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Abstract 

Semiconducting microbelts are key components of the thermoelectric micro-devices, and their 

electrical transport properties play significant roles in determining the thermoelectric 

performance. Here, we report heavily Cu-doped single-crystal SnSe microbelts as potential 

candidates employed in thermoelectric micro-devices, fabricated by a facile solvothermal route. 

The considerable Cu-doping concentration of ~11.8 % up to the solubility contributes to a high 

electrical conductivity of ~416.6 S m-1 at room temperature, improved by one order of magnitude 

compared with pure SnSe (38.0 S m-1). Meanwhile, after loading ~1 % compressive strain and 

laser radiation, the electrical conductivity can be further improved to ~601.9 S m-1 and ~589.2 S 

m-1, respectively, indicating great potentials for applying to thermoelectric micro-devices. 

Comprehensive structural and compositional characterizations indicate that the Cu+ doping state 

provides more hole carriers into the system, contributing to the outstanding electrical 

conductivity. Calculations based on first-principle density functional theory reveal that the 

heavily doped Cu lowers the Fermi level down into the valence bands, generating holes, and the 

1 % strain can further reduce the bandgap, strengthening the ability to release holes, and, in turn, 

leading to such an excellent electrical transport performance. This study fills the gaps of finding 

novel materials as potential candidates employed in the thermoelectric micro-devices and 

provides new ideas for micro/nanoscale thermoelectric material design. 

Keywords: tin selenide, electrical transport performance, Cu-doping, strain loading, laser 

radiation. 
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1. Introduction 

With the aggravation of energy and environmental crises, achieving higher energy utilization 

efficiency has become one of the most effective ways to solve the problems. Thermoelectric 

materials can realize the direct conversion between thermal and electric energies, which are 

expected to be widely applied in the field of waste heat recovery and power generation [1-4]. To 

evaluate the thermoelectric conversion efficiency of materials, a dimensionless figure-of-merit 

ZT has been defined as ZT = S2
σT/κ, where S is the Seebeck coefficient, σ is the electrical 

conductivity, T is the absolute temperature, and κ is the thermal conductivity, respectively [5-9]. 

A high ZT requires a high power factor (S2
σ) and a low κ, and a high σ is of significance to 

ensure a high thermoelectric power generation [10-12]. To achieve a high σ, a high carrier 

concentration n (for electrons) or p (for holes) is needed according to σ = neµ or peµ, where e is 

the electrical charge and µ is the carrier mobility [13-15], respectively. For most of the 

thermoelectric materials, to achieve high ZTs, their pristine n or p values need further tuning to 

achieve a high σ and in turn, a high S2
σ [16], as shown in Figure S1 in Supporting Information, 

and doping and alloying are two effective ways to achieve this goal [3, 17-19]. 

As a key member in the thermoelectric family, microscale thermoelectric devices (or 

thermoelectric micro-devices) have been paid considerable attention in recent years due to their 

full potentials for employing in continuous power generation and refrigeration for various 

applications [2, 20], such as the thermoelectric windows embedded with micro-generators that 

can produce electricity by collecting the heat from outdoor [21, 22], and the thermoelectric 

micro-coolers that can cool the processors during working in electronic devices [23]. Microscale 

single-crystal semiconductors are suitable candidates for employing in these thermoelectric 
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micro-devices, and their electrical transport properties (mainly σ) play significant roles in 

determining the thermoelectric performance [24, 25]. However, restricted by the considerable 

crystal dimensions up to several hundred micrometers for applying to microdevices, exploring 

ideal single crystal thermoelectric materials with both suitable crystal size and high 

thermoelectric performance are historically tricky [7, 26]. To solve this issue, SnSe has been 

considered as a good candidate due to their controllable size of synthesized single crystals, 

abundance in raw materials, environmentally friendly feature, high cost-effectiveness, and 

excellent thermoelectric performance resulted from their suitable band-gap values of ~0.9 eV and 

ultra-low κ derived from their specific anharmonic layered crystal structure, as shown in Figure 

