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Abstract. Rice is one of the world’s most dominant staple foods, and hence rice farming plays a
vital role in a nation’s economy and food security. To examine the applicability of synthetic
aperture radar (SAR) data for large areas, we propose an approach to determine rice age, date
of planting (dop), and date of harvest (doh) using a time series of Sentinel-1 C-band in the entire
Mekong Delta, Vietnam. The effect of the incidence angle of Sentinel-1 data on the backscatter
pattern of paddy fields was reduced using the incidence angle normalization approach with an
empirical model developed in this study. The time series was processed further to reduce noise
with fast Fourier transform and smoothing filter. To evaluate and improve the accuracy of
SAR data processing results, the classification outcomes were verified with field survey data
through statistical metrics. The findings indicate that the Sentinel-1 images are particularly
appropriate for rice age monitoring with R2 ¼ 0.92 and root-mean-square error (RMSE) =
7.3 days (n ¼ 241) in comparison to in situ data. The proposed algorithm for estimating dop
and doh also shows promising results with R2 ¼ 0.92 and RMSE ¼ 6.2 days (n ¼ 153) and
R2 ¼ 0.70 and RMSE ¼ 5.7 days (n ¼ 88), respectively. The results have indicated the ability
of using Sentinel-1 data to extract growth parameters involving rice age, planting and harvest
dates. Information about rice age corresponding to the growth stages of rice fields is important
for agricultural management and support the procurement and management of agricultural mar-
kets, limiting the negative effects on food security. The results showed that multitemporal
Sentinel-1 data can be used to monitor the status of rice growth. Such monitoring system can
assist many countries, especially in Asia, for managing agricultural land to ensure productivity.
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1 Introduction

Rice is one of the main cereal crops in the world that plays an important role in food security,
especially in the context of climate change, environmental pollution, and population growth. It is
a daily staple food for a major part of the world’s population, especially in the developing coun-
tries across Asia, Latin America, and Africa.1 This has led to an increasing demand for stable rice
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supply, especially for major rice-producing countries such as China, Thailand, and Vietnam.
This issue requires a system that can provide important information for monitoring and man-
aging rice cultivation such as rice age (the number of days after planting), date of planting (dop),
and date of harvest (doh). The information on the rice growth stages is also important for imple-
menting management practices including irrigation systems, pest warning, fertilizer application,
procurement and export, and other purposes. Furthermore, climate change, resulting in an
increase in extreme weather events such as drought and floods,2 can damage rice crops and affect
food security and farmer livelihoods at local and regional scales. It is, therefore, necessary to
accurately and timely determine how much of the rice area is in any stage at any time or position
on the map.

Many published studies have used optical imagery such as Landsat3 to map rice paddy fields
at a local scale with either unsupervised or supervised classification methods. High-temporal
resolution optical sensors such as AVHRR,4 SPOT VEGETATION,5,6 and MODIS7–9 were also
used to map large-scale rice fields. However, these optical images often have low spatial res-
olution (>250 m) when applied at a regional scale and are frequently affected by cloud cover.
Although there are techniques10–12 to reduce the effects of cloud, but in tropical monsoon regions
like Vietnam, quasipermanent cloud cover limits the use of optical data during the rainy season.
In contrast to optical sensors, radar sensors with their polarizing characteristics, can capture
differences in the vegetation growth stages through their effect on the canopy structure, such
as leaf area, plant height, and plant biomass.13,14 In addition, high-temporal resolution synthetic
aperture radar (SAR) systems, such as ALOS-2 (14 days), TerraSAR-X (11 days), and Sentinel-1
(12 or 6 days), can provide more reliable data for monitoring rice growth information.

Radar remote sensing is recognized as an effective tool for mapping rice growing areas.15–17

The most frequently used SAR data for monitoring common rice parameters are C-band18 and
X-band.19 The C-band SAR data are particularly suitable for rice monitoring and mapping,20–22

because of the sensitivity of the C-band backscatter to plant vertical structure and to the inun-
dation status of the underlying soil.23 Until recently, SAR data used for rice mapping and mon-
itoring were from RADARSAT-1/2,24 ENVISAT ASAR25 (advanced synthetic aperture radar),
ERS-1/226 (European remote sensing), and Sentinel-1.27,28 However, previous SAR-based meth-
ods were not used for large-scale rice mapping due to limited data availability and high
cost.15,16,29 Only, with the launch of Sentinel-1A satellite in 2014,22 users can access free
SAR data with spatial resolution of 20 m [interferometric wide swath (WS) mode], 12-day repeat
cycle, and WS of 250 km. By 2016, the Sentinel-1B satellite22 was launched to allow images to
be recorded with a 6-day cycle when combined with Sentinel-1A. The dense time series of
Sentinel-1 data and free access at high spatial resolution provide an opportunity to monitor
near-real-time rice growth in the study area. Sentinel-1 image data have been widely used in
many applications such as crop classification and area detection,27 height and biomass estimation
of rice plants.28 Therefore, rice monitoring over large areas using SAR images with high spatial
resolution and near real-time repeat cycles became widely applicable.

