ zb+h

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0, (5.52)

where zb is the height of the bed surface.

Leibniz’ Theorem

∂

∂t

∫ b(y,t)

a(y,t)

f(x, y, t)dx =

∫ b(y,t)

a(y,t)

∂f

∂t
dx− f(a, y, t)

∂a

∂t
+f(b, y, t)

∂b

∂t
. (5.53)

Applying this theorem, we have

∫ zb+h

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0

⇒
∫ zb+h

zb

∂u

∂x
dz+

∫ z0+h

z0

∂v

∂y
dz+

∫ zb+h

zb

∂w

∂z
dz = 0

⇒ ∂

∂x

∫ zb+h

zb

udz − u|zb+h

∂(zb + h)

∂x
+ u|zb

∂zb
∂x

+
∂

∂y

∫ zb+h

zb

vdz − v|zb+h

∂(zb + h)

∂y
+ v|zb

∂zb
∂y

+ w|zb+h
zb

= 0

⇒ ∂

∂x

∫ zb+h

zb

udz+
∂

∂y

∫ zb+h

zb

vdz− u|zb+h

∂(zb + h)

∂x
− v|zb+h

∂(zb + h)

∂y
+w|zb+h
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+u|zb
∂zb
∂x

+ v|zb
∂zb
∂y

− w|zb = 0

⇒ ∂

∂x

∫ zb+h

zb

udz +
∂

∂y

∫ zb+h

zb

vdz +
∂h

∂t
= 0.

Defining the average velocity over the depth of vertical extent in x and y, we

have

∫ zb+h

zb

udz = ūh, (5.54)

∫ zb+h

zb

vdz = v̄h. (5.55)

The first of three two-dimensional depth-averaged shallow water wave equations

is

∂(ūh)

∂x
+
∂(v̄h)

∂x
+
∂h

∂t
= 0. (5.56)

The momentum equation of motion can be used to obtain the remaining two di-

mensional shallow water equations. The momentum equations for a Newtonian

fluid with constant density are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
, (5.57)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
, (5.58)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
− g. (5.59)

Integrating the momentum equation in the x-direction over the vertical extent

of the fluid yields

∫ zb+h

zb

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂P

∂x

)
dz

=

∫ zb+h

zb

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+

∫ zb+h

zb

1

ρ

∂P

∂x
dz
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= A+B,

with A =
∫ zb+h

zb

(
∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

)
and B =

∫ zb+h

zb

1
ρ
∂P
∂x
dz

A =

∫ zb+h

zb

∂u

∂t
dz +

∫ zb+h

zb

u
∂u

∂x
dz +

∫ zb+h

zb

v
∂u

∂y
dz +

∫ zb+h

zb

w
∂u

∂z
dz.

We use Leibniz theorem to time derivative term to obtain

∫ zb+h

zb

∂u

∂t
dz =

∂

∂t

∫ zb+h

zb

udz − u|zb+h

∂(zb + h)

∂t
+ u|zb

∂zb
∂t

∫ zb+h

zb

u
∂u

∂x
dz =

∂

∂x

∫ zb+h

zb

u2dz − u2
∣∣
zb+h

∂(zb + h)

∂x
+ u2

∣∣
zb

∂zb
∂x

∫ zb+h

zb

v
∂u

∂y
dz =

∂

∂y

∫ zb+h

zb

uvdz−(uv)|zb+h

∂(zb + h)

∂y
+ (uv)|zb

∂z0
∂y

⇒ A =
∂

∂t

∫ zb+h

zb

udz +
∂

∂x

∫ zb+h

zb

u2dz +
∂

∂y

∫ zb+h

zb

uvdz

−u|zb+h

∂(zb + h)

∂t
− u2

∣∣
zb+h

∂(zb + h)

∂x
−(uv)|zb+h

∂(zb + h)

∂y
+ (uw)|zb+h

+u|zb
∂zb
∂t

+ u2
∣∣
zb

∂zb
∂x

+ (uv)|zb
∂z0
∂y

− (uw)|zb

=
∂

∂t

∫ zb+h

zb

udz +
∂

∂x

∫ zb+h

zb

u2dz +
∂

∂y

∫ zb+h

zb

uvdz

−u|zb+h

(
∂h

∂t
+ u|zb+h

∂(zb + h)

∂x
+ v|zb+h

∂(zb + h)

∂y
− w|zb+h

)

+u|zb
(
∂zb
∂t

+ u|zb
∂z0
∂x

+ v|zb
∂z0
∂y

− w|zb
)

=
∂(uh)

∂t
+
∂(u2h)

∂x
+
∂(uvh)

∂y
.

Any vertical elevation within the fluid pressure is given by

P = ρg (zb + h− z) .



5.4 Numerical examples 113

Integrated the term B to obtain

∫ zb+h

zb

∂P

∂x
dz

= ρg

∫ zb+h

zb

∂

∂x
(zb + h− z) dz

= ρg

(
∂

∂x

∫ zb+h

zb

(zb + h− z) dz + (zb + h− zb)
∂zb
∂x

− (zb + h− (zb + h))
∂(zb + h)

∂x

)

= ρg

(
∂

∂x

∫ zb+h

zb

(zb + h− z) dz + h
∂zb
∂x

)

= ρg

(
1

2

∂h2

∂x
+ h

∂zb
∂x

)
,

⇒ 1

ρ

∫ zb+h

zb

∂P

∂x
dz =

1

2
g
∂h2

∂x
+ gh

∂zb
∂x

, (5.60)

⇒ ∂(uh)

∂t
+
∂(u2h)

∂x
+
∂(uvh)

∂y
+

1

2
g
∂h2

∂x
+ gh

∂zb
∂x

= 0, (5.61)

⇒ ∂(uh)

∂t
+
∂(u2h)

∂x
+
∂(uvh)

∂y
+

1

2
g
∂h2

∂x
= −gh∂zb

∂x
, (5.62)

and

∂(uh)

∂t
+
∂(uvh)

∂x
+
∂(v2h)

∂y
+

1

2
g
∂h2

∂y
= −gh∂zb

∂y
. (5.63)

These two equations in combination, constitute one form of the depth-averaged

shallow water equation.

We will consider the general form of shallow water equations

∂(uh)

∂x
+
∂(vh)

∂y
+
∂h

∂t
= 0, (5.64)

∂(uh)

∂t
+
∂(u2h)

∂x
+
∂(uvh)

∂y
+

1

2
g
∂h2

∂x
= −gh∂zb

∂x
, (5.65)

∂(uh)

∂t
+
∂(uvh)

∂x
+
∂(v2h)

∂y
+

1

2
g
∂h2

∂y
= −gh∂zb

∂y
. (5.66)
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Here, this is called shallow water bodies. The vertical momentum exchange

is negligible and the vertical velocity component w is a lot smaller than the

horizontal components u and v. These equations arise from the basic equations

of fluid mechanics for an inviscid and incompressible fluid. The independent

variables are time t, and space coordinates, x and y. The dependent variables

are the fluid height or depth h, and two-dimensional fluid velocity field u and

v. The force acting on the fluid is gravity, represented by the gravitational con-

stant g. In order to write the equations in a compact form, one can introduce

three vectors:

U =




h

uh

vh


, F (U) =




uh

u2h+ 1
2
gh2

uvh


, K(U) =




vh

uvh

v2h + 1
2
gh2


, S =




0

−gh∂zb
∂x

−gh∂zb
∂y


 .

The shallow water equations (5.64)-(5.66) reduce to an instance of a hyper-

bolic conservation law which can be seen as

∂U

∂t
+
∂F (U)

∂x
+
∂K(U)

∂x
= S. (5.67)

The continuity and momentum SWEs can be linearised as follows

∂h

∂t
(x, y, t) +H

(
∂u

∂x
(x, y, t) +

∂v

∂y
(x, y, t)

)
= 0, (5.68)

∂u

∂t
(x, y, t) + g

∂h

∂x
(x, y, t) = 0, (5.69)

∂v

∂t
(x, y, t) + g

∂h

∂y
(x, y, t) = 0, (5.70)

where g = 9.81 m/s2. For convenience, the water depth h can be regarded as

the sum of the mean water depth H and the water surface elevation ζ .
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RBF methods have been applied to solve the shallow water equations (SWEs).

