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11 Abstract: The analysis of quercetin (Qu) is of great significance owing to its multiple 

12 biomedical effects. In this work, a nitrogen-doped graphene-ionic liquid-glassy 

13 carbon microsphere paste electrode (N-GE/GCILE) was constructed for the 

14 determination of Qu. Cyclic voltammetry (CV) and square wave voltammetry (SWV) 

15 were employed to investigate the electrochemical behavior of Qu. In comparison with 

16 unmodified glassy carbon microsphere paste electrode, the modified electrode 

17 exhibited better electrocatalytic activity towards Qu. The influencing conditions on 

18 sensitivity such as the amount of modifier, accumulation potential and time, and 

19 electrolyte pH value were respectively discussed. Under the optimized conditions, two 

20 linear ranges of 0.002- 0.1 μM and 0.1-10 μM were obtained, with a detection limit of 

21 1 nM (S/N=3). The method was applied in Qu determination in blueberry juice with 

22 the recoveries of 102.5-105.0 %.
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1 1. Introduction

2

3 Flavonoids are naturally distributed in fresh fruits, vegetables and other herbs, and 

4 usually used as food additives or the ingredient of health products [1, 2]. They exhibit 

5 antioxidant, anti-inflammatory and antineoplastic biomedical effects related to radical 

6 scavenging properties of such compounds [3, 4]. Quercetin (Qu, the basic chemical 

7 structure is shown in Scheme 1) is one of the most important flavonoids, it can be 

8 found in onions, celery, sweet pepper, apples, grapes, honeysuckle, pueraria, and 

9 other products. The antioxidant capacity of Qu has been extensively demonstrated in 

10 the literature [5-7] and it shows other biological benefits including its role as anti-

11 allergic, anti-viral, anti-tumor activity, lowering blood pressure and blood lipids [8, 

12 9]. Therefore, it is important to develop a simple and convenient method for sensitive 

13 analysis of Qu.

14

15 Scheme 1. Chemical structure of quercetin (Qu)

16 The traditional techniques for detecting Qu involve high-performance liquid 

17 chromatography [10, 11], mass spectrometry [12], capillary electrophoresis 

18 spectrophotometry [13, 14], and spectrofluorimetry [15]. These traditional methods 

19 have high selectivity and sensitivity but are expensive, time-consuming, and they 

20 usually need complicated sample pretreatment [16, 17]. Due to the electrochemical 

21 activity of Qu, electrochemical methods show potential application in the analysis of 

22 Qu and can overcome the shortcomings of the above-mentioned conventional 

23 approaches. 

24 The electrochemical technique exhibits the advantages of rapid response, 

25 operational simplicity, high sensitivity, and low cost [18]. Some electrochemical 

26 sensors were prepared for the detection of Qu; for example, 

27 hexadecyltrimethylammonium bromide functionalized Fe decorated MWCNTs 
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1 modified carbon paste electrode [19], g-C3N4/NiO heterostructured nanocomposite 

2 modified glassy carbon electrode [20], and Lewatit FO36 nanoresin/multi-walled 

3 carbon nanotubes modified graphite paste electrodes [21] have been used for the 

4 electrochemical analysis of Qu. 

5 In order to improve the performance of the modified electrodes, various 

6 materials are synthesized. In recent years, chemical doping has gained attention in the 

7 field of electrochemistry, it can customize the properties of materials depending on 

8 your need. Nitrogen (N) can easily modify the local elemental composition of 

9 graphene (GR), and N-functional groups can effectively improve the affinity and 

10 binding ability of composite material. This chemically heteroatom-doping in graphene 

11 optimizes its surface structure, and enhances the properties of GR electrochemical 

12 performance [22-25]. Therefore, nitrogen-doped graphene (N-GE) composite has 

13 been extensively applied in the construction of electrochemical sensors ascribed to its 

14 excellent characteristics including high electrical conductivity, good chemical 

15 stability, superior selectivity for biomolecules and other benefits [26, 27].

