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ABSTRACT  

 

Developmental dysplasia of the hip (DDH) is considered to be one of the most 

common orthopaedic disorders, referring to a range of conditions from mild to severe 

dislocation of the hip joint. Knowledge of ankle-foot orthosis (AFO) use in patients 

with severe developmental dysplasia of the hip bone is crucial and may help improve the 

gait cycle during walking. The plantar pressure-sensing mat   and insole plantar sensor 

pad are ideal low-cost alternatives to the force plate for capturing plantar centre 

pressure excursion during gait. Acquired centre of pressure (COP) traces are favoured 

by many medical clinicians and allied health professionals evaluating foot loading 

and body balance with respect to foot biomechanics, foot injury, foot deformation and 

foot ulceration. Researchers have recommended the use of COP traces for the study of 

the deformed foot and deformed lower limb to improve orthosis assessment and 

orthosis performance testing. Knowledge of the COP and plantar pressure 

characteristics such as peak pressure, contact pressure and pressure time integral 

during walking can help identify possible foot pathology, help determine the most 

effective foot orthosis, and allow for the appropriate calculation of balance control 

and joint kinetics and kinematics during gait. 

 

However, there are unclear gait alterations in individuals with DDH which have 

clinical implications such as the investigation of AFOs and their effect on lower limb 

kinematics and kinetics, and their impact on the plantar pressure characteristics of the 

joints during walking and running. This research aimed to provide a better 

understanding of the gait characteristics of patients with severe DDH. 
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The first set of objectives was to study and evaluate the kinematics and kinetics of the 

ankle, knee and hip joints during walking in the sagittal plane for a patient aged 27 

years (the author of this research) with severe dysplasia of the left hip, using two 

different types of ankle-foot orthosis (custom-made, and leaf-AFO). The data were 

collected using ten cameras and one force plate under four conditions: barefoot, 

custom-made AFO, leaf AFO, and shoes only. The angles between every two segments 

were calculated using the Euler rotation sequence. An inverse dynamic approach was 

used to calculate sagittal joint moments and power. The results showed that the planter 

flexion angle reached its maximum during the time between the toes-off, the ground 

phase and the initial swing phase with a mean difference of 21.1° and 14°, 

respectively. 

 

Moreover, the results indicated that the fabricated orthosis decreased both the right and 

left extensor moments significantly during the load-bearing phase in comparison to 

barefoot by a mean difference of 0.29, and 0.43 Nm/kg respectively for both limbs. 

Results showed that the custom-orthosis had a higher moment during the late stance of 

the gait cycle compared to barefoot, with the data showing significant change by a 

mean difference of 0.1604 Nm/kg. However, the Leaf Spring AFO had little impact 

on the flexion moment during the late stance phase. 

 

The second set of objectives of this study was to evaluate the effect of wearing the 

two ankle-foot orthosis on the plantar pressure distribution of specific foot regions for 

the patient with DDH. These objectives were achieved by developing a correlation 

technique between the COP trajectory and the lower limb trajectory during the three 

main phases of gait (heel strike, midstance and push off). The lower limb trajectory 

data were collected using a new close-range photogrammetry system that employed 

six HD video cameras to capture the lower limb trajectory. The COP trace and 
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pressure data were collected using 3000E F-scan in-shoe sensors sampling at 100 Hz 

inserted inside the patient’s shoes. Six walking trials (ten steps per trial) were recorded 

for each condition (barefoot, custom-made orthosis, and Leaf-AFO). The average of 

the three middle steps was taken out of the ten steps for each trial under each 

condition. The corresponding results showed that the highest values of the pressure-

time integral for the left foot barefoot condition were registered under the lateral heel 

(LH) 115.92±2.91 kPa.sec, medial heel (MH) 101.66±2.55 kPa.sec, first toe (T1) 

73.79±1.85 kPa.sec, fourth and fifth toes (T45) 49.90±1.25 kPa.sec and second toe 

(T2) 42.94±1.08 kPa.sec. 

 

The research concluded that the kinematics and kinetics of the ankle and hip joint 

were improved by the custom-made orthosis more than that of the Leaf AFO-Spring 

Orthoses. The current work also concluded that both AFOs did not much change the 

kinematics of the knee joint however, there were some improvements in the moments 

and power generated. Finally, the researcher concluded that both orthoses enhanced 

body stability, minimized foot pain, and minimizing the risk of injury beneath 

specific foot regions. More investigations are required in the future, such as the 

investigation of the customized Knee-Ankle-Foot Orthosis (KAFOs) and increasing the 

number of samples. 
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CHAPTER 1: INTRODUCTION 

 
1.1 BACKGROUND 

 
The hip dysplasia disorder refers to the inadequate progression of the femoral head, 

the acetabulum, or both. The prognosis for developmental dysplasia of the hip 

(DDH) is positive if diagnosed early and treated according to a fixed protocol. If 

diagnosed late or left without treatment, it will progress to early secondary 

osteoarthritis (Singh et al. 2014). One of the popular treatment options in adults is 

total hip arthroplasty (THA) combined with an anatomical reconstruction of the 

acetabulum. The performance of a subtrochanteric shortening osteotomy is 

sometimes considered a necessary process to prevent nerve palsy in patients with 

severe hip dislocation (Marangoz et al. 2010). It is essential to detect DDH and 

intervene to achieve good results. However, there is a huge number of DDH adult 

patients who have had no treatment at an early age. Patients with untreated DDH face 

long-term morbidities such as avascular necrosis of the femoral head, degenerative 

hip osteoarthritis (OA), muscular fatigue and chronic pain, and gait deviations 

(Maeyama et al. 2009; Shorter, Hong & Osborn 2013; Lewis, Khuu & Marinko 2015; 

Hartofilakidis & Lampropoulou-Adamidou 2016). 

 

Gait analysis is commonly performed to assess patients’ walking patterns, including 

the study of the kinematics and kinetics of the lower limb in all three planes: sagittal, 

frontal, and transverse (Williams et al. 2010; Fernando et al. 2013; Nix et al. 2013). 

This evaluation technique has been regarded as a useful supplement to clinical and 

radiologic assessment (Williams et al. 2010; Fernando et al. 2013; Nix et al. 2013). 
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Many studies have investigated the gait patterns of patients who have received various 

operative treatments DDH. Most of these research studies have reported that the 

treated patients had an improvement in the gait patterns after the therapy, but they 

did not return to their normal level of walking (Chang et al. 2005; Hjorth et al. 2014; 

Sucato et al. 2015). However, there is a limited number of studies investigating the 

gait pattern of untreated DDH groups (Romano et al. 1996a; Jacobsen et al. 2013). 

Moreover, several studies have considered lower limb kinematics and kinetics for 

patients with DDH during walking in the sagittal plane. Several studies have probed 

reducing the hip flexion angle of the DDH limb and compared the reduced hip extension 

angle with a healthy group (Romano et al. 1996a; Lai, Lin & Su 1997; Pedersen et al. 

2004). Lai et al. (1997) reported that the pelvic kinematics of DDH patients had a 

smaller maximum anterior tilting of the pelvis compared to the healthy control group. 

They also stated that during the entire gait cycle, the diseased side of the pelvis in the 

unilateral DDH group stayed lower than the unaffected side. A few researchers have also 

investigated the kinetics of the lower limb in the sagittal plane. They stated that the 

affected limb had a smaller maximum external extension moment of the hip joint and 

a smaller maximum external flexion moment of the knee that those of the healthy 

control group (Romano et al. 1996a; Lai, Lin & Su 1997; Pedersen et al. 2004). In 

terms of power, two studies reported that the diseased limbs had less peak hip power 

than the those reported from the healthy control group (Romano et al. 1996a; Pedersen 

et al. 2004). 

 

Many patients with developmental dysplasia of the hip joint disorders experience 

some gait limitations such as drop foot during the swing phase, mediolateral 

instability of the ankle joint in the stance phase, and insufficient plantar flexor activity. 
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These problems result in an asymmetrical gait pattern, decreased gait speed, and affect 

postural stability and balance (Marangoz et al. 2010). Previous findings suggest that 

ankle-foot orthoses (AFOs) can manage various lower limb and neuromuscular 

disorders. These assisted devices had positive impacts on kinematics, balance, and 

spatiotemporal gait parameters (Franceschini et al. 2003; Desloovere et al. 2006; 

Enzinger et al. 2008; Damiano, Alter & Chambers 2009; Fatone, Gard & Malas 2009; 

De Sèze et al. 2011). The custom-molded ankle-foot orthosis is the most commonly 

used device for patients with inadequate gait cycles, such as cerebral palsy and 

excessive ankle plantar flexion. The orthosis provides safe ambulation by facilitating 

toe clearance during the swing phase, decreasing body weight and improving 

mediolateral stability in the stance phase (Franceschini et al. 2003). The AFO Leaf 

Spring is a prefabricated polypropylene ankle-foot orthosis designed to support flaccid 

drop foot. It provides a semi-rigid section for toe clearance and support. The absence 

of a heel section makes the Leaf Spring more comfortable to wear and provides a better 

fit in shoes. The AFO Leaf Spring Orthosis has many features such as injection-

moulded polypropylene which is lightweight, variable thickness throughout the 

orthosis providing strength, good toe clearance and support, and excellent fit for most 

types of shoes. 

 

Several studies have investigated the effects of AFO use on cerebral palsy, stroke and 

scoliosis rehabilitation (Beckung et al.2002). Ankle-foot orthoses (AFOs) have been 

introduced to improve the dynamic efficiency of the gait of children with cerebral 

palsy to such a degree that gait is well controlled and energy efficient (Figueiredo et 

al.2008). Few studies report positive effects of various types of AFOs on the gait 

kinetics and kinematics of the children with cerebral palsy (Radtka et al.2005; 
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Lam WK et al.2005). These effects include increased ground reaction force and 

plantar flexion moment, increased stride length, and improvement in walking, and 

running. Franceschini et al (2003) suggested a reduction in stance time and double 

support combined with increases in walking speed and cadence. Gök et al. (2003) 

found that custom-molded and metallic AFO orthosis provided an increase in step 

length, cadence and walking speed combined with a decrease in double support time. 

They stated that the more solid molded AFO could provide a better outcome than the 

plastic over the counter AFO orthosis. Simons et al (2009) found that rigid custom-

molded AFOs offer significant improvements in the balance scale, timed up and go, 

and increase the walking and functional ambulatory category (Simons et al. 2009). 

Some studies have compared the use of Chicagon articulated AFOs with off-the-shelf 

AFOs. The authors indicated that the Articulated Chicagon Brace provided a high 

level of improvement in walking speed, measured kinematics parameters such as 

balance, angle of ankle dorsiflexion, and a massive reduction in spasticity measures 

over three months for people with stroke and cerebral Palsy (Parvataneni, Olney & 

Brouwer 2007). 

 

Moreover, some studies have advocated that the combination of shoes and AFO 

orthosis could have a positive effect on balance performance (Arvin et al. 2013). 

Fewer studies have compared several non-articulating, polypropylene AFOs of 

different degrees of stiffness. These studies found that all orthoses increased dorsiflexion 

in swing, except for the stiffest design which added more stability during the stance phase 

(Wang et al. 2005; Mulroy et al. 2010). Mulroy et al. (2010) studied and compared the 

effects of three different types of AFO on walking after stroke. The results pointed 

out that all three AFOs increased the level of ankle dorsiflexion in the swing and 
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early stance phases of gait. Both the posterior and rigid AFOs have increased knee 

flexion and restrict ankle plantar flexion in the loading portion of gait (Mulroy et al. 

2010). Only in participants without a plantar flexion contracture, rigid AFO tended to 

restrict knee flexion in swing and dorsiflexion in the stance phases. The results also 

showed that those individuals with quadricep weakness could easily tolerate an AFO 

with plantar flexion mobility in loading. An AFO that permits dorsiflexion mobility 

in stance can benefit participants without a contracture. 

1.2 RESEARCH PROBLEM AND AIM 

 
The literature shows that there is a lack of research regarding the investigation of 

orthosis devices and their effects on gait pattern plantar pressure distribution for patients 

with developmental dysplasia of the hip. Thus, this research aims to provide a better 

understanding of gait characteristics for patients with severe developmental dysplasia 

of the hip while wearing multiple types of AFO. First, the research will study the 

kinematics and kinetics of the lower limbs under four conditions (barefoot, custom-

made-orthosis, Leaf AFO Spring, and shoes only), and compare these with the 

published data of healthy individuals. Second, the research will investigate the effect 

of the two mentioned AFOs on the plantar pressure distribution characteristics during 

the three main phases of gait: initial strike, midstance, and push off under three 

conditions: barefoot, custom-made-orthosis, and Leaf AFO Spring. 
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1.3 RESEARCH OBJECTIVES 

 
1- Studying the effect of custom-made and Leaf Spring AFOs on the kinematics 

of the lower limb for a patient with severe DDH 

2- Investigating the effect of custom-made and Leaf Spring AFOs on the 

kinetics of the lower limbs for a patient with severe developmental dysplasia 

of the left hip in comparison with published data of healthy people 

3- Studying the plantar pressure characteristics during the primary three phases 

of the gait under three conditions: barefoot, custom-made AFO, and Leaf  

Spring AFO  

4- Studying the pressure distribution under specific regions of both feet during 

walking under three conditions: barefoot, custom-made AFO, Leaf Spring AFO 

5- To develop low-cost advanced photogrammetric techniques to correlate the 

 

lower limb movements’ and centre of pressure trajectory. 

 

1.4 SIGNIFICANCE OF THE RESEARCH 

 
1- Understanding the correlation of lower limb movement and plantar pressure 

data helps to develop new ways to improve the quality of drop foot AFOs for 

hip dislocation patients 

2- Improving the understanding of the gait characteristics of patients with severe 

developmental dysplasia of the hip joint for doctors, podiatrists, and 

physiotherapists 

3- Providing a better understanding of various types of AFOs and their effects 

on the gait parameters during walking in the sagittal plane 

4- Improved 3D stereo lower limb/foot movement capture system.
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1.5 THE SELECTION AND EVALUATION OF RELATED 

PUBLICATIONS 

A literature review was undertaken to select the appropriate and eligible articles for this 

study. The author used the following resources and publication records (Google 

Scholar and the USQ Library to retrieve the titles and abstracts of related journal 

papers. All articles are from quality and peer-reviewed journals. These articles were 

screened for eligibility according to the following questions: Did the researchers 

investigate the gait parameters of young healthy adult individuals with developmental 

dysplasia of the hip, and individuals with lower limb disorders such cerebral palsy?, 

Did the research investigate the use of AFOs on the gait cycle of healthy and abnormal 

individuals?, Did the study discuss the kinematics and kinetics of DDH and healthy 

individuals?, Did the author discuss the plantar pressure characteristics of young 

healthy individuals and individuals with lower limb abnormalities?. 

 

Then, the author obtained the full articles for detailed assessment and the final decision 

on inclusion according to the following criteria: 1) Studies which investigated the gait 

cycle of untreated developmental dysplasia of the hip patients in comparison to 

healthy individuals, 2) Studies which investigated multiple types of AFOs and their 

influence on the gait paraments of patients with lower limb abnormalities , 3) Studies 

of pressure distribution beneath the foot of young, healthy individuals? and 4) Studies 

written in English. 
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1.6 THE STRUCTURE OF THE THESIS 

 
The thesis is structured as follows: 

• Chapter 1 is the introductory chapter, explaining the background and definition 

of developmental dysplasia of the hip disorder, research problems and aims, 

research objectives, the significance of the research, the selection and 

evaluation of the related publications, and the structure of the thesis 

• Chapter 2 forms the literature review, presenting the anatomy of 

developmental dysplasia of the hip, the gait cycle and phases of gait, the types 

of orthoses and their effect on pathological gait parameters, foot pressure 

distribution, and conclusion 

• Chapter 3 describes the instrumentation used to perform the study’s 

experiments. The first part shows the measurement system used to calculate 

the kinetics and kinematics of the lower limb joints, the test protocol, the 

digitizing and modelling process using visual 3D, calculation, and statistics. 

In this part, the creation of the author’s own musculoskeletal model for a 

DDH patient is introduced. The second part describes the foot pressure 

measurement system, image process technique utilized to calculate the 3D 

coordination of the knee joint, and the correlation between plantar pressure 

data and lower limb movements 

• Chapter 4 presents the ankle, knee and hip joint kinematics and kinetics 

results while walking in the sagittal plane for the patient with DDH under the 

mentioned conditions, plantar pressure distribution during the three primary 

phases of the gait, and foot region characteristics including contact 

pressure, contact area and pressure time integral parameters 

 

• Chapter 5 presents the main discussions points of the research conducted 
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• Chapter 6 presents the conclusion of the Thesis 
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CHAPTER 2:  BACKGROUND AND LITERATURE 

REVIEW 

The term developmental dysplasia of the hip (DDH) refers to a range of dislocations 

from mild dysplasia of the acetabulum or femur to high dislocation of the hip joint. 

The femoral head must lie in the acetabulum to encourage the healthy development of 

the hip joint. Secondary osteoarthritis commonly causes DDH disorders in young 

adults. It is more frequently encountered in women, and in countries such as Japan. 

The term DDH replaced the previous name of “congenital hip dislocation” (CHD). 

DDH is a generic term that refers to a wide range of anatomical abnormalities of the 

hip, which may be dislocated or may be developed in the first months of a child’s life. 

This new name has been endorsed by the American Academy of Orthopaedic Surgeons 

(AAOS), American Academy of Pediatrics (AAP), Pediatric Orthopaedic Society of 

North America (POSNA), European Paediatric Orthopaedic Society (EPOS) and 

Brazilian Society of Pediatric Orthopaedics (SBOP) (Guille, Pizzutillo & MacEwen 

2000; Martin & Petruneac 2017). 

There are three classifications for DDH in adults: 1) low range of dislocation in which 

the femoral head articulates with a false acetabulum which covers part of the true 

acetabulum, 2) A dysplasia in which the femoral head lies in the right acetabulum and 

3) high range of dislocation in which the right acetabulum is not in contact with the 

super-posteriorly femoral head (Hartofilakidis et al. 1996; Hartofilakidis, Karachalios 

& Stamos 2000; Hartofilakidis, Yiannakopoulos & Babis 2008). 
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The natural history of DDH encompasses many factors such as the presence of a false 

acetabulum; bilateral or unilateral. Increased contact stresses were thought to be a 

result of the development of secondary osteoarthritis (OA) (Murphy, Ganz & Müller 

1995; Xu et al. 2010). The presence of a false acetabulum can be altered and associated 

with earl development of OA, and may occur as a result of altered loading patterns 

(Xu et al. 2010). The mean age at onset of hip pain symptoms of Type A DDH is 34.5 

years, Type B DDH is 31.2 years, and Type C is 46.4 years (Hartofilakidis, 

Karachalios & Stamos 2000). Individuals with bilateral Type C DDH may stay free 

from OA for a long time. Patients with the unilateral disorder may experience 

difficulties related to leg inequality and other symptoms of the ipsilateral and 

contralateral knee (Weinstein 1997). Patients with severe hip dislocation may develop 

lower back pain and compensatory lordosis (Weinstein 1997). 

In DDH patients, the acetabulum is ovoid, shallow low cavity and, with the increasing 

the degree of dysplasia, the superolateral bone stock diminishes (Hartofilakidis et al. 

1996). The roof of the acetabular often shows excessive obliquity accompanied by an 

increase in the acetabular angle (Jacobsen, Rømer & Søballe 2005). Additionally, the 

containment of the femoral head is reduced, as seen on the coronal plane CT imaging 

(Jacobsen, Rømer & Søballe 2005). The increasing severity of DDH results in 

increasing bone stock in the medial acetabular wall, and has been shown to correlate 

with a degree of subluxation and acetabular depth (Liu et al. 2009). The combination 

of the above abnormalities results in decreasing acetabular coverage of the femoral 

head, as shown in Figures 2.1 and 2.2. Moreover, the increase of the acetabular 

anteversion is somewhat similar to controls, however this increase is not similar to that 

seen at the femoral neck (Akiyama et al. 2012). 
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Figure 2.1: Healthy hip joint with the femoral had placed correctly in the 

acetabulum, adapted from 

http://pathologies.lexmedicus.com.au/pathologies/hip-dislocation-luxation 

http://pathologies.lexmedicus.com.au/pathologies/hip-dislocation-luxation
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Figure 2.2: Patient with hip dislocation, which occurs with the exit of the 

femoral head from the acetabulum, adapted from 

http://pathologies.lexmedicus.com.au/pathologies/hip-dislocation-luxation 
 

 

 

 

2.1 ABLE-BODIED GAIT CYCLE 

 
It is necessary to review the gait cycle of healthy individuals, in particular the phases 

of the gait cycle, the temporal and spatial parameters, and lower limb joint kinematics 

and kinetics. 

2.1.1 Phases of the gait cycle 

 
The successive recurrence of events defines the gait cycle. Healthy individuals’ gait is 

defined by two consecutive heel strikes. The gait cycle is divided into two main phases: 

stance, and swing. The period between the initial foot contact (heel strikes the ground) 

and ipsilateral toe-off (same foot pushes off the ground) defines the stance 

phase. For unimpaired healthy individuals, the stance phase forms approximately 62% 

http://pathologies.lexmedicus.com.au/pathologies/hip-dislocation-luxation
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of the whole gait cycle. The swing phase is defined by the time between the ipsilateral 

toe-off and the ipsilateral heel strike when the foot is no longer in contact with the 

ground. This second phase forms the remaining 38% of the gait cycle. These two main 

phases can be subdivided into another eight functional portions as shown in Figure 

2.3. These functional phases are initial contact, loading response, and mid-stance, 

terminal stance, pre-swing, and swing: initial swing, mid-swing and terminal swing 

(Whittle 1996; Levangie & Norkin 2000; Kaufman & Sutherland 2006; Burnfield 

2010; Everett & Kell 2010). 

 

 

Figure 2.3: Main and sub-phases during human locomotion (Burnfield 2010) 
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The initial contact phase is defined by the moment the foot first strikes the ground. 

Although short, this phase is crucial because the lower limb joint orients during the 

initial contact with the floor affecting the lower limb’s loading response. This phase 

plays a vital role in positioning the limb for stance and load-bearing. The heel acts as 

a fulcrum by creating a rocker during the moment the heel first contacts the ground. 

This heel rocker continues into the next portion or the sub-phase, loading response 

(Burnfield 2010). 

 

Load bearing starts with heel strike and continues as the opposite foot is pushed off 

the ground (i.e. contralateral toe off). The duration of the loading response phase for 

healthy bodied individuals is 2-10% of the total gait cycle. The loading response is 

defined as the first period of double limb support. During this time, several key 

events occur to achieve the three main objectives: preservation of progression, shock 

absorption and weight-bearing stability. As previously illustrated, when the heel first 

touches the ground, it acts as a fulcrum, allowing the foot to rotate at the ankle. The 

rapid loading of approximately 60% body weight onto the stance phase produces an 

external plantar flexion moment. This dorsiflexor contacts eccentrically, adjusting 

the foot as it is lowered to the ground, avoiding foot slap, and prolonging heel 

support. The prolonged heel support and the advancement of the tibia help to 

preserve the forward progression of the limb. Shock absorption is another benefit of 

the dorsiflexor muscle activity since some of the body’s downward movement is 

absorbed by the tibialis anterior as it resists the external plantar flexion moment. 

During the leading response phase, the knee flexion transmits part of the energy to 

the contracting quadriceps, providing additional shock absorption. The quadriceps 

have many responsibilities such as providing weight-bearing stability, resisting the 
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internal rotation of the tibia, and preventing external knee flexion torque (knee 

bucking) (Burnfield 2010). 

The mid–stance phase forms approximately 10-30% of the gait cycle, occurs during 

the first half of the single limb support when the contralateral foot is lifted off the 

ground, and continues until the body is aligned vertically over the ipsilateral forefoot. 

Passive ankle dorsiflexion results from the forward fall of the body as well as the 

momentum of the contralateral limb. This passive dorsiflexion moment allows the 

tibia to transition over the foot, creating what it is called second rocker. Furthermore, 

the soleus plantar flexor contracts eccentrically to control the rate of dorsiflexion and 

give more stabilization to the ankle joint. 

The second half of the single-limb (terminal stance phase) occurs from 30-50% of 

the whole gait cycle. This phase starts when the ipsilateral heel rises, and finishes 

when the contralateral foot strikes the foot again. Moreover, the body advances 

beyond the supporting foot during the terminal stance, contracting the gastrocnemius 

and soleus muscles to stabilise heel rise, allowing the body to transition forward over 

the forefoot creating the third rocker (Burnfield 2010). 

 

The pre-swing phase is considered the last phase of the stance, starting when the 

contralateral heel strikes the ground and finishes with ipsilateral toe off the ground, 

which is the second interval of double limb support. At this phase, the bodyweight 

is fully transferred to the opposite limb to prepare the ipsilateral limb for swing, 

resulting in decreased loading on the limb and producing rapid plantar flexion of 

approximately 20%. Thus, this flexion allows the tibia to rotate anteriorly, stabilising 

the toe on the ground, and resulting knee flexion. Eventually, the toe extensor 

muscles are active preparing for swing (Burnfield 2010) . 
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The initial swing phase, which is approximately 60-73% of the gait cycle, begins 

when the toes are lifted off the ground and ends when the ipsilateral foot is opposite. 

The main aim of this swing phase is toe clearance. The toe clearance is achieved 

when the ankle dorsiflexes from its initial 20° plantar flexion to a more neutral 

position due to toe extensor activity and tibialis anterior. Both dorsiflexion and knee 

flexion (nearly 60°) result in toe clearance (Burnfield 2010). 

 

Figure 2.4: Sub-phases of the swing during human locomotion (initial swing, mid-

swing, and terminal swing ) (Burnfield 2010) 

 
 

The second portion of the swing phase is the mid-swing (approximately 73-87% of the 

whole gait cycle). This phase begins when the ipsilateral swinging foot is positioned 

next to the contralateral stance foot and finishes when the tibia of the ipsilateral foot 

is vertical (Figure 2.4). The mass of the foot is at higher demand on the ankle when 

the tibia approaches a vertical position, resulting in increased activity of the tibialis 

anterior extensor hallucis longus (Burnfield 2010). 
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The final phase of the gait cycle refers to the terminal swing (approximately 87 -

100%). This phase starts with the ipsilateral tibia located vertically and finishes with 

the ipsilateral foot touching the ground. During the terminal swing, the limb begins to 

prepare for the initial contact moment. Pretibial muscle action, especially the tibialis 

anterior contraction, increases to counteract the inertia of the swinging leg, ensuring 

that the ankle is neutrally positioned for subsequent heel contact. The knee extends in 

preparation for this initial contact (Burnfield 2010). 