Their solutions are reported using the global MQ approximation (Hon et al.,

1999; Young et al., 2004, 2005), compactly supported RBF (CSRBF) (Wong

et al., 2002) and local RBF differential quadrature (LRBFDQ) (Sun et al.,

2013) methods. In these works, the time derivative term is approximated by

conventional finite-difference schemes. For SWEs, there are two dependent

variables, namely the water height in the z direction, denoted by h, and the

velocity vector in the x−y plane, denoted by (u, v). They are functions of space

x and time t.

Consider a rectangular channel of length L = 872 km and width W = 50 km

with the fluid being water as shown in Figure 5.10. The mean water depth is

H = 20 m.

Figure 5.10: Example 3, shallow water flows: A rectangular channel and its
Cartesian grid of 41 × 5. Numerical results obtained are compared at nodes
102, 103 and 104.

The boundary condition for the water surface elevation is specified as

ζ(x, y, t) = ζ0 cos at,

at x = 0, 0 ≤ y ≤ W , ζ0 = 1 m and a = 1.45444 × 10−4s−1, while the land

boundary conditions are

u(x, y, t) = 0,
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at x = L, 0 ≤ y ≤W and

u(x, y, t) = 0,

at y = 0 and y =W , 0 ≤ x ≤ L. The initial conditions are prescribed as

u(x, y, t = 0) = 0, (5.71)

v(x, y, t = 0) = 0, (5.72)

ζ(x, y, t = 0) = ζ0 cos

(
a√
gH

(L− x)

)
/ cos

(
a√
gH

L

)
. (5.73)

This fluid flow problem has the following exact solution

ζ(x, y, t) = ζ0 cos

(
a√
gH

(L− x)

)
cos at/ cos

(
a√
gH

L

)
, (5.74)

u(x, y, t) = −ζ0
√

g

H
sin

(
a√
gH

(L− x)

)
sin at/ cos

(
a√
gH

L

)
, (5.75)

v(x, y, t) = 0. (5.76)

As in (Sun et al., 2013), for comparison purposes, we also discretise the fluid

domain using a set of 205 collocation points and employ a time step of 30 s.

The results obtained from proposed method are shown in Table 5.1 together

with those obtained with the global-MQ method (Young et al., 2005), CSRBF

method (Wong et al., 2002) and LRBFDQ method employed with 9 (R9) and

13 (R13) local nodes per approximation (Sun et al., 2013). The temporal term

is discretised by the Taylor method with second-order accuracy for the global-

MQ and CSRBF methods, and full-implicit FD scheme for LRBFDQ. All the

numerical results displayed in Table 5.1 are computed at t = 43200 s and at

three particular points 102, 103, and 104 which are located at the centre of the

basin (Figure 5.10). The units of water depth and velocity used are cm and

cm/s, respectively. Errors for the water height and velocities are also measured

by means of RMSE andMAE defined in (5.33) and (5.34), respectively. It can

be seen that the proposed method yields the most accurate results. Figure 5.11
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shows the water free surfaces at two time levels (t = 14400 s and t = 43200 s)

and the IRBF results look feasible when compared to the analytic solutions.

Figure 5.11: Example 3, shallow water flows: Water surfaces at t = 14440 s
and t = 43200 s by the proposed method.

5.4.4 Example 4: Buoyancy-driven flows

In this example, natural convection between a heated inner circular cylinder of

diameter Di and a cooled square enclosure of side length D is considered (Figure

5.12). This problem has been investigated with both experimental and numer-

ical works. The latter was conducted with a variety of numerical techniques

such as the finite-difference methods (De Vahl Davis, 1983; Kuehn and Gold-

stein, 1976), finite-element methods (Manzari, 1999; Sammouda et al., 1999;

Jin and Shen, 2016), finite-volume methods (Glakpe et al., 1986; Moukalled

and Acharya, 1996), RBF-based methods (Šarler et al., 2004), lattice Boltz-
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Table 5.1: Example 3, shallow water flows: Comparison of numerical errors at
three nodes 102, 103, and 104 between the proposed method and the LRBFDQ,
CSRBF and global MQ methods

Numerical error Water depth (h) (cm) Velocity (u) (cm/s)
102 103 104 102 103 104

Proposed method
RMSE 0.007 0.007 0.0072 0.0080 0.0086 0.0080
MAE 0.030 0.031 0.031 0.029 0.027 0.029

LRBFDQ
R13

RMSE 0.0080 0.0036 0.0076 0.016 0.020 0.016
MAE 0.30 0.13 0.29 0.61 0.74 0.60
R9

RMSE 0.0076 0.0044 0.0076 0.059 0.054 0.059
MAE 0.29 0.17 0.29 2.24 2.03 2.24

CSRBF
RMSE 0.70 0.32 0.35 0.46 0.38 0.49
MAE 1.48 0.18 0.67 0.81 0.92 0.91

Global−MQ
RMSE 0.49 0.71 1.01 0.63 1.0 1.48
MAE 1.19 1.51 1.76 1.06 2.33 2.74

mann methods (Wang et al., 2016; Ahrar and Djavareshkian, 2017) and spectral

methods (Le Quere, 1991; Shu, 1999; Wang et al., 2015b).

The governing equations can be written in terms of the stream function (ψ),

vorticity (ω) and temperature (T )

∇2ψ = ω, (5.77)

∂ω

∂t
+ (u ·∇)ω =

√
Pr

Ra
∇2ω − ∂T

∂x
, (5.78)

∂T

∂t
+ (u ·∇)T =

1√
RaPr

∇2T, (5.79)

where u is the velocity vector (u = ∂ψ/∂y and v = −∂ψ/∂x), and Pr and Ra

the Prandtl and Rayleigh numbers defined as Pr = ν/γ and Ra = βg∆TD3/γν,

in which ν is the kinematic viscosity, γ the thermal diffusivity, β the thermal
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Figure 5.12: Example 4, natural convection: A domain of analysis and its
Cartesian grid.

expansion coefficient and g the gravity.

We employ an aspect ratio of D/Di = 2.5, Pr = 0.71 and Ra = {104, 5 ×
104, 105, 5× 105, 106}. Non-slip boundary conditions and the symmetry of flow

about the vertical centreline lead to ψ = 0 and ∂ψ/∂n = 0 (n - the normal

direction) on the inner and outer boundaries. Following (Le-Cao et al., 2009),

we derive boundary conditions for equation (5.78). The values of the vorticity

at the boundary nodes on the x and y grid lines can be computed by

ωb = [1 + (
y

x
)2]
∂2ψb

∂x2
, (5.80)

ωb = [1 + (
x

y
)2]
∂2ψb

∂y2
, (5.81)

respectively. The boundary conditions for (5.79) are T = 1 and T = 0 on the

inner and outer surfaces, respectively.

The fluid domain is discretised using a grid density of 30× 30. The three equa-

tions (5.77)-(5.79) must be solved simultaneously; an iterative scheme, where
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the convection terms are treated explicitly, is employed to obtain a convergent

solution with time. When the difference between two successive stream function

fields can be negligible, the flow is considered to reach the steady state. Numer-

ical experiments indicate that the proposed compact time stencil can work with

larger time step than the conventional FD scheme, leading to a faster conver-

gence as shown in Figure 5.13. The obtained velocity vector field and contour

plots of the temperature are displayed in Figure 5.14, where 21 contour lines

are used with their levels varying linearly between the minimum and maximum

values. They look feasible when compared to existing results by other methods.

One important result of this type of flow is the local heat transfer coefficient

Number of iterations

C
on

ve
rg
en
ce

m
ea
su
re

Figure 5.13: Example 4, natural convection, spatial compact IRBF stencils,
∆t = 0.02 (IRBF) and ∆t = 0.014 (FD), Ra = 105: The IRBF approximation
with respect to time can work with a larger time step and its convergence (‘−−’)
is seen to be faster than that of the conventional FD one (‘-’)



5.4 Numerical examples 121

defined as (Moukalled and Acharya, 1996)

Θ = −l∂T
∂n

, (5.82)

where l is the thermal conductivity. The average Nusselt number (the ratio of

the temperature gradient at the wall to a reference temperature gradient) is

computed by

Nu =
Θ

l
, (5.83)

where Θ = −
∮

∂T
∂n
ds. Since the computational domain in (Moukalled and

Acharya, 1996) is taken as one-half of the physical domain, values of Nu in

the present work are divided by 2 for comparison purposes. Results concerning

Nu for several values of Ra are shown in Table 5.2 along with those reported

in (Moukalled and Acharya, 1996; Le-Cao et al., 2009; Shu and Zhu, 2002). It

can be seen that they are in good agreement. Especially, for highly nonlinear

solutions (e.g. Ra = 106), the result obtained from the proposed method is

very close to that of the differential quadrature method (Shu and Zhu, 2002)

but without the need to undertake coordinate transformation.