S2 [6, 27-29]. However, the synthesized SnSe single crystals by transitional aqueous solution 

routes such as hydrothermal or solvothermal methods were typical microplates due to their 

orthorhombic crystal nature [28-33], which need further cutting into microbelts for applying to 

microdevices; at the same time, due to the low p of pristine SnSe, σ from these microplates still 

need further improvement such as doping to achieve a high thermoelectric power generation 

[34]. Besides, the loading of stress (or strain) should also influence σ of SnSe microcrystals 

because the strain can change the atomic spacing and in turn alter the band structure, leading to 

the change of electrical properties of materials. Since any materials should be stressed during 

their applications, and since band structures of any semiconductors change under strain, it is 

critically important to clarify the band change of thermoelectric materials during their service 

[34]. However, very few experimental studies have been performed on the influence of strain 

loading on σ of SnSe microscale single crystals. Furthermore, whether there are any other 

potential assistant techniques such as laser radiation that can further improve σ of SnSe 

microscale single crystals is unknown. 
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In this study, we fabricated heavily Cu-doped single-crystal SnSe microbelts as potential 

candidates targeting thermoelectric micro-devices through a facile solvothermal route. The Cu-

doped SnSe can induce morphologies transferring from rectangular microplates to microbelts, 

which is suitable for direct use in the micro-devices, avoiding any further processing. A 

considerable Cu solubility of ~11.8 % in SnSe contributed to a high σ of ~416.6 S m-1 at room 

temperature, improved by one order of magnitude compared with pure SnSe microplates (38.0 S 

m-1). It is found that, after loading ~1 % compressive strain and laser radiation, σ can be further 

improved to ~601.9 S m-1 and ~589.2 S m-1, respectively, indicating great potentials for them to 

be used as thermoelectric micro-devices. To study the fundamental mechanism of heavily Cu-

doping on improving the electrical transport performance of SnSe, morphological, structural, and 

compositional characterizations including X-ray diffraction (XRD), scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS), spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), 

and X-ray photoelectron spectroscopy (XPS) were comprehensive investigated, and the results 

indicate that both Cu2+ and Cu+ doping states were found in heavily Cu-doped SnSe, and the Cu+ 

doping state can provide more hole carriers into the system, contributing to an improved p and in 

turn an enhanced σ. Besides, we performed detailed calculations based on first-principle density 

functional theory (DFT), and the results indicate that the doped Cu enables the Fermi level to 

move toward the valence band, and 1 % compressive strain can further reduce the bandgap, 

leading to such an excellent electrical transport performance. This study fills the gaps of finding 

novel materials as potential candidates employed in the thermoelectric micro-devices and 

provides new ideas for micro/nanoscale thermoelectric material design. 
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2. Results and Discussion 

Figure 1(a) shows the XRD patterns taken from synthesized pure SnSe, 2 % Cu-doped SnSe, 

and 11.8 % Cu-doped SnSe, respectively, in a 2θ range from 20° to 70°. The peak intensities 

were normalized for comparison. The Cu solubility of ~11.8 % was determined by the EDS 

when 20 at% Cu was chosen as a nominate doping concentration. As can be seen, all diffraction 

peaks can be exclusively indexed as the orthorhombic-structured SnSe with lattice parameters of 

a = ~1.14 nm, b = ~0.42 nm and c = ~0.44 nm and a space group of Pnma (JCPDS 48-1224) . 

The strongest peaks of 400* indicate that all products should possess significant �100� surfaces, 

making other peaks weak and hard to identify, similar to the bulk single crystals [6, 35, 36]. 

