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Abstract

In cloud computing, there have led to an increase in the dliyaio store and record personal data
(microdata) in the cloud. In most cases, data providers have no/litletrol that has led to concern
that the personal data may be beached. Microaggregatibnitpes seek to protect microdata in such
a way that data can be published and mined without providimg fivate information that can be
linked to specific individuals. An optimal microaggregatimethod must minimize the information loss
resulting from this replacement process. The challengevs to minimize the information loss during
the microaggregation process. This paper presents agdrdimework for Statistical Disclosure Control
(SDC) to protect microdata in cloud computing. It considtbam stages. In the first stage, an algorithm
sorts all records in a data set in a particular way to enswedbring microaggregation very dissimilar
observations are never entered into the same cluster. Iisebend stage a microaggregation method
is used to creaté-anonymous clusters while minimizing the information lo¥ke performance of the
proposed techniques is compared against the most recemaggregation methods. Experimental results
using benchmark datasets show that the proposed algorjlenfigrm significantly better than existing

associate techniques in the literature.
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. INTRODUCTION

In recent years, the phenomenal technological develommnernhformation technology have led to an
increase in the capability to store and record personal (@aitzrodata) of individuals in the cloud. This
has led to concerns that the personal data may be misused/éoiety of purposes. In order to alleviate
these concerns, a number of techniques have been receapipged in cloud computing in order to
perform data mining tasks that are privacy-preserving.stiie microdata protection in cloud computing
has seen rapid advances in recent years and led to increaseeres about privacy. Existing laws and
regulations require that the dissemination of microdafarination needs to avoid the propagation of
confidential information. In other words, microdata sholbédpublished in such a way that preserves the
privacy of individuals. Due to this reason privacy and amity have been intensively studied in recent
years in various fields [2]| [3][[4]134]/_[35].I36]._[37]38], [39], [40]. Microaggregation for Statistical
Disclosure Control (SDC) is a family of methods to protectradata from individual identification.
SDC seeks to protect microdata in such a way that can be pelliand mined without providing any
private information that can be linked to specific indivitkua hus, the microdata protection in SDC can
be addressed from the viewpoint of privacy preserving indloomputing.

To protect personal data from individual identification,GB often applied before the data are released
for analysis [[5], [[30]. The purpose of microdata SDC is teemlhe original microdata in such a way
that the statistical analysis from the original data and rtiadified data are similar and the disclosure
risk of identification is low([5]. As SDC requires suppressior altering the original data, the quality of
data and analysis results can be damaged. Hence, SDC metlisti§ind a balance between data utility
and personal confidentiality.

Various methods for Microaggregation have been proposdtdriiterature for protecting microdata
[el, [71, [10], [11], [16], [17], [25], |2€]. The basic ideafomicroaggregation is to partition a dataset
into mutually exclusive groups of at leastrecords prior to publication, and then to publish the ceadtro
over each group instead of individual records. The regyliinonymized dataset satisfiegsanonymity
[14], [15], [23], requiring each record in a dataset to benttmal to at least X — 1) other records
in the same dataset. As releasing microdata about indiliduases privacy threat due to the privacy-
related attributes, called quasi-identifiers, bletAnonymity and microaggregation only consider the quasi-
identifiers. Microaggregation is traditionally restridt¢o numeric attributes in order to calculate the

centroid of records, but also has been extended to handigaratal and ordinal attributes! [7], [11], [24].
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In this paper we propose a microaggregated method thattiscted to numeric values.

The effectiveness of a microaggregation method is meadoyechlculating its information loss. A
lower information loss implies that the anonymized datésédss distorted from an original dataset, and
thus provides better data quality for analysis. The SDCamsecommunity still relies on k- anonymity
[22], [23] as in the context of SDC, it provides sufficient fgction of personal confidentiality of
microdata, while ensuring the quality of an anonymized sitaBecause of anonymization, an effective
microaggregation method should incur as little informatioss as possible. In order to be useful in
practice, the dataset should keep as much informative asibp@sHence, it is necessary to seriously
consider the tradeoff between privacy and information .|d%s minimize the information loss due to
microaggregation, all records are partitioned into sdwgn@ups such that each group contains at léast
similar records, and then the records in each group areaeglhy their corresponding mean such that
the values of each variable are the same. Such similar graxgp&nown as clusters. In the context of
data mining, clustering is a useful technique that partfioecords into groups such that records within
a group are similar to each other, while records in diffegnatups are more distinct from one another.
Thus, microaggregation can be seen as a clustering probldmcanstraints on the size of the clusters.