Table 5.2: Example 4, natural convection: Comparison of the average Nusselt
number between the proposed method and some other methods for Ra in the
range of 104 to 106

Ra 104 5× 104 105 5× 105 106

Nu
Proposed method 3.23 4.04 4.88 7.68 9.38

1D IRBF (Le-Cao et al., 2009) 3.22 4.04 4.89 7.43 8.70
FVM (Moukalled and Acharya, 1996) 3.24 4.86 8.90

MQ-DQ (Shu and Zhu, 2002) 3.33 5.08 9.37
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5.5 Concluding remarks

In this chapter, a new approximation scheme for the time derivative term is pro-

posed. The time stencil is based on two nodes over which IRBFs are employed

to represent the field variable. In addition, apart from two nodal values of the

field variable, its derivative value at the first node of the stencil is also included

the approximation. When compared to conventional first-order FDs, numerical

results indicate that larger time steps can be employed with the proposed time

discretisation scheme. In this work, we combine the proposed time scheme with

the space compact 5-point IRBF stencils, resulting in a numerical procedure,

based on compact IRBF approximations only, for solving parabolic PDEs. The

method is applied to simulate shallow water flows in large-scale domains and

natural convection flows in multiply-connected domains, and produces accurate

results using relatively large time steps.
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Ra = 104

Ra = 105

Ra = 106

Figure 5.14: Example 4, natural convection: Velocity vector field and contour
plots of the temperature for several values of Ra by the proposed method.



Chapter 6

Compact non-symmetric IRBF

stencils and fictitious domains

for complex fluid flows

This chapter presents a new non-boundary-fitted-grid numerical technique for

simulation of incompressible viscous flows in multiply-hole domains. A multi-

hole domain is converted into a simply-connected domain of rectangular or

non-rectangular shape that is then discretised using a Cartesian grid. Compact

radial basis function (RBF) stencils, which are presented in Chapter 3, are used

to discretise the field variables. The imposition of inner boundary conditions is

conducted by means of body forces that are derived from the local satisfaction

of the governing equations and the prescribed boundary conditions. Salient

features of the proposed method include: (i) simple pre-processing (Cartesian

grid); (ii) high rates of convergence with respect to grid refinement achieved with

compact integrated-RBF stencils and (iii) the system matrix kept unchanged

for the case of moving holes. Several linear and nonlinear problems, including

rotating-cylinder flows and buoyancy-driven flows in eccentric and concentric

annuli, are simulated to verify the proposed technique.
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6.1 Introduction

In solving partial differential equations (PDEs), multiply-connected domains

(Figure 6.1) can be discretised using boundary-fitted and non-boundary-fitted

grids/meshes. In the boundary-fitted-grid/mesh category, unstructured meshes

are typically used. Boundary fitted grids/meshes can be used to represent a

geometrically complex domain in an exact manner. Furthermore, an unstruc-

tured grid/mesh can be locally improved in selective regions to obtain refined

information of the variable fields. However, generating an unstructured mesh

is a time-consuming process. For the case of moving boundaries, the compu-

tational grid/mesh can be distorted. One needs to generate a new mesh and

the variable field is then projected onto it, which are sophisticated tasks. Thus,

the use of non-boundary-fitted grids/meshes to represent a multi-hole domain

has received a great deal of attention (e.g. Parvizian et al., 2007, Husain et al.,

2009, Mai-Duy and Tran-Cong, 2009, Buffat and Le Penven, 2011, Devendran

and Peskin, 2012, Dechaume et al., 2010, Kang and Suh, 2011, Shi et al., 2012,

Wang et al., 2017, Mo et al., 2018, Haji Mohammadi et al., 2019, Shankar et al.,

2014). The basic idea of non-boundary-fitted-grid/mesh based methods is to

extend the problem defined on a multiply-connected domain to that on a do-

main of simpler shape, where a regular grid/mesh and a fast algebraic solver can

be used. In the case of moving interior holes, the grid/mesh may be kept un-

changed. Consequently, the computational system matrix may be determined

once and remains the same during the simulation process. In this category,

special attention to the imposition of given boundary conditions is needed to

match the solution on the extended domain with that on the physical domain.

For this purpose, a body force is commonly introduced into the governing equa-

tions to describe the existence of the internal boundaries. Its main difficulty

lies in a way used to obtain the body force field.

Many non-boundary-fitted-grid/mesh based methods have been reported in the

literature. For example, Glowinski et al. (1994, 1998) proposed a class of
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Figure 6.1: A typical multiply-connected domain.

fictitious-domain methods using Lagrange multipliers to enforce the inner condi-

tions for simulating incompressible viscous flows. The methods were successfully

implemented to solve practical problems such as rigid-body/fluid interactions

(e.g. Patankar et al., 2000, Coesnon et al., 2008), fluid/flexible-body interac-

tions (e.g. Yu, 2005, Van Loon et al., 2004, Shi et al., 2013), and particulate

suspension flows (e.g. Glowinski et al., 1999, Wan and Turek, 2006, Dechaume

et al., 2010).

Another approach is based on the immersed boundary method proposed in (Pe-

skin, 1972). In this scheme, the body force was generated by the elasticity of

the material and then “spread out” to grid nodes using Dirac delta functions.

In (Fadlun et al., 2000), the body force was calculated based on the desired ve-

locities at the interfaces. In (Uhlmann, 2005), the body force was first obtained

on the immersed interfaces and was smoothly transferred to fixed grids by Dirac

delta functions. In (Kim et al., 2001), an interpolation scheme for evaluating

the velocities satisfying non-slip boundary conditions was proposed and the

body force was then directly defined on grid nodes. Later on, Parvizian et al.

(2007) introduced a finite cell method for solving problems of solid mechan-
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ics. Duster et al. (2008) extended the finite cell method to 3D-linear-elasticity

problems. Maury (2001) proposed a fat boundary method (FBM) for solving

PDEs in multi-hole domains. Vos et al. (2008) coupled the classic fictitious

domain method and the FBM to constitute a method called the implicit FBM.

Bertoluzza et al. Bertoluzza et al. (2005) implemented a semi-discrete FBM in

the framework of FEM.

DRBFs and IRBFs were implemented with boundary-fitted grids for solution of

the Navier-Stokes equation (Mai-Duy and Tran-Cong, 2008; Le-Cao et al., 2009;

Le-Cao et al., 2011; Zhao et al., 2019; Xiao et al., 2015; Le et al., 2018). It should

be pointed out that RBF system matrices are entirely populated and become

ill-conditioned when a large number of nodes are used. Thus, recent RBF

research has concentrated on solving these shortcomings. An efficient technique

is to utilise local RBF stencils, where only a small subset of nodes are triggered

for the approximation of a function at a given point, and compact local RBF

stencils, where the approximations involve not only grid node function values,

but also their derivative values. A sparse system matrix, which saves computer

storage space and promotes the use of a much larger number of nodes, can be

obtained with local schemes. Furthermore, the inclusion of derivative values

can significantly improve accuracy of a local approximation scheme. Works

reported in this research direction include (Le et al., 2018; Mai-Duy et al.,

2017; Mai-Duy et al., 2018; Tien et al., 2015; Thai-Quang et al., 2012; Thai-

Quang et al., 2013; Mai-Duy and Tran-Cong, 2013; Ahmad and Khaliq, 2017;

Dehghan and Abbaszadeh, 2017; Lehto et al., 2017; Dehghan and Abbaszadeh,

2018; Pourbashash and Oshagh, 2018; Shu et al., 2003).

In this chapter, compact local IRBF stencils reported in Chapter 3 are incorpo-

rated into the non-boundary-fitted-grid (NBFG) framework for simulating fluid

flows. Since compact local IRBF stencils can work on irregular grids, the de-

sired velocities (i.e. the velocities take into account the inner boundaries) and

the forcing terms can be evaluated directly at grid nodes without interpolation.
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The solution procedure includes following steps:

• Step 1: Estimate fluid velocities in local domains near inner boundaries,

where the forcing term is omitted.

• Step 2: Derive the forcing terms from the difference between the desired

velocities and the estimated velocities obtained from Step 1. Note that

the desired velocities are obtained by solving the governing equations sub-

ject to non-slip boundary conditions on local regions enclosing the inner

boundaries.

