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1 Introduction 

 

“The most fruitful basis of the discovery of a new drug is to start with an old drug.” 

Sir James Black 

 

With these words the pharmacologist and Nobel laureate Sir James Black established a basis 

for drug repurposing. The fact that an already known drug is used for a new indication that 

differs from the original indication is called drug repurposing. Thereby new targets can be 

identified for the old drugs. Another approach, beside these new targets, is that the scaffolds 

of the old drugs or natural compounds can also serve as an inspiration for the synthesis of 

novel small-molecules[1].  

This thesis deals with two pore channel 2 (TPC2) as the target and tetrandrine (1, Figure 1) 

as the natural compound with the need to be developed. In 2015, Sakurai et al. linked the entry 

of Ebola virus into host cells to two pore channels (TPCs). The inhibition of TPCs with 

tetrandrine (1) halted virus trafficking and prevented infection[2], creating the fundament for this 

work. 

 

Figure 1: Chemical structure of the alkaloid tetrandrine (1), identified as a TPC2 inhibitor.  

 

1.1 Two pore channels  

Two pore channels are part of the family of voltage-gated ion channels and are localized in the 

endo-lysosomal system. They share parts of the sequential identity with voltage-gated calcium 

(Cav) and sodium (Nav) channels[3]. Two isoforms of two pore channels (TPC1 and TPC2) can 

be found in primates. TPC1 is preferentially found in early endosomal compartments and TPC2 

in late endosomal and lysosomal compartments[4-6]. In 2016, Kintzler and Stroud presented the 

crystal structure of the NAADP antagonist trans-Ned-19 (2) bound to TPC1 from Arabidopsis 



INTRODUCTION 

2 

thaliana[7]. The cryo-EM structure of human TPC2 has recently been resolved by She et al.[8] 

and verifies the dimeric nature and the duplicated domains of two pore channels. Two times 

six transmembrane helices form one domain and two domains form the ion channel. TPCs are 

non-selective cation channels, permeable to calcium and sodium and they are involved in 

endo-lysosomal trafficking, autophagy, mTOR and TFEB signaling[9]. Whether TPC2 is sodium 

or calcium permeable was subject of controversial debates in the last decade. While TPC2 

was first described as non-selective, calcium permeable cation channel activated by NAADP 

(3)[10-14], other research groups claimed that TPC2 was a sodium-selective channel activated 

by the endo-lysosomal phosphoinositide PI(3,5)P2 (4)[15, 16]. Both views independently received 

support in the past couple of years[5, 17-21] and the controversy has just recently been resolved[22] 

in the course of this project, as described in chapter 3.4.5.  

Two pore channels have been a hot topic in recent literature, not only because of their 

controversially discussed ion permeability but also because of their involvement in various 

diseases like viral and bacterial infections and cancer cell migration. This makes two pore 

channels a promising target for drug research.  

 

1.2 Two pore channels and disease 

As mentioned before, in recent years TPCs have emerged as highly exciting potential drug 

targets for a number of diseases associated with the endo-lysosomal system[23]. Dysfunction 

of TPCs has been found to interfere with cholesterol trafficking resulting in fatty liver disease[5], 

the β-adrenergic stimulation of glucagon secretion in diabetes[24] and β-adrenoceptor signaling 

in the heart in cardiovascular diseases[25]. Melanin production and pigmentation are also 

influenced by TPC activity[26-28]. Furthermore, Parkinson’s disease caused by LRRK2 

mutations has been linked to TPC functions[29]. In addition, several bacterial toxins such as 

diphtheria toxin, anthrax toxin, cholera toxin, or Pasteurella multocida toxin have been shown 

to require functional TPCs[4, 6]. Beside its role in bacterial infections, TPCs have been 

demonstrated to play a role in various infectious diseases such as Ebola filovirus, Middle East 

respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), or HIV-1 retrovirus infections [2, 30-33]. Furthermore there is a 

growing amount of evidence that TPCs are necessary for sustaining cancer hallmarks like cell 

migration and neoangiogenesis[9, 34-36].  
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1.2.1 Two pore channels and cancer 

The role of TPCs in cancer research is complex, because TPCs are involved in different 

processes during carcinogenesis. The fact that prostate cancer patients with high levels of 

TPC2 gene expression showed poor survival probabilities was a strong evidence for the 

correlation between TPCs and cancer hallmarks[37]. Nguyen et al. confirmed these results and 

showed that silencing of TPC2 reduced migration and adhesion of invasive lung tumor cells[36]. 

The endo-lysosomal system promotes trafficking of integrins. During cell migration integrins 

pass the endocytic cycle. They are released from their substrate and taken back by 

endocytosis. If this recycling process is disturbed, cancer cell migration in vitro and metastasis 

in vivo are impaired[36]. Vascular endothelial growth factors (VEGF) play an important role 

during neoangiogenesis, including vascularization of solid tumors. Inhibition of VEGF reduces 

vessel formation, a fundamental step for the vascularization of solid tumors. Hence VEGF 

inhibitors are already used to treat cancer[38]. The role of TPC2-mediated calcium release in 

neoangiogenesis was demonstrated in TPC knockout mice. In TPC2, but not in TPC1, 

knockout mice the VEGF pathway was inhibited and vessel formation was reduced[35]. Whether 

TPCs and especially TPC2 are involved in other cancer hallmarks, such as proliferation and 

dysregulation of the cellular energy metabolism[38], remained largely unknown and was 

investigated in the studies presented in chapter 3.6.3.  

 

1.2.2 Two pore channels and viral infections 

Especially in the year 2020, viral infections are a hot topic. The corona pandemic has hospitals 

reaching their bed capacities, causing many deaths. The WHO is currently promoting a study 

for drug repurposing, including drugs that have already been in use for HIV and malaria 

therapy[39]. The connection between viral infections and two pore channel activity has already 

been shown for Ebola virus, MERS-CoV, HIV-1 and lately for the new SARS-CoV-2[2, 30-33]. Ou 

et al. described that SARS-CoV-2 enters the cell via endocytosis and that PIKfyve and TPC2 

were required for entering the cells[33]. The enzyme PIKfyve is responsible for phosphorylation 

of phosphatidylinositol 3-phosphate in C-5 position to PI(3,5)P2 (4), an endogenous compound 

that is activating TPCs and is regulating endo-lysosomal vesicle trafficking. Inhibition of the 

mucolipin TRPML1 (see chapter 1.3) using an unfortunately not further specified TRPML1 

inhibitor was ineffective, while inhibition of TPC2 with tetrandrine (1) halted the SARS-CoV-2 

entry[33]. Tetrandrine (1) has already been shown to successfully prevent Ebola virus infection 

by blocking TPC1 and TPC2 activity[2]. A link to the transporter protein Niemann-Pick C1 has 

been demonstrated for SARS-CoV[40], similar to Ebola virus[2]. For Ebola virus both isoforms of 

TPC, TPC1 and TPC2, are required for virus trafficking and infectivity while for SARS-CoV-2 

this correlation is not confirmed. Many facts are still unknown with respect to these correlations 
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and further investigation is of high interest. Having tailored tool compounds would surely boost 

studies to assess the correlation of TPCs and SARS-CoV-2 in more detail and would benefit 

the combat against viral infections.  

 

1.3 Modulators of two pore channels 

As part of the controversial debate about the ion permeability of TPCs, two different hydrophilic 

activators have been used in the past decade. The phosphoinositide phosphatidylinositol 3,5-

bisphosphate (PI(3,5)P2 (4)), a major constituent of endo-lysosomal membranes, has first been 

described by Dong et al.[41] as an activator of transient receptor potential mucolipin (TRPML) 

channels. TPCs and TRPMLs share PI(3,5)P2 (4) as activator but are only distantly related to 

each other in terms of sequence similarities[15, 16]. Both channel families share a number of 

functional features. They are non-selective cation channels located in endo-lysosomes and 

permeable to sodium and calcium. Both are involved in endo-lysosomal trafficking, autophagy, 

TFEB and mTOR signaling[9]. Thus, TPCs are, in addition to PI(3,5)P2 (4), activated by nicotinic 

acid adenine dinucleotide phosphate (NAADP (3))[10-14]. Both activators are highly hydrophilic 

and are not plasma membrane permeable. A plasma membrane permeable variant of NAADP 

(3), NAADP/AM (5) is commercially available[42, 43]. This lipophilic acetoxymethyl (AM) ester 

prodrug (5) is, however, due to its instability very limited in use (Figure 2).  

 

Figure 2: Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2 (4)) and NAADP (3) and its membrane 
permeable variant NAADP/AM (5). Inositol 4 carries phosphate glycerol esters and various fatty acids 
in C-1 position (e.g. n = 16 or 18). 

 

The same applies to the membrane permeable PI(3,5)P2 variant. Dinkel et al. published a 

synthesis for the PI(3,5)P2 variant with increased lipophilicity and membrane permeability. AM-

esters were introduced to protect phosphate residues, as it was already known from 

NAADP/AM (5), and the secondary alcohol groups were protected as butyrates[44]. 

Unfortunately, these derivatives are only available via an extensive, multi-step synthesis.  

As there is an urgent need for lipophilic, plasma membrane permeable small-molecule 

activators of TPCs, a high-throughput screening for the identification of novel, small-molecule 
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TPC2 activators was arranged. The screening of an 80.000 compound strong library obtained 

from Roche (Basel, CH) was performed within this project. 

For the identification of TPC inhibitors, different approaches were pursued. Penny et al. 

performed a virtual screening of Ebola virus entry inhibitors in order to identify possible TPC 

blockers[31]. The hits were confirmed as TPC2 inhibitors by blocking NAADP-evoked calcium 

release in a sea urchin egg homogenate model and via patch clamp experiments. This group 

identified different dopamine receptor-affine drugs and selective estrogen receptor modulators 

(SERMs) as additional TPC blockers: the anti-psychotics trifluoperazine, prochlorperazine, 

thioridazine and fluphenazine (6) as well as the SERMs clomiphene, tamoxifene, toremifene, 

bazedoxifene and raloxifene (7).  

 

Figure 3: Structures of TPC2 inhibitors. (A) Most promising TPC2 inhibitors identified by Penny et al.[31]: 
raloxifene (7) and fluphenazine (6). (B) The flavonoid naringenin (8) and trans-Ned-19 (2).  

 

The most promising TPC2 inhibitors identified by Penny et al., raloxifene (7) and fluphenazine 

(6), are approved drugs (Figure 3 A). Both exhibited low IC50 values in endo-lysosomal patch 

clamp experiments (0.63 µM and 8.2 µM) after stimulation with PI(3,5)P2 (4)[31]. The SERM 

raloxifene (7) is known to reduce breast cancer risk[45] and is used for treatment and prevention 

of osteoporosis. Moreover, it is limited in its approval to postmenopausal women regarding the 

influence upon hormone levels. It has also been reported that raloxifene (7) blocks L-type and 

T-type voltage-sensitive calcium channels[46, 47] as well as Kv4.3 channels[48]. Fluphenazine (6) 

is an anti-psychotic drug used to treat psychotic disorders such as schizophrenia with severe 

adverse effects, in particular extrapyramidal effects including acute dystonia, akathisia, tardive 

dyskinesia and Parkinsonism[49]. Fluphenazine (6) blocks postsynaptic mesolimbic 
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dopaminergic D1 and D2 receptors in the brain, neuronal voltage-gated sodium channels[50] 

and the ATP-sensitive potassium (KATP) channel[51].  

Besides its known broad spectrum of targets in mammalian organisms, the flavonoid 

naringenin (8, Figure 3 B) was also identified as a TPC2 blocker by Pafumi et al.[52]. 

Furthermore, it was investigated on its inhibitory effect in cell migration[53]. Naringenin (8) can 

also block several other ion channels: the melastatin channel TRPM3 (calcium channel)[54], 

voltage-gated sodium channels (Navs)[55] and cardiac HERG channels (potassium channel)[56]. 

Additionally it enhances the activity of large-conductance Ca2+-activated potassium (BK) 

channels[57]. However, naringenin (8) is most prominent for the inhibitory effect on cytochrome 

P450 enzymes like CYP1A2[58] or CYP3A4[59] – a property which bears the risk of undesired 

drug-drug interactions. 

The NAADP antagonist and therefore indirect TPC2 blocker trans-Ned-19 (2, Figure 3 B) has 

been known for many years[60] and the crystal structure solved by Kintzler and Stroud 

confirmed the interaction with TPCs[7], albeit discussed controversially.  

Examining these compounds, it is of interest that many of them are discussed in their 

relationship to cancer. Aforementioned, raloxifene (7) is known to reduce breast cancer risk[45]. 

Naringenin (8) was investigated on its inhibitory effect in cell migration[53] and to affect VEGF-

evoked tube formation[52] but requires very high concentrations (≥ 500 µM), as well as trans-

Ned-19 (2). The latter, trans-Ned-19 (2), was able to reduce NAADP-induced Ca2+ release and 

prevented the activation of the VEGF signaling pathway[35] as well as cancer cell migration[36] 

in high micromolar doses (≥ 100 µM). All these compounds are not applicable for in vivo 

experiments due to the side effects or required high doses. Though, there is an emerging need 

for the development of efficacious TPC2 inhibitors with drug-like properties and antitumor 

activity to study the involvement of TPC2 in cancer. 

Tetrandrine (1, Figure 3 A) is the most prominent TPC inhibitor in current literature and was 

first described as such by Sakurai et al. in 2015[2]. It is known to also block voltage-gated Ca2+ 

channels, large-conductance Ca2+-activated K+ (BK) channels and intracellular Ca2+ pumps[61]. 

Additionally, tetrandrine (1) was recently identified to effectively inhibit cancer cell migration[36] 

and infections with Ebola[2], MERS-CoV[30] and SARS-CoV-2[33] viruses. These effects were 

most likely induced via directly acting on TPCs. Tetrandrine (1) is used in different studies as 

exemplary TPC inhibitor and therefore represents a promising lead structure for the 

development of TPC2 blockers. 
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1.4 Tetrandrine (1) – opportunities and limitations 

The bisbenzylisoquinoline alkaloid tetrandrine (1) is isolated from the Asian plant Stephania 

tetrandra and is used in traditional Chinese medicine for treating asthma, tuberculosis, malaria 

or hyperglycemia[62]. Apart from its traditional applications, tetrandrine (1) is under 

pharmacological investigation. Its activity spectrum extends inflammations, antidiabetic 

effects, antimicrobial and anticancer activities, the use as antioxidant, P-gp and calcium 

channel inhibition[62], as depicted in Figure 4. Plenty of these pharmacological activities can 

also be related to TPCs, as tetrandrine (1) is a known TPC1 and 2 inhibitor[2]. Studies about 

viral infections (Ebola[2], MERS-CoV[30] and SARS-CoV-2[33]) and the influence of TPC2 were 

carried out using tetrandrine (1) but it is also under investigation for bacterial infections (e.g. 

Staphylococcus aureus)[63] or fungus (e.g. Candida albicans)[64]. Also for investigations in 

cancer research connected with TPCs, tetrandrine (1) is state-of-the-art[36]. Tetrandrine (1) was 

also highlighted in a study to prevent diabetes[65], which now can be related to its inhibitory 

effect on TPCs[24].  

 

Figure 4: Overview of the activity spectrum of tetrandrine (1).  

 

P-glycoprotein (P-gp) however, appears as novel target for tetrandrine (1), which was identified 

as a highly potent P-gp inhibitor[66, 67]. P-gp is an efflux pump with a broad substrate spectrum. 

These transporters pump foreign substances out of cells and are therefore responsible for 

multidrug resistance of tumors. Correlations to TPCs have not been investigated yet.  

Despite all these positive features tetrandrine (1) also has a few drawbacks. One example is 

the poor solubility. In some studies the sample preparation was not commented[68, 69] and 

others reported that they needed to acidify the injection solution for dissolution before in vivo 

application[2, 70]. These circumstances make tetrandrine (1) poorly applicable for in vivo studies. 
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Furthermore, a high toxicity is described in animal models. There are hints that the toxicity of 

tetrandrine (1) is based on oxidative metabolism by cytochromes P450s 3A4 and 3A5. The 

authors claimed that the methoxy group at C-12 (Figure 4) is metabolized to a free phenol and 

further oxidized to give a reactive para-quinone methide intermediate that can directly be 

trapped by bio-nucleophiles like glutathione[70, 71]. This toxicity is based on the reaction with 

other bio-nucleophiles like cysteine residues in proteins that would then be destroyed, while 

glutathione would detox the para-quinone methide intermediate. The broad activity spectrum 

of tetrandrine (1) is maybe related to its ability to inhibit TPC1 and 2, but other side effects are 

certain to occur and need to be reduced as well. 

The alkaloid is mainly obtained by extraction of the roots of Stephania tetrandra or by complex, 

multi-step chemical synthesis. The synthesis of enantiomerically pure tetrandrine (1) involves 

more than 20 steps[72]. A recently published synthesis from our research group shortened the 

sequence to 12 steps after which the racemic mixture of tetrandrine (1) is obtained[73].  

The opportunities and limitations of tetrandrine (1) generate a suitable basis for the 

development of this long known bioactive compound. The outlined drawbacks were aimed to 

be overcome in this project by simplification of the structure, substitutions and derivatizations.  
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2 Objectives 

TPCs are of rising importance. Involved in many diseases but mechanistically poorly 

understood, there is an emerging need for further investigations. Despite its drawbacks, 

tetrandrine (1) was the most promising candidate for developing new TPC inhibitors.  

New anti-cancer agents with the potential to block TPCs were e.g. easily accessible derivatives 

of tetrandrine (1) with modifications in C-5[74, 75] and C-14[76, 77] position, other related natural 

compounds like fangchinoline (9, also originated from Stephania tetrandra)[78], analogs of 

berbamine (10, from Berberis amurensis)[79], or seco-derivatives as dauricine (11, from 

Menispermum dauricum DC)[80] and neferine (12, from Nelumbo nucifera)[81], as depicted in 

Figure 5.  

 

Figure 5: Structures of the alkaloids fangchinoline (9), berbamine (10), dauricine (11) and neferine (12). 
Berbamine analogs are glycosides in C-12 position of berbamine (10). Differences to tetrandrine (1) are 
marked in red.  

 

All these molecules, however, lacked variability because they were obtained from natural 

extracts and their derivatization was restricted to certain functional groups. If isolation from 

plants was not possible or a diversified substitution pattern was encouraged, complex multi-

step syntheses need to be performed. Iturriaga-Vásquez et al. designed simplified and more 

accessible congeners of tetrandrine (1), only representing one benzylisoquinoline half of the 

molecule and carrying extensions like O-benzyl groups (Figure 6). These derivatives had 

similar potential to block L-type calcium channels (Cavs) like tetrandrine (1)[82]. The fact that 

TPCs were a family intermediate of channels related to voltage-gated calcium (Cav) and 

sodium channels (Nav)[83] suggested that these simplified structures could have high potential 

to block TPCs and further have high anticancer or antiviral activity. In addition, these truncated 

variants could overcome the lack of bioavailability, increase efficacy, be less toxic, more 
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specific, have a good solubility and are easily accessible and variable via a short, fast and 

efficient synthesis.  

 

Figure 6: Truncation of tetrandrine (1) should give monomers, resembling one half of tetrandrine (1)[82].  

 

To analyze TPC inhibitors in cellular systems the unique lysosomal patch clamp technique is 

required. Channel inhibition can be observed by this technique right after activation with the 

endogenous TPC2 activators PI(3,5)P2 (4) or NAADP (3). Though this is a complex technique 

and only a few people in the world are able to perform these complex experiments. In order to 

analyze large compound libraries of potential TPC2 blockers, an easily accessible 

experimental setup was crucial. Ca2+ imaging experiments, using different Ca2+ indicating dyes 

like Fura-2 (13) or Fluo-4 (14) are well known but require intact cells and cell-permeable 

activators.  

Therefore, novel small-molecule activators of TPC2 need to be identified first, synthesized and 

further analyzed to investigate their biological and pharmacological properties. These 

activators would then be used in a second step as chemical tools for the identification and 

analysis of TPC2 blockers, but in addition may play an independent role as lead structures for 

potential therapeutics in lysosomal storage diseases (LSDs).  
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3 Results and discussion 

The results of this thesis are presented in this section and are divided into two main parts, 

agonists and antagonists of TPC2.  

Starting with the performance of a high-throughput screening, the first part represents the 

identification of novel TPC2 activators. These hits were confirmed by synthesis, 

characterization and subsequent pharmacological experiments. Furthermore, analogs of these 

hits were synthesized to analyze structure-activity relationships (SAR). This was achieved by 

single cell Ca2+ imaging experiments. Concentration-effect relationships were analyzed and 

further results from cooperation partners are briefly described to present of the whole outcome 

of this interdisciplinary project.  

The second main part of this chapter describes the synthesis and characterization of truncated 

tetrandrine analogs as novel TPC2 inhibitors. A Ca2+ imaging protocol to analyze TPC2 

inhibitors, using our novel TPC2 activators, was developed. Biological activity of the inhibitors 

is of high interest and the effects on cancer were evaluated by cooperation partners. 

Furthermore, the enantiomers of the most promising substances were separated to distinguish 

between eutomer and distomer.  

Additionally, results of some side projects are presented and briefly described.  

 

3.1 Identification of novel TPC2 activators 

Lysosomal storage diseases (LSDs) are a very hot topic not only in academic research, but 

also in industrial research. A cooperative project with F. Hoffmann-La Roche (Basel, CH) 

provided the opportunity to use two of their compound libraries (Xplore X30 and X50) to 

perform a high-throughput screening (HTS). The aim of this screening was to identify novel 

activators of Battenin (CLN3) and TPC2. 

CLN3 is a putative lysosomal transporter or channel of unknown function but with a high 

relevance in inherited neurodegenerative disorder (Batten disease). Mutations in CLN3 lead to 

the loss of CLN3 function, causing Batten disease, also known as juvenile neuronal ceroid 

lipofuscinosis (JNCL) disease[84, 85]. Batten disease is the most common NCL with an onset of 

symptoms in childhood, characterized by progressive loss of vision, seizures, psychomotor 

disturbances and eventually premature death[86, 87]. As CLN3 and TPC2 are both lysosomal 

transmembrane proteins both proteins were screened in parallel serving as controls for each 

other.  

In cooperation with Dr. Phuong Nguyen from Prof. Dr. Angelika Vollmar’s group (LMU, Munich) 

and Prof. Dr. Michael Schaefer’s group (Rudolf Boehm Institute, Leipzig) the high-throughput 
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screening was performed in Leipzig, using a custom-made fluorescence imaging plate reader 

(FLIPR) built into a robotic liquid handling station (for 96 tips), as previously described[88]. 

HEK293 cells stably expressing the plasma membrane variant of hTPC2, TPC2L11A/L12A-RFP 

and another cell line stably expressing the plasma membrane variant of hCLN3, 

CLN3L253A/I254A -RFP were used[22]. For the screening around 80.000 compounds on 221 384-

well plates from two different libraries (X50 and X30) were provided by Roche (Basel, CH). All 

compounds were tested on both cell lines and double positive hits were excluded to ensure 

the accuracy of the hits in a first instance.  

The membrane permeable, single-wavelength fluorescent dye Fluo-4/AM (15) was selected 

as Ca2+-indicator. With this indicator experiments in cell suspension were possible, which was 

ideal for high-throughput screenings (Figure 7 A). Fluo-4/AM (15) entered the cells as lipophilic 

ester and was hydrolyzed inside the cells by esterases. Resulting Fluo-4 (14) is barely 

fluorescent, but fluorescence increases at least 100 times on Ca2+ binding when excited at 

488 nm (Figure 7 B). An increase in fluorescence reflects rise in cytoplasmic Ca2+ levels 

caused by activation of the ion channels[89, 90]. 

 

Figure 7: The principle of Fluo-4 based Ca2+-imaging. (A) Short schematic overview of Fluo-4 based 
Ca2+-imaging. Fluo-4/AM (15) can enter the cell as a membrane permeable molecule. Esterases cleave 
the AM esters and the free dye 14 remains. Fluo-4 (14) can complex Ca2+ ions which results in increased 
fluorescence at 516 nm. (B) Structures of Fluo-4/AM (15) and the free Fluo-4 (14) anion. 

 

Compounds were screened on both cell lines. Hitlists of single hits were generated giving a 

total amount of 118 CLN3 primary hits and 133 TPC2 primary hits (Figure 8 A). Since 
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availability of the compounds as well as the quantity was limited, only the strongest hits 

(highest fluorescence increase) for each cell line were selected and further investigated by 

concentration-effect experiments. Thus, only 25 CLN3 primary hits and 12 TPC2 primary hits 

were further considered. Concentration-effect experiments in the range of 50 µM to 24 nM 

resulted in two secondary CLN3 hits (A09 and C15) and four secondary TPC2 hits (N19, N10, 

H07 and L13). These secondary hits were all evaluated in Fura-2 based Ca2+-imaging 

experiments (see chapter 3.4 for the method). None of the analyzed CLN3 hits showed a 

specific activation. One TPC2 hit had no effect and another one showed unspecific or toxic 

effects. Hence only two final hits for TPC2 (N19, named TPC2-A1-N (16) and H07, named 

TPC2-A1-P (17)) remained that were able to activate the TPC2 ion channel (Figure 8 B). The 

activity of these two compounds was further confirmed by the electrophysiological endo-

lysosomal patch clamp technique.  

 

Figure 8: Summary of the high-throughput screening. (A) Simplified overview for the stepwise 
identification of the two TPC2 screening hits. (B) Structure of the two screening hits N19 (new name: 
TPC2-A1-N (16)) and H07 (new name: TPC2-A1-P (17)), as presented to us by Roche (Basel, CH). 

 

To verify the postulated structure and assess SAR, generally applicable syntheses for both 

hits had to be developed and the resulting compounds had to be re-evaluated via Fura-2 

calcium imaging 
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3.2 Synthesis of TPC2-A1-N (16) and analogs 

Starting with TPC2-A1-N (16), first a synthesis to confirm the structure of the hit had to be 

developed. A fast, efficient and versatile synthesis was desired. Thus, a compound library can 

be generated to examine SAR. Variations of both aromatic rings, the necessity of a secondary 

amide, as well as the extension of the middle part were investigated. Sjogren et al. published 

a two-step synthesis for related α-cyano-β-hydroxypropenamides, which resulted in exactly the 

desired scaffold of TPC2-A1-N (I, Scheme 1)[91]. 

 

Scheme 1: Retrosynthetic overview showing the synthesis of α-cyano-β-hydroxypropenamides (I) in 
two steps. By using different aniline (IV) and benzoic acid (III) building blocks, a large variability of 
combinations is possible.  

 

Following these procedures an C-acylation using different activated benzoic acid building 

blocks (III, Scheme 1) and NaH as strong base should easily yield desired 

hydroxypropeneamides (I, Scheme 1). Therefore the required α-cyano amide (II, Scheme 1) 

could be synthesized using different aniline building blocks (IV, Scheme 1), 2-cyanoacetic 

acid (18) and a standard coupling reagent as DCC. This synthesis resulted in the desired 

α-cyano-β-hydroxypropenamides (I, Scheme 1) in only two steps and without need for 

purification by column chromatography, which gave the opportunity to establish a broad 

compound library.  

 

Scheme 2: Synthesis of 2-cyano-N-(4-(trifluoromethyl)phenyl)acetamide (SGA-34, 19), according to 
Sjogren et al.[91].  

 

Starting with the structure confirmation of the hit TPC2-A1-N (16) commercially available 

4-(trifluoromethyl)aniline (20), 2-cyanoacetic acid (18) and DCC were used in DMF. After one 

hour the reaction was completed. Purification by filtration and recrystallization yielded the pure 

2-cyano-N-(4-(trifluoromethyl)phenyl)acetamide (SGA-34, 19) in high yield (73%, Scheme 2). 
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Only a few modifications in equivalents were made compared to the original literature in order 

to achieve the best results. For the synthesis of variably substituted α-cyano amides this 

method was applied (II, Table 1). This resulted in mainly p-substituted α-cyano amides (entry 

1-14, Table 1), as well as unsymmetrically (entry 15-19, Table 1) and symmetrically substituted 

aryls (entry 20, 21, Table 1). Electron-withdrawing groups like halide, nitro, nitrile or carbonyl 

substituents represented the majority. The methyl group (entry 2, Table 1) was introduced as 

the electron-donating bioisostere to the screening hit’s trifluoromethyl group (entry 1, Table 1). 

A variant with a tertiary amide (entry 22, Table 1) and another one being derived from a 

benzylamine (entry 23, Table 1) completed the α-cyano amides. Yields were all moderate to 

high, very poor only for N-benzyl-acetamide (entry 23, Table 1).  

Table 1: Overview of the results for the synthesis of α-cyano amides (II). Different aniline building blocks 
(IV and a homologous benzylamine in entry 23) and 2-cyanoacetic acid (18) were used as starting 
materials.  

 

entry starting material (IV) product  (II) yield 

1 R = 4-CF3 (20) 2-cyano-N-(4-(trifluoromethyl)phenyl)acetamide (SGA-
34, 19) 73% 

2 R = 4-CH3 2-cyano-N-(p-tolyl)acetamide (21) 71% 

3 R = H 2-cyano-N-phenylacetamide (22) 76% 

4 R = 4-OCH3 2-cyano-N-(4-methoxyphenyl)acetamide (23) 41% 

5 R = 4-Cl N-(4-chlorophenyl)-2-cyanoacetamide (24) 77% 

6 R = 4-Br N-(4-bromophenyl)-2-cyanoacetamide (25) 40% 

7 R = 4-F 2-cyano-N-(4-fluorophenyl)acetamide (26) 75% 

8 R = 4-I 2-cyano-N-(4-iodophenyl)acetamide (27) 77% 

9 R = 4-NO2 2-cyano-N-(4-nitrophenyl)acetamide (28) 62% 

10 R = 4-CN 2-cyano-N-(4-cyanophenyl)acetamide (29) 78% 

11 R = 4-Ac N-(4-acetylphenyl)-2-cyanoacetamide (30) 54% 

12 R = 4-OPr 2-cyano-N-(4-propoxyphenyl)acetamide (31) 62% 

13 R = 4-OCF3 2-cyano-N-(4-(trifluoromethoxy)phenyl)acetamide (32) 72% 

14 R = 4-COOCH3 methyl 4-(2-cyanoacetamido)benzoate (33) 65% 

15 R = 2-Br, 4-Cl N-(2-bromo-4-chlorophenyl)-2-cyanoacetamide (34) 69% 

16 R = 2-I 2-cyano-N-(2-iodophenyl)acetamide (35) 70% 

17 R = 2,4-F2, 3-Cl N-(3-chloro-2,4-difluorophenyl)-2-cyanoacetamide (36) 68% 

18 R = 3,4-(OCH3)2 2-cyano-N-(3,4-dimethoxyphenyl)acetamide (37) 76% 

19 R = 2,3-Cl2 2-cyano-N-(2,3-dichlorophenyl)acetamide (38) 29% 

20 R = 2,6-Br2 2-cyano-N-(2,6-dibromophenyl)acetamide (39) 40% 

21 R = 3,5-(CF3)2 
N-(3,5-bis(trifluoromethyl)phenyl)-2-cyanoacetamide 
(40) 81% 
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22 
N-methyl-4-
(trifluoromethyl)aniline 

2-cyano-N-methyl-N-(4-
(trifluoromethyl)phenyl)acetamide (41) 74% 

23 
4-(trifluoromethyl) 
benzylamine 

2-cyano-N-(4-(trifluoromethyl)benzyl)acetamide (42) 7% 

 

For the synthesis of TPC2-A1-N (16) acylation of the appropriate α-cyano acetamide (SGA-

34, 19) was performed using 3,5-dichlorobenzoyl chloride (43) and NaH in THF[91]. After one 

hour the reaction was completed and purification by filtration and recrystallization yielded pure 

2-cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide (TPC2-A1-

N, 16) in high yield (69%, Scheme 3). NMR analysis of TPC2-A1-N (16) showed that the enol-

form is favored compared with the keto-form, as described below. 

 

Scheme 3: Synthesis of 2-cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)-
acrylamide (TPC2-A1-N, 16), following a procedure published by Sjogren et al.[91].  

 

This procedure was beneficial in many ways. It was fast and the easy work up gave highly pure 

crystalline products. These products did not need purification by FCC, which saved time and 

material. Furthermore FCC would also cause problems, as it is reported that 1,3-diketones 

form chelate complexes with metal ions, e.g. Fe3+[91-93]. The commonly used silica in chemical 

laboratories contains slight impurities of Fe3+, which would result in colorful contaminated 

products. Different α-cyano amides (II, Table 2) were already prepared and plenty benzoic 

acid building blocks (III) were commercially available. Depending on biological results a 

variety of compounds could be synthesized by different combinations of these building blocks. 

Hence, a set of α-cyano-β-hydroxypropenamides (I, Table 2) was synthesized using this 

method. This resulted in a compound library of 44 TPC2-A1-N analogs. The newly synthesized 

α-cyano amides (blue, II, Table 2) were used for different moieties on the anilide side (blue, 

entry 1-7, 10, 11, 14, 15, 18-20, 27-32, 43, Table 2) of the molecule. Widely varying benzoic 

acid building blocks (green, III, Table 2) were commercially available, which gave the 

opportunity to introduce 17 different aryl groups (green, entry 1, 8, 9, 12, 13, 17, 21-23, 34, 36-

39, 41, 42, 44, Table 2). Combinations of different amide (II, Table 2) and benzoic acid (III, 

Table 2) building blocks resulted in 6 more compounds (entry 16, 24-26, 33, 35, Table 2). One 

variant with a tertiary amide (entry 40, Table 2) and another one replacing the anilide moiety 

with a benzyl amide (entry 45, Table 2), completed the compound list. Nearly all yields are 
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moderate to high, which indicates that this protocol is extendable to a wide variety of α-cyano 

amides (II, Table 2) and benzoic acid building blocks (III, Table 2).  

Table 2: Overview of the results for the synthesis of α-cyano-β-hydroxypropenamides (I). Different 
benzoic acid building blocks (III) are combined with the α-cyano amides (II). *If the appropriate acid 
chloride was not commercially available, the benzoic acid was converted into the acid chloride using 
thionyl chloride.  

 

entry amide (II) 
benzoic acid 
chloride* (III) 

product (I) yield 

1 
R = 4-CF3  
(SGA-34, 19) 

R = 3,5-Cl2 (43) 

 

69% 

2 R = H (22) R = 3,5-Cl2 (43) 

 

68% 

3 R = 4-Cl (24) R = 3,5-Cl2 (43) 

 

70% 

4 R = 4-Br (25) R = 3,5-Cl2 (43) 

 

70% 

5 R = 4-CH3 (21) R = 3,5-Cl2 (43) 

 

53% 

6 R = 4-F (26) R = 3,5-Cl2 (43) 

 

63% 

7 R = 4-I (27) R = 3,5-Cl2 (43) 

 

61% 

8 
R = 4-CF3  
(SGA-34, 19) 

R = H 

 

56% 

9 
R = 4-CF3  
(SGA-34, 19) 

R = 3,5-(NO2)2 

 

29% 

10 R = 4-OCH3 (23) R = 3,5-Cl2 (43) 

 

61% 
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11 R = 4-NO2 (28) R = 3,5-Cl2 (43) 

 

55% 

12 
R = 4-CF3  
(SGA-34, 19) 

R = 4-NO2 

 

69% 

13 
R = 4-CF3  
(SGA-34, 19) 

R = 4-Cl 

 

61% 

14 R = 2-Br, 4-Cl (34) R = 3,5-Cl2 (43) 

 

74% 

15 R = 3,4-(OCH3)2 (37) R = 3,5-Cl2 (43) 

 

51% 

16 R = H (22) 1-methylpyrrole-2-
carbonyl chloride 

 

75% 

17 
R = 4-CF3  
(SGA-34, 19) 

1-methylpyrrole-2-
carbonyl chloride 

 

66% 

18 R = 2,4-F2, 3-Cl (36) R = 3,5-Cl2 (43) 

 

72% 

19 R = 4-CN (29) R = 3,5-Cl2 (43) 

 

38% 

20 R = 2-I (35) R = 3,5-Cl2 (43) 

 

52% 

21 
R = 4-CF3  
(SGA-34, 19) 

R = 2,3,4,5,6-F5  

 

56% 

22 
R = 4-CF3  
(SGA-34, 19) 

R* = 3,5-Br2 

 

42% 

23 
R = 4-CF3  
(SGA-34, 19) 

R = 2,4,6-Cl3 

 

36% 
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24 R = 4-Br (25) R = 2,4,6-Cl3 

 

51% 

25 R = 2,4-F2, 3-Cl (36) R = 2,4,6-Cl3 

 

50% 

26 R = 4-Br (25) R* = 3,5-Br2 

 

44% 

27 R = 4-Ac (30) R = 3,5-Cl2 (43) 

 

79% 

28 R = 2,6-Br2 (39) R = 3,5-Cl2 (43) 

 

13% 

29 R = 2,3-Cl2 (38) R = 3,5-Cl2 (43) 

 

86% 

30 R = 4-OPr (31) R = 3,5-Cl2 (43) 

 

63% 

31 R = 3,5-(CF3)2 (40) R = 3,5-Cl2 (43) 

 

68% 

32 R = 4-OCF3 (32) R = 3,5-Cl2 (43) 

 

83% 

33 R = 2,4-F2, 3-Cl (36) R* = 3,5-Br2 

 

76% 

34 
R = 4-CF3  
(SGA-34, 19) 

acetyl chloride 

 

76% 

35 R = 4-CH3 (21) R = 3,5-(CF3)2 

 

50% 

36 
R = 4-CF3  
(SGA-34, 19) 

R = 3,5-(CF3)2 

 

76% 
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37 
R = 4-CF3  
(SGA-34, 19) 

R = 3,5-(CH3)2 

 

49% 

38 
R = 4-CF3  
(SGA-34, 19) 

R = 3,5-(OCH3)2 

 

79% 

39 
R = 4-CF3  
(SGA-34, 19) 

R = 4-OCF3 

 

48% 

40 N-methyl-acetamide (41) R = 3,5-Cl2 (43) 

 

48% 

41 
R = 4-CF3  
(SGA-34, 19) 

nicotinoyl chloride 

 

51% 

42 
R = 4-CF3  
(SGA-34, 19) 

R* = 3-Br, 5-I 

 

62% 

43 R = 4-COOCH3 (33) R = 3,5-Cl2 (43) 

 

85% 

44 
R = 4-CF3  
(SGA-34, 19) 

5-chloronicotinic 
acid* 

 

61% 

45 benzyl-acetamide (42) R = 3,5-Cl2 (43) 

 

55% 

 

The methyl ester group of SGA-133 (85, entry 43, Table 2) could easily be converted into the 

free carboxylic acid using alkaline hydrolysis. With an excess of LiOH, the ester was cleaved 

within 3 h at room temperature. Precipitation gave the free acid SGA-137 (88) in high yield 

(Scheme 4).  