16 Additionally, ionic liquids (ILs) show high conductivity, low volatility, wide 

17 electrochemical windows and extensive applicability [28, 29], they can provide an 

18 active interface for the electrochemical processes and further modification [30, 31]. 

19 Glassy carbon microsphere is also an excellent electrode material with good electrical 

20 conductivity, great biocompatibility, high hardness and corrosion resistance [32, 33]. 

21 In this paper, a nitrogen-doped graphene-ionic liquid-glassy carbon microsphere 

22 paste electrode was firstly prepared (N-GE/GCILE) for Qu analysis. The N-GE with 

23 typically crumpled and folded morphologies exhibited large specific surface area, and 

24 its special structure could provide plentiful active sites for Qu [34, 35]. With the 

25 synergistic effect of N-GE and ILs, the modified electrode presented the increased 

26 active surface area and fast electron transfer ability, and it exhibited excellent 

27 electrocatalytic activity towards Qu with the negative shift of the oxidation potential. 

28 The method had high sensitivity and stability. Finally, the presented method was 

29 successfully applied to analyze Qu content in fruit juice samples with satisfactory 

30 results. 
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1 2. Experimental 
2
3 2.1. Reagents and materials
4

5 The quercetin (Qu) was obtained from Shanghai Aladdin Bio-Chem Technology Co., 

6 Ltd. (www.aladdin-e.com) with a purity of 95%. Glassy carbon microsphere (

7 particle diameter: 2-12 μM) was purchased from Sigma-Aldrich (https://www.sigma-

8 aldrich.com), ionic liquid 1-octylpyridinium hexafluorophosphate (OPPF6) was 

9 obtained from the Lanzhou Institute of Chemical Physics (http://www.ionicliquid.org) 

10 and paraffin oil was obtained from Sinopharm Chemical Reagent Co., Ltd. (http: 

11 //www. sinoreagent.com). The nitrogen-doped graphene (surface area: >500 m2/g; 

12 nitrogen content: 3.0 wt% ~ 5.0 wt%) was purchased from Nanjing XFNANO 

13 Materials Tech Co., Ltd. (http://www.xfnano.com). 0.2 M acetate buffer solution 

14 (ABS) was used as a supporting electrolyte prepared by mixing appropriate ratio 

15 sodium acetate solution and acetic acid solution. Other chemical reagents involved in 

16 the experiment were of analytical grade without further purification.
17
18 2.2. Apparatus
19

20 CHI660E electrochemical workstation (Shanghai Chenhua Instruments Corporation, 

21 http://www.chinstr.com) and PARSTAT 4000 electrochemical workstation (Princeton 

22 Applied Research, http://www.par-solartron.com.cn) were used to perform 

23 electrochemical measurements. Nitrogen-doped graphene-ionic liquid-glassy carbon 

24 microsphere paste electrode (N-GE/GCILE, 3 mm in diameter) was used as the 

25 working electrode, saturated calomel electrode (SCE) was the reference electrode, and 

26 Pt wire was the auxiliary electrode. An FE20 pH meter (METTLER TOLEDO 

27 Instrument Shanghai Co., Ltd., https://www.mt.com) was utilized to measure the pH 

28 value of the solution. The test solution was stirred with a magnetic stirrer (Model 

29 KMO2, IKA, http://www.ika.cn) during the measurement. Ultrapure water was 

30 produced from Heal Force EASY50 water purification system (Shanghai Canrex 

31 Analytic Instrument Co., Ltd., http://www.canrex.cn) and used throughout the 

32 experiment. 
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1
2 2.3. Electrode preparation
3

4 The nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode 

5 (N-GE/GCILE) was prepared by mixing 0.045 g glassy carbon microsphere, 0.005 g 

6 nitrogen-doped graphene (N-GE), 0.025 g ionic liquid 1-octylpyridinium 

7 hexafluorophosphate (OPPF6) and 15 μL paraffin oil in the mortar. The resulting 

8 homogeneous paste was tightly stuffed into the Teflon tube (3.0 mm in diameter), and 

9 electrical connection was established by a copper wire. Next, the electrode was heated 

10 for at least one minute with a hair dryer. A new surface was obtained by carefully 

11 polishing it on a piece of weighing paper. 