Figure 1(b) shows detailed 400* and 111* diffraction peaks in a 2θ range from 30° to 31.5°, 

magnified from Figure 1(a), from which, with increasing the Cu-doping concentration, all peaks 

shift towards a higher 2θ. Since the sizes of Cu ions (0.077 nm for Cu+ and 0.074 nm for Cu2+) 

are smaller than Sn ions (0.112 nm for Sn2+) [37], the peak deviation indicates that Cu atoms are 

incorporated into the SnSe lattice. Besides, with increasing the Cu-doping concentration, 111* 

peaks become weaker, indicating the variation of crystal dimensions [6, 28]. 
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Figure 1. Structural and morphological characterizations on synthesized SnSe single 

crystals with different Cu-doping concentrations. (a) XRD patterns in a 2θ range from 20° to 

70°, (b) magnified XRD patterns in a 2θ range from 30° to 31.5°. The peak intensities have been 

re-scaled for better comparison. (c) Low and (d) high magnification SEM images of SnSe 

microplates, (e) low and (f) high magnification SEM images of 2 % Cu-doped SnSe microbelts, 

and (g) low and (h) high magnification SEM images of 11.8 % Cu-doped SnSe microbelts. 
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To understand the morphological characteristics of our synthesized products, SEM investigation 

was performed. Figures 1(c-d) show low and high magnification SEM images of pure SnSe 

products, from which typical microplate-like products with an average dimension of ~50 µm can 

be observed. These significant �100� surfaces explain why 400* is the strongest peak, as shown 

in the XRD pattern. Figures 1(e-f) show SEM images of 2 at % Cu-doped SnSe products. 

Interestingly, the Cu-doping can transfer the shape of synthesized products from rectangular 

microplates to microbelts, indicating that Cu-doping may alter the growth direction of SnSe 

crystals. Figures 1(g-h) show SEM images of 11.8 % Cu-doped SnSe products. Surprisingly, 

with increasing the Cu-doping concentration, the dimensions of these microbelts were 

significantly enhanced, up to several hundreds of micrometers. Meanwhile, combined with the 

XRD results shown in Figures 1(a-b), we confirm that the �100� are still the most significant 

surfaces on these microbelts. Corresponding optical images of our synthesized products can be 

seen in Figure S3 for reference, and the refined lattice parameters as a function of Cu-doping 

concentration are shown in Figure S4, from which a shrinkage of unit cell can be observed by 

Cu-doping. 

To clarify the Cu doping behaviour in SnSe, comprehensive TEM, EDS, and Cs-STEM 

investigations were performed. Figures 2(a-c) respectively show EDS spot analyses of three 

typical products, in which the corresponding EDS maps are also provided as insets. All the 

elements (Sn, Se, and Cu) are homogeneously distributed, indicating the homogeneous Cu 

doping in SnSe. Figure S5 summarizes the comprehensive EDS spot data to confirm the ~11.8 

% solubility of Cu in SnSe microbelts by the solvothermal route. Figures 2(d-f) show high-

resolution TEM (HRTEM) images with insets of corresponding fast Fourier transform (FFT) 

patterns, all viewed along the �100� zone-axes. The FFT patterns were acquired from the entire 
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samples for Cu-doped microbelts. These patterns indicate typical orthorhombic structures for all 

products with significant �100�  surfaces. Interestingly, with increasing the Cu-doping 

concentration, the lattice variations become more significant, probably derived from the doping 

of Cu in SnSe during solvothermal synthesis under high temperature and high vapor pressure 

[27, 29], which cause considerable lattice distortions. Meanwhile, after Cu-doping, multiple FFT 

patterns with slight deviations can be observed, indicating that the Cu-doping can probably result 

in local crystal bents, mainly derived from the severe lattice distortions. Figures 2(g-i) show Cs-

STEM high-angle annular dark-field (HAADF) images viewed along the �100� directions, and a 

crystal structure of SnSe is shown in Figure 2(g) as inset [6, 15, 27, 29]. With increasing the Cu-

doping concentrations, the non-uniform contrast and varied structural patterns become more 

significant (as the arrows showed), confirming the severe strains in the SnSe lattice by heavily 