Many microaggregation methods derive from traditionaktéting algorithms. For example, Domingo-
Ferrer and Mateo-Sanz|[6] proposed univariate and muiliteak-Ward algorithms that extend the
agglomerative hierarchical clustering method of Ward et[28]. Domingo-Ferrer and Torra |[9], [10]
proposed a microaggregation method based on the fipzgans algorithim [1], and Laszlo and Mukherjee
[18] extended the standard minimum spanning tree pariitgpalgorithm for microaggregation [31]. All
of these microaggregation methods build all clusters galyglbbut simultaneously. There are some other
methods for microaggregation that have been proposed ihitéhnature that build one/two cluster(s) at a
time. Notable examples include Maximum Distance| [20], Daten-based Fixed-Size microaggregation
and centroid-based Fixed-size microaggregation [18], iMam Distance to Average Vector (MDAV)
[11], MHM [12] and the Two Fixed Reference Points method [32bst recently, Linet al. [33] proposed
a density-based microaggregation method that forms cBibte the descending order of their densities,
and then fine-tunes these clusters in reverse order. Themire®rk is done mainly in the context of
SDC microaggregation following norms within computer scie community.

The reminder of this paper is organized as follows. We inicadthe problem of microaggregation
in SectionIl. Sectio 1l introduces the basic concept oEmaggregation. Sectian 1V reviews previous
microaggregation methods. We propose a new sorting framkgiwomicroaggregation methods, explained

with two different sorting algorithms in Sectigd V. Sect@fishows experimental results of the proposed
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methods. Finally, concluding remarks are included in sa¢tl

Il. PROBLEM STATEMENT

The algorithms for microaggregation works by partitionmgrodata into groups, where within groups
the records are homogeneous but between groups the recertistarogeneous so that information loss
is low. Similar groups are also called clusters. The leveprfacy required is controlled by a security
parameterk, the minimum number of records in a cluster. In essence, #ranpeterk specifies the
maximum acceptable disclosure risk. Once a value:fbas been selected by the data protector, the only
job left is to maximize data utility. Maximizing utility cabe achieved by microaggregating optimally,
i.e. with minimum within-groups variability loss. So the mahallenge in microaggregation is how to
minimize the information loss during a clustering proceSishough plenty of work has been done, to
maximize the data utility by forming clusters, this is not gafficient in terms of information loss. So
more research needs to be done to form the clusters sucthéhatformation loss is as low as possible.
This paper analyses the problem with sorting framework# shat the information loss is minimal.

Observing this challenge, this work presents a sortingddsamework for microaggregation. The
proposed framework consists of two stages. In the first stagsorting algorithm sorts the data in a
particular way so that records in the two extreme end of theéeddlist are dissimilar based on the
sorting technique. In the second stage two distant clustersnade simultaneously in a systematic way
using the first and last records of the sorted dataset. Fofistestage, two sorting algorithms have
been proposed: the first based on multi-dimensional sqréind the second based on distance from the
centroid (explained in Sectidnl V). In the second stage, eyise systematic microaggregation algorithm
forms a cluster with the first record and its € 1) nearest records and another cluster with the last
record and its — 1) nearest records. Next, it sorts the remaining recofds-Qk), if dataset contains
records) by using the same sorting algorithm and recussiwlds pair-clusters simultaneously by using
the first and the last record as seeds. Thus all clusters peddn this way contaitt records except the
last cluster that may contain at md&t — 1) records. Performance of the proposed methods is compared
against the most recent widely used microaggregation nmdsthbhe experimental results show that the

proposed microaggregation methods outperform the recetftads in the literature.

I[1l. BACKGROUND

Microdata protection through microaggregation has beéengively studied in recent years. Many
technigues and methods have been proposed to deal withrdhifem. In this section we describe some

fundamental concepts of microaggregation.
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When we microaggregate data we should keep in mind two gdats: utility and preserving privacy
of individuals. In order to preserve the data utility, we glibintroduce as little noise as possible into the
data and private data should be sufficiently modified in suefaw that it is difficult for an adversary to
re-identify the corresponding individuals. Figlide 1 shamsexample of microaggregated data where the
individuals in each cluster are replaced by the correspmndiuster mean. The figure shows that after
aggregating the chosen elements, it is impossible to disisin them, so that the probability of linking
any respondent is inversely proportional to the number gfeggated elements.