12 For comparison, nitrogen-doped graphene modified glassy carbon microsphere 

13 paste electrode (N-GE/GCPE) was prepared by mixing glassy carbon microsphere, 

14 nitrogen-doped graphene and paraffin oil. Furthermore, glassy carbon microsphere-

15 ionic liquid paste electrode (GCILE) was made up of glassy carbon microsphere, 

16 ionic liquid and paraffin oil. And glassy carbon microsphere paste electrode (GCPE) 

17 was fabricated with glassy carbon microsphere and paraffin oil.

18

19 2.4. Analytical procedure
20

21 The electrochemical behavior of Qu was studied by square wave voltammetry (SWV) 

22 in 0.2 M ABS solution (pH 4.5) under open-circuit condition. The square wave 

23 voltammograms (SWVs) were recorded in the range of 0 V- 0.6 V. And the electrode 

24 was rinsed by ultrapure water after each measurement.

25

26 2.5. Sample preparation
27

28 The real sample was a commercial blueberry juice purchased from a local 

29 supermarket. To fit into the linear range, the samples were diluted 100 times by 0.2 M 

30 pH 4.5 ABS without any pretreatment before measurement.

31

32 3. Results and discussion
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1
2 3.1. Characterization of the modified electrode 
3

4 The morphologies and microstructures of bare GCPE, N-GE/GCPE, GCILE, and N-

5 GE/GCILE composites are studied via SEM. As shown in Fig. 1a, the large gap was 

6 observed between glassy carbon microspheres on the GCPE. However, GCILE 

7 (shown in Fig. 1c) displayed a uniform surface where the ionic liquid was sufficiently 

8 filled into the interstice between microspheres due to its high viscosity. As can be seen 

9 from Fig. 1b (on N-GE/GCPE), the N-GE was crosslinked with glassy carbon 

10 microsphere paste, which exhibited an uneven surface. While in Fig. 1d, the N-

11 GE/GCILE also showed a uniform surface owing to the presence of ionic liquid, and 

12 the morphology of N-GE was not visible on the surface, which proved that the 

13 modifier was successfully embedded in the matrix.
14
15 3.2. Electrochemical properties of the modified electrode
16  

17 Fig. 2 shows cyclic voltammograms (CVs) of GCPE, N-GE/GCPE, GCILE, and N-

18 GE/GCILE recorded in 5 mM [Fe (CN) 6]3-/4- containing 0.1 M KCl in the range of -

19 0.2 to 0.6 V. As can be seen, the N-GE/GCPE (curve b) showed a remarkable 

20 decrease in peak potential separation (ΔEp) and an obvious increase in peak current 

21 (Ip) compared with bare GCPE (curve a). When the ionic liquid was added in glassy 

22 carbon microsphere paste (GCILE, curve c), peak current obviously increased, 

23 meanwhile, the ΔEp further reduced, which indicated the inherent electrocatalysis 

24 property of ionic liquid. Furthermore, the highest peak current response was presented 

25 on the N-GE/GCILE (curve d). The results verified that N-GE and ionic liquid 

26 composites could improve the electrochemical performance of the modified electrode.

27 Electrochemical impedance spectroscopy (EIS) was employed to further estimate 

28 the electron transfer ability of the modified electrodes. Using the K3[Fe(CN)6] redox 

29 system, the charge transfer resistance (Rct) value can be calculated from the size of 

30 the high-frequency semicircle diameter in the Nyquist plots. As seen in Fig. 3, the 

31 high electron transfer resistance was observed for GCPE with the Rct value of 2.09 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

1 kΩ (curve a). When the N-GE was modified on the electrode, the lower resistance 

2 value (Rct=478 Ω) was presented at N-GE/GCPE (curve b). As expected, the N-

3 GE/GCILE (curve c) showed almost a straight line in the Nyquist plots, suggesting 

4 that its electron transfer ability was significantly enhanced.