In this paper, we develop a method to determine growth stages using Sentinel-1 data over the
Mekong Delta. In the region, conventional approaches of determining growth stages are often
dominated by expensive and time-consuming surveys and estimation methods, which are based
on a limited number of samples at commune and district levels with hidden errors. As stated
above, SAR data have the potential to detect rice growth stage.30,31 This is based on the temporal
variation of the radar backscattering of paddy fields, which can provide information on farming
practices such as field preparation, planting (sowing and transplanting) and on crop growth from
germination to maturity stage.

Using SAR images often pay no attention to the effect of the incidence angle, however, it
usually affects the backscatter value.32,33 Recently, a number of studies have begun to focus on
reducing the influence of the incidence angle on SAR images, involving the work of Pathe et al.,34

who used a linear model to normalize the incidence angle suitable for the whole ENVISAT
ASAR scene to estimate the soil moisture. Topouzelis and Singha33 used this method for SAR
WS mode data for applications in the oceanography. Nguyen et al.35 also applied this method to
standardize the incidence angle for ENVISATASARWS images to monitor rice growing areas
and rice crops. In this study, normalization of the incidence angle for Sentinel-1 IW data with
three subswaths was performed using the quadratic function. The Mekong Delta is a large
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area covering almost a Sentinel-1 scene with a swath width of 250 km, which is affected by the
incidence angle. Thus it is necessary to consider the influence of incidence angle on the scatter-
ing pattern of rice plants to reduce its influence on the area considered in this study.

Information on rice growth, such as rice age, date of planting, and date of harvest, is impor-
tant to support irrigation and crop management, monitoring, and planning, including pest
warning and fertilizer practices according to each growth stage of rice to ensure rice yield.
Therefore, many studies were conducted to quantify these parameters using time-series SAR
data. An example of determining the number of days after sowing of short-cycle crops is the
work of Yang et al.,36 who analyzed the scattering behavior of oilseed rape using C-band
RADARSAT-2 data. Asilo et al.37 used the TerraSAR-X data series to determine flooding/trans-
planting date of rice plants with good results. Similarly, Hoa et al.38 estimated sowing date of
paddy fields using COSMO-SkyMed data with root-mean-square error (RMSE) = 4.3 days.
However, most of these studies focused on small areas. For a large region such as the Mekong
delta, there are several issues to be addressed before to realize operational applications. The first
issue is related to the change in the radar backscatter with radar incidence angle for large
swath. The second is related to the diversity of rice cultivation across a large region. To this
aim, in this study, an algorithm is developed to estimate growth parameters such as rice age,
and planting and harvest dates, using Sentinel-1 IW data for a large region, the Vietnamese
Mekong Delta.

In particular, the objectives of this study were (1) to process a time-series image data for
reducing noise effect and reducing the effect of incidence angles on a large region; (2) to build
algorithms to estimate rice age, date of planting, and date of harvest using time-series data proc-
essed for the whole Vietnamese Mekong Delta; and (3) to validate the results of the rice age map
in the Mekong Delta region with field data.

The study is conducted in relations with initiatives for establishing communities for support
and cooperation in crop monitoring, including rice monitoring, such as Group on Earth
Observations Global Agricultural Monitoring Initiative and the Asian Rice Crop Estimation and
Monitoring,39 where SAR data plays a major role to facilitate rice monitoring.

2 Materials and Methods

The study used satellite data acquired from the Sentinel-1 satellite. The collected Sentinel-1
image data covers almost the entire Mekong Delta with swath width of 250 km (Fig. 1).
The Sentinel-1 A and B 6-day temporal resolution products were used to create time series
of backscattering values with a spatial resolution of 20 m. The products were ground range data
(GRD) calculated from digital number (DN), converted to sigma-naught value, and then terrain
correction was carried out to remove the effect of the terrain. Ground data were used, including
field data for result validation (Fig. 2). Other reference datasets include district and provincial
rice area statistics in the Mekong Delta.

2.1 Data Description

2.1.1 Image data

Sentinel-1 is a constellation of two satellites, Sentinel-1A and Sentinel-1B. The data products
have a 12-day repeat cycle and spatial resolution of 20 m. Sentinel-1A satellite was launched on
April 3, 2014, whereas Sentinel-1B satellite was put into orbit 2 years later, on April 25, 2016.40

Since 2016, the image acquisition cycle in the Mekong Delta is 6 days with a spatial resolution of
20 m (interferometric WS mode) and dual polarization data (VV—for vertical transmit and ver-
tical receive, VH—for vertical transmit and horizontal receive). For this research, in order to
monitor the rice growth status of the 2017 autumn–winter crop, data from August 03, 2017, to
February 17, 2018, were collected with a total of over 30 images captured by both Sentinel-1A
and B satellites with the descending mode. All the image data was co-registered based on a
reference image so that they have the same coordinate system.41 SAR data were calibrated to
convert DN value to the backscatter coefficient.
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Fig. 1 The Mekong Delta overlaid by Sentinel-1 scenes.

Fig. 2 Study design flowchart for extracting rice age information from Sentinel-1 images.

Phung et al.: Monitoring rice growth status in the Mekong Delta, Vietnam. . .

Journal of Applied Remote Sensing 014518-4 Jan–Mar 2020 • Vol. 14(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 26 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.1.2 Ground data collection

Depending on the purpose and requirements of the field data, the field measurements were
designed at different levels of detail. To build the dataset for this research, the sample fields
were designed so that they are located far from each other and spatially distributed throughout
the study area. Field data collected include rice variety, maturity stage, harvest date of the
previous crop, sowing/transplanting date of the current crop (farmer survey), other types of
vegetation, and photographs.