 

Scheme 4: Deprotection of ester SGA-133 (85) using alkaline conditions gave the free acid SGA-137 
(88). 
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Sjogren et al. applied a second method to generate α-cyano-β-hydroxypropenamides (I, Table 

2). This procedure was using benzoic acid building blocks (III, Table 2) and acetonitrile to give 

3-oxopropanenitriles and condensed these with isocyanates or isothiocyanates[91]. More 

precisely the thioamide analog of TPC2-A1-N (16) was synthesized this way within an Erasmus 

project, as depicted in Scheme 5. Benzoyl chloride 43 together with the lithium salt of 

acetonitrile gave the 3-oxopropanenitrile 89. Subsequent condensation with arylisothiocyanate 

90 in the presence of NaH yielded SGA-167 (91) in moderate yields, which was in accordance 

with literature[91]. Due to a complex work-up of the intermediate 89, yields were not as high as 

on the first route.  

 

Scheme 5: Synthesis of SGA-167 (91) according to Sjogren et al.[91].  

 

Structural analysis of TPC2-A1-N (16) and analogs was a more difficult process as expected. 
1H-NMR analysis showed mainly aromatic signals and 13C NMR spectra of the numerous 

fluorinated products showed plenty carbon fluorine splits. The carbon fluorine coupling resulted 

in 1J coupling constants of around 270 Hz, 2J coupling constants of around 30 Hz, 3J coupling 

constants of around 3.5 Hz and a multiplicity of n + 1. The 1J coupling constant was observed 

in every 13C spectrum of a fluorine containing substance, the more distant ones were only 

observed in the absence of heteroatoms. As known from related 1,3-dicarbonyl compounds 

such as acetylacetone, two tautomeric structures are possible, the keto- and the enol-form, 

which could also be observed by 1H-NMR. It is reported, that the enol-form of acetylacetone is 

more stable than the keto-form, due to the formation of a hydrogen bond between one carbonyl 

and the enol-hydroxy group[94]. For β-ketoamides a hydrogen bond between the β-ketone 

group and the amide NH is also possible (“keto-amide” form; Scheme 6). Both forms were 

found by Laurella et al. in studies of tautomeric equilibria of β-ketoamides. Furthermore these 

authors discovered that electron-withdrawing groups at the benzoyl ring stabilize the enol-

amide tautomer, electron donors stabilize the keto-amide form and bulky groups in C-2 position 

favor the enol-form as well[95]. Transferred to the scaffold of TPC2-A1-N (16), the enol-tautomer 

was more likely to be the fitting style, as the nitrile residue is highly electronegative. This was 

further confirmed by NMR analysis. In most 1H-NMR spectra no standard or shifted hydroxyl 

group was observed, but nevertheless no proton in C-2 position was found. In addition, this 

carbon was always indicated as quaternary in 13C/HSQC analysis.  
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Scheme 6: Keto-enol tautomerism of the blank TPC2-A1-N scaffold. The two most likely tautomers to 
occur are displayed, the keto-amide (left) and the enol-amide (right). Both structures are able to form a 
hydrogen bond to stabilize the conformation.  

 

Collectively, 47 compounds were synthesized in moderate to high yields, including the hit 

TPC2-A1-N (16), the amide SGA-34 (19) as half of the molecule, two drugs (prinomide (58) 

and teriflunomide (76)) and a large variety of analogs. All of them were fully characterized by 

NMR, TLC, HRMS, IR and melting points and the purities were confirmed by analytical HPLC.  

 

3.3 Synthesis of TPC2-A1-P (17) and analogs 

The same procedure as for TPC2-A1-N (16) needed to be applied for TPC2-A1-P (17). In more 

detail, the hit TPC2-A1-P (17) needed to be confirmed, a synthesis to generate TPC2-A1-P 

(17) and analogs had to be developed and a variety of analogs had to be synthesized and 

characterized for structure-activity analysis.  

Examining the structure of TPC2-A1-P (17) the highly substituted pyrrole moiety stands out. 

Pyrrole syntheses have been known for decades and syntheses of highly substituted pyrroles 

were thoroughly examined by many groups. Nevertheless, construction of the appropriately 

substituted pyrrole ring was the key step. The free carboxylic acid (I, Scheme 7) could be 

generated by alkaline deprotection of an ester intermediate (II, Scheme 7), which is generated 

by suitable pyrrole synthesis. The easily available and variable α-halogenated acetophenone 

(IV, Scheme 7), β-ketoester (V, Scheme 7) and primary amine (III, Scheme 7) building blocks 

are the basis for pyrrole formation (Scheme 7).  

 

Scheme 7: Retrosynthetic overview for the synthesis of TPC2-A1-P (17) and analogs (I) derived from 
different α-halogenated acetophenone (IV), β-ketoester (V) and primary amine (III) building blocks.  
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The Hantzsch pyrrole synthesis is one famous reaction to generate pyrroles[96]. Condensation 

of primary amine (III, Scheme 8) and β-ketoester (V, Scheme 8) building blocks gives an 

enamino ester intermediate (VI, Scheme 8). C-Alkylation by the α-halogenated acetophenone 

(IV, Scheme 8) gives a 2-substituted enamino ester (VII, Scheme 8) which undergoes 

intramolecular cyclocondensation to give the desired 2,3,5-trisubstituted pyrrole (II, Scheme 

8)[96-98].  

 

Scheme 8: Commonly accepted mechanism for the Hantzsch pyrrole synthesis, yielding a multi-
substituted pyrrole (II). 

 

Zhao et al. published a microwave-assisted one-pot method for the synthesis of N-substituted 

2-methyl-1H-pyrrole-3-carboxylate derivatives[99]. This method is notable because of the 

absence of solvents and catalysts as well as the fast and easy implementation. The appropriate 

α-halogenated acetophenone to yield TPC2-A1-P (17) is not commercially available. 

Therefore, two commercially available α-bromo acetophenones (92 and 93) were used for 

model reactions. Hereby, building block 93 would provide a product very similar to TPC2-A1-

P (17), with only the trifluoromethoxy group being replaced by a methoxy group. Together with 

β-ketoester (94) and cyclohexanemethanamine (95) they were added into one microwave 

reactor each. After irradiation at 8 bar and 240 °C for 1 h, no residues of bromoacetophenones 

92 and 93 were detected. Pyrrole 96 was isolated in low yield, though no product formation 

could be observed for the pyrrole 97 closely related to TPC2-A1-P (17) (Scheme 9). Hence 

this method was not further pursued.  

 

Scheme 9: Synthetic approach for the Hantzsch pyrrole synthesis to yield the methoxy analog of TPC2-
A1-P 97 and ester 96. 
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Another method, related to the Hantzsch synthesis, is the Paal-Knorr pyrrole synthesis[100, 101]. 

Condensation of 1,4-diketone building blocks (VIII, Scheme 10) with a primary amine building 

block (III, Scheme 10) under protic or Lewis acidic conditions yields multi-substituted pyrroles 

(II, Scheme 10)[102]. The drawback of this method is, that the 1,4-diketone building blocks 

(VIII, Scheme 10) have to be synthesized in an additional step. A procedure, published by 

Kang et al.[103], exactly describes this route. With α-halogenated acetophenone (IV, Scheme 

10) and β-ketoester (V, Scheme 10) building blocks 1,4-diketones (VIII, Scheme 10) are 

synthesized using NaH as base. The authors used ammonium acetate in acetic acid to yield 

N-unsubstituted pyrroles, or primary amine building blocks (III, Scheme 10) with p-

toluenesulfonic acid in ethanol to receive N-alkyl pyrroles[103]. Most primary amine building 

blocks (III, Scheme 10) that will be used are liquids, therefore they don’t need organic solvents 

to be dissolved and acetic acid is chosen as preferred acid.  

 

Scheme 10: General reaction equation for the formation of 1,4-diketone building blocks (VIII)[103] and 
subsequent Paal-Knorr pyrrole synthesis yielding a highly substituted pyrrole derivative (II)[102]. 

 

In model reactions α-bromoacetophenones 92 and 93 together with β-ketoester 94, KI and 

NaH gave the 1,4-diketones 98 and 99. After standard work-up these diketones (98 and 99) 

were pure enough for further proceedings and following Paal-Knorr reaction using 

cyclohexanemethanamine (95) yielded pyrroles SGA-43 (96) and SGA-54 (97) in high yields 

over two steps. KI was added for an in situ Finkelstein reaction to boost the conversion of the 

first step. For the sake of time and material savings the 1,4-diketone building blocks (VIII, 

Scheme 10) were used right away after preparation, without further purification or analysis.  

 

Scheme 11: Model reactions for the synthesis of 2,3,5-trisubstituted pyrroles, yielding SGA-43 (96) and 
SGA-54 (97).  
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The final step in the synthesis of the desired carboxylic acids was the deprotection of the 

esters. Esters can be cleaved by hydrolysis in acidic or alkaline conditions. Kang et al. 

described a method using NaOH[103], which is the reason why alkaline conditions were chosen. 

For screening of deprotection conditions ester SGA-43 (96) was chosen. Using NaOH in 

dioxane/H2O at room temperature only gave starting material after 15 h (entry 1, Table 3). 

Changing to LiOH, THF/H2O[104] and reflux gave the same result (entry 2, Table 3), as well as 

refluxing with NaOH in dioxane/H2O[105] (entry 3, Table 3). A pressure tube was used to 

increase the power of the reaction, but still no deprotection was observed (entry 4, Table 3). 

To generate maximum power, a microwave reaction was applied. With dioxane/H2O rough 

conditions could be achieved and after 2 h total conversion of the ester 96 was observed (entry 

5, Table 3). For better handling LiOH was examined, also giving the carboxylic acid 100 in 

high yield (entry 6, Table 3). 

Table 3: Screening of conditions for the ester saponification using SGA-43 (96).  

 
entry base solvent temperature / conditions time product 

1 NaOH dioxane/H2O (5:1) rt 15 h only s.m. 

2 LiOH THF/H2O (4:1) 60 °C / reflux condenser 12 h only s.m. 

3 NaOH dioxane/H2O (5:1) 100 °C / reflux condenser 15 h only s.m. 

4 NaOH dioxane/H2O (5:1) 100 °C / pressure tube  18 h only s.m. 

5 NaOH dioxane/H2O (5:1) microwave reactor (pmax = 8 bar, 
Pmax = 80 W, Tmax = 160 °C) 2 h 93% 

6 LiOH dioxane/H2O (5:1) microwave reactor (pmax = 8 bar, 
Pmax = 200 W, Tmax = 180 °C) 2 h 89% 

 

With this newly developed method for the synthesis of carboxylic acid (I, Scheme 10), only 

the access to the starting materials needed to be examined. Most starting materials are 

commercially available and just two α-halogenated acetophenones (IV, Scheme 10) had to 

be synthesized to give all designed analogs for complete structure-activity relationships: 2-

Bromo-1-(2-(trifluoro-methoxy)phenyl)ethan-1-one (101) and 1-(5-bromo-2-(trifluoromethoxy)-

phenyl)-2-chloroethan-1-one (102).  

Inspired by a poorly detailed patented procedure[106] mono-bromination of 2'-(trifluoromethoxy)-

acetophenone (103) was carried out under acidic conditions. Only one equivalent of N-
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bromosuccinimide (NBS) and a catalytic amount of p-toluenesulfonic acid were used to yield 

the desired bromoketone 101 in moderate yield (Scheme 12).  

 

Scheme 12: Mono-bromination of acetophenone 103 in acidic conditions to give bromoketone 101.  

 

For the synthesis of the hit TPC2-A1-P (17), chloroketone 102 needed to be synthesized. 

Schlosser et al. published a procedure for lithiation of 1-bromo-4-(trifluoromethoxy)benzene 

(104) with LDA at C-3 (directed metalation), followed by carboxylation at -100 °C with dry 

ice[107]. The authors claimed that these conditions reduce the competing ortho- or meta-

lithiation (positions to the OCF3 group) in a ratio of 99:1 to receive a regioselective ortho-

product. As the desired ortho-lithiation is favored, the reaction was carried out at -78 °C using 

the Weinreb amide 2-chloro-N-methoxy-N-methylacetamide (105) instead of dry ice. Though 

the desired α-chloroketone 102 did not occur and only decomposition of the starting material 

was observed (a, Scheme 13). Same applied to the use of freshly prepared LDA, according 

to Schlosser et al. (b, Scheme 13)[107]. Furthermore a Friedel-Crafts acylation was performed, 

using AlCl3 and chloroacetyl chloride in 1,2-dichloroethane (EDC), but no product formation 

was observed (c, Scheme 13).  

 

Scheme 13: Attempted chloroacetylation of 104. Different reaction conditions were screened. a) 104, 
LDA, THF, -78 °C, 4 h; then 2-chloro-N-methoxy-N-methylacetamide (105) in THF, -78 °C, 5 min. b) 
104, LDA, generated out of DIPA and n-BuLi, -78 °C, 2 h; then 2-chloro-N-methoxy-N-methylacetamide 
(105) in THF, -78 °C, 5 min. c) 104, AlCl3, chloroacetyl chloride, EDC, 0 °C – 50 °C, 5 h.  

 

Lui et al. developed a method for the oxidative trifluoromethylation of phenols[108]. Among their 

examples there were ortho- and para-halogenated phenols, which seemed promising. The 

reaction was performed with commercially available phenol 106 in a custom made glove box, 

but again no product could be isolated (Scheme 14). 
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Scheme 14: Reaction conditions for the attempted trifluoromethylation of phenol 106.  

 

Another attempt to synthesize chloroketone 102 involved an iodine-lithium exchange, which 

should be favored over the bromo-lithium exchange[109]. Weinreb amide 105 was used to give 

the ketone 102 in order to avoid side reactions and over-additions. According to Nahm and 

Weinreb, a stable chelate complex is formed as intermediate, which avoids further additions to 

the ketone. Aqueous acidic work up then could yield the desired ketone (Scheme 15 A)[110]. 

The reaction was performed using commercially available iodine 108 and n-BuLi at -78 °C. 

After 20 minutes, Weinreb amide 105 was added and the reaction was monitored by TLC and 

NMR. The NMR sample was taken from the reaction mixture and after mini work-up dried 

under nitrogen flow. 1H-NMR analysis clearly showed total conversion of the starting material 

and formation of a new substance with all NMR signals required for the desired ketone 102 

after 1 h. After standard work-up of the whole reaction and NMR analysis of the material, no 

product could be observed anymore. Therefore, it was assumed that the desired ketone 102 

was highly volatile and not even stable under reduced pressure, as a rotary evaporator 

generates (40 °C, 1 mbar). The newly developed work-up avoided rotary evaporation. The 

product was dried overnight under a nitrogen flow and gave ketone 102 in moderate yield 

(Scheme 15 B).  

 

Scheme 15: Synthesis of α-chloroketone 102 using in situ generated organolithium reagents and 
Weinreb amide 105. (A) Reaction mechanism according to M. Weinreb[110]. (B) Successful reaction 
conditions for the synthesis of α-chloroketone 102. 
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With all building blocks at hand and a well-established route, the synthesis of TPC2-A1-P (17) 

and analogs could be applied. Finally ester SGA-140 (109, entry 1, Table 4) could be 

synthesized in moderate yield using α-chloroketone 102, ethyl acetoacetate (94) and 

cyclohexanemethanamine (95). Deprotection of ester 109 gave the hit compound TPC2-A1-P 

(17) in good yield. Varying the α-halogenated ketone building block (IV, Table 4) allowed the 

synthesis of seven more esters that were all isolated in moderate to high yields (entry 2-7, 13, 

Table 4). The bioisosteric ester SGA-54 (97) was lacking the trifluoromethoxy group at C-2 

position of the aromatic ring and was instead bearing a methoxy group (entry 3, Table 4). The 

2,5-dichloro variant SGA-48 (110) also shared the substitution pattern of the hit compound 

(entry 4, Table 4). Esters SGA-59 (111) and SGA-61 (112) both had para-substituents (entry 

5, 6, Table 4) and SGA-62 (113) was the 2,4-difluoro analog (entry 7, Table 4). Ester 114 was 

lacking the bromine in C-5 position of the aromatic ring (entry 13, Table 4). All of these esters 

were further deprotected to yield the carboxylic acids SGA-50 (100), SGA-55 (115), SGA-52 

(116), SGA-66 (117), SGA-67 (118), SGA-68 (119) and SGA-162 (120) in moderate to high 

yields (entry 2-7, 13, Table 4). These compounds had in common that their α-halogenated 

ketone building blocks (IV, Table 4) were stable, which is the reason why they could be easily 

purified. Simple FCC yielded the pure esters. Purification attempts of esters synthesized with 

the volatile α-chloroketone 102 were very complicated and time consuming. A first set of 

biological experiments revealed that the ester SGA-140 (109) does in comparison to the 

carboxylic acid TPC2-A1-P (17) not show any effect in Ca2+ imaging experiments (Figure 15). 

Therefore there was no need to purify and isolate the pure esters anymore and FCC was just 

performed as a pre-cleaning process. This was of great importance, because the precipitating 

of the carboxylic acids was otherwise not successful and additional extractions had to be 

included. The absence of colorful impurities was critical as this would disturb experiments using 

fluorescent dyes.  

Table 4: Products synthesized according to the newly elaborated method for the synthesis of highly 
substituted pyrrolecarboxylic acids (I). *cy = cyclohexyl 

 

entry R1 R R2 ester (II) acid (I) 

1 
R = 2-OCF3, 
5-Br  R = CH3 R = CH2cy* 

 
46% 

 
54% 
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2 - R = CH3 R = CH2cy* 

 
53% 

 
89% 

3 
R = 2-OCH3, 
5-Br R = CH3 R = CH2cy* 

 
95% 

 
63% 

4 R = 2,5-Cl2 R = CH3 R = CH2cy* 

 
46% 

 
81% 

5 R = 4-F R = CH3 R = CH2cy* 

 
97% 

 
88% 

6 R = 4-OCH3 R = CH3 R = CH2cy* 

 
51% 

 
90% 

7 R = 2,4-F2 R = CH3 R = CH2cy* 

 
78% 

 
88% 

8 
R = 2-OCF3, 
5-Br  R = CH3 R = pentyl not isolated 

 
15% overall yield 

9 
R = 2-OCF3, 
5-Br  R = CH3 R = benzyl not isolated 

 
10% overall yield 
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10 
R = 2-OCF3, 
5-Br  

R = 
CH2CH3 

R = CH2cy* not isolated 

 
9% overall yield 

11 
R = 2-OCF3, 
5-Br  R = CH3 R = iPr not isolated 

 
12% overall yield 

12 
R = 2-OCF3, 
5-Br  R = phenyl R = CH2cy* not isolated 

 
28% overall yield 

13 R = 2-OCF3 R = CH3 R = CH2cy* 

 
95% 

 
93% 

 

Different β-ketoester building blocks (V, Table 4) were used to generate SGA-152 (121) and 

SGA-154 (122), both with larger residues in C-2 position of the pyrrole (entry 10, 12, Table 4). 

Modifications in 1-position of the pyrrole were achieved with altering primary amine building 

blocks (III, Table 4) to give carboxylic acids SGA-149 (123) with a long and SGA-153 (124) 

with a branched side chain as well as SGA-150 (125) with a benzyl moiety (entry 8, 9, 11, 

Table 4). All yields are low to moderate but over two steps acceptable.  

Collectively, a synthesis for TPC2-A1-P (17) was developed that was also suitable for 

synthesizing analogs. In total 13 esters were synthesized and 8 of them isolated, including the 

ester SGA-140 (109). Alkaline deprotection under microwave irradiation yielded the hit 17 itself 

and 12 analogs varying all substituents of the pyrrole moiety. These 21 substances were fully 

characterized by NMR, TLC, HRMS, IR and melting points and the purity was confirmed by 

analytical HPLC.  
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3.4 Pharmacological investigation of TPC2 agonists  

The agonistic effects of the synthesized screening hits TPC2-A1-N (16) and TPC2-A1-P (17) 

and their analogs were confirmed by Fura-2 single cell calcium imaging and SAR were 

analyzed. Concentration-effect relationships using Fluo-4 calcium imaging were analyzed and 

further results from cooperation partners are briefly described for presentation of the whole 

outcome of this interdisciplinary project. Finally our novel TPC2 agonists were compared to 

activators, recently published by Zhang et al.[111]. All studies were performed in close 

cooperation with Prof. Dr. Michael Schaefer’s group (HTS, performed by myself, Fluo-4 based 

experiments, performed by Nicole Urban), Prof. Dr. Dr. Christian Grimm’s as well as Prof. Dr. 

Martin Biel’s groups (Fura-2 based calcium imaging, performed by myself and patch clamp 

experiments, performed by Dr. Yu-Kai Chao and Dr. Cheng-Chang Chen). 

 

3.4.1 Confirmation of TPC2-A1-N (16) and TPC2-A1-P (17) as TPC2 agonists 

Single cell Ca2+ imaging experiments had confirmed the two HTS hits, using HEK293 cells 

transiently expressing the plasma membrane variant of human TPC2 (hTPC2L11A/L12A)[22]. The 

membrane permeable, ratiometric dye Fura-2/AM (126) was selected as Ca2+ indicator for 

these experiments. Ca2+ imaging using Fura-2 (13) enables the detection of changes in calcium 

levels in adherent cells[112].  

 

Figure 9: The principle of Fura-2 based Ca2+-imaging. (A) Schematic overview of Fura-2/AM based 
Ca2+-imaging. Fura-2/AM (126) can enter the cell as membrane permeable AM ester. Esterases cleave 
the AM esters and the free dye 13 remains. Excitation wavelength for Fura-2 (13) changes upon 
complexation from 380 nm (no Ca2+) to 340 nm (with Ca2+). Emission can be detected at 510 nm. (B) 
Structures of Fura-2/AM (126) and the free Fura-2 (13) anion. 
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Fura-2/AM (126) can enter cells as a lipophilic AM ester and is hydrolyzed inside the cells by 

esterases. The Fura-2 (13) anion can complex Ca2+ ions and shifts its absorption maximum 

from 380 nm to 340 nm, both emitting at 510 nm (Figure 9 A and B). While Ca2+ concentrations 

rise, an increase of fluorescence for excitation at 340 nm can be observed. The level of 

transfection, as well as the loading of the cell with Fura-2 (13) have an impact on the 

fluorescence intensity. To avoid measurement inaccuracies, the ratio of chelated Fura-2 

(340 nm) divided by free Fura-2 (13, 380 nm) is determined.  

 

Figure 10: Confirmation of TPC2-A1-N (16) and TPC2-A1-P (17) as TPC2 agonists. (A) Representative 
Ca2+ signals recorded from HEK293 cells loaded with the ratiometric Ca2+ indicator, Fura-2 (13) and 
stimulated with TPC2-A1-N (16, 10 µM) and monitored for 400 s. Cells were transiently transfected with 
plasma membrane targeted human TPC2 (hTPC2L11A/L12A). Highlighted lines represent the mean 
response from a population of cells. Shaded traces represent responses of single cells (n = 10 cells for 
hTPC2; n = 3 cells for NT cells). (B) Similar to A except that cells were stimulated with TPC2-A1-P (17, 
10 µM) and monitored for 600 s. Shaded traces represent single cells responses (n = 10 cells for hTPC2; 
n = 3 cells for NT cells). (C) Similar to A except that cells were stimulated with TPC2-A1-P (17, 30 µM). 
Shaded traces represent single cells responses (n = 9 cells for hTPC2; n = 3 cells for NT cells). (D) 



RESULTS AND D ISCUSSION 

33 

Statistical analysis of the maximal change in Fura-2 (13) ratio (mean ± SEM) with the number of 
independent transfections in parentheses. Experiments were performed over the period of 9 months 
and on the same days, each. ***p < 0.001, using one-way ANOVA followed by Tukey’s post hoc test. 
(E-F) Representative FLIPR-generated Ca2+ signals (Fluo-4 (14)) in TPC2L11A/L12A–expressing cells (red 
and blue line) or non-transfected (NT) control cells (black) after addition of TPC2-A1-N (16, E) or TPC2-
A1-P (17, F). Experiments were performed by Nicole Urban. (G-H) Concentration-effect relationships 
for Ca2+ increases (Fluo-4 (14)) in response to different concentrations of TPC2-A1-N (16, G) and TPC2-
A1-P (17, H). Experiments were performed by Nicole Urban. (I-J) Representative Ca2+ signals recorded 
from HEK293 cells loaded with the ratiometric Ca2+ indicator, Fura-2 (13) and sequentially stimulated 
with TPC2-A1-N (16, 10 µM, I, n = 6 cells) or TPC2-A1-P (17, 30 µM, J, n = 6 cells) and the TRPML 
agonist ML-SA1 (10 µM). Cells were transiently transfected with human TRPML1∆NC. Means are 
highlighted and single cell responses are shaded. (K-L) Experiment as in I-J, but HEK293 cells 
transiently transfected with human TRPML2, or TRPML3. Cells were sequentially stimulated with TPC2-
A1-N (16, 10 µM, K, n = 4 cells) or TPC2-A1-P (17, 30 µM, L, n = 4 cells) and the TRPML agonist 
ML-SA1 (10 µM) or the TRPML2 selective agonist ML2-SA1 (10 µM). Means are highlighted and single 
cell responses are shaded. Fura-2 based calcium imaging experiments were performed on a 
Polychrome IV mono-chromator (TILL photonics). 

 

Both screening hits, investigated as the independently synthesized substances, reproducibly 

evoked Ca2+ signals. Thereby the correct structures of the HTS hits were confirmed. The 

signals evoked by the compounds showed different kinetics whereby the TPC2-A1-N (16) 

response reached its plateau faster than TPC2-A1-P response (17, Figure 10 A-B and E-F). 

The slower activation could be reduced by stimulation with higher concentrations of TPC2-A1-

P (17), while control cells still remained unaffected (Figure 10 C). Hence, recommended 

experimental concentration for TPC2-A1-P (17) is 30 µM. Long term statistical analysis of 

TPC2-A1-N (16) and TPC2-A1-P (17) showed robust and significant activation of TPC2 

(Figure 10 D). Concentration-effect relationships indicated EC50 values of 7.8 μM and 10.5 μM, 

for TPC2-A1-N (16) and TPC2-A1-P (17), respectively (Figure 10 G and H). Both agonists 

failed to evoke Ca2+ signals in cells expressing human TRPML1 re-routed to the plasma 

membrane (TRPML1∆NC)[113, 114] at the recommended working concentrations (Figure 10 I and 

J). Similar negative results were obtained with the TRPML agonists ML-SA1 and ML2-SA1[115] 

as positive controls in cells expressing TRPML2 or TRPML3 (Figure 10 K and L). These 

results indicate that both hits are selective TPC2 agonists with different modes of activation.  

 

3.4.2 Structure-activity relationships for TPC2-A1-N (16) and analogs 

Fura-2 based calcium imaging experiments were performed with transiently transfected 

HEK293 cells, which allowed selection of transfected cells and non-transfected (NT) control 

cells in one experiment. False positive analogs could straight away be eliminated and 

unspecific effects on intact cells could be determined. If a compound showed no effect in Ca2+ 

imaging experiments, a control had to be added. At the beginning of the screening, TPC2-A1-

N (16) was not fully established as TPC2 activator and therefore ionomycin (4 µM) was used 

as a control for a well-functioning experiment. Ionomycin is a membrane permeable Ca2+ 
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ionophore and causes an intracellular calcium rise by transporting Ca2+ across biological 

membranes[116, 117]. This is not selective for TPC2, thus ionomycin is a control for the accuracy 

of the experiment. Stimulation of the cells with a selective activator determines whether a 

compound is inactive or an inhibitor.  

 

Figure 11: Fura-2 based Ca2+ imaging results for all TPC2-A1-N (16) analogs. (A-B) Fura-2 based Ca2+ 
imaging results showing the effect of TPC2-A1-N (16) and its analogs (10 μM, each) on HEK293 cells 
transiently transfected with hTPC2L11A/L12A-YFP (A, red) and control cells (B, grey). The red arrow 
indicates unspecific effect on control cells, the orange arrow indicates auto fluorescence and the green 
arrow indicates no effect. Mean values normalized to basal (400 s after compound application) ± SEM 
of at least three independent experiments with 3–10 cells each are shown. All experiments were 
performed on a Polychrome IV mono-chromator (TILL photonics). 

 

All synthesized analogs of TPC2-A1-N (16) were tested on their ability to activate TPC2. Out 

of 46 analogs, 23 substances have shown significant agonistic effects (Figure 11 A) and 6 

more barely any activation (SGA-1 (44), SGA-12 (52), SGA-16 (55), SGA-38 (61), SGA-72 

(66), SGA-112 (79), Figure 11 A). Ionomycin or TPC2-A1-N (16) were added for the purpose 

of verifying the accuracy of the experiments. In all experiments with inactive compounds TPC2-

A1-N (16) was added at least once. Thus there were not enough data for statistical analysis to 

verify that the inactive compounds do not inhibit the activation of TPC2. SGA-13 (53) showed 

increased levels of activation on control cells that could be identified as auto fluorescence 
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(Figure 11 B). Three substances (SGA-27 (56), SGA-85 (73), SGA-132 (84)) also had slight 

unspecific effects on control cells, that were not related to auto fluorescence. Seven 

substances (SGA-33 (60), SGA-85 (73), SGA-86 (74), SGA-90 (75), SGA-108 (77), SGA-111 

(78), SGA-132 (84)) had comparable efficacy to TPC2-A1-N (16), while all others were less 

effective.  

Analyzing the structures of the 8 most potent TPC2 activators within this series showed that 

TPC2-A1-N analogs have meta-disubstitution patterns with electron-withdrawing groups 

located on the benzoyl ring system (Figure 12). In contrast, substitution pattern at the phenyl 

ring on the anilide side of the molecule was more variable. Electron-withdrawing and -releasing 

groups (TPC2-A1-N (16), SGA-86 (74) vs. SGA-108 (77)) did not cause significant changes in 

activity. Substitution patterns could also differ from para to meta (TPC2-A1-N (16), SGA-85 

(73)) or even more strongly (SGA-33 (60), SGA-90 (75)).  

 

Figure 12: Structures of the 8 most potent TPC2 activators within the TPC2-A1-N (16) series. Structural 
differences are marked in magenta.  

 

Harsh changes on the benzoyl moiety (replacement by methyl or pyrrole residues), as 

demonstrated for the approved drugs teriflunomide (SGA-94, 76) and prinomide (SGA-31, 58) 

as well as the 4-trifluoromethyl variant of prinomide (SGA-32, 59) led to a complete loss of 

activity (Figure 13). Teriflunomide (76) and SGA-32 (59) did not show inhibitory effects after 

activation with TPC2-A1-N (16, Figure 13 B and D). Stimulation with ionomycin (Figure 13 C) 

indicates the accuracy of the experiment by strong, unspecific calcium influx as described 

above. Teriflunomide (76) is an approved drug for the treatment of multiple sclerosis and 

prinomide (58) for rheumatoid arthritis[118, 119]. Dysregulation of calcium homeostasis can be 

associated with several neurodegenerative disorders like multiple sclerosis (MS)[120], but there 

is no direct link between MS and TPC2 up to now.  
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Figure 13: Approved drugs structurally related to TPC2-A1-N (16) show no effect on TPC2. (A) 
Structures of the approved drugs teriflunomide (SGA-94, 76) and prinomide (SGA-31, 58) and analog 
SGA-32 (59). (B-D) Representative calcium signals from HEK293 cells transiently transfected with 
hTPC2L11A/L12A-YFP. Cells were stimulated with teriflunomide (76, 10 µM, A, n = 12 cells for hTPC2; n = 
7 cells for NT cells), prinomide (58, 10 µM, B, n = 10 cells for hTPC2; n = 6 cells for NT cells) or SGA-
32 (59, 10 µM, C, n = 12 cells for hTPC2; n = 4 cells for NT cells) for 400 s each, followed by activation 
with TPC2-A1-N (16, 10 µM, B and D, 400 s) or ionomycin (C, 4 µM, 200 s). Highligted lines represent 
the mean response from a population of cells. Shaded traces represent responses of single cells. Fura-
2 based calcium imaging experiments were performed on a Polychrome IV mono-chromator (TILL 
photonics). 

 

Thio-analog SGA-167 (91) was synthesized as last compound within an Erasmus project 

(Figure 14 A). At that time, a new Ca2+-imaging setup was put into operation. Direct 

comparison from experiments using the old setup (Polychrome IV mono-chromator, TILL 

photonics) with the new setup (Leica DMi8 live cell microscope) is not possible. Intensities can 

vary due to the power of the light sources and analysis of the experiments using the 

manufacturers’ software (TILLvisION or LAS X) could also cause differences in intensities. 

Therefore, TPC2-A1-N (16) was re-evaluated and used as an established activator to analyze 

differences in agonistic effects compared to SGA-167 (91). The thio-analog 91 activates TPC2 

significantly less than TPC2-A1-N (16, Figure 14 B), clearly indicating very special SAR in this 

chemotype.  

 

Figure 14: Thio-analog SGA-167 (91) activates TPC2 less than the hit. (A) Structure of SGA-167 (91). 
Differences to TPC2-A1-N (16) are marked in red. (B) Fura-2 based Ca2+ imaging results showing the 
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effect of TPC2-A1-N (16, 10 µM) and its analog SGA-167 (91, 10 μM) on HEK293 cells stably expressing 
hTPC2L11A/L12A-RFP. Mean values normalized to basal (400 s after compound application) ± SEM of at 
least three independent experiments with 3–10 cells each are shown. ***p < 0.001 using unpaired 
student’s t-test. Fura-2 based calcium imaging experiments were performed on a Leica DMi8 live cell 
microscope. 

 

All findings were affirmed by full analysis of concentration-effect relationships, performed by 

our cooperation partner Nicole Urban, Rudolf-Boehm-Institute, Leipzig. The Fluo-4 based 

calcium imaging experiments were chosen because a large number of compounds at different 

concentrations can be analyzed in a high-throughput manner. The barely activating 

compounds show either high EC50 values (entry 3, 11, 13, 19, Table 5) or were not calculable 

because activation started at concentrations above 50 µM. With EC50 values above 100 µM 

substances were not suitable anymore because such high concentrations can cause unwanted 

side effects and solubility problems. Substances that were inactive in Fura-2 calcium imaging, 

did not show agonistic effects in Fluo-4 imaging as well. This confirmed all results from the 

Fura-2 imaging experiments. Nearly all EC50 values of the 8 most potent substances are in the 

same range, thus SGA-33 (60, 23 µM) is higher to some extent (Table 5). SGA-85 (73) and 

SGA-132 (84) have a slightly lower EC50 (3.3 µM and 5.3 µM) than TPC2-A1-N (16, 7.8 µM), 

which is relativized by the fact that control cells showed increased levels of activation in Fura-

2 imaging for SGA-85 (73) and SGA-132 (84, Figure 11 B).  

Further analysis of structural motifs shows that replacing the para-trifluoromethyl group on the 

anilide side of the molecule (R1; blue) gives more opportunities than changes on the benzoyl 

residue. Electron-withdrawing groups in para-position on the anilide side causes no significant 

changes (e.g. entry 2, 3, 5, 6, Table 5). Even the introduction of electron-releasing groups in 

para-position is tolerated to some extent (SGA-4 (47), SGA-84 (72), SGA-108 (77)). For the 

substitution pattern of the benzoyl ring system (R2, green), meta-disubstitution patterns with 

electron-withdrawing groups are most beneficial. 

Table 5: Structure variations and EC50 values of TPC2-A1-N (16) and the active analogs. No significantly 
increased efficacies or potencies were observed for the analogs. EC50 (Fluo-4 (14)) values are received 
via Fluo-4 based Ca2+ imaging experiments, performed by Nicole Urban as previously described[22]. IC50 
values (MTT) are received from in-house MTT experiments, performed by Martina Stadler. *experiment 
was performed at a later time. n.a. = not applicable.  