 

2.1.2 Temporal and Stride Parameters 

 
Many standard temporal and stride parameters are used to evaluate the time of specific 

events and phase durations of the gait cycle such as cadence, stance and swing 

duration, as well as the duration of single limb and double limb support. The number 

of steps taken per unit time (steps/minute) defines cadence. As previously pointed out, 

for healthy individuals, stance duration is about 62% of the gait cycle, and the swing 

phase is about 38% of the remainder of the gait cycle. These time percentages are 

dependent on the individual and velocity. 

 

There are two periods of double limb support for the stance phase, separated by one 

period of single-limb support. The swing phase happens during single-limb support. 

The period when only one limb is in contact with the floor defines the single limb 

support period. During the double limb support period, both ipsilateral and 

contralateral feet are in contact with the floor. The first 12% of the whole gait cycle, 

including the period from ipsilateral initial contact to contralateral toe off (loading 

response), defines the initial period of double limb support. The single-limb support 

starts over the subsequent 38% of the gait cycle through the contralateral heel strike 
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(mid- and terminal stance phases). The second limb support (50-62%) occurs during 

the late stance phase of gait, starting from the contralateral heel strike and ending with 

the ipsilateral toe-off (pre-swing phase). The final single limb support period spans the 

entire swing phase (initial, mid- and terminal swing), from ipsilateral toe-off through 

to ipsilateral heel strike (Figure 2.5). 

 

The most common stride parameters tested during gait are stride length, step length 

and velocity. The distance between the heel strike of one limb and heel strike of the 

other limb defines the step length. The stride length is determined by the distance 

between subsequent heel strikes of the same limb, as shown in Figure 5.2. Finally, 

velocity is defined as the distance travelled per period (m/sec). 

 

Figure 2.5: Spatiotemporal parameters (Janeh et al. 2017) 
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2.1.3 Kinematic Parameters 

 
The movement of the lower extremities during walking refers to gait kinematics. The 

kinetic parameters are presented in terms of lower limb joint (i.e. hip, knee, and ankle) 

angles in the three main planes of motion (sagittal, coronal and transverse). The only 

sagittal kinematics reviewed in this section are due to the largest ranges of motion 

observed in this plane during walking gait (Burnfield 2010). 

 

During walking in the sagittal plane (for healthy able-bodied individuals) each lower 

limb joint shows a characteristic waveform. Each joint transition occurs between 

periods of flexion and extension along the entire gait cycle (Burnfield 2010). 

The normal hip joint range of motion during walking in the sagittal plane at self- 

selected speed is 40°. At the heel strike phase of the gait, the degree of hip flexion is 

about 30°. The hip starts to extend until the contralateral foot strikes the ground. Then 

the ipsilateral hip flexes in preparation for swing as bodyweight is transferred to the 

contralateral limb during the pre-swing phase of gait. During the terminal swing phase 

of gait, the ipsilateral hip extensor muscles decelerate the limb in preparation for 

weight acceptance (Burnfield 2010). 

 

As shown in Figure 2.5, the knee displays two periods of flexion, and it has the most 

extensive range of motion of the lower extremity joints (approximately 60°). The first 

knee flexion period occurs during early stance, showing maximum knee flexion of 20° 

during the moment of transitioning between the loading response phase and the mid-

stance phase. The initial knee flexion is a reflection of shock absorption that aids  

weight  acceptance. The  knee slowly starts  to  extend to approximately 5° of flexion 

during terminal stance (single-limb support). Then, the degree of knee flexion rapidly 



21  

increases following contralateral heel strike. During the initial swing phase of gait, the 

knee flexion moves to approximately 60° to allow the limb to shorten and facilitate 

toe clearance. A rapid knee extension results from the combination of the inertial 

shank/foot forces and activation of the quadricep muscles. Finally, full knee extension 

occurs just prior to heel strike (Burnfield 2010). 

 

The ankle sagittal plane range of motion has four periods of plantar-flexion and 

dorsiflexion which relate to the three ankle rockers. Ankle range of motion is about 

approximately 25°. During loading response (weight acceptance), the neutral position 

of the ankle joint allows the heel to contact the ground. The foot uses the heel as a 

fulcrum, rotating to achieve foot flat (heel rocker). Then the plantar flexes to about 5° 

to provide both shock absorption and deceleration of the tibia. Followed by the rotation 

of the tibia around the ankle (ankle rocker) just after the forefoot contacts the ground, 

resulting in what it is called passive dorsiflexion. The maximum angle of 

approximately 10° dorsiflexion occurs during single-limb support. The centre of mass 

of the body is located over the metatarsal heads after the contralateral heel strikes the 

ground, causing the ipsilateral heel to rise. The foot then transitions from 10° 

dorsiflexion to 15° plantar flexion, rotating over the metatarsal-phalangeal joint 

(forefoot rocker). Eventually, the ankle rapidly dorsiflexes during the swing phase of 

the gait, providing foot and toe clearance. At the end of the swing phase, the ankle is 

back to its neutral position in preparation for heel strike (Burnfield 2010). 
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2.1.4 Kinetics Parameters 

 

At the time of initial contact, the hip flexes to about 20°, and the bodyweight vector is 

located anteriorly to the hip joint centre. The impact that results from the abrupt drop 

of body weight onto the foot requires an instant peak in the extensor hip moment (0.84 

N.m/kg). The replacement of the initial inertia with the developing shear forces allows 

the body weight vector to rapidly realign itself towards the body’s centre of mass 

(COM) and move backwards towards the hip joint. Even though the moment’s arm 

length decreases during the remainder of the leading response phase, a rapid increase 

in the magnitude of the ground reaction force preserves the need for an extensor 

moment throughout weight acceptance. The extensor moment becomes half its 

magnitude (0.44N.m/kg) towards the end of the loading response portion of gait. 

During the moment of transitioning from the loading response phase to the mid-stance 

phase of, the first spike of power generation occurs (0.72W/kg.m) at approximately 

12% of the whole gait cycle, contributing to hip extension (Burnfield 2010). 

 

During the mid-stance phase (25% of  GC), the thigh is progressively extended and 

the hip joint centre moves in front of the bodyweight vector, contributing to a flexor 

moment. The primary resistance provided by the flexor moment during mid- and 

terminal stance is the passive resistance from the Y ligament. Throughout the terminal 

stance phase of gait, the flexor moment increases and reaches its peak towards the 

beginning of the pre-swing period (1.06N.m/kg) at approximately 51% of the whole 

gait cycle. When the body shifts towards the contralateral limb, the flexor moment 

rapidly declines, generating a second short burst of power (peak 1.14 W/kg.m) at 

approximately 60% of the entire gait cycle. The rate and magnitude of thigh extension 
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are controlled by a low-level extensor moment during the latter half of mid-swing and 

terminal swing phases (Burnfield 2010). 

 

The impact of initial floor contact creates a vector which is vertically oriented and 

anteriorly aligned to the knee joint. After 1% of the gait cycle, a low magnitude flexor 

moment (0.35N.m/kg) is produced to prevent knee hyperextension as energy is 

generated (1.0 W/kg.m). During the loading response phase, the knee is rapidly flexed, 

and an extensor moment is produced to ensure stability across the joint (0.52 N.m/kg), 

and power is absorbed due to the eccentric activity of the vastii (peak 

0.8 W/kg.m) at approximately 8% of the entire GC (Figure 2.6). In the early mid- 

stance phase, at about 16% of the gait cycle, the knee extension is augmented by the 

peak power generation of 0.5 W/kg.m. Then, the knee extensor moment is rapidly 

diminished by the end of the mid-stance phase, presenting a small flexor moment 

which persists through terminal stance (peak 0.36 N.m/kg) at approximately 38% of 

the entire gait. During the pre-swing and terminal swing phases, the rate of rapid knee 

flexion is modulated by a low amplitude extensor moment (peak 0 .21 N.m/kg) at 

approximately 58% of the GC. During the same period, peak power absorption of 

1.2W/kg.m occurs with the knee at about 59% of the entire gait. During the late swing 

phase, the knee is extended, the flexor moment is increased again to peak magnitude 

of 0.26 N.m/kg at approximately 93% of the entire gait cycle, and power is absorbed 

to peak amplitude of 0.9W/kg.m at 90% of the gait as the hamstrings eccentrically 

control the rate of knee extension (Burnfield 2010). 
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Figure 2.6: Knee moments and knee power during walking in the sagittal plane 

for able-bodied individuals (Burnfield 2010) 

 

 

During the initial contact phase of gait, the body vector is placed posteriorly to the 

ankle joint, and a low magnitude dorsiflexor moment is needed early in this phase to 

control foot lowering (0.18N.m/kg) at approximately 4% of the entire gait cycle, thus 

generating an immediate peak of absorptive power (0 .15W/kg.m). By the end of the 

loading response, the centre of pressure rapidly advances, the body vector is 

positioned anteriorly to the ankle joint, and the ankle dorsiflexor moment is reduced 

to zero at 12% of the entire gait. The generation of low amplitude power at the end 
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of the weight acceptance portion of the stride reflects concentric control of the 

pretibial as they function to draw the tibia forwards. The plantar flexor moment 

increases during the period of transitioning to SLS as the centre of pressure is 

progressively moved ahead of the ankle joint (Burnfield 2010). 

Approaching the end of the terminal stance phase just before the contralateral foot 

strikes the ground, the plantar flexor moment reaches it peak magnitude of 

1.40N.m/kg at approximately 47% of the entire gait cycle. Therefore, limiting the 

ankle dorsiflexion to 10 degrees, thus preserving the height of the centre of mass and 

the position of the vector over the metatarsal heads. The power absorption peak of 

0.54W/kg.m predominates until the latter half of the terminal stance at approximately 

40% of the GC, which reflects the eccentric control provided by the flexors at the 

plantar during the entire single limb support (Burnfield 2010). 

During the pre-swing phase of gait, tension in the gastrocnemius and soleus 

musculotendinous unit is released by the rapid unloading of the trailing limb that 

follows ground contact by the contralateral foot thus, generating a strong burst of 

3.7W/kg.m power at approximately 54% of the GC. This is called a push-off event. 

At the onset of the swing phase, the foot is lifted for clearance by a small generated 

moment of 0.03 N.m/kg at 62 % 0f GC (Burnfield 2010). 
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Figure 2.7: Ankle forces: describes the ankle moments and ankle powers during 

walking in the sagittal plane for able-bodied individuals(Burnfield 2010) 

 
2.2 IMAGE PROCESSING TECHNIQUE 

 
Image-based motion capture and photogrammetry image processing methods have 

been used widely for the creation of a 3D movement model of the lower limb and 

foot. These models are utilized by doctors, podiatrists, and physiotherapists to 

develop reliable treatment strategies for individuals suffering from physical 

disorders such as drop foot, spinal cord injuries and joint dislocation (Peter 2007). 

While several technologies such as electromagnetic sensors and inertial systems have 

been utilized to address fast human movement tracking, the optical imaging system 

utilizing photogrammetric targets on the object is still considered one of the most 

accurate and reliable techniques (Chong 2012, Al-Baghdadi 2013). The method has 

a few limitations. These include: (1) suitable imaging sensor geometry or 
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configuration (Chong 2012), (2) definition of axes associated with each bony 

segment incorporated in the model and (3) preparation time for imaging target 

placement (Cappozzo et al. 2005). However, photogrammetric techniques are still 

considered practical for this research. Therefore, further study: 1) to determine the 

suitability of photogrammetric methods for capturing the 3D movement of the lower 

limb and the foot plantar pressure . 

 

3D object modelling systems and techniques create a 3D surface model, and these 

models can be animated into 3D solid or stick models for a straightforward 

interpretation of human movement based on anthropometric markers. Nevertheless, 

some efficient 3D capturing systems, such as flat-bed scanners and laser scanners, 

are only suitable for static or slow movement of the body. In the study of scoliotic 

subject gait, knowing the dynamic change of the lower-limb and foot shape at normal 

gait speed is crucial. Thus, these wo techniques are not suitable for this investigation. 

Recently, Chong et al. (2012; 2015) developed precision techniques for correlating 

force plate recording and foot shape using close-up imaging sensors. The approach 

was based on accurate time stamps for synchronizing between video recording and 

force plate recording. 

 

The analysis of joint kinetic data, including muscle force and joint reaction force, 

has enhanced the dynamic study of sport and exercise of both healthy and lower limb 

pathological individuals (Adouni & Shirazi-Adl 2014). Understanding the 

pathomechanics of individuals can be achieved by analysing COP spatial 

relationships relative to the location of primary joints in normal gait. In previous 

research, COP has been an excellent index to calculate the balance of individuals in 
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gait, and undertaking exercise and sport (Carpenter et al. 2001; Karlsson & Frykberg 

2000). COP would be suitable for motion evaluation and rehabilitation applications 

(Jamshidi et al. 2009). Other studies have shown the use of COP trace to provide a 

set of references to evaluate the function of orthoses during walking Aboutorabi et 

al. (2014) and Chockalingam et al. (2008) assessed the COP pattern and moments in 

scoliotic subjects during normal walking. They showed wide variations in the 

mediolateral direction COP which could be related to the laterality of both the 

primary and compensation curves. The authors argued that individuals with a higher 

left compensation curve had more significant displacement to the left. 

 

2.3 GAIT PARAMETERS ASSOCIATED WITH DDH 

PATIENTS. 

2.3.1 SPATIOTEMPRAL PARAEMTERS 

 
Many studies have investigated the spatiotemporal parameters in untreated DDH 

compared with a healthy control group. Several studies pointed out that patients with 

hip dislocation had a slower walking speed than those with an able-bodied gait cycle. 

However, the study of Pedersen et al. (2004) showed that there is no significant change 

in walking speed between the healthy controls and patients with severe untreated 

DDH. Their results pointed out a walking speed-reading of 4.5km/h for DDH 

individuals. Also, the studies of Jacobsen, Rømer and Søballe (2005) stated that there 

is no significant difference in the running speed of DDH patients and people in a 

healthy control. 

In terms of stride length parameters, the study of Romano et al. (1996a) reported that 

individuals with DDH walked with a shorter stride length than those of healthy 



29  

individuals. The authors also found no significant difference in the duration of the 

stride cycle between the DDH and healthy control. Moreover, the results of the same 

study found no significant difference between the affected limb and the healthy control 

regarding the duration of the stance phase however, the unaffected side had a longer 

stance phase duration that the affected side and healthy control. Lai, Lin and Su (1997) 

investigated walking cadence and proved that there is no significant difference 

between   the healthy group and DDH group. Their results also pointed out that the 

diseased side with hip dislocation had a shorter single support time than both the 

unaffected side and healthy control. 

 

Finally, the diseased limb had a longer double support time than the healthy control 

according to some studies. The studies of Romano et al. (1996a) showed that both the 

limb affected by DDH and the unaffected limb had a slower foot velocity than those 

of the healthy control. They also found that the diseased limb had a slower foot velocity 

than the healthy limb. Of relevance to our project, the literature shows no study 

investigating the walking parameters and spatiotemporal time parameters of patients 

with severe DDH while using an AFO. Thus, in this research, we are aiming to look at 

the differences in these parameters for four conditions: barefoot, custom-made AFO, 

and Leaf Spring AFO and shoes only. 
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2.3.2 Lower limbs Kinematics and Kinetics of DDH patients 

 
Romano et al. (1996a) reported that the diseased hip had a smaller maximum flexion 

angle than the healthy control during single limb stance phase. The results of their 

studies showed a reduction in the diseased hip maximum extension angle in 

comparison to the healthy control group. Moreover, they found that the diseased hip 

showed a greater maximum external rotation angle than the healthy control however, 

the healthy unaffected hip had a greater maximum internal rotation angle than those 

of healthy individuals. A few studies showed that the limb with DDH had a greater 

maximum knee flexion angle, greater maximum ankle plantar flexion, and greater 

maximum ankle dorsiflexion angle than the healthy group. The studies of Lai, Lin and 

Su (1997) pointed out that healthy individuals had a higher maximum anterior tilting 

of the pelvis than the limb affected with DDH along the entire gait cycle. The same 

study found that the diseased limb of unilateral hip dislocation patients showed an 

increased pelvic drop during the whole stance phase than the healthy side. 

 

In terms of the kinetic parameters findings, the investigation of Romano et al. (1996a) 

on subjects with different degrees of dysplasia (from mild to severe degree of 

dysplasia) showed that the affected limb had a smaller maximum flexion moment of 

the hip joint than the healthy control. The authors also found that healthy individuals 

had a greater maximum extension moment of the hip joint, greater maximum flexion 

moment of the knee joint, and higher ground reaction force readings than those of 

DDH individuals. Few studies have investigated the peak power in the lower extremity 

joints (hip, knee). They found that the hip with DDH has less reading of power 

generation and power absorption in the hip joint “the period from late stance to early 

swing phase,” and less peak of power absorption in the knee joint (the period from 
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middle to late stance phase of the gait) than that of healthy individuals (Romano et al. 

1996a). However, the results of the peak ankle power readings during the stance phase 

showed no significant difference between the diseased limb and healthy controls data. 

 

2.4 TYPES OF ORTHOSIS 

 
The AFO is a device used to control the knee joint in weight-bearing because of 

weakness, absence of muscle function or deformation in the knee joint, and to provide 

stability for individuals with lower limb weaknesses in walking and standing phases. 

KAFO is prescribed as a solution for many disorders, which cause muscular weakness 

of the lower limb such as peripheral neurological diseases (poliomyelitis and post-

polio syndrome, spina bifida, polyneuropathy), muscular diseases and central 

neurological diseases (spinal cord injury and multiple sclerosis) (Cullell et al. 2009). 

AFO devices provide control for ankle and knee joints and can be worn unilaterally or 

bilaterally depending on the requirements (Fatone 2006). Several types of knee ankle-

foot orthoses have been developed: passive devices and active devices (Stance control 

KAFO and Dynamic KAFO) (Tian, Hefzy & Elahinia 2015). 

 

Passive AFOs do not require any power system. These devices lock the knee joint 

throughout the extension in both stance and swing phases. There are three types of 

passive AFO joint: polycentric knee joint, posterior offset knee joint, and straight-set 

knee joint. The straight-set knee joint with drop lock consists of a simple hinge joint 

and a sleeve that moves over to unlock/lock the joint automatically. The individuals 

can easily reposition their centre of mass by using the posterior offset joint KAFO. 

The polycentric knee joint provides more stability as the knee’s centre of rotation 

keeps the body weight anterior (Tian, Hefzy & Elahinia 2015). 
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Various types of assistive devices have been developed to improve the walking and 

standing parameters for spinal cord injuries (Motloch et al 1992). HKAFO is 

essentially a KAFO device which extends along the hip joint to provide more trunk 

stability and support the spine (Nenel et al. 1996). These mechanical orthoses are 

divided into: traditional orthosis hip knee AFO (HKAFO) and HGO the hip guidance 

orthosis, RGO reciprocating gait orthosis, ARGO the advanced reciprocal gait 

orthosis, the isentropic reciprocating gait orthosis (IRGO) and the medial linkage 

orthosis (MLOs), and the walkabout orthosis (WO) (Moore and Stallard 1991). The 

hybrid system of ARGO-FES was developed to improve the gait parameters of SCI 

individuals (Jaspers et al. 1995). The factors of energy expenditure, weight, size and 

lack of cosmetics have limited the use of these devices by paraplegic patients included 

in the studies of Kim et al. (2009) and Bernardi et al. (1995). The hip abduction device 

generally consists of a pelvic harness (right and left) which is connected with joint 

support by four clip fasteners supplied and with a connector plate that can be adjusted 

to five different settings depending on pelvic girth and the upper part of device which 

surrounds the hip. The upper part is connected with an assembly joint (bar) by two 

bolts where the last is attached onto the lower side of the bar and covered by a thigh 

shell using two bolts. 
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2.4.1 The effects of foot orthosis on Pathological gait parameters 

 
SCKAFO flexes the knee during the stance phase and rotates the knee joint freely 

during the swing phase. Irby, Bernhardt and Kaufman (2005) developed an 

electronically controlled dynamic knee brace system and later commercialized it as the 

Ottobock’s Sensor Walk. Irby showed the difference between thirteen subjects of 

experienced KAFO users and eight of novice users. Novice users tended to have high 

velocity (55 vs. 71 cm/s, p=0.048) and increased cadence to (85 steps/min, p<0.05). 

Arazpour et al. (2015a) developed an electrically powered knee ankle foot orthosis 

which locks the knee during the stance phase and provides active assistance for both 

knee flexion and extension during the swing phase. 

 

The outcomes of gait symmetry for poliomyelitis patients were improved for the 

symmetry index in step width (p = 0.037), swing time (p = 0.014), stance phase 

percentage (p = 0.008), and knee flexion during swing phase (p ⩽ 0.001) and these 

results were better than using the normal one. Cadence is not significantly different 

between both of conditions (p=0.751) (Arazpour et al. 2016). Yakimovich et al. (2006) 

developed a friction belt clamping mechanism for SCKAFO. The kinematics gait 

analysis was performed on three male subjects suffering from quadriceps muscle 

weakness. The result showed that knee flexion increased by a mean of 21.1° for all 

subjects during the swing stage, knee range of motion increased by 23.2° as an overall 

average, less pelvic obliquity, and hip abduction angle abnormalities. The stance-

flexion range of motion increased by a mean of 5.6° (Yakimovich, Lemaire & Kofman 

2009). Continuing to this work, Lemaire et al. (2009) presented the angular-velocity 

control (the rotary-hydraulic device). The results showed that the new one gave more 

safety and body balance for people with lower extremity weakness. Shamaei et al. 
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(2013) developed a quasi-passive compliant stance SC, that can be fitted into a normal 

KAFO. The  new CSCO displays various levels of stiffness during the engagement\ 

disengagement phases by using control algorithm depending on the linear spring, 

which implements in parallel with knee joint.  

Hwang et al. (2008) presented in their work the biomechanical effect of an 

electromechanical knee ankle foot orthosis on four female KAFO users with 

poliomyelitis (37 years old, 159 cm height, 56 kg in weight). The results showed that 

that using the developed KAFO decreased the amount of energy consumed by 33% 

compared with the passive orthosis (locked–knee–joint). 

 

Sawicki and Ferris (2009) presented a pneumatically powered KAFO with myoelectric 

activation and inhibition. By fitting the device on one individual with muscle weakness 

in the lower limb, the outcomes stated that the new KAFO produced approximately 

22-23% of the peak knee flexor moment, 15-33% of the peak extensor moment, and 

42-46% of the peak plantar flexor moment. McMillan et al. (2004) presented the 

preliminary evidence for the effectiveness of a stance control orthosis. Data was 

collected on three male subjects with significant weakness in at least one lower limb. 

All three subjects increased speed and cadence, increased stride and increased step 

lengths. Two subjects exhibited lower heart response and lower energy consumption. 

Lawn et al. (2015) presented the development of an actuation system for rotary 

hydraulic brake on a low-cost, lightweight knee ankle foot orthosis to rehabilitate 

stroke victims. Cullell et al. (2009) stated that the biologically based design of an 

actuator system for a knee-ankle-foot orthosis. By testing the device on two 

poliomyelitis patients, the results pointed out that by means of compensations applied 

by an actuated orthosis, the feasibility of improving gait pattern significantly in 
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patients with proximal leg weakness has been improved (Cullell et al. 2009). 

 

Many types of HKAFO that have been developed to rehabilitate individuals with 

spinal cord injury. There are two groups of HKAFO: passive orthosis and active 

orthosis. The reciprocating gait orthosis (RGO) is a bilateral hip-knee-ankle-foot 

orthosis (HKAFO) which has been employed to rehabilitate patients with 

neuromuscular disorders (Douglas, Larson & McCall 1983). Butler, Major and Patrick 

(1984) developed a unique device, the hip guidance orthosis (HGO), which allows the 

leg to swing straight forward efficiently, reinforcing the leg braces that protect them 

from damage during a sudden bend or twist. 

 

Stallard et al. (1986) designed a parawalker orthosis which is used to enable paraplegic 

patients to have better a walking gait and to provide enough support for the user’s 

body. Patients with tetraplegia experienced a significant change in energy expenditure 

when the functional electrical stimulation (FES) interfaced with a RGO (Isakov et al., 

1992). Massucci et al. (1998) evaluated the energy expenditure of six individuals with 

spinal cord injury walking with advanced reciprocating gait orthosis (ARGO). The 

authors stated that that high energy cost and slow walking were the main reasons for 

low utilization by paraplegic patients. Scivoletto et al. (2003) developed the prototype 

of an adjustable advanced reciprocating gait orthosis (ARGO) for SCI patients. They 

concluded that the device reduced the percentage of ARGO rejection. 

 

Genda et al. (2004) designed a new walking orthosis for a paraplegic hip and ankle 

linkage system which keeps both feet parallel to the floor during walking. Nascimento 

et al. (2008) developed a new powered hip orthosis by Pneumatic Artificial Muscle. 
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They found that patients with poliovirus witnessed a huge gait improvement as the 

design of the new hip orthosis provided a satisfactory and comfortable use of the 

device throughout the gait cycle. Audu et al. (2010) stated that the variable constraint 

hip mechanism (VCHM) with controller provided more control of the hip joint. The 

device reduced the walking speed of patients with paraplegia by 25% due to the heavy 

weight of the mechanism and controller. 

Onogi et al. (2010) compared the effects of sliding medial – hip joint (Primewalk 

system) and a hinge – type medial hip joint (Walkabout system). The authors stated 

that the average gait velocity of patients with paraplegia was higher, cadence was 

faster, and stride length was longer with the Primewalk than the Walkabout. Arazpour 

et al. (2012) designed a new powered orthosis for paraplegic patients. They suggested 

that this device could be a suitable for those individuals who have adequate ranges of 

motion and could be ideal for other impaired lower limb functions such as those 

associated with stroke, poliomyelitis and traumatic brain injury. Gait parameters in 

paraplegic patients have been improved by using the advanced reciprocating gait 

orthosis with solid versus dorsiflexion assist ankle-foot orthosis. These show an 

increase in mean walking speed, stride length and the mean ankle joint ranges of 

motion (Bani et al., 2013). Continuing this work, Arazpour et al. (2013) stated that the 

use of actuated movements of the hip and knee joints in the newly powered gait 

orthosis increased both of step length and gait speed.  

Bani et al. (2015) designed a new medial reciprocal linkage orthosis (MLO) with 

lower-limb paralysis simulated. It showed improvements of kinematics and kinetic 

parameters for patients with paraplegia. Katsuhira et al. (2014) showed the increase in 

pre-swing gait parameters such as hip joint flexion when the adult patients with post- 

stroke hemiparesis used a new trunk orthosis providing resistive force. Arazpour et al. 
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(2015b) demonstrated that energy consumption is less when using an isocentre 

reciprocating gait orthosis (IRGO) with dorsiflexion–assisted AFOs. 