The field data were collected in two groups: (1) the training data comprised measurement
data of rice parameters for 2017 autumn–winter crop collected continuously in An Giang prov-
ince with a 12-day repeat cycle coinciding with image acquisition date of Sentinel-1; the rice
parameters comprised of rice variety, sowing/transplanting method, sowing/transplanting and
harvest date, growth stages and (2) the validation data by survey for the whole delta from
December 26 to 31, 2017, serving the main purpose of evaluating the estimation method of
rice age, sowing/transplanting and harvest date.

Field measurements of rice parameters were conducted in 60 sample paddy fields (Fig. 3),
with areas ranging from 3000 to 77;000 m2. These measurements were conducted from
September 9 to December 26, 2017. A total of 10 measurements were performed every 12 days
corresponding to image acquisition dates of Sentinel-1A satellite to cover changes in paddy
fields during the crop season from tillage to harvest. The selected sample fields have different
rice varieties including short- and long-day rice varieties of the Mekong Delta, ranging from 80
to 120 days and three major rice varieties including Nep, OM5451, and DS1, accounting for 90%
of sample fields (Table 1). These sample fields were selected to represent the study area and also
for their accessibility. Figure 3 shows the locations of sample fields across An Giang province,
Mekong Delta.

One of the problems in this study pertains to the difference in the backscatter time series
between the two cultivation methods, sowing and transplanting. To solve this problem, the back-
scatter time series of VH polarization of the sample fields were compared the two sample fields
with similar sowing/transplanting dates. The sample CT01 with long-day rice variety DS1 hav-
ing a growth cycle of 105 to 110 days was sown on August 28, 2017, whereas the sample TS24
with short-day rice variety OM5451 having a growth cycle of 90 to 95 days was sown on August
31, 2017. Figure 4 shows a pattern of backscattering values of VH polarization for the sample

Fig. 3 Study area and locations of sample fields across An Giang province, Mekong Delta.
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TS24 from sowing to harvest and the field photographs corresponding to the time series of image
acquisition with a 12-day cycle.

Figure 5 shows a pattern of backscattering values of VH polarization for the sample CT01
from sowing to harvest and the field photographs corresponding to the time series of image
acquisition with a 12-day cycle. Similarly, Fig. 6 shows the fluctuation of backscattering values
of the sample CT07 with the same rice variety as the sample CT01 but different in the cultivation
method, i.e., the transplanting method. The difference between the sowing and transplanting
dates of these two sample fields is no more than two days. The results showed that the scattering
patterns of both sowing and transplanting methods recorded an increase in the backscattering
values after sowing/transplanting from day 10 onward for the VH polarization. This makes it
possible to apply the same method of determining sowing/transplanting dates for both cultivation
methods. In this study, the date of sowing/transplanting will be referred to as dop.

Field data for the verification of the growth stages—rice age, dop, and doh were collected
from December 26 to 31, 2017, across different provinces in the Mekong Delta. In particular,
data were collected at 241 sample points of rice fields spatially distributed over the Mekong

Fig. 4 Backscattering pattern of VH polarization for the sample TS24 with sowing method and field
photographs collected corresponding to the time of image acquisition. OM5451 sown on August
31, 2017, has a growth cycle of 90 to 95 days.

Table 1 Information on rice varieties in 60 sample fields for 2017 autumn–winter crop in An Giang
province.

No. Rice variety Growth cycle (day) Sample number Percent (%)

1 Nep 95 to 100 24 40

2 OM5451 90 to 95 22 37

3 DS1 105 to 110 8 13

4 Other varieties 85 to 100 6 10

Total 60 100
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Fig. 6 Backscattering pattern of VH polarization for the sample CT07 with transplanting method
and field photographs collected corresponding to the time of image acquisition for every 12 days.
DS1 transplanted on August 26, 2017, has a growth cycle of 105 to 110 days.

Fig. 5 Backscattering pattern of VH polarization for the sample CT01 with sowing method and field
photographs collected corresponding to the time of image acquisition for every 12 days. DS1 sown
on August 28, 2017, has a growth cycle of 105 to 110 days.
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Delta (Fig. 7). The main objective of this data collection was to evaluate the classification results
of the spatial distribution of rice area and rice age in the 2017 autumn–winter crop. In addition,
this dataset was also used to investigate the effect of incidence angle on the scattering pattern of
the rice field.

2.2 Time-Series Data Preparation

2.2.1 Image preprocessing

Sentinel-1 image data were calibrated first and then corrected for terrain with 30-m Shuttle Radar
Topography Mission digital elevation model data using Sentinel Application Platform software.
Afterward, the radar data were filtered by the multitemporal speckle filter42 and the spatial filter
to reduce noise. The temporal filter method can improve the Sentinel-1 SAR data time series by
reducing noise while preserving as much as possible the delicate structures that existed in the
radar image.41 The pixel size of the image data after preprocessing is 20 m.

2.2.2 Incidence angle normalization

Since Sentinel-1 image data cover a large area of 250 km, the incidence angle is a factor that
affects the radar scattering results. Therefore, incidence angle normalization is an essential
requirement for large-scale monitoring applications of rice (i.e., regional level). Sentinel-1A and
1B image data collected in the study area with IW swath mode consist of three subswaths: IW1,
IW2, and IW3.43 There is sufficient overlap between the subswaths to ensure continuous ground
coverage as provided in GRD products.