Cu-doping, mainly derived from the ion difference between Sn and Cu. 
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Figure 2. Compositional and structural characterizations on synthesized SnSe single 

crystals with different Cu-doping concentrations. EDS results of (a) SnSe microplates, (b) 2 

% Cu-doped SnSe microbelts, and (c) 11.8 % Cu-doped SnSe microbelts, respectively, including 

spots and maps as inset. HRTEM images with inset of FFT patterns of (d) SnSe microplates, (e) 

2 % Cu-doped SnSe microbelts, and (f) 11.8 % Cu-doped SnSe microbelts, respectively, viewed 

along the �100� directions. Cs-STEM-HAADF images of (g) SnSe microplates, (h) 2 % Cu-

doped SnSe microbelts, and (i) 11.8 % Cu-doped SnSe microbelts, respectively, viewed along 
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the �100� directions. A crystal structure of SnSe (room temperature Pnma phase) is shown in (g) 

as inset [6, 15, 27, 29]. 

 

To understand the electrical transport performance of our synthesized SnSe single crystals with 

different Cu-doping concentrations, we employed an electrical test sample rod manufactured by 

Nanofactory, as schematically shown in Figure 3(a), in which the sample rod is driven by a 

piezoelectric ceramic to realize the movement of the W tip in three dimensions. By controlling 

the movement of the W tip, the current-voltage (I-V) curve of different samples under specific 

stress/strain loading can be realized. Figure 3(b) shows an optical image of the setup of the 

electrical measurement when a SnSe microbelt is connected by a Au wire. When the W tip 

contact with the sample, a closed circuit system is formed, and the corresponding I-V curve can 

be obtained. The maximum voltage loading range is from −10 to 10 V, and the piezoelectric 

drive system can drive the W tip to stress the SnSe belt, and the electrical transport performance 

under strain loading can then be evaluated. Figure 3(c) and 3(d) show SEM images of 11.8 % 

Cu-doped SnSe microbelt and a pure SnSe microbelt, both with one end fixed on the gold wire, 

achieved by the focused ion beam (FIB) technique. The size of the selected SnSe microbelt is 

comparable to that of the W tip, leading to a good contact to form a closed loop. 
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Figure 3. Illustration and characterizations of the electrical measuring system. (a) 

Schematic diagram and (b) optical microscopy image of the electrical measuring system. The 

SnSe sample is fixed on the Au wire and contacts with a tungsten needle tip connected to the 

piezoelectric ceramic to form an electrical closure system, and the corresponding current-voltage 

(I-V) curve can be obtained by loading the voltage. SEM images taken from (c) a 11.8 % Cu-

doped SnSe microbelt and (d) a pure SnSe microbelt-like sample cut from the microplate by FIB. 

 

Figure 4(a) shows optical images of the SnSe microbelts with different Cu-doping 

concentrations during I-V curve testing by the electrical measuring system (with no stress 

loading). Figure 4(b) plots the achieved I-V curves with a fixed voltage loading range from 

−250 to 250 mV, from which linear I-V curves illustrate good ohmic contacts. It is clearly seen 

that with increasing the Cu-doping concentration, the slope of the I-V curve was greatly 

improved, and higher current values can be achieved under fixed voltage, indicating that the Cu-

doping can significantly improve the electrical transport performance of SnSe microbelts. To 

further understand the potential mechanism of Cu-doping in improving the electrical transport 
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performance of SnSe, we performed XPS analysis to confirm the valence state of Cu in our Cu-

doped SnSe microbelts, and the result of XPS spectra of Cu 2p1/2 is shown in the inset of Figure 