2.5 AN OVERVIEW OF FOOT PRESSURE DISTRIBUTION 

 
In the world of the biomechanics of human gait and posture analysis, foot pressure 

distribution plays a massive role in accessing the hidden information under the foot 

with the surface in contact. Pedobarography is referred to as the study of foot posture 

acting between the foot contacings with the supporting surface (Hughes 1993). The 

clinical diagnosis on foot deformities is considered to be the beginning of the 

revolution of foot posture, creating an understanding of concepts fundamental to static 

posture or dynamic foot pressure movements through different perspectives (Morton 

1930; Elftman 1934). Few studies have investigated pressure distribution (Rupérez et 

al. 2012) qualitatively, while others worked on evaluating the foot pressure 

quantitively by considering foot sensitivity aspects (Luo, Berglund & An 1998;  

Sánchez-Rodríguez et al. 2012). 

 

Typical investigations of earlier studies focused on foot diseases and deformities. The 

enormous interest in foot posture and pressure studies led to the development of new 

tools and systems measurements for foot pressure distribution (Razak et al. 2012). The 

most recent studies have paved the way for new areas of sports biomechanics and 

biomedicine such as the development of medical and non-medical devices designed to 

enhance sport s performance. 

The proper developmental foot pressure distribution analysis setups can produce 

accurate and reliable foot pressure measures for modelling analysis. The integration 

and relationship between independent (walking speed, footwear, surface contact and 
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inclination) and the dependent variables ( peak pressure and the centre of pressure) 

were considered in most modelling for informative patterns and knowledge discovery 

used in the decision-making processes (Xiong et al. 2013). Foot pressure distribution 

characteristics are highly reliant on particular features with informative results 

integration. Foot pressure distribution pattern analysis was reported using data mining 

techniques like the Artificial Neural Network (ANN) to create a generic model which 

predicts the pressure distribution across the foot (Rupérez et al. 2012). 

. 

2.6 FOOT PRESSURE ANALYSIS TECHNIQUE EVOLUTION 

 
The earliest studies on foot pressure distribution settings were conducted using simple 

equipment using ink (Soames 1985). To date, many researchers have aimed to develop 

an accurate modern technology with sensory foot measurement equipment (Klimiec et 

al. 2016). However, research using current scientific technology devices for pressure 

distribution across the foot only started from the 1985 (Soames 1985). The preliminary 

approach to foot pressure analysis discovered by (Soames 1985) was about integration 

between dependent variables, specifically the pressure time-integral. He indicated that 

the foot pressure distribution could be related to either peak pressure data or the 

temporal variables. Most importantly, only a minimum of two temporal variable 

measurements linking with foot pressure distribution can be generated. The advances 

in technology used has proven that foot pressure distribution measurements can be 

correlated with peak pressure and temporal paramours, as well as with walking 

velocity, loading, inclination, and surface foot contact (Soames 1985). 
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To our knowledge, foot pressure distribution has been investigated from two 

significant aspects: static and dynamic gait. Both aspects consider that data collection 

has a temporal effect, on either the postural basis or during dynamic movements such 

as gait analysis, respectively (Skopljak et al. 2014). The kinetograph was the device 

used during the earliest stage of foot pressure studies. This simple device was obtained 

from the elasticity of a rubber mat that measures the foot pressure during walking 

motion (Morton 1930). The kinetograph was validated by the images extracted from 

x-rays. It was even enhanced by placing a black rubber mat with reflecting pyramidal 

projecting fluid on a glass plate. The contact area between the foot and the glass created 

what it is called the footprint. The footprints were recoded underneath the underlying 

heavy glass (Elftman 1934). 

 

Early studies only focused on foot deformities or foot illnesses only. From 1985 

onwards researchers began to explore sports biomechanics, ergonomics and the 

footwear industry with the help of the growing advanced technology systems (Zulkifli 

& Ping 2018). The newest technology, such as the platform system and in-shoe system, 

offered electrical sensors to be connected with computer software to scan, generate 

and collect more accurate foot pressure data. Some studies used the MatScan 

(TekScan, USA) system on obese and non-obese individuals to examine foot pressure 

characteristics. The authors analysed the data of barefooted individuals walking at 

different speeds on plantar pressure platforms (Butterworth et al. 2015). A few 

researchers used in the shoe-pressure system (FScan, South Boston, MA, USA) to 

collect foot pressure data from walking at different speeds on a treadmill (Zhang & Li 

2013).  
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The pressure distribution under the human foot can be classified according to the 

subject’s posture and foot health status. The range of pressure data is different between 

the normal healthy foot and the abnormal diseased foot under similar conditions, 

whether using the pressure platform system or in-shoe system experiments (Zulkifli & 

Ping 2018). Some studies showed that the higher pressure recorded under the abnormal 

feet in specific regions compared with healthy normal feet due to various foot 

sensitivity and health conditions (Patil, Thatte & Chaskar 2009). For instance, foot 

ulcers can results in excessive foot plantar pressure in specific foot regions (Razak et 

al. 2012; Searle et al. 2017). Thus, higher foot pressure was mostly recorded and 

observed beneath the abnormal feet of unhealthy subjects such as patients with foot 

illness, diabetic and older people or those subjects performing heavy duties (Resch et 

al. 1997; Patil, Thatte & Chaskar 2009). Foot pressure distribution and peak pressure 

area of athletes depend on the type of activities and sports. Thus, the key for the 

assessment of the foot pressure data relates to many considerations such as the 

subject’s foot health status, age and activities being performed (Zulkifli & Ping 2018). 

. 
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2.6.1 In shoe-plantar pressure system 

 
The in-shoe system can be embedded easily in the shoe to measure and assess the 

pressure distribution between the foot and shoe (Razak et al. 2012). Due to its high 

flexibility, mobility, simplicity and applicability to different types of footwear, the in-

shoe system is favored over the plantar pressure platform system. The in-shoe system 

applies to different materials, features and heights of the heel section of the shoes. One 

of the most noticeable advantages is that the subjects can walk freely and have natural 

gait during the tests, avoiding the troubles of platform targeting (Ledoux et al. 2013). 

Hence, the in-shoe system is suited to multiple tests types such as indoor and outdoor 

uses, and can be used for a wider range of sports activities as the system is portable 

within the shoes and socks (Burnfield et al. 2004; Mei et al. 2015). The ergonomics of 

footwear or foot deformities can be easily analysed throughout the in-shoe system. 

 

Plantar sensitivity is associated with posture control, so the one limitation of the in-

shoe system is that the sensor's performance sensitivity may be perturbed while 

inserting insoles in the shoes (Machado et al. 2017). A few studies have found that 

inserting the insoles improperly during walking or running gait can result in tissue 

breakdown, leading to high pressure and discomfort on the foot contact area with the 

floor. Also, the number of sensors of the in-shoe system is just sufficient to cover the 

area inside the shoes, unlike the plantar platform system (Putti, A. B. et al. 2007). The 

replication of experiments and the heat and sweat trapped inside the shoes can also 

affect sensor performance and results analysis (Woodburn & Helliwell 1996). The 

slipping of the sensors while using the in-shoe system is another limitation mentioned 

of the studies of (Razak et al. 2012). 

 



42  

It is worth noting that the plantar pressure platform system has the advantage of 

performing barefooted motion experiments. However, it is dependent on the laboratory 

area to accommodate the various plantar pressure platforms lengths. Meanwhile, the 

in-shoe system can allow the study of subject’s motions characteristics on different 

types of shoes (such as heel size, shoe materials, and shapes) to be tested on different 

footwear (Zulkifli & Ping 2018). The weakness is that the number of sensors placed 

within the shoe coverage is limited from as few as three according to the studies of 

Putti et al. (2007) and Pataky et al. (2011), and up to 10 placements according to 

another study conducted by Soames (1985). Hence, the previously mentioned features 

of the plantar pressure platform system and in-shoe system have their advantages and 

weaknesses. Therefore, deciding which method is suitable to be selected for a 

particular experiment can be crucial and dependant on the patient’s status. Real-time 

measurement of natural gait is crucial factor for ensuring ideal and accurate foot 

pressure readings. Unfortunately, none of the two systems have a standard guideline 

to ensure natural gait of the foot pressure measurements. Thus, during tests, the 

individuals have to be verbally instructed to walk at a self-selected comfortable speed 

(Zulkifli & Ping 2018). 

 

The plantar platform system and in-shoe devices system require various types of force 

sensors such as the semiconductor strain gauge transducers, critical light deflection 

Dynamic Foot Morphology, Lion System S.A., Foetz, Luxembourg, capacitive strain 

gauge, capacitive sensors –emed1 platform systems and Pedar1 in-shoe system 

(Novel, Germany), resistive sensors (also known as a force-sensing resistor, FSR), 

MatScan1 platform system and F-Scan1 in-shoe system (TekScan, Boston, MA) and 

force sensor with light deflection Biokinetics dynamic optical pedobarograph 
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(Biokinetics Inc., Bethesda, USA) (Zulkifli & Ping 2018). 

. 

 

2.7 FOOT POSTURE IS ASSOCIATED W I T H  PLANTAR 

PRESSURE DISTRIBUTION CHARACTERISTICS 

A study investigated the effect of the custom foot orthosis on the dynamic plantar 

pressure loading of 154 individuals with painful pes cavus feet (Najafi et al. 2012), the 

experimental setup is shown in Figure 2.8. The authors indicated that peak pressure 

magnitude in pes cavus was significantly higher than those of healthy able-bodied 

individuals by 51% on average. Moreover, the authors suggest that the increase in peak 

pressure magnitude was due to the higher body mass index (BMI) of pes cavus 

individuals. The authors illustrated that wearing the custom-made foot orthosis 

decreased the second peak pressure magnitude and redistributed the pressure across 

the foot, thus minimizing  foot pain and reducing the risk of injury, as shown in Table 

2.1 below (Najafi et al. 2012).. 

 

Figure 2.8: Experimental setup for healthy participants during barefoot and 

shod tests, adapted from Najafi et al. (2012) 
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Table 2.1: Comparison between active and control groups with and without 

orthoses in participants with pes cavus, adapted from Najafi et al. (2012) 
 

 
 

The studies of (Fernández-Seguín et al. 2014) showed that the second and third 

metatarsal heads had the highest pressure readings in both neutral feet and cavus feet 

in the study. The authors indicated the high pressure readings were due to the 

anatomical structure of the two zones supported by the reviews of De Doncker and 

Kowalski (1976), with the M2 and M3 bones being wedged between the cuneiform 

joints, thus having less degree motion freedom (Table 2.2). The authors observed that 

in pes cavus feet, the load was significantly higher than neutral feet under the entire 

metatarsal heads region except for the fifth metatarsal, considering the forefoot as the 

most vulnerable area in cavus feet individuals (Fernández-Seguín et al. 2014). 
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Table 2.2: Comparison of plantar pressure mean values (kPa) in the various areas 

of the foot for 34 subjects (n=34), adapted from Fernández-Seguín et al. (2014) 
 

 
 

Noticeably, the most important finding of their studies was that the structure of the 

foot showed only an increase in the pressure readings of  the first four metatarsal 

regions with no alteration in the load distribution under the mentioned regions 

(Fernández- Seguín et al. 2014). Also, the authors pointed out a reduction in the 

pressure readings on the toes of cavus feet in comparison to neutral feet (Statler & 

Tullis 2005; Fernández-Seguín et al. 2014). According to (Statler & Tullis 2005), the 

alterations of the intrinsic stabilizers of the toes in the long extensor and long flexor 

muscles cause what it is called “claw toe-deformities’. This claw toe decreases the 

pressure readings under the first toe. 
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Regarding the contact area in pes cavus feet, the results of few studies indicated a 

smaller contact area reading, which is structurally accepted due to the associated 

deformities and that they are more rigid and less capable of absorbing impact during 

strike than normal feet (Franco 1987; Benedetti et al. 1997; Williams III et al. 2001). 

Moreover, few research studies illustrated that the reduction in the of the plantar 

contact area is highly related to the greater load per unit area in both forefoot and 

hindfoot regions, and that could be a risk for many lower limb injuries (Gravante et 

al. 2005). A significant reduction was observed in the study regarding the weight-

bearing area of cavus feet in comparison to neutral feet (Fernández-Seguín et al. 

2014). It has been reported that the better redistribution of the foot pressure under all 

the regions of the foot can be the result of a greater area of contact between the foot 

and the floor during strike, especially the areas that are subjected to the highest loads. 

Similarly, the poorer redistribution of foot pressure under the midfoot area in pes 

cavus was implied by a reduction in the contact area (Sneyers et al. 1995). 

 

Another study was conducted with seventy subjects: thirty subjects with pes cavus 

unknown aetiology, ten subjects with pes cavus of neurological aetiology, and thirty 

subjects with normal foot type (Burns et al. 2005). The authors found that the 

recorded pressure-time integral magnitude was higher in the cavoid groups compared 

to the healthy normal individuals (Table 2.4). Therefore, the authors suggested that 

the higher-pressure time integrals registered in the idiopathic pes cavus group 

resulted from the increase in peak pressure beneath the forefoot and rearfoot regions 

(Burns et al. 2005). Such an increase in forefoot and rearfoot peak pressure may 

occur due to the lack of load-bearing beneath the midfoot area, and these findings 

are in line with other studies conducted by Rosenbaum et al. (1994). Moreover, the 
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authors illustrated that the increase in the pressure-time integral magnitude recorded 

under the neurogenic pes cavus group was the result of the longer foot contact time 

with the floor. The reason behind such an increase in the contact time could be due 

to the lower limb weakness of the participants recruited in this study which alters 

normal dynamics of the foot during walking gait cycle (Burns et al. 2005). This is 

supported by the studies of Benedetti et al. (1997). 

 

Table 2-3: Pressure–time integral (N s/cm2) characteristics for the normal foot 

type group, compared to the idiopathic pes cavus and neurogenic pes cavus 

groups adapted from (Burns et al. 2005) 

 

 
The study of Putti et al. (2007) pointed out that the highest peak pressure 

measurements in the shoe were in the area of the hallux, followed by pressures 

registered under the heel and the first, second, and third metatarsal regions. The authors 

indicated that the highest pressure in the big toe area was due to the pressure exerted 

throughout the toe-off phase of gait when the whole-body weight passes through it. 

So, wearing tight shoes with a narrow toe box could deform the pressures under the 

hallux. This could be the reason behind the high incidence of hallux valgus throughout 

the shod population. Noticeably, the largest contact area observed in the study was 

under the heel region, followed by the midfoot region, and the contact area of the 

hallux was only 8 cm². Moreover, the results showed the pressure-time integral of the 

healthy individuals who participated in the study was highest under the heel, first, 

second, third metatarsal region, then the great toe (Table 2.4) (Putti et al. 2007). 
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Table 2.4 : Mean, standard deviation (S.D.) and coefficient of repeatability (CR) 

for the peak pressure (PP), contact area (CA), contact time (CT), pressure-time 

integral (PTI), force-time integral (FTI) and instant of peak pressure (IPP) for 

the 10 regions of the foot, left and right sides combined, adapted from Putti et al. 

(2007) 
 

 

The studies of McKay et al. (2017) established normative reference values for 

spatiotemporal and plantar pressure parameters. They investigated the influence of 

demographic, anthropometric and physical characteristics for one thousand individuals 

aged 3-101 years. The study showed the peak pressure magnitude increasing from 

childhood through to older adulthood (Table 2.5). The children experienced the highest 

pressure beneath the rearfoot, while adolescents, adults, and older adults recorded the 

highest pressure at the forefoot. There are many reasons behind the highest pressure in 

older adults such as aging effects on the mechanical properties of the ankle and foot 

leading to pronated foot posture, increasing plantar soft tissue stiffness, increasing 

plantar fascia thickness, and decreasing ankle joint ROM and strength. Thus, the 

changes in foot posture may reduce the ability of the ankle joint to respond quickly to 

such repetitive stresses and affect force attenuation as proven in the studies of Kwan, 

Zheng & Cheing (2010). Noticeably, an increase in the forefoot peak pressure in adults 

is associated with a decrease in the in-dorsiflexion ROM (Mueller et al. 1989; Morag 

& Cavanagh 1999). 
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Table 2.5: Widely reported spatiotemporal and plantar pressure variables for 

children, adolescents, adults and older adults, adapted from McKay et al. (2017) 
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The studies of Carson et al. (2012) examined the difference in loading patterns on 26 

American football players with high and normal arch structures. The results indicated 

that the players with high arch height experienced different loading patterns while 

walking than those players with typical arch structures (Figure 2.8). Most of these 

loading pattern differences were evident in the medial foot region and lateral heel 

region, resulting in a more rigid foot less capable of dissipating forces related to 

contact with the floor. In other studies, low arch feet were a better shock absorber than 

normal high arch feet (Simkin et al. 1989), and the low arch feet registered decreased 

force and peak pressure under the regions of normal arch (Nigg, Cole & Nachbauer 

1993) as shown in the Figure 2.9. Furthermore, individuals with high arch structure 

experienced stiffer foot mechanics during dynamic loading and greater maximum 

force in comparison to normal arch individuals (Powell et al. 2011). 

 

 
 

Figure 2.9: Comparison of maximum force readings between the normal arch 

and high arch of American football players, adapted from Carson et al. (2012) 
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2.8 THE EFFECT OF WALKING SPEED AND FOOTWEAR 

TYPES ON PLANTAR PRESSURE CHARACTERISTICS 

The study of Burnfield et al. (2004) reported that the heel contact area did not 

significantly increase while walking with faster speed. However, the increase of 

cadence in young adults resulted in an increased heel contact area (Hughes et al. 1991). 

The logical reason behind why the heel contact of older people did not change with 

faster walking speeds is the age-related changes in the heel pad, according to the 

studies reported by (Jahss, Kummer & Michelson 1992). The dense fibrous septae 

support lattice to contain the fat globules, and prevent severe bulging and loss of 

support of the heel pad with loading (Jahss, Kummer & Michelson 1992). Moreover, 

the mechanical characteristics and structural changes in the older adult heel would 

allow more flattening under the lower forces associated with slower walking speeds 

(Jahss, Kummer & Michelson 1992). During barefoot waling, the total contact area 

value of older adults was lower than that of shod conditions by 16%. 

In the investigation of Burnfield et al. (2004), the pressure-time integral values were 

decreased in six of the eight anatomic regions associated with the reduction in the 

stance time duration throughout faster barefoot walking. 

Many studies investigated the differences in plantar pressure distribution between shod 

and barefoot conditions in various age groups. The investigations of Sarnow et al. 

(1994) showed higher peak pressure readings under the whole foot during barefoot 

walking in comparison to shod walking in a group of middle-aged adults (mean age 

=51). Sarnow et al. (1994) did not investigate the changes in  the anatomical regions. 

However, the studies of Soames (1985) reported a significantly higher pressure 

reading registered under the posterior heel, fifth toe, and the lateral three metatarsal 
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heads in comparison to the shod condition during barefoot walking of younger adults. 

The effect of different kinds of footwear conditions (running shoes, leather-soled 

oxford shoes, barefoot) on the plantar pressure distribution in adults with and without 

diabetes were evaluated by the studies of Perry et al. (1995). The results of their studies 

documented significantly lower pressure values recorded under the regions of the heel, 

metatarsal heads and toes while wearing running shoes compared to the barefoot 

condition (Perry et al. 1995). Similarly, the results shown by Burnfield et al. (2004) 

indicated a reduction in the pressure values registered under the region of the heel, and 

central metatarsals while walking in shoes. 

However, the pressure under the hallux (great toe) was higher during shod walking. 

The authors indicated that the toe box design and the level of the sole under the forefoot 

might have increased the pressure values under the toes region in older adults 

(Burnfield et al. 2004). Thus, wearing shoes and walking slowly can reduce peak 

pressure under the foot, especially under the heel and central metatarsal regions, 

resulting in the less painful heel, avoiding metatarsalgia, and fat pat atrophy in older 

people (Burnfield et al. 2004). Collectively, the findings of the previous study are also 

important for  understanding the risk of ulceration due to diabetes mellitus in order 

adults. An increase in the risk of ulceration and amputation is associated with an 

increase in plantar pressure according to an investigation conducted by Stess, Jensen 

& Mirmiran (1997), Frykberg et al. (1998), and Ahroni, Boyko and Forsberg (1999). 

Reducing plantar pressure, educating patients to wear soft-soled shoes, fitting the 

patients to more appropriate shoe wear ( particularly in the toe box region, and 

avoiding fast walking speeds are considered the most important suggestions that limit 

risk of injury and foot pain (Burnfield et al. 2004). 
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Many other investigations examined the effect of various types of footwear and 

walking speeds on plantar pressure distribution characteristics of the normal and 

pathological feet. The studies of Segal et al. (2004) on twenty healthy individuals 

revealed that foot regions responded differently to the changes in walking speeds 

throughout gait cycle phases (Table 2-6). The peak plantar pressure increased linearly 

at the hallux and heel regions as gait speed increased, and this finding is supported and 

consistent with other investigations conducted by Rosenbaum et al. (1994), Kernozek, 

LaMott and Dancisak (1996), Burnfield et al. (2004), and Warren, Maher & Higbie 

(2004). 

 

 

Table 2.6: Average peak pressure of twenty healthy individuals, adapted from 

Segal et al. (2004) 
 

 
 

The plantar pressure distribution response of specific regions may be correlated to the 

specific functions of these regions during walking. When the heel contacts the ground, 

the closed-cell structure of the heel pad absorbs the impact immediately (Jahss, 

Kummer & Michelson 1992). As speed increases to 4.0 m/s, the peak pressure 

following loading response increases linearly (Keller et al. 1996). Therefore, this linear 

increase relationship between the peak pressure at the heel region during walking at 

faster speeds seems to be associated with the velocity-vertical ground reaction force 

relationship as supported by the study of Keller et al. (1996). From the mid-stance to 
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the late stance phase of the gait, the vertical ground reaction forces start to increase 

again because the full-body weight passes beyond the stance limb (Keller et al. 1996) 

thus, leading to a simultaneous decrease in the contact area of the hallux region to 

accommodate the increasing load in preparation for the toe-off portion of  gait (toe 

clearance) (Eils et al. 2002). 

 

A shift of the body weight during the late stance phase of the gait (80% of the stance 

phase) towards the toes (40 % of the weight is present at the toes) is the reason behind 

the higher readings of plantar pressure distribution over a small contact area of hallux 

region (Hughes, Clark & Klenerman 1990; Kelly, Mueller & Sinacore 2000). During 

toe clearance (a toe-off portion of the stance), propulsive forces have been documented 

to increase with faster speeds according to the study conducted by Vaughan, Du Toit 

& Roffey (1987). According to Hughes, Clark & Klenerman (1990), the relationship 

between the increased pressure and propulsive forces and decreased contact area could 

be the reason behind the occurrence of ulcers at the first metatarsal region (M1) and 

big toe (hallux) than the hindfoot, concluding that the hallux is considered the 

performance ray as its role during walking increases with faster gait speeds (Segal et 

al. 2004). 

 

Furthermore, the foot proceeds quickly from heel-strike to toe-off at the faster walking 

speed, leading to a decrease in foot-floor contact duration time continuously, and less 

time spent weighting the forefoot region (less pressure) (Zhu et al. 1995), therefore 

resulting in greater forces values (high pressure) under the hallux region during the 

toe-off portion of gait. This may be the reason why ulcers occur more frequently in the 

forefoot region. So, suggesting that individuals or patients with a diabetic neuropathic 
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foot could use different mechanisms or footwear than a normal foot, to adapt their gait 

to faster walking speeds, thus increasing pressure at the forefoot and avoiding ulcers 

and foot pain (Segal et al. 2004). Similarly, such an increase in pressure recorded under 

the forefoot region of normal subjects was demonstrated through studies conducted by 

Nurse & Nigg (2001) and Eils et al. (2002). 

 

Importantly, the linear relationship of faster speed-high pressure found at the heel and 

hallux and the quadratic relationship of faster speed-less pressure found at the forefoot 

in healthy adults can provide useful information regarding footwear and orthosis 

design (Segal et al. 2004). Understanding how different plantar regions respond and 

function at different walking speeds may indicate the types of materials used to design 

the optimal walking shoe and foot orthosis for a specific patient (Segal et al. 2004). 

 

The higher values of peak plantar pressure at the hallux and heel and the lower values 

of peak plantar pressure at the forefoot are in line with many other investigations 

(Rosenbaum et al. 1994; Zhu et al. 1995; Kernozek, LaMott & Dancisak 1996; 

Burnfield et al. 2004). However, Warren, Maher and Higbie (2004) documented that 

the highest peak pressure values were recorded under the central forefoot at all speeds. 

These differences between the previously mentioned studies regarding the peak plantar 

pressure value in specific region may be associated with using and implementing 

different data processing techniques (Segal et al. 2004). For instance, the peak plantar 

pressure was calculated based on the average of each sensor reading for a specific foot 

region (Warren, Maher & Higbie 2004). In contrast, other studies measured the peak 

plantar pressure at any one sensor with the specific foot region (Rosenbaum et al. 1994; 

Zhu et al. 1995; Kernozek, LaMott & Dancisak 1996; Burnfield et al. 2004; Segal et 
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al. 2004). Thus, understanding the concepts behind the effects of dividing the foot into 

specific regions (masking) and data processing techniques on plantar pressure results 

may develop a standard plantar pressure analysis for a specific case study (Segal et al. 

2004). 

2.9 CONCLUSION 

 
The literature review shows that many studies have investigated the effect of multiple 

types of ankle foot orthoses on the lower limb’s kinematics and kinetics for people 

with different disorders such as cerebral palsy and stroke. It also found that most of 

the research work regarding the plantar pressure characteristics were focused on older 

people wearing different types of footwear. However, there is a lack of research 

investigating AFOs and their effects on gait cycle characteristics for patients with 

severe DDH who did not receive early treatment or surgery. Therefore, the current 

work aims to fill this research gap and provide a better understanding of the gait 

parameters of DDH patients with severe hip dislocation during walking in the sagittal 

plane under different conditions with and without AFO.  

This aim can be achieved by applying a set of objectives. The first objective is 

investigating the kinematics and kinetics of both lower limbs under four walking 

conditions: barefoot, custom-made orthosis, Leaf Spring orthosis, and shoes only. The 

second objective is to study the effects of both AFOs on the plantar pressure 

distribution registered beneath the feet during the main phases of gait. Finally, the 

research will investigate the COP trajectory and its relationship with  lower limb 

movement during walking by developing a photogrammetry correlation technique. 
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CHAPTER 3: METHODOLOGY 

 
3.1 AN OVERVIEW 

 
This chapter will first describe the methods applied to study the kinematics and 

kinetics of the lower limbs during walking in the sagittal plane with and without 

orthosis. The setup of the measurement system (Qualisys 2.14, Gothenburg, Sweden) 

will be illustrated in Section 3.2.2. The gait protocol and implementation of the 

Qualisys PAF package (Istituti Ortopedici Rizzoli (IOR)), lower body marker set will 

be explained in Section 3.2.3. Next is the digitizing and modelling process in Section 

3.2.4. This section will explain the process of creating a new model for a patient with 

developmental dysplasia of the hip using Visual 3D Professional (C-Motion Inc., 

Germantown, MD). The calculation process of the kinematics and kinetics parameters 

will be illustrated in Section 3.2.6, followed by the statistical procedures that were 

undertaken to analyse the collected data under the various conditions in Section 3.3. 