The backscatter values are not only affected by the land cover but also the incidence angle. In
order to detect changes in the backscattering due to changes in surface state, it is necessary to
eliminate the effect of the incidence angles by normalizing the incidence angle effect. This
approach has been presented in this study of estimating soil moisture from ERS44 and
ENVISATASAR data,34 and mapping crops from ASARWS data.35 The effect of the incidence

Fig. 7 Locations of field sample points over the Mekong Delta surveyed from December 26 to
31, 2017.
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angle on the backscatter values of the VVand VH polarizations need to be evaluated for different
land cover types, and in particular for rice, the angular effect can change with the plant growth
stages. This is because of the different angular variations of the backscatter of areas with surface
or volume scattering. However, for Sentinel-1 over the Mekong delta with the incidence angle
range of 31 deg to 46 deg, the angular behavior of the volume scattering, which can be modeled
as a cosine function of the incidence angle, will have a small change, whereas the surface scat-
tering, depending on the surface roughness, can have a large variation across the range. For rice
fields which correspond to surface scattering at the beginning of the season and volume scatter-
ing at the peak growth season (and in between, surface-volume interaction), a simple approach is
to neglect the variation due to volume scattering, in this case, surface scattering variation can be
normalized. The water surface was selected for surface scattering because it is the most easily
extracted homogeneous object in the study area where the two main branches of the Mekong
River, namely Tien and Hau Rivers, flow across the study area. Figure 8 shows the spatial
distribution of the incidence angle across the Mekong Delta.

The results of the relationship between the scattering values of the water surface of the VH
polarization are shown in Fig. 9(a). It indicates that the change of the incidence angle has an
effect on the scattering values in 3 subswaths. This will affect the result of the developed algo-
rithm to extract information of the planting date or the rice age in large areas with a large change
in the incidence angle. Water surface value changes continuously from −21 to −34 dB depend-
ing on the change of the incidence angle. Therefore, it is necessary to normalize the incidence
angle to eliminate its effect on the Sentinel-1 images.

To normalize the influence of the incidence angle, this study proposed an empirical formula
presented as Eq. (1). The formula normalizes the backscatter coefficient at any incidence angle to
the backscatter coefficient at an incidence angle of 41 deg. The backscatter value was normalized
to an incidence angle of 41 deg because this is the incidence angle at the 60 sample fields in An
Giang province, and to facilitate comparison with the measured field data. The empirical equa-
tion is expressed as

EQ-TARGET;temp:intralink-;e001;116;412σnor ¼ σ0 − σφ þ σ41; (1)

where σnor is the normalized backscatter coefficient, σ0 is the unnormalized backscatter coef-
ficient, σφ ¼ yðφÞ is the backscatter coefficient for modeling the incidence angle, and σ41 is the
backscatter coefficient at an incidence of 41 deg.

The equation for modeling the incidence angle of the VH polarization can be divided into
three parts corresponding to different incidence angles of different subswaths. The function
yVHðφÞ of the polarization is expressed in detail in the following equation:

Fig. 8 Spatial distribution of incidence angles in Sentinel-1 image over the Mekong Delta.
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EQ-TARGET;temp:intralink-;e002;116;444yVHðφÞ ¼
8<
:

0.1527φ2 − 10.464φþ 154.53; 41.5 ≤ φ < 46.0

0.4274φ2 − 33.654φþ 635.11; 36.5 ≤ φ < 41.5

1.1847φ2 − 103.58φþ 2233.9; 31.0 ≤ φ < 36.5

; (2)

EQ-TARGET;temp:intralink-;e003;116;382yVVðφÞ ¼ −0.559φþ 1.9368: (3)

The results of incidence angle normalization of the VH polarization are presented in
Fig. 9(b). The findings indicate that the scattering values of the water surface after normalization
are almost stable with the change of the incidence angle. Figure 9(c) shows that the relationship
between the scattering coefficient of the VV polarization and the incidence angle is almost linear.
Thus the equation for modeling the incidence angle of the VV polarization will be simpler with
different incidence angles. The function yVVðφÞ of the VV polarization is presented in detail in
Eq. (3). The results of incidence angle normalization of the VV polarization are illustrated in
Fig. 9(d). It shows that the backscatter values of the water surface after normalization have a
stable range of values with respect to the incidence angle.

2.2.3 Fast Fourier transform filter

Although the use of multitemporal data effectively reduces the amount of speckle noise, the time
series of scattering values still show significant differences related to morphology or land cover
changes. Interpolation of data gaps and smoothing to reduce noise are often encountered when
processing time-series data.