5

6 3.3. Surface area study

7

8 The effective surface areas of bare GCPE, N-GE/GCPE, GCILE, and N-GE/GCILE 

9 were discussed in K3[Fe(CN)6] redox system using cyclic voltammetry (CV), which 

10 was displayed in Fig. S1. For a reversible process, the relation on peak current and 

11 square root of scan rate conforms to the Randles-Sevcik formula [36]:
12 Ipa = (2.69 × 105) n3/2AC0 DR

1/2υ1/2                (1)
13 where Ipa, A, and υ respectively refers to anodic peak current (A), the effective 

14 surface area of the prepared electrode (cm2) and scan rate (V s-1); C0 is the 

15 concentration of K3[Fe(CN)6] which is equal to 5 mM. In K3[Fe(CN)6] redox system, 

16 electron transfer number n=1, the diffusion coefficient DR=7.6×10−6 cm2 s-1. The 

17 surface areas were calculated to be 0.04 cm2, 0.055 cm2, 0.106 cm2 and 0.198cm2 for 

18 GCPE, N-GE/GCPE, GCILE and N-GE/GCILE, respectively. The results indicated 

19 that N-GE and ionic liquid could increase the effective surface areas of the modified 

20 electrode. 

21

22 3.4. Electrochemical behaviors of Qu

23

24 As shown in Fig. 4, the electrochemical behaviors of 10 µM Qu at GCPE, N-

25 GE/GCPE, GCILE, and N-GE/GCILE were investigated by SWV in 0.2 M ABS (pH 

26 4.5). On the bare GCPE (curve a), a weak oxidation peak (about 16.68 µA) was 

27 observed. After N-GE was modified on the electrode, oxidation current (25.02 µA) 

28 obviously increased on the N-GE/GCPE (curve b). The phenomenon was attributed to 

29 the typically crumpled and folded morphologies of N-GE (the TEM image of N-GE is 

30 shown in Fig. 5). It has large specific surface area like graphene, and the nitrogen 
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1 doping leads to the distortion of structure with more structural defects, which could 

2 provide abundant high edge plane active sites for electrochemical oxidation [34, 35]. 

3 Therefore, the electrochemical response was enhanced at N-GE/GCPE. In addition, 

4 GCILE (curve c) presented higher current response to Qu (54.51 µA). This was due to 

5 ionic liquid could be filled in the gaps between the microspheres and improved 

6 electron-transfer kinetics at the prepared electrode [37]. The peak current of Qu on N-

7 GE/GCILE was almost twice higher than that on GCILE. The results indicated that N-

8 GE/GCILE had better electrocatalytic activity towards Qu, which were ascribed to the 

9 following factors: Firstly, the micrometer-sized glassy carbon microsphere with large 

10 specific surface area can provide more channels for transferring electrons; secondly, 

11 due to the CH-π interaction between a CH group of 1-octylpyridinium 

12 hexafluorophosphate and π-electrons of N-GE, the ionic liquid could be effectively 

13 combined together with N-GE [38], and the composites synergistically promoted 

14 electron transfer in the modified electrode; furthermore, N-GE with large surface area 

15 exhibited strong adsorption capacity and high electrocatalytic ability to Qu.
16

17 3.5. Effect of scan rates

18

19 The effect of scan rate (υ) on the oxidation peak current (Ipa) of 10 μM Qu was 

20 investigated using CV at the N-GE/GCILE. As shown in Fig. 4, a reversible oxidation 

21 peak of Qu was presented, and Ipa increased as the increasing scan rate (υ) with a 

22 slight positive shift in oxidation peak potential (Epa) in the scan rates range of 25- 400 