Finally, the second part of this chapter will include the methods applied to study the 

plantar pressure distribution during walking under three conditions: barefoot, custom-

made-orthosis, and Leaf Spring AFO orthosis.  

 
3.2 THE LIMITATIONS O F  PREVIOUS METHODS AND 

JUSTIFICATION FOR USING THE CURRENT METHOD 

Over the past few decades, the need for new information about the characteristics 

of normal and abnormal (pathological) human movement has inspired many 

scientists and researchers to develop new methods of capturing human movement. 

Many devices have been utilized to measure joint kinematics and kinetics, force, 

and pressure data such as accelerometers, goniometers, and image processing 
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techniques to analyse and evaluate human movement. The most modern and 

advanced frequently used method are video motion capture systems such as the 

Vicon motion capture system. There are two motion capture methods: marker-based 

systems and marker-less motion capture systems. The capture of human movement 

without markers is technically challenging and not very accurate, so fails to provide 

an exact interpretation of musculoskeletal systems. Despite the recent and 

tremendous development in computing vision techniques, the need for more 

investigation is required to use marker-less human motion capture analysis. Marker-

based motion capture systems offer higher accuracy than marker-less motion 

capture systems, goniometers, and accelerometers. Compared to modern motion 

marker-based capture systems, old marker-less motion capture systems and 

accelerometers do not provide precise information for the mechanical and 

biomechanical properties of the lower limb joints. 

Consequently, marker-based motion capture systems can have minimal value for 

the mechanical dynamics of body movement while walking in comparison to the 

former less marker-based methods. The new system measures all markers in a global 

3D space. Thus, there is no accumulation of errors when deriving the locations of 

multiple linked segments or body parts. That is why, in this study, marker-based 

motion capture was preferred compared to the other mentioned methods to develop 

an accurate musculoskeletal model for individuals with developmental dysplasia of 

the hip joint. The markers used in this study, from the Qualisys track manager 

hardware, will be described in the following sections. The system is considered the 

most developed technique used to build human models and assess the gait cycle of 

healthy and pathological individuals. 
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3.3 KINEMATICS AND KINETICS 

 
3.3.1 Subjects and case description 

 
One male adult (the author of this research) (26 years old, 124cm height, 42 kg in 

weight)  was recruited for this study. He has a history of developmental hip dysplasia 

as shown in Figure 3.1, severe deformity of the spine, severe deformity in the left foot 

and ankle, and hyper flexed knee in the right limb. The patient uses two types of ankle-

foot orthoses (Leaf Spring AFO and a custom ankle orthosis fabricated by the 

Prosthetics Centre in Brisbane, Australia) every day, as shown in Figure 3.2.  

 

Figure 3.1: X-ray image of the dislocated area of the patient’s left hip joint 



60  

 

Figure 3.2: (a) Right and left foot shape of the patient with DDH, (b) Leaf AFO,  

(c) Custom-made AFO 

 

 

 
3.3.2 Measurement system 

 
Ten Qualisys Oqus computerised motion analysis system (Qualisys 2.14, Gothenburg, 

Sweden) infrared motion cameras were utilised for testing at the gait laboratory at the 

University of Southern Queensland. Three cameras were positioned at the back of the 

walkway, three cameras at the front of the walkway, and two cameras on each side of 

the walkway. These cameras are designed to obtain the three-dimensional coordinates 

of the retro-reflective markers that were positioned on the lower limb of the patient 

during walking. One force platform (AMTI: Advanced Mechanical Technology 

Incorporation, Watertown, USA, model BP600400) embedded in the walkway was 

used to collect the patient’s kinetic data during walking under all four conditions: 

barefoot, with Custom-made orthosis, with Leaf AFO orthosis and with shoes only. 
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Figure 3.3: Subject standing on the force plate during the static trial 

 

3.3.3 Test protocol and system calibration. 

 
Data were captured during a single visit to the Sport and Exercise Centre Research 

Lab at the University of Southern Queensland. After consent and a short warm-up, the 

reflective markers were attached to the subject’s pelvis and both lower limbs as shown 

in Figure 3.3. Four markers were placed at the femur lateral and medial epicondyle, 

two for each limb [L-FLE, L-FME, R-FLE, R-FME);  two markers were placed at the 

proximal tip of the head of the fibula with one on each limb [L_FAX, R_FAX);   two 

other markers were attached to the most anterior border of the tibial tuberosity, one for 

each limb [L_TTC, R_TTC]; four markers were placed on the lateral and medial 

prominence of the lateral and medial left and right malleolus respectively [L_FAL, 

L_TAM, R_FAL, R_TAM], two markers were placed at the lateral side of greater 

trochanter 1/ from the proximal end [L_FTC, R_FTC]; and the remaining four markers 

were attached to the anterior superior iliac spine [L_IAS, R_IAS] and to the posterior 

superior iliac spine [L_IPS, R_IPS].  The placement of the markers was according to 
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the Ortopedici Rizzoli (IOR) lower body marker set, as shown in Figure 3.4.  

 

The data were captured under four conditions: barefoot, custom-made, Leaf AFO, and 

shoes only.  These markers allowed each segment of the limb (foot, shank, and thigh) 

and the pelvis to be treated as a 6-degrees-of-freedom rigid segment. A static standing 

trial was captured with the individual in the anatomical position, which was defined 

as a normal stance on the force plate. After the static calibration, all the calibration-

only markers (L-FME, R-FME, R-TAM, L-TAM) were removed.  

 

Data were collected using 10-Camera Qualisys motion capture system and QTM 

software. Markers and force plate data were collected at 100Hz and 1000Hz, 

respectively. At the start, the subject was asked to walk at normal speed across the 

capture space, with his eyes facing forwards towards the wall in front of him. Three 

practice trials were given to make sure that, during recording, the subject’s starting 

position was adjusted to increase the likelihood of initial right foot or left foot contact 

occurring on the force plate. Ten gait trials (five for each limb) on the force plate were 

recorded for every condition: barefoot, with custom orthosis, with Leaf AFO and shoes 

only. Additionally, two more trials for each condition were registered as a replacement 

in case the subject did not entirely strike the force plate. Finally, following data 

collection, all the IOR lower body markers were removed from the subject’s body. 



63  

 

Figure 3.4: Qualisys PAF package lower body marker set (Leardini et al. 2007)  
 

Before the recordings, the camera system was calibrated to produce a calibrated 

volume using an L-shaped metallic structure that represents the global coordinate 

system. This L shape had four markers, the long axis of the frame had three markers 

aligned with the edge of the force plate in the x-direction and the short axis of the 

frame with two markers aligned with the edge of the force plate in y-direction. 

Importantly, throughout the calibration process, the alignment of the long axis with 

the force plate was more critical than the short axis, so height adjustment screws 

were used to keep both axes horizontal. A dynamic calibration was performed by 

fixing the L frame to the medial edge of the force plate, and the calibration wand 

was waved with a fixed distance between the three markers around the capture area 

to provide a data capture. At least two left and two right dynamic trials were 

recorded while the patient was walking at the same speed. The participant had to 

strike the force plate with the whole region of the foot. Between each calibration 

trials, the participant asked to rest for 5 minutes in order to make sure the alignment 
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of the L frame axis is correct and similar to that of the previous trial. The camera 

system calibration was accepted when the residual errors were less than 2 mm to 

ensure that most of the motion capture system was covered in all the trails. Three 

axes (in positive and negative directions) then defined the laboratory coordinate 

system. The X-axis was defined as the anterior-posterior (forward/backward 

direction), the Y-axis was defined as mediolateral (left/ right), and the Z-axis as 

proximal-distal (upward/downward) as shown in Figure 3.5.  

 

Figure 3.5: Calibrated volume of the space representing the walkway area 

surrounded by 10 Qualisys cameras 
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3.3.4 Digitizing and modelling 

 
The 2-d markers position data for each of the 10 cameras were labelled and combined 

into a 3-D representation using the Qualisys tracking manager software. The automatic 

identification of trajectories in the Qualisys Track Manager 2.14 software was 

performed by a module called AIM (The automatic identification of markers). The 

IOR static lower body marker set with 18 markers attached to the ankle, knee, thigh 

and spine areas (as illustrated before in the test protocol part of this chapter) was 

applied to identify the static markers for all the four conditions. After labelling and 

identifying the static trials for the four conditions, the marker set, including the 

identifications of 14 markers, was applied to all five trials of each limb of each 

condition to identify all trajectories for the whole gait cycle of both right and left limbs. 
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a 

 
b 

Figure 3.6: Digitized model for subject stepping onto the force plate during 

standing (a) and dynamic trial (b). The red arrow shows the direction of the 

ground reaction force GRF 

Then, all data were converted and exported to C3D files to be imported into Visual 

3D Professional. The model was built using a six-degree of freedom, that shows a 

full representation of the coordination and orientation of the joints in space. The 

model was created to examine the linear movement and angular movements in all 

planes (three rotations and three translations). This was done by establishing a rigid 

body frame based on segments that link the hip, knee, and ankle joint. The Coda 

type pelvic segment was created by defining the calibration targets, the anterior 

superior iliac spine (R-IAS, L-IAS) and the posterior superior iliac spine (L-IPS, R-
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IPS). The right joint centre of the hip unaffected by DDH was computed by the 

anterior-posterior iliac spine markers positions (ASIS) depending on a regression 

equation developed by Bell et al. (1990) determined by 14% of the average distance 

between the left and right ASIS with a position 30% distally and 19% posterior to 

this point. Due to the dislocation of the left hip affected with severe developmental 

dysplasia of the hip, a new land mark was created to represent the hip joint centre 

which was positioned 69% distally and 1% posterior to this point according to an 

approximate value measured by 3-D X-ray reviewer software. The reference point 

for the new hip landmark was the original hip determined automatically by the 

Visual 3D following the same regression equation illustrated above.  

The right thigh segment was built by considering that the proximal joint is the right 

hip, the distal joint is the knee centre which is determined by the lateral and the 

medial knee markers (R-FME, R-FLE), and the measured value of the proximal 

radius was 0.0881291mm computed by visual 3D according to the equation 

0.5*DISTANCE (RIGHT_HIP, LEFT_HIP). The left thigh segment was built 

differently to that of the right thigh due to the severe dislocation of the hip. The 

lateral marker L-FTC, and the joint centre (NEW LANDMARK), a radius of 

0.0742mm, defined the proximal joint of the thigh. The distal joint of the thigh was 

defined by the lateral and medial knee markers (L-FME, L-FLE). The medial and 

lateral malleoli markers identified the ankle joint centre. The patient's height and 

mass were entered to allow the model to calculate then the segments’ centre of mass 

and segment radius based on the anthropometrical indices published by Dempster 

(1955) as shown in Figure 3.7. 
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a 

 

b 

Figure 3.7: Musculoskeletal model generated by the visual 3D modelling system. 

Example of a patient with DDH stepping onto the force plate with the right foot 

during a dynamic trial (a), and both feet stepping on the force plate during a 

standing trial (b) 

 

 

 
3.3.5 Calculations 

 
For further analysis, all marker-positions and force plate data were then exported to 

Visual 3D professional. The data were filtered using a Butterworth zero-lag fourth-

order bi-directional low-pass filter with a cut-off value of 6 Hz for walking for the 

marker-location, and 25 Hz for the force-plate data. A Butterworth filter prevents the 

high frequency data and accepts the low frequency signals which occur due to the noisy 

results, resulting from the random movements of markers and soft tissue artifacts. The 
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anthropometric data calculated from individual body mass and height using 

Dempster’s equations were then combined with the low pass filtered data, and used as 

an input for the inverse-dynamics calculation method resulting in sagittal joint angular 

positions and net moment and power of the ankle, knee, and hip joint in the stance 

phase.  

During walking, gait cycle events were identified from (heel strike to terminal swing) 

to normalise data and allow comparisons between the four main conditions and with 

the published healthy control data. The gait cycle for each limb starts when any part 

of the foot strikes the force plate (initial contact) until the same foot touches the ground 

again in the next step at the end of the swing phase. The inverse-dynamic method due 

to internal muscle activity examines the external ground reaction force of the body 

segments and moments on the anatomical joints as shown in Figure 3.8 for the right 

barefoot condition and Figure 3.9 for the left barefoot condition.  

An equilibrium mathematical formula is a key to the inverse dynamic approach starting 

by calculating the moments and force for every joint from toe to hip (Silva and 

Ambrósio, 2002). The moment of inertia for each segment was calculated based on the 

location and magnitude of the mass for each segment, and the subject’s anthropometric 

parameters (Dempster, 1955). The angles between every two segments were calculated 

according to the relative positions using the Euler rotation sequence equivalent XYZ 

(ankle plantarflexion-extension, knee flexion-extension, hip flexion-extension, pelvic 

tilt). For example, the proximal for the ankle is the shank, while the shank is the distal 

segment therefore, the ankle range of motion during the entire gait cycle in the sagittal 

plane depends on the orientation of the two segments. The new intention of this 

research was to test the angle, moments and power values statistically then determine 

the peak values to identify changes for the four conditions: barefoot, custom-made 
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orthosis, Leaf AFO and shoes only. 

 

 

Figure 3.8: Musculoskeletal model generated by the visual 3D modelling system.  

Example of patient stepping onto the force plate with the right foot during the 

five sub-phases of the walking stance trials (initial strike, loading response, mid-

stance, push-off, and toe-off). The figure shows the same moments for each phase 

exerted from the video camera  
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Figure 3.9: Musculoskeletal model generated by the visual 3D modelling system.  

Example of patient stepping onto the force plate with the left foot affected by 

DDH during the five sub-phases of the walking stance trials (initial strike, loading 

response, mid-stance, push-off, and toe-off). The figure shows the same moments 

for each phase exerted from the video camera  
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3.3.6 Statistics 

 
The statistical package (SPSS version 20, IBM SPSS) was used to undertake the 

statistical analysis of the data collected. A repeated measure analysis of variance 

(ANOVA) was used with the four factors with a post-hoc Bonferroni correction to 

determine statistical differences (mean differences) between each two factors 

(conditions). The p value would be significant if it was less than 0.025, according to 

the analytical regression equations of (Perneger, 1998). All trails of data collected were 

used for the analysis due to the small sample size (one patient). 
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3.4 CORRELATION BETWEEN LOWER LIMB MOVEMENTS 

AND PLANTAR PRESSURE CHARACTERISTICS. 

3.4.1 Introduction 

 
Image-based motion capture and photogrammetry image-processing methods have 

been used widely to create 3D movement models of the lower limb and foot. These 

models are utilized by doctors, clinicians, podiatrists and physiotherapists to develop 

reliable treatment strategies for individuals suffering from physical disorders such as 

drop foot, spinal cord injuries and joint dislocation (Petre 2007). This research 

studies plantar pressure and 3D limb-foot movement of a left side hip-dislocation 

and scoliotic patient (wearing different types of ankle-foot orthosis) using close-

range photogrammetry techniques, pressure IN sole system and high throughput load 

cell. 

 

3.4.2 The plantar pressure measurement system 

 
The plantar pressure measurement system is comprised of:  

a- 3000E F-scan in-shoe sensors sampling at 100 Hz to capture COP excursions 

in the anterior-posterior (AP) and mediolateral (ML) directions. From these, 

contact area, direction of sway, distance, and direction travelled by the COP, and 

variability of distance travelled by the COP will be obtained using F-Scan 

Research ver. 6.70-03 software 

b- Small size and 0.5 mm thickness force pressure sensors to measure the load 

between the ground support and human foot (Noce 2005; Rana 2009). These thin 

sensors are sufficient to enable non-intrusive measurements and are ideal for 

measuring the forces and pressure without testing the dynamics of test patients. 
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Therefore, in this research the Force Resistance Sensors (FRS) were selected due 

to of their electronic simplicity, inexpensiveness, moderate accuracy (better than 

∓5% of full use force (780 kPa)) and capability of observing the load of the foot 

during gait (slow or fast walking and running) (Noce 2005; Rana 2009).  

 

 
3.4.3 Low-cost photogrammetry measurement system 

 
3.4.3.1 Video Camera Calibration 

 

Camera calibration is a very crucial stage in photogrammetric work as it ensures that 

the measured imaged coordinates (x, y) have a high level of accuracy. In this study, 

all six JVC cameras were measured and calibrated by finding all of the radial 

distortion parameters (K1, K2, K3), the interior orientation parameters (xo, yo, f), 

and the lens alignment (P1, P2, P3) to obtain an accurate result. The selected cameras 

were calibrated individually using a self-calibration technique (Remondino & Fraser 

2006; Udin & Ahmad 2011) at an object distance of 900 mm. This pointed distance 

is close in resemblance to the gait characteristics of imaging the plantar pressure and 

3D lower limb movements this object distance is similar to the gait specifications for 

imaging the plantar surface and the 3D. The frames were extracted from the clips 

using the off-the-shelf camera calibration software Australis®. The PLPC technique 

(Chong 2011) will be utilized foot the determination of the lens parameters during 

imaging processing sessions. These video clips were processed simultaneously to 

obtain the parameters for each video camera before and after the session, and that 

was achieved using camera calibration software. First, the predicted lens parameter 

was obtained using: 1) the self-calibrated maximum distance, 2) the EXI file FL and 

3) the algorithms found in Fraser and Al-Ajlouni (2006). For example, the root mean 
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square is generated by fitting a linear function between FL and the self-calibrated 

PD. These values were utilized to process the captured images to determine the 3D 

distances and angles between the anthropometric marks for the limb and plantar 

pressure (Chong 2011). Table 3.1 illustrates camera calibration results for six JVC 

video cameras. 

Table 3.1: Video Camera Calibration Results marking the targets 

 
3.4.3.2 Imaging Platform and Synchronising Device 

 

A new close-range photogrammetric system was developed for video clip capture 

of a human foot during gait, using multi video cameras (6 HD video cameras) 

connected to the photogrammetric control frame. The accuracy of the calculated 

object coordinates of the foot were increased by a plate fixed on the ground attached 

to the control frame on the walkway, which contains control points. The plate 

allowed the capture of the video recording of the subject’s foot plantar. At the same 

time, lower limb movements’ were measured in synchronization with the plantar 

pressure in different positions of gait such heel down, mid-stance, and push-off. 

Therefore, in every single phase of the gait, there were two readings: one for the 

joints’ movements and the second for plantar pressure data. The mounting camera 

platforms are designed to provide a 100% twelve-images overlap of the plantar 
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surface.  A low-cost electronic synchronizing device was constructed for the 

multiple camcorder arrangements for two purposes: 1) to provide video-frame 

synchronization and 2) to minimize error introduced by the disparity of the single 

video camera. 

 

 
3.4.4 Data Processing of the correlation technique 

 
3.4.4.1 Data collecting of the plantar pressure characteristics during walking. 

 

After consent, the patient was asked to walk along a 10-meters long walkway for a 

short warm-up trail. Before the recording of the trial, the participant was given three 

minutes to practice the procedure, thus minimising walking errors without alteration 

of step characteristics. The subject had left-side hip dislocation and scoliotic spine 

with atypical gait characteristics. In the trial, the participant was shown a standard 

gait procedure from standing position to stepping onto the floor using the 3000E F-

scan in-shoe sensors sampling at 100 Hz. After inserting the 3000E F-scan in-shoe 

sensors inside the patient’s shoes, six walking trials were recorded for each 

condition: barefoot, custom-made orthosis, and Leaf Spring AFO. Ten steps were 

collected per straight-line walk for each of the six trials under the three mentioned 

conditions. 

Regarding the barefoot trails, the 3000E F-scan in-shoe sensors was fitted inside the 

socks of the left foot affected by DDH. The patient was wearing the custom-made 

orthosis and the Leaf Spring AFO in the left foot with sports shoes (flat rocker 

Adidas type). The test began with the left foot stepping forward first for three trials 

and was completed with three trials having the right foot stepping forward first. In 

order to collect high accuracy plantar pressure data, the average of the three middle 
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steps was taken from the ten steps for each trial under the three conditions. The three 

best trial recordings were chosen for processing using F-scan research software. The 

foot was divided into thirteen main regions according to the F-scan research 

software’s automatic classification of the foot. The foot regions were total foot TF, 

lateral heel LH, medial heel MH, midfoot MF, first metatarsal M1, second 

metatarsal M2, third metatarsal M3, fourth metatarsal M4, fifth metatarsal M5, 

Hallux T1, second toe T2, third toe T3, and fourth and fifth toes T4-5 as shown in 

Figure 3.11.  

The F scan software calculates information on the most clinically relevant  

parameters chosen in this study for each foot under the three previously mentioned 

walking conditions. First, we examined the total right and left foot parameters 

during the three main phases of gait (heel strike, mid-stance and push off). These 

parameters are peak pressure PP (kpa), contact time CT (sec), ground reaction force 

(N), contact pressure CP ( KPA), and contact area CA (cm²). Second, we examined 

the foot region parameters of peak pressure, pressure-time integral and contact area 

recorded under each foot. Finally, the centre of pressure trajectory was recorded for 

each foot to be correlated with knee-joint positions, as shown in the example Figure 

3.10 below.  
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Figure 3.10: COP trajectory and target imprints’ location of the right foot 
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Figure 3.11: Definition of the thirteen main regions according to F-scan software 

classification 
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3.4.4.2 Calculation of the 3D coordinates of the gait cycle. 

 

The Virtual DuD converted the video clips taken by the twelve cameras into a set of 

image frames. Producing an accurate 3D surface model for the foot plantar can be 

achieved by obtaining less than 1mm base/height ratio. The captured images of each 

gait movement for both limbs under three conditions (barefoot, custom-madeorthosis, 

Leaf Spring AFO) were processed in Australis® software using the DSM technique. 

Image-pairs were uploaded and relatively orientated. The imaged coded targets were 

used to identify the orientation process. It showed that the black/white circular point’s 

targets were more acceptable and digitized by the software. Initially, a depth-range 

was assigned to expedite the search for a good match in the subsequent images. This 

setting was particularly crucial for this project as the human skin surface has a smooth 

texture. The orientation results were considered satisfactory as the total error was less 

than 1.0 mm. A medium-density rate (medium sample rate value) was applied because 

the 3D dorsal and plantar surfaces were smooth. Thus, a low density resulted in 

insufficient details on the 3D model, and a high density resulted in a wavy and rippled 

model appearance. 

In this work, the patient put on different types of ankle-foot orthoses. The previous 

tests showed that the plate and connected software produced high accuracy images for 

a foot with and without orthosis. 
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Table 3.2: Example of 3D coordinates of the lower limb. 

 
 

 

Figure 3.12: Example 3D plot of the lower limb coordinates 

 

 
3.4.4.3 Correlation of the plantar pressure data and lower limb movements. 

 

The investigation tests involved analysing the correlation of plantar pressure and lower 

limb movements on both limbs during walking under the three previously mentioned 

conditions. The experiments were divided into two steps. Step A required recording of 

the foot movement: two on the mat from three different sides (left, centre and right 

side) using six video cameras when the plate was on the walkway of the CRPS 

platform. The results of this test were utilised to generate a 3D surface model of the 
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subject’s foot plantar during a gait, as explained previously. The second step captured 

the subject’s limb movement from three different sides (left, centre, and right) using 

six video cameras when the plate was placed on the walkway of CRPS platform 

concurrently. The outcomes of this test were adopted to correlate the movements of 

the lower limb and plantar pressure data. 

. 

 

Figure 3-13: Examples of the correlation between the lower limb and   plantar 

centre of pressure. 
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3.5 CONCLUSION 

 
The marker-based motion capture system has a less and minimal effect on the 

mechanical dynamics of body movements during walking in comparison with the less 

marker-based methods as described in Section 3.2. The Qualisys PAF gait model was 

selected to develop an accurate musculoskeletal model for individuals with 

developmental dysplasia of the hip, due to its high accuracy and less errors occurring 

when deriving the location of multiple linked segments or body parts. The system was 

calibrated, and the data were collected for each condition as illustrated in Section 3.3.3. 

Then, the kinematics and kinetics data were calculated and filtered using Visual 3D 

Professional software as explained in Section 3.3.5. The angles, net moments, and the 

net power for three lower limb joints (ankle, knee, and hip) will be analysed and 

interpreted in Chapter 4. The correlation approach between the lower limb movements 

and plantar pressure characteristics was applied to calculate the pressure and forces 

beneath the foot under different conditions as illustrated in Section 3.4. Thus, the data 

of peak pressure, contact pressure, pressure-time-integral, and ground reaction forces 

will be presented and analysed in Chapter 4.   
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CHAPTER  4: RESULTS 

 
4.1 AN OVERVIEW 

 
The ankle, knee and hip joints kinematics and kinetics results are presented in the first 

part of this chapter. The ankle joint kinematics and kinetics results under the four 

conditions are explained in Section 4.2. These results include the dorsi-plantarflexion 

angles, the dorsi-plantarflexion moments, and ankle power generated during walking 

in the sagittal plane, followed by the knee and hip joint kinematics and kinetics results, 

which are presented and summarised in Sections 4.3 and 4.4, respectively. These 

results will include the knee and hip joint extension-flexion angles, moment and power 

during walking in the sagittal plane under the four conditions. The second part of this 

chapter presents the plantar pressure results during the three main phases of gait: heel 

strike, midstance and push-off phase. In Sections 4.5.1 and 4.5.2, the right and left foot 

contact area, contact pressure, peak pressure and ground reaction force results for the 

three conditions are explained along with the entire stance phase of gait. The final part 

of this chapter presents the results of contact area, peak pressure and pressure-time 

integral under each of the 14 specified foot regions, as shown in Section 4.6.  
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4.2 THE KINEMATICS AND KINETICS OF THE LOWER 

LIMBS 

The ankle, knee and hip joint kinematics and kinetics were computed based on the 

methods explained in Section 3.2. As mentioned in Section 3.2.3, the data for the 

patient with DDH were captured after a short warm-up and consent at the USQ Sport 

and Exercise Research Centre Lab. Reflective markers were attached to the pelvis and 

the lower limbs to treat each segment as 6-degrees of freedom segment. Five gait trials 

for each limb on the force plate were recorded under each of the four conditions to 

increase the likelihood of obtaining highly accurate data. The reflective markers were 

labelled, digitized and identified by using Qualisys tracking manager software. The 

model was created after converting and exporting all the digitized data from Qualisys 

to C3D files to be used and modelled by Visual 3D Professional  as explained in 

Section 3.2.4. The model was created by establishing a rigid body frame based on 

segments that link the hip, knee, and ankle joint. 