The phenomenon of noise due to sudden anomalous changes to each pixel is detected by
performing an initial harmonic analysis based on a period of ∼5 to 6 months, which is the mini-
mum time required to achieve satisfactory results for a rice crop. The harmonic analysis is based
on fast Fourier transformations which have a strong impact on noise phenomena in a time
series.45 The Fourier transform allows decomposing a time-dependent periodic signal into the
frequency domain, through which frequency information is expressed as the constituent sine and
cosine functions.46 Thereby, the Fourier transform decomposes different components of the fre-
quency of the time series into different harmonic waves, and each harmonic wave is character-
ized by a unique amplitude and phase for the data series.47 According to Moody and Johnson,48

Fig. 9 The backscatter values of the (a) VH and (c) VV polarizations of the water surface affected
by the incidence angle, and the backscatter values of the (b) VH and (d) VV polarizations of the
water surface after incidence angle normalization.
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for plant morphology, the main signal concentrated on low-order harmonic waves and high-
frequency signals are usually noise. In the case of rice fields, for the VH backscatter time series,
the main signals from orders of 1 to 4 for a 5- to 6-month period were investigated, while the
anomalous noise was the components in higher order. The analysis results for the VH data series
for the main subjects on the image over a 5-month period showed that this filtering method
strongly affects water surface, perennial trees, urban areas, and aquaculture lands, which have
relatively stable scattering values. This helps to eliminate sudden anomalous variations (Fig. 10).
Figure 10 also shows that the scattering pattern of rice fields is almost not affected by this filter
method.

2.2.4 Smoothing filter

Fast Fourier transform (FFT) filtering has no significant effect on the backscatter curve of the
paddy fields. Therefore, a more efficient filtering method for multitemporal scattering of rice
fields should be considered. This can be performed by applying a Savitzky–Golay (SG) smooth-
ing filter49 programmed in interactive data language (IDL). The SG algorithm can generally be
described as a moving window filter that uses linear least squares regression to fit a data series.50

The implementation of SG filter has the ability to smooth the data series and increase the signal-
to-noise ratio without distorting the signal. However, the decisive factor lies in the choice of the
correct window size, which is especially important for large areas with very irregular soil surface
morphology over time, as rice fields in this case. Large window sizes lead to smoother curves,
though its ability for monitoring the short-term changes is more limited. It is obvious that the
rapid change in morphology, as the much changes in scattering values at growth stages, is not
fully preserved with SG filter if a large window size is applied. In contrast, a small window size
can overcome this problem, often resulting in local noise reduction of rice fields and creating a

Fig. 10 VH backscatter time series of land covers before and after FFT filtering, in which the data
series has been processed with multitemporal speckle filter and incidence angle normalization.

Fig. 11 VH backscatter time series for rice fields in the following cases: multitemporal speckle
filter, incidence angle normalization, FFT, and smoothing filter.
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smooth time series that mimics the typical backscattering pattern of a rice crop. As a result, a SG
filter with a small window size (three observations) was applied to the pixels of rice fields in the
VH polarization data series of 5 to 6 months (Fig. 11).

2.3 Extraction of Phenological Parameters

The expected rice parameters extracted from the Sentinel-1 image data include planting date
(sowing/transplanting), harvest date, and the number of days after planting (rice age). Biological
data are extracted for each growing season based on a time series that has been interpolated and
smoothed. This information will be extracted from the data series through conditional functions
programmed in IDL. Thresholds for sowing/transplanting (Thr_dop) and harvest (Thr_doh)
dates were determined based on statistical values from field-surveyed samples. The beginning
and end of the growth cycle have been determined by special points in the multitemporal data
series.

Accurate determination of rice age in agriculture is a result of changes in cultivation practices
and the growth stages. This study investigated the backscattering model of three different rice
varieties with different growth cycles including: OM5451 (90 to 95 days), Nep (95 to 100 days),
and DS1 (Taiwan rice variety, 105 to 110 days). The changes in the scattering coefficients of VH,
VV polarizations, and VH/VV ratios of OM5451, Nep and DS1 are described in Figs. 12–14,
respectively.

Figures 12–14 reveal that sowing/transplanting and harvest dates can be determined using
VH polarization. The scattering value of VH polarization increases with the increase in the

Fig. 12 Multitemporal radar scattering coefficient of OM5451 for (a) VH, (b) VV polarizations, and
(c) VH/VV ratio of Sentinel-1 images for 2017 autumn–winter crop. This rice variety has a growth
cycle of 90 to 95 days.
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number of days after sowing/transplanting, especially after about 20 days for all long-cycle
and short-cycle rice varieties and this was the basis for the method of determining sowing/
transplanting dates. To determine the sowing/transplanting date, the study used VH-polarized
data series, where σVHðiÞ is the backscatter value with i ¼ 1; : : : ; n, and n is the number of obser-

vations in the data series. Let dayðiÞ be the image acquisition date of the i’th image in the data
series, as coded in Algorithm 1.

All short-to-long rice varieties show that the common harvest date is always equal to or
longer than the growth cycle. This is explained by the fact that rice fields are usually planted
in each subregion with the same irrigation or dyke system and with nearly the same sowing/
transplanting date. This facilitates soil preparation, irrigation, and harvest in each area.
Therefore, in each subregion with the same irrigation system, the harvest dates will be almost
the same and so some early ripening fields are ready to be harvested but not yet harvested. To
determine the harvest date, the study also used the VH-polarized data series as shown in
Algorithm 2.