N
H

O

CN

OH
R1

R
2

 

entry name R1 = R2 = EC50 = 
IC50 

(MTT) = 

1 TPC2-A1-N (16) 4-CF3 3,5-Cl2 7.8 µM > 50 µM 

2 SGA-34 (19) 4-CF3 - n.a. > 50 µM 

3 SGA-1 (44) H 3,5-Cl2 35 µM > 50 µM 
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4 SGA-2 (45) 4-Cl 3,5-Cl2 24 µM > 50 µM 

5 SGA-3 (46) 4-Br 3,5-Cl2 20 µM > 50 µM 

6 SGA-4 (47) 4-CH3 3,5-Cl2 15 µM > 50 µM 

7 SGA-8 (48) 4-F 3,5-Cl2 22 µM > 50 µM 

8 SGA-9 (49) 4-I 3,5-Cl2 34 µM 48 µM 

9 SGA-10 (50) 4-CF3 H n.a. > 50 µM 

10 SGA-11 (51) 4-CF3 3,5-(NO2) 2 38 µM > 50 µM 

11 SGA-12 (52) 4-OCH3 3,5-Cl2 33 µM > 50 µM 

12 SGA-15 (54) 4-CF3 4-NO2 > 100 µM > 50 µM 

13 SGA-16 (55) 4-CF3 4-Cl 47 µM > 50 µM 

14 SGA-27 (56) 2-Br, 4-Cl 3,5-Cl2 10 µM > 50 µM 

15 SGA-28 (57) 3,4-(OCH3)2 3,5-Cl2 n.a. > 50 µM 

16 SGA-31 (58) prinomide n.a. > 50 µM 

17 SGA-32 (59) 
2-cyano-3-(1-methyl-1H-pyrrol-2-yl)-3-
hydroxy-N-(4-
(trifluoromethyl)phenyl)acrylamide 

n.a. > 50 µM 

18 SGA-33 (60) 2,4-F2, 3-Cl 3,5-Cl2 23 µM > 50 µM 

19 SGA-38 (61) 4-CN 3,5-Cl2 51 µM > 50 µM 

20 SGA-39 (62) 2-I 3,5-Cl2 > 100 µM > 50 µM 

21 SGA-40 (63) 4-CF3 2,3,4,5,6-F5 41 µM > 50 µM 

22 SGA-70 (64) 4-CF3 3,5-Br2 13 µM > 50 µM 

23 SGA-71 (65) 4-CF3 2,4,6-Cl3 40 µM > 50 µM 

24 SGA-72 (66) 4-Br 2,4,6-Cl3 > 100 µM > 50 µM 

25 SGA-73 (67) 2,4-F2, 3-Cl 2,4,6-Cl3 n.a. > 50 µM 

26 SGA-75 (68) 4-Br 3,5-Br2 22 µM > 50 µM 

27 SGA-76 (69) 4-Ac 3,5-Cl2 > 100 µM > 50 µM 

28 SGA-77 (70) 2,6-Br2 3,5-Cl2 n.a. > 50 µM 

29 SGA-78 (71) 2,3-Cl2 3,5-Cl2 n.a. > 50 µM 

30 SGA-84 (72) 4-OC3H7 3,5-Cl2 14 µM > 50 µM 

31 SGA-85 (73) 3,5-(CF3)2 3,5-Cl2 3.0 µM 29 µM 

32 SGA-86 (74) 4-OCF3 3,5-Cl2 9.5 µM 49 µM 

33 SGA-90 (75) 2,4-F2, 3-Cl 3,5-Br2 12 µM > 50 µM 

34 SGA-94 (76) teriflunomide n.a. > 50 µM 

35 SGA-108 (77) 4-CH3 3,5-(CF3)2 7.1 µM > 50 µM 

36 SGA-111 (78) 4-CF3 3,5-(CF3)2 6.2 µM > 50 µM 

37 SGA-112 (79) 4-CF3 3,5-(CH3)2 > 100 µM > 50 µM 

38 SGA-113 (80) 4-CF3 3,5-(OCH3)2 n.a. > 50 µM 

39 SGA-114 (81) 4-CF3 4-OCF3 > 100 µM > 50 µM 

40 SGA-115 (82) 
2-cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-
methyl-N-(4-(trifluoromethyl)phenyl)-
acrylamide 

> 100 µM 35 µM 

41 SGA-127 (83) 2-cyano-3-hydroxy-3-(pyridin-3-yl)-N-(4-
(trifluoromethyl)phenyl)acrylamide n.a. > 50 µM 

42 SGA-132 (84) 4-CF3 3-Br, 5-I 5.3 µM 32 µM 
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43 SGA-133 (85) 4-COOCH3 3,5-Cl2 21 µM > 50 µM 

44 SGA-136 (86) 3-(5-chloropyridin-3-yl)-2-cyano-3-hydroxy-N-
(4-(trifluoromethyl)phenyl)acrylamide n.a. > 50 µM 

45 SGA-137 (88) 4-COOH 3,5-Cl2 n.a. > 50 µM 

46 SGA-138 (87) 2-cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-
(4-(trifluoromethyl)benzyl)acrylamide > 100 µM 48 µM 

47* SGA-167 (91) 
2-cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-
(4-(trifluoromethyl)phenyl)prop-2-
enethioamide 

31 µM > 50 µM 

 

The toxicity of all substances was examined by in-house MTT assays using HL-60 cells and 

was performed by Martina Stadler. The MTT assay indicates the metabolic cell activity and 

reflects cell viability[121]. IC50 represents the concentration that is required for half maximal 

inhibition and compounds with values smaller than 50 µM are acknowledged as cytotoxic. 

Nearly all analogs and the hit itself did not show toxicity and only 6 substances had slight 

cytotoxic effects (entry 8, 31, 32, 40, 42, 46, Table 5). Out of the 8 most potent substances, 

only three substances showed slight toxicity (SGA-85 (73), SGA-86 (74), SGA-132 (84), entry 

31-32, 42, Table 5) while the hit compound TPC2-A1-N (16) itself showed no toxicity (entry 1, 

Table 5).  

The HTS hit TPC2-A1-N (16) itself and some of its analogs bearing residues in para-position 

at the benzoyl residue are known as anthelmintic agents[91]. The authors performed 

mechanism of action studies using Ascaris mitochondria and have shown that these 

compounds are uncouplers of oxidative phosphorylation, comparable to salicylanilide 

anthelmintic agents[122]. There are no indications in current literature that this effect is related 

to TPC2.  

In summary, none of the 46 modified versions of TPC2-A1-N (16, auto-fluorescent SGA-13 

(53) already excluded) showed significantly increased efficacies or potencies on TPC2 (Figure 

11, Table 5) and the TPC2-A1-N chemotype showed a very flat structure-activity relationship 

on TPC2. TPC2-A1-N (16) thus remained a promising chemical tool for studies of TPC2.  

 

3.4.3 Structure-activity relationships for TPC2-A1-P (17) and analogs 

Fura-2 based calcium imaging experiments were performed as described above for TPC2-A1-

N (16) and analogs (Figure 15 A). Experiments with inactive substances were subsequently 

activated with TPC2-A1-N (16) or stimulated with ionomycin (Figure 15, E and F). Also, for 

TPC2-A1-P (17) and analogs full concentration-effect experiments were performed by Nicole 

Urban (Leipzig), using the Fluo-4 based high-throughput setup as described before (Table 6).  
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Similar to the results obtained for TPC2-A1-N (16), modified versions of TPC2-A1-P (17) 

showed no improvement of potency or efficacy. Virtually all 19 analogs were inactive, only 

compound SGA-150 (125), in which the N-cyclohexylmethyl residue is replaced by an N-benzyl 

group (of identical size) showed noteworthy, but reduced activity (Figure 15 A, Table 6). 

Analysis of SAR revealed that the free carboxylic acid is essential for the activating effect, as 

the ester SGA-140 (109) was not active (entry 2, Table 6). It may serve as a prodrug of TPC2-

A1-P (17) in living systems, but this has not been investigated further. Both, the 

trifluoromethoxy and the bromine substituent at the phenyl ring were essential for activating 

TPC2, as exemplified by the inactive methoxy (SGA-55, 115, entry 8, Table 6) and des-bromo 

(SGA-162, 120, entry 20, Table 6) analogs. Even moderate expansions of the size of the 

substituent at C-2 position of the pyrrole (methyl in TPC2-A1-P (17) vs. ethyl in SGA-152 (121) 

and phenyl analog SGA-154 (122), entry 1 vs. 17, 19, Table 6), had the same detrimental 

effect.  

 

Figure 15. Fura-2 based Ca2+ imaging results for all TPC2-A1-P (17) analogs. (A-B) Fura-2 based Ca2+ 
imaging results showing the effect of TPC2-A1-P (17) and its analogs (10 µM; each) on HEK293 cells 
transiently transfected with hTPC2L11A/L12A-YFP (A, blue) and control cells (B, grey). Mean values 
normalized to basal (400 s after compound application) ± SEM of at least three independent experiments 
with 3–10 cells each are shown. TPC2-A1-P (17) is highlighted and the analogs are shaded. (C-D) 
Representative calcium signals from HEK293 cells transiently transfected with hTPC2L11A/L12A-YFP. 
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Cells were stimulated with TPC2-A1-P (17, C, 10 µM, 600 s, n = 10 cells for hTPC2; n = 3 cells for NT 
cells) or SGA-150 (125, D, 10 µM, 800 s, n = 10 cells for hTPC2; n = 3 cells for NT cells). Highligted 
lines represent the mean response from a population of cells. Shaded traces represent responses of 
single cells. Each structure is depicted on the right of the graph and structural differences to TPC2-A1-
P (17) are marked in red. (E-F) Experiment as in C-D, but cells were sequentially stimulated with SGA-
50 (100, E, 10 µM) or SGA-149 (123, F, 10 µM) and the TPC2 activator TPC2-A1-N (16, 10 µM) for 400 
s each. All experiments were performed on a Polychrome IV mono-chromator (TILL photonics). 

 

Aforementioned, the only fairly tolerable structure modification was the replacement of the 

cyclohexylmethyl moiety in 1-positon of the pyrrole ring by a benzyl residue (SGA-150, 125, 

entry 16, Table 6). The efficacy of TPC2-A1-P (17) was significantly higher than of SGA-150 

(125) (Figure 15 A) while for both compounds control cells remained unaffected (Figure 15 

B). Linear or branched alkyl chains (SGA-149 (123), SGA-153 (124), entry 15, 18, Table 6), 

however, induced loss of activity. 

Fura-2 based single cell calcium imaging traces for the activation of TPC2 were shown in 

Figure 15 C-F. These experiments showed the slow and weak activation of TPC2 with SGA-

150 (125). This activation was even slower than the abovementioned activation using TPC2-

A1-P at 10 µM (17, Figure 15 C and D). This indicated a lower affinity of SGA-150 (125) on 

TPC2 compared to TPC2-A1-P (17). Exemplary Fura-2 traces for the inactive compounds 

SGA-50 (100) and SGA-149 (123) were shown in Figure 15 E and F. Both substances had no 

effect on TPC2 and following activation using TPC2-A1-N (16) was successful, indicating that 

SGA-50 (100) and SGA-149 (123) were neither activators, nor inhibitors.  

Table 6: Structure variations and EC50/IC50 values of TPC2-A1-P (17), its ester SGA-140 (109) and all 
other analogs. EC50 values were received via Fluo-4 based Ca2+ imaging experiments, performed by 
Nicole Urban (Leipzig) as previously described[22]. IC50 values (MTT) were received from in-house MTT 
experiments, performed by Martina Stadler. n.a. = not applicable.  

 
entry compound R = R1 = R2 = R3 = EC50 = IC50 (MTT) = 

1 TPC2-A1-P (17) H 2-OCF3, 5-Br CH2cy* CH3 10.5 µM 27 µM 

2 SGA-140 (109) CH2CH3 2-OCF3, 5-Br CH2cy* CH3 n.a. 24 µM 

3 SGA-43 (96) CH2CH3 - CH2cy* CH3 n.a. 48 µM 

4 SGA-50 (100) H - CH2cy* CH3 n.a. 32 µM 

5 SGA-48 (110) CH2CH3 2,5-Cl2 CH2cy* CH3 n.a. > 50 µM 

6 SGA-52 (116) H 2,5-Cl2 CH2cy* CH3 n.a. 15 µM 

7 SGA-54 (97) CH2CH3 2-OCH3, 5-Br CH2cy* CH3 n.a. > 50 µM 

8 SGA-55 (115) H 2-OCH3, 5-Br CH2cy* CH3 n.a. > 50 µM 

9 SGA-59 (111) CH2CH3 4-F CH2cy* CH3 n.a. 40 µM 

10 SGA-66 (117) H 4-F CH2cy* CH3 n.a. > 50 µM 
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11 SGA-61 (112) CH2CH3 4-OCH3 CH2cy* CH3 n.a. 42 µM 

12 SGA-67 (118) H 4-OCH3 CH2cy* CH3 n.a. > 50 µM 

13 SGA-62 (113) CH2CH3 2,4-F2 CH2cy* CH3 n.a. > 50 µM 

14 SGA-68 (119) H 2,4-F2 CH2cy* CH3 n.a. > 50 µM 

15 SGA-149 (123) H 2-OCF3, 5-Br pentyl CH3 n.a. 14 µM 

16 SGA-150 (125) H 2-OCF3, 5-Br benzyl CH3 34 µM 36 µM 

17 SGA-152 (121) H 2-OCF3, 5-Br CH2cy* CH2CH3 n.a. 21 µM 

18 SGA-153 (124) H 2-OCF3, 5-Br iPr CH3 n.a. 31 µM 

19 SGA-154 (122) H 2-OCF3, 5-Br CH2cy* phenyl n.a. 14 µM 

20 SGA-162 (120) H 2-OCF3 CH2cy CH3 n.a. > 50 µM 

 

The toxicity of all substances was examined by in-house MTT assays as described above for 

TPC2-A1-N (16). Most substances could be classified as non-toxic (SGA-48 (110), SGA-54 

(97), SGA-55 (115), SGA-66 (117), SGA-67 (118), SGA-62 (113), SGA-68 (119), SGA-162 

(120), entry 5, 7, 8, 10, 12-14, 20, Table 6). Some IC50 values are in a moderate range between 

25 and 50 µM (entry 1, 3, 4, 9, 11, 16, 18), and 5 compounds have lower IC50 values (SGA-

140 (109), SGA-52 (116), SGA-149 (123), SGA-152 (121) SGA-154 (122), entry 2, 6, 15, 17, 

19, Table 6). TPC2-A1-P (17) itself has an IC50 of 27 µM on HL-60 cells. Recommended 

working concentration is 30 µM and control experiments are highly relevant to exclude false 

results.  

Only little information was found in the literature about biological activities of TPC2-A1-P-like 

substances. TPC2-A1-P (17) itself was namely mentioned as a precursor in the synthesis of 

cannabinoid-1 receptor (CB1R) inverse agonists, whereas the final active compounds 

contained a carboxamide group instead of the free carboxylic acid function[105]. 

Phenylpyrrolecarboxamides derived from SGA-50 (100) binding to 5-HT2A, 5-HT2C receptors 

and the 5-HT transporter were evaluated as antidepressant compounds[103]. This applies only 

to the carboxamides and there were no data published for the carboxylic acids. 

TPC2-A1-P (17) and its 19 analogs were fully analyzed in Fura-2 and Fluo-4 imaging 

experiments. Only one analog (SGA-150 (125)) was able to activate TPC2 besides the hit 17. 

No pharmacological targets were published for TPC2-A1-P (17). With its steep structure-

activity relationship TPC2-A1-P (17) developed from hit to a promising chemical tool.  
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Comparing the results of both activator classes identified by HTS of the Roche library, a 

considerable number of TPC2-A1-N analogs caused noteworthy TPC2 activation, but none of 

them showed significantly increased efficacies or potencies compared to the HTS hit TPC2-

A1-N (16). In contrast, the second hit TPC2-A1-P (17) showed an unusually steep structure-

activity relationship, and except for one modestly active analog (SGA-150, 125) none of the 

analogs showed any activity. Thus, the two high-throughput screening hits TPC2-A1-N (16) 

and TPC2-A1-P (17) can be regarded as strong chemical tools that need further 

pharmacokinetic and pharmacological characterization. 
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3.4.4 Further results of the novel TPC2 agonists 

Within our cooperation with Prof. Dr. Schaefer’s group, Leipzig, we had the opportunity to 

perform a selectivity screening of the best TPC2 activators identified in our investigations. The 

selected activators were tested on a broad panel of ion channels of the TRP superfamily. The 

screening was performed by Nicole Urban in the Schaefer lab (Leipzig).  

 

Figure 16: Selectivity screening of TPC2-A1-N (16), SGA-86 (74), SGA-108 (77), SGA-111 (78) and 
TPC2-A1-P (17). (A-E) Concentration-effect relationships for Ca2+ increases (Fluo-4 (14)) in response 
to different concentrations of TPC2-A1-N (16, A), SGA-86 (74, B), SGA-108 (77, C), SGA-111 (78, D) 
and TPC2-A1-P (17, E). Different stably expressing cell lines were used and activated with the activator 
indicated. hTPC2, control cells (HEK293), TRPML1 and TRPML3 are highlighted. (F) Legend of the 
different cell lines used. All experiments were performed by Nicole Urban. 
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At the beginning of the selectivity screening the custom-made fluorescence imaging plate 

reader was modified and cleaned, which resulted in higher intensities and slightly higher EC50 

values (for TPC2-A1-N (16) from 7.8 µM to 11 µM; for TPC2-A1-P (17) from 10.5 µM to 17 µM, 

Figure 16 A and E). TPC2-A1-P (17), TPC2-A1-N (16) and some of the most potent analogs 

were analyzed. Earlier experiments already indicated that SGA-85 (73) and SGA-132 (84) had 

nonspecific activation on control cells (Figure 11 B). The highly substituted analogs SGA-33 

(60) and SGA-90 (75) had low solubility which is problematic for experiments using high 

concentrations. Therefore, these four compounds were excluded. The selected compounds 

were tested on TPC2, non-transfected HEK-293 cells, the mucolipins TRPML1 and 3, TRPA1, 

TRPC3-7, TRPM2, 3, 8 and TRPV1-4 (Figure 16 F). Experiments were performed with test 

concentrations up to 200 µM for analysis of possible side effects.  

Comparing the maximum activation, TPC2-A1-P (17) and TPC2-A1-N (16) had the highest 

efficacy (Figure 16 A and E) and EC50 values within the TPC2-A1-N analogs were all in the 

same range (9.7 µM to 14 µM, Figure 16 A-D). All tested pre-selected compounds were able 

to activate TRPA1 at low micromolar concentrations. The activation of TRPA1 was to be 

expected because TRPA1 is a chemosensory cation channel, which reacts inter alia to 

chemical substances and generates biological signals[123, 124]. SGA-86 (74) and SGA-111 (78) 

were able to activate TRPV2 with an EC50 of 46 µM and 19 µM, respectively (Figure 16 B and 

D). TPC2-A1-P (17) activated TRPV1 at low micromolar concentrations with a very low efficacy 

(Figure 16 E). The transient receptor potential cation channel subfamily V (“vanilloid”) is 

related to thermal sensation and responsible for regulating body temperature[125, 126]. SGA-111 

(78) was also able to activate TRPM3 with an EC50 of 17 µM (Figure 16 D). Comparing the 

TPC2-A1-N series, all substances showed effects on other TRP channels in high 

concentrations (≥ 100 µM). SGA-108 (77) showed the highest selectivity and TPC2-A1-N (16) 

the highest efficacy. SGA-111 (78) was less specific than all other probes and had a 

significantly lower efficacy. As mentioned before, all of these compounds have electron-

withdrawing groups on the benzoyl moiety and are para-substituted on the anilide side (Figure 

12). SGA-108 (77) was the only one with an electron-releasing group on the anilide side, which 

was generating selectivity for TPC2 at the expense of efficacy. TPC2-A1-P (17) showed high 

selectivity for TPC2 with high efficacy. The screening further confirmed that potencies were 

not increased compared to the hits TPC2-A1-N (16) and TPC2-A1-P (17) and despite large 

efforts in chemical synthesis, these hit structures could not be improved concerning TPC2 

activation.  

In house agar diffusion test was used to analyze antimicrobial effects of the new compounds 

on bacteria (Escherichia coli, Pseudomonas marginalis, Staphylococcus equorum, 

Streptococcus entericus), yeasts (Yarrowia lipolytica, Saccharomyces cerevisiae) and 

dermatophytes (Hyphopichia burtonii). The compounds did not show any inhibition zones for 
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the investigated bacteria and yeasts, while some analogs of TPC2-A1-N and the hit compound 

itself (16) showed small (but irrelevant) inhibition zones for the dermatophyte Hyphopichia 

burtonii (Table 7).  

Table 7: Inhibition zones for the dermatophyte Hyphopichia burtonii. Agar diffusion experiments were 
performed by Martina Stadler. 

entry compound inhibition zone (Hyphopichia burtonii) 

1 TPC2-A1-N (16) 16 mm 

2 SGA-1 (44) 12 mm 

3 SGA-2 (45) 8 mm 

4 SGA-3 (46) 8 mm 

5 SGA-4 (47) 8 mm 

6 SGA-9 (49) 12 mm 

7 SGA-12 (52) 8 mm 

8 SGA-16 (55) 10 mm 

9 SGA-27 (56) 12 mm 

10 SGA-39 (62) 12 mm 

11 SGA-70 (64) 12 mm 

12 SGA-71 (65) 12 mm 

13 SGA-72 (66) 10 mm 

 

3.4.5 Malleable cation selectivity of TPC2 

TPC2-A1-N (16) and TPC2-A1-P (17) were further investigated together with different 

cooperation partners and the results are presented in a recent publication[22]. Both compounds 

did not activate TPC1 in patch clamp experiments which is stressing the selectivity of these 

compounds. Cell permeability was proven by GCamp6 experiments, which clearly 

demonstrated that both activators are able to activate TPC2. The calcium indicator GCamp6, 

located on the lysosomal membrane, is able to detect calcium efflux from the lysosome, thus 

proving the membrane permeability of the compounds.  

Furthermore, by means of the two novel small-molecules we were able to resolve the conflict 

of TPC2 being an NAADP-activated Ca2+ release channel[5, 12, 14, 127, 128] or a PI(3,5)P2 gated 

Na+ channel[15, 20, 129]. TPC2-A1-N (16) rendered the channel more calcium permeable, similar 

to NAADP-activated TPC2, whereas TPC2-A1-P (17) increased sodium permeability, similar 

to the PI(3,5)P2-activated channel. Consequently, ion permeation through TPC2 is ligand-

dependent, indicating that TPC2 is a non-selective cation channel with malleable cation 

selectivity. Appropriately, the PI(3,5)P2 (4) binding site in TPC2[8] has been identified to broadly 

overlapping with the one for TPC2-A1-P (17). It has been demonstrated that TPC2-A1-N (16) 

induces an alkalinization of single vesicles in cells expressing wild-type TPC2, as previously 

reported for NAADP (3)[130, 131]. These findings confirmed that TPC2 activation is coupled to 
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lysosomal pH and vesicle motility in an agonist-dependent manner. The effect of both 

activators on lysosomal exocytosis was further evaluated. TPC2-A1-P (17), but not TPC2-A1-

N (16) promoted lysosomal exocytosis. Manipulation of lysosomal exocytosis may provide a 

therapeutic approach for LSDs[132-134].  

These findings would not have been achievable without the availability of the lipophilic small-

molecule activators TPC2-A1-N (16) and TPC2-A1-P (17) identified in this project. These tools 

have the potential to elevate studies regarding TPC2 to the next level, which will result in a 

better understanding of the various ion channel functions.  
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3.4.6 The race to identify new TPC activators 

Small-molecule modulators of two pore channels have been a hot topic in recent literature. In 

2019, Zhang et al. identified tricyclic and phenothiazine antidepressants as TPC1 and 2 

activators by screening Sigma’s LOPAC library, containing 1280 compounds[111]. With calcium 

imaging experiments, followed by confirmation using whole-cell recordings in TPC2LL/AA-

expressing HEK293 cells, the authors identified 8 compounds as TPC2 activators. The 

dibenzazepine-type tricyclic antidepressants (TCAs) clomipramine (127), desipramine (128), 

imipramine (129), amitriptyline (130) and nortriptyline (131), as well as the phenothiazine-

based antidepressants chlorpromazine (132) and triflupromazine (133) were found to activate 

TPC2 (Figure 17 A and B). The EC50 values were between 43 and 112 µM and therefore these 

activators are presumably less potent than TPC2-A1-N (16, Figure 10 G) and TPC2-A1-P (17, 

Figure 10 H) from our project. The authors described that currents elicited with TCAs were 

strongly voltage-dependent while riluzole (134, Figure 17 C) activation was voltage-

independent. Some TCAs, clomipramine (127) and desipramine (128), also activated TPC1 in 

a voltage-dependent manner, while chlorpromazine (132) and riluzole (134) inhibited TPC1. It 

was barely possible to analyze structure-activity relationships with only seven identified 

structures. Nevertheless, the dibenzazepine carbamazepine (135) and native phenothiazine 

(136, Figure 17 D) did not activate TPC2, which highlighted the necessity of the aminoalkyl 

side chain at the central ring of the tricyclic core[135].  
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Figure 17: Structures and EC50 values, published by Zhang et al.[111]. (A-B) Structures and EC50 values 
of TCAs (A) and related phenothiazines (B) as TPC2 activators. EC50 values were obtained from whole-
cell recordings at -140 mV. (C) Structure of riluzole (134). (D) Structures of the inactive carbamazepine 
(135) and phenothiazine (136).  
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Evaluating the current literature it was noticeable that the phenothiazines triflupromazine (133) 

and fluphenazine (6), recently published by Penny et al.[31], share the same skeleton but have 

huge differences in their pharmacological activity (Figure 18). While fluphenazine (6) was 

inhibiting TPC2 signals evoked by NAADP (3) with an IC50 of 42 µM[31], triflupromazine (133) 

was identified as TPC2 activator. An inhibitor of TPC2 was most likely converted into an 

activator of TPC2 by introducing only slight changes in the side chain[135]. This example 

demonstrates how close activators and inhibitors of an ion channel can resemble each other 

and how important the analysis of structure-activity relationships is. 

 

Figure 18: Structures of the TPC2 activator triflupromazine (133) and the TPC2 inhibitor fluphenazine 
(6)[31, 111]. Differences are marked in magenta.  

 

The two independently performed HTSs by Zhang et al. and within this project created a panel 

of small-molecule TPC activators, compared in our recently published review[135]. Zhang et al. 

focused on drug repurposing and thereby identified TCAs, phenothiazines and the 

benzothiazole riluzole (134) that activate TPC2. Originally, TCAs are used to treat e.g. 

depression, bipolar disorder, panic disorder, chronic pain, and insomnia and inhibit inter alia 

monoamine (serotonin, norepinephrine, dopamine) reuptake. TCAs have a wide range of 

adverse effects and are therefore replaced as antidepressants by the selective serotonin 

reuptake inhibitors (SSRI)[136]. In addition, amitriptyline (130), imipramine (129), and 

clomipramine (127) are also potent CYP450 inhibitors, significantly inhibiting CYP450 2C19 

and 1A2[137]. Aforementioned, this bears the risk of undesired drug-drug interactions. Riluzole 

(134) blocks TTX-sensitive sodium channels, kainite receptors and NMDA receptors, has 

neuroprotective effects and it is currently approved for the treatment of amyotrophic lateral 

sclerosis (ALS)[138-142]. The activators identified in this thesis, TPC2-A1-N (16) and TPC2-A1-P 

(17), are no listed drugs. Comparing the results of both screenings, there is comprehensive 

knowledge on the pharmacological profiles of the repurposed TCA/phenothiazine-type TPC2 

activators due to their long term application in therapy, but as well a large list of undesired 

effects. Our newly identified activators still need full pharmacokinetic and pharmacological 

characterization, though have the potential to address TPCs as their main target with a high 

affinity and thus have less side effects.  
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Lately performed docking studies with the TPC2 agonists on the apo-state hTPC2 structure 

confirmed that TPC2-A1-P (17) and PI(3,5)P2 (4), as well as TPC2-A1-N (16) and riluzole (134) 

share one binding pocket, each[135]. This suggests that TPC2-A1-N (16) and riluzole (134) both 

mimic NAADP (3) actions. Furthermore the binding free energies were calculated and suggest 

that TPC2-A1-N (16) and TPC2-A1-P (17) are more efficacious than clomipramine (127) and 

chlorpromazine (132). This corresponds with the higher EC50 values for the repurposed 

activators (42 – 112 µM) compared to TPC2-A1-N (16, 7.8 µM) and TPC2-A1-P (17, 10.5 µM).  

Now there is the opportunity to choose from an impressive and highly diverse collection of new 

lipophilic small-molecule activators for either selectively activating TPC2 or activation of both 

TPC1 and TPC2 with the warning that some of the compounds are also blocking TPC1. 

Physiology and pathophysiology of TPCs can be studied in more detail with the cell permeable 

small-molecule activators. Most importantly, the novel compounds allow studies in intact cells 

and can be used as chemical tool for analyzing TPC2 inhibitors. They may also be applicable 

for in vivo studies and perhaps even for therapy[135].  
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3.5 A new generation of TPC2 inhibitors 

A high-throughput analysis of TPC2 inhibitors can be accomplished using the newly developed 

membrane permeable and small-molecule TPC2 activators. Therefore, a library of TPC2 

inhibitors was created to gain first insights into SAR for truncated variants of tetrandrine (1). 

Aforementioned, our concept was to develop TPC2 inhibitors derived from the lead structure 

tetrandrine (1). One major intention was to develop less complex analogs of this 

bisbenzylisoquinoline alkaloid. Hence, we considered both, natural products of this chemotype 

from different sources as well as monomeric benzylisoquinolines and newly synthesized 

analogs of tetrandrine (1).  

 

3.5.1 Collection of alkaloids and 1-benzylisoquinolines 

Consequently, this library included benzylisoquinoline-type intermediates of the morphine 

biosynthesis like O,O-dibenzyl coclaurine (Z3, 137), available from the substance collection of 

Prof. Dr. Meinhart Zenk (passed away in 2011), tetrandrine (1) and derivatives such as 

fangchinoline (9), kindly provided by Prof. Dr. Peter Pachaly (passed away in 2019), and 

commercially available benzylisoquinoline alkaloids like dauricine (11) and oxyacanthine (138, 

Figure 19).  

 

Figure 19: Strutures of investigated bisbenzylisoquinoline alkaloids. (A) Structures of the alkaloids 
tetrandrine (1), fanglchinoline (9) and N,N-dimethyltetrandrine dichloride (139), kindly provided by Prof. 
Dr. Peter Pachaly†. (B) Structures of the commercially available alkaloids berbamine dihydrochloride 
(10), oxyacanthine sulfate (138), cepharanthine (140) and dauricine (11). Structural differences 
compared to tetrandrine (1) are marked red.  
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The bisbenzylisoquinoline alkaloids, provided from Prof. Dr. Peter Pachaly† were analyzed by 

NMR, HRMS, specific rotation and purity was confirmed by analytical HPLC. Only tetrandrine 

(1) from natural source had to be purified by column chromatography and recrystallized from 

EtOH/water before it was subjected to biological experiments. All analytical data were in 

accordance with literature[143-145]. All substances from the collection of Prof. Dr. Meinhart Zenk† 

(Figure 20) were analyzed by NMR, HRMS and specific rotation in order to distinguish (if not 

clearly indicated) racemic from enantiomerically pure substances. Purity was confirmed by 

analytical HPLC. If a compound was not pure enough (HPLC purity < 96%), purification was 

accomplished by FCC. Analytical data for all substances were in accordance to literature or 

are stated in the experimental part of this thesis.  

 

Figure 20: Structures of substances, kindly received from Prof. Dr. Meinhart Zenk†.   
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3.5.2 Synthesis plan 

A new generation of truncated analogs of tetrandrine (1) should be synthesized to receive 

molecules that resemble tetrandrine (1, Figure 21). A short and efficient synthesis was 

developed therefore. These molecules should mimic one of the two 

benzyltetrahydroisoquinoline moieties of tetrandrine (1), therefore the racemic natural product 

N-methyl coclaurine (SG-132, 159) was chosen as basic structure. Further decoration not only 

in form of O-benzyl derivatives, but also as diaryl ethers are supposed to closely imitate 

tetrandrine (1) in shape and size. Bisbenzylisoquinolines with anti-cancer activity have already 

been described aforementioned. They have different stereochemistry at their two 

stereocenters, e.g. cepharanthine (S,R, 140)[146] or the seco-variant dauricine (R,R, 11)[80], 

compared to tetrandrine (S,S, 1), as shown in Figure 19 A and B. Within a first series of 

endolysosomal patch clamp experiments, performed by Dr. Yu-Kai Chao, antagonistic effects 

of cepharanthine (140), dauricine (11) and (±)-O,O-dibenzyl coclaurine (Z3 (137), Figure 20) 

on TPC2 were confirmed (Figure 22). Aforementioned stereochemistry was not limited to one 

isomer, a racemic synthesis for the truncated analogs of tetrandrine (1) would be most 

appropriate. Compared to the rigid, macrocyclic bisbenzylisoquinoline tetrandrine (1), the new 

truncated analogs of tetrandrine bear only one benzylisoquinoline unit. However the O-benzyl 

or O-phenyl residues mimic the two benzenoid rings of the second benzylisoquinoline moiety 

of the parent compound making these compounds similar to tetrandrine (1) in size, but are 

much more flexible. This flexibility should enable the compounds to adapt perfectly to the 

binding site in the target proteins.  

 

Figure 21: Truncation of tetrandrine (1). The racemic alkaloid (±)-N-methylcoclaurine (159) already 
represents one half of tetrandrine (1). Introduction of additional aromatic moieties (right, marked in 
magenta) enables the molecule to resemble the overall molecular geometry of tetrandrine (1).  

 

Key steps for the synthesis of truncated tetrandrine analogs are the N-acyl Pictet-Spengler 

reaction to construct the 1-benzyltetrahydroisoquinoline and the Chan-Evans-Lam coupling for 

introduction of diaryl ethers (Figure 21, right). According to Comins et al.[147], the precursors 

for the N-acyl Pictet-Spengler reaction would be different carbamate building blocks of type I 
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and enol ether building blocks of type II. These building blocks would be easily accessible 

from commercially available aldehydes bearing different residues in meta- and para-position 

(i, Scheme 16). If desired, the phenol group of these aldehydes can be protected as benzyl 

ether or alkyl carbonate (ii and v, Scheme 16). The utilization of benzyl ethers as protecting 

groups is commonly known, while the introduction of alkyl carbonates is new. Following a 

procedure published by Pouysegu et al.[148], a Henry reaction using commercially available 

benzaldehydes and nitromethane would give nitrovinyl compounds (iii, Scheme 16) and 

reduction using lithium alanate would yield desired arylethylamine (iv, Scheme 16). This 

sequence only needs to be performed for the introduction of benzyl ethers, because many 

arylethylamines (iv, Scheme 16) are already commercially available (e.g. 3-methoxytyramine 

(160) and 3,4-dimethoxyphenyl-ethylamine 161). Using ethyl chloroformate (162) and NEt3 

would give the carbamate group and further, in the case of a free phenol group, an ethyl 

carbonate (I, Scheme 16)[149]
. Depending on the work-up conditions, the ethyl carbonate could 

remain unaffected using neutral conditions or cleaved using alkaline conditions[73, 149]. The 

resulting free phenol group of the alkaline work-up could then be used for the introduction of 

an aryl ether via Chan-Evans-Lam coupling. Wittig olefination of 4-substituted benzaldehydes 

(i, Scheme 16) would give enol ethers of type II (Scheme 16) as masked arylacetaldehyde.  

 

Scheme 16: Synthesis plan for the preparation of the precursors for the N-acyl Pictet-Spengler reaction. 
Carbamate building blocks of type I and enol ether building blocks of type II are easily accessible from 
commercially available aldehydes or arylethylamines. 

 

The 1-benzyl-1,2,3,4-tetrahydroisoquinolines III were to be prepared by N-acyl Pictet-

Spengler reactions using precursors I and II (Scheme 17 A). Comins et al. published a 

procedure for an TFA catalyzed N-acyl Pictet-Spengler reaction, which would be pursued[147]. 

Utilization of arylethylcarbamates for N-acyl Pictet-Spengler reactions is a common method in 



RESULTS AND D ISCUSSION 

55 

the Bracher research group. While standard Pictet-Spengler tetrahydroisoquinoline synthesis 

requires harsh reaction conditions like heating to reflux with strong acids, N-acyl Pictet-

Spengler reaction proceeds under mild conditions. This is caused by formation of an N-

acyliminium ion 163 as intermediate, which is a much stronger electrophile in comparison to 

the less powerful electrophile iminium intermediate 164 which occurs in regular Pictet-Spengler 

reactions (Scheme 17 B). Even nucleophiles that are relatively unreactive as non-activated 

benzenoids, participate effectively in cyclizations with N-acyliminum species[150, 151]. 

 

Scheme 17: The N-acyl Pictet-Spengler reaction. (A) Planed synthesis for the construction of the 
tetrahydroisoquinoline III via N-acyl Pictet-Spengler reaction. (B) N-Acyliminium ion 163 (left) and 
iminium ion 164 (right) as intermediates for Pictet-Spengler-type cyclizations. 

 

Tertiary N-methyl amines IV are available via reduction of carbamates III using lithium alanate 

(Scheme 18)[152]. Furthermore all carbonate esters can be cleaved under these conditions, 

directly yielding the free phenols and tertiary N-methyl amines in one step, while the benzyl 

protecting groups of the phenols are not affected by these conditions (not depicted).  

 

Scheme 18: Planned simultaneous deprotection of ethyl carbonates and reduction of carbamates to 
give N-methyl amines of type IV.  
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For the synthesis of truncated tetrandrine analogs, as depicted in Figure 21, diaryl ethers had 

to be introduced to the appropriate free phenols. Choosing an environmental-friendly catalyst 

led to copper-catalyzed coupling reactions. One famous example is the Ullmann coupling for 

diaryl ether synthesis[153]. Hereby, aryl halides and phenols are converted into diaryl ethers 

under copper-promotion. Requiring high temperatures and being limited on the substitution 

patterns of both coupling partners, the Ullmann coupling is not generally applicable, and a new 

version of this coupling reaction was selected. The Chan-Evans-Lam coupling was developed 

in 1998 and represents a modern copper-catalyzed oxidative coupling of boronic acids and 

heteroatom nucleophiles[154-156]. Advantages of the Chan-Evans-Lam coupling are milder 

reaction conditions (room temperature and the presence of oxygen), cheap copper catalysts, 

good to excellent yields, and a diverse substrate scope[157].  

 

Scheme 19: Proposed mechanism for the Chan-Evans-Lam diaryl ether synthesis, based on the studies 
of Stahl and coworkers[158]. 

 

A boronic acid dimethyl ester in MeOH was used as example for the studies by Stahl and 

coworkers of the mechanism of this etherification process[158, 159]. This catalytic cycle starts with 

a Cu(II) species (a, Scheme 19), in this scheme Cu(OAc)2 and e.g. pyridine as ligand (Ln). 

Transmetalation with an aryl boronic acid (marked in orange) gives aryl Cu(II) complex (b, 

Scheme 19). Oxidation of this complex (b, Scheme 19) to a Cu(III) complex (c, Scheme 19) 

occurs via disproportionation with another equivalent of the starting Cu(II) species (a, Scheme 

19). The C-O bond formation takes place within the reductive elimination to give the desired 

diaryl ether (orange, Scheme 19) and a Cu(I) species (d, Scheme 19), which is re-oxidized by 

oxygen.  
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Scheme 20: Summary of the synthesis plan for truncated tetrandrine analogs. These analogs (V) can 
be achieved in three steps, starting from precursors I and II. 

 

Following this sequence would give desired truncated tetrandrine analogs in only three steps, 

starting from building blocks I and II (Scheme 20). This short sequence was to be used to 

introduce a variety of different diaryl ethers for the generation of a set of truncated analogs to 

study SAR. 
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3.5.3 Synthesis of a new generation of TPC2 inhibitors 

First, the building blocks for the N-acyl Pictet-Spengler reaction were synthesized. Using ethyl 

chloroformate (162) and NEt3, amines can be converted into carbamates and phenols into 

ethyl carbonates. The commercially available 3-methoxytyramine hydrochloride (160) was 

protected under these conditions and depending on further proceedings yielded carbamate 

165 (bearing an ethyl carbonate protecting group) or 166 (having a free phenol group) in high 

to moderate yields (Scheme 21)[73, 149]. While neutral extraction gave the protected phenol 165, 

the addition of NaOH (1 M) in ethanol deprotected the aryl-alkyl carbonate and resulted in 

phenol 166. If the reaction mixture was extracted using 2 M aq. NaOH, the deprotection of 

carbamate 165 was not complete, because of the two-phase mixture.  

