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Abstract  

Precise shade distributions at the street level are an area of research of increasing importance 

to provide complete and high spatial and temporal resolutions of the amount and 

effectiveness of shade. Temporal shade distributions and profiles were evaluated for an inner 

Sydney tree-lined suburban street at different times of the day using an electronic sun journal 

(ESJ), providing detailed profiles of shade availability for various times of the day to provide 

very detailed street-level shade profiles and distributions that are often not included in shade 

audit methods and models. Further profiles were developed of streets adjoining shopfronts 

and public parks. Distributions of dense, light and no shade areas were calculated, revealing 

that tree canopy shade area during the middle of the day is considerably less effective and 

more prone to gaps than at other times. Distributions calculated using the ESJ were 

compatible with the paper-based shade auditing with less than 10% variation, whilst the ESJ 

has revealed a greater resolution of detail of gaps in the shade, thus records a higher amount 

of areas of no shade. The ESJ is a robust, low cost and portable tool that can efficiently and 

quickly produce shade profiles during walks in an urban environment, such as streetscapes.  

 

 

Keywords 
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1. Introduction  

Tree-lined streets, alongside suburban parks or ‘greenspaces’, are included in a broad 

definition of natural environments [1] that are beneficial for human well-being [2]. In terms 

of physical well-being, urban treescapes can provide relief to pedestrians by improving 

thermal comfort and mitigating, on a local level, the urban heat island effect [3][4]. However, 

measurements of shade at street level is still imprecise, particularly when it comes to tree 

shade and effects of diffuse reflected light from street structures [2][5]. 

Rates of physical inactivity are significantly higher for residents of urban populations [6]. 

Access to transport and proximity to readily accessible services contribute toward a limited 

necessity to walk. When able to walk, urban populations are often restricted to sidewalks or 

street verges which are included in the definition of greenspaces [7][8], in some places these 

urban features are known as ‘nature strips’.  

It is well established that exposure to the sun provides benefits, such as promotion of vitamin 

D synthesis and general improvements in overall well-being, but a balance is needed as too 

much exposure can lead to harmful consequences such as skin cancers, eye conditions and 

photoaging [9][10]. Shade from objects such as trees and buildings can improve desirability 

to use an urban environment [11]. The use of tree shade can increase urban walkability, 

which has previously been measured using derived indices [12] and also can contribute 

toward reducing personal sun exposure risk [4][9][10].  

There has been some research performed in the efficacy of urban greenspaces in reducing the 

exposure to direct and diffuse solar radiation and perceived thermal comfort. Factors such as 

canopy foliage density, tree species, season, solar zenith angle (SZA), cloud cover and 

proximity to artificial structures are cited as important parameters in influencing the 

protective quality of urban greenspaces [4][13][14]. As opposed to utilising motorised 



4 

 

transport, accessible greenspaces that provide a comfortable and aesthetically pleasing 

environment can encourage ambulatory activity [15]. This, in turn is associated with reduced 

risk to diabetes, cardio-vascular and respiratory disease rates, improved social cohesion and 

mental health [16][17][18]. 

Ground based shade audits sometimes examine the ‘greenness’ or canopy density from aerial 

or satellite imagery [2]. Shade audits are an important aspect for assessing the 

photobiological risk amelioration capabilities of natural and artificial structures. Such 

assessments provide valuable information for informed shade planning and design 

[4][10][19]. The effectiveness of tree shade is often measured using the sky view factor 

(SVF), usually by measurements based on photographs of tree canopies, GPS based 

measurements, and simulations [13][20]. Recently, the Shade Protection Index (SPI) has been 

developed for observations of solar radiation [9][21]. Online tools such as the SunSmart 

‘Shade Comparison Check’ tool and the use of Google Street View have also been employed 

in recent years [2][5][22].  

Recent research pertaining to techniques and models related to the observation and 

measurement of shade details in urban streets, while attaining enhanced accuracy overall, are 

still prone to inaccuracies in regard to the shade distributions of urban trees and diffuse 

reflections of other surfaces [2][5]. An electronic sun journal (ESJ) was developed by Downs 

et al. [23] as a tool to complement and provide enhanced street-level precision to existing 

shade assessment methods. The ESJ is a low-cost, portable instrument that uses a reverse-bias 

infrared photodiode to assess the effectiveness of shade by recording the effective 

photovoltaic solar diode voltage every second.  