After creating the model, the force plate data were exported to the Visual 3D to 

calculate subject mass and height, and to identify the gait events for each limb from 

heel strike to push off as illustrated Section 3.2.5. Ankle plantarflexion-extension, knee 

flexion-extension, hip flexion-extension angles, moments and power were calculated 

based on the relative positions between every two segments using the inverse-dynamic 

approach. The average of these data was calculated, and the mean difference between 

every two conditions was computed to compare the results as discussed in the 

following sections. 
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4.2.1 Ankle joint kinematics and kinetics in the sagittal plane 

 
4.2.1.1 Ankle joint Dorsi-plantarflexion angles (ankle kinematics) 

 

During the heel strike phase, the right dorsiflexion ankle was 5.99° for barefoot, 

17.06° for custom-made AFO, 15.20° for Leaf Spring AFO, and 30.77° for the shoes 

only condition. The mean difference between every two conditions was significant 

during this phase (p < 0.025) as shown in Table 4.1. During the late stance phase, 

the right dorsiflexion angle was 47.71° for barefoot, 49.87° for custom-made AFO, 

51.37° for Leaf Spring AFO, and 56.10 ° for shoes only. The maximum dorsiflexion 

angle for all conditions occurred between the terminal stance phase and the pre-

swing phase, and was not significant (p<0.025) for both orthoses, and the shoes 

increased the dorsiflexion angle by a mean difference of 2.71°, 4.2°, and 8.9° 

respectively as shown in Table 4.1 and Figure 4.1 a.  The planter flexion angle 

reached the maximum during the time between the toes-off the ground phase and the 

initial swing phase. It is worth noting that there was a significant change (p<0.025) 

as both orthoses and shoe conditions increased the plantar-flexion angle by a mean 

difference of 21.1°, 14°, and 39° respectively. During the same phase, the left 

dorsiflexion angles under the four conditions were 10.29°, 9.86°, 11.25°, and -3.18° 

respectively, as shown in Table 4.2.  There was no significant change between 

barefoot and both orthoses (p>0.025) however, the mean difference between the 

barefoot and shoes only conditions was significant (p < 0.025) showing a value of 

13.48°. The ankle-custom made orthosis affected the gait cycle for the left limb 

rapidly; the maximum dorsiflexion angle occurred as the left foot pushed off the 

ground, which is less than the maximum-barefoot dorsi-flexion angle by a mean 

difference of 17.3°. Additionally, the custom-made orthosis had a long-range of 
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plantar-flexed ankle starting from a position at the initial swing and continuing until 

the ankle dorsiflexed to the neutral position at the end of the cycle. The results 

showed that custom, Leaf and shoes decreased the plantar-flexion angle compared 

to the barefoot by a mean difference of 17.6°, 18.1°, and 10.5° (Table 4.2, Figure 4.1 

b). 
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Figure 4.1: Ankle joint angles for the right limb (a) and left limb(b) during 

walking in the sagittal plane  
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4.2.1.2 Ankle joint moment (ankle joint kinetics) 
 

In terms of moments, the right ankle moment during the heel strike phase was -0.02 

Nm/kg for barefoot, -0.04 Nm/kg for custom-made AFO, -0.06 Nm/kg for Leaf Spring 

AFO, and -0.07 Nm/kg for the shoes only. During the loading response phase, the right 

ankle moment values for the four conditions were -0.14, -0.04, -0.13, and -0.16 Nm/kg, 

respectively (Table 4.1, Figure 4.2 a). There was a significant change (p<0.025, mean 

difference = -0.09 Nm/kg) between the custom-made AFO and barefoot conditions. 

However, there was no significant change between the Leaf Spring AFO and barefoot 

conditions (p>0.025, mean difference = 0.008 Nm/kg), as shown in Table 4.1. At the 

period from the midstance phase until the terminal stance phase (right foot pushes off), 

the plantar-flexor moment increased until it reached maximum values at the late push 

off. All the custom, Leaf, and shoe conditions had a higher right ankle plantar-flexor 

moment than that of barefoot by a mean difference of 0.12, 0.2, and 0.26 Nm/kg), as 

shown in Table 4.1.  

Despite this, the results showed a statistically significant change for the right ankle 

moments, and there was an asymmetry in the entire stance phase for all four conditions, 

as seen in Figure 4.2 b. For the left diseased limb and during the period between the 

midstance phase and push-off phase, the left ankle plantar-flexor moment when 

wearing the custom-made orthosis, started to increase rabidly until it reached the 

maximum value of 0.56 Nm/kg as shown in Table 4.2.  It showed a significant 

difference along with the entire stance phase between the custom and barefoot 

conditions (p<0.025), but the Leaf Spring AFO and shoes did not affect the gait 

variables compared to the barefoot. 
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Figure 4.2: Ankle joint moments for the right limb (a) and left limb (b) during 

walking in the sagittal plane  
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4.2.1.3 Ankle plantar-dorsiflexion power (ankle kinetics) 

 

Finally, in terms of power generated during walking in the sagittal plane, the custom- 

made AFO, Leaf  Spring AFO, and shoes generated a higher maximum plantar-flexion 

power than the barefoot at the late stance by a mean difference of 1, 0.9, and 0.8 

Watt/kg respectively as shown in Table 4.1.  However, there was no significant 

difference between the custom and Leaf in terms of power generated by the right limb 

during the late stance before the toes left the ground, and the mean difference was 0.08 

Watt/kg (p>0.025)  as seen in Figure 4.3a and Table 4.1.   

Additionally, the power graph for the right limb showed consistency and symmetry in 

values during the period from the initial strike to the late portion of the midstance 

phase (60%) of the stance. The left limb has a unique pattern gait due to the severe hip 

dislocation, and this influences the gait parameters especially in the kinetics part. The 

custom drastically and significantly decreased the power generated by the affected 

limb during the loading response phase compared to the barefoot by a mean difference 

of 0.376 Watt/kg (p<0.025).  However, the Leaf Spring AFO decreased the maximum 

dorsiflexion power generated during load-bearing by the main difference -0.06 

Watt/kg which is considered statistically non-significant (p>0.025) compared to the 

other conditions.   Additionally, during the late stance phase, there was no significant 

change witnessed among all the four conditions. The mean differences and standard 

deviations within each condition and among all conditions during the whole phases of 

the gait from heel strike to toe off are shown in Tables 4.1 and 4.2. 
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Figure 4-3:Ankle joint power for the right limb (a) and left limb (b) during 

walking in the sagittal plane 
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Table 4.1: Ankle kinematics and kinetics for the right limb during walking in the sagittal plane under four conditions: barefoot, custom-made 

AFO, Leaf Spring AFO, and shoes only. Note, the bold numbers showing the mean difference between conditions is significant, and the P-value 

is less than 0.025. B vs C refers to the mean difference between barefoot and custom-made AFO 

 

 Sagittal Plane    Right Ankle     Mean Difference between conditions  

 Phase Barefoot Custom (Leaf-AFO) Shoes) B vs C B vs L B vs S LC vs C vs S L vs S 

  M SD M SD M SD M SD M M M M M M 

 Heel Strike 5.99 ± 0.09 17.06 ± 0.43 15.20 0.37 30.77 0.75 -11.07 -9.21 -24.79 1.87 -13.71 -15.58 

 

A
n
g
le

s 
(d

eg
re

es
) Loading Response 21.15 ± 0.30 22.38 ± 0.57 18.02 0.44 32.37 0.79 -1.23 3.13 -11.22 4.36 -9.99 -14.36 

Midstance 40.00 ± 0.57 38.21 ± 0.97 43.91 1.07 42.66 1.04 1.79 -3.91 -2.66 -5.70 -4.45 1.25 

Late stance 47.17 ± 0.68 49.87 ± 1.27 51.37 1.26 56.10 1.37 -2.71 -4.20 -8.94 -1.50 -6.23 -4.73 

Toe off -25.17 ± 0.36 3.64 ± 0.09 3.41 0.08 6.48 0.16 -28.82 -28.58 -31.66 0.24 -2.84 -3.08 

Initial Swing -25.12 ± 0.36 -3.53 ± 0.09 -11.03 0.27 14.23 0.35 -21.58 -14.09 -39.35 7.49 -17.77 -25.26 

Mid Swing 28.13 ± 0.40 23.96 ± 0.61 21.80 0.53 28.17 0.69 4.17 6.33 -0.04 2.16 -4.21 -6.37 

 Terminal Swing 13.47 ± 0.19 17.36 ± 0.44 17.09 0.42 22.45 0.55 -3.89 -3.62 -8.98 0.27 -5.09 -5.37 

 M
o
m

en
t 

(N
m

/K
g
) 

Heel Strike -0.02 ± 0.00 -0.04 ± 0.00 -0.06 0.00 -0.07 0.00 0.02 0.04 0.05 0.02 0.03 0.01 

Loading Response -0.14 ± 0.00 -0.04 ± 0.00 -0.13 0.00 -0.16 0.00 -0.09 0.00 0.02 0.09 0.12 0.03 

Midstance 0.17 ± 0.00 0.13 ± 0.00 0.20 0.00 0.10 0.00 0.04 -0.03 0.07 -0.07 0.03 0.11 

Late Stance 0.36 ± 0.01 0.48 ± 0.01 0.56 0.01 0.62 0.02 -0.12 -0.20 -0.26 -0.08 -0.14 -0.06 

Toe off -0.02 ± 0.00 0.06 ± 0.00 0.11 0.00 0.00 0.00 -0.08 -0.13 -0.02 -0.05 0.06 0.11 

 P
o

w
er

 (W
a

tt
/K

g
) 

Heel Strike 0.00 ± 0.00 -0.11 ± 0.00 -0.05 0.00 -0.10 0.00 0.11 0.05 0.09 -0.06 -0.01 0.04 

Loading Response 0.33 ± 0.00 0.07 ± 0.00 0.24 0.01 0.14 0.00 0.26 0.08 0.19 -0.17 -0.07 0.10 

Midstance -0.16 ± 0.00 -0.15 0.00 -0.23 0.01 -0.13 0.00 0.00 0.08 -0.03 0.08 -0.03 -0.11 

Late stance 2.3 ± 0.00 3.3 0.01 3.2 0.01 2.9 0.01 -1 -0.9 -0.6 0.08 0.04 0.03 

Toe off 0.1 ± 0.00 0.76 0.02 1.20 0.03 0.20 0.00 -0.79 -1.23 -0.23 -0.44 0.56 1.00 
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Table 4.2: Ankle kinematics and kinetics for the left limb during walking in the sagittal plane under four conditions; barefoot, custom-

made AFO, and Leaf Spring-AFO, and shoes only. Note, the bold numbers showing the mean difference between conditions is significant 

and the P value is less than 0.025 B vs C refers to the mean difference between barefoot and custom-made AFO 
 

 Sagittal Plane   Left Ankle the effected side (Mean, SD)    Mean Difference between conditions  

 Phase Barefoot Custom  Leaf-AFO) Shoes)  B vs C B vs L B vs S C vs L C vs S L vs S 

  M SD M SD M SD M SD M M M M M M 

 Heel Strike 10.2963 0.15 9.8639 0.2503 11.2336 0.2749 -3.1858 0.0780 0.4324 -0.9373 13.4821 -1.3697 13.0497 14.4194 
 Loading Response 3.5938 0.052 7.7953 0.1978 -5.1754 0.1266 -2.4730 0.0605 -4.2015 8.7692 6.0668 12.9707 10.2683 -2.7024 

A
n
g

le
s 
(d

eg
re

es
)               

Midstance 13.0527 0.1875 13.9216 0.3533 10.3767 0.2539 10.2752 0.2514 -0.8689 2.6760 2.7775 3.5450 3.6464 0.1015 

Push off 40.9008 0.5874 23.5718 0.5981 27.0344 0.6615 29.2499 0.7158 17.3291 13.8665 11.6509 -3.4626 -5.6781 -2.2155 

Toe off 34.5960 0.4969 12.2710 0.3114 19.5352 0.4780 26.8301 0.6565 22.3250 15.0608 7.7658 -7.2642 -14.5592 -7.2950 

Initial Swing 28.7544 0.4130 11.0563 0.2805 10.5722 0.2587 18.2153 0.4457 17.6981 18.1822 10.5391 0.4841 -7.1590 -7.6431 

Mid Swing 15.5806 0.2238 11.9470 0.3031 7.3078 0.1788 -2.3111 0.0566 3.6336 8.2728 17.8917 4.6392 14.2581 9.6189 

 Terminal Swing 20.8084 0.2988 10.7910 0.2738 12.1776 0.2980 -7.9278 0.1940 10.0174 8.6309 28.7362 -1.3865 18.7188 20.1053 

M
o

m
en

t (
N

m
/K

g
) 

Heel Strike -0.0479 0.0007 -0.0407 0.0010 -0.0084 0.0002 -0.0319 0.0008 -0.0072 -0.0394 -0.0160 -0.0322 -0.0088 0.0235 

Loading Response -0.2446 0.0035 -0.1078 0.0027 -0.1517 0.0037 -0.0673 0.0016 -0.1369 -0.0929 -0.1773 0.0440 -0.0404 -0.0844 

Midstance -0.0361 0.0005 0.1959 0.0050 0.0112 0.0003 0.0086 0.0002 -0.2320 -0.0473 -0.0446 0.1847 0.1874 0.0027 

Push off 0.0752 0.0011 0.5618 0.0143 0.0204 0.0005 0.0217 0.0005 -0.4866 0.0548 0.0535 0.5414 0.5401 -0.0013 

Toe off -0.0145 0.0002 -0.0063 0.0002 -0.0041 0.0001 -0.0008 0.0000 -0.0082 -0.0104 -0.0137 -0.0022 -0.0055 -0.0033 

P
o
w

er
 (

W
at

t/
K

g
) 

Heel Strike -0.1443 0.0021 -0.0313 0.0008 -0.1084 0.0027 -0.0718 0.0018 -0.1131 -0.0360 -0.0725 0.0771 0.0405 -0.0366 

Loading Response 0.3706 0.0053 0.0031 0.0001 0.4391 0.0107 0.1887 0.0046 0.3675 -0.0685 0.1819 -0.4360 -0.1856 0.2504 

Midstance 0.0379 0.0005 -0.1124 0.0029 -0.0103 0.0003 -0.0107 0.0003 0.1503 0.0481 0.0486 -0.1022 -0.1017 0.0004 

Late stance -0.0283 0.0004 -0.2595 0.0066 0.0441 0.0011 0.0096 0.0002 0.2312 -0.0725 -0.0379 -0.3036 -0.2691 0.0346 

Toe off -0.0351 0.0005 0.0051 0.0001 -0.0171 0.0004 -0.0050 0.0001 -0.0402 -0.0180 -0.0301 0.0222 0.0101 -0.0121 
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4.2.2 Knee joint kinematics and kinetics in the sagittal plane under four 

conditions 

4.2.2.1 Knee joint flexion-extension angle (knee kinematics) 

 

During the heel strike phase, the right knee flexion angle was 72.53° for barefoot 

condition, 0.96° for custom-made AFO, 60.77° for Leaf Spring AFO, and 61.45° for 

shoes only condition as shown in Table 4.3 and Figure 4.4 a. Moreover, the left knee 

flexion angle values under the four conditions were 28.35, 30.84, 27.40, and 26.03, 

respectively (Table 4.4, Figure 4.4 b). During the late stance phase of gait, the right 

knee flexion angle was 98.77° for barefoot, 102.09° for custom-made AFO, 94.64° 

for Leaf Spring AFO, and 98.02° for shoes only condition as shown in Table 4.3. 

The left knee flexion angle values under four conditions were 33.4°, 54.4°, 50.65°, 

and 37.27°.  

As previously mentioned in the case description, the right knee is hyper-flexed 

severely due to the dislocated left hip and the limited movement that the patient had 

during his early age. In the sagittal plane movement, the custom made AFO, Leaf 

Spring AFO and shoes have had an enormous impact on the gait cycle compared to 

the barefoot condition and showed a significant ( p<0.025 ) decrease in the right 

knee-flexion angle at the initial strike by a mean difference of 17.46°,11.76°, and 

11.08° respectively as shown in Table 4.3. Furthermore, during the mid-swing phase, 

the custom-made and Leaf Spring orthoses decreased the flexion angle by a mean 

difference of 13.43° and 23.81°, respectively, in comparison with the barefoot 

condition. However, there was no significant change (p>0.025) regarding the 

maximum flexion angle for the right knee at the late stance (right foot toe off) except 

that the condition of the shoes increased the angle by a mean difference of 11.39° as 
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shown in Table 4.3. The kinematics analysis of the left diseased limb revealed that 

the most significance change was during the late stance phase of gait correlated with 

decreasing values of the left knee flexion angle from the period, where the left toes 

left the ground to the initial swing portion as shown in Table 4.4.   
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Figure 4.4: Knee joint angles for the right limb (a) and left limb (b) during walking in 

the sagittal plane. 
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4.2.2.2 Knee joint flexion-extension moments and power (knee kinetics) 

 

During the heel strike phase, the right knee flexion moment was 0.02Nm/kg for 

barefoot condition, -0.16 Nm/kg for custom-made AFO, -0.09 Nm/kg for Leaf 

Spring AFO and 0.009 Nm/kg for shoes only condition as shown in Table 4.3 and 

Figure 4.5 a. Moreover, the left knee flexion moments values under the four 

conditions were 0.03 Nm/kg, -0.02 Nm/kg, -0.05 Nm/kg, and -0.05 Nm/kg 

respectively (Table 4.4, Figure 4.5 b). During the loading response phase of gait, the 

right knee flexion moment was 1.07Nm/kg for barefoot, 0.78 Nm/kg for custom-

made AFO, 1.02 Nm/kg for Leaf Spring AFO, and 0.98 Nm/kg for shoes only 

condition as shown in Table 4.3 and Figure 4.5a. The left knee flexion moment 

values under the four conditions were 0.97 Nm/kg, 0.54 Nm/kg, 0.65 Nm/kg, and 

0.50 Nm/kg (Table 4.4, Figure 4.5b).  

The knee kinetics data showed similar results to the ankle kinetics in terms of the 

custom orthosis influence on overall gait cycle. This fabricated orthosis decreased 

both the right and left extensor moments significantly (p<0.025) during the load-

bearing phase in comparison with barefoot by a mean difference of 0.29 Nm/kg, and 

0.43 Nm/Kg respectively for both limbs. In addition, during that loading response 

phase, the custom had a higher generated knee flexion power in both limbs than those 

of barefoot, Leaf, and shoes, as shown in Figure 4.6 (a,b). The Leaf Spring AFO and 

shoe conditions showed similar right knee extensor moment data along the whole 

gait cycle in comparison with the barefoot condition except for the moment when 

the right foot pushed off the ground, as both Leaf and shoes had a higher extensor 

moment than barefoot showing a mean difference of 0.3, 0.4 Nm/kg respectively.   
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Figure 4.5: Knee join flexion-extension moments for the right limb (a) and left 

limb (b) during walking in the sagittal plane 
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Figure 4.6: Knee join Flexion-Extension power generation and absorption for 

the right limb (a) and left limb(b) during walking in the sagittal plane 
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Table 4.3: Knee kinematics and kinetics for the left limb during walking in the sagittal plane under four conditions: barefoot, custom-

made AFO,  Leaf SpringAFO, and shoes only. Note, the bold numbers showing the mean difference between conditions is significant, and 

the P-value is less than 0.025. B vs. C refers to the mean difference between barefoot and custom-made AFO 
 

 
Sagittal Plane 

  
Right Knee (Mean, SD) 

    
Mean Difference between conditions 

 

 Phase Barefoot  Custom  (Leaf-AFO) Shoes)  B vs C B vs L B vs S C vs L C vs S L vs S 

  M SD M SD M SD M SD M M M M M M 

 
Heel Strike 72.53 0.96 55.07 0.95 60.77 0.74 61.45 1.20 17.46 11.76 11.08 -5.70 -6.38 -0.68 

 
Loading Response 

88.59 1.17 73.83 1.27 77.77 0.95 81.42 1.59 14.76 10.82 7.17 -3.94 -7.59 -3.65 

 A
n
g
le

s
 
(d

e
g

re
e

s
)               

Midstance 89.04 1.18 78.54 1.35 83.30 1.02 84.10 1.65 10.51 5.74 4.95 -4.77 -5.56 -0.79 

Push off 90.99 1.20 89.13 1.54 96.40 1.18 98.02 1.92 1.86 -5.41 -7.03 -7.27 -8.89 -1.62 

Toe off 98.77 1.31 102.09 1.76 94.64 1.16 110.16 2.15 -3.32 4.13 -11.39 7.45 -8.07 -15.52 

Initial Swing 105.18 1.39 110.10 1.90 105.37 1.29 119.99 2.35 -4.92 -0.19 -14.81 4.73 -9.89 -14.62 

 Mid Swing 94.84 1.25 81.41 1.40 71.02 0.87 81.68 1.60 13.43 23.81 13.15 10.38 -0.27 -10.66 

 Terminal Swing 69.22 0.92 61.98 1.07 59.74 0.73 65.11 1.27 7.24 9.47 4.10 2.24 -3.13 -5.37 

  M
o

m
e

n
t 

(N
m

/K
g

) 

Heel Strike 0.02 0.00 -0.16 0.00 -0.09 0.00 0.00 0.009 0.19 0.11 0.02 -0.07 -0.17 -0.09 

Loading Response 1.07 0.01 0.78 0.01 1.02 0.01 0.98 0.02 0.29 0.05 0.09 -0.24 -0.20 0.04 

Midstance 0.84 0.01 0.74 0.01 0.57 0.01 0.64 0.01 0.10 0.27 0.20 0.17 0.10 -0.07 

Push off 0.64 0.01 0.71 0.01 0.93 0.01 1.11 0.02 -0.07 -0.30 -0.47 -0.22 -0.40 -0.18 

Toe off -0.07 0.00 0.10 0.00 0.24 0.00 -0.05 0.00 -0.17 -0.31 -0.02 -0.14 0.15 0.29 

  
P

o
w

e
r 

(W
a

tt
/K

g
) 

Heel Strike -0.22 0.00 -0.18 0.00 -0.29 0.00 -0.30 0.01 -0.04 0.08 0.08 0.12 0.12 0.00 

Loading Response -1.33 0.02 -0.65 0.01 -1.81 0.02 -0.13 0.00 -0.68 0.48 -1.20 1.16 -0.52 -1.67 

Midstance 0.41 0.01 -0.14 0.00 -0.21 0.00 -0.48 0.01 0.55 0.62 0.88 0.07 0.34 0.27 

Push off -0.47 0.01 -1.12 0.02 -0.89 0.01 -0.65 0.01 0.65 0.41 0.17 -0.24 -0.48 -0.24 

Toe off 0.27 0.00 -0.31 0.01 -0.31 0.00 0.06 0.00 0.57 0.58 0.20 0.009 -0.37 -0.37 
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Table 4.4: Knee kinematics and kinetics for the left limb during walking in the sagittal plane under four conditions; barefoot, custom-

made AFO,  Leaf Spring AFO, and shoes only Note, the bold numbers showing the mean difference between conditions is significant, and 

the P-value is less than 0.025. B vs. C refers to the mean difference between barefoot and custom-made AFO 
 

Sagittal Plane Left Knee the effected side (Mean, SD) Mean Difference between conditions 

Phase Barefoot Custom (Leaf-AFO) Shoes) B vs C B vs L B vs S C vs L C vs S L vs S 
 

M SD M SD M SD M SD M M M M M M 

Heel Strike 28.35 0.38 30.84 0.53 27.40 0.34 26.03 0.51 -2.48 0.96 2.32 3.44 4.80 1.36 

Loading Response 51.63 0.68 46.16 0.80 46.49 0.57 41.06 0.80 5.46 5.14 10.56 -0.33 5.10 5.43 

Midstance 45.32 0.60 44.24 0.76 44.66 0.55 40.19 0.79 1.08 0.66 5.12 -0.42 4.05 4.46 

Push off 46.36 0.61 39.88 0.69 39.78 0.49 33.44 0.65 6.47 6.57 12.91 0.10 6.44 6.34 

Toe off 33.44 0.44 54.40 0.94 50.65 0.62 37.27 0.73 -20.96 -17.21 -3.83 3.75 17.13 13.38 

Initial Swing 35.68 0.47 60.84 1.05 62.14 0.76 51.16 1.00 -25.16 -26.46 -15.48 -1.31 9.68 10.99 

Mid Swing 46.79 0.62 44.87 0.77 42.43 0.52 39.11 0.77 1.92 4.35 7.67 2.43 5.76 3.32 

Terminal Swing 26.39 0.35 38.58 0.66 26.94 0.33 26.38 0.52 -12.19 -0.55 0.01 11.64 12.20 0.56 
 

 
Heel Strike 0.03 0.00 -0.02 0.00 -0.05 0.00 -0.05 0.00 0.05 0.07 0.08 0.03 0.03 0.00 

Loading Response 0.97 0.01 0.54 0.01 0.65 0.01 0.50 0.01 0.43 0.32 0.47 -0.10 0.04 0.15 

Midstance 0.42 0.01 0.38 0.01 0.35 0.00 0.30 0.01 0.04 0.07 0.12 0.03 0.08 0.05 

Push off 0.71 0.01 0.36 0.01 0.08 0.00 0.12 0.00 0.35 0.62 0.59 0.27 0.24 -0.03 

Toe off 0.06 0.00 0.07 0.00 0.07 0.00 0.03 0.00 -0.02 -0.01 0.03 0.01 0.05 0.04 
 

 

Heel Strike 0.03 0.00 -0.19 0.00 0.13 0.00 0.00 0.00 0.23 -0.10 0.03 -0.33 -0.19 0.13 

Loading Response -0.69 0.01 -0.75 0.01 -2.25 0.03 -1.02 0.02 0.06 1.55 0.32 1.49 0.26 -1.23 

Midstance 0.46 0.01 0.31 0.01 0.05 0.00 -0.15 0.00 0.15 0.40 0.61 0.25 0.45 0.20 

Push off 1.45 0.02 0.50 0.01 -0.17 0.00 -0.07 0.00 0.95 1.62 1.52 0.67 0.57 -0.10 

Toe off 0.13 0.00 -0.25 0.00 -0.29 0.00 -0.12 0.00 0.38 0.42 0.25 0.04 -0.13 -0.17 
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4.3 HIP JOINT KINEMATICS AND KINETICS IN THE 

SAGITTAL PLANE UNDER FOUR CONDITIONS 

4.3.1.1 Hip joint flexion-extension angles (hip joint kinematics) 

 

Importantly, one of the main targets of this research was to study the effects of the 

orthosis aided devices on the hip parameters, particularly the power generated by the 

unaffected right hip during walking in the sagittal plane, as well the maximum 

extension and flexion moments in the loading response and late stance phases of gait. 

Due to the severe hip dislocation on the left side, we found creating the model to 

calculate the hip moments and power a substantial challenge. We assumed that the 

proximal end of the thigh is connected to a virtual joint, as mentioned in the digitizing 

and modelling section of Chapter 3. 