Micro-aggregated Data

46

Original Data Aggregating for k=4
45
2
42
31
51

5

Fig. 1. Example of Microaggregation using mean

Consider a microdata sét with p numeric attributes and records, where each record is represented
as a vector in g@-dimensional space. For a given positive integex n, a microaggregation method
partitionsT into g clusters, where each cluster contains at léastcords (to satisfyc-anonymity), and
then replaces the records in each cluster with the centrottieocluster. Letn; denote the number of
records in theth cluster, andr;;, 1 < j < n;, denote thejth record in theith cluster. Thenyp; > & for
i=1tog, and}_?_, n; = n. The centroid of theth cluster, denoted by; is calculated as the average
vector of all the records in thé&h cluster.

In the same way, the centroid @f, denoted byz, is the average vector of all the recordsh
Information loss is used to quantify the amount of informatiof a dataset that is lost after applying
a microaggregation method. In this paper we use the most condefinition of information loss by
Domingo-Ferrer and Mateo-SarizZ [6] as follows:

_ SSE
-~ SST

where SSFE is the within-cluster squared error, calculated by sumniivegy Euclidean distance of each

IL (1)
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recordz;; to the average valug; as follows:
g n;
SSE =" (wi; — %) (wi; — %) 2
i=1 j=1
and SST is the sum of squared error within the entire dataSetalculated by summing the Euclidean
distance of each record;; to the average valug as follows:
g n;
SST =" (zij — ) (zi; — %) 3)
i=1 j=1
For a given dataséef, SST is fixed regardless of hoW' is partitioned. On the other hand, the SSE
varies among different partitions of a dataset. In esse®8&, measures the similarity of the records in a
cluster. The lower the SSE, the higher the within-clustanbgeneity and the higher the SSE, the lower
the within-cluster homogeneity. If all records in a cluséee the same, then the SSE is zero indicating
no information is lost. On the other hand, if all the recomsaicluster are more diverse, SSE is large
indicating more information loss. In this paper, we used @SE measure of similarity. Therefore, the

microaggregation problem can be enumerated as a consoatintization problem as follows:

Definition 1 (Microaggregation problem) Given a dataset’ of n elements and a positive integer

find a partitioningG = {G1, G, ..., G4} of T' such that

1) GinGj =, foralli#j=1,2,..,p,
2) UG =T,

3) SSE is minimized,

4) forall G; €T, | G; |> k for anyG; € G.

The microaggregation problem stated above can be solvedlym@mial time for a univariate dataset
[17] but has been shown to be NP hard for multivariate dafd€3t It is a natural expectation th&tSFE
is low if the number of clusters is large. Thus the number obrds in each cluster should be kept close
to k. Domingo-Ferrer and Mateo-Sariz [6] showed that no cludteulsl contain more thafi2k — 1)

records since such clusters can always be partitioned thefureduce information loss.

IV. PREVIOUS MICROAGGREGATIONMETHODS

Previous microaggregation methods have been roughly etividto two categories, namely fixed-size
and data-oriented microaggregation [6], [[12]. For fixexesinicroaggregation, the partition is done by

dividing a dataset into clusters that have skzeexcept perhaps one cluster which has a size between
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k and (2k — 1), depending on the total number of recordsand the anonymity parametér For the
data-oriented microaggregation, the partition is done llywing all clusters with sizes betweénand
(2k — 1). Intuitively, fixed-size methods reduce the search spaed,thus are more computationally
efficient than data-oriented methods|[33]. However, daianted methods can adapt to different values
of k£ and various data distributions and thus may achieve lowerrmation loss than fixed-size methods.

Domingo-Ferrer and Mateo-Sanz [6] proposed a multivafiatsl-size microaggregation method, later
called the Maximum Distance (MD) methdd [20]. The MD methegdeatedly locates the two records that
are most distant to each other, and forms two clusters wilfr tespectivgk — 1) nearest records until
fewer than2k records remain. If at leagt records remain, it then forms a new cluster with all remajnin
records. Finally when there are fewer thlamecords not assigned to any cluster yet, this algorithm then
individually assigns these records to their closest ctasfEhis method has a time complexity 6fn?)
although it can easily fixed to have a runtime @fn?). This method works well for some datasets as
when the dataset is large, microaggregation is normallybdoed with blocking; the most usual way is
to block by one of the attributes whose semantics is apptgpfor blocking. Laszlo and Mukherjee [18]
modified the last step of the MD method such that each ren@irgnord is added to its own nearest
cluster and proposed Diameter-based Fixed-size micreggtion. This method is however not a fixed
size method because it allows more than one cluster to have thank records.