This research expands on preliminary outdoor testing of the ESJ [23] to demonstrate an 

effective and accessible method to accurately measure high-precision urban street shade 
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details and to determine the effective shade in an urban environment from the ambulatory 

perspective of a typical pedestrian. The relative simplicity and potability of the ESJ as both a 

data collection and retrieval method provide a tool for anyone involved with research 

concerning shade audits and related applications, including those involved with urban sun 

protection research and policy making. The methods used are a means to provide high 

temporal resolution shade profiles encountered during walks through urban residential 

locales, with a focus on the ‘green’ infrastructure - tree-lined roads in comparison to streets 

dominated by buildings and suburban parks. 

 

  



6 

 

2. Methodology 

A key tenet of the methodology and choice of equipment for this research is based on 

portability and simplicity to facilitate the replicability for all members of the community. The 

intended assessment method is expected to provide another tool for the community’s 

custodianship of the local environment, research about environmental solar hazard, and 

potential increased participation in Citizen Science. 

 

2.1. Equipment 

The equipment used was kept to a minimum for the ease of movement along the walking 

transects. An electronic sun journal (ESJ) set to a sampling resolution of one second was 

secured to a small clipboard with enough space to write down observations of shade, 

direction changes and any other changes in conditions for the purposes of the ambulatory 

shade assessments. Photodiode output voltage data recorded from each walking transect was 

stored as a text file on a micro SD card and plotted against transect distance. Qualitative 

shade assessment data was also noted during each walking transect. The maximum 

photodiode output of 2.5 V represents the photodiode response in the full shade. The output 

falls to 0 V when the photodiode is exposed in an open unshaded environment [23] and 

records a voltage between 0 and 2.5 V depending on the shade density. 

 

2.2. Locations  

Walking transects were completed along streets and parks that were found to have significant 

amounts of shade in the inner eastern suburbs of Sydney of Kensington, Rushcutters Bay, 

Edgecliff and Darling Point, Australia (33° 54’ S 151° 15’ E). These represent examples of 
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inner suburban settings complete with suburban parks, tree-lined streets and high set 

buildings and retaining walls.  

 

2.2.1. Main location 

The focus of the research was to assess the shade quality of a suburban tree-lined street in 

Darling Point. The street had a slight incline (approximately 3°), where the entire walking 

path was continuous without crossroads to allow for a reasonable consistent walking pace 

without interruption. This street is designated as ‘Mona’.  An example of part of the tree-

lined street focus is presented in Figure 1. 

 

 

Figure 1: Sample image of the focus tree-lined street in an inner Sydney suburb – the 

walking path is on the right. Image taken on a hazy day by the author at 2:00pm local 

time, 21st November 2019 at a solar zenith angle of 22.5°. 
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For consistency, the street was walked in a general northerly direction for all transects. The 

street was approximately 400 m (1312 ft) long, with a section of 135 m (443 ft) in an almost 

direct north orientation (S1), turning to N 53° E for the remainder (S2). The street consists of 

older buildings and retaining walls, most were several levels high, and a mixture of mature 

and young trees with the walking path placed in between the retaining walls and tree line 

sidewalk. Transects along this road were completed at different times of the day to develop a 

temporal shade profile (transects A-D). Transects were timed to provide a range of shade 

profiles at different SZA. Two transects were made when the sun was at a low, midday solar 

zenith angle (SZA) preventing significant shadows from buildings and retaining walls, and 

two were made in the early morning and late afternoon when the sun had a high SZA and was 

positioned behind built structures. The high SZA transects are also useful to model similar 

wintertime shade conditions. 

 

2.2.2. Validation locations 

A further four validation transects (V1-V4) were completed along similar tree and building 

lined streets in all locations. These locations were assessed and selected using the Google 

Map satellite view function. All validation transects varied in length from 185 m to 500 m, 

and all had a significant proportion of trees of varying maturity alongside the walking path. 

Transects V2 and V3 were orientated roughly north-south, and V1 and V4 were roughly east-

west. Built structures were also prominent in V1 and V4. Similar to the Mona transects, two 

validation transects were made at relatively low SZA (near midday) and two at a much higher 

SZA when the sun was nearer to the horizon (morning and afternoon) to further simulate 

wintertime shade conditions. 
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2.3. Times and conditions 

All transect walks were completed in local late Spring and early Summer (Table 1). All times 

are local at UTC +11 (Australian Eastern Daylight Time), as local Daylight Savings is in 

effect. All walks had a duration of 5 minutes or less, the time taken to comfortably walk each 

of the streets. It is possible for the ESJ to be used for up to 4.5 hours [23].  