• Step 3: Solve the governing equations in the extended domain with the

obtained forcing terms.

The remainder of the chapter is organised as follows. In Section 6.2, the pro-

posed IRBF-NBFG technique is described with emphasis placed on the for-

mulation of forcing functions describing the influence of the interface on the

solution. Details for IRBF discretisations of the governing equations in an ex-

tended (rectangular) domain are also included here. Numerical solutions are

reported in Section 6.3. Section 6.4 concludes the chapter.

6.2 Proposed IRBF-NBFG technique

Consider a rectangular domain containing holes such as the one shown in Figure

6.2. The real domain DR is extended to a regular domain D which is used for

numerical simulation. The computational domain D thus comprises two sets

of sub-region: the holes and the multiply-connected domain (i.e. original do-

main). A Cartesian grid is employed to discretise the extended/computational

domain, and compact IRBF stencils are then applied for approximating the

field variables. It is straight forward to implement the external boundaries.

Nevertheless, appropriate schemes are needed to enforce the inner boundaries

conditions as, generally, grid nodes do not lie on inner boundaries. The influence

of the inner boundaries on the fluid flow is represented by forces Λ exerting on
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the fluid and correcting it to the velocity boundary conditions on the interfaces.

Here, the momentum equations (2.11) are discretised in time by a first-order

finite-difference scheme.

∇ · u = 0, (6.1)

un+1 − un

∆t
+∇pn = −∇ · (un · un) +

1

Re
∇

2un +Λ. (6.2)

where the superscript denotes the time level and Λ is the body force used to

represent the influence of the inner boundaries on the fluid flow. It can be seen

that, to solve equation (6.2), the forcing term Λ must be obtained in advance

to force the flow solution to satisfy non-slip boundary conditions at the internal

boundaries. The computation of Λ and the imposition of non-slip boundary

conditions on the internal interfaces (e.g. holes’ boundaries) will be presented

in subsection 6.2.2.

In the remaining parts, we will use the notations:

• [̃ ] to represent a vector/matrix [ ] which is associated with the whole

computational domain D,

• [̂ ] to represent a vector/matrix [ ] which is associated with a grid line of

D,

• [ ]|k to represent a vector/matrix [ ] which is associated with the forcing

domain DF of the kth hole,

• [ ]|k to represent a vector/matrix [ ] which is associated with a set of

forcing points in a segment of DF of the kth hole,

• ([ ])if |k to denote the selected indexes (of the extended computational

domain) which are associated with the set of forcing points of the kth

holes.
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Figure 6.2: The physical domain (DR), the extended domain (D) and the forcing
domain of kth hole (DF |k). Location of forcing points and IRBF network calcu-
lation of desired velocities. Open circles ◦ mark the forcing points of kth hole.
Filled squares � indicate the inner boundaries ∂Pk. Filled circles • indicate the
boundary points of the frame Γ|k

.

6.2.1 Compact IRBF stencils

Equations (2.15)-(2.16) involve the first and second-order derivative terms. Con-

sidering an x-grid line (Figure 6.3), one can make use of (2.27)-(2.27), ∂2u/∂x2

is expressed by

∂2u(x)

∂x2
=

m∑

i=1

wigi(x) =

m∑

i=1

wiI(2)
i (x), (6.3)

Expressions for the first-order derivative and the function (field variable) are
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Figure 6.3: Points on a grid line of the extended domain D.

then found by integration

∂u(x)

∂x
=

m∑

i=1

wiI(1)
i (x) + c1, (6.4)

u(x) =
m∑

i=1

wiI(0)
i (x) + c1x+ c2, (6.5)

Here, we implement the multiquadric (MQ) function which is

I(2)
i (x) =

√
(x− ci)2 + a2i ,

I(1)
i (x) =

(x− ci)

2
A+

a2i
2
B,

I(0)
i (x) =

(−a2i
3

+
(x− ci)

2

6

)
A+

a2i (x− ci)

2
B,

where ci and ai are the centre and the width of the ith MQ, respectively;

A =
√
(x− ci)2 + a2i ; and B = ln

(
(x− ci) +

√
(x− ci)2 + a2i

)
. The set of col-

location points are chosen to coincide with RBF centres. The influence domain

here is a three-node stencil [xi−1, xi, xi+1] that is shifted along the grid line,

where the index i runs from 2 to (m− 1). The IRBF approximations are based

on three nodes rather than the whole set of nodes on the grid line. For compact

stencils, second derivatives of the field variable obtained from the previous time

level are incorporated into the approximation. We chose the width according

to ai = βdi, where di is the shortest distance between ci and its neighbours and

β a scalar. Evaluation of (6.5) at xi−1, xi and xi+1, and (6.3) at xi−1 and xi+1
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result in




u(xi−1)

u(xi)

u(xi+1)

∂2u(xi−1)
∂x2

∂2u(xi+1)
∂x2




=


 I

B




︸ ︷︷ ︸

C




wi−1

wi

wi+1

c1

c2




(6.6)

where

I =




I(0)
i−1(xi−1) I(0)

i (xi−1) I(0)
i+1(xi−1) xi−1 1

I(0)
i−1(xi) I(0)

i (xi) I(0)
i+1(xi) xi 1

I(0)
i−1(xi+1) I(0)

i (xi+1) I(0)
i+1(xi+1) xi+1 1


 ,

B =


 I(2)

i−1(xi−1) I(2)
i (xi−1) I(2)

i+1(xi−1) 1 0

I(2)
i−1(xi+1) I(2)

i (xi+1) I(2)
i+1(xi+1) 1 0


 ,

This system can be solved for the IRBF weights and two integration constants




wi−1

wi

wi+1

c1

c2




= C−1




u(xi−1)

u(xi)

u(xi+1)

∂2u(xi−1)
∂x2

∂2u(xi+1)
∂x2




(6.7)

where C−1 is the inverse of C. Using (6.7), one can obtain the first and second



6.2 Proposed IRBF-NBFG technique 133

derivatives of u at xi as follows (6.4)

∂u(xi)

∂x
=
[
I(1)
i−1(xi) I(1)

i (xi) I(1)
i+1(xi) 1 0

]
C−1

︸ ︷︷ ︸
D1x(xi)




u(xi−1)

u(xi)

u(xi+1)

∂2u(xi−1)
∂x2

∂2u(xi+1)
∂x2




, (6.8)

and (6.3)

∂2u(xi)

∂x2
=
[
I(2)
i−1(xi) I(2)

i (xi) I(1)
i+1(xi) 0 0

]
C−1

︸ ︷︷ ︸
D2x(xi)




u(xi−1)

u(xi)

u(xi+1)

∂2u(xi−1)
∂x2

∂2u(xi+1)
∂x2




. (6.9)

Similar to finite-difference and finite-element techniques, one will assemble these

IRBF approximations to construct the global matrices D̃2x and D̃2y. This task is

fairly simple since the grid adopted here is regular. Expressions for computing

derivative values of u at the interior grid nodes of extended domain can be

written as

∂̃u
∂x

= D̃1xũ + k̃1x, and
∂̃2u
∂x2 = D̃2xũ+ k̃2x, where the two vectors k̃1x and k̃2x are

related to the boundary conditions and the imposed second derivative (compact

components). In similar manner, one can obtain the compact IRBF discretisa-

tions for ∂̃u
∂y
, ∂̃2u

∂y2
, ∂̃v

∂x
, ∂̃2v

∂x2 ,
∂̃v
∂y
, ∂̃2v

∂y2
, ∂̃p

∂x
, and ∂̃p

∂y
.

6.2.2 Imposition of inner boundary conditions

To impose the boundary conditions on the inner boundaries, we use some iter-

ation steps which are similar to those in the direct forcing immersed boundary
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(Fadlun et al., 2000; Yusof, 1997). The inner boundary conditions are imposed

by using the forcing terms Λ to force the solution in the extended domain D

to match the solutions in the real domain DR. At the grid nodes, the forcing

terms is defined as

Λ =
ud − ue

∆t
, (6.10)

where ud = (ud, vd) the desired values of velocity when the non-slip boundary

conditions at the inner boundaries are satisfied, ue(ue, ve) the estimated val-

ues of velocity components which have not been taken into account the inner

boundaries yet ue can be obtained by

ue = un −∆t

(
∇pn +∇ · (un · un)− 1

Re
∇

2un

)
. (6.11)

To calculate Λ, the desired velocities ud must be determined in advance. For

boundary points that coincide with the grid nodes (regular boundary points),

one can apply (6.10) directly with ud = ub, where ub(ub, vb) are given boundary

values. Yet, in common, the position of boundary points do not match with the

grid nodes and thus ud are unknowns. A new computational scheme to resolve

this problem is suggested as follows.