The MDAV method is the most widely used microaggregationhodt[11]. MDAV is the same as
MD except in the first step. MDAV finds the recordthat is furthest from the current centroid of the
dataset and the recordthat is furthest fromr instead of finding the two records that are most distant
to each other, as is done in MD. Then form a cluster witAnd its ¢ — 1) nearest records and form
another cluster witls and its & — 1) nearest records. For the remaining records, repeat thteps until
fewer than2k records remain. If betweeh and (2k — 1) records remain, MDAV simply forms a new
group with all of the remaining records. On the other handhé& number of the remaining records is
below k, it adds all of the remaining records to their nearest chidtesters. So MDAV is a fixed size
method. Linet al. [33] proposed a modified MDAV, called MDAV-1. The MDAV-1 ismilar to MDAV
except when the number of the remaining records is betweand (2k — 1), a new cluster is formed
with the record that is the furthest from the centroid of teenaining records, and it% ( 1) nearest
records. Any remaining records are then added to their ofispenearest cluster/clusters. Experimental
results indicate that MDAV-1 incurs slightly less infornmat loss than MDAV [[33]. Another variant of
the MDAV method, called MDAV-generic, is proposed by Solafal], where by the thresholgk is

altered to3k. If between2k and(3k — 1) records remain, then find the recardhat is furthest from the
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centroid of the remaining records and form a cluster witand its & — 1) nearest records and another
cluster with the remaining records. Finally when fewer tBamecords remain, this algorithm then forms
a new cluster with all the remaining records.

Laszlo and Mukherjee [18] proposed another method, callettrGid-based Fixed-size microaggrega-
tion that is also based on a centroid but builds only one etusiiring each iteration. This algorithm first
find a recordr that is furthest from the current centroid of the datasetthed find a cluster withr and
its (k — 1) nearest records. For the remaining records repeat the gaoess until fewer thah records
remain. Finally add each remaining record to its nearestets. This method is not a fixed-size method
as more than one cluster has more tliarecords. Solanaet al. [21] proposed a variable-size variant
of MDAV, called V-MDAV. V-MDAV first builds a new cluster ofk records and then tries to extend this
to up to @k — 1)records based on some criteria. V-MDAV adopts a user-defjpsrameter to control
the threshold of adding more records to a cluster. Chatray. [32] proposed the Two Fixed Reference
Points (TFRP) method to accelerate the clustering procegsamonymization. During the first phase,
TFRP selects two extreme points calculated from the dathsetV,,;, and N,,., be the minimum and
maximum values over all attributes in the datasets, remedgtthen one reference poiit; has N,uin
as its value for all attributes, and another reference pGinhasN,,., as its value for all attributes. A
cluster ofk records is then formed with the recordhat is the furthest front7; and the § — 1) nearest
records tor. Similarly another cluster ok records is formed with the recordthat is the furthest from
G- and ¢ — 1) nearest records te. These two steps are repeated until fewer tharecords remain.
Finally, these remaining records are assigned to theiresfe nearest clusters. This method is quite
efficient asG; and G4 are fixed throughout the iterations. When all clusters areegeed, TFRP applies
a enhancement step to determine whether the records ofterciimuld be retained or decomposed and
added to other clusters.

Lin et al. [33] proposed a density-based algorithm (DBA) for micraaggtion. The DBA has two dif-
ferent scenarios. The first state of DBA (DBA-1) repeatedijds a new cluster using theneighborhood
of the record with the highegt-density among all records that are not yet assigned to arsterl until
fewer thank unassigned records remain. These remaining records ameafisigned to their respective
nearest clusters. The DBA-1 partitions the dataset intoesolasters, where each cluster contains no
fewer thank records. The second state of DBA (DBA-2) attempts to finextal clusters by checking
whether to decompose a cluster and merge its content widr obhsters. Notably, all clusters are checked
during the DBA-2 by the reverse of the order that they weresddd clusters in the DBA-1. After several

clusters are removed and their records are added to theiestezlusters in the DBA-2, some clusters
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may contain more tha(@k — 1) records. At the end of the DBA-2, the MDAV-1 algorithm is ajepl to
each cluster with size abovei(— 1) to reduce the information loss. This state is finally caldOAV-2.
Experimental results show that the DBA attains a reasorinignance over the latest microaggregation
methods.

All of the microaggregation methods described above regiathoose one/ two records according to
various heuristics and form one/two cluster(s) with thesgmrecords and their respective 1) other
records. However there are other microaggregation mettwatsbuild all clusters simultaneously and
work by initially forming multiple clusters of records in @éhform of trees, where each tree represent a
cluster. The multivariaté-Ward algorithm|[[6] first finds the two records that are fudtheom each other
in the dataset and build two clusters from these two recondstlaeir respectivek{— 1) nearest records.
Each of the remaining record then forms its own cluster. &hedgsters are repeatedly merged until all
clusters have at leagt records. Finally the algorithm is recursively applied taclealuster containing
2k or more records. Domingo-Ferrer al. [13] proposed a multivariate microaggregation methodechll
u-Approx. This method first builds a forest and then decomgpdise trees in the forest such that all trees
have sizes betweenand maxgk — 1,3k — 5). Finally, for any tree with size greater tha2k(— 1), find
the node in the tree that is furthest from the centroid of tee.tForm a cluster with this node and its
(k — 1) nearest records in the tree and form another cluster wélréimaining records in the tree.