The conditions varied between cloud free, partly cloudy and hazy (smoke and dust-affected) 

skies resulting from persistent forest fires and strong winds across the region [24]. Transect 

V4 was completed twice at approximately the same SZA to ascertain the effect of severe 

smoke haze compared to haze-free conditions. 

 

Table 1: Local times and conditions for transects for the temporal ‘Mona’ shade profile 

(A-D) and used for validation (V1-V4). Transect V4 was completed twice for 

comparison between severe smoke haze and haze-free conditions. 

Transect Local time Conditions 

A 8:52 – 8:57 AM 
20 October 2019 

Cloud free 

B 11:45 – 11:50 AM 
7 October 2019 

Partly cloudy 

C 3:13 – 3:18 PM 
13 November 2019 

Cloud free 

D 5:08 – 5:13 PM 
15 November 2019 

Light smoke haze 

V1 8:28 – 8:33 AM 
7 December 2019 

Partly cloudy / smoke haze 

V2 11:31 – 11:36 AM 
8 December 2019 

Bright overcast 

V3 8:29 – 8:34 AM 
14 December 2019 

Mostly cloudy 

V4 

11:38 – 11:40 AM 
5 December 2019 

Severe smoke haze 

11:30 – 11:32 AM 
14 December 2019 

Mostly clear 
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2.4. Data collection and analysis 

Raw data (D) from the ESJ was converted from the 10-bit output signal value to the 

corresponding proportion of the 2.5 V maximum output voltage (equation 1). 

 

������� = 2.5 × � �
����    [1] 

 

The output voltage recorded at each second from the ESJ was normalised to the length of the 

transect, where transect length was determined using the ‘measure distance’ tool in Google 

Maps. This was to convert the time-based ESJ data to the known transect distance, 

accounting for any variations in walking speed between transects, thus providing a 

reasonably consistent means of temporal shade profile comparison. Variations in walking (or 

gait) speed within each transect were assumed to be minor [25]. The position of shade 

structures was verified using the satellite view of Google Maps. Shade profile morphologies 

were validated in transects V1-V4 by comparing with shade profiles observed in transects A-

D. 

An overall shade distribution for each transect was calculated based on earlier preliminary 

observations of ESJ output voltage boundaries for light and dense shade of static objects [23], 

with the boundary between light and dense shade being estimated at approximately 1.25 V. 

The category numbers 1 and 2 were given for light shade and dense shade, respectively. 

Areas with no shade observed, 0 V reading from the ESJ, are designated category number 0: 

‘no shade’ (Table 2).  
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Table 2: ESJ voltage output boundaries and category numbers for light and dense 

shade categories, based on preliminary observations by Downs et al. (2017). 

 Shade 
category 

Category 
number 

ESJ 
output 
Voutput 
(V) 

 
Description 

No shade 0 0 Insignificant to no measurable shade. This category 
includes sparsely foliated canopies, particularly those 
experiencing wind during a transect. 

Light shade 1 0-1.25 Persistent broken or weak shade. This category can 
experience significant variability during a transect 
due to wind. 

Dense shade 2 >1.25 Persistent and continuous shade. This category is 
visibly darker, and the shade profile is generally not 
affected by wind. Built structures are usually within 
this category. 

 

Recorded observations on the printed maps using the corresponding category numbers were 

employed in the validation transects. For the purposes of comparison, ESJ data were grouped 

into the same discrete category numbers as recorded on the printed maps. This grouping 

provides a comparison between the more commonly used qualitative ‘shade diary’ and the 

ESJ for shorter walks. Shade profiles were further validated by visually confirming the 

position of shade distributions. 

Cloud cover was observed while walking to ensure that it is not a contributing factor in the 

signal recorded by the ESJ [23]. Solar azimuth and altitude data were collected from 

Geoscience Australia’s online sun and moon position calculator [26]. Similar databases exist 

for other international locations. Alternatively, these parameters can be calculated from 

details of the position and times of observations using algorithms such as Michalsky [27] or 

similar. A relative azimuth angle (AzR) represents the relative sun position. This angle is 
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measured as the clockwise angle from the transect, calculated from the solar azimuth (Az) and 

expressed relative to the transect orientation (S). Visual examples are provided in Figure 2. 