Imagine that a virtual staircase-shaped frame Γ encloses a kth hole as shown in

Figure 6.2. The region lying between the kth hole and the frame Γ is considered

to be a forcing domain, denoted by DF |k, which matches the estimated solution

(in computational domain D) with the real solution (in physical domain DR). In

Figure 6.2, xp(xp, yp) are boundary points of the kth hole (xp ∈ ∂Pk); xf(xf , yf)

denote for the coordinate of the forcing zone; and xΓc(xΓc, yΓc) are boundary

points of Γ. It can be seen that the forcing domain DF |k has an irregular shape.

Compact IRBF stencils can work with irregular grids and they were applied

here to solve these problems. The centres of the new IRBFs collocating at xp
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lie on the real boundary of kth hole. The centres of the new IRBFs collocating

at xf and xΓc coincide with the grid nodes of the Cartesian grid representing

the extended domain D.

Figure 6.4: Points on a segment of forcing domain DF of a holes.

Consider a segment that can be bounded by two faces of the frame (Figure 6.4a)

or the boundary of the hole and the frame (Figure 6.4b). Assume a segment

in the x direction and let consider u variable first. As demonstrated in Figure

6.4, a segment consists of two sets of points. The first set is nd interior points

that are also the forcing points (regular nodes). The desired values ud at the

forcing points (xf =
{
xf(i)

}nd

i=1
) are unknown. The second set is constituted by

the two boundary nodes xb1 and xb2. Depending on how a segment is bounded,

the boundary points xb1 and xb2 have specific locations. For example, one has

(xb1 ≡ xΓa) and (xb2 ≡ xΓb) if a grid line is bounded by the two sides of the

frame (xb1 ∈ Γ and xb2 ∈ Γ), and (xb1 ≡ xΓc) and (xb2 ≡ xp) if the bounding

surfaces are the left side of Γ and the kth hole (xb1 ∈ Γ and xb2 ∈ ∂Pk).

For the segment in Figure 6.4a, one can directly applied the IRBF approxima-

tion (6.8) and (6.9). However, for the segment in Figure 6.4b, one data point
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is not on regular grid nodes (generally). It is note that one has nd = 1 in this

case. Evaluation of (6.5) at collocation points xΓc, xf and xp results in




u(xΓc)

u(xf)

u(xp)


 = ϕ[0]|k




w1

w2

w3

c1

c2




, (6.12)

where

ϕ[0]|k
=




I(0)
1 (xΓ) I(0)

2 (xΓ) I(0)
3 (xΓ) xΓ 1

I(0)
1 (xf) I(0)

2 (xf ) I(0)
3 (xf ) xf 1

I(0)
1 (xp) I(0)

2 (xp) I(0)
3 (xp) xp 1


 .

It is emphasised that the function values at two boundary nodes are known (i.e.

u(xΓc) = ue(xΓc)-calculated from (Equation 6.11) and u(xp) = ub-the given

boundary condition).

The system (6.12) for the unknown vector of network weights can be calculated

by




w1

w2

w3

c1

c2




=
(
ϕ[0]

)−1

|k




u(xΓc)

u(xf)

u(xp)


 , (6.13)

where
(
ϕ[0]

)−1

|k
is the inverse of ϕ[0]|k

.

Taking (6.13) into account, the values of the second derivative of u at the forcing
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point xf are computed by (6.3)

∂2u(xf)

∂x2
=
[
I(2)
1 (xf ) I(2)

2 (xf) I(2)
3 (xf ) 0 0

] (
ϕ[0]

)−1

|k︸ ︷︷ ︸
D2x|k=

[

D1 D2 D3

]




u(xΓc)

u(xf)

u(xp)


 . (6.14)

Since the values u(xΓc), and u(xp) are known, one can multiply with corre-

sponding columns of the matrix D2x|k on the right hand side of equation (6.14)

to form the the vectors of known quantities d2x|k. The approximated expression

for second-order derivative of u(xf) are written in following form

∂2u(xf)

∂x2
= D2u(xf ) +D1u(xΓc) +D3u(xp)︸ ︷︷ ︸

d2x|k

. (6.15)

The IRBF approximations for the derivatives are now expressed in terms of

u(xf ) nodal values and they now take into account the boundary conditions ub.

Hence, one only requires to put them to the governing equations. Assembling

the obtained matrices on each segment for the whole forcing domain DF |k, one

can obtain the following form for the kth hole.

∂2ud
∂x2 |k

= D2x|kud|k + d2x|k. (6.16)

It is noted that ∂2ud

∂x2 |k
=

∂2u(x(if |k))

∂x2 .
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The desired solution ud|k and vd|k around the kth hole is then determined by

ud|k =
(
A|k

)−1

{(ũn)if |k −∆t

(
ũn
∂̃u

∂x

n

+ ṽn
∂̃u

∂y

n)

if |k

−∆t

(
∂̃p

∂x

n)

if |k

. . .

(6.17)

−∆t

Re

(
d2x|k + d2y|k

)
},

(6.18)

and

vd|k =
(
A|k

)−1

{(ṽn)if |k −∆t

(
ũn
∂̃v

∂x

n

+ ṽn
∂̃v

∂y

n)

if |k

−∆t

(
∂̃p

∂y

n)

if |k

−∆t

Re

(
d2x|k + d2y|k

)
},

(6.19)

where A|k =
(
1− ∆t

Re

(
D2x|k +D2y|k

))
. The desired values ud|k and vd|k are sat-

isfied non-slip boundary condition at inner boundary ∂Pk and also the governing

equations. In the same manner, one can gather the desired values
{
ud|k
}np
k=1

and
{
vd|k
}np
k=1

for np holes.

6.2.3 Solution Procedure

Step 1: The velocity fields ũe and ṽe are estimated by Equation (6.11) for the

extended domain.

Step 2: The forcing term Λ is calculated by

Λ̃x =
ũd − ũe
∆t

, (6.20)

Λ̃y =
ṽd − ṽe
∆t

, (6.21)
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where ũd and ṽd are obtained by assembling
{
ud|k
}np
k=1

and
{
vd|k
}np
k=1

in Equation

(6.18) and (6.19). It is noted that the forcing term is zeros in D \DF .

Step 3: Calculate the velocity fields ũ∗ and ṽ∗ by solving the momentum equa-

tions (6.2) with the obtained forcing term Λ in D. To improve the stability,

diffusion term ∇
2u is treated implicitly. It is noted that ũ∗ and ṽ∗ are velocity

components which have not satisfied (2.7) yet. The pseudo pressure variable is

obtained by solving the following Poisson’s equation

(
∂2φ̃

∂x2
+
∂2φ̃

∂y2

)
=

1

∆t

(
∂̃u

∂x

∗

+
∂̃v

∂y

∗)
. (6.22)

The velocity variables are corrected by the pseudo pressure gradient term φ to

satisfy the incompressibility constraint.

ũn+1 = ũ∗ −∆t
∂̃φ

∂x
, (6.23)

ṽn+1 = ṽ∗ −∆t
∂̃φ

∂y
. (6.24)

It is emphasised that, for problems with moving inner boundaries all the system

matrices are remain unchanged during solving process.

6.3 Numerical examples

For all cases in this chapter, IRBF networks are performed with the MQ func-

tion. The solution accuracy is measured through the discrete relative L2 norm

of the error determined as

Ne =

√∑nip

i=1(u
(e)
i − ui)2√∑nip

i=1(u
(e)
i )2

, (6.25)
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where nip is the number of interior points in the real domain, and u(e) and u

are the exact and numerical solutions, respectively.

For grid refinement study, the convergence rate of the solutions is calculated by

α in

Ne(h) ≈ βhα = O(hα), (6.26)

where β and α are exponential model’s parameters and h is the average grid

size. With a set of measurements, those parameters can be determined by the

common linear least-squares method.

6.3.1 Example 1 - Poisson’s equation

Two particular physical domain governed by a Poisson’s equation are considered

∂2u

∂x2
+
∂2u

∂y2
= b(x, y), (6.27)

where b(x, y) is the driving function.