Hansen an Mukherjee [17] proposed a microaggregation rdefimounivariate datasets called HM.
After that Domingo-Ferreet al. [12] proposed a multivariate version of the HM method, chldHM.
This method first uses various heuristics, such as nearestpext (NPN), maximum distance (MD) or
MDAV to order the multivariate records. Steps similar to tH® method are then applied to generate
clusters based on this ordering. Domingo-Fegteal. [10] proposed a microaggregation method based
on fuzzy c-means algorithm (FCM)_[1]. This method repeatedly runs FOMdjust the two parameters
of FCM (one is the number of clustetsand another is the exponent for the partition matrix until
each cluster contains at ledstecords. The value af is initially large (andm is small) and is gradually
reduced (increased) during the repeated FCM runs to redhgceize of each cluster. The same process

is then recursively applied to those clusters withor more records.

V. THE PROPOSEDAPPROACH

This section presents sorting algorithms and a pairwisesyatic technique for microaggregation that
attempts to minimize the information loss and satisfieskfaonymity requirement.

Figure[2 shows an example of our proposed microaggregatiding framework. The raw/unsorted
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data is first normalized and then sorting functions are agpid sort them. Then a P-S microaggregation
technique is applied to the sorting data in order to protedividual identification. It has been observed
that the reason of existing techniques have high informatiss is due to some clusters containing
very different records which increase the information loss of a clustewéi@r, a random initial choice
of cluster elements may lead to a sub-optimal microaggimydof dissimilar records) in the same
cluster, resulting in higher Information Loss. The prombsechniques solve this problem by creating
initial clusters in such a way so that the records in clusterveery dissimilar to the records in another
cluster. This can be achieved by applying sorting techricaied choosing extreme elements as part
of two different clusters. This process is explained in tbkofving sections (Section_ViB and Section
V-C). Next, a pairwise systematic method takes this soreds®t to create two clusters repeatedly by
minimizing information loss and observirkganonymity. The algorithm is described in Section V-D. The
comparative results of the two techniques against exigéngniques in the literature is given in Section
\YdJ
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A. Normalization of data

To avoid attribute bias, data should be normalized befopdyag microagggregation methods. In this

paper, the following normalization formulae is used in oreadjust values measured on different scales

to a notionally common scale:

X - Xmm

X = S - omin
Xmaac - Xmm

(4)

This unity-based normalization carried out in order to rail values into the range [0,1].

B. Multi-Dimensional Sorting Technique

Before describing the sorting technique, first, consideinagpke example. Consider Tablé | which
consists of two variable$; and V5. Rank (R)/Index arranges each of the variables in asceratitey
individually and creates a table where the columns indictite valueposition in the original data (Table
). For example, the first rank (3) of column 1 in Table IIA indtes the position of smallest value of the
first variable (1) in TablélI. Similarly, the second (4) anddh(2) ranks indicate the positions of second
smallest (2) and third lowest (3) values respectively. Téeoad column is also created in the same way.
Now sum the positions of each rank. For example, in Table #Bkrl comes from the positions &
row of first column andt** row of second column, rank 2 comes from the positions of thisd of first
column and fifth row of second column and so on, i1¢€9),2(8),3(4),4(3),5(6), where first number is
the rank and the number in bracket is the sum of respectiviliggus The last column is the rank of the
sum-values in bracket of the previous column. For exami, i4 ranked 1, since 3 is the smallest sum
in 9,8,4,3,6. Thus according to this sorting algorithm, the first recardhie sorted table (see Taldl€ )
should be thet*” row, the second record should be third row of original tabl@able] and so on. The

sorted table is presented in Tablg Ill. The algorithm of gwosting technique is presented in Table 1.