23 mV s-1. The insert in Fig. 6 exhibited peak current was proportional to scan rate with a 

24 linear regression equation of Ipa (μA) =0.1262 υ (mV s-1) - 0.4629(r2=0.9999), which 

25 confirmed an adsorption-controlled process for the electrochemical oxidation of Qu at 

26 the N-GE/GCILE. 
27

28 3.6. Optimization of analytical conditions

29

30 3.6.1. Effect of pH value
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1

2 The effects of pH value on the oxidation peak current (Ipa) and peak potential (Epa) 

3 of 10 μM Qu were discussed. Fig. S2 exhibits SWVs of 10 μM Qu in 0.2 M ABS with 

4 the pH range of 2.5-6.0. As shown in the figure, the Epa shifted towards negative 

5 position as the pH value of supporting electrolyte increased, and the linear 

6 relationship of Epa and pH value was described as follows: Epa (V) = - 0.07 pH+0.61 

7 (r=0.9922). The slope value of 70 mV pH-1 deviated from the theoretical value. 

8 According to the Nernst equation, it may be attributed to the properties of the 

9 constructed electrode and the influence of the temperature. This finding was 

10 consistent with the results in previous reports [39, 40], 70 mV pH-1 was considered to 

11 be close to the theoretical value, suggesting that the number of transferred electrons 

12 and protons involved in the electrochemical process of Qu was equal [41]. 

13 Furthermore, as the pH value increased from 2.5 to 4.5, the current response of Qu 

14 increased. However, the further increase of the pH value led to the gradual decrease of 

15 peak current. The results may be stated by the following reasons: at higher pH values, 

16 the deprotonation of Qu influences the accumulation of Qu at the electrode surface 

17 and electrochemical reaction. On the contrary, the hydroxyl groups of Qu are active at 

18 lower pH values [42]. Therefore, 0.2 M pH 4.5 ABS was chosen as supporting 

19 electrolyte in the next experiment.

20

21 3.6.2. Effect of the amount of the modifier

22

23 The effect of the amount of the N-GE on the voltammetric response towards 10 μM 

24 Qu was investigated. In Fig. S3, the current response increased with the increasing 

25 amount of N-GE from 0 to 2.5%, and reached the maximum as the amount of 

26 modifier was 2.5%. Then a gradual decrease on the response signal was observed 

27 when the proportion of N-GE exceeded 2.5%. The rising trend in current response 

28 could be ascribed to the large electroactive surface area and the improved absorption 

29 capacity when a certain amount of N-GE was modified on the electrode. However, 

30 excessive N-GE in the paste would increase the film thickness, block the electron 
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1 transfer and then influenced the oxidation process of Qu. Therefore, 2.5 wt% N-GE 

2 was chosen for preparation of the modified electrode in the subsequent experiments.

3

4 3.6.3. Effect of accumulation potential and accumulation time

5  

6 The influence of the accumulation potential and open-circuit condition on the 

7 voltammetric response was discussed under the same experimental conditions (not 

8 shown). The response signal showed no significant difference between an 

9 accumulation potential and an open-circuit condition, so the open-circuit condition 

10 was selected in the follow-up experiment. The obtained results had confirmed that the 

11 oxidation of Qu at N-GE/GCILE was a typical adsorption-controlled process, thence 

12 accumulation time was a key factor on current response of Qu. As shown in Fig. S4, 

13 with the accumulation time varied from 10 to 180 s, the current response increased 

14 gradually because more Qu was adsorbed on the electrode surface. After 180 s, the 

15 peak current changed a little because the adsorption of Qu reached saturation. 

16 Ultimately, the accumulation process of Qu was performed at 180 s under open-

17 circuit condition considering sensitivity and work efficiency of analysis.

18

19 3.7. Determination of Qu

20

21 The SWV was used to determine Qu at the N-GE/GCILE. Fig. 7 exhibits SWVs of 

22 different concentrations of Qu. From Fig. 7A, peak currents gradually increased with 

23 the increasing concentrations. Two linear ranges were obtained in Fig. 7B and Fig. 