2.4 Validation

To evaluate the effectiveness of the rice age estimation model, the study used field data surveyed
over the Mekong Delta collected at the same time. The effectiveness of rice age estimation mod-
els was assessed by the determination of coefficient (R2) between the data estimated from images
and field data. In addition, the results were also quantified by RMSE and Bias error. The evalu-
ation of estimation accuracy was performed using a cross-validation method for the rice age

Fig. 13 Multitemporal radar scattering coefficient of Nep for (a) VH, (b) VV polarizations, and
(c) VH/VV ratio of Sentinel-1 images for 2017 autumn–winter crop. This rice variety has a growth
cycle of 95 to 100 days.
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dataset between field verification and estimated values.51 The higher the R2 coefficient between
the two data series, the higher the significance level, and so the higher the accuracy of the esti-
mation model. An RMSE with an ideal value of zero means that the estimation model has the
best accuracy. However, this may not happen in practice and RMSE often only reaches an
expected value that can be accepted when applying the model. Similarly, the Bias value and
mean absolute error (MAE) have an ideal value of zero, which is usually the smaller the better.
RMSE, Bias, and MAE values were calculated using Eqs. (4)–(6):

EQ-TARGET;temp:intralink-;e004;116;101RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi − ŷiÞ2
s

; (4)

Fig. 14 Multitemporal radar scattering coefficient of DS1 for (a) VH, (b) VV polarizations, and
(c) VH/VV ratio of Sentinel-1 images of 2017 autumn–winter crop. This rice variety has a growth
cycle of 105 to 110 days.

Algorithm 1 Determining the date of planting (dop).

for i ¼ 1, n − 4 do

if {½σVHðiþ4Þ − σVHðiÞ � >= Thr _dop} and [σVHðiÞ < −18 dB] and [σVHðiþ4Þ > −21 dB] then begin

dop ¼ dayðiÞ − 3

i_dop = i

endif

endfor

Phung et al.: Monitoring rice growth status in the Mekong Delta, Vietnam. . .

Journal of Applied Remote Sensing 014518-14 Jan–Mar 2020 • Vol. 14(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 26 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e005;116;497Bias ¼ 1

n

Xn
i¼1

ðyi − ŷiÞ; (5)

EQ-TARGET;temp:intralink-;e006;116;458MAE ¼ 1

n

Xn
i¼1

jyi − ŷij; (6)

where yi, ŷi are estimated values and ground data values, respectively, and n is the number of
samples.

3 Results

3.1 Effect of Incidence Angle on Backscatter Pattern of Rice Fields

The application of the normalized method for backscatter measurements ensures the equivalence
of the scattering signal of similar object types located at different incidence angles in the images.
Figures 15(a)–15(f) illustrate the scatter patterns of different incidence angles for the two cases of
original and normalized values of the incidence angle of backscattering for rice, perennial plants,
and water surface. The comparison between the normalized scattering values and the incidence
angle of 41 deg in the sample points surveyed in An Giang province [Fig. 15(d)] shows that there
is not much difference between the scattering data series before and after normalization. In con-
trast, Figs. 15(a), 15(b), and 15(e) show a significant difference between the scattering data series
before and after incidence angle normalization.

3.2 Spatio-Temporal Growth Stages of Rice Paddy Cultivation in the
Mekong Delta

Most rice areas are planted in the Vietnamese Mekong Delta with two or three crops per year,
namely winter–spring, summer–autumn, and autumn–winter crops. The rice age map of 2017
autumn–winter crop estimated from the Sentinel-1 image data series is shown in Fig. 16.
Throughout the study area, the map shows that the rice age of different growing regions in the
Mekong Delta is different, corresponding to the different growth stages or sowing/transplanting
dates. Rice age was classified into 12 information layers with a 10-day interval after sowing/
transplanting, corresponding to the longest rice variety planted in this area (nearly 120 days),
although common rice varieties in the Mekong Delta are 85 to 105 days. There were some areas
where the late autumn–winter crop has not been harvested yet on December 31, 2017, such as
those in Bac Lieu and Soc Trang provinces. At the same time, there were some areas where the

Algorithm 2 Determining the date of harvest (dop) and days after planting (dap).

if {[day(n) – dop >= 70] and [day(n − 2) − day(i_dop + 10) > 0]} then begin

for i = i_dop +10, n − 2 do

if {[σVHðiÞ − σVHðiþ2Þ] >= Thr_doh} and [σVHðiÞ > −18 dB)] then begin

doh = day(i)

i_doh = i

endif

endfor

endif

Days after planting (dap) is calculated by the formula as follows:

dap = day(i) – dop
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Fig. 16 Rice age map on December 31, 2017, in the Mekong Delta derived from Sentinel-1 multi-
temporal data from August 03 to December 31, 2017.

Fig. 15 Multitemporal backscattering coefficients of rice, water surface, and perennial trees for VH
polarization of Sentinel-1 images in 2017 autumn–winter crop before and after incidence angle
normalization. Backscattering coefficients at different incidence angles include (a) 32 deg,
(b) 35 deg, (c) 37 deg, (d) 40 deg, (e) 43 deg, and (f) lines showing the backscatter coefficients
of the water surface at different incidence angles.
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2017 autumn–winter crop has been harvested but have not been sown/transplanted for new crops
as in some parts of An Giang, Long An, and Tra Vinh. On the southern coast of the Mekong
Delta, rice fields were sparse, especially visible in the southern parts of Ca Mau, Bac Lieu, and
Soc Trang provinces.