4(b). As can be seen, both Cu+ valence state via peak at 952.5 eV and Cu2+ valence state via peak 

at 954.5 eV can be confirmed, and Cu+ should play a dominant role in improving the electrical 

transport performance of SnSe due to the fact that Cu+ can provide more hole carriers when 

substituting Sn2+, contributing to higher p. The XPS results of Sn and Se are shown in Figure S6 

for reference. To better evaluate the electrical transport performance of these microbelts, we 

derive their σ values by considering their sizes, using the formula of σ = ILb/VSc, where I is the 

current value, Lb is the length of the microbelts, V is the voltage value, and Sc is the cross-

sectional area of the microbelts, respectively. When the microbelts have roughly round cross-

sections, Sc = πdc
2/4 was used, where d is the average diameter of the round cross-section; when 

the microbelts have roughly rectangular cross-sections, Sc = acbc was used, where ac and bc are 

the length and width values of the rectangular cross-section. Table 1 shows the determined σ of 

SnSe microbelts with different Cu-doping concentrations. For each Cu-doping concentration, we 

measure five different microbelts to statistically gain their average value (σave). It is clearly seen 

that with increasing the Cu-doping concentration, σ is significantly enhanced, and the ~11.8 % 

Cu-doping can result in a high σave of ~416.6 S m-1 at room temperature, improved by one order 

of magnitude compared with pure SnSe (38.0 S m-1). At the same time, σ of each microbelt under 

a given Cu-doping concentration is close to σave (as indicated by the error bars shown in Figure 

S7), indicating that the electrical transport properties of the synthesized materials are stable. 
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Figure 4. Evaluations of the electrical transport performance of SnSe microbelts with 

different Cu-doping concentrations. (a) Optical microscopy images of the microbelts, (b) I-V 
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curves with inset of the XPS result for Cu 2p1/2 taken from the 11.8 % Cu-doped SnSe microbelt, 

(c) determined electrical conductivity σ, evaluated Seebeck coefficient S, and estimated power 

factor S2σ, I-V curves under increasing strains for (d) SnSe, (e) 2 % Cu-doped SnSe microbelts, 

and (f) 11.8 % Cu-doped SnSe microbelts, respectively. The arrows indicate the increasing of 

strains. 

 

Table 1. Dimensions and the measured σ of SnSe microbelts. 

No. of Microbelts Cu-doping level Lb 
(µm) 

dc or ac and bc (µm) σ (S m-

1) 

1 0 31.14 1.550 and 0.209 40.67 

2 0 72.71 2.706 and 0.219 52.14 

3 0 51.74 4.072 and 0.259 19.77 

4 0 39.34 1.639 and 0.234 44.97 

5 0 33.02 1.810 and 0.239 32.55 

σave 0 — — 38.02 

1 2 % 70.79 1.713 and 0.246 57.91 

2 2 % 49.15 2.098 and 0.215 70.69 

3 2 % 57.84 1.974 and 0.254 61.77 

4 2 % 41.09 1.755 and 0.263 50.78 

5 2 % 39.17 3.029 and 0.259 75.44 

σave 2 % — — 63.32 

1 11.8 % 223.01 1.645 475.51 

2 11.8 % 134.62 1.353 422.83 

3 11.8 % 74.46 1.111 462.37 

4 11.8 % 123.83 1.424 355.79 

5 11.8 % 57.41 1.201 366.65 

σave 11.8 % — — 416.63 
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To evaluate the thermoelectric potential of the as-fabricated microbelts for applying to 

microscale thermoelectric devices, we evaluate their power factor S2σ. Although the direct 

measure of the Seebeck coefficient S is tricky for the microbelts, we can cold-press these 

microbelts into pellets and measure their room-temperature S as the references to evaluate their 

S2
σ, since the S of SnSe is weakly dependent on the measured directions (anisotropy) [6, 15, 27-

29, 32-34, 38]. Figure 4(c) shows the determined σ, evaluated S, and estimated S2
σ of SnSe 

microbelts with different Cu-doping concentrations. It is clearly seen that with increasing the Cu-

doping level, the estimated S2
σ of SnSe microbelts is significantly increased from ~7.8 µW m-1 

K-2 for x = 0 to ~36.9 µW m-1 K-2 for x = 0.118, although the S is decreased from ~451.5 µV K -1 

to 297.7 µV K -1. These results indicate that heavily Cu-doped SnSe microbelts possess great 

potential for applying to microscale thermoelectric devices. 