 

Scheme 21: Synthesis of carbamates 165 and 166 using ethyl chloroformate (162) under basic 
conditions. Depending on the work up, a protected phenol 165 or deprotected phenol 166 was obtained.  

 

Diaryl ether 167 was synthesized using the mild coupling conditions of the Chan-Evans-Lam 

reaction. Copper catalyzed and under alkaline conditions carbamate 166 and phenylboronic 

acid (168) were used to give diary ether 167 in high yields (Scheme 22). Full characterization 

(TLC, NMR, HRMS, IR, m.p.) confirmed the structure and analytical HPLC the purity. Initial 

experiments for this reaction were performed within the Bachelor thesis of F. Talay.  

 

Scheme 22: Copper catalyzed Chan-Evans-Lam coupling of carbamate 166 to give diaryl ether 167. 
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The aforementioned method to generate carbamates was applied for the synthesis of 

carbamate 169 as well, with commercially available 3,4-dimethoxyphenylethylamine 161 as 

starting material. The reaction time was reduced to 4 h by refluxing the mixture to give 

carbamate 169 in high yields (Scheme 23). Carbamate 169 was fully characterized (TLC, 

NMR, HRMS, IR, m.p.) and 1H and 13C NMR data were in accordance with literature[160]. 

 

Scheme 23: Protection of amine 161 with accelerated reaction time.  

 

To receive an O-benzylated carbamate (170, Scheme 25), the corresponding amine 171 had 

to be synthesized first. Following a procedure published by Pouysegu et al.[148], 4-benzyloxy-

3-methoxybenzaldehyde 172 was used as starting material for a Henry reaction, giving 

nitrovinyl compound 173 in good yield. Reduction using lithium alanate yielded the desired 

arylethylamine 171 in high yield (Scheme 24). Both products were fully characterized and 

analytical data are in accordance with literature. 

 

Scheme 24: Synthesis of benzyl-protected amine 171 in two steps, according to Pouysegu and 
colleagues[148].  

 

Using ethyl chloroformate (162) and NEt3, amine 171 was protected, giving carbamate 170 in 

moderate yield (Scheme 25). The compound was characterized by TLC, NMR, HRMS, IR and 

melting point and the analytical data were in accordance with literature[149].  

 

Scheme 25: Synthesis of carbamate 170 utilizing the above mentioned method.  
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Enol ethers were utilized as masked arylacetaldehyde equivalents, because the corresponding 

arylacetaldehydes are often instable due to their ability to easily polymerize[161]. The E/Z 

stereochemistry of the enol ethers is not relevant for the following N-acyl Pictet-Spengler 

reaction and a simple Wittig olefination of aromatic aldehydes was chosen for the synthesis. 

Enol ether 174 was to be formed starting with 4-hydroxybenzaldehyde (175), (methoxymethyl)-

triphenyl-phosphonium chloride and a strong base (Scheme 26). First, the phosphonium salt 

is deprotonated to give a colorful ylide, which then forms an oxaphosphetane via a [2+2] 

cycloaddition with the aldehyde. Elimination of triphenylphosphine oxide yields the desired E/Z-

alkene. The synthesis of enol ether 174 is known using tert-butoxide (conditions a)[162] or 

LHMDS (conditions b)[163]. Though, the first step, the ylide formation, did not show any 

conversion for potassium tert-butoxide and only slight conversion using the stronger base 

LHMDS. The even stronger base LDA (conditions c) was further tried and finally ylide formation 

was observed by formation of a deep red complex. Both known procedures described high 

yields for the Wittig olefination (81% and >95%), however, this was not reproducible. Formation 

of the enol ether 174 was observed via GC-MS but not completed even after 24 h, therefore 

another route was chosen.  

 

Scheme 26: Synthetic approach to yield enol ether 174, using different conditions.  

 

An ethyl carbonate protecting group for phenols was already used for some carbamate building 

blocks and was now introduced for protection of the free phenolic group of aldehyde 175. 

Hence 4-hydroxybenzaldehyde (175) was protected using ethyl chloroformate (162) and NEt3 

to give aldehyde 176 in high yield (Scheme 27). 

 

Scheme 27: Synthesis of protected aldehyde 176 using ethyl chloroformate (162) and NEt3.  

 

Aforementioned formation of the ylide for Wittig olefination was most successful using LDA. 

Hence LDA was used for olefination reaction of aldehyde 176. With (methoxymethyl)-
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triphenylphosphonium chloride and aldehyde 176, enol ether 177 was obtained in good yield 

(Scheme 28). The reaction was monitored by TLC and staining with DNPH as both starting 

material and product had the same Rf value. DNPH indicated the end of the reaction by 

different colors of the formed hydrazones. While the aromatic, highly conjugated aldehyde 176 

resulted in a deep orange color, the aliphatic enol ether 177 gave a lighter, yellow color. The 

generation of a side product, enol ether 174, was observed and starting material 175 was found 

as well. The ethyl carbonate protecting group is labile under alkaline conditions and therefore 

only one equivalent LDA was used. Maybe the basicity of the formed ylide is strong enough to 

cleave the ethyl carbonate protecting group and yield enol ether 174 or aldehyde 175 (if the 

starting material was deprotected). Consequentially, the reaction cannot result in a full 

conversion of aldehyde 176 into enol ether 177, as not enough ylide was present. Both side 

products were separated from the desired enol ether 177 by column chromatography. While 

being stored the enol ether 177 decomposes, as already described for enol ether 174[162]. 

Therefore it was analyzed by TLC, NMR and HRMS as fast as possible and quickly used for 

the next step without full characterization.  

 

Scheme 28: Wittig olefination of aldehyde 176. Besides the desired enol ether 177, also two side 
products were identified. 

 

This method was further applied for other para-substituted benzaldehydes. Besides para-

carbonate protecting group in enol ether 177 (entry 1, Table 8), a diaryl ether enol ether 178 

(entry 2, Table 8) and a benzyloxy enol ether 179 (entry 3, Table 8) were synthesized in 

moderate to high yields. Due to the instability of enol ether 177 and the reports in literature 

about it[162], all of them were analyzed by TLC, NMR and HRMS as fast as possible and used 

without full characterization for the next step. 
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Table 8: Wittig olefination of different aldehydes to give enol ethers using (methoxymethyl)-triphenyl-
phosphonium chloride and LDA as base.  

 
entry starting material reaction time product yield 

1 R = COOEt (176) 16 h 
 

63% 

2 R = Ph 50 h 
 

59% 

3 R = Bn 16 h 
 

85% 

 

With the four different carbamates of type I and the three enol ethers of type II (Scheme 20) 

both building blocks for N-acyl Pictet-Spengler reactions were successfully synthesized and 

ready to be combined. 

For performing the N-acyl Pictet-Spengler reaction TFA in dichloromethane was chosen as 

acidic catalyst, according to Comins et al.[147]. Molecular sieves (4 Å) were added to ensure an 

aqueous free environment and avoid side or decomposition reactions. These conditions gave 

racemic tetrahydroisoquinoline 180 in high yield (Scheme 29). NMR analysis was performed 

at 100 °C in tetrachloroethane. In NMR experiments performed at room temperature, different 

rotamers of the molecule were observed. This is the result of isomers arising from hindered 

single-bond rotation in a time frame that it is detectable by NMR. Heating up the NMR sample 

to 100 °C boosted the rotation to give a single set of resonances.  

 

Scheme 29: N-Acyl Pictet-Spengler reaction to give racemic tetrahydroisoquinoline 180. Carbamate 
165 and enol ether 177 were used as starting materials.  

 

These reaction conditions were further applied in the synthesis for racemic 

tetrahydroisoquinolines (III, Table 9) generated out of different combinations of the 

synthesized carbamates and enol ethers (I and II, Table 9). As precursor for the natural 
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product (±)-N-methylcoclaurine (159) served the ethyl carbonate protecting group (entry 1, 

Table 9). To analyze the influence of residues in C-7 position of the tetrahydroisoquinoline a 

methoxy group (entry 2 and 5, Table 9), a diaryl ether (entry 3, Table 9) and a benzyl ether 

(entry 4, Table 9) were introduced. The O-benzylated tetrahydroisoquinoline (entry 4, Table 

9) was more complex to purify because FCC mainly gave impure fractions. Hence this yield is 

lower. All other N-acyl Pictet-Spengler reactions gave the racemic tetrahydroisoquinolines in 

high yield. NMR analysis at 100 °C (to avoid rotameric NMR resonances), TLC, HRMS and IR 

confirmed the identity and analytical HPLC the purity.  

Table 9: Synthesis of various racemic 1-substituted tetrahydroisoquinolines (III) starting from different 
carbamate and enol ether building blocks (I and II) using N-acyl Pictet-Spengler reactions. *Initial 
experiments for this reaction were performed within the Bachelor thesis of F. Talay. 

 

entry carbamate I enol ether II 
reaction 

time 
product III yield 

1 

 
 

18 h 

 

81% 

2 

  
20 h 

 

77% 

3 

 
 

90 h 

 

90%* 

4 

  
18 h 

 

32% 

5 

  
20 h 

 

92% 

 



RESULTS AND D ISCUSSION 

64 

Reduction of the carbamate group of tetrahydroisoquinolines III (Table 10) using LiAlH4
[152] 

directly yielded the corresponding N-methyl compounds. Preparation of the corresponding 

secondary amines from the carbamate intermediates is feasible in general, but would need 

other reaction conditions, like carbamate hydrolysis using KOH and hydrazine hydrate at 120 

°C for many days[164] or refluxing in aq. 10 M HCl solution overnight[165]. Though, tertiary amines 

were preferred, as they showed more resemblance to the structure of tetrandrine (1). 

Furthermore ethyl carbonate protecting groups were cleaved one-pot within the reduction of 

the carbamate using lithium alanate, resulting in a number of N-methyl compounds (IV, Table 

10).  

A procedure published by Cava et al. was applied for the synthesis of N-methyl amines of type 

IV (Table 10) by refluxing carbamates (III, Table 10) with an excess of LiAlH4 under dry 

conditions in THF. For reaction work-up avoiding undesirable treatment with water under 

formation of aluminum hydroxide gels Glauber’s salt was chosen, which is Na2SO4 x 10 H2O. 

The crystal water of this salt causes a slow and moderate decomposition of the LiAlH4 excess 

and prevents uncontrolled heating of the mixture. The reaction was finished when no gas 

evolution could be observed anymore. After filtration the product was purified by extraction 

using the phase swap technique in which the crude organic product phase was extracted with 

2 M aq. HCl solution to transfer the protonated amine into the aqueous phase. Then, 

neutralization of the aqueous phase yielded the tertiary amine again and re-extraction with 

organic solvents resulted in the pure product. This technique avoids the more time-consuming 

FCC, especially for upscale reactions. By this means all synthesized carbamates (III) were 

reduced to the corresponding tertiary N-methyl amines (IV, Table 10) in moderate to high 

yields. Two natural products ((±)-N-methylcoclaurine (159) and (±)-armepavine (185)) were 

synthesized in their racemic form this way (entry 1, 2, Table 10), one derivative of a natural 

product (entry 4, Table 10) and two new synthetic tetrahydroisoquinolines (entry 3, 5, Table 

10). Full characterization (TLC, NMR, HRMS, IR, m.p.) confirmed the structure and analytical 

HPLC the purity of the products.  
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Table 10: Reduction of the carbamate function and deprotection of carbonic acids of 
tetrahydroisoquinolines (II) using LiAlH4 gave N-methyl amines of type IV. * Initial experiments for this 
reaction were performed within the Bachelor thesis of F. Talay. 

 

entry 
starting material 

III 
reaction 

time 
product IV 

name of natural 
product or derivative 

yield 

1 

R = COOEt 
R’ = COOEt 

180 
3 h 

 

(±)-N-methylcoclaurine 79% 

2 

R = Me 
R’ = COOEt 

SG-089 (181) 
3 h 

 

(±)-armepavine 35% 

3 

R = Ph 
R’ = COOEt 

182 
5 h 

 

- 79%* 

4 

R = Bn 
R’ = Bn 

SG-145 (183) 
18 h 

 

(±)-O,O-dibenzyl N-
methylcoclaurine 

46% 

5 

R = Me 
R’ = Ph 

184 
20 h 

 

- 46% 

 

Synthesis of (±)-armepavine (185) had the lowest yield (entry 2, Table 10). A reason for this 

is, that a second tetrahydroisoquinoline (189) was isolated (Scheme 30 A and B). The N-acyl 

Pictet-Spengler reaction as well as the lithium alanate reduction were both performed in large 

scale (22.1 mmol and 16.9 mmol) and to improve time efficacy purification was reduced to a 

minimum. Therefore the enol ether 177 also had to be synthesized in large scale and 

aforementioned side products (aldehyde 175 and enol ether 174, Scheme 30 B) occurred. 

These two side products were both able to act as starting material for the N-acyl Pictet-

Spengler reaction to give 1-benzyl-carbamate 190 and 1-phenyl-carbamate 191 (Scheme 30 

B). Reduction of 1-benzyl-carbamate 190 would also result in SG-121 (185) and was therefore 

not removed. Thus, 1-phenyl-carbamate 191 was carried over as an unrevealed impurity and 
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following reduction of a mixture of three different carbamates (181, 190 and 191) yielded SG-

121 (185) and side product SG-121-NP (189). The two products were separated by FCC, 

analyzed and purity was confirmed by analytical HPLC.  

 

Scheme 30: Synthesis of tetrahydroisoquinolines 185 and 189. (A) Synthesis of (±)-armepavine (185), 
as described above. (B) Side products of the Wittig olefination 174 and 175 underwent N-acyl Pictet-
Spengler reaction to yield carbamates 190 and 191. Following lithium alanate reduction yielded (±)-
armepavine (SG-121, 185) and side product SG-121-NP (189). Shaded products were not isolated 
within this sequence.  

 

Utilizing the method developed by Chan, Evans and Lam many diaryl ethers (V, Table 11) 

were synthesized. Per phenolic group of the amine (IV, Table 11) 1 equivalent copper acetate, 

3 equivalents arylboronic acid (VI, Table 11) and a mixture of NEt3 and pyridine (1:1, 2.5 eq. 

each) were used. The resulting oily tertiary amines were characterized and then treated with 

methanolic HCl solution to give the amorphous hydrochloride salts as solids which were used 

for biological experiments. Two diaryl ethers were recrystallized as hydrochloride salts (entry 

3, 9, Table 11) and were also characterized such. The diaryl ether variant of N-

methylcoclaurine, SG-094 (192), was the first to be synthesized using the double amount of 

equivalents for the two phenolic groups of SG-132 (159, entry 1, Table 11). Two diaryl ethers 

with a methoxygroup in C-7 position of the tetrahydroisoquinoline (193 and 194, entry 2, 3, 

Table 11) and the 1-phenyl-tetrahydroisoquinoline 195 (entry 4, Table 11) were synthesized 

to study the loss of one phenyl group. Tetrandrine (1) has four methoxy moieties, which 

inspired the synthesis of compounds bearing methoxy residues (196 and 197, entry 7, 8, Table 

11) or replaced them by the metabolically stable bioisosteric trifluoromethoxy group (198, entry 

6, Table 11). Electron releasing groups were also introduced (199 and 200, entry 5, 9, Table 

11). A nitrile residue was also part of the structure of the TPC2 activator TPC2-A1-N (16). 

Hence a nitrile residue was introduced to probably have a better affinity to the ion channel 

(201, entry 11, Table 11). A 3,4-dichloro substituted aromatic ring was synthesized to study 
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the influence of halides (202, entry 12, Table 11). To analyze the influence of heterocyclic 

aromatic residues, a pyridine moiety was introduced (203, entry 10, Table 11), whereas the 

synthesis of a variant bearing a furan moiety (204) was not successful (entry 14, Table 11), 

which is in accordance with one report in literature[166]. Same applied to the 

tetrahydroisoquinoline 205, which should have been synthesized to be labeled by click 

chemistry (entry 13, Table 11). Overall 12 tetrahydroisoquinolines bearing a diaryl ether motif 

were synthesized in moderate to high yield and fully characterized by TLC, NMR, HRMS and 

IR (melting points only for the hydrochloric acid salts) and purity was affirmed by analytical 

HPLC. 

Table 11: Products of the Chan-Evans-Lam reaction. Using different arylboronic acids (VI) and a variety 
of racemic amines of type IV yielded the desired diaryl ethers of type V.  

 

entry 
starting material 

IV 

boronic acid 

VI 

reaction 
time 

product 

V 
yield 

1 
R,R’ = H 

SG-132 (159) 
R’’ = H  18 h 

 

70% 

2 

R = Me 
R’ = H 

SG-121 (185) 
R’’ = 4-OCH3 18 h 

 

88% 

3 

R = Me 
R’ = H 

SG-121 (185) 

R’’ = 3,4,5-
(OCH3)3 

18 h 

 

84% 

4 

R = Me 
R’ = H 

SG-121-NP (189) 
R’’ = 4-OCH3 18 h 

 

95% 
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5 

R = Ph 
R’ = H 

186 
R’’ = 4-CF3 18 h 

 

24% 

6 

R = Ph 
R’ = H 

186 
R’’ = 4-OCF3 13 h 

 

47% 

7 

R = Ph 
R’ = H 

186 
R’’ = 4-OCH3 20 h 

 

67% 

8 

R = Ph 
R’ = H 

186 

R’’ = 3,4,5-
(OCH3)3 

20 h 

 

69% 

9 

R = Ph 
R’ = H 

186 
R’’ = 4-CH3 20 h 

 

48% 

10 

R = Ph 
R’ = H 

186 

pyridine-4-boronic 
acid 20 h 

 

25% 

11 

R = Ph 
R’ = H 

186 
R’’ = 4-CN 20 h 

 

48% 

12 

R = Ph 
R’ = H 

186 
R’’ = 3,4-Cl2 20 h 

 

78% 

13 

R = Ph 
R’ = H 

186 
R’’ = 4-C≡C 20 h 

 

- 

14 

R = Ph 
R’ = H 

186 

furan-2-ylboronic 
acid 20 h 

 

- 
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The compound collection provided by Prof. Dr. Meinhart Zenk† included racemic O,O-

dibenzylated coclaurine (Z3, 137, Scheme 31 A) and racemic O,O-dibenzylated nororientaline 

(Z6, 145, Scheme 31 B). Utilizing these secondary amines, N-methyl amines were obtained 

by Eschweiler-Clarke reaction[167]. Iminium formation with formaldehyde, followed by reduction 

with a hydride source yielded tertiary amines. Originally formic acid acted as hydride source, 

while modified versions used sodium cyanoborohydride. Using the latter yielded SG-005 (187) 

and SG-159 (206) in moderate yields, although long reaction times did not lead to complete 

consumption of the starting material (Scheme 31 A and B).  

 

Scheme 31: Eschweiler-Clarke reaction for the synthesis of the N-methyl compounds SG-005 (187, A) 
and SG-159 (206, B).   

 

Another method for the synthesis of SG-005 (187) was the Mitsunobu reaction with SG-132 

(159) as starting material (Scheme 32). Mitsunobu conditions prevented the formation of a 

quaternary ammonium salt 207, which was the result of using standard protecting conditions 

(excess of benzyl chloride and a base) for the phenolic groups (Scheme 32). Monitoring via 

TLC indicated the formation of SG-005 (187), though after 18 h only the quaternary ammonium 

salt 207 was found. Mitsunobu reaction, however, gave SG-005 (187) in moderate yield and 

analytical data were in accordance with the analytical data of the two other routes.  
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Scheme 32: Mitsunobu reaction of SG-132 (159) with benzyl alcohol yielded SG-005 (187). Protection 
of SG-132 (159) using benzyl chloride gave quaternary amine 207.  

 

Synthesis of an N-ethyl variant of bis(benzyloxy)-orientaline 208 was performed using 

bromoethane in alkaline conditions. Potassium iodide was added for an in situ Finkelstein 

reaction to boost the conversion rate. TLC monitoring did not show consumption of the starting 

material, because product and starting material had the same Rf value. ASAP showed the 

masses of starting material and product and after 6 days no changes of the conversion rate 

were observed any more. Purification needed semi-preparative HPLC, because standard FCC 

did not separate secondary amine 145 from N-ethyl amine 208. This resulted in pure SG-158 

(208, Scheme 33) in moderate yield. A Leuckart-Wallach reaction[168] could be tried to improve 

the conversion rate. This reaction is related to the Eschweiler-Clarke reaction but is not limited 

to formaldehyde. Though, the first reaction yielded enough SG-158 (208) and repetition was 

not necessary.  

 

Scheme 33: Synthesis of SG-158 (208) with Z6 (145) as starting material.  

 

A total amount of 16 N-alkyl amines was synthesized, including 3 O-benzylated compounds 

and 13 diaryl ethers. Analysis (TLC, NMR, HRMS, IR and melting points) confirmed the 

structure and analytical HPLC affirmed the purity of these molecules. All of them resemble one 
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half of tetrandrine (1) plus the two benzenoid rings of the second benzylisoquinoline moiety 

and were further investigated on their biological activity. The synthetic route furthermore 

generated intermediates that therefore served as negative controls, as SG-132 (159) and SG-

145 (183). 

 

3.6 Pharmacological investigation of TPC2 antagonists 

The effect of the inhibitors of TPC2 was again analyzed by Fura-2 and Fluo-4 based calcium 

imaging as well as by endo-lysosomal patch clamp experiments. Furthermore, their ability to 

combat diseases like cancer or virus infections1 was investigated. Main focus was on 

tetrandrine (1), SG-005 (187) and SG-094 (192), because these emerged as the most 

interesting substances. All studies were performed in close cooperation with Prof. Dr. Michael 

Schaefer’s group (Fluo-4 based experiments, performed by Nicole Urban), Prof. Dr. Angelika 

Vollmar’s group (cancer investigation, performed by Martin Müller) and Prof. Dr. Dr. Christian 

Grimm’s as well as Prof. Dr. Martin Biel’s groups (Fura-2 based calcium imaging, performed 

by myself and patch clamp experiments, performed by Dr. Yu-Kai Chao). 

 

3.6.1 First identification of the truncated TPC2 inhibitors 

The whole endo-lysosomal patch clamp technique is state-of-the-art to confirm direct effects 

on the activity of endo-lysosomal ion channels[169]. In brief, endolysosomes are enlarged using 

vacuolin-1, the membrane is destroyed with a glass pipette and then the enlarged endo-

lysosomal organelle is carefully isolated. Having the isolated organelle allows the operator to 

apply hydrophilic, not membrane permeable compounds like PI(3,5)P2 (4) directly to the 

endolysosome to activate the ion channel. The addition of a potential inhibitor after activation 

then directly shows the effect of the compound. This unique technique is very accurate but 

highly complex and requires much time and effort.  

Tetrandrine (1) has been known to inhibit TPC2 since 2015[2] and was therefore analyzed as 

a reference. Thus, by applying the endo-lysosomal patch clamp technique, several other 

bisbenzylisoquinoline alkaloids were also identified as TPC2 inhibitors. Fangchinoline (9), 

cepharanthine (140) and the seco-analog dauricine (11) were virtually equipotent to tetrandrine 

(1, 54% inhibition, Figure 22 A). Fangchinoline (9) is a nor-derivative of tetrandrine (1) and is 

already known to be a TPC2 inhibitor (Figure 22 D)[30]. Cepharanthine (140) differs from 

tetrandrine (1) in the absolute stereochemistry and the connection of both benzyl residues and 

dauricine (11) is no macrocyclic compound (Figure 22 D). This gave a first hint that 

                                                
1 Studies for virus infections are still in the early stages and not further discussed.  
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stereochemistry, the substitutions pattern of lead structure tetrandrine (1) and the fact that 

tetrandrine (1) is a macrocyclic ring is not mandatory for TPC2 inhibition. Racemic coclaurine 

(Z1, 141) had nearly no effect, whereas racemic O,O-bisbenzylcoclaurine (Z3, 137) was 

equipotent to tetrandrine (1, Figure 22 A and E). Contrary, Z6 (145) showed an (on top)-

activating effect (Figure 22 A and E). Notably, the bis-phenyl ether SG-094 (192) significantly 

increased the percentage of channel inhibition (75%) compared to tetrandrine (1, 54%), 

whereas the corresponding bis-benzyl ether SG-005 (187) showed nearly the same inhibition 

(44%) as tetrandrine (1, Figure 22 B and Figure 23 H). Both compounds are derived from the 

racemic alkaloid coclaurine (159).  

 

Figure 22: Patch clamp results to identify TPC2 inhibitors, performed by Dr. Yu-Kai Chao. (A-B) The 
inhibition percentage of several TPC2 blockers is displayed. Inhibitors (10 µM) were applied upon 
activation with PI(3,5)P2 (4, 1 µM) on isolated and vacuolin-enlarged endolysosomes from HEK293 cells 
expressing TPC2-EGFP. The bar graph indicates mean ± SEM of n independent experiments. *p < 0.05, 
ns = not significant, using unpaired students t-test. (C) Representative current density – voltage relation 
for a recording of the most potent TPC2 inhibitor of this set of compounds, SG-094 (192), is shown. (D) 
Structures of tetrandrine (1), fangchinoline (9), cepharanthine (140) and dauricine (11). Differences to 
tetrandrine (1) are marked in red. (E) Structures of Z1 (141), Z3 (137) and Z6 (145).  

 

The two lipophilic, membrane-permeable TPC2 activators TPC2-A1-N (16) and TPC2-A1-P 

(17), developed in the first part of this project, allowed to also test inhibitory activities of the 

compounds in calcium imaging experiments. Fura-2 based single cell calcium imaging 

experiments were performed first. The best option to assess inhibitory effects is to first add the 

inhibitor to the cells and incubate for a defined time, then stimulate the cells with the activator 

and monitor effects over time in the constant presence of the inhibitor. As control, a subsequent 

experiment needs to be performed in which vehicle, e.g. DMSO only is added first, followed by 
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addition of the agonist. The results of these two experiments are then directly compared. If 

activation levels do not show differences, the substance has no inhibitory activity. At least three 

independent experiments should be performed for quantification and statistical analysis. Of 

note, results strongly depend on the transfection levels and these may vary. For more 

consistent experiments HEK-293 cells stably expressing the plasma membrane variant of 

hTPC2 were therefore used.  

This method was applied for tetrandrine (1), two of the synthesized truncated variants, SG-005 

(187) and SG-094 (192), and the controls SG-132 (159) and SG-145 (183). As expected, 

tetrandrine (1), SG-005 (187) and SG-094 (192) were able to inhibit TPC2-A1-N (16) induced 

activation significantly (Figure 23 A-D). SG-132 (159) is lacking the prolonging aromatic 

groups (benzyl or diaryl ethers) while SG-145 (183) has two benzyl ethers but the 

tetrahydroisoquinoline nitrogen is not basic. Both substances were not able to inhibit TPC2-

A1-N (16) induced activation (Figure 23 E-G) and confirmed that the absent groups were 

essential for the inhibitory effect on TPC2.  

 

Figure 23: Reversed single cell calcium imaging experiments to identify TPC2 inhibitors. (A) Fura-2 
based Ca2+ imaging results showing the effect of TPC2-A1-N (16, 10 µM) after stimulation with 
tetrandrine (1, 10 µM), SG-094 (192, 10 µM), SG-005 (187, 10 µM) or a DMSO control. HEK293 cells 
stably expressing hTPC2L11A/L12A-RFP were used. Mean values normalized to basal (400 s after 
activation) ± SEM of at least three independent experiments with 3–10 cells each are shown. (B-D) 
Representative Ca2+ signals for experiments as in (A). Cells were sequentially stimulated with 
tetrandrine (1, 10 µM, B), SG-094 (192, 10 µM, C), SG-005 (187, 10 µM, D) or DMSO (0.5% DMSO in 
HBS) and the activator TPC2-A1-N (16, 10 µM, 400 s). (E) Experiments as in (A) using SG-132 (159, 
10 µM), SG-145 (183, 10 µM) or a DMSO control. (F-G) Representative Ca2+ signals for experiments as 
in (E). Cells were sequentially stimulated with SG-132 (159, 10 µM, C), SG-145 (183, 10 µM, D) or 
DMSO (0.5% DMSO in HBS) and the activator TPC2-A1-N (16, 10 µM, 400 s). **p < 0.01, *p < 0.05, ns 
= not significant, using one-way ANOVA followed by Tukey’s post hoc test. In all experiments highlighted 
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lines represent the mean response from a population of cells. Shaded traces represent responses of 
single cells. All experiments were performed on a Leica DMi8 live cell microscope. (H) Structures of SG-
005 (187) and SG-094 (192). (I) Structures of SG-132 (159) and SG-145 (183). 

 

This set of experiments proved the accuracy of the method and the previously obtained 

electrophysiology results. Of the three inhibitors again SG-094 (192) had the strongest effect 

(**) compared to tetrandrine (1, *) and SG-005 (187, *) when applied at a concentration of 10 

µM (Figure 23 A-D). In a next step the potencies of the compounds were determined by 

concentration-effect relationship measurements using the HTS system instead of using only 

single concentrations. 

 

3.6.2 Analysis of the compound library 

All compounds were analyzed by using the Fluo-4 based calcium imaging method (HTS 

system) described before. The experiments were again performed in the group of Prof. Dr. 

Michael Schaefer (Leipzig) by sequential application of inhibitors at different concentrations 

followed by the agonists TPC2-A1-P (17) and TPC2-A1-N (16).  

 

Figure 24: Fluo-4 calcium imaging experiments of the highlighted compounds tetrandrine (1), SG-005 
(187) and SG-094 (192). Concentration-effect relationships using HEK293 cells stably expressing 
hTPC2L11A/L12A-RFP are presented. Cells were sequentially stimulated with inhibitor (100 µM → 0.1 µM) 
and TPC2-A1-N (16, 10 µM) or TPC2-A1-P (17, 10 µM) as activator. IC50 values were calculated out of 
at least three independent experiments using GraphPad. All experiments were performed by Nicole 
Urban. 

 

Both activators were used at a concentration of 10 µM. All three inhibitors were found to have 

IC50 values in the range of 2.5 µM – 24 µM (Figure 24 A). Significant differences in potencies 

were not detectable. Surprisingly, SG-005 (187) showed a reduced maximum efficacy (only 
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50%) after activation with TPC2-A1-N (16), while tetrandrine (1) and SG-094 (192) 

approximated a complete inhibition (nearly 100%, Figure 24 A). All three inhibitors had nearly 

100% blocking efficacy after activation with TPC2-A1-P (17).  

 

Figure 25: Structures of the truncated tetrandrine analogs, analyzed in SAR. (A) Structures of the 1-
benzyl-tetrahydroisoquinolines synthesized within this project. (B) Structures of the 1-benzyl-tetrahydro-
isoquinolines, provided by Prof. Dr. Meinhart Zenk†. 

 

IC50 values were obtained for the other compounds as well (Table 12). For some Z compounds, 

unspecific effects were observed at concentrations above 50 µM and concentration-effect 

relationships were not applicable. Tetrandrine (1), fangchinoline (9), berbamine (10), 

cepharanthine (140), oxyacanthine (138) and dauricine (11) all showed IC50 values in the same 

range for both activators (entry 1, 4-8, Table 12, all depicted in Figure 19). These results 
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confirmed that the substitution pattern of the benzyl residue and the stereochemistry were not 

determined. SG-005 (187), SG-094 (192), SG-158 (208) and SG-159 (206) showed IC50 value 

in the same range for activation with TPC2-A1-P (17) while only SG-094 (192) had a slightly 

higher IC50 for activation with TPC2-A1-N (16, entry 2-3, 17-18, Table 12, structures in Figure 

25). Both compounds selected as controls did either show high IC50 values or fitting was not 

applicable at all (entry 12-13, Table 12, structures in Figure 25). All analogs of SG-094 (192) 

blocked TPC2 activation with both activators to some extent, while some had differences in 

potencies (entry 9-11, 14-24, Table 12, structures in Figure 25). The substances bearing a 

para-methoxy, para-methyl or their fluorinated variants (SG-153 (199), SG-154 (198), SG-155 

(196), SG-162 (200)) showed a lower IC50 value after activation with TPC2-A1-P (17) 

compared to activation with TPC2-A1-N (16) (entry 14-16, 21, Table 12, structures in Figure 

25). None of the further analogs showed significantly stronger effects on TPC2. The three Z 

substances that did not show unspecific effects, Z1 (141), Z9 (147) and Z22 (157) were not 

able to inhibit TPC2 as well, which was verified by high (>50 µM) or not applicable IC50 values 

(entry 25-27, Table 12, structures in Figure 25). All other compounds, mainly of the Z series, 

had a slight inhibitory effect on the channel (at 12.5 µM). These compounds were not of further 

interest because of their already mentioned nonspecific effects on stably transfected HEK293 

cells.  

Table 12: Screening results of the compound library using Fluo-4 based calcium imaging and toxicity 
screening using MTT assay. Concentration-effect relationships were generated using HEK293 cells 
stably expressing hTPC2L11A/L12A-RFP and were plotted using GraphPad. Experiments were performed 
as described in Figure 24 in duplicates of one replicate for each activator. Calcium imaging experiments 
were performed by Nicole Urban and MTT assay by Martina Stadler. **was activated with 30 µM TPC2-
A1-P (17). 

entry compound 
IC50 (Fluo-4;  

TPC2-A1-P (17)) 

IC50 (Fluo-4;  

TPC2-A1-N (16)) 
IC50 (MTT) 

1 tetrandrine (1) 10 µM 14 µM 43 µM 
2 SG-005 (187) 7.6 µM 2.5 µM 11 µM 
3 SG-094 (192) 8.3 µM 24 µM 23 µM 
4 fangchinoline (9) 11 µM 7.0 µM 38 µM 
5 berbamine HCl (10) 10 µM 7.0 µM 21 µM 
6 cepharanthine (140) 8.1 µM 5.1 µM 25 µM 
7 oxyacanthine sulfate (138) 21 µM 4.5 µM >50 µM 
8 dauricine (11) 12 µM 8.6 µM >50 µM 
9 SG-083 (188) 11 µM 14 µM 8.2 µM 
10 SG-122 (193) 14 µM 7.3 µM 22 µM 
11 SG-127 (194) n.a. 25 µM 18 µM 
12 SG-132 (159) >50 µM** 45 µM >50 µM 
13 SG-145 (183) 43 µM n.a. >50 µM 
14 SG-153 (199) 22 µM >50 µM 15 µM 
15 SG-154 (198) 12 µM >50 µM 9.5 µM 
16 SG-155 (196) 15 µM 37 µM 14 µM 
17 SG-157 (195) 34 µM 30 µM 29 µM 
18 SG-158 (208) 9.6 µM 0.33 µM 12 µM 
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19 SG-159 (206) 9.9 µM 0.75 µM 14 µM 
20 SG-161 (197) 10 µM 24 µM 15 µM 
21 SG-162 (200) 19 µM >50 µM 16 µM 
22 SG-163 (203) 18 µM 21 µM 9.5 µM 
23 SG-164 (201) 15 µM 43 µM 21 µM 
24 SG-165 (202) 33 µM >50 µM 19 µM 
25 Z1 (141) >50 µM >50 µM >50 µM 
26 Z9 (147) >50 µM >50 µM >50 µM 
27 Z22 (157) n.a. >50 µM 29 µM 

 

For acute toxicity, MTT assays were again performed by Martina Stadler. For these 

experiments HL-60 cells were used, which are human leukemia cells. All compounds showed 

acute toxicity to HL-60 cells. That was to be expected because of the strong correlation 

between cancer and TPC2[36]. The compounds that were not able to block TPC2 also showed 

no (entry 12-13, 25-26, Table 12) or slight (entry 27, Table 12) toxicity on HL-60 cells. 

Interestingly, the TPC2 inhibitors oxyacanthine (138) and dauricine (11) were not cytotoxic as 

well (entry 7-8, Table 12). 

In house agar diffusion test (Martina Stadler) was used to exclude some side-effects on 

bacteria (Escherichia coli, Pseudomonas marginalis, Staphylococcus equorum, Streptococcus 

entericus), yeasts (Yarrowia lipolytica, Saccharomyces cerevisiae) and dermatophytes 

(Hyphopichia burtonii). All compounds of the SG-series (Figure 25) did not show an inhibition 

zone.  

A variety of TPC2 inhibitors were identified within this screening. SG-005 (187) and SG-094 

(192) emerged to be the most promising TPC2 inhibitors with low IC50 values and high 

efficacies. Decorations on the aromatic ring impaired the ability to block TPC2. The diaryl or 

benzyl ethers were necessary for the inhibitory effect as well as a basic nitrogen atom. Tertiary 

amines were preferred because secondary amines caused unspecific effects in calcium 

imaging experiments. These results further demonstrated that whole endoysosomal patch 

clamp experiments are still state-of-the-art for ultimate analysis while calcium imaging 

experiments can be used for fast ligand identification.  



RESULTS AND D ISCUSSION 

78 

3.6.3 TPC2 and cancer 

The influence of TPC2 functions on cancer hallmarks is of high interest[34] which made TPC2 

an interesting target for the development of novel anticancer therapeutics. Hence a close 

cooperation with Martin Müller (group of Prof. Dr. Angelika Vollmar, LMU) was initiated to use 

small-molecule inhibitors of TPC2 to further study the role of TPC2 in cancer. All experiments 

discussed in this chapter were performed by Martin Müller and are to be published in a 

corporate publication.  