A domain with three holes

Here, we interest a square domain, [0, 1] × [0, 1], with three circular holes of

radius R = 0.2 and their centres located at positions (0.65,0.4), (0.4,0.8) and

(0.25,0.25). The exact solution to this example is

u(e)(x, y) = sin(2πx) sin(2πy), (6.28)

and the driving function b(x, y) and Dirichlet boundary conditions can be cal-

culated exactly. The interested domain is now embedded in a square one which

can be effectively discretised by a uniform Cartesian grid. Both Dirac Delta
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Figure 6.5: Example 1: Poisson’s equation in three holes domain: Forcing
point area by the present IRBF-NBFG technique method (bottom) and Peskin
interpolation (top).

functions (Figure 6.5 Top) and RBFs (Figure 6.5 Bottom) are employed here

for coupling the inner boundaries. Table 6.1 displays numerical accuracy ob-

tained by the IRBF-NBFG method and Dirac Delta interpolations. The pro-

posed scheme outperforms the Dirac Delta interpolations with respect to both

convergence rate and accuracy. For example, to reach the accuracy of 8.10−4

the Dirac Delta interpolations needs a grid of 90 × 90 while only 20 × 20 with

the IRBF-NBFG method. The proposed scheme generates a good convergence

rate of O(h3.40).
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Table 6.1: Example 1: Poisson’s equation in three holes domain: Numerical ac-
curacy obtained by Peskin interpolation method and the proposed RBF-NBFG
method. It is noted that a(b) represents a× 10b.

nx Peskin interpolation Proposed IRBF-IBM
10 2.5641(-1) 7.3264(-3)
20 4.4228(-2) 8.5056(-4)
30 1.7652(-2) 1.4341(-4)
40 9.4371(-3) 5.8035(-5)
50 5.8697(-3) 2.8929(-5)
60 3.9919(-3) 1.6350(-5)
70 2.0810(-3) 1.0075(-5)
80 1.7256(-3) 6.6003(-6)
90 9.0921(-4) 4.5329(-6)
100 8.0924(-4) 1.2267(-6)

A domain with more than 3 holes

In this problem, the driving function b(x, y) = −1 is taken and homogeneous

Dirichlet boundary conditions. The interested domain is a unit square with

9 holes of radius 0.0625. This example provides a good means of testing the

ability of the IRBF-NBFG method in dealing with problems with multi-hole

domains. It is known that these geometrically-complex-domains can be found

in numerous practical situations such as fluid flows in a porous medium, partic-

ulate suspensions, or the thermal conductivity of composite materials, etc. A

regular discretisation of the IRBF-NBFG scheme and that of FEM are displayed

in Figure 6.6. It can be seen that the pre-processing process of the present tech-

nique is much simpler than that of FEM. We plot a visual comparison of the

contour of the solution u between the IRBF-NBFG technique (grid of 100×100)

and FEM obtained using the MATLAB PDE Toolbox as the exact solution is

unavailable here. Figures (6.7-6.8) show that the two solutions have comparable

variations.
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Figure 6.6: Example 1: Poisson’s equation in multi holes domain: Discretisation
by the present IRBF-NBFG technique method (top) and FEM (bottom).

6.3.2 Example 2 - Parabolic equation

Here, we interest in a problem governed by the parabolic PDE

∂u

∂t
−
(
∂2u

∂x2
+
∂2u

∂y2

)
= sin(πx) sin(πy)

(
1000e−1000t + 2k2π2

(
1− e−1000t

))
,

(6.29)

in which k is a given value. Here, we choose k = 3. Fig. 6.9 shows the problem

domain which is the region between a circle with radius of 1 and three smaller
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Figure 6.7: Example 1 (boundary value problem): A contour plot of u by the
present IRBF-NBFG technique using grid of 100×100 (top) and FEM (bottom).

circles of radius 0.125.

The initial solutions, Dirichlet boundary conditions on the internal circular

boundaries and Neumann boundary conditions on the external boundary can

be computed exactly from the problem’s solution given by

u(e)(x, y, t) = sin(kπx) sin(kπy)t. (6.30)

Results concerning Ne using a time step of 0.01 and the spatial discretisation of

20×20 to 80×80 are listed in Table 6.2. The system matrix condition numbers
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Figure 6.8: Example 1 (boundary value problem): A mesh of u by the present
IRBF-NBFG technique using grid of 100× 100 (top) and FEM (bottom).

are 3.5× 103 for a grid of 40× 40 and 5.4× 103 for 80× 80. It can be seen that

the proposed IRBF-NBFG technique can accurately approximate the problem

solutions.

6.3.3 Example 3: Cylinder-driven flows

Case 1: Rotating cylinder

This test problem is employed for the simulation of a steady incompressible

viscous flow defined in an annulus between two concentric cylinders (the circular

inner and square-shaped outer cylinders ). The flow geometry is shown in Figure

6.10 and its discretisation is shown on Figure 6.11. The flows are induced by
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Figure 6.9: Example 2: parabolic equation in three holes domain: A typical
discretisation using grid of 50× 50.

assigning a constant angular velocity Ω to the inner cylinder. The values of u

and v on the outer wall are simply fixed to zero, while the value of u and v on

the inner wall are set as u = −Ωy and v = Ωx.

The problem domain is extended to a rectangular one which is discretised by

uniform Cartesian girds. The diffusion and convection terms can be treated im-

plicitly and explicitly, respectively. Here, the first-order finite-difference scheme

is used to discretise the solution concerning the time derivative. At the time

t = 0, one requires to choose the initial values of all the variable fields (e.g. using

a lower-Re solution). For the case of Re = 100, the initial values can commonly

be set to zeros. Then, the problem solution is computed and updated till a

steady-state is reached.

The governing equations (2.14)-(2.16) need be calculated simultaneously to de-

termine the values of the two components of velocity field and pressure at the
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Table 6.2: Example 2: Parabolic equation in three holes domain: Numerical
accuracy obtained by proposed RBF-NBFG when refining mesh. It is noted
that a(b) represents a× 10b.

t nx = 20 nx = 30 nx = 40 nx = 50 nx = 60 nx = 70 nx = 80
0.01 3.16(-4) 9.99(-5) 3.90(-5) 1.92(-5) 1.77(-5) 1.03(-5) 6.01(-6)
0.11 7.34(-5) 2.14(-5) 8.88(-6) 5.67(-6) 3.39(-6) 2.00(-6) 1.25(-6)
0.21 4.72(-5) 1.36(-5) 6.73(-6) 5.93(-6) 1.98(-6) 1.00(-6) 7.12(-7)
0.31 5.19(-5) 1.46(-5) 7.29(-6) 6.36(-6) 1.90(-6) 9.09(-7) 6.84(-7)
0.41 5.33(-5) 1.51(-5) 7.52(-6) 6.57(-6) 1.94(-6) 8.89(-7) 7.00(-7)
0.51 5.44(-5) 1.53(-5) 7.58(-6) 6.59(-6) 1.89(-6) 8.68(-7) 6.83(-7)
0.61 5.43(-5) 1.54(-5) 7.62(-6) 6.63(-6) 1.91(-6) 8.69(-7) 6.92(-7)
0.71 5.46(-5) 1.54(-5) 7.62(-6) 6.62(-6) 1.88(-6) 8.64(-7) 6.84(-7)
0.81 5.45(-5) 1.54(-5) 7.63(-6) 6.63(-6) 1.89(-6) 8.63(-7) 6.89(-7)
0.91 5.46(-5) 1.54(-5) 7.62(-6) 6.63(-6) 1.88(-6) 8.64(-7) 6.86(-7)

discrete points within the domain. First derivatives of the pseudo pressure

on boundaries are utilised to derive Dirichlet boundary conditions for Poisson

equation (6.22) (Thai-Quang et al., 2012). Consequently, all the boundary con-

ditions of governing equations are Dirichlet. The projection method is employed

for solving fluid variables. At each time interval, the solution procedure involves

the following main steps:

a. Guessing the initial values of u, v and p

b. Discretising the equations (2.14)-(2.16) in time using a finite-difference

scheme

c. Discretising the equations (2.14)-(2.16) in space using the compact IRBF

stencils discretisation scheme. Because the differentiation matrices are

identical for all variable fields, the matrix establishment process only re-

quires to be done for one time. The system matrices which includes the

IRBF approximations for the first and second differential terms of the

governing equations, keep unchanged during the computational loop.