To understand the impact of strain on the electrical transport performance of our synthesized 

SnSe microbelts with different Cu-doping concentrations, we applied ~1 % stress on these 

microbelts during electrical testing, and Figures 4(d-f) show the measured I-V curves, 

respectively. The numbered optical images were shown as insets in these figures, indicating the 

stress loading process from 0 % to ~1 %, as illustrated by arrows. Since the higher stress loaded 

(such as >1%) may significantly increase the chance of damaging the SnSe microbelts (as shown 

in Figure S8) due to the fact that SnSe is a typical two-dimensional layer-structured 

semiconductor with a relatively low hardness [6, 33, 34], and since 1% is significant for their 

practical applications, we select the loaded strain up to ~1 % for all testing microbelts. As can be 

clearly seen in Figure 4, with increasing the stress loading, the slopes of the I-V curves become 

larger, indicating that appropriate stress applied to these microbelts can effectively improve their 

electrical transport performance. It is of interest to note that, under the same stress, the 
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improvement of σ for pure SnSe, 2 % Cu-doped SnSe, and 11.8 % Cu-doped SnSe were ~21.2 

%, ~35.6 %, and ~44.5 %, respectively, indicating that the applied stress can lead to higher σ for 

higher Cu-doped belts, and a high σave value of ~601.9 S m-1 has been achieved when ~1 % strain 

was applied to 11.8 % Cu-doped SnSe microbelts. 

To understand the fundamental mechanism of improvement on the electrical transport 

performance of SnSe microbelts by heavy Cu-doping and stress loading, we performed detailed 

first-principle DFT calculations. Figures 5(a-c) show calculated band structures of SnSe, heavily 

Cu-doped SnSe, and heavily Cu-doped SnSe with 1 % strain, respectively, and Figure 5(d) 

compares the total DOS of the three samples. As can be clearly seen, the heavy Cu-doping can 

lower the Fermi level down into the valence bands of SnSe, which can significantly generate 

holes in the system, and in turn, boost the electrical transport property of SnSe. Figures 5(e-g) 

show corresponding partial DOSs of SnSe, heavily Cu-doped SnSe, and heavily Cu-doped SnSe 

with 1 % strain, respectively. Interestingly, the Cu-d orbital plays a significant role in 

strengthening the DOS of valence band, which is mainly derived from the +1 valence state of 

doped Cu. Such a considerable improvement in DOS of the valence state can also help 

strengthen the ability of releasing holes in the system. Notice that there is an abrupt increase in 

partial DOSs in the valence band of SnSe by Cu-doping. However, since the contribution of d-

orbital of Cu in fact covers the entire valence band rather than only at the ~1.5 eV position (even 

though this position possesses the strongest peak), it is efficient enough to create extra holes in 

the systems by Cu-doping. Figure 5(h) compares the magnified total DOS of Cu-doped SnSe 

with and without 1 % strain. It is clear that after applying 1 % strain in the sample, the bandgap 

of Cu-doped SnSe can be further reduced from ~0.4 to ~0.3 eV, indicating a great enhancement 
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for the ability of generating holes and in turn, explaining why the strain-applied sample 

possesses such excellent electrical transport performance. 
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Figure 5. Calculations of SnSe single crystals. Calculated band structures of (a) SnSe, (b) 

heavily Cu-doped SnSe, and (c) heavily Cu-doped SnSe with 1 % strain, respectively; (d) 

comparison of total DOS of the three samples; corresponding partial DOS of (e) SnSe, (f) 

heavily Cu-doped SnSe, and (g) heavily Cu-doped SnSe with 1 % strain, respectively, and (h) 

magnified total DOS of Cu-doped SnSe with and without 1 % strain. 