     

 

Figure 2: Examples of how the relative azimuth (AzR) is measured from the sun’s 

azimuth (Az) and the transect orientation (S). The sample transect direction is shown as 

a dashed arrow and the sun’s azimuth by a solid line. 
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3. Results  

3.1. Mona transects  

3.1.1. Shade distributions 

Mona transect walking speeds were calculated as 1.40 ± 0.05 ms-1, consistent with the likely 

range of walking speeds determined by Bohannan [28] with only minor variation. Table 3 

summarises the SZA and relative azimuth (for S1 and S2), averaged from the duration of 

each transect. Minimal variation in sun position occurred during each walk as the transects 

are of short duration (approximately 5 minutes). The shade distribution for the Mona 

transects as recorded by the ESJ is included for comparison. 

 

Table 3: Summary of the average SZA, relative sun position, and ESJ shade 

distribution for each Mona transect.  

Transect Average 
SZA 

Average relative 
azimuth No shade 

Light 
shade 

Dense 
shade S1 S2 

A 57° 79° 26° 23.5% 12.6% 63.9% 

B 31° 27° 334° 61.2% 34.6% 4.2% 

C 37° 285° 232° 53.5% 34.7% 11.8% 

D 62° 266° 213° 35.3% 28.7% 36.0% 

 

Two trends are observed with the shade distributions depending on the sun’s position relative 

to shade structures: 

1.  Low SZA as in transect B and C, where the sun is ‘above’ shade structures creating 

relatively short shadows. At this orientation, the shade is primarily from the tree 
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canopies. A striking feature is the relative lack of dense shade, with the greatest 

distribution being in the ‘no shade’ category. 

2. High SZA as in transect A and D, where, coupled with the relative azimuth, the sun is 

‘behind’ shade structures resulting in long shadows, particularly from built structures. 

There is a definite increase in the distribution of dense shade, increasing with the 

proximity of built structures, where the structures in transect A are immediately 

adjacent the walking path, and those in transect D being on the opposite side of the 

walking path. 

 

3.1.2. Shade profiles 

The effects of each shading element of the streetscape relative to the sun were well defined. 

Changes of shade profile throughout the day were very clear and are visible in Figure 3. No 

evidence of significant effects of cloud and haze were observed in the ESJ output. The 

changing output voltages were, therefore, a result of the changing shade profile and not the 

local atmospheric conditions.  
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Figure 3: Comparison of four transects along Mona. The solar zenith angles and local 

times for each transect were 57°, 8:52-8:57 AM (A), 31°, 11:45-11:50 AM (B), 37°, 3:13-

3:18 PM (C) and 62°, 5:08-5:13 PM (D). Shade was primarily provided by tree canopies 

in (B) and (C), and by built structures and trees in (A) and (D), the latter being from 

opposite street directions.  

 

Change in shade profiles along a suburban street can clearly be observed over time, 

particularly depending on the position of the shade structures relative to the sun’s position. 

The distinct shade morphologies can be identified, even when the observer is moving, 

allowing a shade profile of the street to be evaluated for different times of the day. 
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3.2. Validation 

Four transects were completed to provide a shade distribution comparison between 

observations recorded on a printed map and the ESJ output (Table 4, Figure 4), and to 

validate the shade profiles observed in the Mona transects (Figure 5). Walking speeds for 

each transect were kept as consistent as possible, ranging from 1.21 ms-1 for V2 to 1.92 ms-1 

for the second walk of V4.  

 

Table 4: Summary of the average SZA, relative sun azimuth (AzR), and shade 

distribution recorded by the ESJ and by using a printed map (in parentheses) for each 

validation transect. An additional shade distribution for V4 was made during the severe 

haze, affected transect is also provided (no printed map record was possible during the 

period of severe haze). 

Transect 

Average sun 
position 

 
Shade distribution 

 

AzR SZA No shade Light shade Dense shade 

V1 176° 56° 35.1% (29.4%) 55.1% (49.0%) 9.8% (21.6%) 

V2 39° 19° 64.8% (47.6%) 23.8% (40.1%) 11.4% (12.3%) 

V3 72° 56° 29.3% (20.3%) 47.3% (49.2%) 23.4% (30.5%) 

V4 316° 18° 35.1% (27.8%) 64.9% (62.9%) 0.0% (9.3%) 

V4 
(severe haze) 

323° 20° 56.4% 43.6% 0.0% 
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Figure 4: Validation shade profiles from the ESJ normalised to transect distance. The 

blue stippled line in V4 represents the ESJ output during the severe haze event in early 

December 2019. 