As shown in Table 4.5, the highest hip flexion-extension hip angles were in 

decreasing order along with the entire stance phase, starting with 97.90° during heel 

strike phase, 92.66 °during loading response, 76.39° during midstance, 50.89° during 

the push-off phase, and 32.28° during toe-off phase.  There was no significant change 

(p>0.025) in the right hip flexion angle at initial strike. The left flexion angle 

increased significantly (p< 0.025) by a mean difference of 15.87°,15.07° and 15.23° 

while using the custom, Leaf, and shoes respectively at initial contact phase. 

Furthermore, during the loading response phase, the affected left limb had higher 

values of hip flexion angle when using the orthoses and shoes and, significantly, the 

mean difference values with barefoot were 11.95°, 16.02°, and 16.27° as shown in 

the Figure 4.7 b and Table 4.6. Also, the maximum right and left extension hip angles 

at the late stance increased rapidly with the use of the custom-made orthosis during 

the period from the push off the ground to the initial swing phase of gait, as shown 
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in Figure 4.7 a, b. 
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Figure 4-7: Hip joint angles for the right limb (a) and left limb (b) during 

walking in the sagittal plane 
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4.3.1.2 Hip joint moments and power (hip joint kinematics and kinetics) 

 

For hip flexion/extension moments and power, the custom-made orthosis decreased 

the right and left maximum hip flexor moments during the loading response phase by 

a mean difference of 0.13 Nm/kg, and 0.07 Nm/kg (p<0.025) respectively as shown in 

Table 4.5 and Figure 4.8 a. The custom-made orthosis had a higher moment during the 

late stance of the gait cycle than that of the barefoot. The data showed significant 

change (p<0.025) by a mean difference of 0.1604 Nm/kg. However, the Leaf Spring 

AFO did not much change the flexion moment during the late stance phase (right toes 

leaving the ground). Moreover, when the left foot left the ground during the period 

between the metatarsals pushing off until the big toe left the ground, the left hip 

moment increased drastically and showed significant change (p<0.025) in comparison 

to barefoot by a mean difference of 0.31 Nm/kg as presented in Table 4.6. In terms of 

power generated by the unaffected right hip during walking in the sagittal plane, the 

right hip under the custom-made orthosis and the Leaf Spring AFO during the initial 

contact portion of the stance phase generated more extension power in comparison to 

the barefoot and shoes conditions as shown in Figure 4.9a. Additionally, during the 

late stance phase of gait especially, at the moment the right foot pushed off the ground, 

both orthoses decreased the extensor power generation required to push the body 

forward in comparison to that of barefoot by a mean difference of  0.244, and 0.54 

Watt/kg as shown in Table 4.5. 
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Figure 4.8: Hip joint Flexion-Extension moments for the right limb (a) and left 

limb(b) during walking in the sagittal plane 
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Figure 4.9: Hip join Flexion-Extension power generation and absorption for the 

right limb (a) and left limb (b) during walking in the sagittal plane 
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Table 4.5: Hip joint kinematics and kinetics for the right limb during walking in the sagittal plane under four conditions: barefoot, custom-

made orthosis, Leaf Spring AFO, and shoes only. Note, the bold numbers showing the mean difference between conditions is significant, 

and the P-value is less than 0.025. B vs. C refers to the mean difference between barefoot and custom-AFO. 
 

 
Sagittal Plane 

   
Right Hip (Mean, SD) 

    
Mean Difference between conditions 

 

 Phase Barefoot Custom Leaf-AFO) Shoes) B vs C B vs L B vs S C vs L C vs S L vs S 

  M SD M SD M SD M SD M M M M M M 

 
Heel Strike 97.9078 1.5493 95.8254 1.4910 100.3020 1.6271 102.5475 1.9317 2.0824 -2.3942 -4.6397 -4.4766 -6.7221 -2.2455 

 
Loading Response 

92.6605 1.4663 83.2695 1.2956 93.4268 1.5156 92.4680 1.7418 9.3910 -0.7663 0.1926 -10.1573 -9.1985 0.9589 

 A
n
g
le

s
 (

d
e

g
re

e
s
)               

Midstance 76.3993 1.2090 66.8722 1.0405 61.5352 0.9983 67.7079 1.2754 9.5271 14.8641 8.6914 5.3370 -0.8357 -6.1727 

Push off 50.8911 0.8053 52.3749 0.8149 48.3537 0.7844 50.1240 0.9442 -1.4838 2.5374 0.7671 4.0213 2.2509 -1.7703 

Toe off 32.2815 0.5108 41.5031 0.6458 26.7823 0.4345 52.5483 0.9899 -9.2215 5.4992 -20.2668 14.7207 -11.0452 -25.7660 

Initial Swing 38.2709 0.6056 48.5091 0.7548 38.5219 0.6249 66.5764 1.2541 -10.2382 -0.2510 -28.3055 9.9871 -18.0673 -28.0544 

 Mid Swing 89.2798 1.4128 88.8237 1.3820 102.6899 1.6659 107.4974 2.0250 0.4561 -13.4101 -18.2176 -13.8662 -18.6737 -4.8075 

 Terminal Swing 94.7073 1.4987 85.6353 1.3324 96.6342 1.5676 102.2063 1.9253 9.0720 -1.9269 -7.4990 -10.9989 -16.5710 -5.5721 

  M
o

m
e

n
t 

(N
m

/K
g

) 

Heel Strike -0.1446 0.0023 0.1788 0.0028 0.0810 0.0013 0.0903 0.0017 -0.3234 -0.2256 -0.2349 0.0978 0.0885 -0.0093 

Loading Response 0.4225 0.0067 0.2908 0.0045 0.5453 0.0088 0.3836 0.0072 0.1317 -0.1228 0.0389 -0.2545 -0.0928 0.1617 

Midstance 0.1859 0.0029 0.1690 0.0026 0.0297 0.0005 0.0432 0.0008 0.0169 0.1562 0.1427 0.1394 0.1258 -0.0136 

Push off 0.0058 0.0001 0.0391 0.0006 -0.0598 0.0010 -0.1063 0.0020 -0.0333 0.0656 0.1121 0.0989 0.1454 0.0465 

Toe off -0.4568 0.0072 -0.2964 0.0046 -0.4233 0.0069 -0.2259 0.0043 -0.1604 -0.0335 -0.2309 0.1269 -0.0705 -0.1974 

  
P

o
w

e
r 

(W
a

tt
/K

g
) 

Heel Strike 0.2658 0.0042 0.7523 0.0117 0.7378 0.0120 0.2681 0.0051 -0.4866 -0.4720 -0.0023 0.0146 0.4843 0.4697 

Loading Response 0.9938 0.0157 1.8101 0.0282 1.7841 0.0289 0.4885 0.0092 -0.8162 -0.7903 0.5053 0.0259 1.3216 1.2956 

Midstance 1.5009 0.0238 1.1456 0.0178 0.5784 0.0094 0.0605 0.0011 0.3553 0.9225 1.4404 0.5673 1.0852 0.5179 

Push off 0.3095 0.0049 0.0646 0.0010 -0.2371 0.0038 -0.1671 0.0031 0.2449 0.5466 0.4766 0.3017 0.2317 -0.0700 

Toe off 1.3423 0.0212 0.6102 0.0095 0.6158 0.0100 0.8599 0.0162 0.7321 0.7265 0.4824 -0.0056 -0.2497 -0.2441 
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Table 4.6: Hip joint kinematics and kinetics for the left limb during walking in the sagittal plane under four conditions: barefoot, custom-

made orthosis, Leaf Spring AFO, and shoes only . Note, the bold numbers showing the mean difference between conditions is significant 

and the P value is less than 0.025. B vs C refers to the mean difference between barefoot and custom-made AFO 
 

 
Sagittal Plane 

  
Left Hip the effected side (Mean, SD) 

   
Mean Difference between conditions 

 

 Phase Barefoot Custom  Leaf-AFO) Shoes) B vs C B vs L B vs S C vs L C vs S L vs S 

  M SD M SD M SD M SD M M M M M M 

 
Heel Strike 52.6123 0.8325 68.4903 1.0657 67.6859 1.0980 67.8440 1.2780 -15.8780 -15.0736 -15.2317 0.8044 0.6463 -0.1581 

 
Loading Response 

58.6255 0.9277 70.5838 1.0982 74.6510 1.2110 74.8977 1.4109 -11.9583 -16.0255 -16.2722 -4.0672 -4.3139 -0.2467 

 A
n
g
le

s
 
(d

e
g

re
e

s
)               

Midstance 51.8137 0.8199 61.7813 0.9613 67.9035 1.1016 65.6839 1.2373 -9.9675 -16.0898 -13.8702 -6.1223 -3.9026 2.2196 

Push off 26.9159 0.4259 38.7184 0.6024 28.8630 0.4682 31.7504 0.5981 -11.8024 -1.9470 -4.8344 9.8554 6.9680 -2.8874 

Toe off 14.2820 0.2260 33.8613 0.5269 31.1830 0.5059 29.1182 0.5485 -19.5793 -16.9010 -14.8363 2.6783 4.7430 2.0648 

Initial Swing 14.9617 0.2368 36.2655 0.5643 38.5719 0.6257 33.2314 0.6260 -21.3038 -23.6102 -18.2697 -2.3064 3.0341 5.3405 

 Mid Swing 48.6629 0.7701 56.2185 0.8747 60.3577 0.9791 51.7224 0.9743 -7.5556 -11.6947 -3.0594 -4.1392 4.4961 8.6353 

 
Terminal Swing 49.9234 0.7900 66.4932 1.0346 66.2534 1.0748 65.6119 1.2359 -16.5699 -16.3301 -15.6886 0.2398 0.8813 0.6415 

  M
o

m
e

n
t 

(N
m

/K
g

) 

Heel Strike -0.2991 0.0047 -0.0257 0.0004 -0.1742 0.0028 -0.1146 0.0022 -0.2734 -0.1249 -0.1845 0.1485 0.0889 -0.0596 

Loading Response 0.3790 0.0060 0.3001 0.0047 0.1549 0.0025 0.3110 0.0059 0.0789 0.2241 0.0680 0.1452 -0.0109 -0.1561 

Midstance -0.0249 0.0004 0.0707 0.0011 0.0554 0.0009 0.1191 0.0022 -0.0956 -0.0802 -0.1440 0.0154 -0.0484 -0.0637 

Push off -0.1906 0.0030 -0.1100 0.0017 -0.4452 0.0072 -0.3200 0.0060 -0.0806 0.2546 0.1295 0.3352 0.2101 -0.1251 

Toe off -0.4970 0.0079 -0.1832 0.0028 -0.2796 0.0045 -0.2866 0.0054 -0.3138 -0.2174 -0.2104 0.0965 0.1034 0.0070 

  P
o

w
e

r 
(W

a
tt

/K
g

) 

Heel Strike -1.0915 0.0173 -0.0062 0.0001 0.0417 0.0007 0.0108 0.0002 -1.0853 -1.1332 -1.1024 -0.0479 -0.0171 0.0309 

Loading Response 0.3454 0.0055 -0.0239 0.0004 -0.2701 0.0044 -0.1822 0.0034 0.3693 0.6155 0.5276 0.2462 0.1583 -0.0879 

Midstance 0.4116 0.0065 0.4729 0.0074 0.0469 0.0008 0.0594 0.0011 -0.0613 0.3648 0.3523 0.4260 0.4135 -0.0125 

Push off -1.7258 0.0273 -1.0818 0.0168 -0.4275 0.0069 -0.9398 0.0177 -0.6441 -1.2983 -0.7861 -0.6542 -0.1420 0.5123 

Toe off -0.6530 0.0103 0.3091 0.0048 0.9208 0.0149 -0.1859 0.0035 -0.9621 -1.5738 -0.4671 -0.6117 0.4950 1.1067 
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4.4 PLANTAR PRESSURE DISTRIBUTION 

 
4.4.1 Right foot characteristics during the three main phases of the gait. 

 
As mentioned previously in the kinematics and kinetics analysis section, the right knee 

was excessively flexed during the heel strike phase of gait while the patient was 

barefoot. The alignment of the force vector for the right limb appeared posterior to the 

knee axis, and the magnitude of this ground reaction force was 199.2±0.94 N. During 

this phase, the COP was located centrally in the middle of 24.26±1.10 cm² heel area. 

The contact pressure and the peak pressure magnitude were (83.5±0.95, 126±2 kPa), 

respectively. During the mid-stance phase of gait, the right knee was vertically aligned 

with the body and posteriorly aligned to the knee axis; the ground reaction force 

magnitude was 239.1±1.54 N. 

Throughout the mid-stance phase, the right foot contact area magnitude was 

36.88±0.553 cm² and included  the mid-foot region with a small part of the medial heel 

region. The COP trace located centrally along the entire mid-stance phase with the 

magnitude of 67.8±1.101 kPa contact pressure and 134±2.94 kPa of peak pressure. 

The knee joint location advanced drastically ahead of the ground reaction force vector 

at the initiation of the right foot push off the ground; the GRF magnitude was at its 

second peak 444.567±2.08 N.  The peak pressure reached the maximum at this phase, 

concentrating at a point on the big toe and second toe regions with a magnitude of 

568.99±1.001 kPa, the contact area of 30.97±0.60 cm² had 153.34±1.12 kPa, contact 

pressure included the big toe, second toe, third and fourth toes regions and part of the 

first three metatarsal regions as shown in Table 4.10. 
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Figure 4.10 shows a plot of the relative position of the significant COP excursions 

(HD, MS and PO) location and the corresponding kneecap position for the right 

barefoot trial. The point label “_F” and “_K” indicated the foot and KC position, 

respectively. Figure 4.10 shows that the MS_F was further away from the MFA. 

However, the KC was aligned with MFA closer to the right foot. Also, worth noting 

is that the KC trajectory started at a point ahead of the midfoot (MS_F). 

 

a 

 
b 

Figure 4.10: Correlation between the COP (b) trajectory and lower limb 

movement (a) during barefoot walking  
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Table 4.7: Correlation between the COP trajectory and lower limb movement 

during barefoot walking  
 

  Right barefoot   

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X, Y)   

Knee cap position 

(mm) 

32.7,179.5 27.1,180.2 22.6,181.1 - 

Cop position (mm) 45,162.8 37.5,178.5 27,177.3 27.4,177.4 

Knee offset (mm) - - - 9.8,149.7 

 

 

Wearing the custom-made AFO on the left limb affected with DDH increased the right 

foot’s ground reaction force significantly by a mean difference of 167.65 N at the 

initial contact portion of the gait, and the alignment of the GRF vector still appeared 

posterior to the knee axis. The custom–made orthosis allowed more contact area than 

that of the barefoot condition, and the patient initially stepped on the ground with a 

heel area of 29.16±0.71 cm², which maximized the contact pressure significantly by a 

mean difference of 44.286 kPa in comparison to that of barefoot. Moreover, the 

custom-made AFO increased peak pressure substantially by a mean difference of 72 

kPa compared to barefoot condition. The PP magnitude of 198 kPa was noted as the 

first peak was reached by the foot during the whole stance phase of gait. 

Additionally, the custom-made orthosis shifted the right foot centre of pressure 

laterally along the entire midstance portion of the gait spending 0.1 sec more than that 

of barefoot from the end of heel-strike to the midstance phase. At the initiation of the 

midstance portion, the contact area was less than that of barefoot by a mean difference 

of 15.46 cm² including the mid-foot region only. However, the contact pressure 
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increased significantly by a mean difference of 66.18 kPa, as well as the peak pressure, 

which reached its second peak magnitude of 280.76±3.73 kPa. It is worth noting that 

the ground reaction force had a similar finding to that of the barefoot condition during 

the MD phase.  It increased by a mean difference of 55.5 N. While the right foot pushed 

off the ground, the custom-made orthosis kept the COP trace laterally along with the 

entire phase over the fourth metatarsal region.  

Peak pressure and contact pressure reached their third and final peak magnitude of 

283±3.109 kPa and 134±4.06 kPa respectively, and PP concentrated at a point between 

the third metatarsal and second toe, which was significantly less than that of the 

barefoot by a mean difference of 285.99 kPa. The custom-made orthosis also reduced 

the contact area by a mean difference of 7.47 cm², including the upper part of the 

metatarsal regions and the lesser toes regions. The ground reaction force vector aligned 

vertically to the body more closely posteriorly to the knee axis, and GRF had a closer 

value to that of barefoot reaching its second peak, as shown in Table 4.10.  

Figure 4.11 shows a plot of the relative position of the significant COP excursion 

locations and the corresponding KC position for the custom-made orthosis trial. The 

wearing of the custom-made AFO improved the gait of the left limb by allowing the 

KC trajectory within the footprint on the ground, thus giving more body support. The 

orthosis also enhanced the right foot gait by shifting the COP at MS_F closer to the 

KC trajectory. The knee offset was computed after correlating the measurements for 

both COP and KC trajectory, as shown in Table 4.8 below.  
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Table 4.8: Correlation between the centre of pressure trajectory and lower limb 

movements during custom-made-orthosis trial 

 

Right Custom made AFO 

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X, Y)   

Knee cap position (mm) 40,178.1 33.8,178.9 29.4,179.6 - 

Cop position (mm) 55.3,173.1 44.8,176.1 37.7,176.3 37,176.3 

Knee offset (mm) - - - 9.3,145.7 

 

 

 
a 

 
b 

Figure 4.11: Correlation between the centre of pressure trajectory (b) and lower limb movements 

(a) during custom-made orthosis trial 
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The Leaf Spring AFO had an impact on the right foot’s COP and pressure distribution 

along with the whole stance phase of the gait cycle. At the initiation of the right foot 

striking the ground, the Leaf Spring AFO shifted the alignment of the ground reaction 

force vector anteriorly close to the knee joint axis, and the magnitude of the GRF 

decreased significantly by a mean difference of 128.8 N in comparison to the barefoot 

GRF value. It is worth noting that the GRF values of both orthoses had a similar 

approximate value and did not change significantly. Statistically, the peak pressure 

and contact pressure of the right foot while wearing the Leaf Spring AFO during the 

heel strike phase increased to 140±1.57 kPa and 92±0.65 kPa, and neither value was 

significantly changed. However, the results revealed a significant change in the contact 

area between barefoot and Leaf Spring AFO conditions. The orthosis increased the 

heel contact area to 35.89±0.38 cm² by a mean difference of 11.63 cm² (Table 4.10, 

Figure 4.13). 

The results pointed out increases in the contact pressure and peak pressure during the 

mid-stance phase of gait by a mean difference of 48.2 kPa and 124 kPa, respectively. 

The COP trace moved laterally along the entire midstance phase over the mid-foot 

region area of 29.56±1.26 cm², and the time spent to finish the phase was more than 

that of the barefoot by 0.1 sec.  Noticeably, the peak pressure started increasing 

gradually until reaching its maximum value of 371±2.08 kPa at the moment right foot 

pushed off the ground concentrated on the significant and second toes regions, which 

was less than that of the barefoot by a mean difference of 197.99 kPa. Also, the GRF 

had its second peak value 371±2.08 N during this phase, less than its barefoot 

magnitude by a mean difference of 197.99 N, as shown in Table 4.10. 
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Table 4.9: Correlation between the plantar centre of pressure trajectory and 

lower limb movements during walking while the patient is wearing the Leaf 

Spring AFO 
 

Right Leaf AFO spring Orthosis 

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X, Y)   

Knee cap position 

(mm) 

50.06,184 40.05,179.4 25.15,179.25 - 

Cop position (mm) 58.69,163.9 49.69,175.3 42.69,175.58 42.58,176.78 

Knee offset (mm) - - - 22.3,144.28 
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a 

 

b 

Figure 4.12: Correlation between the plantar centre of pressure trajectory 

(b) and lower limb movements (a) during walking while the patient is wearing 

the Leaf-AFO-Spring orthosis. 

Figure 4.12 showed a plot of the relative position of the major COP excursions (HD, 

MS, and PO) location and the corresponding kneecap position for the right foot while 

the patient was wearing the Leaf Spring AFO on the left foot. Wearing the Leaf Spring 

AFO also improved the gait of the right foot by decreasing the rotation in the foot 

throughout, shifting the COP trajectory close to the KC trajectory, thus giving more 

body support as well. However, the knee trajectory at the heel strike started at a point 

before the MS-RF. It is worth noting that both AFOs shifted the COP trajectory more 

laterally along the entire gait cycle for the right foot unaffected by DDH. There are 

many reasons behind the shifting of COP towards the lateral surface of the foot, and 

these will be discussed in the next chapter.  
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Figure 4-13: Ground reaction force along with the entire stance phase for DDH 

patient right foot under the three conditions; barefoot, custom-made, and Leaf 

Spring AFO 
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Figure 4.14: Peak pressure readings registered under the total foot during 

the whole stance phase of the gait under three conditions; barefoot, custom-

made, and Leaf Spring AFO 
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Table 4.10: Right foot characteristics during the main three phases of the gait; heel strike, midstance, and push off under three 

conditions of barefoot, custom-Made-Orthosis and Leaf-AFO Orthosis 
 

Right foot Parameters Barefoot Custom Leaf-Afo B Vs C B Vs L C Vs L 

M SD M SD M SD M M M 

Contact Area (m²) 24.26±1.10 29.16±0.71 35.89±0.38 4.9 11.63 6.73 

Contact Pressure(kpa) 83.5±0.95 127.786±1.24 92±0.65 44.286 8.5 35.786 

Contact Time (sec) 0.04±0.02 0.04±0.12 0.042±0.002 0.006 0.002 0.004 

Ground Reaction Force(Newton) 199.2±0.94 366.85±3.13 328±2.30 167.65 128.8 38.85 

Peak Pressure (kpa) 126±2 198±6.46 140±1.57 72 14 58 

Contact Area (cm²) 36.88±0.553 21.42±0.76 29.56±1.26 15.46 7.32 8.14 

Contact Pressure(kpa) 67.8±1.101 133.98±1.76 116±2.21 66.18 48.2 17.98 

Contact Time (sec) 0.32±1.3 0.4±0.02 0.42±0.02 0.08 0.1 0.02 

Ground reaction Force(Newton) 239.1±1.54 294.6±1.66 328.37±1.73 55.5 89.27 33.77 

Peak Pressure (kpa) 134±2.94 280.76±3.73 258±1.52 146.76 124 22.76 

Contact Area (cm²) 30.97±0.60 23.5±0.71 28.39±1.89 7.47 2.58 4.89 

Contact Pressure(kpa) 153.34±1.12 134±4.06 121±2.51 19.34 32.34 13 

Contact Time (sec) 0.65±0.01 0.66±0.02 0.74±0.02 0.01 0.09 0.08 

Ground Reaction Force(Newton) 472.4±1.14 314.67±2.54 342.99±1.50 157.73 129.41 28.32 

Peak Pressure (kpa) 568.99±1.001 283±3.109 371±2.08 285.99 197.99 88 

P
u
sh

 o
ff

 
M

id
st

an
ce

 
H

ee
l 



119

9 

 

 

 

4.4.2 Left foot characteristics 

 
The ground reaction force vector appeared in the same line with the knee joint axis at 

the heel strike, and the GRF magnitude was 198.1±2.35 N. The peak pressure was 

concentrated at the middle of 16.99±0.57 cm² heel area with a value of 483±2.78 kPa. 

Moreover, during the mid-stance phase, the knee joint axis advanced of GRF vector, 

the GRF value was 205.54±1.40 N. Noticeably, due to the drop foot, the patient had to 

put more pressure on the heel area, so the contact pressure and peak pressure values 

were 128±1.31kPa and 356±4.04 kPa respectively as shown in the table below. When 

the left foot pushed off the ground, the GRF vector was located posteriorly behind the 

whole body, and the force reached its second peak magnitude of 444.567±2.08 N. The 

patient had a larger contact area of 34.78±0.99 cm including the heel region and 

approximately half of the mid-foot region. The peak pressure was at its peak value of 

563±3.00 kPa, as shown in Table 4.14. 

The results of the left foot affected with severe DDH and severe drop showed different 

outcomes and revealed many changes in plantar pressure distribution magnitudes and 

COP trace while wearing the custom-made orthosis and Leaf Spring AFO. The COP 

trace of the left foot affected with DDH while the patient was barefoot, started 

occurring at a point on the edge of the heel area during the initial strike phase, and then 

the trace was depicted at a point at the centre of the heel region. Eventually, during the 

time the left foot pushed off the ground, the trace was shown at a point on the lateral 

part of the heel (lateral heel region). Figure 4.15 shows a plot of the relative position 

of the major COP excursions (HD, MS and PO) location and the corresponding 

kneecap position for the barefoot trial. The point label “_F” and “_K” indicate the foot 

and KC position respectively. The correlation of the COP trajectory and a point on the 
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knee joint KC trajectory showed that the KC trajectory was further away from the 

centre of pressure during the whole stance phase however, the MFA was close to MSF. 

The correlation method showed that the computed knee offset reading was higher than 

that of the right foot (25.4 in x-direction, 199.8 in Y-direction) as shown in Table 4.11, 

thus indicating a bigger distance travelled by the knee to complete a single sub-phase 

of gait as seen as in Figure 4.15 (below) between the HD-K and MS-K. 

 

a 

 

b 

Figure 4.15: Correlation between the COP trajectory (a) and lower limb 

movement (b) during barefoot walking for a patient with severe developmental 

dysplasia of the hip joint. 
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Table 4.11: Correlation between the COP trajectory and the lower limb 

movement during barefoot walking for a patient with severe developmental 

dysplasia of the hip joint. 
 

Left barefoot 

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X,Y)   

Knee cap position 

(mm) 
59.16,200.88 42.2,203 26.8,203.58 - 

Cop position (mm) 63.2,204.3 53.4,203.5 45.2,202.3 45.1,207.9 

Knee offset (mm) - - - 25.4,199.8 
 

 

 

 

Wearing the custom-made orthosis on the left foot affected with DDH changed the 

COP trajectory along the entire stance phase. The COP began occurring at a point on 

the medial heel during the initial strike phase, and the trace continued medially over 

the mid-foot region until the end of the mid-stance phase. At the initiation of the push 

off phase, the custom- made orthosis shifted the COP trace further medially towards 

the fourth metatarsal region. When the left foot struck the ground, the custom-made 

AFO increased the contact heel area by a mean difference of 8.11 cm². In contrast, the 

contact pressure and the peak pressure were significantly decreased by the custom-

made AFO. The results revealed decreases in both magnitudes in comparison to the 

barefoot condition by a mean difference of 31.02 kPa and 255 kPa, respectively. Figure 

4.16 shows a plot of the relative position of the significant COP excursions (HD, MS, 

and PO) location and the corresponding kneecap position for the left side affected with 

DDH while the patient is wearing the custom-made AFO. Integrating the COP and KC 
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trajectory (x, y) components showed that the custom-made AFO decreased the knee-

offset excursion in the x-direction to 9.3 cm, as shown in Table 4.12, thus bringing the 

KC trajectory at HD-k (heel-down) as close as possible to MS-K. Therefore, the 

distance travelled by the knee to complete a single sub-phase was less than that of the 

barefoot. It is worth noting that the MS-F to MFA distance was close to that of the 

healthy individual shown by the studies of Abbas and Chong (2018).  