3.3 Validation of Rice Age Map

A part of the estimation results for rice age was the determination of sowing/transplanting and
harvest dates for rice paddy fields. Figure 17 presents the results of the comparison between
sowing/transplanting dates estimated from VH-polarized series and field-surveyed data. The
time to determine the rice age from the image data is on December 31, 2017, and the time

Fig. 17 Comparison of sowing/transplanting and harvest dates estimated from Sentinel-1 data on
December 31, 2017, and field-surveyed data from December 26 to 31, 2017, in the Mekong Delta.

Fig. 18 Comparison of rice age estimated from Sentinel-1 data on December 31, 2017, and field-
surveyed data from December 26 to 31, 2017, in the Mekong Delta.
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to collect field information on sowing/transplanting and harvesting dates is from December 26 to
31, 2017. The comparison results show the ability of Sentinel 1 data to accurately estimate
sowing/transplanting and harvest dates of rice fields as indicated by high coefficients of deter-
mination, respectively, R2 ¼ 0.917 and R2 ¼ 0.697 (Fig. 17).

To assess the ability to estimate the rice age close to real time, the dataset from August 03 to
December 31, 2017 was used to produce the rice age map on December 31, 2017. Figure 18
describes the differences in the stages of rice age, depicting the difference between the estimated
days after sowing/transplanting and field data collected on December 26 to 30, 2017. It is easy to
see the potential application of the multitemporal Sentinel-1 satellite data for near-real-time rice
age monitoring. The differences between the actual collected dates and estimated dates corre-
spond to RMSE ¼ 7.4 days, Bias ¼ −0.7, MAE ¼ 6.2 days, and the coefficient of determina-
tion between these two quantities is R2 ¼ 0.918 (n ¼ 241). However, it is also noted that the
ability to accurately identify rice age ranging from 0 to 20 days is low. This is due to the limi-
tation of the method using backscatter when determining low biomass rice fields that are <20
days old after planting. The result of the rice age map compared with field photos is presented
in Fig. 19.

4 Discussion

Remote sensing data at a single time often does not meet the needs of agricultural monitoring.
Therefore, the use of SAR data series is becoming more and more popular in multitemporal
analysis methods. Sentinel-1 SAR data, which are freely available, becomes a reliable source
of building a multitemporal dataset with the frequency required for agricultural applications. The
Sentinel-1 with IW swath mode allows images to be captured over a large swath width of 250 km
and high spatial resolution of 20 m. However, to derive applications for a large region such as the
Mekong delta requires data preprocessing steps such as incidence angle normalization in addi-
tion to reduction of speckle noise.

In this study focused on the rice backscatter time series, the incidence angle was normalized
by applying the nonlinear quadratic function to the VH polarization for the water surface to

Fig. 19 The result of the rice age map and field photos taken from December 26 to 31, 2017, in the
Mekong Delta.
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match the backscattering of the surface scattering in rice fields, which has a much more impor-
tant angular variation than that of the volume scattering (Fig. 9). The proposed method resulted
in the similar backscatter temporal variation of the rice fields across incidence angles after nor-
malization as shown in Fig. 15. After normalization, the effect of rice growth stages is a major
contributor to backscatter changes in a time series.

With regards to SAR data processing, it is essential to implement multitemporal data process-
ing methods to improve data quality and significantly reduce speckle noise. The time series data
acquired from Sentinel-1A and B will play a vital role in providing high-quality data in terms of
temporal and spatial resolution. This will enable the use of pixel-based approaches, which are
simpler and less time-consuming than other approaches.52,53 Our processing algorithm has cre-
ated a time series of backscatter data where the noise has been filtered by FFT (Fig. 10) and
smoothing (Fig. 11) techniques. Thus this allows evaluating the changes in scattering values of
the predominant rice growing areas, determining the parameters of rice age, as well as the plant-
ing and harvest dates. If an area with minor changes in actual sowing/transplanting and harvest
dates, time-smoothing methods can allow better identification, classification, and detection of
rice areas without losing too much time information.

Analysis of multitemporal high-resolution SAR data, especially using the backscatter coef-
ficient (σ0) from C-band, is highly suited for detecting flooded rice paddies.13 This is particularly
advantageous in the tropical monsoon regions in Asia where most of the world’s rice is produced
in large areas and in cloudy conditions.17,25 Today, we know that the applicability of SAR data is
of great potential including the use of the Sentinel-1 data archive, which is free, with extensive
coverage, and high temporal resolution. These advantages allow for the creation of consistent
and high-resolution rice age maps with nationwide coverage. High temporal resolution (6 days)
enables near real-time monitoring of agricultural information such as rice age with an appropriate
interval. For example, the plan in the Sentinel-1A and B mission will allow creating monthly or
weekly datasets of rice age nationwide. In addition, the proposed rice age monitoring algorithm
allows the use of high-resolution SAR time series to provide information on the growth stages of
rice, especially such as the time of sowing/transplanting and harvest in the growing areas. This
will facilitate and provide important information to the agricultural management organizations.

The results of this research are very encouraging in comparison to other studies37,38 in
terms of quality and consistency despite differences in data used and study area. This study
proposed an algorithm for estimating planting date (sowing/transplanting) for Sentinel-1 C-band
IW images for a large area with better results, i.e., with R2 ¼ 0.917 and RMSE ¼ 6.2 days
(n ¼ 153). This proves that the determination algorithm of sowing/transplanting dates using
multitemporal data series can be applied in practice with RMSE nearly equivalent to the temporal
resolution of Sentinel-1 images.