 

Furthermore, we applied laser radiation during the deformation testing. Figures 6(a-c) 

respectively shows the I-V curves of microbelts before and during laser irritations, in which with 

laser on, the slopes of the I-V curves become larger, indicating that laser radiation can further 

improve their electrical transport performance, probably owing to the effective activation of hole 

carriers by the laser radiation [39]. Also, with laser on, the improvement of σ for pure SnSe, 2 % 

Cu-doped SnSe, and 11.8 % Cu-doped SnSe were ~20.6 %, ~43.0 %, and ~41.4 %, respectively, 

indicating that higher Cu-doping concentration can contribute to higher σ under same laser 

radiation conditions, mainly derived from the higher p in heavily Cu-doped SnSe that more hole 

carriers can be activated by the laser, and a high σave of ~589.2 S m-1 can be achieved when laser 

radiation was applied to 11.8 % Cu-doped SnSe microbelts, indicating great potentials for 

applying to thermoelectric micro-devices. Figure 6(d) shows the current variation of the 11.8 % 

Cu-doped SnSe microbelt when intermittently loading laser radiation under 10 mV, indicating 

that the improved σ by laser radiation is stable with high repeatability. It should be noticed that 

the sample doped with 2 % Cu shows the σ improvement slightly higher than that of 11.8 % Cu-

doped sample. Such behavior may be derived from the fact that in 11.8 % Cu-doped SnSe, the 

free hole carriers have reached a considerable high carrier concentration p. In this situation, it 

may be not such sensitive to the laser that can produce more holes by the irritation, thus the extra 
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holes produced by laser irritation are limited, leading to a diminished effect of boosting the σ by 

laser irritation in ~11.8 % Cu-doped SnSe microbelts. 

 

Figure 6. Influences of laser radiation on the electrical transport performance of SnSe 

microbelts. I-V curves of (a) pure SnSe, (b) 2 % Cu-doped SnSe, and (c) 11.8 % Cu-doped SnSe 

microbelts before and after laser radiation, and (d) current variation of the 11.8 % Cu-doped 

SnSe microbelt when intermittently loading laser radiation under 10 mV. 

3. Summary 
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In this study, we fabricated heavily Cu-doped single-crystal SnSe microbelts as potential 

candidates for thermoelectric devices by a facile solvothermal route. Compared with pure SnSe 

microplates with a low electrical conductivity of ~38.0 S m-1, the ~11.8 % Cu-doped SnSe 

microbelts exhibit ~ one order of magnitude improvement of the electrical conductivity, up to 

~416.6 S m-1. After loading ~1 % compressive strain and laser radiation, the electrical 

conductivity can be further improved to ~601.9 S m-1 and ~589.2 S m-1, respectively, indicating 

great application potentials as thermoelectric devices. Detailed structural and compositional 

investigations confirm the co-existence of Cu2+ and Cu+ valence states in SnSe, which can 

provide more hole carriers, and lead to such higher electrical conductivity. DFT calculation 

indicates that the heavy Cu-doping lowers the Fermi level down into the valence bands, 

generating holes, and the applied 1 % strain can further reduce the bandgap, strengthening the 

ability to release holes and in turn, significantly improve the electrical transport performance. 

This study fills the gaps of finding novel materials as potential candidates employed in the 

thermoelectric micro-devices and provides new ideas for micro/nanoscale thermoelectric 

material design. 

4. Experimental Details 

Experimental details can be found in Section 9 in Supporting Information. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at: 
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� 11.8 % Cu-doped SnSe single microbelt exhibits a high electrical conductivity of ~416.6 

S m-1 at room temperature; 

� 1 % compressive strain further boost the electrical conductivity of single microbelt up to 

~601.9 S m-1; 

� DFT calculations reveal the heavily doped Cu lowers the Fermi level of SnSe down into 

the valence bands, and 1 % strain further reduce the bandgap; 

� Laser radiation improve the electrical conductivity of single microbelt up to ~589.2 S m-1. 
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