 

The relative shade profile (Figure 4) for the buildings in the first 200 m of V1 contrast 

distinctly with the tree canopy shade in the second 200 m. However, they possess similar 

profiles to thick and overlapping canopy shade shown in the other validation transects, albeit 

with a higher relative output. When there was a lot of tree canopies overlapping as in V4, the 

shade profile resembles a continuous profile, only broken by features such as crossroads, as 

occurs at approximately 120 m. Combinations of adjacent tree canopies and canopies on the 

opposite side of the road, alongside with built structures also exhibit a continuous profile, as 

in the first 100 m of V3. 
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Figure 5: Validation of shade distributions. Categorised ESJ output (solid black lines) is 

compared with observations made on printed maps (red dashed lines). The blue stippled 

line in V4 is from the severe haze observation. 

 

Comparing the spatial extent of shade distributions in Figure 5 shows a significant proportion 

of shade over-estimation calculated in Table 4. This is due to either overestimating the extent 

of shade structures or missing finer shade features, such as the shade profile for tree canopies 

in the final 200 m of V1. It is quite difficult to discern the source of the shade based on the 

spatial distributions in Figure 4 as the morphologies can be almost identical. An example is 

the building shade in the first 200 m of V1 compared to the thick and overlapping canopies in 

V2 and V3. 
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4. Discussion 

The research outcome provided a reliable evaluation of the ESJ ability to detect any changes 

in the shade profile while in motion. The ESJ shade-sensitivity is very apparent when, in all 

transects, there are sections where the signal is 0 V, indicating that it is experiencing direct 

sunlight. A distinct example of this output is the point centred at approximately 120 m in V4 

(Figure 4), representing the time taken to cross the street at the intersection where there is no 

trees or buildings, and it obviously exists in both clear-sky and hazy conditions’ data.  

Another example is noticed in the final 200 m of V1, where no shade areas due to the canopy 

gaps were clearly recorded. As evident in Figures 3 and 4, the ESJ can evaluate the shaded 

areas at a temporal resolution of 1 second, resulting in a measurable spatial resolution 

consistent with the observer’s average walking speed. 

There was a consistent overestimation, usually within 10%, in shade distributions when using 

a printed map compared to the ESJ output (Table 4). The discrepancy increased when 

conditions were bright overcast (V2) but not when conditions were mostly cloudy (V3). 

Bright overcast conditions increase the diffuse proportion of light depending on the cloud 

thickness and the relative position of the sun [29]. The overestimation could be attributed to 

some subjective factors including walking speed and observer concentration level and 

judgement, which may result in missing or generalizing some finer shade details, such as the 

gaps observed in the trees in V1 (Figure 4). The ESJ output is not affected by this subjectivity 

and provides a much finer resolution of small intermittent changes within shade features. 

Trees, adjacent and to the left of the walking path on the street verge (Figure 1), are the 

prominent source of shade in the Mona transects B and C (Figure 3) and validation transects 

V2 and V4 (Figure 4) when the SZA was relatively low at midday. The observed shade 

profiles were dependent on the maturity of the tree, overlapping canopies and canopy extent, 
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as has been demonstrated by other research groups [9][13][21]. Most tree shade profiles were 

observed to have an irregular and discontinuous morphology, although can possess profiles 

like built structures, as in V2 and V3. The ESJ immediately defined the boundaries of areas 

where trees were either not present or too small to provide shade, as at the 300-350 m section 

(illustrated in Figure 3 parts B, C and D). Variations in the canopy shade profile could occur 

due to wind, as it was observed that even a slight breeze caused the light shade to shift 

rapidly. However, the effects of wind will generally be averaged out to allow determination 

of the shade along each transect. Dense and overlapping shade was not significantly affected 

by wind. 