Thus, after the identification of the novel TPC2 inhibitors, their potential to inhibit cancer cell 

growth was investigated. More negative controls (SG-089 (181), SG-121 (185), SG-121-NP 

(189)) and substances of the Z series were also screened for their antiproliferative properties 

using RIL175 cells in a CTB assay. Numerous molecules with an increased potency in 

comparison to tetrandrine (1, IC50: 9.1 µM, entry 1, Table 13) were identified, including 

truncated variants with IC50 values in the low micromolar range. Monomeric 

benzyltetrahydroisoquinolines bearing additional aromatic residues (phenyl or benzyl ethers) 

at both benzenoid rings were found to have outstanding properties. When modifying the amino 

group, antiproliferative activity remained in a similar range. N-Alkyl residues of different lengths 

with a basic nitrogen were equipotent (NH (Z3 (137)); N-methyl (SG-005 (187), SG-159 (206)); 

N-ethyl (SG-158 (208)), IC50: 2.4-4.8 µM, entry 2, 17-18, 28, Table 13). N-Acyl variants lost 

their antiproliferative properties as well as their basicity (SG-089 (181), SG-145 (183), IC50: 

≥ 33 µM, entry 12, 25, Table 13). Variations at C-6 and C-7 of the isoquinoline unit had a slight 

effect. In most cases, the loss of the aromatic substituents (aryl- or benzyl ether) in C-7 position 

slightly decreased antiproliferative activity (SG-083 (188), SG-127 (194), SG-157 (195), IC50: 

7.6-11 µM, entry 8, 10, 16, Table 13). The same was observed if the 1-benzyl group was 

replaced by a phenyl group (SG-122 (193) vs. SG-157 (195), entry 9, 16, Table 13), whereas 

shifting a benzyloxy residue from position C-7 to C-6 had no influence (Z3 (137) vs. Z5 (144), 

entry 28-29, Table 13). Furthermore, the impact of modifications of the 1-benzyl residue was 

investigated. Substitution patterns, mostly differing in meta- or para-position, did not markedly 

affect antiproliferative activity (SG-005 (187), SG-159 (206), Z6 (145), Z11 (141), Z13 (150), 

Z15 (152), Z18 (154), Z20 (155), IC50: 1.2-4.8 µM, entry 2, 18, 30-36, Table 13). Miscellaneous 

diaryl ethers at the 1-benzyl residue were synthesized bearing both electron-donating and -

releasing substituents, mainly in meta- or para-position (SG-153 (199), SG-154 (198), SG-155 

(196), SG-161 (197), SG-162 (200), SG-164 (201), SG-165 (202)). In most cases, no changes 

in antiproliferative potencies were observed (IC50: 3.9-5.6 µM, entry 13-15, 19-23, Table 13). 

However, cyano and chlorine substituents slightly (SG-164 (201), SG-165 (202), IC50: 

8.5-9.1 µM, entry 22-23, Table 13) and the pyridine moiety strongly reduced the 

antiproliferative activity (SG-163 (203), IC50: 22 µM, entry 21, Table 13). The loss of both, 

benzyl or diaryl ether moieties resulted in significant reduction (SG-132 (159), IC50: 11 µM, 
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entry 11, Table 13) or complete loss of activity (SG-089 (181), SG-121 (185), SG-121-NP 

(189), IC50: > 50 µM, entry 25-27, Table 13).  

Table 13: Screening of the benzyltetrahydroisoquinoline compound library by cell proliferation assays. 
Antiproliferative effects of the respective compounds against RIL175 WT cells were assessed by 
CellTiter-Blue® cell viability assays. Cells were treated for 72 h with the indicated concentrations. IC50 
values were calculated by nonlinear regression. Experiments were performed by Martin Müller. 

entry compound IC50 (RIL157) entry compound IC50 (RIL157) 

1 tetrandrine (1) 9.1 µM 25 SG-089 (181) >50 µM 
2 SG-005 (187) 2.4 µM 26 SG-121 (185) >50 µM 
3 SG-094 (192) 3.7 µM 27 SG-121-NP (189) >50 µM 
4 berbamine HCl (10) 7.7 µM 28 Z3 (137) 2.9 µM 
5 cepharanthine (140) 6.8 µM 29 Z5 (144) 2.7 µM 
6 oxyacanthine sulfate (138) 11 µM 30 Z6 (145) 2.9 µM 
7 dauricine (11) 9.3 µM 31 Z11 (148) 1.2 µM 
8 SG-083 (188) 7.6 µM 32 Z13 (150) 3.5 µM 
9 SG-122 (193) 4.5 µM 33 Z15 (152) 2.7 µM 

10 SG-127 (194) 8.0 µM 34 Z16 (153) 2.6 µM 
11 SG-132 (159) 11 µM 35 Z18 (154) 4.1 µM 
12 SG-145 (183) 33 µM 36 Z20 (155) 4.2 µM 
13 SG-153 (199) 4.9 µM    
14 SG-154 (198) 3.9 µM    
15 SG-155 (196) 4.4 µM    
16 SG-157 (195) 11 µM    
17 SG-158 (208) 4.8 µM    
18 SG-159 (206) 4.2 µM    
19 SG-161 (197) 4.5 µM    
20 SG-162 (200) 5.6 µM    
21 SG-163 (203) 32 µM    
22 SG-164 (201) 9.1 µM    
23 SG-165 (202) 8.5 µM    
24 Z22 (157) 18 µM    

 

All benzyltetrahydroisoquinolines, which carry two aryl or benzyl ether groups and a basic 

amine, inhibited proliferation of RIL175 cells to a similar extent or stronger than tetrandrine (1). 

The two simplest benzyltetrahydroisoquinolines of this type, SG-005 (187) and SG-094 (192), 

were subjected to further investigations. SG-005 (187, IC50: 2.4 µM) and SG-094 (192, IC50: 

3.7 µM) both displayed markedly enhanced antiproliferative effects, compared to tetrandrine 

(1). SG-005 (187) and SG-094 (192) had similar or increased antiproliferative potencies 

against various other cancer cell lines, including human hepatocellular carcinoma (HepG2), 

human colorectal adenocarcinoma (HCT-15) and human vincristine-resistant acute 

lymphoblastic leukemia (VCR-R CEM) (entry 1-9, Table 14). While comparing IC50 values of 

the cell proliferation assay and Fluo-4 based calcium imaging, it was striking that not all 

compounds that block proliferation were TPC2 inhibitors (SG-132 (159), entry 12, Table 12, 

entry 11, Table 13) and not all TPC2 inhibitors blocked proliferation (SG-163 (203), entry 22, 
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Table 12, entry 21, Table 13). This indicated that these compounds have side effects on further 

targets in cancer cells.  

Table 14: Antiproliferative effects of tetrandrine (1), SG-005 (187) and SG-094 (192) on different cancer 
cell lines. Antiproliferative effects of the respective compounds on HCT-15, HepG2 and VCR-R CEM 
cells were assessed by CellTiter-Blue® cell viability assays. HCT-15 and HepG2 cells were treated for 
72 h, VCR-R CEM cells were treated for 48 h. IC50 values were calculated by nonlinear regression. 
Experiments were performed by Martin Müller. 

entry compound cell line IC50 (Ril-175) 

1 tetrandrine (1) HCT-15 9.7 µM 
2 tetrandrine (1) HepG2 9.4 µM 
3 tetrandrine (1) VCR-R CEM 15 µM 
4 SG-005 (187) HCT-15 7.8 µM 
5 SG-005 (187) HepG2 7.8 µM 
6 SG-005 (187) VCR-R CEM 5.5 µM 
7 SG-094 (192) HCT-15 7.6 µM 
8 SG-094 (192) HepG2 9.9 µM 
9 SG-094 (192) VCR-R CEM 10 µM 

 

Cellular uptake, toxicity and the effects on angiogenesis and glucose metabolism of SG-005 

(187) and SG-094 (192) were investigated, all in comparison to tetrandrine (1). SG-132 (159) 

and SG-145 (183) both identified as non-TPC2 blockers by Ca2+ imaging experiments were 

used as controls. The vascular endothelial growth factor (VEGF) has been demonstrated to be 

a major contributor to angiogenesis. The role of TPC2-mediated Ca2+ release in 

neoangiogenesis was already described in literature[35, 52] and VEGF inhibitors were used to 

treat cancer[38]. Western blot analysis revealed that SG-005 (187) and SG-094 (192) were 

capable of significantly reducing VEGF-induced phosphorylation levels, while tetrandrine (1) 

had no effect under the chosen treatment conditions. As expected, the analysis of the selected 

controls, SG-132 (159) and SG-145 (183), showed no reduced phosphorylation of the 

investigated VEGFR2 downstream targets.  

As the inhibitory effect on TPC2 was similar for tetrandrine (1) and SG-005 (187), the question 

arose if they differ in their pharmacokinetic properties. Therefore, together with Dr. Christoph 

Müller and Anna Niedrig, the cellular uptake was investigated by analytical HPLC. Two different 

cell lines (HUVECs and RIL175 cells) at two different compound concentrations (2 µM and 10 

µM) were tested. Incorporation of SG-005 (187) into HUVECs was slightly higher than the 

uptake of tetrandrine (1) and SG-094 (192) at 2 µM, while all other settings did not show 

significant differences. In general, cellular uptake for the cancerous liver cells (RIL175) was 

preferred compared to the primary endothelial cells (HUVECs). Initial uptake was not a major 

trigger for the improved on-target activity of SG-005 (187) and SG-094 (192) on TPC2.  

Cancer cells tend to reprogram their energy metabolism in order to boost extensive cell 

division[38] and according to the Warburg effect, many cancer cells preferentially use glycolysis 



RESULTS AND D ISCUSSION 

81 

for ATP production[170]. Normal cells, however, favor oxidative phosphorylation and conduct 

glycolysis to generate pyruvate out of glucose for the dismantling of unnecessary biomass. 

Glucose metabolism was identified as one pathway that is altered as a result of TPC2 

deficiency. Upon loss of TPC2 function or pharmacological inhibition of this channel with 

tetrandrine (1), SG-005 (187) and SG-094 (192), a metabolic shift towards a less glycolytic, 

and therefore healthier, phenotype was observed.  

The toxicity of tetrandrine (1) is a serious drawback, especially for in vivo studies. It is 

postulated to be related to metabolic activation by cytochrome P450 (CYP) enzymes[70, 171] or 

mitochondrial pathways[172]. Both, SG-005 (187) and SG-094 (192) showed decreased toxicity 

to non-cancerous hepatic stem cells (HepaRGTM) and peripheral blood mononuclear cells 

(PBMCs), which was not related to CYP3A4 levels. This indicates that metabolic oxidation by 

CYP enzymes is not responsible for the toxicity of tetrandrine (1). Thus, truncation of 

tetrandrine (1) slightly (SG-005 (187)) or substantially (SG-094 (192)) improved the toxicity 

prolife.  

In vivo studies using tetrandrine (1) are limited due to the poor solubility as well as the high 

toxicity. The simplified, less toxic and good soluble substances SG-005 (187) and SG-094 

(192) were evaluated for their therapeutic potential in an ectopic mouse model using C57Bl/6-

Tyr mice and RIL175 HCC cells. SG-005 (187) did not show the expected in vivo efficacy, while 

SG-094 (192), successfully managed to reduce tumor growth in vivo at tolerated doses.  

In short, pharmacological inhibition of TPC2 function reduced cancer cell proliferation, altered 

cellular energy metabolism and prevented tumor growth. The two small-molecule TPC2 

inhibitors, SG-005 (187) and SG-094 (192), showed a great drug-likeness compared to the 

limited panel of currently available direct TPC2 blockers. The cellular uptake could be improved 

and the toxicity was lowered in comparison to tetrandrine (1). Using these molecules enables 

to perform in vivo experiments which increases their possible applications.  
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3.6.4 Separation of the enantiomers 

The racemic mixtures of SG-005 (187) and SG-094 (192) were separated by semipreparative 

chiral HPLC in order to identify the eutomer. The absolute stereochemistry was determined 

using ECD spectra and was confirmed by computational calculations by Aaron Gerwien (group 

of Prof. Dr. Henry Dube, LMU) (Figure 26 C and F). The separated enantiomers were analyzed 

in Fluo-4 based calcium imaging and compared with the racemic mixtures, respectively. For 

activation of the ion channel both TPC2 activators, TPC2-A1-N (16) and TPC2-A1-P (17) were 

used. (S)-SG-005 (209) showed a decreased potency (IC50: 7.8 µM) compared to its 

enantiomer (R)-SG-005 (210, IC50: 2.4 µM) after activation with TPC2-A1-N (16, Figure 26 E), 

while there was no difference after activation with TPC2-A1-P (17, Figure 26 D). The same 

applied to (S)-SG-094 (211, IC50: 31 µM) and (R)-SG-094 (212, IC50: 14 µM) to some extent 

(Figure 26 A and B). Thus, all enantiomers showed inhibition of TPC2 after activation with 

both activators.  

 

Figure 26: Fluo-4 based calcium imaging of enantiopure SG-005 (187) and SG-094 (192). (A-B) 
Concentration-effect relationships using HEK293 cells stably expressing hTPC2L11A/L12A-RFP. Cells 
were sequentially stimulated with SG-094 (rac: 192, (S): 211, (R): 212) and TPC2-A1-P (17, 10 µM, A) 
or TPC2-A1-N (16, 10 µM, B) as activator. IC50 values were calculated out of at least three independent 
experiments using GraphPad. (C) Structures of both enantiomers of SG-094 ((S): 211, (R): 212). (D-E) 
Experiment as in A-B but using SG-005 (rac: 187, (S): 209, (R): 210). (F) Structures of both enantiomers 
of SG-005 ((S): 209, (R): 210). Experiments were performed by Nicole Urban. 

 

The different enantiomers were further analyzed for toxicity and their ability to inhibit 

proliferation. All compounds were not toxic to non-cancerous HepaRG cells in a CTB assay at 
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10 µM, while tetrandrine (1) already showed toxicity at this concentration (Figure 27 A). In 

particular, SG-094 (192) and enantiomers (211, 212) showed a significantly decreased toxicity 

compared to tetrandrine (1). Antiproliferative properties of these compounds were evaluated 

using RIL175 cells in a CTB assay. Both enantiomers of both compounds did reduce cell 

proliferation, though both (R)-enantiomers (210, 212) were less potent than the corresponding 

(S)-enantiomers (209, 211) and the racemates (187, 192), as depicted in Figure 27 B and C.  

 

Figure 27: Toxicity and cell proliferation of the enantiopure compounds. (A) Toxicity of tetrandrine (1), 
SG-005 (rac: 187, (S): 209, (R): 210) and SG-094 (rac: 192, (S): 211, (R): 212) to non-cancerous cells 
was probed by treating HepaRG cells with 10 µM of the corresponding compound for 72 h. Cell viability 
was assessed by CellTiter-Blue® cell viability assay and was normalized to vehicle control. Bar graphs 
indicate mean ± SEM of three independent experiments. **p < 0.01, *p < 0.05, using one-way ANOVA 
followed by Tukey’s post hoc test. (B-C) Antiproliferative effects of the SG-005 (B, rac: 187, (S): 209, 
(R): 210) and SG-094 (C, rac: 192, (S): 211, (R): 212) were assessed by CellTiter-Blue® cell viability 
assays. RIL-175 cells were treated for 72 h. IC50 values were calculated by nonlinear regression. 
Fluorescence intensities were normalized to vehicle control and are displayed as mean ± SEM of three 
independent experiments. Experiments were performed by Martin Müller.  

 

Notably, calcium imaging revealed that both enantiomers of SG-005 (187) and SG-094 (192) 

inhibit TPC2 upon activation to a similar extent. Furthermore, the racemates showed virtually 

the same effects as the more potent compound in cell proliferation assay. Consequently, the 

racemates were preferred for all subsequent experiments.  

 

3.6.5 Expanding the TPC2 inhibitor panel 

The aforementioned panel of TPC2 inhibitors comprises indirect TPC inhibitors like trans-Ned-

19 (2)[36, 60, 173] and direct inhibitors like the flavonoid naringenin (8)[52], the listed drugs 

fluphenazine (6) and raloxifene (7)[31] and the bisbenzylisoquinoline alkaloid tetrandrine (1)[2, 

36]. There are other reported compounds which interfere with NAADP-mediated Ca2+ signaling 

like BZ194, an N-alkylated nicotinic acid derivative[174], and pyridoxal phosphate 6-azophenyl-

2′,4′-disulfonic acid (PPADS)[175, 176]. For both compounds, however, no direct measurements 

of TPC inhibition are published, questioning the accuracy of these inhibitors.  

Naringenin (8) and trans-Ned-19 (2) require high concentrations to inhibit TPCs (500 µM and 
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125 µM, respectively)[52, 60]. Raloxifene (7) and fluphenazine (6) both exhibite a low IC50 in 

endo-lysosomal patch clamp experiments (0.63 µM and 8.2 µM) after stimulation with PI(3,5)P2 

(4)[31]. The application of raloxifene (7), however, is limited to postmenopausal women 

regarding the influence upon hormone levels and fluphenazine (6) is known for its broad 

spectrum of adverse effects. The most prominent and potent TPC inhibitor, tetrandrine (1), 

blocks TPCs at nano-molar concentrations (500 nM) in endo-lysosomal patch clamp 

experiments[2]. It is used in different studies as exemplary TPC inhibitor, but the poor solubility 

combined with the reported toxicity make tetrandrine (1) not applicable for in vivo studies. None 

of these antagonists of TPCs is selective, neither can they discriminate between the two TPC 

isoforms.  

The new developed TPC2 inhibitors, SG-005 (187) and SG-094 (192) showed improved 

efficacy in electrophysiological endo-lysosomal patch clamp experiments for SG-094 (192, 

74% inhibition) or equipotent efficacy for SG-005 (187, 44%), compared to tetrandrine (1, 54%) 

after activation with PI(3,5)P2 (4). These results were confirmed by Fura-2 calcium imaging 

experiments. Again SG-094 (192) had the strongest effect (**) compared to tetrandrine (1, *) 

and SG-005 (187, *) when applied at a concentration of 10 µM. Furthermore the cellular uptake 

could be improved and the toxicity was lowered in comparison to tetrandrine (1). The great 

solubility of SG-005 (187) and SG-094 (192) enabled in vivo studies in an ectopic mouse 

model. Both compounds were well tolerated at given doses and SG-094 (192), successfully 

managed to reduce tumor growth in vivo. These results demonstrate that the two small-

molecule TPC2 inhibitors, SG-005 (187) and SG-094 (192), showed a promising drug-likeness 

and expanded the limited panel of available TPC2 blockers. 
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3.7  Side Projects 

The developed calcium imaging methods were further used in some side projects to confirm 

inhibitory effects on TPC2 or TRPML channels. Within projects in the group of Prof. Dr. Bracher 

substances were synthesized or purchased and subsequently tested by me on TPC2 to 

evaluate their effect on endo-lysosomal ion channels.  

 

3.7.1 The isoquinoline-benzylisoquinoline alkaloid rac-muraricine (213) 

Ramona Schütz performed the first racemic total synthesis of the isoquinoline-

benzylisoquinoline alkaloid rac-muraricine (213, Figure 28 A)[177]. Pharmacological 

characterization identified rac-muraricine (213) as a moderate inhibitor of P-glycoprotein, while 

it showed only low antiproliferative effects. Structural similarities to tetrandrine (1) and 

dauricine (11) led to the presumption that rac-muraricine (213) can block TPC2. Therefore 

Fura-2 based calcium imaging was performed using TPC2-A1-N (16) for activation. The 

alkaloid rac-muraricine (213) was not able to inhibit TPC2 activation in comparison to a DMSO 

control (Figure 28 B and C).  

 

Figure 28: Fura-2 based calcium imaging results of rac‐muraricine (213) and a DMSO control using the 
TPC2 activator TPC2‐A1‐N (16). (A) Structure of rac‐muraricine (213). (B) Statistical analysis of the 
maximal change in the Fura‐2 ratio (mean ± SEM) with the number of independent experiments in 
parentheses. An unpaired t ‐test was applied. ns = not significant. (C) Representative Ca2+ signals 
recorded from HEK293 cells stably expressing TPC2L11A/L12A–RFP. After applying rac‐muraricine (213, 
10 µM; n = 19 single cells) or DMSO (0.1% in HBS; n = 16 single cells) and monitoring the signal for 
400 s, cells were stimulated with TPC2‐A1‐N (16, 10 µM) and further recorded for 400 s. Highlighted 
lines represent the mean response from a population of cells. Shaded traces represent responses of 
single cells. All experiments were performed on a Leica DMi8 live cell microscope.   
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3.7.2 The TRPML inhibitors ML-SI1 (214) and ML-SI3 (215) 

In the course of an Erasmus project the TRPML inhibitor ML-SI1 (214) was synthesized under 

the supervision of Dr. Marco Keller (Figure 29 D). This compound was one out of two published 

TRPML inhibitors with undefined stereochemistry[178]. The product was received as a racemic 

mixture of two diastereomers (4 isomers in total) and was tested on the TRPML channels for 

its postulated inhibitory effect. Experiments were performed by first activating the ion channel 

with ML-SA1 or MK6-83 (10 µM, respectively) and subsequent inhibition using ML-SI1 (214, 

10 µM) or ML-SI3 (214, 10 µM). For statistical analysis the median activation was normalized 

to 1 to compare the percentage inhibitory effect.  

 

Figure 29: Fura-2 based calcium imaging experiments for TRPML inhibitors. (A) Statistical analysis of 
the inhibitory effect of ML-SI1 (214) on TRPMLs in Fura-2 based Ca2+ imaging experiments (normalized 
activation). Experiments were carried out as previously described[115] on a Polychrome IV mono-
chromator (for hTRPML1) or a Leica DMi8 live cell microscope (for TRPML2 and 3). After stimulation 
with ML-SA1 (10 µM) for 200 s, the inhibitor ML-SI1 (214, 10 µM) was applied for another 200 s. For 
measurements HEK293 cells stably expressing hTRPML2-YFP or hTRPML3-YFP, and transiently 
transfected hTRPML1ΔNC-YFP cells were used[114]. (B) Statistical analysis as in (A), using ML-SA1 (10 
µM) or MK6-83 (10 µM) for activation of hTRPML1ΔNC-YFP transiently transfected HEK293 cells. (C) 
Representative Ca2+ signals recorded from hTRPML1ΔNC-YFP transiently transfected HEK293 cells, 
loaded with Fura-2/AM (126) and sequentially stimulated with ML-SA1 (10 µM, red, n = 5 transfected 
and 2 NT cells) or MK6-83 (10 µM, orange, n = 11 transfected and 3 NT cells) and ML-SI1 (214, 10 µM). 
Highlighted lines represent the mean response from a population of cells. Shaded traces represent 
responses of single cells. (D) Structure of rac-ML-SI1 (214), synthesized by Dr. Marco Keller. (E) 
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Statistical analysis of the inhibitory effect of ML-SI3 (215) as in (A) using ML-SA1 (10 µM) for activation 
and ML-SI3 (215, 10 µM from Enamine store) for inhibition. All experiments were performed on a Leica 
DMi8 live cell microscope. (F) Statistical analysis as in (B) but inhibition with ML-SI3 (215, 10 µM). All 
experiments were performed on a Leica DMi8 live cell microscope. (G) Representative Ca2+ signals as 
in (C) but performed on a Leica DMi8 live cell microscope. Cells were sequentially stimulated with ML-
SA1 (10 µM, blue, n = 5 transfected and 8 NT cells) or MK6-83 (10 µM, green, n = 4 transfected and 5 
NT cells) and ML-SI3 (215, 10 µM). Highlighted lines represent the mean response from a population of 
cells. Shaded traces represent responses of single cells. In all statistical analyses of Ca2+ imaging 
experiments, mean values of n independent experiments are shown as indicated. ***p < 0.001, **p < 
0.01, *p < 0.05, ns = not significant, one-way ANOVA test followed by Tukey’s post-hoc test. 

 

Single cell calcium imaging experiments confirmed that the synthesized racemic ML-SI1 (214) 

had an inhibitory effect on TRPML1 (Figure 29 A-C). Statistical analysis of the three isoforms 

of the ion channel showed strong inhibitory effect on hTRPML1, a weaker effect on hTRPML2 

and no effect on hTRPML3, all after activation with ML-SA1 (Figure 29 A). While inhibition 

after activation with ML-SA1 showed a robust signal, it was not possible to significantly block 

MK6-83 induced activation (Figure 29 B and C). This indicates an activator dependent 

inhibition.  

The second published inhibitor, ML-SI3 (215)[178], was commercially available at Enamine store 

(CAS: 891016-02-7) but with undefined stereochemistry. Within a new project, Charlotte Leser 

identified the commercially available ML-SI3 (215) as racemic mixture of trans-ML-SI3 (215, 

Figure 29 H). The commercially available ML-SI3 (215, Figure 29 H) was able to block ML-

SA1 evoked hTRPML1 and 2 activation around 50% but did not inhibit hTRPML3 activation 

(Figure 29 E). The comparison of the different activators showed that ML-SI3 (215) was able 

to block both ML-SA1 and MK6-83 induced activation in the same manner (Figure 29 F and 

G). Thus, ML-SI3 (215) seemed the more promising antagonist for further investigations.  
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4 Summary 

The first aim of this thesis was the identification of small-molecule TPC2 activators. This was 

achieved by performing a high-throughput screening of a compound library, containing 80000 

substances. Two TPC2 activators (TPC2-A1-N (16), TPC2-A1-P (17)) were identified within 

this screening process. Both compounds were confirmed by fluorescence-based Ca2+-imaging 

and electrophysiological endo-lysosomal patch clamp measurements. To verify the structures, 

both substances were synthesized and re-evaluated.  

Sjogren et al. published a two-step synthesis for α-cyano-β-hydroxypropenamides, which 

resulted in the desired TPC2-A1-N (16)[91]. Only slight changes in this procedure were 

necessary for optimization. Different aniline building blocks (IV, Figure 30 A), 2-cyanoacetic 

acid (18) and DCC as coupling reagent yielded 23 cyanoacetanilides (II, Figure 30 A), nearly 

all in high yield. Acylation of these intermediates (II, Figure 30 A) using different benzoic acid 

building blocks (III, Figure 30 A) and NaH as a strong base gave the desired 

α-cyano-β-hydroxypropenamides (I, Figure 30 A) as analogs of TPC2-A1-N (16, Figure 30 

B). Only the thio-analog SGA-167 (91) was synthesized with another method. Collectively, 47 

compounds were synthesized in moderate to high yield, including the hit TPC2-A1-N (16), and 

two drugs (prinomide (58), teriflunomide (76)).  

Fura-2 based calcium imaging experiments were performed to study SAR. Surprisingly, none 

of the 46 modified versions of TPC2-A1-N (16, Figure 30 B) did show significantly increased 

efficacies. Replacing the p-trifluoromethyl group on the anilide side of the molecule (R1; blue) 

with other electron-withdrawing groups in para-position did not lead to significant changes. The 

introduction of electron-releasing groups in para-position was tolerated to some extent (SGA-

4 (47), SGA-84 (72)). Meta-disubstitution patterns were most beneficial for the benzoyl ring 

system (R2, green), while more drastic changes in this aromatic region caused a complete loss 

of activity. This was demonstrated for the approved drugs teriflunomide (76) and prinomide 

(58) as well as the 4-trifluoromethyl variant of prinomide (SGA-32 (59)), all possessing methyl 

or pyrrole residues instead of the benzoyl ring. In total, 24 analogs were able to activate TPC2 

with similar or lower efficacy compared to TPC2-A1-N (16)[22, 135]. All results were confirmed by 

determination of concentration-effect relationships, underlining the very flat SAR of this 

chemotype on TPC2. The increased potency and efficacy of SGA-85 (73) were relativized by 

non-specific effects on control cells. Selectivity-screening revealed that SGA-108 (77) showed 

an improved selectivity spectrum, which explains the loss of efficacy. All these findings have 

proven the high efficacy of TPC2-A1-N (16) and the fact that it is the most promising candidate 

to be a great tool compound. 
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Figure 30: Synthesis and compound overview of TPC2-A1-N (16) and analogs. (A) Synthesis scheme 
for the preparation of most α-cyano-β-hydroxypropenamides. (B) Structures of TPC2-A1-N (16) and 
analogs. Differences to the hit compound are marked in magenta (TPC2 activators) or red (no TPC2 
activators).  

 

The synthesis of the second activator, TPC2-A1-P (17), was more challenging than the 

synthesis of TPC2-A1-N (16), as the required intermediate, an α-halogenated acetophenone 

(IV, Figure 31) substituted in C-2 position with a trifluoromethoxy and in C-5 position with a 

bromo group, was not commercially available. Many different synthetic approaches were not 

successful until the main problem was detected: The desired product was highly volatile. 
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Hence, a synthesis avoiding these conditions was chosen and the α-halogenated 

acetophenone (IV, Figure 31 A) was synthesized successfully.  

For the synthesis of the highly substituted TPC2-A1-P scaffold a Paal-Knorr pyrrole synthesis 

was performed. Under alkaline conditions 1,4-diketones (VIII, Figure 31 A) were synthesized, 

using the α-halogenated acetophenone (IV, Figure 31 A) and β-ketoester (V, Figure 31 A) 

building blocks. These 1,4-diketones (VIII, Figure 31 A) were not isolated and directly 

condensed with a primary amine building block (III, Figure 31 A) in acidic medium to give 

multi-substituted pyrroles (II, Figure 31 A). In total, 13 esters were synthesized and 8 of them 

isolated. Hydrolysis of the esters (II, Figure 31 A) required harsh conditions, utilizing 

microwave irradiation for several hours to give the hit TPC2-A1-P (17) and 12 analogs varying 

all substituents of the pyrrole moiety (Figure 31 B).  

 

Figure 31: Synthesis and compound overview of TPC2-A1-P (17) and analogs. (A) Synthesis scheme 
for the synthesis of TPC2-A1-P (17) and analogs. (B) Structures of TPC2-A1-P (17) and analogs. 
Differences to the hit compound are marked in magenta (TPC2 activators) or red (no TPC2 activators). 

 

Similar to TPC2-A1-N (16), calcium imaging experiments were performed to gain first insights 

into SAR. Again, all modified versions of TPC2-A1-P (17) showed no improvement of 

efficacy[22]. Every change in structure resulted in a decrease or total loss of activity. SAR 

revealed that the free carboxylic acid is essential for the activating effect, as the ester SGA-

140 (109) was not active. It could possibly serves as a prodrug of TPC-A1-P (17) in living 

systems, but this has not been investigated yet. Both substituents at the phenyl ring, the 

trifluoromethoxy and the bromine group, were essential for activating TPC2, as exemplified by 

the inactive methoxy (SGA-55, 115) and des-bromo (SGA-162, 120) analogs. Moderate 

expansion of the size of the pyrrole substituent at C-2 position (methyl in TPC2-A1-P (17) vs. 

ethyl in SGA-152 (121) and phenyl analog SGA-154 (122)), had the same effect. The only 

fairly tolerated structure modification was replacing the cyclohexylmethyl moiety in 1-positon 
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of the pyrrole ring by a benzyl residue (SGA-150, 125), whereas linear or branched alkyl chains 

(SGA-149 (123), SGA-153 (124)) caused loss of activity (Figure 31 B). All results were further 

confirmed by full concentration-effect relationships, generated by Fluo-4 calcium imaging 

experiments. These harsh limitations showed that TPC2-A1-P (17) had an unusually steep 

structure-activity relationship resulting in TPC2-A1-P (17) as great chemical tool.  

Comparing the results of both activator classes, a considerable number of TPC2-A1-N (16) 

analogs caused remarkable TPC2 activation, but none of them showed significantly increased 

efficacies. In contrast to TPC2-A1-N (16), TPC2-A1-P (17) showed an unusually steep 

structure-activity relationship, and except for one analog (SGA-150, 125) none of the analogs 

showed any activity. TPC2-A1-N (16) itself and some of its analogs bearing residues in para-

position at the benzoyl ring were known as anthelmintic agents[91], while TPC2-A1-P (17) was 

only namely mentioned as a precursor in the synthesis of cannabinoid-1 receptor (CB1R) 

inverse agonists[105]. Two analogs of TPC2-A1-N (16) were launched drugs (teriflunomide (76), 

prinomide (58)), proving the drug-likeness of the TPC2-A1-N skeleton. There were no drugs 

comprising the TPC2-A1-P skeleton and furthermore no reports for using the free carboxylic 

acids. Thus, the two HTS hits TPC2-A1-N (16) and TPC2-A1-P (17) can be regarded as novel, 

strong chemical tools. 

In a very recent publication we published initial steps for the pharmacological profile of TPC2-

A1-N (16) and TPC2-A1-P (17)[22]. The subtype selectivity to TPC1 and cell permeability were 

proven. These small-molecules finally helped to resolve the conflict, whether TPC2 is a 

NAADP-activated Ca2+ release channel[5, 12, 14, 127, 128] or a PI(3,5)P2 gated Na+ channel[15, 20, 129]: 

TPC2 is a ligand-dependent, non-selective cation channel with malleable cation selectivity. 

Depending on the agonist, TPC2 shows higher calcium permeability (activation with TPC2-A1-

N (16), similar to NAADP (3)) or increased sodium permeability (activation with TPC2-A1-P 

(17), similar to PI(3,5)P2 (4)). Additionally the PI(3,5)P2 (4) binding site in TPC2[8] has been 

identified to be the overlapping with the pore for TPC2-A1-P (17). While TPC2-A1-N (16) 

induced an alkalinization of single vesicles in cells expressing wild-type TPC2, as described 

for NAADP (3)[130, 131], TPC2-A1-P (17) promoted lysosomal exocytosis.  

In comparison with other new TPC2 activators, identified by Zhang et al.[111], our two new 

activators were more potent and selective, which made them the perfect chemical tools for the 

identification of TPC2 inhibitors.  

Because of their anti-cancer or anti-viral effects TPC2 inhibitors are currently of higher 

therapeutic significance than activators. Hence, a set of TPC2 inhibitors was synthesized, 

inspired by the known TPC2 inhibitor tetrandrine (1). These molecules mimicked one half of 

the bisbenzylisoquinoline tetrandrine (1) and further decoration, not only in form of O-benzyl 

derivatives but also as diaryl ethers, was supposed to closely imitate tetrandrine (1) in shape 
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and size (Scheme 34 A). Iturriaga-Vásquez et al. designed simplified and more accessible 

congeners of tetrandrine (1) bearing extensions as benzyl groups, which were developed as 

L-type calcium channel blockers[82]. This was a promising hint for the plan to design truncated 

analogs of tetrandrine (1). 

Starting materials for the synthesis of the desired tetrahydroisoquinolines were carbamates 

and enol ethers (I and II, Scheme 34 B). Using ethyl chloroformate (162), NEt3 and 3-

methoxytyramine (160) or its O-protected derivatives gave different carbamates (I). Enol 

ethers (II) were received via Wittig olefination of commercially available para-substituted 

benzaldehydes. These precursors underwent N-acyl Pictet-Spengler reaction using TFA and 

to yield N-acethoxycarbonyl-1-benzyltetrahydroisoquinolines (III). Tertiary N-methyl amines 

(IV) were received by reduction of the carbamate group and, if applicable, in situ deprotection 

of carbonate-protected phenols using lithium alanate. Diverse diaryl ethers (V) were introduced 

at the generated phenolic groups via gentle Chan-Evans-Lam coupling with the appropriate 

arylboronic acids. Furthermore, three routes were established to yield SG-005 (187): lithium 

alanate reduction of the carbamate SG-145 (183), Eschweiler-Clarke reaction starting with the 

secondary amine Z3 (137) and Mitsunobu reaction on N-methylcoclaurine (SG-132, 159) to 

receive benzyl protecting groups. The Eschweiler-Clarke reaction using Z6 (145) also yielded 

SG-159 (206) and an alkylation reaction using bromoethane yielded SG-158 (208).  

The racemates SG-005 (187) and SG-094 (192) were separated by semi-preparative chiral 

HPLC for the identification of the potential eutomers. The absolute configuration of the 

enantiomers was determined using ECD spectra and confirmed by computational calculations 

performed by Aaron Gerwien. Notably, Ca2+ imaging revealed that both enantiomers of SG-

005 (187) and SG-094 (192) inhibit TPC2 upon activation to a similar extent. Consequently, 

the racemates were used for all further experiments.  

A Fura-2 based single cell calcium imaging method was developed and the TPC2-blocking 

effect of SG-005 (187) and SG-094 (192) was confirmed. These two substances were 

highlighted within this project because of their outstanding effects in a variety of experiments. 

While tetrandrine (1) and SG-005 (187) were equipotent (54% and 44% inhibition or *, 

respectively), SG-094 (192) was significantly more potent (74%, **) at the tested conditions 

(10 µM of inhibitor, activated with 1 µM PI(3,5)P2 (4)) in endo-lysosomal patch-clamp 

experiments (performed by Dr. Yu-Kai Chao) and Fura-2 based calcium imaging experiments 

(10 µM TPC2-A1-N (16), followed by 10 µM of the respective inhibitor). Furthermore, two 

negative controls were identified to assure the accuracy of the experiments. SG-132 (159, N-

methylcoclaurine) is missing the decoration on the phenol groups and SG-145 (183) the 

alkaline nitrogen function of the tetrahydroisoquinoline, which represent the two most important 

structural moieties.  
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Scheme 34: Summary for the synthesis of truncated tetrandrine analogs. (A) Schematic overview for 
the truncation of tetrandrine (1). Decorations on the former phenols (R’s) make the molecule resemble 
tetrandrine (1) even more. (B) Complete synthesis branches for the synthesis of truncated analogs, 
starting with carbamate and enol ether building blocks. N-acyl Pictet-Spengler reaction resulted in 
benzyltetrahydroisoquinolines, that were deprotected and reduced using lithium alanate. The resulting 
tertiary amines received their final decoration using the Chan-Evans-Lam coupling. Shaded reactions 
are additional reactions to receive different benzylated analogs. 

 

All compounds were analyzed for their ability to inhibit TPC2-A1-N (16) and TPC2-A1-P (17) 

induced TPC2 activation in Fluo-4 calcium imaging experiments performed by Nicole Urban. 

Within this screening IC50 values were obtained not only for the synthesized substances, but 

also for more alkaloids: intermediates of the morphine biosynthesis like racemic coclaurine 

(Z1, 141), kindly provided by Prof. Dr. Meinhart Zenk†, tetrandrine (1) and derivatives as 

fangchinoline (9), kindly provided by Prof. Dr. Peter Pachaly†. Commercially available 

benzylisoquinoline alkaloids like dauricine (11) and oxyacanthine (138) completed the 

screening library. This screening pointed out that tetrandrine (1), fangchinoline (9) and the 

other alkaloids inhibit TPC2 to the same extent (around 50%). SG-005 (187), SG-094 (192) 

and the orientaline derivatives SG-158 (208) and SG-159 (206) were able to inhibit TPC2 

activation similarly or even better than tetrandrine (1). None of the further analogs showed 
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significant stronger effects on TPC2. The substances bearing a para-methoxy, para-methyl or 

their fluorinated variants (SG-153 (199), SG-154 (198), SG-155 (196), SG-162 (200)) showed 

a lower IC50 value after activation with TPC2-A1-P (17) compared to activation with TPC2-A1-

N (16). As mentioned before, SG-005 (187) and SG-094 (192), derived from the alkaloid 

coclaurine, were selected as most promising TPC2 inhibitors for further investigation.  