TABLE Il

A.RANK OF SORTED VALUESB.SUM OF RANKS AND FINAL POSITIONS

Ri | R Rank Sum | R
3 4 1(5+4)=1(9) | 5
4 | 5 2(3+5)=2(8) | 4
2 3 3(1+3)=3(4)| 2
5 | 1 4(2+1)=4(3)| 1
1 2 5(4+2)=5(6) | 3
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TABLE Il

SORTED VARIABLES

Vi | Va
2 1
1 3
4
3|10
5 6

input : T is a p-dimensional matrix with rows of instances

output: C is a p-dimensional matrix] X is index of the sorted matrix

11 [D,Indexy|=Sor{(T);

1.2 for m+ 1 to p do

13 for j < 1tondo

1.4 Create an index arrayA such that the value at Indekj, m| = j representd’(j)'s

position/index in the sorted arralyA[j, m]

1.5 end

1.6 end

1.7 [D, I1X] = Sort(sum{ A,2)) %Create an index arralX such that it contains the sum of sorted
value of A

18 C =T(IX,:) % This rearranges the input matrix according to IX.
Algorithm 1. Multi-Dimensional Sorting Algorithm

According to the next phase algorithm in Table 2, it is expddhat the first record and the last record

are distant from each other, so that the first record and gtedaord are not included in the same cluster.

C. Mean-based Sorting Technique

The mean-based sorting technique simply defines a way tolagdcthe distance between a point and
the centroid of the dataset, and sorts these points basddsodistance. Consider a microdata $etvith
p numeric attributes, namely;, Y>, ..., Y, andn records. Thus each record is represented as a vector in
a p-dimensional space. To sort all the records with respecheéonumeric attributes, we define thith

sorted record in the datasgétas follows:
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TABLE IV
MEAN-SORTING TECHNIQUE
(7 Y2 > (yis — 9i) R
5 6 3.6 4
3 10 5.6 5
1 -3.4 2
2 -4.4 1
4 -1.4 3
P
SF; = (yy— %), Jj=12.,n (5)
i—1

where,y;; is the jth record of theith attribute andj; is the centroid of théth attribute. The SF stated
above measures the distance between the records and theispmnding centroid. In this study, the SF
is arranged in ascending order indicating records that emnged in order of magnitude. The lower
the values of SF, the more the records are below their ragpemntroid and the higher the values of
SF, the more the records are above their respective cenfrhigs the records in the datasgt sorted
in ascending order based on the SF and the first and the lasdreare most distant among all other
records in the datasét.

To illustrate the Meansort algorithm, consider Tablé IV ihigh the columns represent the two data
variablesy; andys, their SF values (calculated using Equatidn 5), and theingnkf the SF values.
Therefore, according to the example in Tablgé IV row 2 (5.6} aow 4 (-4.4) are the two farthest
instances hence they occupy the top and bottom positionalite[[M which represents the sorted data.
As mentioned earlier, this sorted table is used by the netinigue (P-S algorithm) to systematically

create two clusters at a time that minimizes the informaliss and satisfie-anonymity.

D. Pairwise-Systematic (P-S) microaggregation algorithm

Based on the information loss measure in Equafidn (1), thenggprocess in Algorithri]1, the sorting
function in Equation[(5), and the definition of the microaggation problem, the Pairwise-Systematic
(P-S) microaggregation algorithm are as follows:

According to this method, first sorts all recordsofin the datasefl” in ascending order using the
Algorithm[1 and Equatiofl5. Thus in the sorting dataset, tfst fecord and the last record are the most

distant to each other among all other pair records in theséafa The algorithm (see Algorithrl 2)
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TABLE V

SORTED VARIABLES

w o b~ PN
N

10

input : a datasef” of n records and a positive integér
output: a partitioningG = G1, Ga, ...,G4 of T, whereg = |G| andG; > k for i =1 to
g.

21 LetG = &, andT' =T;

2.2 Sort all records inl” in ascending order using Algorithid 1 and Equatfidn 5;

2.3 Find the firstf € T and the last record e T";

2.4 Form a clusteiz; containing first recordf and its(k — 1) nearest records that causes
less SSE inl”; and another clustefs containing last record and its(k — 1) nearest
records that causes less SSETih

25 SetG = GU{Gy,Gq} andT =T — Gy — Go;

2.6 Repeat steps 2.2-2.4 unfil’| < 3k;

27 if 2k < |T'| < (3k — 1) then

2.8 Go to step 2.2

2.9 Form a cluster containing the first recofde 7" and its(k — 1) nearest records that

causes less SSE i’

2.10 Form another cluster with remaining recordsTih

211 | else if T’ < 2k then

2.12 Form a new cluster with all the remaining records7ih

2.13 end

2.14 end

Algorithm 2: P-S Microaggregation Algorithm
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repeatedly builds pair clusters using the first record amdlaist record in the sorting dataset and their
correspondindgk — 1) nearest records until fewer th@k records remain (see steps 2.2-2.6 of Algorithm
[Z). The nearest records in a cluster are chosen in such a \&ayhth inclusion of these records causes
less SSE than the other records in the dataset. If bet@gesnd (35 — 1) records remain, then sort
these records in ascending order by using the same sortmggs in Algorithniil, and sorting function
in Equation’b and then find the first recofd Form a cluster withf and its ¢ — 1) nearest records that
causes less SSE, and another cluster with the remainingdee(see step 2.7 of Algorithid 2). Moreover,
if fewer than2k records remain, then form a new cluster with all remainingprds (see step 2.9 of
Algorithm [2).