6.3 Numerical examples 148

Figure 6.10: Example 3 (rotating cylinder): geometry.

d. Computing desired values ud and vd using equations (6.18)-(6.19), respec-

tively.

e. Obtaining the forcing terms Λ by equations (6.20) and (6.21).

f. Solving the momentum equations with the obtained forcing term Λ to get

ũ∗ and ṽ∗.

g. Deriving the boundary conditions for φ and solving the pressure Poisson’s

equation (6.22) for φ.

h. Correcting velocity fields in equations (6.23)-(6.24) to satisfied the incom-

pressibility constraint (2.7).

i. Checking the steady state by the convergence measure (CM) defined as

follows: The maximum values of CM [u], CM [v], and CM [p] is chosen to
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Figure 6.11: Computational domains and discretisations. It is noted that the
real domain is the region between inner circular cylinder and outer square cylin-
der.

be CM .

CM [.] =

√
∑nip

i=1

(
[.]

(l+1)
i − [.]

(l)
i

)2

√
∑nip

i=1

(
[.]

(l+1)
i

)2 , (6.31)

where [.] can be u, v, or p, nip is the number of interior points in the real

domain, and l the time level. CM < ǫ, where ǫ the tolerance (here, ǫ is

chosen to be 10−10).

In this example, the flow is simulated with Ω = 1.0 using a uniform grid of 100×
100. Several values of the Reynolds number, including {100, 200, 500, 700}, are
studied. For comparison purposes, the stream function and vorticity variables
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can be derived by solving the following equation.

∂2ψ

∂x2
+
∂2ψ

∂y2
=
∂u

∂y
+
∂v

∂x
. (6.32)

Results concerning the maximum value of stream function ψmax and vorticity

ωmax calculated by the IRBF-NBFG scheme and the finite-difference scheme

(Lewis, 1979) are displayed in Table 6.3-6.4, giving an adequate agreement. In

Figure 6.12, the performance of the convergence measure CM versus the total

number of time steps is provided. It can be observed that the calculation of

high-Re number flows needs a higher number of steps. Plots of the velocity

vector field and pressure field for the cases of Re = {200, 700} are presented in

Figure 6.13.

Table 6.3: Example 3 (rotating cylinder): Comparison of the maximum values
of stream-function ψ, between the present IRBF-NBFG technique (grid of 100×
100) and finite difference technique for several values of Re.

Re 100 200 500 700
ψ

Present 0.4520 0.4546 0.4553 0.4550
FDM (Lewis, 1979) 0.4656 0.4539 0.4465 0.4423

Table 6.4: Example 3 (rotating cylinder): Comparison of the maximum values
of vorticity ω, between the present IRBF-NBFG technique (grid of 100 × 100)
and finite difference technique for several values of Re.

Re 100 200 500 700
ω

Present 1.1154 1.2660 1.3717 1.3937
FDM (Lewis, 1979) 1.0186 1.2559 1.3430 1.3693

Case 2: Moving cylinder

The second example is the same as the first one, except that the cylinder is
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Figure 6.12: Example 3 (rotating cylinders): Iterative convergence. The values
of CM become less than 10−10 when the numbers of iterations reach 13308,
23659, 53974, and 73086 for Re = {100, 200, 500, 700}, respectively. Using the
last point on the curves as a positional indicator, from left to right the curves
correspond to Re = {100, 200, 500, 700}.

repositioned after a certain number of time steps. The flow geometry is similar

to Figure 6.10. The cylinder’s radius is 0.1 and the angular velocity Ω is also

given constant of 1. In this case the Re = 10 is considered. Figure 6.14

displays the velocity fields with four y−positions of the cylinder including ye =

{0.15, 0.1, 0.05,−0.02}.

Case 3: Multiple cylinders

This example is to verify the proposed technique in dealing with fluid flows

in geometrically-complex-domains. The rotating cylinder problem is extended
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Re = 200

Re = 700

Figure 6.13: Example 3 (rotating cylinder): Velocity vector field (left) and
pseudo pressure field (right) for the flow at Re = {200, 700}.

to the case of multi-cylinder which are fixed and rotate at the same angular

velocity. Here, the domain of interest is a unit square cylinder with 9 circular

cylinders of radius 0.02. The cylinders are located at (0.15,-0.1), (-0.1,0.35), (-

0.25,-0.25), (-0.1,+0.1), (-0.3,0.3), (-0.05,-0.3), (0.35,+0.1), (0.1,+0.3) and (0.3,-

0.25). The discretisation of the IRBF-NBFG technique is similar to that of

Example 1 Poisson’s equation in multi holes domain (Figure 6.6). The pre-

processing for this case is much more convenient, since these radii are uniform,

one just updates the location of forcing points by an amount of eccentric (xe, ye).

We present a visual the distribution of u and stream function ψ (grid of 100×
100) on Figure 6.15 and 6.16, respectively.



6.3 Numerical examples 153

Figure 6.14: Example 3 (rotating cylinder): Velocity vector field of the viscous
flow for the moving cylinder with predefined velocity.

6.3.4 Example 4: Buoyancy driven flows in double-connected

domain

For this example, buoyancy driven flows between a heated internal circular

cylinder and a cooled external square enclosure is studied. These flows have

been widely investigated by experimental works as well as simulations. For the

latter, many numerical methods were carried out such as FDM (e.g. Kuehn

and Goldstein, 1976; Davis, 1983), FEM (e.g. Manzari, 1999; Sammouda et al.,

1999), FVM (e.g. Glakpe et al., 1986; Moukalled and Acharya, 1996), RBFN

(e.g. Šarler et al., 2004; Ho-Minh et al., 2009) and spectral techniques (e.g.

Le Quere, 1991; Shu, 1999).

For non-isothermal flows, with the Boussinesq approximation (Ostrach, 1988),
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Figure 6.15: Example 3 (rotating cylinder): Velocity vector field for the multi-
connected domains with 9 cylinders.

the governing equations in two dimensions can be written as

∂u

∂x
+
∂v

∂y
= 0, (6.33)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

√
Pr

Ra

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx, (6.34)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

√
Pr

Ra

(
∂2v

∂x2
+
∂2v

∂y2

)
+ T + fy, (6.35)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (6.36)

where T is the temperature, f = (fx, fy) the body force vector. Ra and Pr

are the Rayleigh and Prandtl numbers determined by Ra = κg∆TL3/αν and

Pr = ν/α, respectively in which κ is the thermal expansion coefficient, α the

thermal diffusivity coefficient, g the gravity, and ∆T and L the characteristic

temperature difference and length, respectively. Here, the velocity scaling U =
√
gLβ∆T is used to balance the inertial and buoyancy forces.
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Figure 6.16: Example 3 (rotating cylinder): Stream function contours for the
multi-connected domains with 9 cylinders.

Similar to Example 3, a Cartesian grid (Figure 6.11) is utilised to discretise

the annulus domain. Parameters for the simulations include an aspect ratio of

H/Di (where Di: the diameter of the internal hole and H : the length of the

external square) and Pr = 0.71. The width of RBF is chosen a constant 5 for

all simulations. For comparison purposes, the stream function can be derived

by solving the following equation.

∂2ψ

∂x2
+
∂2ψ

∂y2
=
∂u

∂y
+
∂v

∂x
. (6.37)

Results and discussion

The obtained results are presented in the forms of velocity, pressure and tem-

perature fields (Figures 6.18) with respects to three radii H/Di = 5, 2.5 and

1.67. In Figure 6.19, stream function and temperature plots contain 21 contour

lines which levels range linearly from the smallest to highest values for the ec-
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Figure 6.17: Example 4 (buoyancy flows in the square-circular annuli): geome-
try.

centric cases. The figure demonstrates that the current IRBF-NBFG results are

in very good agreement with those presented in (Ding et al., 2005). Here, the

local heat transfer coefficient and the average Nusselt number are determined

by Moukalled and Acharya (1996)

θ = −k∂T
∂n

, (6.38)

where k the thermal conductivity, and

Nu =
θ

k
, (6.39)

where θ = −
∮

∂T
∂n
ds.