The accuracy evaluation of harvest date estimated by the algorithm highly correlates with the
field surveyed date with R2 ¼ 0.697 and RMSE ¼ 5.7 days (n ¼ 88). Several studies13,54 show
that the C-band SAR backscattering reaches its maximum at the ripening stage, which is attrib-
uted by angular scattering from upright structures of plants and water surface. Torbick et al.55

used Sentinel-1 time-series analysis to determine the area of rice harvested in Myanmar and
compared it with the area survey statistics, obtaining an R2 ¼ 0.78. This study shows the poten-
tial for determining harvest dates with time-series analysis of rice growth stages. This study
considers a fuller evaluation, in which our proposed method seems to be more promising for
practical applications. At the same time, this study also showed that the VH polarized scattering
values decreased after the rice fields were harvested as the basis for determining the harvest date.

To evaluate the rice age map on December 31, 2017, using Sentinel-1 image dataset for the
last 5 months from August 3 to December 31, 2017, this study has used the field dataset cor-
responding to the time of creating the rice age map from December 26 to 31, 2019. The results
obtained have a strong correlation between the estimated rice age and the actual rice age with an
R2 ¼ 0.918 and RMSE ¼ 7.4 (n ¼ 241). These outcomes show that the image dataset used over
the last 5 months was able to create a rice age map with appropriate accuracy. In addition, the
study also found that if the rice fields had days <20 days after planting, it was unlikely to be
identified on radar images. This can be easily seen in Figs. 12–14, where the backscattering
values of rice <20 days old are very low corresponding to the scattering of wet soil or water
surface, because rice plants at this stage are still young with low biomass. At the same time, the
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research results show that the sowing and transplanting methods have an effect on the scattering
pattern of rice plants (Figs. 4–6), but it does not greatly affect the algorithm for determining
sowing/transplanting date and on the evaluation results with field data.

However, because the algorithm for determining the rice age is based on an empirical model,
it is developed and verified with specific field data of rice cultivation technique in the Mekong
Delta. Hence, to apply in other areas, the algorithm needs to be verified before adoption. Even
though, the general research methods developed here can be applied to all regions of the world.
The study also showed similar results to previous studies which suggested that C-band SAR data
could track the changes in the growth stages of agricultural crops.18,56 The potential for practical
application of SAR data to determine sowing/transplanting and harvest dates, rice age, and
growth was demonstrated in this study. The differences in sowing/transplanting dates across
the study area led to differences in crop growth among rice fields in each region. This is due
to the influence of irrigation conditions, dike systems, and local environmental conditions and
hence having different cropping systems. Therefore, the proposed rice age monitoring method
has taken the advantages of SAR data to detect and map rice growth.

5 Conclusions

The feasibility of using C-band SAR data to monitor rice age, planting and harvest dates of
the rice fields was presented. C-band Sentinel-1A and B image-series data with IW swath mode
acquisition was collected in the Mekong Delta of Vietnam from August 03, 2017, to February
17, 2018. The data were preprocessed and filtered carefully with FFT and SG filters. The image-
series data were then normalized to the same incidence angle for the entire image to reduce the
effect of the incidence angle on the radar backscatter value. The study developed an algorithm to
determine rice age, planting and harvest dates suited to the processed data series. This study has
significantly contributed to the understanding of the response of polarized SAR data to the devel-
opment of rice plants according to the growth cycle. The results show the high sensitivity of VH
polarization when determining rice growth status parameters.

The results show the applicability of the rice age determination algorithm, which can be used
to monitor sowing/transplanting and harvesting dates during the growth stages with data series
that have been preprocessed. Furthermore, the results of the analysis show that changes in back-
scatter values are more sensitive to changes in soil conditions and growth stages, which is impor-
tant when applying algorithms to data time series. Therefore, the information about rice age
corresponding to the growth stages of the rice field is important for agricultural management
such as irrigation management, fertilizer application or pest prevention according to the growth
stages of rice fields. In addition, the results are also able to provide important information for the
procurement of agricultural products in each region, and to minimize the negative effects of the
market on food security.

The results also emphasize the importance of preprocessing, noise filtering of time-series
data, and incidence angle normalization based on SAR data for crop monitoring on large areas
where the effect of incidence angles is significant. The Mekong Delta has very different
sowing/transplanting dates, depending on the local conditions of the region and the rice crop,
which leads to difficulties in statistical and agricultural management according to traditional
methods. The results not only help determine the rice age in a timely manner with near
real-time data, but it can also assist in improving management plans in agricultural farming,
as well as allow farmers/managers to develop optimal strategies for managing agricultural land
to ensure productivity.

The results of this study are based on the analysis of C-band SAR data-series and field-
surveyed data to propose appropriate rice age monitoring algorithms. As the approach used
in this study is based on pixels, the mixed pixels of rice fields may cause confusion or estimation
errors—a potential constraint of the method. However, the Sentinel-1 image data have a pixel
size of 10 m, which greatly reduces this effect. From the application perspective, it is necessary to
evaluate the method more comprehensively for other rice seasons in a year or in another areas. In
future studies, it is necessary to investigate the application of this method to an area with different
farming conditions and the adaptation of this method to other agricultural crops.
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