After the identification of the novel TPC2 inhibitors, their potential to inhibit cancer cell growth 

was investigated. All 1-benzyltetrahydroisoquinolines carrying two aryl or benzyl ether groups 

and a basic amine inhibited proliferation of RIL175 cells to a similar or stronger extent than 

tetrandrine (1). The two simplest 1-benzyltetrahydroisoquinolines, SG-005 (187, IC50: 2.4 µM) 

and SG-094 (192, IC50: 3.7 µM), both displayed markedly enhanced antiproliferative effects 

compared to tetrandrine (1) also against various other cancer cell lines including HepG2, HCT-

15 and VCR-R CEM. The comparison of IC50 values of the cell proliferation assay and Fluo-4 

based calcium imaging showed that not all compounds that block proliferation were TPC2 

inhibitors (SG-132 (159)) and not all TPC2 inhibitors block proliferation (SG-163 (203)), 

indicating additional effects of these compounds on other targets in cancer cells.  

In an effort to conclude the correlation between TPC2 inhibition and hallmarks of cancer, 

cellular uptake, toxicity and the effects on angiogenesis and glucose metabolism of SG-005 

(187) and SG-094 (192) were investigated by Martin Müller (Vollmar group), all in comparison 

to tetrandrine (1). The non TPC2-blockers SG-132 (159) and SG-145 (183) were used as 

controls. Pharmacological inhibition of TPC2 function reduced cancer cell proliferation altered 

cellular energy metabolism and prevented tumor growth in vivo. The cellular uptake could be 

improved and the toxicity was lowered in comparison to tetrandrine (1). Thus, the two small-

molecule TPC2 inhibitors SG-005 (187) and SG-094 (192) showed a great potential for drug 

development especially considering the limited panel of currently available TPC2 blockers.  

Summarizing, big steps to boost the basic research of two pore channels have been achieved 

within this project. The two novel small-molecule activators of TPC2, TPC2-A1-N (16) and 

TPC2-A1-P (17), were discovered and analyzed in extensive studies. Now they represent two 

powerful chemical tools for the analysis of TPC2 function. These activators enable the use of 

fluorescent based assays on intact cells to study TPC2 inhibitors. Therefore a new generation 

of TPC2 inhibitors was synthesized, resembling one half of the alkaloid tetrandrine (1) plus the 

two benzenoid rings of the second benzylisoquinoline moiety. The two new TPC2 inhibitors 

with improved or at least equipotent ability to inhibit TPC2 were developed, SG-005 (187) and 

SG-094 (192). Together with our cooperation partners TPC2 was proven to be an exciting 

target in tumor therapy and these two compounds were identified as promising lead structures 

for cancer therapy.  
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5 Experimental part 

Synthesis details and analytical data  

All chemicals used were of analytical grade and were obtained from abcr (Karlsruhe, 

Germany), Fischer Scientific (Schwerte, Germany), Sigma-Aldrich (now Merck, Darmstadt, 

Germany), TCI (Eschborn, Germany) or Th. Geyer (Renningen, Germany). HPLC grade and 

dry solvents were purchased from VWR (Darmstadt, Germany) or Sigma-Aldrich, all other 

solvents were purified by distillation. Hydrophobic phase separation filters (MN 617 WA, 125 

mm) were purchased from Macherey Nagel (Düren, Germany). All reactions were monitored 

by thin-layer chromatography (TLC) using pre-coated plastic sheets POLYGRAM® SIL 

G/UV254 from Macherey-Nagel and detected by irradiation with UV light (254 nm or 366 nm). 

Furthermore reactions were monitored by atmospheric pressure solids analysis probe (ASAP) 

via atmospheric-pressure chemical ionization (APCI) on an expressionL CMS device (Advion, 

Ithaca, USA). Flash column chromatography (FCC) was performed on Merck silica gel Si 60 

(0.015 – 0.040 mm). Preparative and semipreparative (chiral) HPLC was performed on a 

Shimadzu HPLC system consisting of a LC-20AP solvent delivery module, a CTO-20A column 

oven, a SPD-M20A photodiode array UV/vis detector and a CBM-20A system controller using 

a semipreparative CHIRALPAK® IC column (particle size 5 μm, Diacel) or a preparative 

NUCLEODUR® 100-5 column (particle size 5 μm, Macherey-Nagel). Microwave-assisted 

reactions were carried out in a Discover (S-Class Plus) SP microwave reactor (CEM GmbH, 

Kamp-Lintfort, Germany). NMR spectra (1H, 13C, DEPT, H-H-COSY, HMQC/HSQC, HMBC) 

were recorded at 23 °C on an Avance III 400 MHz Bruker BioSpin or Avance III 500 MHz 

Bruker BioSpin instrument, unless otherwise specified. Chemical shifts δ are stated in parts 

per million (ppm) and are calibrated using residual protic solvents as an internal reference for 

proton (CDCl3: δ = 7.26 ppm, (CD3)2SO: δ = 2.50 ppm, C2D2Cl4: δ = 5.91 ppm, CD3OD: 

δ = 3.31 ppm, C3D6O: δ = 2.05 ppm) and for carbon the central carbon resonance of the 

solvent (CDCl3: δ = 77.16 ppm, (CD3)2SO: δ = 39.52 ppm, C2D2Cl4: δ = 74.20 ppm, CD3OD: 

δ = 49.00 ppm, C3D6O: δ = 29.84 ppm). Multiplicity is defined as s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet. NMR spectra were analyzed with NMR software MestReNova, 

version 12.0.1-20560 (Mestrelab Research S.L.). High resolution mass spectra were 

performed by the LMU Mass Spectrometry Service applying a Thermo Finnigan MAT 95 or 

Joel MStation Sektorfeld instrument at a core temperature of 250 °C and 70 eV for EI or a 

Thermo Finnigan LTQ FT Ultra Fourier Transform Ion Cyclotron Resonance device at 250 °C 

for ESI. IR spectra were recorded on a Perkin Elmer FT-IR Paragon 1000 instrument as neat 

materials. Absorption bands were reported in wave number (cm-1) with ATR PRO450-S. 

Melting points were determined by the open tube capillary method on a Büchi melting point B-

540 apparatus and are uncorrected. HPLC purities were determined using an HP Agilent 1100 

HPLC with a diode array detector and an Agilent Poroshell column (120 EC-C18; 3.0 × 100 
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mm; 2.7 micron) with acetonitrile/water as eluent. Electronic circular dichroism (ECD) spectra 

were measured on a Jasco J-810 Spectropolarimeter. Optical rotations were further measured 

at the given temperature (T in [°C]) on a Perkin Elmer 241 Polarimeter instrument using a 

sodium lamp (Na D-line, 589 nm). Measurements were carried out in a cell with path lengths 

(l) of 1.0 dm. Concentrations are given in g/100 mL.  
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5.1 Preparation of TPC2 activators 

5.1.1 General procedures 

General Procedure A – Synthesis of N-aryl cyanoacetamides 

According to Sjogren, et al.[91] the appropriate aniline (1.0 eq.) and 2-cyanoacetic acid (18, 

1.0 eq.) were dissolved in DMF and cooled to 0 °C. DCC (1.0 eq.) was added portion wise. 

The mixture was warmed up to rt over 1 h and subsequently diluted with hexanes/EtOAc (1:1). 

Precipitates were removed by filtration and the filtrate was extracted once with 1 M aq. HCl 

and thrice with EtOAc. The combined organic layers were washed with sat. aq. NaCl solution, 

dried over Na2SO4, filtered and concentrated in vacuo. Recrystallization from EtOH yielded the 

desired amides.  

 

General Procedure B – Synthesis of α-cyanoaroylacetanilides 

According to Sjogren, et al.[91] the appropriate amides received from general procedure A 

(1.0 eq.) were dissolved in dry THF, the solution was cooled to 0 °C and NaH (dispersion in 

paraffin, 60%, 2.3 eq.) was added. After stirring for 15 min, the appropriate benzoyl chloride 

(1.1 eq.) was added. The mixture was stirred at 0 °C for 1 h and then cautiously treated with 

1 M HCl. The precipitate was collected by filtration, washed with ice water and cold EtOH and 

recrystallized from toluene to give the desired cyanoaroylacetanilide. 

If the appropriate benzoyl chloride was not commercially available, it was prepared by refluxing 

the appropriate benzoic acid (1.1 eq.) in SOCl2 (55 eq.) for 1 h and concentrating in vacuo. 

The resulting acid chloride was immediately transferred to the reaction.  

 

General Procedure C – Paal Knorr Pyrrole synthesis 

Following a general procedure published by Kang, et al.[103] the appropriate β-ketoester 

(1.1 eq.) was dissolved in dry THF and cooled to 0 °C, before NaH (dispersion in paraffin, 60%, 

1.5 eq.) was added portion wise. After the suspension was stirred for 30 min, a solution of 

appropriate halogenated acetophenone (1.0 eq.) and KI (1.0 eq.) in dry THF was added 

dropwise. The reaction mixture was allowed to warm up to rt over 2 h, then poured on water 

and extracted thrice with Et2O. The combined organic phases were washed with sat. aq. 

NaHCO3 solution, dried over Na2SO4, filtered and concentrated in vacuo. The residue was 

dissolved in acetic acid and the appropriate primary amine (2.0 eq.) was added dropwise. The 

reaction mixture was stirred at 80 °C for 18 h. The solvent was removed in vacuo, the residue 

dispersed in water and extracted thrice with diethyl ether. The collected organic phases were 

washed with sat. aq. NaHCO3 solution, dried over Na2SO4 and concentrated in vacuo. 
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Purification was accomplished by FCC and recrystallization from EtOH if not otherwise 

specified.  

 

General Procedure D – Alkaline deprotection of esters 

LiOH (10 eq.) was added to a solution of the appropriate ester (1.0 eq.) in dioxane/H2O (5:1) 

and the reaction mixture was stirred in a closed vessel under microwave irradiation 

(pmax = 8 bar, Pmax = 200 W, Tmax = 180 °C) for 1-18 h. The suspension was diluted with water 

to thrice original volume and aq. 2 M HCl was added dropwise under vigorous stirring until the 

mixture was strongly acidic. The formed precipitate was collected by filtration, washed with 

water and dried. If necessary, the acids were recrystallized from EtOH to yield the pure 

products. 

 

5.1.2 Synthetic procedures 

5.1.2.1 Synthesis of TPC2-A1-N (16) and analogs 

2-Cyano-N-(4-(trifluoromethyl)phenyl)acetamide – SGA-34 (19) 

 

According to general procedure A, 4-(trifluoromethyl)aniline (20, 812 µL, 6.47 mmol, 1.1 eq.), 

2-cyanoacetic acid (18, 500 mg, 5.88 mmol, 1.0 eq.) and DCC (1.27 g, 6.17 mmol, 1.1 eq.) in 

DMF (7.0 mL) were used to yield amide SGA-34 (19) as colorless crystals (983 mg, 4.31 mmol, 

73%). Analytical data are in accordance with literature[91, 179]. 

Rf = 0.14 (4:1 hexanes/acetone).  

m.p.: 195 °C. [lit.[91]: 191 – 193 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.65 (s, 1H, NH), 7.75 (d, J = 8.8 Hz, 2H, 3’-H, 5’-H), 

7.70 (d, J = 8.8 Hz, 2H, 2’-H, 6’-H), 3.95 (s, 2H, 2-H). 

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.9 (C-1), 141.9 (C-1’), 126.3 (q, JCF = 3.7 Hz, C-

3’, C-5’), 124.4 (q, JCF = 271.4 Hz, CF3), 124.0 (q, JCF = 32.0 Hz, C-4’), 119.2 (C-2’, C-6’), 115.7 

(CN), 27.0 (C-2).  

IR (ATR) ṽmax/cm-1 = 3287, 3221, 3147, 1681, 1612, 1557, 1319, 1110, 1065, 849, 835.  

HRMS (ESI): calcd. for C10H6F3N2O (M-H)- 227.04377; found 227.04371.  
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Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(p-tolyl)acetamide (21) 

 

According to general procedure A, p-toluidine (712 µL, 6.47 mmol, 1.1 eq.), 2-cyanoacetic acid 

(18, 500 mg, 5.88 mmol, 1.0 eq.) and DCC (1.27 g, 6.17 mmol, 1.1 eq.) in DMF (7.0 mL) were 

used to yield amide 21 as colorless crystals (728 mg, 4.18 mmol, 71%). Analytical data are in 

accordance with literature[180].  

Rf = 0.14 (4:1 hexanes/acetone).  

m.p.: 184 °C. [lit.[180]: 186 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.19 (s, 1H, NH), 7.47 – 7.36 (m, 2H, 2’-H, 6’-H), 7.13 

(d, J = 8.2 Hz, 2H, 3’-H, 5’-H), 3.86 (s, 2H, 2-H), 2.25 (s, 3H, CH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 160.7 (C-1), 135.9 (C-1’), 132.9 (C-4’), 129.3 (C-3’, 

C-5’), 119.2 (C-2’, C-6’), 116.0 (CN), 26.6 (C-2), 20.4 (CH3).  

IR (ATR) ṽmax/cm-1 = 3267, 3207, 3137, 1660, 1613, 1552, 1510, 819.  

HRMS (ESI): calcd. for C10H9N2O (M-H)- 173.07204; found 173.07194.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-phenylacetamide (22) 

 

According to general procedure A, aniline (1.96 mL, 21.5 mmol, 1.0 eq.), 2-cyanoacetic acid 

(18, 2.01 g, 23.6 mmol, 1.1 eq.) and DCC (4.87 g, 23.6 mmol, 1.1 eq.) in DMF (20 mL) were 

used to yield amide 22 as colorless crystals (2.60 g, 16.2 mmol, 76%). Analytical data are in 

accordance with literature[180].  

Rf = 0.12 (4:1 hexanes/acetone).  
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m.p.: 202 °C. [lit.[180]: 172 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.28 (s, 1H, NH), 7.54 (dt, J = 8.7, 1.6 Hz, 2H, 2’-H, 

6’-H), 7.39 – 7.29 (m, 2H, 3’-H, 5’-H), 7.15 – 7.04 (m, 1H, 4’-H), 3.89 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 161.0 (C-1), 138.4 (C-1’), 128.9 (C-3’, C-5’), 123.9 (C-

4’), 119.2 (C-2’, C-6’), 115.9 (CN), 26.7 (C-2).  

IR (ATR) ṽmax/cm-1 = 3265, 3207, 3143, 3099, 3052, 1653, 1620, 1557, 1299, 943, 761, 696.  

HRMS (ESI): calcd. for C9H7N2O (M-H)- 159.05639; found 159.05628.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-methoxyphenyl)acetamide (23) 

 

According to general procedure A, p-anisidine (2.36 mL, 20.3 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 19.0 g, 22.3 mmol, 1.1 eq.) and DCC (4.61 g, 22.3 mmol, 1.1 eq.) in DMF (20 mL) 

were used to yield amide 23 as pale blue crystals (1.58 g, 8.31 mmol, 41%). Analytical data 

are in accordance with literature[180].  

Rf = 0.10 (4:1 hexanes/acetone).  

m.p.: 137 °C. [lit.[180]: 176 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.14 (s, 1H, NH), 7.53 – 7.38 (m, 2H, 2’-H, 6’-H), 7.00 

– 6.83 (m, 2H, 3’-H, 5’-H), 3.84 (s, 2H, 2-H), 3.72 (s, 3H, OCH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 160.4 (C-1), 155.6 (C-4’), 131.4 (C-1’), 120.8 (C-2’, 

C-6’), 116.0 (CN), 114.0 (C-3’, C-5’), 55.2 (OCH3), 26.5 (C-2).  

IR (ATR) ṽmax/cm-1 = 3299.3150, 1655, 1608, 1557, 1511, 1251, 1032, 828.  

HRMS (ESI): calcd. for C10H9N2O2 (M-H)- 189.06695; found 189.06688.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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N-(4-Chlorophenyl)-2-cyanoacetamide (24) 

 

According to general procedure A, 4-chloroaniline (682 µL, 23.0 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 2.16 g, 25.4 mmol, 1.1 eq.) and DCC (5.23 g, 25.4 mmol, 1.1 eq.) in DMF (20 mL) 

were used to yield amide 24 as colorless crystals (3.46 g, 17.8 mmol, 77%). Analytical data 

are in accordance with literature[180].  

Rf = 0.14 (3:2 hexanes/acetone).  

m.p.: 207 °C. [lit.[180]: 179 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.42 (s, 1H, NH), 7.62 – 7.51 (m, 2H, 2’-H, 6’-H), 7.50 

– 7.27 (m, 2H, 3’-H, 5’-H), 3.91 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 161.2 (C-1), 137.3 (C-1’), 128.8 (C-3’, C-5’), 127.5 (C-

4’), 120.8 (C-2’, C-6’), 115.8 (CN), 26.8 (C-2).  

IR (ATR) ṽmax/cm-1 = 3264, 3200, 3132, 3083, 1664, 1610, 1548, 1491, 832.  

HRMS (ESI): calcd. for C9H6
35ClN2O (M-H)- 193.01741; found 193.01750.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(4-Bromophenyl)-2-cyanoacetamide (25) 

 

According to general procedure A, 4-bromoaniline (2.00 mL, 17.1 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 1.60 g, 18.8 mmol, 1.1 eq.) and DCC (3.88 g, 18.8 mmol, 1.1 eq.) in 

DMF (20 mL) were used to yield amide 25 as colorless crystals (1.62 g, 6.76 mmol, 40%). 

Analytical data are in accordance with literature[180].  

Rf = 0.14 (4:1 hexanes/acetone).  

m.p.: 186 °C. [lit.[180]: 185 °C] 
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1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.42 (s, 1H, NH), 7.52 (s, 4H, 2’-H, 3’-H, 5’-H, 6’-H), 

3.90 (s, 2H, 2-H). 

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.2 (C-1), 137.7 (C-1‘), 131.7 (C-2‘, C-6’ or C-3’, C-

5’), 121.2 (C-2‘, C-6’ or C-3’, C-5’), 115.8 (C-4’), 115.5 (CN), 26.8 (C-2).  

IR (ATR) ṽmax/cm-1 = 3322, 2927, 2849, 1608, 1547, 1245, 828.  

HRMS (ESI): calcd. for C9H6
79BrN2O (M-H)- 236.96690; found 236.96692.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-fluorophenyl)acetamide (26) 

 

According to general procedure A, 4-fluoroaniline (2.16 mL, 22.5 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 1.91 g, 22.5 mmol, 1.0 eq.) and DCC (4.64 g, 22.5 mmol, 1.0 eq.) in DMF (20 mL) 

were used to yield amide 26 as colorless crystals (3.00 g, 16.9 mmol, 75%). Analytical data 

are in accordance with literature[181].  

Rf = 0.11 (4:1 hexanes/acetone).  

m.p.: 179 °C. [lit.[181]: 158 – 160 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.34 (s, 1H, NH), 7.66 – 7.46 (m, 2H, 2’-H, 6’-H), 7.27 

– 7.09 (m, 2H, 3’-H, 5’-H), 3.89 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.0 (C-1), 158.3 (d, JCF = 240.5 Hz, C-4’), 134.7 (d, 

JCF = 2.7 Hz, C-1’), 121.1 (d, JCF = 7.9 Hz, C-2’, C-6’), 115.9 (CN), 115.5 (d, JCF = 22.3 Hz, C-

3’, C-5’), 26.6 (C-2).  

IR (ATR) ṽmax/cm-1 = 3274, 3166, 3107, 1662, 1623, 1566, 1505, 834.  

HRMS (ESI): calcd. for C9H6FN2O (M-H)- 177.04696; found 177.04687.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-N-(4-iodophenyl)acetamide (27) 

 

According to general procedure A, 4-iodoaniline (4.50 g, 20.5 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 17.5 g, 20.5 mmol, 1.0 eq.) and DCC (4.24 g, 20.5 mmol, 1.0 eq.) in DMF (20 mL) 

were used to yield amide 27 as pale blue crystals (4.50 g, 15.7 mmol, 77%). The compound is 

literature known, but no analytical data are available[91].  

Rf = 0.11 (4:1 hexanes/acetone).  

m.p.: 218 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.38 (s, 1H, NH), 7.78 – 7.60 (m, 2H, 3’-H, 5’-H), 7.49 

– 7.29 (m, 2H, 2’-H, 6’-H), 3.90 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.2 (C-1), 138.2 (C-1’), 137.6 (C-3’, C-5’), 121.4 (C-

2’, C-6’), 115.8 (CN), 87.6 (C-4’), 26.8 (C-2).  

IR (ATR) ṽmax/cm-1 = 3265, 3188, 3113, 3078, 1666, 1543, 1391, 1299, 823.  

HRMS (ESI): calcd. for C9H6IN2O (M-H)- 284.95303; found 284.95302.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-nitrophenyl)acetamide (28) 

 

According to general procedure A, 4-nitroaniline (696 µL, 7.24 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 616 mg, 7.24 mmol, 1.0 eq.) and DCC (1.49 g, 7.24 mmol, 1.0 eq.) in DMF (20 mL) 

were used to yield amide 28 as yellow solid (918 mg, 4.47 mmol, 62%). Analytical data are in 

accordance with literature[182].  

Rf = 0.11 (4:1 hexanes/acetone).  

m.p.: 218 °C. [lit.[182]: 220 °C] 
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1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.88 (s, 1H, NH), 8.35 – 8.15 (m, 2H, 3’-H, 5’-H), 7.93 

– 7.71 (m, 2H, 2’-H, 6’-H), 4.00 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 162.2 (C-1), 144.4 (C-1’), 142.7 (C-4’), 125.1 (C-3’, 

C-5’), 119.0 (C-2’, C-6’), 115.5 (CN), 27.2 (C-2).  

IR (ATR) ṽmax/cm-1 = 3287, 1673, 1562, 1503, 1336, 1259, 860, 748.  

HRMS (ESI): calcd. for C9H6N3O3 (M-H)- 204.04146; found 204.04146.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-cyanophenyl)acetamide (29) 

 

According to general procedure A, 4-aminobenzonitrile (1.00 g, 8.46 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 7.20 g, 8.46 mmol, 1.0 eq.) and DCC (1.75 g, 8.46 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 29 as yellow solid (1.22 g, 6.57 mmol, 78%). The 

compound is literature known, but no analytical data are available[91].  

Rf = 0.08 (4:1 hexanes/acetone).  

m.p.: 201 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.72 (s, 1H, NH), 7.82 – 7.78 (m, 2H, 3’-H, 5’-H), 7.74 

– 7.70 (m, 2H, 2’-H, 6’-H), 3.97 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 162.0 (C-1), 142.5 (C-1’), 133.5 (C-3’, C-5’), 119.3 (C-

2’, C-6’), 118.9 (C-4’), 115.6 (CH2CN), 105.7 (CN), 27.1 (C-2).  

IR (ATR) ṽmax/cm-1 = 3268, 3194, 3118, 2229, 1599, 1538, 1504, 845.  

HRMS (ESI): calcd. for C10H6N3O (M-H)- 184.05164; found 184.05161.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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N-(4-Acetylphenyl)-2-cyanoacetamide (30) 

 

According to general procedure A, 4-aminoacetophenone (1.30 mL, 7.40 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 629 mg, 7.40 mmol, 1.0 eq.) and DCC (1.53 g, 7.40 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 30 as yellow crystals (802 mg, 3.97 mmol, 54%). 

Analytical data are in accordance with literature[183].  

Rf = 0.37 (3:2 hexanes/acetone).  

m.p.: 194 °C. [lit.[183]: 225 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.63 (s, 1H, NH), 7.99 – 7.91 (m, 2H, 3’-H, 5’-H), 7.74 

– 7.62 (m, 2H, 2’-H, 6’-H), 3.96 (s, 2H, 2-H), 2.53 (s, 3H, CH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 196.5 (COCH3), 161.7 (C-1), 142.6 (C-1‘), 132.2 (C-

4‘), 129.6 (C-3‘, C-5‘), 118.5 (C-2‘, C-6‘), 115.7 (CN), 27.0 (C-2), 26.5 (CH3).  

IR (ATR) ṽmax/cm-1 = 3286, 2250, 1695, 1651, 1599, 1536, 1279, 1249, 833, 720.  

HRMS (ESI): calcd. for C11H9N2O2 (M-H)- 201.06695; found 201.06694.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-propoxyphenyl)acetamide (31) 

 

According to general procedure A, 4-propoxyaniline (679 µL, 4.49 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 382 mg, 4.49 mmol, 1.0 eq.) and DCC (927 mg, 4.49 mmol, 1.0 eq.) 

in DMF (2.0 mL) were used to yield amide 31 as colorless crystals (604 mg, 2.77 mmol, 62%). 

Rf = 0.24 (95:5 CH2Cl2/EtOH).  

m.p.: 183 °C.   
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1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.13 (s, 1H, NH), 7.51 – 7.38 (m, 2H, 2’-H, 6’-H), 6.98 

– 6.83 (m, 2H, 3’-H, 5’-H), 3.88 (t, J = 7.1 Hz, 2H, CH2CH2CH3), 3.84 (s, 2H, 2-H), 1.70 (sext, 

J = 7.1 Hz, 2H, CH2CH2CH3), 0.96 (t, J = 7.1 Hz, 3H, CH2CH2CH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 160.4 (C-1), 155.1 (C-4’), 131.4 (C-1’), 120.8 (C-2’, 

C-6’), 116.0 (CN), 114.5 (C-3’, C-5’), 69.0 (CH2CH2CH3), 26.5 (C-2), 22.0 (CH2CH2CH3), 10.4 

(CH2CH2CH3).  

IR (ATR) ṽmax/cm-1 = 3283, 3096, 1607, 1559, 1508, 1239, 828, 570.  

HRMS (ESI): calcd. for C12H13N2O2 (M-H)- 217.09825; found 217.09832.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-(trifluoromethoxy)phenyl)acetamide (32) 

 

According to general procedure A, 4-(trifluoromethoxy)aniline (939 µL, 7.00 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 595 mg, 7.00 mmol, 1.0 eq.) and DCC (1.44 g, 7.00 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 32 as colorless solid (1.23 g, 5.03 mmol, 72%). The 

compound is literature known, but no analytical data are available[91].  

Rf = 0.39 (95:5 CH2Cl2/EtOH).  

m.p.: 154 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.49 (s, 1H, NH), 7.74 – 7.55 (m, 2H, 2’-H, 6’-H), 7.47 

– 7.26 (m, 2H (3’-H, 5’-H), 3.92 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.3 (C-1), 144.0 (C-4‘), 137.5 (C-1‘), 121.8 (C-3’, 

C-5’), 120.7 (C-2’, C-6’), 120.1 (q, JCF = 255.7 Hz, OCF3), 115.8 (CN), 26.8 (C-2).  

IR (ATR) ṽmax/cm-1 = 3278, 2975, 1667, 1616, 1557, 1508, 1277, 1205, 1171.  

HRMS (ESI): calcd. for C10H6F3N2O2 (M-H)- 243.03869; found 243.03869.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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Methyl 4-(2-cyanoacetamido)benzoate (33) 

 

According to general procedure A, methyl 4-aminobenzoate (3.00 g, 19.5 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 1.66 g, 19.5 mmol, 1.0 eq.) and DCC (4.01 g, 19.5 mmol, 1.0 eq.) in 

DMF (15 mL) were used to yield amide 33 as colorless solid (2.76 g, 12.6 mmol, 65%). The 

compound is literature known, but no analytical data are available[91]. 

Rf = 0.44 (3:2 hexanes/acetone).  

m.p.: 162 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.63 (s, 1H, NH), 8.01 – 7.87 (m, 2H, 2-H, 6-H), 7.76 

– 7.61 (m, 2H, 3-H, 5-H), 3.96 (s, 2H, 2-H), 3.82 (s, 3H, CH3).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 165.7 (COOCH3), 161.7 (C-1’), 142.7 (C-4), 130.4 (C-

2, C-6), 124.6 (C-1), 118.6 (C-3, C-5), 115.7 (CN), 52.0 (CH3), 27.0 (C-2’).  

IR (ATR) ṽmax/cm-1 = 2809, 1722, 1608, 1558, 1507, 1431, 1274, 1110, 757.  

HRMS (ESI): calcd. for C11H9N2O3 (M-H)- 217.06187; found 217.06187.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(2-Bromo-4-chlorophenyl)-2-cyanoacetamide (34) 

 

According to general procedure A, 2-bromo-4-chloroaniline (1.00 g, 4.84 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 412 mg, 4.84 mmol, 1.0 eq.) and DCC (999 mg, 4.84 mmol, 1.0 eq.) 

in DMF (10 mL) were used to yield amide 34 as colorless crystals (919 mg, 3.36 mmol, 69%).  

Rf = 0.22 (3:2 hexanes/acetone).  

m.p.: 157 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 9.97 (s, 1H, NH), 7.83 (d, J = 2.4 Hz, 1H, 3’-H), 7.63 

(d, J = 8.7 Hz, 1H, 6’-H), 7.49 (dd, J = 8.7, 2.4 Hz, 1H, 5’-H), 3.98 (s, 2H, 2-H).  
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13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.8 (C-1), 134.7 (C-1’), 132.0 (C-3’), 130.7 (C-4’), 

128.2 (C-5’), 128.0 (C-6’), 118.5 (C-2’), 115.7 (CN), 26.1 (C-2).  

IR (ATR) ṽmax/cm-1 = 3281, 2258, 1666, 1577, 1530, 1470, 1284, 822.  

HRMS (ESI): calcd. for C9H5
79Br35ClN2O (M-H)- 270.92793; found 270.92809.  

Purity (HPLC): > 93% (λ = 210 nm), > 93% (λ = 254 nm). 

 

2-Cyano-N-(2-iodophenyl)acetamide (35) 

 

According to general procedure A, 2-iodoaniline (1.00 g, 4.57 mmol, 1.0 eq.), 2-cyanoacetic 

acid (18, 388 mg, 4.57 mmol, 1.0 eq.) and DCC (942 mg, 4.57 mmol, 1.0 eq.) in DMF (10 mL) 

were used to yield amide 35 as brown crystals (913 g, 3.19 mmol, 70%).  

Rf = 0.16 (4:1 hexanes/acetone).  

m.p.: 161 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 9.88 (s, 1H, NH), 7.90 (d, J = 7.6 Hz, 1H, 3’-H), 7.46 – 

7.38 (m, 2H, 5’-H, 6’-H), 7.03 (ddd, J = 8.6, 5.4, 3.6 Hz, 1H, 4’-H), 3.93 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.4 (C-1), 139.1 (C-3’), 138.7 (C-1’), 128.8 (C-5’), 

128.3 (C-4’), 127.4 (C-6’), 115.8 (CN), 96.4 (C-2’), 26.0 (C-2).  

IR (ATR) ṽmax/cm-1 = 3252, 2263, 1658, 1577, 1542, 1433, 1015, 758, 768.  

HRMS (ESI): calcd. for C9H6IN2O (M-H)- 284.95303; found 284.95295.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3-Chloro-2,4-difluorophenyl)-2-cyanoacetamide (36) 
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According to general procedure A, 3-chloro-2,4-difluoroaniline (1.06 g, 6.48 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 551 mg, 6.48 mmol, 1.0 eq.) and DCC (1.34 g, 6.48 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 36 as colorless crystals (1.01 g, 4.39 mmol, 68%).  

Rf = 0.16 (4:1 hexanes/acetone).  

m.p.: 144 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.32 (s, 1H, NH), 7.79 (td, J = 9.0, 5.8 Hz, 1H, 6’-H), 

7.33 (td, J = 9.0, 2.1 Hz, 1H, 5’-H), 3.99 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 162.0 (C-1), 154.8 (dd, JCF = 246.5, 2.0 Hz, C-2’ or C-

4’), 150.4 (dd, JCF = 250.4, 3.3 Hz, C-2’ or C-4’), 123.4 (dd, JCF = 8.8, 2.4 Hz, C-6’), 123.0 (dd, 

JCF = 11.8, 3.5 Hz, C-1’), 115.7 (CN), 111.9 (dd, JCF = 21.4, 3.8 Hz, C-5’), 108.7 (dd, JCF = 21.9, 

19.7 Hz, C-3’), 26.3 (C-2).  

IR (ATR) ṽmax/cm-1 = 3274.2935, 2264, 1681, 1551, 1488, 1443, 1012, 831, 628.  

HRMS (ESI): calcd. for C9H4
35ClF2N2O (M-H)- 228.99857; found 228.99850.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(3,4-dimethoxyphenyl)acetamide (37) 

 

According to general procedure A, 3,4-dimethoxyaniline (1.00 g, 6.53 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 555 mg, 6.53 mmol, 1.0 eq.) and DCC (1.35 g, 6.53 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 37 as violet crystals (1.10 g, 4.99 mmol, 76%). The 

compound is literature known, but no analytical data are available[184]. 

Rf = 0.05 (4:1 hexanes/acetone).  

m.p.: 174 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.15 (s, 1H, NH), 7.21 (d, J = 2.4 Hz, 1H, 2’-H), 7.04 

(dd, J = 8.7, 2.4 Hz, 1H, 6’-H), 6.90 (d, J = 8.7 Hz, 1H, 5’-H), 3.84 (s, 2H, 2-H), 3.79 – 3.66 (m, 

6H, 2x OCH3).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 160.5 (C-1), 148.6 (C-3’), 145.3 (C-4’), 131.9 (C-1’), 

116.0 (CN), 112.0 (C-5’), 111.2 (C-6’), 104.3 (C-2’), 55.7 (OCH3), 55.4 (OCH3), 26.6 (C-2).  
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IR (ATR) ṽmax/cm-1 = 3273, 2914, 2256, 1660, 1513, 1239, 1132, 1020, 837.  

HRMS (ESI): calcd. for C11H11N2O3 (M-H)- 219.07752; found 219.07751.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(2,3-dichlorophenyl)acetamide (38) 

 

According to general procedure A, 2,3-dichloroaniline (745 µL, 6.30 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 536 mg, 6.30 mmol, 1.0 eq.) and DCC (1.30 g, 6.30 mmol, 1.0 eq.) in 

DMF (10 mL) were used to yield amide 38 as colorless crystals (414 mg, 1.81 mmol, 29%).  

Rf = 0.21 (4:1 hexanes/acetone).  

m.p.: 176 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.11 (s, 1H, NH), 7.69 (dd, J = 8.1, 1.3 Hz, 1H, 4’-H 

or 6’-H), 7.51 (dd, J = 8.1, 1.3 Hz, 1H, 4’-H or 6’-H), 7.38 (t, J = 8.1 Hz, 1H, 5’-H), 4.02 (s, 2H, 

2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 161.9 (C-1), 136.1 (C-1’ or C-3’), 132.0 (C-1’ or C-3’), 

128.2 (C-5’), 127.3 (C-4’ or C-6’), 125.3 (C-2’), 124.8 (C-4’ or C-6’), 115.7 (CN), 26.3 (C-2).  

IR (ATR) ṽmax/cm-1 = 3287, 2253, 1666, 1580, 1527, 1415, 1338, 1182, 953, 788.  

HRMS (ESI): calcd. for C9H5
35Cl2N2O (M-H)- 226.97844; found 226.97859.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(2,6-dibromophenyl)acetamide (39) 
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According to general procedure A, 2,6-dibromoaniline (1.00 g, 4.00 mmol, 1.0 eq.), 

2-cyanoacetic acid (18, 340 mg, 4.00 mmol, 1.0 eq.) and DCC (825 mg, 4.00 mmol, 1.0 eq.) 

in DMF (10 mL) were used to yield amide 39 as colorless crystals (514 mg, 1.62 mmol, 40%). 

Rf = 0.48 (3:2 hexanes/acetone).  

m.p.: 187 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.37 (s, 1H, NH), 7.74 (d, J = 8.1 Hz, 2H, 3’-H, 5’-H), 

7.22 (t, J = 8.1 Hz, 1H, 4’-H), 3.93 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 161.1 (C-1), 134.7 (C-1’), 132.4 (C-3’, C-5’), 130.7 (C-

4’), 123.9 (C-2’, C-6’), 115.6 (CN), 25.4 (C-2).  

IR (ATR) ṽmax/cm-1 = 3326, 2926, 2851, 1626, 1568, 1539, 1242, 642.  

HRMS (ESI): calcd. for C9H5
79Br2N2O (M-H)- 314.87741; found 314.87761.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3,5-Bis(trifluoromethyl)phenyl)-2-cyanoacetamide (40) 

 

According to general procedure A, 3,5-bis(trifluoromethyl)aniline (1.09 mL, 7.00 mmol, 1.0 

eq.), 2-cyanoacetic acid (18, 595 mg, 7.00 mmol, 1.0 eq.) and DCC (1.44 g, 7.00 mmol, 1.0 

eq.) in DMF (10 mL) were used to yield amide 40 as colorless crystals (1.68 g, 5.67 mmol, 

81%). The compound is literature known, but no analytical data are available[185]. 

Rf = 0.43 (95:5 CH2Cl2/EtOH).  

m.p.: 141 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 10.96 (s, 1H, NH), 8.28 – 8.12 (m, 2H, 2’-H, 6’-H), 7.90 

– 7.77 (m, 1H, 4’-H), 4.00 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 162.4 (C-1), 140.2 (C-1’), 130.9 (q, JCF = 32.9 Hz, C-

3’, C-5’), 123.1 (q, JCF = 272.7 Hz, CF3), 119.2 – 118.7 (m, C-2’, C-6’), 116.9 – 116.5 (m, C-4’), 

115.4 (CN), 27.1 (C-2).  

IR (ATR) ṽmax/cm-1 = 3313, 1695, 1572, 1471, 1381, 1272, 1132, 889, 703, 681.  
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HRMS (ESI): calcd. for C11H5F6N2O (M-H)- 295.03116; found 295.03127.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-methyl-N-(4-(trifluoromethyl)phenyl)acetamide (41) 

 

According to general procedure A, N-methyl-4-(trifluoromethyl)aniline (403 µL, 2.85 mmol, 

1.0 eq.), 2-cyanoacetic acid (18, 243 mg, 2.85 mmol, 1.0 eq.) and DCC (589 mg, 2.85 mmol, 

1.0 eq.) in DMF (10 mL) were used to yield amide 41 as colorless solid (513 mg, 2.12 mmol, 

74%). Analytical data are in accordance with literature[186]. 