Results concerning the maximum value of stream function (ψmax) and the av-

erage Nusselt number for five values of Ra , namely {1× 104, 5× 104 (uniform
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grids of 60×60) and 1×105, 5×105, 1×106 (uniform grids of 84×84)}, with a

time step of 1×10−4 are presented in Table 6.5 and Table 6.6, respectively. For

Ra = 104, the initial solution is set as zero and for higher values ofRa, the initial

solution is chosen by the solution at the most next lower Ra. These results agree

well with those in (Le-Cao et al., 2009; Kuehn and Goldstein, 1976; Moukalled

and Acharya, 1996; Shu and Zhu, 2002 and Ding et al., 2005). We also consider

the shifting circular boundary, where the centre of the internal cylinder moves

inside the external square. Varying amounts of position of the cylinder centre

(e), {0.25, 0.5, 0.75 and 0.95}, are considered. Results concerning ψmax together

with those of (Ding et al., 2005) for Ra = 3× 105 are displayed in Table 6.7. A

good agreement between the results obtained by IRBF-NBFG scheme and those

of the reported boundary fitted grid methods can be observed. The isotherms

and streamlines of the solution flow for Ra = 3× 105 using a grid of 60×60 are

plotted in Figures 6.18 and 6.19. Each plot comprises 24 contour lines which

have levels varying linearly from the lowest to highest values.

Table 6.5: Example 4 (buoyancy flows in the square-circular annuli): Compar-
ison of the maximum value of stream function ψmax for Ra from 104 to 106

between the present technique and some other techniques.

Ra 104 5× 104 105 5× 105 1× 106

ψmax

Present method 1.04 5.13 8.34 19.94 24.29
MQ-DQ (Ding et al., 2005) 1.00 8.32 24.13

FVM(Moukalled and Acharya, 1996) 1.02 8.38 24.07

6.4 Concluding remarks

In this work, a new non-boundary-fitted-grid method is reported. Compact

integrated RBF stencils are utilised to discretise the field variables on the com-

putational domains, and the forcing terms are directly estimated from the local
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Table 6.6: Example 4 (buoyancy flows in the square-circular annuli): Compar-
ison of the average Nusselt number, Nu, for Ra from 104 to 106 between the
present technique and some other techniques.

Ra 104 5× 104 105 5× 105 106

Nu
Present method 3.13 4.23 5.35 7.11 9.30

1D-IRBFN(Le-Cao et al., 2009) 3.22 4.04 4.89 7.43 8.70
DQM (Shu and Zhu, 2002) 3.24 4.02 4.86 7.53 8.90

FDM (Kuehn and Goldstein, 1976) 3.33 5.08 9.37

Table 6.7: Example 4 (buoyancy flows in the square-circular annuli): Com-
parison of the maximum stream-function values, ψmax, for special cases ϕ =
{−900, 900} between the present technique and MQ-DQ technique.

e 0.25 0.5 0.75 0.95
ϕ −900

ψmax

Present method 17.8 20.75 22.0 22.97
MQ-DQ (Ding et al., 2005) 18.64 21.29 23.52

ϕ 900

ψmax

Present method 12.7 11.06 10.90 9.57
MQ-DQ (Ding et al., 2005) 12.39 11.38 10.09

satisfaction of the governing equations. Unlike other immersed boundary meth-

ods, no interpolation between Lagrange and Euler grid is required here. The

proposed method is successfully verified in several practical problems. Nu-

merical results show that a high convergence rate is achieved and the matrix

condition number is relatively small. These attractive features together with

advantages of using non-boundary-fitted grids allow an efficient scheme to be

developed for the numerical study of complex structure fluids such as particulate

suspensions.
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Figure 6.18: Example 4 (buoyancy flows in the square-circular annuli): three
radii.
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Figure 6.19: Example 4 (buoyancy flows in the square-circular annuli): eccen-
tric.



Chapter 7

Conclusions

The aim of this PhD project was to further develop IRBF methods to produce

improved RBF simulations of heat transfer and fluid flows. Its main contri-

butions lie in the construction of new compact non-symmetric and symmetric

IRBF stencils, where high degrees of solution accuracy and sparseness of the

system matrix are achieved simultaneously. Below is a summary of the key

achievements.

In Chapter 3, we have shown that the performance of compact integrated ra-

dial basis function (CIRBF) stencils over large values of the RBF width can

be significantly improved with the use of extended precision, definite integrals,

higher-order IRBFs and a minimum number of derivative equations. For the

extended precision approach, accurate and stable solutions are achieved at the

expense of higher computational costs and the need to use some specific com-

putational tools such as function vpa in Matlab. For the other approaches,

solution stability and accuracy are improved by reducing the size of the sys-

tem matrices converting the RBF space into the physical space (the approaches

based on definite integrals and a minimum number of derivative equations)

and by integrating the MQ function four times instead of the usual twice (the

approach based on higher-order IRBFs).



162

In Chapter 4, to produce symmetric and invertible interpolation matrices, we

have introduced a compact symmetric IRBF stencil with Hermite interpolation

for the numerical solution of ODEs/PDEs. Several schemes based on global

and local approximations for rectangular and nonrectangular domains were pre-

sented. The extended precision approach is also utilised to extend the working

range of the IRBF width for a given grid size, and a better accuracy is achieved.

The local version is a preferred option for the handling of large-scale problems

as it possesses several attractive features, including: (i) sparse system matrix;

(ii) fast convergence rates (up to O(h4.05)) and (iii) the ability to also work with

larger values of the RBF width with a relatively low computational cost.

In Chapter 5, we have developed a high-order approximation scheme based on

IRBFs for time discretisations. The time stencil is based on two nodes over

which: (i) IRBFs are employed to represent the field variable and (ii) the first

nodal derivative value of the field variable is also included in the approximation.

The proposed method, where both time and space terms are approximated

using IRBFs, has been successfully applied to simulate shallow water flows

in large domains and natural convection flows in multiply-connected domains.

High levels of accuracy have been achieved using relatively large time steps.

The results are comparable to those obtained by the differential quadrature

method with respect to spatial discretisation and much more efficient (up to

1.42 times faster) than those by the finite difference method with respect to

time discretisation.

In Chapter 6, we have presented a new domain embedding approach for the

numerical simulation of complex-domain flows. In this method, the govern-

ing equations are modified to include the forcing terms and multiply-connected

domains are transformed into a simply-connected domain that is simply rep-

resented by a fixed Cartesian grid. A new approach based on IRBFs and the

governing equations to estimate the forcing term at grid nodes is proposed. The

proposed technique has been verified successfully through several boundary-
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value and initial-value problems governed by the velocity-pressure formulation

and the stream function-vorticity formulation in multi-connected domains. Nu-

merical results have shown that a high convergence rate is achieved and the

matrix condition number is relatively small.

Throughout this thesis, new local IRBF approximation-based schemes have

been presented and their efficiency has been successfully validated in various

test problems. However, the research in this thesis is limited to 2D problems

and Newtonian inviscid and viscous fluids. The following works are suggested

for possible further developments:

1. The proposed compact non-symmetric and symmetric IRBF stencils meth-

ods are presently developed for the simulation of 2D fluid flows. Extension

of the methods to the 3D problems is straightforward. However, simulat-

ing fluid flow in 3D domains can thus result in high memory and time

requirements. Since storage is proportional to the product of domain di-

mensions, the performance of simulation can be limited by memory capac-

ity. To overcome this problem, one can utilise ADI schemes to decompose

the 3D problems into 1D ones which save computer storage space. In ad-

dition, to achieve a higher level of accuracy with a relatively coarse grid

very large values of the RBF width can be exploited. Here we suggest us-

ing extended precision (e.g. function VPA or variable precision arithmetic

in MATLAB)-a straightforward way to handle ill-conditioned problems.

It is noted that by defining a stencil on the unit length, one needs to

compute the inversion of the conversion matrix only once and the result

can be applied for any grid size to be employed.

2. The IRBF time stencil is introduced and presently formulated for the

heat transfer and natural convection flows in Chapter 5. The method

produces accurate results using a relatively large time step. Extension of

this formulation to more complex fluids, i.e. shear thinning, viscoelastic

fluids, is possible. For non-Newtonian fluid flows, the computational time
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step is usually small and limited by the viscous of fluids. By discretising

time derivatives using the IRBF time stencil, a larger time step may be

employed which help to save the computational cost.

3. The proposed compact non-symmetric and symmetric IRBF stencils meth-

ods have limitation in solving 3D complex geometry and moving bound-

aries in time problems. Boundary points are generated by finding the

intersection between x− or y−grid lines and the geometry of boundaries.

It requires generating a new Cartesian-grid at each time step due to mov-

ing boundaries. The problems can be solved by further developing the

IRBF-NBFG approach proposed in Chapter 6 with a higher-order IRBF

approximation on the forcing domains. In addition, an implementation of

the proposed schemes in a parallel computing fashion would be desirable

to increase the computational efficiency for large-scale problems.
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