Table 4.12: Correlation between the COP trajectory and lower limb movement 

for the left foot under custom-made-AFO condition walking for a patient with 

severe developmental dysplasia of the hip joint. 
 

Left custom-made-orthosis 

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X,Y)   

Knee cap position 

(mm) 
32.4,193 31.3,192.6 28.8,192.6 - 

Cop position (mm) 37.7,200.1 31.2,196.3 24.8,194.9 25.8,201.3 

Knee offset (mm) - - - 9.3,184 
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a 

 

b 

Figure 4.16: Integrating the COP (b) and KC trajectory (a) during walking 

while the patient is putting on the custom-made orthosis on the left foot. 

Furthermore, the vector of 214.5±2.02 N ground reaction force still appeared in the 

same line with the knee joint axis. The magnitude of this force during the heel down 

phase was statistically higher than that of the barefoot by a mean difference of 16.4 

N. It is worth noting that at the initiation of the left foot single limb support phase 

(mid-stance), the custom-made AFO maximized the contact area to 37.16±1.39 cm² 

including the heel and most of the mid-foot. However, the contact pressure and peak 

pressure values had no change compared to the barefoot case, and PP was at its peak 

during this phase at a point on the medial heel. A significant difference in the 

magnitude of the GRF was witnessed from the results during this phase reaching its 

second peak of 452.8±2.15 N. The results showed a significant reduction in the peak 
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pressure amount by a mean difference during the push off phase, and the pressure 

was concentrated on the medial part of the metatarsal region particularly on the fifth 

metatarsal. 

Finally, the results showed a significant reduction in the peak pressure amount by a 

mean difference during the push-off phase, and pressure was concentrated on the 

medial part of the metatarsal region, particularly on the fifth metatarsal. The GRF 

vector was aligned posteriorly close to the knee joint axis, and the GRF magnitude 

needed for foot clearance while wearing the custom-made AFO during this phase 

was lower than that required by the patient. At the same time, barefoot by mean 

difference was 247.26 N. The patient stepped off the ground using an area of 

33.87±0.75 cm², which included most of the five metatarsals regions and a small part 

of the mid-foot region. 

When the patient was wearing the Leaf Spring AFO, The COP trajectory began at a 

point ahead on the edge of the mid-foot region area, then started moving backward 

towards the heel area until the end of the mid-stance phase. Eventually, the COP 

moved forward again, completing the stance phase on the medial part of the mid-foot 

region. The GRF vector, in accordance with the knee joint position, was located in 

the same line parallel to the shank and anterior to the pelvis during the heel strike 

phase. Then the GRF vector shifted posteriorly to the knee joint axis at the single 

limb support (mid-stance phase). Later during the initiation of the left foot moment 

stepping off the ground, the knee axis was positioned anteriorly to the GRF vector. 

Figure 4.17 shows a plot of the relative position of the major COP excursions (HD, 

MS and PO) location and the corresponding kneecap position for the left side affected 

with DDH while the patient was wearing the Leaf Spring AFO on the left foot. 
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a 

 

b 

Figure 4.17: Integrating the COP (b) and KC trajectory (a) during walking 

while the patient is wearing the Leaf Spring AFO on the left foot  
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Table 4.13: Correlation between the COP trajectory and lower limb movement 

for the left foot under Leaf Spring AFO condition walking  
 

Left foot with Leaf-AFO spring 

Parameters Heel strike Mid stance Push –of 2nd metatarsal 

  (X,Y)   

Knee cap position 

(mm) 
59.16,200.88 42.2,203 26.8,203.58 - 

Cop position (mm) 63.2,204.3 53.4,203.5 45.2,202.3 45.1,207.9 

Knee offset (mm) - - -- 25.4,199.8 
 

 

 

 

The contact area was significantly different between the Leaf Spring AFO and the 

other two conditions, showing a mean difference of 19.66 and 11.55 cm². The area 

included the heel and the upper part of the fifth metatarsal region when the left foot 

stepped on the ground. Importantly, The Leaf Spring AFO reduced contact pressure 

by a mean difference of 20.32 kPa in comparison with the barefoot condition. The peak 

pressure was also significantly reduced by a mean difference of 223 kpa. However, the 

results pointed out an increase in the GRF magnitude by a mean difference of 169.22N. 

During the mid-stance phase, the contact area and the GRF had higher values than that 

of the barefoot, as shown in the table below. The Leaf Spring AFO reduced the peak 

pressure value to 253±3.05 kPa concentrated at a point on the medial heel region. The 

data show that there was no significant change during the time the left foot pushed off 

the ground except that peak pressure was at its second peak of 302±2 kPa at a point on 
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the surface of the medial heel (MH) region as shown in Figures 4.18 and 4.19 below 

and Table 4.14. 
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Figure 4.18 Shows the peak pressure readings registered under the total left foot 

during the whole stance phase of the gait under three conditions; barefoot, 

custom-made, and Leaf-AFO-orthosis. 
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Figure 4.18: Peak pressure readings registered under the total left foot during 

the whole stance phase of the gait under three conditions: barefoot, custom-

made orthosis, and Leaf Spring AFO  
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Table 4.14: Left foot characteristics during the main three phases of gait: heel strike, midstance, and push off under three conditions of 

barefoot, custom-made orthosis and Leaf Spring AFO 
 

Left foot Parameters Barefoot Custom Leaf-Afo B Vs C B Vs L C Vs L 

  M SD M SD M SD M M M 

 Contact Area (m²) 16.99±0.57 25.1±1.1 36.65±0.97 8.11 19.66 11.55 

 Contact Pressure(kpa) 120.32±1.53 89.3±1.05 100±2.06 31.02 20.32 10.7 

H
ee

l 

Contact Time (sec) 0.04±2.12 0.04±0.02 0.02±0.01 0 0.02 0.02 

 Force (Newton) 198.1±2.35 214.5±2.02 367.32±6.70 16.4 169.22 152.82 

 Peak Pressure (kpa) 483±2.78 228±2 260±3.05 255 223 32 

 Contact Area (m²) 16.23±0.92 37.16±1.39 33.29±1.25 20.93 17.06 3.87 

 Contact Pressure(kpa) 128±1.31 122±2.52 112±3.41 6 16 10 

M
id

st
an

ce
 

Contact Time (sec) 0.27±0.01 0.32±0.02 0.32±0.01 0.05 0.05 0 

Force (Newton) 205.54±1.40 452.8±2.15 371.6±2.91 247.26 166.06 81.2 

Peak Pressure (kpa) 356±4.04 355±2 253±3.05 1 103 102 

 Contact Area (m²) 34.78±0.99 33.87±0.75 35.3±1.15 20.93 0.52 1.43 

 Contact Pressure(kpa) 130.56±2.02 87±2.08 117±2.51 6 13.56 30 

 Contact Time (sec) 0.48±0.03 0.52±0.02 0.64±0.03 0.05 0.16 0.12 

P
u
sh

 o
ff

 

Force (Newton) 444.567±2.08 289.43±1.39 410.73±3.00 247.26 33.837 121.3 

Peak Pressure (kpa) 563±3.00 191±3.23 302±2 1 261 111 
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4.5 FOOT REGIONS CHARACTERISTICS 

 
4.5.1 Contact area 

 
For the left foot affected with developmental dysplasia of the hip, the results revealed 

significant changes in the contact areas for the thirteen regions selected in this study 

when wearing both the custom-made AFO and the Leaf Spring AFO.  The lateral heel 

region (LH) had the most significant contact area with the insoles while the patient 

was barefoot 16.05±0.40 cm ². This value was followed by the midfoot (MF) region 

13.46±0.34 cm², medial heel (MH) 12.94±0.32 cm² and then the fourth-fifth toes 

region (T45) 4.92±0.12 cm ².   No contact area was recorded for the metatarsal regions 

except for the metatarsal three (M3) 2.59±0.06 cm². The contact area gradually 

reduced from the big toe to the third toe regions.   The results recorded readings in the 

metatarsal regions when the patient had the custom-made AFO on the left foot. The 

maximum value was seen in the M1 region followed by M5.  However, the Leaf Spring 

AFO did not change the contact area values for the metatarsal regions except for a little 

contact area in the M4 region.  

Furthermore, the custom-made orthosis increased the contact area in the mid-foot 

region significantly by a mean difference of 8.8 cm². In contrast, the Leaf Spring AFO 

reduced the contact area by a mean difference of 7.56 cm². The hallux had a smaller 

contact area while wearing the AFOs in comparison to that of the barefoot condition. 

Regarding the total foot contact area, the barefoot condition had the bigger value 

significantly higher than the other two conditions as shown in Table 4.15 and Figure 

4.20.    
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Table 4.15: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of contact area (CA) for the 13 regions of the left foot with DDH 
 

CA   Left Foot   Mean difference between conditions 

Regions Custom Leaf  Barefoot B vs C B vs L L VS C 

 M SD M SD M SD M M M 

TF 44.43 1.38 39.06 0.25 56.45 1.42 12.02 17.39 -5.37 

MH 15.11 0.43 14.50 0.03 12.94 0.32 -2.17 -1.56 -0.61 

LH 14.34 1.22 8.89 0.16 16.05 0.40 1.71 7.16 -5.45 

MF 22.26 0.24 5.90 0.14 13.46 0.34 -8.80 7.56 -16.3633 

M1 10.50 0.95 0.00 0.00 0.00 0.00 -10.50 0.00 -10.5 

M2 3.66 0.23 0.00 0.00 0.00 0.00 -3.66 0.00 -3.65667 

M3 2.07 0.52 0.00 0.00 2.59 0.06 0.52 2.59 -2.07333 

M4 1.91 0.61 0.63 0.00 0.26 0.01 -1.65 -0.37 -1.27667 

M5 5.95 1.79 5.35 0.12 0.00 0.00 -5.95 -5.35 -0.6 

T1 0.33 0.21 1.60 0.12 3.62 0.09 3.29 2.02 1.266667 

T2 0.96 0.07 2.48 0.03 1.82 0.05 0.85 -0.66 1.513333 

T3 1.22 0.08 1.13 0.17 1.82 0.05 0.60 0.69 -0.09333 

T45 0.07 0.05 0.22 0.14 4.92 0.12 4.85 4.69 0.156667 

 

 

 

 
 
 

Figure 4.20: Mean, standard deviation (S.D.) and mean differences between 

each two conditions of contact area (CA) for the 13 regions of the left foot 

with DDH
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The right foot (unaffected with DDH) had different readings in comparison with the 

left foot for the contact area values across the 13 regions. The highest contact area 

values for the rearfoot and midfoot region were, in decreasing order starting with the 

midfoot region, 27.36±2.66 cm², lateral heel (LH) 13.89±0.22 cm² and medial heel 

(MH) 11.98±1.02 cm². Furthermore, the metatarsal regions were in increasing order, 

with the lowest value recorded in the first metatarsal (M1) 3.12±0.69 cm², and the 

highest value in the fifth metatarsal region (M5) 8.00±2.38 cm². Additionally, the big 

toe (hallux) had the highest reading of 5.97±1.89 cm², and then the other three lesser 

toes regions were in decreasing order.  The custom-made and Leaf Spring AFOs 

increased the contact area values significantly in both the lateral and medial heel 

regions of the right foot as shown in Table 4.16 and Figure 4.21. However, the midfoot 

region had a smaller reading than the barefoot while wearing the custom-made AFO 

by a mean difference of 4.19 cm².  

The first metatarsal region had the highest mark in both AFO conditions, recording 

readings of 6.21±2.85 cm² and 10.26±2.80 cm². This was followed by the fifth 

metatarsal (M5) region, fourth (M4), third (M3), then second metatarsal region (M2), 

as seen in the table. Noticeably, the increase in the heel contact areas while wearing 

the AFOs was accompanied by a significant decrease in the hallux reading.  
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Table 4.16: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of contact area (CA) for the 13 regions of the right foot  
 

CA Right Foot (Mean and SD)   Mean difference Between conditions 

Regions Custom Leaf  Barefoot  B vs C B vs L C vs L 

         

TF 42.18 1.45 48.34 0.13 55.46 3.16 13.28 7.13 6.16 

MH 15.90 0.53 17.70 0.72 11.98 1.02 -3.92 -5.72 1.79 

LH 16.15 0.50 16.42 1.09 13.89 0.22 -2.25 -2.52 0.27 

MF 23.17 0.43 28.47 0.13 27.36 2.66 4.19 -1.11 5.30 

M1 6.21 2.85 10.26 2.80 3.12 0.69 -3.10 -7.15 4.05 

M2 3.30 0.78 3.48 0.60 4.85 0.97 1.56 1.37 0.19 

M3 3.79 0.23 4.64 0.15 6.49 0.66 2.70 1.84 0.86 

M4 3.79 0.87 5.50 0.20 7.71 2.62 3.92 2.21 1.71 

M5 5.60 1.96 7.92 1.03 8.00 2.38 2.40 0.08 2.33 

T1 2.41 0.04 3.56 0.25 5.97 1.89 3.56 2.40 1.15 

T2 2.05 0.20 3.16 0.32 3.81 1.26 1.76 0.65 1.11 

T3 1.70 0.34 3.30 0.29 3.86 0.99 2.16 0.56 1.60 

T45 1.16 0.05 1.39 0.08 3.33 0.21 2.18 1.94 0.24 
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Figure 4.21: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of contact area (CA) for the 13 regions of the right foot  

 

4.5.2 PEAK PRESSURE 

 
The highest mean pressure for the left foot affected by DDH was found under the 

lateral heel region 778.59±19.53 kpa and medial heel region 728.42±18.27 kPa, 

followed by the pressure under the big toe 620.06±15.55 kpa, the second toe 

557.85±13.99 kPa, and then the small toes (T45) 523.74±13.14 kPa. The mean PP 

values are presented in Table 4.17. Standard deviation ranges for each region under 

the three conditions are shown in Figure 4.22.  

The custom-made AFO and Leaf Spring AFO reduced peak pressure significantly 

under the medial and lateral heel region by a mean difference of 291.75 kPa, and 

430.09 kPa) and 460.92 kPa , and 453.92kPa respectively. In contrast, higher PP values 

were recorded under the mid-foot area while wearing the AFOs. The results of the 

custom-made AFO condition showed the highest reading under the first metatarsal 

(M1) 200.33±26.03 kPa, followed by the fifth metatarsal (M5) 163.33±37.65 kPa, and 
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then the second Metatarsal (M2) 133.33±5.69 kPa.  

The average results of the three-recorded steps revealed that both AFOs had an impact 

on the toes region peak pressure values, pointing out a significant reduction under all 

the four toe regions, as shown in Table 4.17. Finally, the highest total foot peak 

pressure was recorded during the barefoot condition 819.72±20.56 kPa at a point on 

the heel area, followed by the custom-made AFO 436.67±51.08 kPa, and then the Leaf 

Spring AFO 328.00±13.86 kPa.  

 

Table 4.17 Mean, standard deviation (S.D.) and mean differences between each 

two conditions of peak pressure (PP)  for the 13 regions of the left foot with DDH  
 

PP Left Foot      mean the difference between 
conditions 

Regions Custom  Leaf  Barefoot  B vs C B vs L C vs L 

 M SD  M SD  M SD  M M M 

TF 436.67 51.08 328.00 13.86 819.72 20.56 383.06 491.72 
-294.33 

MH 436.67 51.08 298.33 8.08 728.42 18.27 291.75 430.09 
-170.33 

LH 317.67 76.00 324.67 19.63 778.59 19.53 460.92 453.92 
-385.00 

MF 178.67 4.73 139.33 16.74 43.14 1.08 -135.52 -96.19 
86.00 

M1 200.33 26.03 0.00 0.00 0.00 0.00 -200.33 0.00 
200.33 

M2 133.33 5.69 0.00 0.00 0.00 0.00 -133.33 0.00 
133.33 

M3 61.33 7.02 0.00 0.00 35.12 0.88 -26.22 35.12 
47.00 

M4 57.00 8.19 82.33 4.04 21.07 0.53 -35.93 -61.26 
-164.67 

M5 163.33 37.65 158.00 1.73 0.00 0.00 -163.33 -158.00 
-61.00 

T1 102.33 8.96 145.67 9.81 620.06 15.55 517.73 474.39 
-30.33 

T2 79.33 5.51 161.33 4.62 557.85 13.99 478.52 396.52 
-108.00 

T3 64.00 5.57 91.67 0.58 470.56 11.80 406.56 378.90 
-97.67 

T45 16.67 8.74 57.00 1.73 523.74 13.14 507.07 466.74 
-120.67 
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Figure 4.22: Mean, standard deviation (S.D.) and mean differences between each 

two conditions peak pressure (PP) for the 13 regions of the left foot with DDH 
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The results of the normal right foot revealed that the highest mean pressure was 

recorded under the second toe 636.33±75.05 kPa and first toe regions 588.00±83.88 

kPa, followed by the pressure under the fourth and fifth toes 461.67±98.64kpa, lateral 

heel (LH) 381.67±103.45 kPa, and then the medial heel region (MH) 350.00±74.99 

kPa. The mean PP values are provided in Table 4.18. Standard deviation ranges for 

each region under the three conditions are presented in Figure 4.23 and Table 4.18. 

The custom-made AFO had a massive impact on the toe regions’ readings; more than 

the effect recorded by the Leaf Spring AFO, decreasing the mean peak pressure 

significantly under all four regions (T1, T2, T3, and T45) as shown in the table and 

figure. Also, both AFOs reduced the mean PP under the medial and lateral heel regions 

by a mean difference of 104 kPa, and 113.33 kPa, and 173.67 kPa and 191 kPa 

respectively as shown in Table 4.18. In contrast, the results revealed an increase in the 

mean PP under the mid-foot region from both the custom-made and Leaf Spring AFOs 

by mean a difference of 133.33 kPa and 43.33 kPa.  

Additionally, the highest PP reading for the metatarsal regions was recorded under the 

fifth metatarsal (M5) while wearing the custom-made AFO and Leaf Spring AFO, 

showing a reading of 238.33±90.39 kPa and 262.67±70.44 kPa respectively. Finally, 

the highest total right foot peak pressure was recorded during the barefoot condition 

653.67±45.21 kPa, followed by the custom-made AFO 355.6743.10 kPa, and then the 

Leaf Spring AFO 372.67±31.75 kPa. 
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Table 4.18: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of peak pressure (PP) for the 13 regions of the right  foot  
 

PP Right Foot     Mean difference Between conditions 

Regions Custom  Leaf  Barefoot  B vs C B vs L B vs Insole 

          

TF 355.67 43.10 372.67 31.75 653.67 45.21 298.00 281.00 
17.00 

MH 246.00 9.64 176.33 23.09 350.00 74.99 104.00 173.67 
-69.67 

LH 268.33 13.58 190.67 30.60 381.67 103.45 113.33 191.00 
-77.67 

MF 355.67 43.10 265.67 1.15 222.33 51.94 -133.33 -43.33 
-90.00 

M1 176.33 97.37 151.33 34.06 101.67 47.50 -74.67 -49.67 
-25.00 

M2 184.00 41.07 113.00 3.46 234.33 80.28 50.33 121.33 
-71.00 

M3 188.00 31.19 106.00 0.00 260.67 91.68 72.67 154.67 
-82.00 

M4 144.00 14.00 134.00 25.98 115.33 39.80 -28.67 -18.67 
-10.00 

M5 238.33 90.39 262.67 70.44 176.00 79.57 -62.33 -86.67 
24.33 

T1 246.67 28.92 242.67 2.89 588.00 83.88 341.33 345.33 
-4.00 

T2 176.00 25.24 233.33 9.24 636.33 75.05 460.33 403.00 
57.33 

T3 184.33 50.14 340.00 3.46 325.00 63.91 140.67 -15.00 
155.67 

T45 187.00 5.29 356.00 53.69 461.67 98.64 274.67 105.67 
169.00 
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Figure 4.23: Mean, standard deviation (S.D.) and mean differences between each 

two-conditions peak pressure (PP) for the 13 regions of the right foot 

 

4.5.3 Pressure time integral (PTI) 

 
The highest-pressure time integral values for the left barefoot condition were, in 

decreasing order, in the regions of the lateral heel (LH) 115.92±2.91 kPa.sec, medial 

heel (MH) 101.66±2.55 kPa.sec, first toe (T1) 73.79±1.85 kPa.sec, fourth and fifth 

toes (T45) 49.90±1.25 kPa.sec and second toe (T2) 42.94±1.08 kpa.sec.  The mean of 

these values was in the range of 0.43 kPa.sec (M3) – 115.92 kPa.sec (LH), as shown 

in Table 4.19 below. The standard deviation scales for each region under the three 

conditions are presented in Figure 4.24.  

The custom-made and Leaf Spring AFOs reduced the medial and lateral heel values 

significantly recording medial heel values of 83.87±0.80 kPa.sec and 80.87±1.33 

kPa.sec and lateral heel values of 41.67±1.80 kPa.sec and 59.33±0.29 kPa.sec, 

respectively. However, there was a massive increase in the mid-foot region reading by 
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a mean difference of 19.19 kPa.sec and 23.59 kPa.sec resulted from the wearing of 

both orthoses, respectively. The solid custom-made AFO showed readings in the left 

foot metatarsal regions in decreasing order, first metatarsal (M1) 19.70±2.69 kPa.sec, 

second metatarsal (M2) 15.27 ±2.48 kPa.sec, and then fifth metatarsal (M5) 

14.63±3.15 kPa.sec. 

Finally, the total foot pressure-time integral reduced by the AFOs to 65.50±3.08 

kPa.sec and 61.97±0.29 kPa.sec, respectively. Furthermore, the highest PT1 was 

recorded under the big toe and the second toe regions when the patient wearing the 

AFO, while the lowest value was found under the fourth and fifth toe (T45) 0.63±0.50 

kPa.sec and 9.23±1.62 kPa.sec respectively 

 

Table 4.19: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of the pressure-time integral (PTI) for the 13 regions of the left 

foot 
 

PTI Left Foot (Mean and SD)   mean difference between conditions 

Regions Custom  Leaf  Barefoot  B vs C B vs L B vs L 

 M SD  M SD  M SD  M M M 

TF 65.50 3.08 61.97 0.29 106.15 2.66 40.65 44.19 16.55 

MH 83.87 0.80 80.87 1.33 101.66 2.55 17.79 20.79 -5.01 

LH 41.67 1.80 59.33 0.29 115.92 2.91 74.25 56.58 35.75 

MF 35.10 2.26 39.50 2.25 15.91 0.40 -19.19 -23.59 -7.75 

M1 19.70 2.69 0.00 0.00 0.00 0.00 -19.70 0.00 0.00 

M2 15.27 2.48 0.00 0.00 0.00 0.00 -15.27 0.00 0.00 

M3 7.97 1.34 0.00 0.00 4.28 0.11 -3.68 4.28 3.08 

M4 8.33 3.21 26.07 1.15 0.43 0.01 -7.90 -25.64 -52.84 

M5 14.63 3.15 38.00 0.35 0.00 0.00 -14.63 -38.00 -52.93 

T1 39.97 2.04 49.27 0.81 73.79 1.85 33.82 24.52 34.42 

T2 25.20 0.98 50.10 0.35 42.94 1.08 17.74 -7.16 4.98 

T3 25.17 3.97 30.03 0.92 38.23 0.96 13.06 8.19 1.23 

T45 0.63 0.50 9.23 1.62 49.90 1.25 49.26 40.66 12.33 
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Figure 4.24: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of pressure time integral for the 13 regions of the left  foot 

 

 
The right barefoot mean pressure-time integral values were consistent under the three 

regions of lateral heel (LH) 34.40±7.92 kPa.sec, medial heel (MH) 33.67±8.85 

kPa.sec, and the mid-foot region 33.33±4.08 kPa.sec. Furthermore, the results of the 

five metatarsal regions showed close values of approximately 40 kPa.sec PTI except 

for the first metatarsal, which had the lowest value of 19.83±14.55 kPa.sec. The 

highest PTI reading was under the (T45) 85.87±9.96 kPa.sec, followed by the reading 

under the second toe (T2) 76.23±10.28 kPa.sec, then the PTI under the hallux (T1) 

62.83±13.89 kPa.sec. 

The custom-made AFO significantly increased the PTI reading under the regions of 

MH, LH and MD by a mean difference 5.3, 12.5, and 47.7 kpa.sec. However, the Leaf 

Spring AFO reduced the magnitudes under the MH and LH regions by a mean 

difference of 5.27 kPa.sec, and 3.13 kPa.sec. It is worth noting that the total foot PTI 

increased significantly while the patient was walking with the custom-made AFO, and 

the results revealed an increase in the PTI readings by a mean difference of 23.13 
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kPa.sec. The average results of the three-recorded steps are presented in Table 4.20 

below, and the standard deviation ranges for each region under the three conditions are 

shown in Figure 4.25 

 

Table 4.20: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of the pressure time integral (PTI) for the 13 regions of the right 

foot 
 

PTI Right Foot (Mean and SD)    Mean difference Between conditions 

Regions Custom  Leaf  Barefoot  B vs C B vs L B vs Insole 

          

TF 117.20 8.75 88.70 4.33 94.07 9.27 -23.13 5.37 -2.70 

MH 38.97 4.93 28.40 3.38 33.67 8.85 -5.30 5.27 -9.17 

LH 46.90 2.25 31.27 3.06 34.40 7.92 -12.50 3.13 -9.00 

MF 81.07 8.25 62.13 0.58 33.33 4.08 -47.73 -28.80 -25.83 

M1 30.20 9.72 19.73 0.81 19.83 14.55 -10.37 0.10 -10.87 

M2 35.10 5.40 22.90 1.91 42.80 12.84 7.70 19.90 12.03 

M3 42.10 3.64 27.13 1.44 42.47 8.51 0.37 15.33 9.33 

M4 71.10 18.96 41.73 5.60 35.43 11.14 -35.67 -6.30 -8.90 

M5 92.90 25.55 72.63 7.16 42.67 16.71 -50.23 -29.97 -23.17 

T1 49.87 4.77 50.00 5.20 62.83 13.89 12.97 12.83 9.93 

T2 39.30 5.47 50.93 1.50 76.23 10.28 36.93 25.30 30.37 

T3 60.17 34.42 77.70 6.75 51.83 7.89 -8.33 -25.87 6.93 

T45 88.07 33.85 88.60 0.17 85.87 9.96 -2.20 -2.73 23.63 
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Figure 4.25: Mean, standard deviation (S.D.) and mean differences between each 

two conditions of pressure time integral (PTI) for the 13 regions of the right  foot 
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CHAPTER 5 DISCUSSIONS 

 
5.1 AN OVERVIEW 

 
This study investigated the following main points: 

 

1- The ankle joint kinematics and kinetics including dorsi- plantarflexion angles, 

the dorsi-plantarflexion moments, and ankle power generated during walking 

in the sagittal plane. 