Rf = 0.58 (95:5 CH2Cl2/EtOH).  

m.p.: 70 °C. [lit.[186]: 66-68 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 7.77 (d, J = 8.6 Hz, 2H, 3’-H, 5’-H), 7.40 (d, J = 8.2 Hz, 

2H, 2’-H, 6’-H), 3.34 (s, 3H, CH3), 3.23 (s, 2H, 2-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 161.4 (C-1), 145.6 (C-1’), 131.7 (C-4’), 127.9 (C-2’, 

C-6’ or C-3’, C-5’), 127.8 (C-2’, C-6’ or C-3’, C-5’), 123.5 (q, J = 271.4 Hz, CF3), 113.7 (CN), 

38.1 (CH3), 25.6 (C-2).  

IR (ATR) ṽmax/cm-1 = 3152, 2355, 1657, 1611, 1322, 1122, 1103, 1065, 848.  

HRMS (ESI): calcd. for C11H8F3N2O (M-H)- 241.05942; found 241.05939.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(4-(trifluoromethyl)benzyl)acetamide (42) 

 

According to general procedure A, 4-(trifluoromethyl)benzylamine (2.50 mL, 17.5 mmol, 1.0 

eq.), 2-cyanoacetic acid (18, 1.49 g, 17.5 mmol, 1.0 eq.) and DCC (3.62 g, 17.5 mmol, 1.0 eq.) 
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in DMF (15 mL) were used to yield amide 42 as colorless solid (299 mg, 1.23 mmol, 7%). 

Analytical data are in accordance with literature[187]. 

Rf = 0.46 (3:2 hexanes/acetone). 

m.p.: 113 °C. [lit.[187]: 128 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 8.83 (t, J = 5.7 Hz, 1H, NH), 7.74 – 7.66 (m, 2H, 3’-H, 

5’-H), 7.54 – 7.44 (m, 2H, 2’-H, 6’-H), 4.38 (d, J = 5.7 Hz, 2H, CH2), 3.73 (s, 2H, 2-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 162.5 (C-1), 143.6 (C-1’), 128.0 (C-2’, C-6’), 127.7 (q, 

JCF = 31.7 Hz, C-4’), 125.2 (q, JCF = 3.7 Hz, C-3’, C-5’). 124.3 (q, JCF = 272.1 Hz, CF3), 116.1 

(CN), 42.2 (CH2), 25.3 (C-2).  

IR (ATR) ṽmax/cm-1 = 3316, 2937, 2364, 1734, 1664, 1547, 1325, 1152, 1107, 1066.  

HRMS (ESI): calcd. for C11H8F3N2O (M-H)- 241.05942; found 241.05949.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm).  

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

TPC2-A1-N (16) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 

1.10 mmol, 1.1 eq.) were used to yield TPC2-A1-N (16) as colorless crystals (276 mg, 0.688 

mmol, 69%).  

Rf = 0.62 (4:1 hexanes/acetone).  

m.p.: 202 °C. [lit.[91]: 208 – 210 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.36 (s, 1H, NH), 7.79 – 7.76 (m, 2H, 2’-H, 6’-H), 7.65 

(t, J = 1.9 Hz, 1H, 4’’-H), 7.62 – 7.60 (m, 2H, 3’-H, 5’-H), 7.59 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.7 (C-3), 166.5 (C-1), 144.9 (C-1’’), 143.6 (C-1’), 

133.5 (C-3’’, C-5’’), 128.6 (C-4’’), 126.2 – 125.9 (m, C-3’, C-5’ and C-2’’, C-6’’), 124.6 (q, JCF = 

286.1 Hz, CF3), 123.3 (C-2), 121.8 (q, JCF = 31.8 Hz, C-4’), 118.7 (C-2’, C-6’), 77.7 (CN).  
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IR (ATR) ṽmax/cm-1 = 3293, 2213, 1538, 1409, 1320, 1268, 1244, 1167, 1106, 1070, 837, 810, 

660, 591.  

HRMS (ESI): calcd. for C17H8
35Cl2F3N2O2 (M-H)- 398.99204; found 398.99202.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-phenylacrylamide – SGA-1 (44) 
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According to general procedure B, amide 22 (160 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-1 (44) as yellow solid (227 mg, 0.681 mmol, 68%).  

Rf = 0.67 (3:2 hexanes/acetone).  

m.p.: 200 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 11.95 (s, 1H, NH), 7.61 (t, J = 1.9 Hz, 1H, 4’’-H), 7.56 

(d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.53 (dd, J = 8.5, 1.0 Hz, 2H, 2’-H, 6’-H), 7.27 – 7.22 (m, 2H, 

3’-H, 5’-H), 6.96 – 6.90 (m, 1H, 4’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.2 (C-3), 166.1 (C-1), 145.3 (C-1’’), 140.1 (C-1’), 

133.4 (C-3’’, C-5’’), 128.7 (C-3’, C-5’), 128.3 (C-4’’), 126.1 (C-2’’, C-6’’), 123.6 (C-2), 121.7 (C-

4’), 118.8 (C-2’, C-6’), 77.4 (CN).  

IR (ATR) ṽmax/cm-1 = 3294, 2212, 1579, 1445, 810, 748, 683.  

HRMS (ESI): calcd. for C16H9
35Cl2N2O2 (M-H)- 331.00466; found 331.00465.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(4-Chlorophenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – SGA-2 (45) 
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According to general procedure B, amide 24 (195 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-2 (45) as yellow solid (256 mg, 0.695 mmol, 70%).  

Rf = 0.71 (3:2 hexanes/acetone).  

m.p.: 230 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.12 (s, 2H, NH), 7.62 (t, J = 1.9 Hz, 1H, 4’’-H), 7.60 

– 7.57 (m, 2H, 2’-H, 6’-H), 7.55 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.30 – 7.26 (m, 2H, 3’-H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.5 (C-3), 166.1 (C-1), 145.4 (C-1’’), 139.1 (C-1’), 

133.4 (C-3’’, C-5’’), 128.6 (C-3’, C-5’), 128.3 (C-4’’), 126.0 (C-2’’, C-6’’), 125.0 (C-4’), 123.6 (C-

2), 120.2 (C-2’, C-6’), 77.2 (CN).  

IR (ATR) ṽmax/cm-1 = 3305, 2212, 1545, 1495, 1506, 1316, 1098, 809.  

HRMS (ESI): calcd. for C16H8
35Cl3N2O2 (M-H)- 364.96568; found 364.96593.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(4-Bromophenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – SGA-3 (46) 

 

According to general procedure B, amide 25 (239 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-3 (46) as yellow crystals (289 mg, 0.702 mmol, 70%).  

Rf = 0.73 (3:2 hexanes/acetone).  

m.p.: 237 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.09 (s, 1H, NH), 7.62 (t, J = 1.9 Hz, 1H, 4’’-H), 7.58 

– 7.51 (m, 4H, 2’-H, 6’-H, 2’’-H, 6’’-H), 7.44 – 7.38 (m, 2H, 3’-H, 5’-H). 

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.4 (C-3), 166.1 (C-1), 145.2 (C-1’’), 139.4 (C-1’), 

133.4 (C-3’’, C-5’’), 131.4 (C-3’, C-5’), 128.3 (C-4’’), 126.0 (C-2’’, C-6’’), 122.6 (C-2), 120.7 (C-

2’, C-6’), 112.9 (C-4’), 77.4 (CN).  

IR (ATR) ṽmax/cm-1 = 3309, 2211, 1540, 1493, 1403, 1316, 1290, 1012, 809.  
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HRMS (ESI): calcd. for C16H8
79Br35Cl2N2O2 (M-H)- 408.91517; found 408.91581.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(p-tolyl)acrylamide – SGA-4 (47) 

 

According to general procedure B, amide 21 (174 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-4 (47) as yellow crystals (185 mg, 0.534 mmol, 53%).  

Rf = 0.28 (3:2 hexanes/acetone).  

m.p.: 214 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.82 (s, 1H, NH), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.56 

(d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.46 – 7.39 (m, 2H, 2’-H, 6’-H), 7.09 – 7.02 (m, 2H, 3’-H, 5’-H), 

2.24 (s, 3H, CH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.0 (C-3), 166.0 (C-1), 145.1 (C-1’’), 137.4 (C-1’), 

133.4 (C-3’’, C-5’’), 130.6 (C-4’), 129.1 (C-3’, C-5’), 128.3 (C-4’’), 126.1 (C-2’’, C-6’’), 123.5 (C-

2), 119.0 (C-2’, C-6’), 77.5 (CN), 20.4 (CH3).  

IR (ATR) ṽmax/cm-1 = 3299, 2212, 1543, 1518.866, 806, 654.  

HRMS (ESI): calcd. for C17H11
35Cl2N2O2 (M-H)- 345.02031; found 345.02052.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-N-(4-fluorophenyl)-3-hydroxyacrylamide – SGA-8 (48) 
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According to general procedure B, amide 26 (178 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-8 (48) as white crystals (220 mg, 0.626 mmol, 63%).  

Rf = 0.69 (3:2 hexanes/acetone).  

m.p.: 225 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.92 (s, 1H, NH), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.60 

– 7.53 (m, 4H, 2’-H, 6’-H, 2’’-H, 6’’-H), 7.12 – 7.03 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.2 (C-3), 166.1 (C-1), 157.3 (d, JCF = 236.9 Hz, C-

4’), 144.9 (C-1’’), 136.3 (d, JCF = 2.4 Hz, C-1’), 133.4 (C-3’’, C-5’’), 128.4 (C-4’’), 126.1 (C-2’’, 

C-6’’), 123.3 (C-2), 120.5 (d, JCF = 7.6 Hz, C-2’, C-6’), 115.2 (d, JCF = 22.0 Hz, C-3’, C-5’), 77.4 

(CN).  

IR (ATR) ṽmax/cm-1 = 3296, 2212, 1739, 1549, 1506, 1210, 823, 809, 645.  

HRMS (ESI): calcd. for C16H8
35Cl2FN2O2 (M-H)- 348.99523; found 348.99526.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-N-(4-iodophenyl)-3-hydroxyacrylamide – SGA-9 (49) 

 

According to general procedure B, amide 27 (286 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-9 (49) as yellow crystals (279 mg, 0.608 mmol, 61%).  

Rf = 0.71 (3:2 hexanes/acetone).  

m.p.: 238 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.04 (s, 1H, NH), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.59 

– 7.53 (m, 4H, 3’-H, 5’-H, 2’’-H, 6’’-H), 7.44 – 7.38 (m, 2H, 2’-H, 6’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.4 (C-3), 166.2 (C-1), 145.1 (C-1’’), 139.8 (C-1’), 

137.3 (C-3’, C-5’ or C-2’’, C-6’’), 133.4 (C-3’’, C-5’’), 128.4 (C-4’’), 126.1 (C-3’, C-5’ or C-2’’, C-

6’’), 123.3 (C-2), 121.1 (C-2’, C-6’), 84.5 (C-4’), 77.5 (CN).  
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IR (ATR) ṽmax/cm-1 = 3303, 2217, 1592, 1523, 1485, 1314, 817, 806, 658.  

HRMS (ESI): calcd. for C16H8
35Cl2IN2O2 (M-H)- 456.90130; found 456.90014.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-3-phenyl-N-(4-(trifluoromethyl)phenyl)acrylamide – SGA-10 (50) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and benzoyl chloride (128 µL, 1.10 mmol, 1.1 eq.) 

were used to give SGA-10 (50) as colorless crystals (185 mg, 0.557 mmol, 56%). Analytical 

data are in accordance with literature[179]. 

Rf = 0.28 (3:2 hexanes/acetone).  

m.p.: 242 °C. [lit.[179]: 245 – 247 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.12 (s, 1H, NH), 7.84 – 7.74 (m, 2H, 2’-H, 6’-H), 7.70 

– 7.58 (m, 4H, 3’-H, 5’-H, Ph), 7.48 – 7.39 (m, 3H, Ph).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 185.7 (C-3), 167.3 (C-1), 143.1 (C-1’), 139.7 (qPh), 

135.0 (C-2), 130.0 (Ph), 127.8 (Ph), 127.6 (Ph), 126.0 (q, JCF = 3.8 Hz, C-3’, C-5’), 125.0 (d, 

JCF = 270.6 Hz, CF3), 122.3 (d, JCF = 35.2 Hz, C-4’), 119.4 (C-2’, C-6’), 77.8 (CN).  

IR (ATR) ṽmax/cm-1 = 3283, 2216, 1592, 1550, 1309, 1109, 1067, 840, 694.  

HRMS (ESI): calcd. for C17H10F3N2O2 (M-H)- 331.06999; found 331.06985.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dinitrophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-11 (51)  
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According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dinitrobenzoyl chloride (254 mg, 

1.10 mmol, 1.1 eq.) were used to give SGA-11 (51) as red crystals (124 mg, 0.294 mmol, 29%).  

Rf = 0.21 (3:2 hexanes/acetone).  

m.p.: 240 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.32 (s, 1H, NH), 10.00 (s, 1H, OH), 8.89 – 8.80 (m, 

3H, 2’’-H, 4’’-H, 6’’-H), 7.84 – 7.75 (m, 2H, 2’-H, 6’-H), 7.67 – 7.58 (m, 2H, 3’-H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 180.5 (C-3), 166.1 (C-1), 147.6 (C-3’’, C-5’’), 144.4 

(C-1’’), 143.5 (C-1’), 127.6 (C-2’’, C-6’’),126.1 (q, JCF = 3.5 Hz, C-3’, C-5’),124.2 (q, JCF = 271.0 

Hz, CF3), 123.3 (C-2), 121.8 (q, JCF = 31.7 Hz, C-4’), 119.0 (C-4’’), 118.6 (C-2’, C-6’), 77.7 

(CN).  

IR (ATR) ṽmax/cm-1 = 3262, 3093, 2223, 1539, 1342, 1317, 1115, 1067, 841, 730, 703, 687.  

HRMS (ESI): calcd. for C17H8F3N4O6 (M-H)- 421.04014; found 421.04021.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-N-(4-methoxyphenyl)-3-hydroxyacrylamide – 

SGA-12 (52) 

 

According to general procedure B, amide 23 (190 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-12 (52) as yellow solid (220 mg, 0.606 mmol, 61%).  

Rf = 0.76 (3:2 hexanes/acetone).  

m.p.: 207 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.36 (s, 1H, NH), 9.87 (s, 1H, OH), 7.71 (t, J = 1.8 

Hz, 1H, 4’-H), 7.65 (d, J = 1.8 Hz, 2H, 2’’-H, 6’’-H), 7.49 – 7.41 (m, 2H, 2’-H, 6’-H), 6.90 – 6.85 

(m, 2H, 3’-H, 5’-H), 3.72 (s, 3H, OCH3).  
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13C NMR (101 MHz, (CD3)2SO) δ/ppm = 181.6 (C-3), 166.4 (C-1), 155.2 (C-4’), 142.6 (C-1’’), 

133.7 (C-3’’, C-5’’), 131.9 (C-1’), 129.3 (C-4’’), 126.3 (C-2’’, C-6’’), 121.7 (C-2’, C-6’), 121.4 (C-

2), 113.9 (C-3’, C-5’), 78.1 (CN), 55.2 (OCH3).  

IR (ATR) ṽmax/cm-1 = 3296, 2211, 1601, 1467, 1441, 1297, 1251, 1032, 764.  

HRMS (ESI): calcd. for C17H11
35Cl2N2O3 (M-H)- 361.01522; found 361.01516.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-N-(4-nitrophenyl)-3-hydroxyacrylamide – SGA-13 (53) 

 

According to general procedure B, amide 28 (205 mg, 1.00 mmol, 1.0 eq.) in dry THF (16 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-13 (53) as yellow solid (208 mg, 0.550 mmol, 55%).  

Rf = 0.82 (3:2 hexanes/acetone).  

m.p.: 246 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.64 (s, 1H, NH), 8.19 – 8.13 (m, 2H, 3’-H, 5’-H), 7.82 

– 7.77 (m, 2H, 2’-H, 6’-H), 7.64 (t, J = 1.9 Hz, 1H, 4’’-H), 7.57 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 181.6 (C-3), 166.9 (C-1), 149.4 (C-1’’), 147.0 (C-1’), 

141.3 (C-4’), 133.9 (C-3’’, C-5’’), 129.0 (C-4’’), 126.5 (C-2’’, C-6’’), 125.7 (C-3’, C-5’), 121.8 (C-

2), 118.6 (C-2’, C-6’), 77.0 (CN).  

IR (ATR) ṽmax/cm-1 = 3314, 2209, 1568, 1546, 1514, 1498, 1340, 1309, 847, 813, 656.  

HRMS (ESI): calcd. for C16H8
35Cl2N3O4 (M-H)- 375.98973; found 375.98970.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-3-(4-nitrophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-15 (54) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 4-nitrobenzoyl chloride (204 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-15 (54) as yellow crystals (276 mg, 0.688 mmol, 69%).  

Rf = 0.19 (3:2 hexanes/acetone).  

m.p.: 217 °C. [lit.[91]: 211 – 214 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.39 (s, 1H, NH), 8.28 – 8.19 (m, 2H, 3’’-H, 5’’-H), 

7.84 – 7.80 (m, 2H, 2’’-H, 6’’-H), 7.78 (d, J = 8.6 Hz, 2H, 2’-H, 6’-H), 7.60 (d, J = 8.6 Hz, 2H, 

3’’-H, 5’’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 184.3 (C-3), 166.4 (C-1), 148.1 (C-1’’), 147.5 (C-4’’), 

143.7 (C-1’), 128.6 (C-2’’, C-6’’), 126.1 (q, JCF = 3.6 Hz, C-3’, C-5’), 124.6 (q, JCF = 270.9 Hz, 

CF3), 123.2 (C-2), 123.1 (C-3’’, C-5’’), 121.6 (q, JCF = 32.0 Hz, C-4’), 118.6 (C-2’, C-6’), 77.9 

(CN).  

IR (ATR) ṽmax/cm-1 = 3307, 2219, 1551, 1320, 1111, 1069, 844, 750, 700.  

HRMS (ESI): calcd. for C17H9F3N3O4 (M-H)- 376.05506; found 376.05509.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

3-(4-Chlorophenyl)-2-cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-16 (55) 
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According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 4-chlorobenzoyl chloride (141 µL, 1.10 mmol, 

1.1 eq.) were used to give SGA-16 (55) as colorless crystals (222 mg, 0.605 mmol, 61%).  
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Rf = 0.32 (3:2 hexanes/acetone).  

m.p.: 220 °C. [lit.[91]: 218 – 220 °C] 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.31 (s, 1H, NH), 7.81 – 7.75 (m, 2H, 2’-H, 6’-H), 7.68 

– 7.63 (m, 2H, 2’’-H, 6’’-H), 7.63 – 7.58 (m, 2H, 3’-H, 5’-H), 7.49 – 7.44 (m, 2H, 3’’-H, 5’’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 184.8 (C-3), 167.0 (C-1), 143.5 (C-1’), 139.6 (C-1’’), 

134.1 (C-4’’), 129.4 (C-2’’, C-6’’), 127.8 (C-3’’, C-5’’), 126.0 (q, JCF = 3.6 Hz, C-3’, C-5’), 124.6 

(q, JCF = 271.0 Hz, CF3), 123.0 (C-2), 121.8 (q, JCF = 31.0 Hz, C-4’), 118.9 (C-2’, C-6’), 77.5 

(CN).  

IR (ATR) ṽmax/cm-1 = 3282.2215, 1587, 1240, 1302, 1129, 1113, 1097, 839.  

HRMS (ESI): calcd. for C17H9
35ClF3N2O2 (M-H)- 365.03101; found 365.03108.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(2-Bromo-4-chlorophenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – 

SGA-27 (56) 

 

According to general procedure B, amide 34 (274 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-27 (56) as colorless solid (330 mg, 0.738 mmol, 74%).  

Rf = 0.25 (3:2 hexanes/acetone).  

m.p.: 203 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.29 (s, 1H, NH), 8.56 (d, J = 9.0 Hz, 1H, 6’-H), 7.68 

(d, J = 2.5 Hz, 1H, 3’-H), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.58 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 

7.36 (dd, J = 9.0, 2.5 Hz, 1H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.7 (C-3), 166.4 (C-1), 145.2 (C-1’’), 137.8 (C-1’), 

133.4 (C-3’’, C-5’’), 131.4 (C-6’), 128.4 (C-4’’), 127.8 (C-5’), 126.1 (C-2’’, C-6’’), 125.4 (C-4’), 

123.5 (C-2), 122.1 (C-3’), 112.1 (C-2’), 77.3 (CN).  

IR (ATR) ṽmax/cm-1 = 3366, 3087, 2208, 1556, 1521, 1469, 1360, 1292, 863, 815.  
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HRMS (ESI): calcd. for C16H7
79Br35Cl3N2O2 (M-H)- 442.87620; found 442.87736.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-N-(3,4-dimethoxyphenyl)-3-hydroxyacrylamide – 

SGA-28 (57) 

 

According to general procedure B, amide 37 (220 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-28 (57) as yellow solid (200 mg, 0.508 mmol, 51%).  

Rf = 0.17 (3:2 hexanes/acetone).  

m.p.: 195 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 11.52 (s, 1H, NH), 7.68 (t, J = 1.8 Hz, 1H, 4’’-H), 7.62 

(d, J = 1.8 Hz, 2H, 2’’-H, 6’’-H), 7.30 (d, J = 2.2 Hz, 1H, 2’-H), 7.01 (dd, J = 8.7, 2.2 Hz, 1H, 6’-

H), 6.86 (d, J = 8.7 Hz, 1H, 5’-H), 3.73 (s, 3H, OCH3), 3.71 (s, 3H, OCH3).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 181.7 (C-3), 166.2 (C-1), 148.6 (C-3’), 144.4 (C-4’), 

143.6 (C-1’’), 133.6 (C-3’’, C-5’’), 133.0 (C-1’), 128.9 (C-4’’), 126.2 (C-2’’, C-6’’), 122.2 (C-2), 

112.3 (C-5’), 111.5 (C-6’), 104.9 (C-2’), 77.9 (CN), 55.8 (OCH3), 55.4 (OCH3).  

IR (ATR) ṽmax/cm-1 = 3284, 2217, 1608, 1549, 1516, 1238, 1028, 810.  

HRMS (ESI): calcd. for C18H13
35Cl2N2O4 (M-H)- 391.02579; found 391.02608.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(1-methyl-1H-pyrrol-2-yl)-3-hydroxy-N-phenylacrylamide (prinomide) – 

SGA-31 (58) 
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According to general procedure B, amide 22 (228 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 1-methylpyrrole-2-carbonyl chloride (158 mg, 

1.10 mmol, 1.1 eq.) were used to give SGA-31 (58) as colorless crystals (200 mg, 0.747 mmol, 

75%).  

Rf = 0.65 (3:2 hexanes/acetone).  

m.p.: 171 °C. [lit.[188]: 174 – 175 °C] 

1H NMR (400 MHz, CDCl3) δ/ppm = 7.74 (s, 1H, NH), 7.54 (dd, J = 4.3, 1.6 Hz, 1H, 3’’-H), 7.50 

(d, J = 8.0 Hz, 2H, 2’-H, 6’-H), 7.44 – 7.34 (m, 2H, 3’-H, 5’-H), 7.20 (t, J = 7.4 Hz, 1H, 4’-H), 

6.89 (t, J = 1.9 Hz, 1H, 5’’-H), 6.25 (dd, J = 4.3, 2.5 Hz, 1H, 4’’-H), 3.92 (s, 3H, CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 175.6 (C-3), 170.0 (C-1), 136.2 (C-1’), 132.0 (C-5’’), 129.3 

(C-3’, C-5’), 125.7 (C-4’), 124.4 (C-2’’), 121.3 (C-2’, C-6’), 120.7 (C-3’’), 119.1 (C-2), 109.7 (C-

4’’), 72.6 (CN), 38.5 (CH3).  

IR (ATR) ṽmax/cm-1 = 3293, 2210, 1526, 1382, 1231, 751, 736, 687.  

HRMS (ESI): calcd. for C15H12N3O2 (M-H)- 266.09350; found 266.09370.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(1-methyl-1H-pyrrol-2-yl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide 

– SGA-32 (59) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 1-methylpyrrole-2-carbonyl chloride (158 mg, 

1.10 mmol, 1.1 eq.) were used to give SGA-32 (59) as colorless crystals (221 mg, 0.660 mmol, 

66%).  

Rf = 0.57 (3:2 hexanes/acetone).  

m.p.: 203 °C. 

1H NMR (400 MHz, CDCl3) δ/ppm = 7.86 (s, 1H, NH), 7.69 – 7.61 (m, 4H, 2’-H, 6’-H, 3’-H, 5’-

H), 7.57 (dd, J = 4.3, 1.6 Hz, 1H, 3’’-H), 6.93 – 6.90 (m, 1H, 4’’-H), 6.27 (dd, J = 4.3, 2.5 Hz, 

1H, 5’’-H), 3.93 (s, 3H, CH3).  
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13C NMR (101 MHz, CDCl3) δ/ppm = 175.6 (C-3), 170.2 (C-1), 139.5 (C-1’), 132.6 (C-5’’), 127.4 

(q, JCF = 31.8 Hz, C-4’), 126.6 (q, J = 3.8 Hz, C-3’, C-5’), 124.1 (C-2’’), 124.0 (q, JCF = 271.4 

Hz, CF3), 121.3 (C-3’’), 120.7 (C-2’, C-6’), 119.0 (C-2), 110.0 (C-4’’), 72.6 (CN), 38.7 (CH3).  

IR (ATR) ṽmax/cm-1 = 3273, 2210, 1518, 1379, 1228, 1111, 996, 837, 745.  

HRMS (ESI): calcd. for C16H11F3N3O2 (M-H)- 334.08088; found 334.08090.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3-Chloro-2,4-difluorophenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – 

SGA-33 (60) 

 

According to general procedure B, amide 36 (231 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-33 (60) as colorless crystals (290 mg, 0.719 mmol, 72%).  

Rf = 0.15 (3:2 hexanes/acetone).  

m.p.: 193 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.34 (s, 1H, NH), 8.43 (td, J = 9.0, 6.0 Hz, 1H, 6’-H), 

7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.58 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.23 (td, J = 9.2, 2.1 Hz, 

1H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.9 (C-3), 166.3 (C-1), 152.1 (d, JCF = 242.4 Hz, C-

4’), 147.7 (d, JCF = 245.4 Hz, C-2’), 145.0 (C-1’’), 133.4 (C-3’’, C-5’’), 128.5 (C-4’’), 126.3 (dd, 

JCF = 10.3, 2.6 Hz, C-1’), 126.1 (C-2’’, C-6’’), 123.2 (C-2), 119.1 (dd, JCF = 7.8, 3.0 Hz, C-6’), 

111.5 (dd, JCF = 20.7, 3.6 Hz, C-5’), 107.8 (dd, JCF = 22.2, 2.9 Hz, C-3’), 77.3 (CN).  

IR (ATR) ṽmax/cm-1 = 3293, 2206, 1539, 1497, 1370, 1289, 1023, 803.  

HRMS (ESI): calcd. for C16H6
35Cl3F2N2O2 (M-H)- 400.94684; found 400.94724.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-N-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – SGA-38 (61) 

 

According to general procedure B, amide 29 (185 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-38 (61) as yellow solid (137 mg, 0.382 mmol, 38%).  

Rf = 0.12 (3:2 hexanes/acetone).  

m.p.: 236 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.42 (s, 1H, NH), 7.75 – 7.72 (m, 2H, 3’-H, 5’-H), 7.71 

– 7.67 (m, 2H, 2’-H, 6’-H), 7.64 (t, J = 1.9 Hz, 1H, 4’’-H), 7.57 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 183.0 (C-3), 166.4 (C-1), 145.1 (C-1’’), 144.3 (C-1’), 

133.5 (C-3’’, C-5’’), 133.3 (C-3’, C-5’), 128.5 (C-4’’), 126.0 (C-2’’, C-6’’), 123.2 (C-4’), 119.4 (C-

2), 118.8 (C-2’, C-6’), 103.1 (4’-CN), 77.4 (2-CN).  

IR (ATR) ṽmax/cm-1 = 3321, 2360, 2340, 1533, 839, 655.  

HRMS (ESI): calcd. for C17H8
35Cl2N3O2 (M-H)- 355.99991; found 356.00057.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(2-iodophenyl)acrylamide – SGA-39 (62) 

 

According to general procedure B, amide 35 (286 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-39 (62) as yellow solid (237 mg, 0.515 mmol, 52%).  

Rf = 0.20 (3:2 hexanes/acetone).  

m.p.: 171 °C.  
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1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.87 (s, 1H, NH), 8.27 (dd, J = 8.3, 1.5 Hz, 1H, 6’-H), 

7.80 (dd, J = 7.9, 1.5 Hz, 1H, 3’-H), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.59 (d, J = 1.9 Hz, 2H, 2’’-

H, 6’’-H), 7.29 (ddd, J = 8.4, 7.3, 1.5 Hz, 1H, 5’-H), 6.80 – 6.67 (m, 1H, 4’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.2 (C-3), 166.4 (C-1), 145.1 (C-1’’), 141.5 (C-1’), 

139.0 (C-3’), 133.4 (C-3’’, C-5’’), 128.4 (C-4’’), 128.3 (C-5’), 126.1 (C-2’’, C-6’’), 124.0 (C-4’), 

123.6 (C-2), 122.1 (C-6’), 89.2 (C-2’), 77.2 (CN).  

IR (ATR) ṽmax/cm-1 = 3337, 2213, 1579, 1537, 1294, 742.  

HRMS (ESI): calcd. for C16H8
35Cl2IN2O2 (M-H)- 456.90130; found 456.90095.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-3-(perfluorophenyl)-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-40 (63) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 2,3,4,5,6-pentafluorobenzoyl chloride 

(158 µL, 1.10 mmol, 1.1 eq.) were used to give SGA-40 (63) as colorless crystals (236 mg, 

0.560 mmol, 56%).  

Rf = 0.28 (3:2 hexanes/acetone).  

m.p.: 161 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.70 (s, 1H, NH), 7.81 – 7.72 (m, 2H, 2’-H, 6’-H), 7.67 

– 7.56 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 172.6 (C-3), 164.9 (C-1), 143.9 – 140.9 (m, C-2’’, C-

6’’ or C-3’’, C-5’’), 143.3 (C-1’), 141.9 – 138.9 (m, C-4’’), 138.5 – 135.1 (m, C-2’’, C-6’’ or C-3’’, 

C-5’’), 126.1 (q, JCF = 3.6 Hz, C-3’, C-5’), 124.6 (q, JCF = 271.0 Hz, CF3), 122.0 (q, JCF = 31.9 

Hz, C-4’), 117.5 – 117.0 (m, C-1’’), 121.7 (C-2’, C-6’), 118.7 (C-2), 81.8 (CN).  

IR (ATR) ṽmax/cm-1 = 2230, 1590, 1543, 1524, 1497, 1323, 1116, 1000, 839.  

HRMS (ESI): calcd. for C17H5F8N2O2 (M-H)- 421.02288; found 421.02337.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-3-(3,5-dibromophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-70 (64) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dibromobenzoic acid (308 mg, 1.10 mmol, 

1.1 eq., converted into the corresponding aryl chloride) were used to give SGA-70 (64) as light 

yellow crystals (206 mg, 0.420 mmol, 42%).  

Rf = 0.32 (3:2 hexanes/acetone).  

m.p.: 211 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.32 (s, 1H, NH), 8.96 (s, 1H, OH), 7.91 – 7.81 (m, 

1H, 4’’-H), 7.78 – 7.72 (m, 4H, 2’-H, 6’-H, 2’’-H, 6’’-H), 7.65 – 7.55 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.5 (C-3), 166.4 (C-1), 145.5 (C-1’’), 143.6 (C-1’), 

133.7 (C-4’’), 129.2 (C-2’’, C-6’’), 126.0 (q, JCF = 3.5 Hz, C-3’, C-5’), 123.9 (q, JCF = 271.2 Hz, 

CF3), 123.3 (C-2), 121.8 (C-3’’, C-5’’), 121.6 (q, JCF = 31.9 Hz, C-4’), 118.5 (C-2’, C-6’), 77.4 

(CN).  

IR (ATR) ṽmax/cm-1 = 2218, 1594, 1538, 1315, 1166, 1109, 1068, 838, 750.  

HRMS (ESI): calcd. for C17H8
79Br2F3N2O2 (M-H)- 486.89101; found 486.89128.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-3-(2,4,6-trichlorophenyl)-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-71 (65) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 2,4,6-trichlorobenzoyl chloride (172 µL, 
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1.10 mmol, 1.1 eq.) were used to give SGA-71 (65) as colorless crystals (158 mg, 0.363 mmol, 

36%).  

Rf = 0.14 (3:2 hexanes/acetone).  

m.p.: 220 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 11.92 (s, 1H, NH), 7.79 – 7.74 (m, 2H, 2’-H, 6’-H), 7.66 

(s, 2H, 3’’-H, 5’’-H), 7.63 – 7.58 (m, 2H, 3’-H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 180.7 (C-3), 165.7 (C-1), 143.6 (C-1’), 139.5 (C-1’’), 

133.1 (C-4’’), 132.0 (C-2’’, C-6’’), 127.8 (C-3’’, C-5’’), 126.1 (q, JCF = 3.6 Hz, C-3’, C-5’), 124.6 

(q, JCF = 271.1 Hz, CF3), 121.9 (C-2), 121.6 (q, JCF = 31.9 Hz, C-4’), 118.4 (C-2’, C-6’), 79.5 

(CN).  

IR (ATR) ṽmax/cm-1 = 2230, 1598, 1541, 1318, 1116, 841.  

HRMS (ESI): calcd. for C17H7
35Cl3F3N2O2 (M-H)- 432.95307; found 432.95394.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(4-Bromophenyl)-2-cyano-3-hydroxy-3-(2,4,6-trichlorophenyl)acrylamide – 

SGA-72 (66) 

 

According to general procedure B, amide 25 (239 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 2,4,6-trichlorobenzoyl chloride (172 µL, 1.10 mmol, 

1.1 eq.) were used to give SGA-72 (66) as colorless solid (227 mg, 0.507 mmol, 51%).  

Rf = 0.14 (3:2 hexanes/acetone).  

m.p.: 191 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 11.69 (s, 1H, NH), 7.65 (s, 2H, 3’’-H, 5’’-H), 7.58 – 7.52 

(m, 2H, 2’-H, 6’-H), 7.44 – 7.38 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 180.3 (C-3), 165.4 (C-1), 139.6 (C-1’ or C-1’’), 139.4 

(C-1’ or C-1’’), 133.0 (C-4’’), 132.0 (C-2’’, C-6’’), 131.5 (C-3’, C-5’), 127.8 (C-3’’, C-5’’), 122.1 

(C-2), 120.5 (C-2’, C-6’), 112.9 (C-4’), 79.5 (CN).  
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IR (ATR) ṽmax/cm-1 = 2238, 1588, 1539, 1488, 1307, 856, 818.  

HRMS (ESI): calcd. for C16H7
79Br35Cl3N2O2 (M-H)- 442.87620; found 442.87747.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3-Chloro-2,4-difluorophenyl)-2-cyano-3-hydroxy-3-(2,4,6-trichlorophenyl)acrylamide 

– SGA-73 (67) 

 

According to general procedure B, amide 36 (231 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 2,4,6-trichlorobenzoyl chloride (172 µL, 1.10 mmol, 

1.1 eq.) were used to give SGA-73 (67) as colorless solid (217 mg, 0.496 mmol, 50%).  

Rf = 0.16 (1:1 hexanes/acetone).  

m.p.: 199 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 11.93 (s, 1H, NH), 8.45 (td, J = 9.1, 5.9 Hz, 1H, 6’-H), 

7.66 (s, 2H, 3’’-H, 5’’-H), 7.23 (td, J = 9.2, 2.0 Hz, 1H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 180.8 (C-3), 165.6 (C-1), 152.1 (d, JCF = 242.6 Hz, C-

4’), 147.5 (d, JCF = 245.6 Hz, C-2’), 139.4 (C-1’’ or C-4’’), 133.1 (C-1’’ or C-4’’), 132.0 (C-2’’, C-

6’’), 127.8 (C-3’’, C-5’’), 126.3 (dd, JCF = 10.2, 3.2 Hz, C-1’), 121.8 (C-2), 118.8 (dd, JCF = 7.9, 

2.9 Hz, C-6’), 111.5 (dd, JCF = 20.7, 3.5 Hz, C-5’), 107.9 (dd, JCF = 22.0, 19.2 Hz, C-3’), 79.4 

(CN).  

IR (ATR) ṽmax/cm-1 = 3279, 2222, 1626, 1590, 1519, 1484, 1445, 1359, 1275, 1017, 816, 631.  

HRMS (ESI): calcd. for C16H5
35Cl4F2N2O2 (M-H)- 434.90787; found 434.90791.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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N-(4-Bromophenyl)-2-cyano-3-(3,5-dibromophenyl)-3-hydroxyacrylamide – SGA-75 (68) 

 

According to general procedure B, amide 25 (239 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dibromobenzoic acid (308 mg, 1.10 mmol, 1.1 eq.; 

converted into the corresponding aryl chloride) were used to give SGA-75 (68) as colorless 

crystals (222 mg, 0.443 mmol, 44%). 

Rf = 0.20 (3:2 hexanes/acetone).  

m.p.: 233 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.05 (s, 1H, NH), 7.86 (t, J = 1.8 Hz, 1H, 4’-H), 7.73 

(d, J = 1.8 Hz, 2H, 2’’-H, 6’’-H), 7.57 – 7.50 (m, 2H, 2’-H, 6’-H), 7.46 – 7.37 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.2 (C-3), 166.1 (C-1), 145.5 (C-1’’), 139.4 (C-1’), 

133.7 (C-4’’), 131.5 (C-3’, C-5’), 129.2 (C-2’’, C-6’’), 122.7 (C-2), 121.8 (C-3’’, C-5’’), 120.8 (C-

2’, C-6’), 113.0 (C-4’), 77.4 (CN).  

IR (ATR) ṽmax/cm-1 = 3314, 2214, 1596, 1543, 865, 817, 748, 658.  