The proposed algorithm stated above endeavours to refpedtaittl two clusters simultaneously in
a systematic way. As the records in the datéSedre arranged in ascending order and the first record
and the last record are most distant to each other, buildiugjars in this systematic way, the algorithm
easily captures if there are any extreme values in the dafBise algorithm is similar to MDAV-generic
but the selection process of two most distant points arerdifft, as well as how clusters are built based
SSE.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results and compaaesults with several existing techniques.
The objective of this experiment is to investigate the difeness of the proposed algorithms in terms
of measured information loss of represented cluster ddta.fdllowing three datasets [12], which have
been used as benchmarks in previous studies to evaluapeisamicroaggregation methods, were adopted

in the experiments.

1) The “Tarragona” dataset contains 834 records with 13 migadeattributes.
2) The “Census” dataset contains 1,080 records with 13 nigalattributes.
3) The “EIA” dataset contains 4,092 records with 11 numetticbautes (plus two additional categorical
attributes not used here).
To accurately evaluate our approach, the performance giritygosed algorithms (MultiDSort+PS and
Meansort+PS) are compared in this section with variousaaggregation methods. Tabled[VI-VIII show
the information losses of these microaggregation methodta representing the proposed techniques for

each dataset and eaghvalue are shown in bold face (i.e., bottom two rows). The rimfation losses
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TABLE VI

INFORMATION LOSS COMPARISON USINGTARRAGONA DATASET

Method k=3 k=4 k=5 k=10
MDAV-MHM 16.9326 22.4617 33.1923
MD-MHM 16.9829 22.5269 33.1834
CBFS-MHM 16.9714 22.8227 33.2188
NPN-MHM 17.3949 27.0213 40.1831
M-d 16.6300 19.66 24.5000 38.5800
u-Approx 17.10 20.51 26.04 38.80
TFRP-1 17.228 19.396 22.110 33.186
TFRP-2 16.881 19.181 21.847 33.088
MDAV-1 16.93258762 19.54578612 22.46128236 33.19235838
MDAV-2 16.38261429 19.01314997 22.07965363 33.17932950
DBA-1 20.69948803 23.82761456 26.00129826 35.39295837
DBA-2 16.15265063 22.67107728 25.45039236 34.80675148
MultiDSort 9.86 12.17 18.52 32.23
Meansort 5.49 8.34 10.89 17.00
TABLE VII
INFORMATION LOSS COMPARISON USINGCENSUS DATASET
Method k=3 k=4 k=5 k=10
MDAV-MHM 5.6523 9.0870 14.2239
MD-MHM 5.69724 8.98594 14.3965
CBFS-MHM 5.6734 8.8942 13.8925
NPN-MHM 6.3498 11.3443 18.7335
M-d 6.1100 8.24 10.3000 17.1700
p-Approx 6.25 8.47 10.78 17.01
TFRP-1 5.931 7.880 9.357 14.442
TFRP-2 5.803 7.638 8.980 13.959
MDAV-1 5.692186279 7.494699833 9.088435498 14.15593043
MDAV-2 5.656049371 7.409645342 9.012389597 13.94411775
DBA-1 6.144855154 9.127883805 10.84218735 15.78549732
DBA-2 5.581605762 7.591307664 9.046162117 13.52140518
MultiDSort 2.10 3.63 3.46 6.85
Meansort 1.92 2.28 2.72 461
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TABLE VI

INFORMATION LOSS COMPARISON USINGEIA DATASET

Method k=3 k=4 k=5 k=10
MDAV-MHM 0.4081 1.2563 3.7725
MD-MHM 0.4422 1.2627 3.6374
NPN-MHM 0.5525 0.9602 2.3188
p-Approx 0.43 0.59 0.83 2.26
TFRP-1 0.530 0.661 1.651 3.242
TFRP-2 0.428 0.599 0.910 2.590
MDAV-1 0.482938725 0.671345141 1.666657361 3.83966422
MDAV-2 0.411101515 0.587381756 0.946263963 3.16085577
DBA-1 1.090194828 0.84346907 1.895536919 4.265801303
DBA-2 0.421048322 0.559755523 0.81849828 2.080980825
MultiDSort 0.41 0.71 0.85 1.38
Meansort 0.21 0.31 0.43 1.04