2- The knee and hip joint kinematics and kinetics including knee and hip joints 

extension-flexion angles, moment and power during walking in the sagittal 

plane under the four known conditions barefoot, custom-made orthosis, Leaf 

Spring AFO, and shoes only 

3- The plantar pressure characteristics during main phases of the gait; heel strike, 

midstance, and push off phase including the right and left foot contact area, 

contact pressure, peak pressure, and ground reaction force results for the three 

conditions; barefoot, custom-made-orthosis, and Leaf Spring AFO along with 

the entire stance phase of the gait. 

5.2 KINEMATICS AND KINETICS 

 
As previously explained, the patient has severe DDH and a stiff hyper-flexed knee, 

and has worn two types of ankle-foot orthoses for the past ten years to accommodate 

his daily life activities. This study can be considered as a new attempt to assess the gait 

of patients with untreated DDH as well as investigating the effect of the ankle-foot 

orthosis on gait kinematics and kinetics. Several studies have indicated that 

pathological individuals with untreated DDH differ to healthy people on such gait 

parameters; likely correlating to the pain, leg-length discrepancy (LLD), hip OA and 
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initial pathologic changes (Hurwitz et al. 1997; Eitzen et al. 2012; Meyer et al. 2015).  

To our knowledge, the hip joint motion identified clinically by the path of thigh 

displacement from the vertical, is considered the more clinically appropriate way to 

define joint motion. In the sagittal plane, describing the hip motion is affected by the 

displacement of both the femur and pelvis. As explained in the results from 

observation, the hip joint moved through two arcs of motion during the normal walking 

of a patient with DDH. The results of our studies represented greater and lesser degrees 

of flexion values, 20° to 120°, for the right limb unaffected by DDH, and from 10° to 

75° for the left limb affected by DDH. However, the normal hip motion for healthy 

individuals reported in the literature ranges from -10° to 48° degrees considering the 

maximum hip flexion for normal adults ranges from 40° to 48° degrees during the 

swing phase of gait (Burnfield 2010). Therefore, the results of this study show that the 

excessive hyperflexion of the right knee is accompanied by extreme hyper-flexion hip 

angle while the patient is barefoot. As far as we know, the pathological deficiencies of 

severe hip dysplasia may highlight differences over the whole gait cycle when the 

patient is barefoot in comparison to that of moderate hip dislocation subjects and 

normal healthy subjects. Generally, the hip muscles produce a flexor moment of 1.06 

Nm/kg during the late stance phase, which controls excessive extension of the hip 

(Burnfield 2010).  

In our case, both the right hip and left hip affected by DDH produced an extensor 

moment of 0.5 Nm/kg during the push off  portion of gait, which is half the peak value 

generated by healthy subject data stated in the literature (Burnfield 2010). The reason 

behind the reduction of the hip extensor moment during the late stance is that, in 

patients with severe DDH, the insufficient cover of the femoral head reduces the load-

bearing surface in the hip joint. Therefore, the dislocated joint experiences more pain 
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when it is loaded (Chang et al. 2011). Our results indicated that both custom-made and 

Leaf Spring AFOs significantly reduce the left abnormal hip joint flexor moment 

during the pre-swing phase of gait. This reduction of the hip flexor moment while 

wearing the orthoses can be interpreted as an attempt to unload the hip joint and 

thereby lessen the pain as supported by the studies of Endo et al. (2003) and Hayashi 

et al. (2017). It seems likely that the patient with severe DDH has less propulsion of 

the abnormal limb, including less power generated due to the pathological change in 

the hip joint structure. It is worth noting that wearing both orthoses contributed to the 

forward progression of the hip by significantly increasing the amount of power 

generation in the second half of the stance phase in the left abnormal hip with DDH. 

The studies of Murray, Gore and Clarkson (1971) on walking patterns of patients with 

unilateral hip due to osteoarthritis support our current investigation. They pointed out 

that that the limited extension and the excessive flexion of the diseased hip during the 

stance phase, which was witnessed in many patients during walking, was an attempt 

to avoid the painful manoeuvre by reducing the load on the femoral head. In addition, 

the investigations of Romano et al. (1996b) on the gait cycle of 21 adults with residue 

congenital dysplasia of the hip, support our case as they reported that the range of 

extension of the affected hip in all patients was drastically reduced. Thus, our study 

indicated that both orthoses have made a positive effect on the hip kinetics of the gait 

cycle, especially in the second half of the stance phase by generating more power than 

that of barefoot condition and decreasing the amount of flexor moment to reduce the 

pain associated with loading during walking. 

The other objective of this study was to prospectively study and evaluate the effect of 

using two types of AFO on kinematics and kinetics of the ankle and knee joins during 

walking in the sagittal plane for a patient with severe dysplasia of the left hip. Both 
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orthoses showed significant changes during walking in the sagittal plane, indicating 

gait improvements in some phases. It is worth noting that, at the terminal stance, the 

custom–made orthosis and “off-the- shelf” orthosis reduced the abnormal ankle 

dorsiflexion motion for the left limb with DDH. Some studies support our current 

research and have shown that the ankle dorsiflexion during the late stance phase is 

between 8°–11.9° for patients with cerebral palsy, which is considerably closer than 

expected to healthy individuals (Carlson et al. 1997; Radtka et al. 1997; Rethlefsen et 

al. 1999). Therefore, our results show more improvements in the gait during the period 

between the push-off to toes off for the left abnormal foot affected by DDH while 

wearing both orthoses in comparison with the barefoot condition. Even though the 

Leaf Spring orthosis has the advantage of allowing a greater dorsi-flexion angle to 

occur during the midstance and terminal stance phases as the tibia transitions over the 

foot, the custom-made orthosis showed better maximum dorsiflexion results and was 

considerably closer to the healthy standard data observed in Radtka, Skinner and 

Johanson (2005)  due to the polypropylene deformation that occurs even with the rigid 

custom-made orthosis. However, the maximum ankle dorsiflexion for the right 

unaffected limb increased significantly while using the custom-made orthosis and the 

Leaf Spring orthosis during the late stance in comparison to that of the barefoot 

condition. According to the studies of Burnfield et al (2010), the increase in the 

maximum dorsi angle reflected an improvement in gait over the excessive dorsiflexion 

while the patient is barefoot. The results showed similar values to the group of healthy 

persons. The positive increase in the right dorsiflexion angle might have occurred  due 

to the enhancement in body stability  while wearing the orthosis which allows the 

gastrocnemius muscle action to stabilize the dorsiflexion angle and also provide early 

heel arise (Burnfield 2010).  
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The corresponding ankle joint kinetics during the loading response phase while 

barefoot showed excessive ankle moments with extreme power generated. These 

findings indicate that the excessive dorsi-flexor eccentric contraction is occurring 

because the left affected limb with DDH excessively dorsiflexes during the weight-

bearing portion of the gait. The abnormal ankle moments decreased with both orthoses 

during the LD however, the power absorption decreases excessively when wearing the 

custom-made orthosis. Few studies showed closer findings while using solid custom-

made orthosis, but there is a lack of results regarding the  Leaf Spring AFOs. In 

addition, the corresponding ankle joint kinetics while the patient is barefoot, showed a 

reduction in the abnormal left foot peak plantar flexor moment during the terminal 

stance phase of gait accompanying an excessive reduction in the power generated 

during the pre-swing portion of the late stance phase (Carlson et al. 1997). The custom-

made orthosis produced larger peak ankle plantar flexor moments during the terminal 

stance as well as increasing power generation during the PSW portion of gait. 

However, the  Leaf Spring orthosis did not decrease the power generated during the 

same phase. Moreover, the right limb unaffected by DDH generated more power 

during the pre-swing phase of gait while using the custom-made and Leaf Spring 

AFOs. These orthoses shifted the power generated value close to that of normal healthy 

subjects’ values observed in the studies of Burnfield (2010). The findings of higher 

power generated for the abnormal left foot values with the solid AFO in comparison 

to that of the barefoot indicate that even the rigid material of the custom-made orthosis 

allows greater plantar flexor concentric contraction for push-off during the pre-swing 

phase, and is supported by the studies of Rethlefsen et al. (1999).  

The corresponding knee joint kinematics and kinetics for the right limb not affected 

by DDH during walking in the sagittal plane while the patient is barefoot, showed an 
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excessive hyperflexion angle along the entire gait cycle. The results of our studies 

represented greater and lesser degrees of flexion values in the full range of 70° to 125° 

respectively. However, the normal knee motion for healthy individuals during walking 

in the sagittal plane had a full range of 0° to 60° as represented in the study of Burnfield 

(2010). At the instance of initial right heel contact with the floor while barefoot, the 

knee appears excessively flexed and the alignment of the body vector posterior to the 

knee axis causes less stable weight bearing with less power generated, resulting in 

exceptional flexor moment that modulates the rapid knee flexion. At the initiation of 

the mid-stance phase, the right knee flexion moment while barefoot had a flexion of 

almost 90°, a small amount of power generation, thus leading to lower the body 

towards the ground as the reference limb is shorter (the left limb affected by DDH), 

limiting the forward progression of the limb for the pre-swing phase providing less 

stable weight-bearing. The right showed a continuation of the progressive excessive 

flexion and reached the maximum value at the terminal stance, compromising weight-

bearing stability. The studies of Rethlefsen et al. (1999) support our results, indicating 

that the abnormal knee motions of the crouch gait of cerebral palsy patients was not 

changed by the solid custom-made orthosis that was designed either specifically for 

each individual or the Hinged AFO. According to Rethlefsen et al. (1999), clinicians 

were concerned about the possibility of knee motion improvements over the 

pathological gait because the use of AFOs was not substantiated.  

 

5.3 PLANTAR PRESSURE CHARACTERISTICS 

 
The other objective of this research was to examine the effect of wearing two types of 

an ankle-foot orthosis (Leaf Spring AFO and custom-made AFO) on the plantar 

pressure characteristics of specific foot regions during walking for a patient with 
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severe developmental dysplasia of the left hip joint. We also examined the centre of 

pressure trajectory and its relationship to the lower limb movement during the whole 

gait cycle. To show the pressure trends under each anatomical region specified in this 

research, plantar peak pressure PP, pressure-time-integral PT, ground reaction force 

GRF, and contact areas CA values were measured under three conditions: barefoot, 

custom-made orthosis, and Leaf Spring AFO.  

The patient was asked to walk at normal speed during the experiments. The data 

revealed that specific regions of both feet responded differently to changes in walking 

conditions. The new intention of this research was to point out the differences in 

plantar pressure readings at specific phases of gait using the mid-gait protocol. The 

observed pressure response may be related to the specific functions of each anatomic 

region specified in this study, taking into consideration the foot type, the effect of hip 

dislocation on plantar pressure readings, and the design of the AFOs.  

The corresponding plantar pressure distribution results for the right foot unaffected by 

DDH showed that both orthoses had an impact on contact area, peak pressure, contact 

pressure, and pressure-time integral readings along the entire stance phase. During the 

heel strike phase, the custom-made orthosis had a greater contact area than the barefoot 

condition recording a value of 29.16±0.71 cm². Moreover, the contact area while 

wearing the Leaf Spring AFO increased to 35.89±0.38 cm², which is higher than the 

barefoot heel contact area by a mean difference of 11.63 cm². Noticeably, the custom-

made and Leaf Spring AFOs increased the contact area values significantly in both the 

lateral and medial heel regions of the right foot. Despite the increase in contact area 

values over the heel area, the custom-made orthosis kept showing a high value of 

contact pressure in contrast to the Leaf Spring AFO, which had larger area with less 

pressure distributed. Therefore, the risk of injury to the right heel risk could be 
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minimized by wearing the Leaf Spring AFO on the left side.   

The corresponding results showed that, at the initiation of the midstance portion, the 

contact area was less than that of the barefoot by a mean difference of 15.46 cm², and 

included the mid-foot region only while wearing the custom-made orthosis. However, 

contact pressure increased significantly by a mean difference of 66.18 kPa, and peak 

pressure reached its second peak magnitude of 280.76±3.73 kPa. While wearing the 

Leaf Spring AFO, the results showed increases in contact pressure and peak pressure 

during the mid-stance phase of gait by a mean difference of 48.2 kPa and 124 kPa, 

respectively. The COP trace moved laterally along the entire midstance phase over the 

mid-foot region area of 29.56±1.26 cm², and the time spent to finish the phase was 

more than that of the barefoot by 0.1 sec. These increases in pressure readings over a 

smaller contact area of the mid-foot during the mid-stance phase can be interpreted in 

two ways. First, enhancing body balance and avoiding falling by putting more pressure 

under the right foot when the whole weight passes through it. Second, this could be a 

disadvantage as most of the pressure was recorded under the mid-foot area only, 

leading to increased mid-foot pain while loading and preparing for the progression of 

the limb. Thus, wearing high arch customized shoes can lead to a redistribution of the 

pressure under the heel and forefoot areas, including the first and fifth metatarsal 

regions, and can enhance foot comfort, as well as provide more shock absorption.   

During the push-off the ground phase of the gait cycle, peak pressure and contact 

pressure reached their third and final peak magnitude of 283±3.109 kPa and 134±4.06 

respectively, and the PP concentrated at a point between the third metatarsal and 

second toe which was significantly less than that of the barefoot by a mean difference 

of 285.99 kPa. The custom-made orthosis decreased the contact area by a mean 

difference of 7.47 cm², including the upper part of metatarsal regions and the lesser 
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toes regions. Similarly, while wearing the Leaf Spring AFO, peak pressure started 

increasing gradually until reaching its maximum value of 371±2.08 kPa during the 

moment right foot pushed off the ground, concentrated on the significant and second 

toes regions, which was less than that of the barefoot by a mean difference of 198 kPa. 

The reduction in PP readings while wearing both AFOs was followed by a decrease in 

PT1 readings mainly under the big toe and the lessor toes regions and second, third, 

fourth, and fifth metatarsal regions, thus minimizing the pain in the forefoot and hallux 

regions during toe clearance, leading to a reduction in the risk of a hallux valgus injury. 

This finding is in line with another study that showed that decreasing the second peak 

pressure magnitude could minimize the risk of injury for an individual with painful 

pes cavus feet while wearing custom-made-foot orthosis (Najafi et al. 2012). 

The results of the left foot affected with severe DDH and severe drop showed different 

outcomes. They revealed many changes in the plantar pressure distribution magnitudes 

and COP trace while wearing the custom-made orthosis and Leaf Spring AFO. When 

the left foot struck the ground, the peak pressure was concentrated at the middle of 

16.99±0.57 cm² heel area with a value of 483±2.78 kPa. Noticeably, due to drop foot, 

the patient had to put more pressure on the heel area while barefoot, and the contact 

pressure and peak pressure values were 128±1.31kpa and 356±4.04 kPa. Moreover, 

when the left foot pushed off the ground the patient had a greater contact area of 

34.78±0.99 cm, including the heel region and approximately half of the mid-foot 

region. Peak pressure was at its highest value of 563±3.00 kpa. Also, there was no 

contact area recorded for the metatarsal regions except for the third metatarsal (M3) 

2.59±0.06 cm² while the patient was barefoot, indicating no pressure registering under 

the mentioned regions.  

In conclusion, the patient had a severe drop left foot, and that explains why there were 
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no pressure readings under the metatarsal heads with the highest-pressure readings 

under the toes and the lateral heel. The centre of pressure was entirely under the lateral 

heel region along the entire stance phase, giving an indication that the forefoot area in 

the metatarsal regions can be considered as the most vulnerable part of the foot in our 

patient’s case. The inclination of pressure towards the lateral heel and big toe can be 

related to the inadequate movement of the left limb due to the severe degree of 

dislocation of the left hip. In addition, these highest PP readings could be related to 

the anatomical structure of the foot, supported by the studies of De Doncker and 

Kowalski (1976). Noticeably, the smaller contact area readings recorded while 

walking barefoot were accepted due to the associated deformities of the left limb, 

supported by the studies of Franco (1987), Benedetti et al. (1997) and Williams III et 

al. (2001) who showed that the smaller contact area readings were structurally 

accepted due to the shape and characteristics of the feet. The research outcome of 

Sneyers et al. (1995) was in line with our current work. They reported that a greater 

area of contact between the foot and the ground during the initial strike phase could 

provide better distribution of the foot pressure under all specified regions. They also 

reported that the poorer distribution of the foot pressure under the mid-foot area was 

implied by decreasing the area of contact (Sneyers et al. 1995).  

The corresponding results showed that the highest values of the pressure-time integral 

for the left foot barefoot condition were registered under the lateral heel (LH) 

115.92±2.91 kpa.sec, medial heel (MH) 101.66±2.55 kpa.sec, first toe (T1) 

73.79±1.85 kpa.sec, fourth and fifth toes (T4, 5) 49.90±1.25 kpa.sec and second toe 

(T2) 42.94±1.08 kpa.sec. The mid-foot area and the five metatarsal regions had smaller 

recorded values of pressure-time integral along the whole stance phase of the gait. 

These highest PT1 readings resulted from the peak pressure under the heel regions and 
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big toe, and lessor toes regions. Therefore, such an increase in the PT1 under the hallux 

could be due to the lack of loading under the mid-foot area because of the lower limb 

weaknesses and the associated drop foot deformity. Burns et al. (2005) and 

Rosenbaum et al. (1994) found that the PT1 readings were higher in the pes cavus of 

neurological aetiology subject compared to the healthy normal individuals. Such 

findings are in line with the current investigation. Thus, the highest value pf PTI and 

PP for a small contact area in the big toe can increase the possibility of hallux valgus 

incidence, which was supported by Putti et al. (2007).  

The current work evaluated the influence of both AFOs on the redistribution of the 

pressure beneath the specified foot regions. The obtained results show that both 

orthotic devices had a positive effect on the peak pressure and pressure-time integral 

registered under the left foot during walking. When the left foot strikes the ground, the 

custom-made AFO increased the contact heel area by a mean difference of 8.11 cm². 

In contrast, contact pressure and peak pressure were drastically decreased by using the 

custom-made AFO. The results reveal decreases in both magnitudes in comparison 

with the barefoot condition by a mean difference of 31.02 kPa and 255 kPa, 

respectively. The results show a significant reduction in the peak pressure amount 

during the push-off phase. The pressure was concentrated on the medial part of the 

metatarsal regions, particularly on the fifth metatarsal. Also, the patient stepped off 

the ground using an area of 33.87±0.75 cm², which included most of the five metatarsal 

regions and a small part of the mid-foot region. Similarly, the Leaf Spring AFO 

increased the area of contact and decreased the PT1 and PP along the entire stance 

phase. The contact area, while wearing the Leaf Spring AFO, included the heel and 

the upper part of the fifth metatarsal region at the time the left foot stepped on the 

ground. 
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The improvement in pressure distribution beneath the left foot affected with DDH 

when wearing the custom-made AFOs can be attributed to a few factors. First, the 

COP trace during the initial strike was at a point on the medial-heel, and the trace was 

shifted medially towards the mid-foot and the five metatarsal regions during the late 

stance phase of the gait cycle. Therefore, readjusting the floor over the ground, giving 

the metatarsal region more time in contact with the floor and decreasing the risk of 

highest pressure under the toes. Second, the change of foot posture and its position 

inside the shoes while wearing the orthosis could enhance ankle joint ability when 

responding to such repetitive forces and stresses, and this is supported by Kwan, Zheng 

and Cheing (2010). It is worth noting that the associated decrease in forefoot peak 

pressure areas can be associated with a reduction in dorsiflexion angles during walking 

in the sagittal plane as previously explained in the kinematics and kinetics part of this 

current work, and which was mentioned and supported by the studies of Mueller et al. 

(1989) and Morag and Cavanagh (1999).  

Importantly, the decrease in the pressure magnitude beneath the specified left foot 

regions while wearing the rigid custom-made orthosis could be due to the decrease in 

walking speed along the entire gait cycle. This is in line with the study of Burnfield et 

al. (2004), who examined the influence of walking velocity and footwear condition on 

plantar pressure variables in healthy older adults. The authors indicated that the higher-

pressure magnitude in older adults resulted from faster barefoot walking due to the 

increase in peak force. Moreover, the results showed significant higher-pressure values 

under the heel, medial and central MTs, and toes just by increasing the walking speed 

from 57 m/min to 80 m/min. In addition, further significant pressure increases under 

the heel and hallux regions resulted from walking under the maximum speed of 97 

m/min. These results were consistent with the findings of other studies documented in 



154  

young adults (Nilsson & Thorstensson 1989). The speed-pressure relationship 

documented by the reviews of Rosenbaum et al. (1994) on young adult individuals 

showed similar findings to the studies of Burnfield et al. (2004). The authors pointed 

out higher pressure readings registered under the heel, medial and central metatarsals, 

and the hallux just by increasing barefoot walking speed of the young adults (mean 

age 27) from 48 to 102 m/min. These results were also consistent with Hughes et al. 

(1991) who found an increase in the pressure readings under the same foot regions 

reported previously for ten young adults (mean age of 21 years) by increasing the 

barefoot walking speed. Thus, the findings of the current study are essential to 

understanding the behaviour of the foot effected with DDH and the effect could be 

made by different types of ankle foot orthoses on the planter pressure readings beneath 

the foot during walking. The current work is also important for understanding the risk 

ulceration, amputation and multiple foot injuries associated with inadequate 

distribution of pressure during the main phases of gait from heel strike to late stance.  

In general, a normal gait phase produced a COP trace from heel-strike to push-off for 

both feet. However, the scoliotic subject’s gait phase produced three uniquely different 

COP trace configurations, depending on the type of AFO (custom-molded or Leaf 

AFO ) or its absence (no-orthosis). Based on the alignment of these COP traces, the 

custom molded orthosis delivered continuous trace for both feet from heel-strike to 

push off and showed the closest COP displacement pattern to a normal healthy subject 

and the right foot gait phase. Thus, it appears that this orthosis provided sufficient 

stability for both feet from heel-strike to push-off. 

The barefoot gait of the scoliotic subject showed the largest contact area in the left foot 

for the trial, but the shortest contact time. It appears that flattening of the plantar soft 

tissues resulted in a greater area of contact with the mat, particularly at the heel-strike, 
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while the rigid orthoses reduced the area of contact but improved the ability of the foot 

to support more body weight during gait. Observing the physical movement of the 

lower-limb and feet of the patient during the trials gave an impression that the left foot 

gait phase took longer however, the registered time was similar for these trials. 

Therefore, the loading of the dislocated hip was equivalent to the healthy hip thus, 

wearing orthoses did not alter the loading of each limb. As the loading distributed over 

the smaller surface area for the orthoses, the hard shell custom molded variety could 

be more beneficial than the soft-shell type.  

Ankle-foot movement should be at its greatest during the barefoot gait as there was no 

orthosis to restrict any moments. Considering the size of displacement of COP trace, 

contact time and contact area of the trial, the left knee must have provided the majority 

of the rotational movement of the foot. Therefore, it is argued that the left ankle has 

limited movement in all three axes, as depicted by the COP trace at the heel in the 

barefoot trial. Thus, the design of the custom molded orthosis has encouraged more 

knee movements and provided better stability for the deformed left ankle and left foot. 
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CHAPTER 6: CONCLUSIONS 

 
This thesis presents the first investigation into the effects of multiple types of AFOs 

on the gait characteristics of a patient with untreated DDH. It addresses a significant 

gap in the body of research studying the kinematics and kinetics of lower limb joints 

during walking in the sagittal plane for a DDH patient with and without orthoses. The 

work provides evidence that ankle-foot orthoses can produce specific biomechanical 

improvements in terms of  range of motion, moments, and power generated by the 

lower limb joints during walking in the sagittal plane.  

Although the gait cycle of the presented patient is unique, this investigation could be 

a useful resource for future investigations regarding people with severe hip dislocation. 

The application of the Oxford Leardini lower limb model to create a specific model 

for a patient with severe hip dislocation can be considered to be an innovative 

approach. This new approach can be used widely in research and clinical environments 

to obtain accurate data for ankle, knee and hip kinematics and kinetics, as well as 

measuring AFO suitability for specific cases. The current work concluded that both 

AFOs had a positive impact on hip joint kinetics by reducing the left abnormal hip 

joint flexor moment during the late stance phase of the gait, thus contributing to the 

reduction of pain associated with loading the hip during the late stance. Moreover, the 

current investigation proved that wearing AFOs increases the amount of generated 

power in the left hip joint during the second half of the stance phase, thus contributing 

to forward progression of the left hip.  

The research concluded that the more appropriate of the two orthoses for the 

enhancement of ankle joint kinematics and kinetics for this patient is the rigid custom-
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made AFO. Despite the higher cost of the custom-made AFO in comparison with the 

Leaf Spring AFO, the customised AFO produced better maximum dorsiflexion results, 

considerably closer to the data of healthy individuals observed in the literature. This 

result is due to the polypropylene deformation that occurs even with the rigid custom-

made orthosis. The off-the-shelf Leaf Spring AFO allowed a smaller dorsiflexion angle 

during the midstance and terminal stance phases. Therefore, wearing the custom-made 

AFO contributed to better body stability giving the gastrocnemius muscle the ability 

to stabilise the dorsiflexion angle and provide early heel rise.  

It should also be noted that a higher peak plantar flexor moment was produced during 

the terminal stance phase of gait, and higher power was generated during the pre-swing 

phase while wearing the custom-made-orthosis in comparison to the Leaf Spring 

orthosis. Thus, overall, both orthoses improved the same phases of gait. Still, wearing 

the custom-made orthosis on the left foot affected with DDH was the better option for 

the patient.  

The research also aimed to determine the suitability of the custom-molded orthosis 

over The Leaf Spring AFO orthoses for an adult scoliotics subject who has left hip 

dislocation and severe scoliosis complications by studying the plantar pressure 

distribution beneath both feet. Plantar pressure during the gait phase were captured for 

three scenarios: barefoot, wearing custom-molded orthosis and wearing the Leaf 

Spring AFO orthosis. Four elements, COP trace displacement, contact time, contact 

area and orthoses design, were examined using the captured data. The evaluation 

showed that the custom-molded orthosis produced the best outcomes for all measures. 

Leaf Spring AFO orthoses permitted increased knee-joint movements and provided 

additional gait stability for the deformed left foot.  The custom-made orthoses 

improved the gait of the left limb by allowing the KC trajectory within the footprint 



158  

on the ground, thus giving more body support. The orthoses also improved the right 

foot gait by shifting the COP at MS_F closer to the KC trajectory.   

The 3D multi-stereo photogrammetric technique captured the high-accuracy positional 

change of the lower limbs and feet during normal gait speed. Multi-stereo limb/foot 

movement was valuable in the interpretation of knee joint activity and this unique 

feature enhanced the understanding of AFO performance. The developed correlation 

techniques permitted the development of new gait analysis methods to study the limb 

and plantar data in the case of a specific patient with severe DDH.  
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