24 7C, they were 0.002-0.1 μM and 0.1-10 μM, respectively; and the linear regression 

25 equations were: Ipa (μA) = 49.5354 c (μM) + 0.1528 (r2=0.9984) and Ipa (μA) = 

26 6.3114 c (μM) + 4.4662 (r2=0.9985), respectively. The limit of detection (LOD) was 

27 calculated as 1 nM (S/N=3). Furthermore, the better analysis parameters were 

28 achieved at N-GE/GCILE in comparison to other reported analytical methods [20, 21, 

29 43-45]. Table 1 summarizes the key parameters of various modified electrodes for Qu 

30 detection.
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1
2 3.8. Reproducibility and stability
3

4 The reproducibility and stability of the N-GE/GCILE were investigated in the 

5 presence of 10 μM Qu. The relative standard deviation (RSD) was calculated to be 

6 1.35% by six repetitive measurements using the same electrode. Similarly, for six 

7 modified electrodes prepared in the same procedure, the RSD was 2.37%. The results 

8 exhibited good reproducibility of the modified electrode. Moreover, the current 

9 response of Qu retained 98.3% of the initial value after one month under room 

10 temperature, confirming the outstanding stability of the sensor.
11
12 3.9. Selectivity
13

14 Some potential interfering substances were measured on the detection of Qu (not 

15 shown). The results showed that common inorganic interferences, such as 500-fold 

16 excess of K+, Na+, Mg2+, Pb2+, NO3
-, Cl-, 400-fold concentration of Co2+

 and 200-fold 

17 concentration of Ca2+, Cu2+, Al3+, Cr3+ had no interference on the detection of Qu. 

18 Furthermore, the response of Qu was hardly interfered by some organic substances, 

19 including 500-fold glucose, 400-fold cystine, tyrosine, 200-fold glycine, arginine, 

20 100-fold ascorbic acid, 50-fold dopamine, uric acid, and the same concentration of 

21 luteolin and rutin (the current value changed less than ± 5%). The analysis method 

22 could be used for selective determination of Qu with outstanding anti-interference 

23 ability. 
24
25 4. Real sample analysis
26

27 The analysis of blueberry juice was undertaken using the proposed method in order 

28 to evaluate the practicality of the modified electrode. The standard addition method 

29 was used, and the results were summarized in Table 2. The recoveries ranged from 

30 102.5% to 105.0%, and the RSD was found to be less than 1.85%, suggesting that the 

31 method had significant potential for practical application.

32
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1 5. Conclusions
2

3 In this work, we have developed a nitrogen-doped graphene-ionic liquid-glassy 

4 carbon microsphere paste electrode by a simple fabrication procedure. The modified 

5 electrode exhibited excellent electrocatalytic performance towards Qu compared to 

6 other electrodes. The method provided wide linear ranges (0.002-0.1 μM and 0.1-10 

7 μM), low detection limit (1 nM), good reproducibility, stability, and high selectivity. 

8 The fabricated electrode was successfully applied for Qu detection in blueberry juice 

9 with satisfactory recoveries. The results confirmed the feasibility of the modified 

10 electrode for the determination of Qu in food samples.
11
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1 Figure captions

2 Fig.1. SEM images of (a) GCPE, (b) N-GE/GCPE, (c) GCILE and (d) N-GE/GCILE.

3 Fig.2. Cyclic voltammograms of 5 mM [Fe(CN)6]3−/4− containing 0.1 M KCl at GCPE 

4 (a), N-GE/GCPE(b), GCILE(c) and N-GE/GCILE(d), respectively, with a scan 

5 rate of 50 mV s−1.