of methods DBA-1, DBA-2, MDAV-1 and MDAV-2 are quoted from 3B the information losses of
methods MDAV-MHM, MD-MHM, CBFS-MHM, NPN-MHM and M-d (fork = 3,5,10) are quoted

from [12]; the information losses of methogdsApprox and M-d (fork = 4) are quoted from[[13],

and the information losses of methods TFRP-1 and TFRP-2 woted from [32]. TFRP is a two-stage
method and its two stages are denoted as TRFP-1 and TRFRp&ctiesly. The TFRP-2 is similar to
the DBA-2 but disallows merging a record to a group of sizerdué — 1).

Tables VIEVIII show the information loss for several valualsk and the Tarragona, Census and for
the EIA datasets respectively. As mentioned above, therrmdton loss of the proposed algorithms
is compared with the latest microaggregation methodsdliisteove. Information loss is measured as
% x 100, where SST is the total sum of the squares of the dataset (pe&ti&n[3). Note that the
within-groups sum of squares SSE is never greater than ®®iefore, the reported information loss
measure takes values in the range [0,100]. Tdblés VI-Mlikitate that in all of the test situations, the
proposed algorithms incurs significantly less informatioss than any of the microaggregation methods
listed in the table. Therefore, the experimental resullidate that proposed sorting based systematic
microaggregation techniques offer better utility than tleenpared technigues.

Analysis. Both techniques outperform the existing techniques by rmnf@rgin. It also shows that the
Meansort technique consistently achieves a lower infdomdbss compared to MultiDSort in all datasets.

This is primarily due to the fact that unlike the Meansorthtgique which sorts instances based on their
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Fig. 3. Information Loss v& for MultiDSort-based Microaggregation on Tarragona, @snsnd EIA datasets

distances from the centroid, MultiDSort only generates rigdaorder of the instances so that the top and
bottom instances are far from each other without exhaugtogmpared to other instances. Consequently,
MultiDSort does not rely on a single reference point to meashe distance of each instance, instead it
relies on the relative values of the variables of the instarector so that instances with lower attribute

values appear at the top and the ones with higher attriblie yappear at the bottom. Indeed, MultiDSort
can be extended to generate a matrix with all possible distgairs to identify which two instances are

farthest from each other. This is planned as a future workeatteinsion to the present work.

Figure[3 and Figurel4 illustrate how the information lossiealchanges with for each dataset. Results
indicate that information loss increases with This is obvious since the higher number of records in
each cluster results in higher sum-of-squared-error (38ks due to the fact that each cluster now has
more observations and possibly larger variance. Interglsti there is little correlation between overall
information loss of a dataset and its size as evident fronfabiethat the information loss for EIA dataset
(containing 4092 instances) is much lower than the infoionaloss for Tarragona dataset (containing
1082 instances). This may be due to the lower variance in Eiagkt resulting in clusters with lower
SSE, hence lower information loss.

Figure[® and Figuré]6 show how the execution time varies witand different file sizes. Again,
results show that the execution time depends on the valéeloshows that the execution time increases
slightly due to the increased number of permutations thatirie be calculated for each cluster for the
higher k. Furthermore, as expected the execution is also relatedfite size. As expected, it takes the

longest time to findc-anonymous clusters for the EIA dataset (4092 instancabpaitkest time for the
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census dataset (834 instances).

VIl. CONCLUSION

Microdata protection in cloud computing is a challengingktan privacy preserving. Microaggregation
is an effective method in SDC for protecting privacy in midata and has been extensively used world-
wide. This paper proposed new microaggregation methodB@ that can be applied in cloud computing
where the level of privacy required is controlled by a pareamnk, often called the anonymity parameter.
For k-anonymizationk is basically the minimum number of records in a cluster. Ctheevalue ofk has

been chosen, the data protector and the data users aresiateir® minimizing the information loss. This
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work has presented new sorting frameworks for numericabates to minimize the information loss.
The new methods consists of two stages. In the first stageti al the records in the dataset so that
the first and the last record are very different, and in th@seédtage it describes a pairwise systematic
clustering algorithm that builds clusters with minimumadrmhation loss. A comparison has been made
of the proposed algorithms with the most widely used micgragation methods using the three most
popular benchmark datasets (Tarragona, Census and the Hh)experimental results show that the
proposed algorithm outperforms all the tested microagagiieg methods with respect to information loss.
Thus the proposed method is very effective in preservingptiveacy microdata sets and can be used as

an effective privacy preserving-anonymization method for Statistical Disclosure Control
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