The shade profiles of artificial structures, such as buildings and retaining walls, were 

typically broader and possessed a relatively more regular signal output than trees, consistent 

with earlier observations [23]. When the sun is at a low SZA, tall retaining walls (Figure 6) 

and buildings provided no effective shade along the pathway. However, when the sun was at 

a high SZA and positioned with a relative azimuth placing it ‘behind’ built structures, their 

broad shadows became prominent in the shade profile, as in Mona transect A (Figure 3) and 

the first 200 m of V1 (Figure 4). In this situation, tall buildings were behind and above the 

retaining walls providing the combined shade and, therefore, the shading provision of any 

trees is negated [13].  
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Figure 6: An example of a tall retaining wall on the opposite side of the pathway to the 

street verge. Image taken on a hazy day at 2:00pm local time, 21st November 2019. 

 

Similarity between some shade profiles can be noticed, such as the shade profile of the large 

and overlapping canopy trees at about 370 m to 400 m in transect C compared to the profile 

centred on 50 m in transect D of a multilevel apartment complex on the opposite side of the 

road casting a long shadow due to the high SZA and position of the sun behind it (Figure 3). 

A similar observation occurs in V3, where the source of the shade is a combination of large 

overlapping canopies from either side of the street, buildings only contribute to the first 100 

m of this profile. These similarities highlight the importance of developing a temporal profile 

of a transect using the ESJ at different times of the day to ascertain the temporal extent of 

each structure’s influence on the overall shade quality within a given streetscape.  

Smoke haze became a significant influence during the first validation transect V4. Sydney 

experienced several days, during November and December 2019, of hazardous air quality due 

to surrounding forest fires, affecting human health and visibility [24]. Particulate matter from 
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the forest fires tend to accumulate in the city, which lies in a natural basin [30]. The resultant 

increase in particulate matter results in Mie Scattering, causing a relative increase in the 

proportion of diffuse solar radiation [31] and a decrease in visible shade resolution. This was 

also observed in the ESJ output in the first V4 transect. However, the observed hazy 

conditions were very exceptional and there are enough days with lower haze conditions when 

the ESJ can be employed to determine street-side shade profiles. 

 

  



23 

 

5. Conclusion 

The output of the ESJ is not affected by cloud cover in normal operating conditions, only 

becoming less reliable under more extreme circumstances where shade audits are not 

feasible, such as severe smoke haze events. The ESJ permits a greater level of precision for 

observing street-level shade details while the observer is in motion, at different sun angles. 

Thus, providing an inexpensive and accessible method performing shade audits for 

researchers and those involved with sun protection policies. 

Generally, the ESJ can be used to observe very precise shade profiles along a walking path, 

identifying areas where shade is either lacking or broken. Although the shade distribution (no 

shade, light shade and dense shade) determined from the ESJ was in very good agreement 

with printed-map based observations, typically within 10%, the ESJ overestimated the no 

shade portion – not due to inaccuracy, but due to the device’s ability to record small 

intermittent breaks in the shade that can be subjectively missed by the observer. As shade 

conditions during each day and across seasons, the ESJ also provides a means to capture high 

temporal resolution in street-level shade detail changes that would be very difficult if using 

satellite and online viewing tools. 

A considerable limitation of the ESJ is a difficulty to discern the source of specific shade 

profile morphologies, particularly buildings and large overlapping canopies of trees; 

however, this can be simply overcome by repeating the transect to provide a temporal scope 

to the shade of any street. Nevertheless, the building shade is still part of the shade in an 

urban environment and it is detected by the ESJ. Using a printed map can aid in identifying 

larger structures which will impact upon shade, while the ESJ delineates the finer details, 

particularly the smaller gaps in shade, with higher resolution. Another limitation is to 

accurately measure variations in the observer’s walking speed, additional equipment can be 
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used, including pedometers to accurately log walking speeds during a transect, using GPS-

enabled devices, or visual devices such as Go-Pro cameras, the use of which can greatly 

extend the distance that a shade audit can be performed.  

In summary, the ESJ is a robust, low cost and portable tool that can be used in mobile 

auditing of shade in public spaces, such as streetscapes, providing an efficient method to 

establish shade profiles during walks in an urban environment. 
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Highlights 

• Enhanced temporal and spatial resolution for mobile shade distributions. 

• Temporal urban shade profiles at different sun angles evaluated while walking. 

• Inexpensive electronic sun journal used for mobile urban shade evaluation. 

• Shade profiles and distributions modelled for distinct urban environments. 

• Methodology allows for continuous high temporal resolution shade evaluation. 
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