6 Fig.3. Nyquist plots of 5 mM [Fe(CN)6]3-/4- containing 0.1 M KCl at GCPE (a), N-

7 GE/GCPE(b) and N-GE/GCILE(c).

8 Fig.4. SWVs of 10 μM quercetin in 0.2 M ABS (pH 4.5) at the (a) GCPE, (b) N-

9 GE/GCPE, (c) GCILE and (d) N-GE/GCILE. 

10 Fig.5. TEM image of N-GE.

11 Fig.6. Cyclic voltammograms of 10 μM quercetin in 0.2 M ABS (pH 4.5) at the N-

12 GE/GCILE at scan rate of 25, 50, 100, 150, 200, 250, 300, 350, 400 mV s−1 

13 (from inner to outer); The insert is the relationship between the peak currents 

14 and scan rates. 

15 Fig.7. (A) SWVs for different concentrations of quercetin (from bottom to top: 0, 

16 0.001, 0.002, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 μM quercetin; the amplified 

17 SWVs for quercetin in lower concentrations are shown in the insert); (B) The 

18 relationship between the peak currents and the quercetin concentration in the 

19 range of 0.002-0.1 μM; (C) The relationship between the peak currents and 

20 the quercetin concentration in the range of 0.1-10 μM (the error bars were 

21 derived from the standard deviation of two parallel measurements).
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Table 1 Comparison of analysis parameters of Qu detection for various modified electrodes

Modified electrode Method
Linear range

(μM)

Limit of detection 

(μM)
 Reference

g-C3N4/NiO/GCE DPV 0.010 – 250 0.002 20

LFONR-MWCNT/GPE LSV 1.8–25/25-570 0.213 21

GOD/AuNP/GCE DPV 0.01–6 0.002 43

3D-coumarin-

SWCNTs/GCE
 DPSV 0.25–3 0. 020 44

Pt-PDA@SiO2/GCE SWV 0.05 -0.383 0.016 45

N-GE/GCILE SWV 0.002-0.1/0.1-10 0.001  This work

g-C3N4: Graphitic carbon nitride; NiO: nickel oxide; GCE: glassy carbon electrode; DPV: 
differential pulse voltammetry; LFONR: Lewatit FO36 nanoresin; MWCNT: multi-walled 
carbon nanotube; GPE: graphite paste electrode;  LSV: linear sweep voltammetry; GOD: 
graphene quantum dot;  AuNP: gold nanoparticle; 3D: a three-dimensional architecture;  

SWCNTs: single walled carbon nanotubes; DPSV: differential pulse stripping voltammetry; 

Pt-PDA@SiO2: platinum-polydopamine coated silica particles; SWV: square wave 
voltammetry; N-GE: nitrogen-doped graphene; GCILE: ionic liquid-glassy carbon 
microspheres paste electrode
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Table 2 Determination of quercetin in blueberry juice samples using N-GE/GCILE (n=3a)

a Three different measurements were made for each sample.

Sample 1 Sample 2 Sample 3

Detected /μM

Added /μM

Found /μM

Recovery / %

R.S.D. / %

2.68

2.00

4.74

103.0

1.64

2.48

2.00

4.58

105.0

1.85

2.53

2.00

4.58

102.5

1.59
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1

2
3

4 Fig. S1 Cyclic voltammograms of GCPE(A), N-GE/GCPE(B), GCILE(C)，      

5 N-GE/GCILE(D) in 5mM [Fe(CN)6]3−/4− containing 0.1M KCl at scan rate of 

6 25,50,100,150,200, 250, 300mVs−1(from inner to outer).
7
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1

2
3

4 Fig. S2 (A) SWVs of 10 μM quercetin in 0.2 M ABS with different pH value (From a 

5 to h: pH 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6); (B) Effects of pH value on the peak current (Ipa) 

6 and peak potential (Epa).
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1

2 Fig. S3 Effect of the amount of N-GE in carbon paste on the oxidation peak current of 

3 10 μM quercetin in 0.2 M ABS (pH 4.5).
4
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1

2 Fig. S4 Effect of accumulation time on the oxidation peak current of 10 μM quercetin 

3 in 0.2 M ABS (pH 4.5).
4