HRMS (ESI): calcd. for C16H8
79Br3N2O2 (M-H)- 496.81414; found 496.81449.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(4-Acetylphenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – SGA-76 (69) 

 

According to general procedure B, amide 30 (202 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-76 (69) as off white solid (296 mg, 0.789 mmol, 79%).  

Rf = 0.08 (3:2 hexanes/acetone).  

m.p.: 209 °C.  
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1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.32 (s, 1H, NH), 7.91 – 7.86 (m, 2H, 3’-H, 5’-H), 7.71 

– 7.66 (m, 2H, 2’-H, 6’-H), 7.64 (t, J = 1.9 Hz, 1H, 4’’-H), 7.58 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 

2.51 (s, 3H, CH3, collapses with DMSO).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 196.3 (CO), 182.8 (C-3), 166.3 (C-1), 145.1 (C-1’’), 

144.5 (C-1’), 133.5 (C-3’’, C-5’’), 130.4 (C-4’), 129.7 (C-3’, C-5’), 128.5 (C-4’’), 126.1 (C-2’’, C-

6’’), 123.3 (C-2), 117.9 (C-2’, C-6’), 77.6 (CN), 26.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 3304, 2207, 1682, 1596, 1544, 1355, 1272, 809.  

HRMS (ESI): calcd. for C18H11
35Cl2N2O3 (M-H)- 373.01522; found 373.01580.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-N-(2,6-dibromophenyl)-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – 

SGA-77 (70) 

 

According to general procedure B, amide 39 (318 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-77 (70) as colorless crystals (66.0 mg, 0.134 mmol, 13%).  

Rf = 0.78 (3:2 hexanes/acetone).  

m.p.: 226 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 10.64 (s, 1H, NH), 8.09 – 7.90 (m, 3H, 2’’-H, 6’’-H, 4’’-

H), 7.79 (d, J = 8.0 Hz, 2H, 3’-H, 5’-H), 7.26 (t, J = 8.0 Hz, 1H, 4’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 162.4 (C-1, C-3), 136.6 (C-1’’), 135.2 (C-1’), 134.6 (C-

3’’, C-5’’), 132.3 (C-3’, C-5’), 131.5 (C-4’’), 130.7 (C-4’), 126.4 (C-2’’, C-6’’), 124.4 (C-2’, C-6’), 

76.4 (CN), C-2 is missing.  

IR (ATR) ṽmax/cm-1 = 3206, 2215, 1650.1567, 1516, 1283, 779, 750, 723.  

HRMS (ESI): calcd. for C16H7
79Br2

35Cl2N2O2 (M-H)- 486.82568; found 486.82870.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-N-(2,3-dichlorophenyl)-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide – 

SGA-78 (71) 

 

According to general procedure B, amide 38 (229 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-78 (71) as colorless crystals (344 mg, 0.856 mmol, 86%).  

Rf = 0.17 (3:2 hexanes/acetone).  

m.p.: 211 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.49 (s, 1H, NH), 8.58 (dd, J = 8.3, 1.5 Hz, 1H, 6’-H), 

7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.59 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.27 (t, J = 8.2 Hz, 1H, 5’-

H), 7.20 (dd, J = 8.0, 1.5 Hz, 1H, 4’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.8 (C-3), 166.4 (C-1), 145.1 (C-1’’), 139.3 (C-1’), 

133.4 (C-3’’, C-5’’), 131.4 (C-3’), 128.5 (C-4’’), 128.0 (C-5’), 126.1 (C-2’’, C-6’’), 123.4 (C-2), 

122.6 (C-4’), 119.3 (C-2’), 119.1 (C-6’), 77.5 (CN).  

IR (ATR) ṽmax/cm-1 = 3355, 2203, 1649, 1584, 1539, 1453, 1415, 872, 812, 777.  

HRMS (ESI): calcd. for C16H7
35Cl4N2O2 (M-H)- 398.92671; found 398.92789.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-propoxyphenyl)acrylamide – 

SGA-84 (72) 

 

According to general procedure B, amide 31 (218 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-84 (72) as yellow solid (245 mg, 0.626 mmol, 63%).  

Rf = 0.15 (3:2 hexanes/acetone + 2% TEA).  
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m.p.: 184 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 11.36 (s, 1H, NH), 9.30 (s, 1H, OH), 7.71 (t, J = 1.7 

Hz, 1H, 4’’-H), 7.67 – 7.62 (m, 2H, 2’’-H, 6’’-H), 7.49 – 7.40 (m, 2H, 3’-H, 5’-H), 6.90 – 6.82 (m, 

2H, 2’-H, 6’-H), 3.88 (t, J = 6.5 Hz, 2H, CH2CH2CH3), 1.71 (sext, J = 7.2 Hz, 2H, CH2CH2CH3), 

0.97 (t, J = 7.4 Hz, 3H, CH2CH2CH3).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 181.6 (C-3), 166.4 (C-1), 154.6 (C-4’), 142.7 (C-1’’), 

133.7 (C-3’’, C-5’’), 131.9 (C-1’), 129.3 (C-4’’), 126.3 (C-2’’, C-6’’), 121.6 (C-3’, C-5’), 121.5 (C-

2), 114.5 (C-2’, C-6’), 78.0 (CN), 69.1 (CH2CH2CH3), 22.1 (CH2CH2CH3), 10.4 (CH2CH2CH3).  

IR (ATR) ṽmax/cm-1 = 3304, 2208, 1601, 1550, 1511, 1249, 1235, 822, 811.  

HRMS (ESI): calcd. for C19H15
35Cl2N2O3 (M-H)- 389.04652; found 389.04631.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3,5-Bis(trifluoromethyl)phenyl)-2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamide 

– SGA-85 (73) 

 

According to general procedure B, amide 40 (296 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-85 (73) as colorless solid (320 mg, 0.682 mmol, 68%).  

Rf = 0.15 (3:2 hexanes/acetone).  

m.p.: 210 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.58 (s, 1H, NH), 8.93 (s, 1H, OH), 8.25 (s, 2H, 2’-H, 

6’-H), 7.65 (t, J = 1.9 Hz, 1H, 4’’-H), 7.62 – 7.56 (m, 3H, 4’-H, 2’’-H, 6’’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 183.5 (C-3), 167.3 (C-1), 145.4 (C-1’’), 142.3 (C-1’), 

134.0 (C-3’’, C-5’’), 131.2 (q, JCF = 32.6 Hz, C-3’, C-5’), 129.1 (C-4’’), 126.5 (C-2’’, C-6’’), 123.7 

(q, JCF = 270.8 Hz, CF3), 123.4 (C-2), 119.1 – 118.8 (m, C-2’, C-6’), 114.8 – 114.5 (m, C-4’), 

77.6 (CN).  

IR (ATR) ṽmax/cm-1 = 2230, 1637, 1571, 1547, 1375, 1275, 1175, 1128, 810.  
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HRMS (ESI): calcd. for C18H7
35Cl2F6N2O2 (M-H)- 466.97943; found 466.97933.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethoxy)phenyl)acrylamide – 

SGA-86 (74) 

 

According to general procedure B, amide 32 (244 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-86 (74) as colorless solid (344 mg, 0.825 mmol, 83%).  

Rf = 0.53 (3:2 hexanes/acetone).  

m.p.: 195 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.02 (s, 1H, NH), 9.41 (s, 1H, OH), 7.69 – 7.64 (m, 

3H, 2’-H, 6’-H, 4’’-H), 7.59 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H), 7.28 – 7.23 (m, 2H, 3’-H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.3 (C-3), 166.3 (C-1), 144.6 (C-1’’), 142.7 (C-4’), 

139.1 (C-1’), 133.5 (C-3’’, C-5’’), 128.6 (C-4’’), 126.1 (C-2’’, C-6’’), 123.0 (C-2), 121.6 (C-3’, C-

5’), 120.3 (q, JCF = 255.2 Hz, OCF3), 120.2 (C-2’, C-6’), 77.6 (CN).  

IR (ATR) ṽmax/cm-1 = 3304, 2218, 1614, 1536, 1506, 1262, 1208, 1164, 661.  

HRMS (ESI): calcd. for C17H8
35Cl2F3N2O3 (M-H)- 414.98696; found 414.98676.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

N-(3-Chloro-2,4-difluorophenyl)-2-cyano-3-(3,5-dibromophenyl)-3-hydroxyacrylamide – 

SGA-90 (75) 

 



EXPERIMENTAL PART 

136 

According to general procedure B, amide 36 (231 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dibromobenzoic acid (308 mg, 1.10 mmol, 1.1 eq.; 

converted into the corresponding aryl chloride) were used to give SGA-90 (75) as light yellow 

solid (374 mg, 0.759 mmol, 76%).  

Rf = 0.16 (1:1 hexanes/acetone).  

m.p.: 192 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.33 (s, 1H, NH), 8.43 (td, J = 8.9, 6.0 Hz, 1H, 6’-H), 

7.86 (t, J = 1.7 Hz, 1H, 4’’-H), 7.74 (d, J = 1.7 Hz, 2H, 2’’-H, 6’’-H), 7.23 (td, J = 9.3, 2.0 Hz, 

1H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.7 (C-3), 166.3 (C-1), 152.1 (d, JCF = 242.4 Hz, C-

2’), 147.7 (d, JCF = 242.4 Hz, C-4’), 145.4 (C-1’’), 133.7 (C-4’’), 129.2 (C-2’’, C-6’’), 126.3 (dd, 

JCF = 10.3, 3.2 Hz, C-1’), 123.2 (C-2), 121.8 (C-3’’, C-5’’), 119.1 (dd, JCF = 7.5, 2.9 Hz, C-6’), 

111.5 (dd, JCF = 20.7, 3.6 Hz, C-5’), 108.3 – 107.7 (m, C-3’), 77.3 (CN).  

IR (ATR) ṽmax/cm-1 = 3297, 2205, 1586, 1531, 1496, 1022, 803, 750.  

HRMS (ESI): calcd. for C16H6
79Br2ClF2N2O2 (M-H)- 488.84581; found 488.84607.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)but-2-enamide (teriflunomide) – 

SGA-94 (76) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and acetyl chloride (78.5 µL, 1.10 mmol, 1.1 eq.) 

were used to give SGA-94 (76) as colorless crystals (206 mg, 0.761 mmol, 76%). Analytical 

data are in accordance with literature.[189]  

Rf = 0.65 (3:2 hexanes/acetone).  

m.p.: 224 °C. [lit.[189]: 230 – 232 °C] 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.28 (s, 1H, OH), 10.91 (s, 1H, NH), 7.81 – 7.72 (m, 

2H, 2’-H, 6’-H), 7.70 – 7.61 (m, 2H, 3’-H, 5’-H), 2.25 (s, 3H, 4-H).  
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13C NMR (101 MHz, (CD3)2SO) δ/ppm = 187.1 (C-3), 166.4 (C-1), 141.9 (C-1’), 125.9 (q, JCF = 

3.7 Hz, C-3’, C-5’), 124.4 (q, JCF = 271.3 Hz, CF3), 123.5 (q, JCF = 32.1 Hz, C-4’), 120.7 (C-2’, 

C-6’), 118.9 (C-2), 80.5 (CN), 23.5 (C-4).  

IR (ATR) ṽmax/cm-1 = 2335, 2214, 1551, 1319, 1154, 1113, 840, 679.  

HRMS (ESI): calcd. for C12H8F3N2O2 (M-H)- 269.05434; found 269.05423.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

3-(3,5-Bis(trifluoromethyl)phenyl)-2-cyano-3-hydroxy-N-(p-tolyl)acrylamide – 

SGA-108 (77) 

 

According to general procedure B, amide 21 (174 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-bis(trifluoromethyl)benzoyl chloride (199 µL, 

1.10 mmol, 1.1 eq.) were used to give SGA-108 (77) as light yellow crystals (208 mg, 0.502 

mmol, 50%).  

Rf = 0.28 (3:2 hexanes/acetone).  

m.p.: 183 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 8.45 (s, 2H, 2’’-H, 6’’-H), 8.10 (s, 1H, 4’’-H), 7.86 (s, 1H, 

NH), 7.43 – 7.37 (m, 2H, 2’-H, 6’-H), 7.25 – 7.20 (m, 2H, 3’-H, 5’-H), 2.37 (s, 3H, CH3).  

13C NMR (126 MHz, CDCl3) δ/ppm = 180.4 (C-3), 167.9 (C-1), 136.7 (C-4’), 134.7 (C-1’’), 132.7 

(C-1’), 132.6 (q, JCF = 34.2 Hz, C-3’’, C-5’’), 130.1 (C-3’, C-5’), 128.6 (q, JCF = 3.1 Hz, C-2’’, C-

6’’), 126.3 (q, JCF = 3.7 Hz, C-4’’), 122.8 (q, JCF = 272.9 Hz, CF3), 121.8 (C-2’, C-6’), 116.5 (C-

2), 79.7 (CN), 21.2 (CH3).  

IR (ATR) ṽmax/cm-1 = 3276, 2213, 1538, 1278, 1129, 811, 681.  

HRMS (ESI): calcd. for C19H11F6N2O2 (M-H)- 413.07302; found 413.07301.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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3-(3,5-Bis(trifluoromethyl)phenyl)-2-cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)-

acrylamide – SGA-111 (78) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-bis(trifluoromethyl)benzoyl chloride 

(199 µL, 1.10 mmol, 1.1 eq.) were used to give SGA-111 (78) as colorless crystals (357 mg, 

0.762 mmol, 76%).  

Rf = 0.43 (3:2 hexanes/acetone).  

m.p.: 230 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.36 (s, 1H, NH), (m, 3H, 2’’-H, 6’’-H, 4’’-H), 7.87 – 

7.71 (m, 2H, 2’-H, 6’-H), 7.69 – 7.51 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.4 (C-3), 166.3 (C-1), 144.0 (C-1’’), 143.6 (C-1’), 

129.8 (q, JCF = 32.8 Hz, C-3’’, C-5’’), 128.1 (q, JCF = 4.7 Hz, C-2’’, C-6’’), 126.1 (q, JCF = 3.6 

Hz, C-3’, C-5’), 126.0 (q, JCF = 257.2 Hz, m-CF3), 123.4 (C-2), 123.3 (q, JCF = 271.6 Hz, p-CF3), 

122.7 (q, JCF = 4.0 Hz, C-4’’), 121.7 (q, JCF = 31.9 Hz, C-4’), 118.5 (C-2’, C-6’), 77.7 (CN).  

IR (ATR) ṽmax/cm-1 = 3289, 2218, 1349, 1323, 1284, 1186, 1139, 1114, 836.  

HRMS (ESI): calcd. for C19H8F9N2O2 (M-H)- 467.04475; found 467.04496.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dimethylphenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-112 (79) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dimethylbenzoyl chloride (163 µL, 
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1.10 mmol, 1.1 eq.) were used to give SGA-112 (79) as colorless crystals (175 mg, 0.486 

mmol, 49%).  

Rf = 0.48 (3:2 hexanes/acetone).  

m.p.: 187 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.08 (s, 1H, NH), 7.85 – 7.74 (m, 2H, 2’-H, 6’-H), 7.66 

– 7.58 (m, 2H, 3’-H, 5’-H), 7.25 (s, 2H, 2’’-H, 6’’-H), 7.09 (s, 1H,4’’-H), 2.30 (s, 6H, CH3).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 186.5 (C-3), 167.8 (C-1), 143.6 (C-1’), 140.1 (C-1’’), 

137.2 (C-3’’, C-5’’), 131.8 (C-4’’), 126.4 (q, JCF = 3.8 Hz, C-3’, C-5’), 125.8 (C-2’’, C-6’’), 125.3 

(q, JCF = 270.8 Hz, CF3), 122.6 (q, JCF = 31.9 Hz, C-4’), 121.8 (C-2), 119.9 (C-2’, C-6’), 78.2 

(CN), 21.4 (CH3).  

IR (ATR) ṽmax/cm-1 = 3270, 2218, 1526.1319, 1247, 1157, 1110, 1066, 839.  

HRMS (ESI): calcd. for C19H14F3N2O2 (M-H)- 359.10129; found 359.10142.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dimethoxyphenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-113 (80) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dimethoxybenzoyl chloride (221 mg, 

1.10 mmol, 1.1 eq.) were used to give SGA-113 (80) as colorless crystals (309 mg, 0.789 

mmol, 79%).  

Rf = 0.54 (3:2 hexanes/acetone).  

m.p.: 203 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.99 (s, 1H, NH), 7.73 – 7.63 (m, 4H, 2’-H, 6’-H, 3’-H, 5’-

H), 7.12 (d, J = 2.3 Hz, 2H, 2’’-H, 6’’-H), 6.69 (t, J = 2.3 Hz, 1H, 4’’-H), 3.85 (s, 6H, OCH3). 1 

3C NMR (101 MHz, CDCl3) δ/ppm = 184.1 (C-3), 168.7 (C-1), 161.0 (C-3’’, C-5’’), 139.1 (C-1’), 

133.9 (C-1’’), 127.8 (q, JCF = 33.2 Hz, C-4’), 126.7 (q, JCF = 3.8 Hz, C-3’, C-5’), 123.9 (q, JCF = 
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270.1 Hz, CF3), 121.0 (C-2’, C-6’), 117.5 (C-2), 106.4 (C-2’’, C-6’’), 106.0 (C-4’’), 78.5 (CN), 

55.8 (OCH3).  

IR (ATR) ṽmax/cm-1 = 3297, 2215, 1550, 1324, 1208, 1156, 1095, 1067, 834.  

HRMS (ESI): calcd. for C19H14F3N2O4 (M-H)- 391.09112; found 391.09140.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-3-(4-(trifluoromethoxy)phenyl)-N-(4-(trifluoromethyl)phenyl)-

acrylamide – SGA-114 (81) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 4-(trifluoromethoxy)benzoyl chloride (173 µL, 

1.10 mmol, 1.1 eq.) were used to give SGA-114 (81) as colorless crystals (200 mg, 0.481 

mmol, 48%).  

Rf = 0.58 (3:2 hexanes/acetone).  

m.p.: 198 °C. [lit.[91]: 188 – 190 °C] 

1H NMR (500 MHz, CDCl3) δ/ppm = 8.12 – 8.05 (m, 2H, 2’’-H, 6’’-H), 7.96 (s, 1H, NH), 7.78 – 

7.62 (m, 4H, 2’-H, 6’-H, 3’-H, 5’-H), 7.42 – 7.32 (m, 2H, 3’’-H, 5’’-H).  

13C NMR (126 MHz, CDCl3) δ/ppm = 182.6 (C-3), 168.5 (C-1), 152.8 (C-4’’), 139.0 (C-1’), 130.7 

(C-2’’, C-6’’), 130.5 (C-1’’), 128.0 (q, JCF = 33.0 Hz, C-4’), 126.7 (q, JCF = 3.7 Hz, C-3’, C-5’), 

123.9 (q, JCF = 271.7 Hz, CF3), 121.0 (C-2’, C-6’), 120.8 (C-3’’, C-5’’), 120.6 (q, JCF = 259.4 Hz, 

OCF3), 117.3 (C-2), 78.6 (CN).  

IR (ATR) ṽmax/cm-1 = 3285, 2215, 1597, 1551, 1505, 1268, 1168, 1128, 839.  

HRMS (ESI): calcd. for C18H9F6N2O3 (M-H)- 415.05228; found 415.05225.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-methyl-N-(4-(trifluoromethyl)phenyl)-

acrylamide – SGA-115 (82) 

 

According to general procedure B, amide 41 (242 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-115 (82) as colorless solid (198 mg, 0.476 mmol, 48%).  

Rf = 0.67 (3:2 hexanes/acetone).  

m.p.: 147 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.80 – 7.73 (m, 2H, 3’-H, 5’-H), 7.64 (d, J = 1.9 Hz, 2H, 

2’’-H, 6’’-H), 7.49 (t, J = 1.9 Hz, 1H, 4’’-H), 7.47 – 7.41 (m, 2H, 2’-H, 6’-H), 3.48 (s, 3H, CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 184.2 (C-3), 170.4 (C-1), 145.2 (C-1’), 135.8 (C-1’’), 135.5 

(C-3’’, C-5’’), 132.5 (C-4’’), 131.4 (q, JCF = 32.9 Hz, C-4’), 127.8 (C-2’, C-6’), 127.5 (q, J = 3.6 

Hz, C-3’, C-5’), 127.2 (C-2’’, C-6’’), 123.7 (q, JCF = 272.6 Hz, CF3), 115.3 (C-2), 78.6 (CN), 39.9 

(CH3).  

IR (ATR) ṽmax/cm-1 = 3074, 2214, 1578, 1540, 1396, 1331, 1165, 1118, 807.  

HRMS (ESI): calcd. for C18H10
35Cl2F3N2O2 (M-H)- 413.00769; found 413.00806.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-hydroxy-3-(pyridin-3-yl)-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-127 (83) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and nicotinoyl chloride hydrochloride (196 mg, 

1.10 mmol, 1.1 eq.) were used to give SGA-127 (83) as orange solid (169 mg, 0.506 mmol, 

51%).  
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Rf = 0.00 (3:2 hexanes/EtOAc).  

m.p.: 235 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.22 (s, 1H, NH), 9.12 (s, 1H, 2’’-H), 8.88 (d, J = 5.6 

Hz, 1H, 6’’-H), 8.70 (d, J = 8.0 Hz, 1H, 4’’-H), 8.04 (dd, J = 8.0, 5.6 Hz, 1H, 5’’-H), 7.83 – 7.72 

(m, 2H, 2’-H, 6’-H), 7.67 – 7.56 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 180.0 (C-3), 165.9 (C-1), 143.5 (C-1’), 143.3 (C-6’’), 

143.0 (C-4’’), 141.9 (C-2’’), 139.9 (C-3’’), 126.2 (C-5’’), 126.1 (q, JCF = 3.6 Hz, C-3’, C-5’), 124.2 

(q, JCF = 270.7 Hz, CF3), 123.3 (C-2), 121.8 (q, JCF = 32.0 Hz, C-4’), 118.5 (C-2’, C-6’), 78.5 

(CN).  

IR (ATR) ṽmax/cm-1 = 2356, 2191, 1533, 1317, 1105, 1060, 849, 698.  

HRMS (ESI): calcd. for C16H9F3N3O2 (M-H)- 332.06523; found 332.06517.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

3-(3-Bromo-5-iodophenyl)-2-cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide 

– SGA-132 (84) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3-bromo-5-iodobenzoic acid (360 mg, 

1.10 mmol, 1.1 eq.; converted into the corresponding aryl chloride) were used to give SGA-

132 (84) as colorless crystals (332 mg, 0.618 mmol, 62%). 

Rf = 0.38 (3:2 hexanes/EtOAc).  

m.p.: 207 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.31 (s, 1H, NH), 7.97 (s, 1H, 4’’-H), 7.89 (s, 1H, 2’’-

H or 6’’-H), 7.78 – 7.72 (m, 3H, 2’-H, 6’-H and 2’’-H or 6’’-H), 7.63 – 7.55 (m, 2H, 3’-H, 5’-H).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.6 (C-3), 166.4 (C-1), 145.4 (C-1’’), 143.6 (C-1’), 

139.1 (C-4’’), 135.0 (C-2’’ or C-6’’), 129.5 (C-2’’ or C-6’’), 126.0 (q, JCF = 3.8 Hz, C-3’, C-5’), 

123.9 (q, JCF = 263.8 Hz, CF3), 123.3 (C-2), 121.7 (q, JCF = 31.6 Hz, C-4’), 121.6 (C-3’’ or C-

5’’), 118.6 (C-2’, C-6’), 95.0 (C-3’’ or C-5’’), 77.4 (CN).  
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IR (ATR) ṽmax/cm-1 = 3276, 2213, 1532, 1318, 1163, 1112, 731.  

HRMS (ESI): calcd. for C17H8
79BrIF3N2O2 (M-H)- 534.87714; found 534.87813.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Methyl 4-(2-cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamido)benzoate – 

SGA-133 (85) 

 

According to general procedure B, amide 33 (218 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used. The resulting solid was washed with hexanes, EtOH and water to give 

SGA-133 (85) as colorless solid (331 mg, 0.846 mmol, 85%).  

Rf = 0.15 (3:2 hexanes/acetone).  

m.p.: 234 °C.  

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 12.33 (s, 1H, NH), 11.41 (s, 1H, OH), 7.90 – 7.83 (m, 

2H, 2-H, 6-H), 7.71 – 7.66 (m, 2H, 3-H, 5-H), 7.64 (t, J = 1.9 Hz, 1H, 4’’-H), 7.57 (d, J = 1.9 Hz, 

2H, 2’’-H, 6’’-H), 3.81 (s, 3H, CH3).  

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 182.8 (C-3’), 166.3 (C-1’), 166.0 (CO), 145.1 (C-1’’), 

144.6 (C-4), 133.4 (C-3’’, C-5’’), 130.4 (C-2, C-6), 128.5 (C-4’’), 126.1 (C-2’’, C-6’’), 123.3 (C-

2’), 122.3 (C-1), 118.1 (C-3, C-5), 77.6 (CN), 51.7 (CH3).  

IR (ATR) ṽmax/cm-1 = 3304, 3093, 2215, 1727, 1591, 1534, 1415, 1283, 1262, 1112, 810, 766.  

HRMS (ESI): calcd. for C18H11
35Cl2N2O4 (M-H)- 389.01014; found 389.01077.  

Purity (NMR): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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3-(5-Chloropyridin-3-yl)-2-cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)acrylamide – 

SGA-136 (86) 

 

According to general procedure B, SGA-34 (19, 228 mg, 1.00 mmol, 1.0 eq.) in dry THF 

(10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 5-chloronicotinic acid (173 mg, 1.10 mmol, 

1.1 eq.; converted into the corresponding aryl chloride) were used to give SGA-136 (86) as 

light pink crystals (225 mg, 0.611 mmol, 61%).  

Rf = 0.15 (3:2 hexanes/acetone).  

m.p.: 221 °C.  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.33 (s, 1H, NH), 8.74 (s, 1H, 2’’-H or 4’’-H), 8.69 – 

8.64 (m, 1H, 6’’-H), 8.11 – 8.05 (m, 1H, 2’’-H or 4’’-H), 7.81 – 7.73 (m, 2H, 2’-H, 6’-H), 7.64 – 

7.55 (m, 2H, 3’-H, 5’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 181.7 (C-3), 166.2 (C-1), 147.9 (C-6’’), 146.1 (C-2’’ or 

C-4’’), 143.6 (C-1’), 138.8 (C-3’’ or C-5’’), 134.9 (C-2’’ or C-4’’), 130.5 (C-3’’ or C-5’’), 126.1 (q, 

JCF = 3.7 Hz, C-3’, C-5’), 124.6 (q, JCF = 271.0 Hz, CF3), 123.5 (C-2), 121.6 (q, JCF = 31.5 Hz, 

C-4’), 118.5 (C-2’, C-6’), 78.2 (CN).  

IR (ATR) ṽmax/cm-1 = 3285, 2225, 1539, 1308, 1113, 951, 838.  

HRMS (ESI): calcd. for C16H8
35ClF3N3O2 (M-H)- 366.02626; found 366.02652.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

4-(2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxyacrylamido)benzoic acid – SGA-137 (88) 

 

Ester 85 (95.0 mg, 0.243 mmol, 1.0 eq.) was dissolved in dioxane/H2O (3:1; 4.0 mL) and LiOH 

(61.2 mg, 2.43 mmol, 10 eq.) was added. The mixture was stirred at rt for 3 h, before 1 M aq. 
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HCl (5.0 mL) was added. The precipitate was filtered off, washed with cold water and dried to 

give SGA-137 (88) as colorless solid (59.6 mg, 0.158 mmol, 65%).  

Rf = 0.00 (3:2 hexanes/acetone).  

m.p.: 244 °C. 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 12.30 (s, 1H, NH), 7.87 – 7.81 (m, 2H, 2-H, 6-H), 7.68 

– 7.64 (m, 2H, 3-H, 5-H), 7.63 (t, J = 1.9 Hz, 1H, 4’’-H), 7.57 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H).  

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 182.7 (C-3’), 167.1 (CO), 166.3 (C-1’), 145.2 (C-1’’), 

144.2 (C-4), 133.4 (C-3’’, C-5’’), 130.5 (C-2, C-6), 128.4 (C-4’’), 126.1 (C-2’’, C-6’’), 123.5 (C-

1), 123.4 (C-2’), 118.0 (C-3, C-5), 77.5 (CN).  

IR (ATR) ṽmax/cm-1 = 3311, 2215, 1696, 1595, 1550, 1415, 1294, 855, 770.  

HRMS (ESI): calcd. for C17H9
35Cl2N2O4 (M-H)- 374.99449; found 374.99480.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethyl)benzyl)acrylamide – 

SGA-138 (87) 

 

According to general procedure B, amide 42 (242 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), 

NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and 3,5-dichlorobenzoyl chloride (43, 230 mg, 1.10 mmol, 

1.1 eq.) were used to give SGA-138 (87) as colorless solid (228 mg, 0.549 mmol, 55%).  

Rf = 0.70 (3:2 hexanes/acetone).  

m.p.: 173 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.80 – 7.73 (m, 2H, 3’-H, 5’-H), 7.64 (d, J = 1.9 Hz, 2H, 

2’’-H, 6’’-H), 7.49 (t, J = 1.9 Hz, 1H, 4’’-H), 7.47 – 7.41 (m, 2H, 2’-H, 6’-H), 3.48 (s, 3H, CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 184.2 (C-3), 170.4 (C-1), 145.2 (C-1’), 135.8 (C-1’’), 135.5 

(C-3’’, C-5’’), 132.5 (C-4’’), 131.4 (q, JCF = 32.9 Hz, C-4’), 127.8 (C-2’, C-6’), 127.5 (q, J = 3.6 

Hz, C-3’, C-5’), 127.2 (C-2’’, C-6’’), 123.7 (q, JCF = 272.6 Hz, CF3), 115.3 (C-2), 78.6 (CN), 39.9 

(CH3).  

IR (ATR) ṽmax/cm-1 = 3074, 2214, 1578, 1540, 1396, 1331, 1165, 1118, 807.  
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HRMS (ESI): calcd. for C18H10
35Cl2F3N2O2 (M-H)- 413.00769; found 413.00806.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Cyano-3-(3,5-dichlorophenyl)-3-hydroxy-N-(4-(trifluoromethyl)phenyl)prop-2-

enethioamide – SGA-167 (91) 

 

According to a procedure published by Sjogren, et al. [91], a stirred solution of acetonitrile 

(2.01 mL, 38.2 mmol, 4.0 eq.) in THF (70 mL) was cooled to -78 °C, n-BuLi (2.5 M in hexanes, 

11.5 mL, 28.6 mmol, 3.0 eq.) was added over 10 minutes and the mixture was stirred for further 

15 minutes. A solution of 3,5-dichlorobenzoyl chloride (43, 2.00 g, 9.55 mmol, 1.0 eq.) in THF 

(25 mL) was added over 10 minutes. The mixture was allowed to warm to rt over 40 minutes, 

followed by addition of sat. aq. NH4Cl solution (50 mL). The reaction mixture was partitioned 

between 1 M HCl and hexanes/EtOAc (two times 25 mL/25 mL). The combined organic 

phases were dried over Na2SO4, filtered and concentrated in vacuo. The oily residue was 

redissolved in aq. NH3 solution (25%, 10 mL), then acidified with 1 M HCl (10 mL) and 

extracted thrice with EtOAc (15 mL). The combined organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo and then recrystallized from hexanes to yield 3-(3,5-

dichlorophenyl)-3-oxopropanenitrile (89) as orange solid (526 mg, 2.46 mmol, 26%). Analytical 

data are in accordance with literature.[190] The product was used without further purification or 

characterization for the next step.  

Rf = 0.27 (9:1 hexanes/EtOAc).  

HRMS (EI): calcd. for C9H5
35Cl2NO (M)˙+ 212.9743; found 212.9742.  

According to general procedure B, propanenitrile 89 (526 mg, 2.46 mmol, 1.0 eq, instead of 

an amide) in dry THF (10 mL), NaH (108 mg, 2.70 mmol, 1.1 eq.) and 4-(trifluoromethyl)phenyl 

isothiocyanate (90, 524 mg, 2.85 mmol, 1.1 eq., instead of the acid chloride) were used to give 

SGA-167 (91) as golden solid (384 mg, 0.92 mmol, 37%).  

Rf = 0.33 (9:1 hexanes/EtOAc).  

m.p.: 188 °C.  



EXPERIMENTAL PART 

147 

1H NMR (400 MHz, (CD3)2SO) δ/ppm = 14.34 (s, 1H, NH), 8.12 (d, J = 8.5 Hz, 2H, 2’-H, 6’-H), 

7.72 – 7.63 (m, 3H, 3’-H, 5’-H, 4’’-H), 7.57 (d, J = 1.9 Hz, 2H, 2’’-H, 6’’-H). 

13C NMR (101 MHz, (CD3)2SO) δ/ppm = 189.4 (C-1), 182.0 (C-3), 144.9 (C-2), 144.1 (C-1’), 

133.4 (C-3’’, C-5’’), 128.6 (C-4’’), 126.1 (C-2’’, C-6’’), 125.5 (q, JCF = 3.7 Hz, C-3’, C-5’), 124.4 

(q, JCF = 271.3 Hz, CF3), 123.8 (q, JCF = 31.9 Hz, C-4’), 123.6 (C-1’’), 122.2 (C-2’, C-6’), 90.9 

(CN). 

IR (ATR) ṽmax/cm-1 = 3267, 2362, 2202, 1550, 1521, 1323, 1106, 1067, 807, 671, 585.  

HRMS (ESI): calcd. for C17H8
35Cl2F3N2OS (M-H)- 414.96920; found 414.96915.  

Purity (HPLC): > 96% (λ = 210 nm). 
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5.1.2.2 Synthesis of TPC2-A1-P (17) and analogs  

1-(5-Bromo-2-(trifluoromethoxy)phenyl)-2-chloroethan-1-one (102) 

 

4-Bromo-2-iodo-1-(trifluoromethoxy)benzene (108, 610 mg, 1.66 mmol, 1.0 eq.) was dissolved 

in dry THF (8.0 mL) and cooled to -78 °C, then n-BuLi (0.670 mL, 1.66 mmol, 1.0 eq.) was 

added dropwise. The mixture was stirred for 20 min at -78 °C and a solution of 2-chloro-N-

methoxy-N-methylacetamide (105, 700 mg, 4.99 mmol, 3.0 eq.) in dry THF (8.0 mL) was added 

slowly. The mixture was stirred for 1 h at -78 °C and then poured on sat. aq. NH4Cl solution. 

The mixture was extracted with pentane, the organic layer was washed with sat. aq. NaCl 

solution, dried using hydrophobic phase separation filter papers and filtered through a short 

silica column (eluent: pentane). The product was carefully concentrated under ambient 

pressure to yield a colorless oil (102, 221 mg, 0.696 mmol, 42%).  

Rf = 0.65 (9:1 hexanes/EtOAc).  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.93 (d, J = 2.5 Hz, 1H, 6’-H), 7.71 (dd, J = 8.8, 2.5 Hz, 

1H, 4’-H), 7.25 – 7.22 (m, 1H, 3’-H), 4.61 (s, 2H, 2-H).  

13C NMR (126 MHz, CDCl3) δ/ppm = 190.5 (C-1), 146.2 (C-2’), 137.1 (C-4’), 134.1 (C-6’), 130.8 

(C-5’), 122.2 (C-3’), 120.8 (C-1’), 120.3 (q, JCF = 261 Hz, OCF3), 49.0 (C-2).  

IR (ATR) ṽmax/cm-1 = 1703, 1592, 1480, 1398, 1308, 1252, 1174, 1129, 1088, 822, 664.  

HRMS (EI): calcd. for C9H5
79Br35ClF3O2 (M)˙+ 315.9108; found 315.9106.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

2-Bromo-1-(2-(trifluoromethoxy)phenyl)ethan-1-one (101) 

 

2'-(Trifluoromethoxy)acetophenone (103, 779 µL, 4.90 mmol, 1.0 eq.) was dissolved in CH2Cl2 

(10 mL), then p-toluenesulfonic acid (86.1 mg, 0.490 mmol, 0.10 eq.) and N-bromosuccinimide 

(872 mg, 4.90 mmol, 1.0 eq.) were added. The mixture was stirred for 24 h at rt, then sat. aq. 
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NaCl solution (10 mL) was added. The aqueous phase was extracted with CH2Cl2 (3 x 10 mL), 

dried using a hydrophobic filter paper and concentrated in vacuo. Purification by FCC 

(pentane/EtOAc 9:1) yielded bromoketone 101 (672 mg, 2.87 mmol, 49%) as light brown 

liquid. Analytical data are in accordance with literature[106]. 

 Rf = 0.58 (9:1 hexanes/EtOAc).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.81 (dd, J = 7.8, 1.8 Hz, 1H, 6’-H), 7.60 (ddd, J = 8.3, 

7.6, 1.8 Hz, 1H, 4’-H), 7.41 (td, J = 7.6, 1.0 Hz, 1H, 5’-H), 7.37 – 7.32 (m, 1H, 3’-H), 4.47 (s, 

2H, 2-H).  

13C NMR (101 MHz, CDCl3) δ/ppm = 191.5 (C-1), 147.1 (q, J = 1.7 Hz, C-2’), 134.3 (C-4’), 

131.6 (C-6’), 129.3 (C-1’), 127.3 (C-5’), 120.6 (C-3’), 120.5 (q, J = 260.1 Hz, OCF3), 35.1 (C-

2).  

IR (ATR) ṽmax/cm-1 = 1698, 1603, 1450, 1295, 1248, 1200, 1160.  

HRMS (EI): calcd. for C9H6
79BrF3O2 (M)˙+ 281.9498; found 281.9494.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 5-(5-bromo-2-(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-methyl-1H-

pyrrole-3-carboxylate – SGA-140 (109) 

 

Following general procedure C, ethyl acetoacetate (94, 88.0 µL, 0.693 mmol, 1.1 eq.) in dry 

THF (3.0 mL), NaH (37.8 mg, 0.945 mmol, 1.5 eq.) and a solution of ketone 102 (200 mg, 

0.630 mmol, 1.0 eq.) and KI (209 mg, 1.26 mmol, 2.0 eq.) in dry THF (3.0 mL) was used. Then, 

the residue was dissolved in acetic acid (6.0 mL) and cyclohexanemethanamine (95, 160 µL, 

1.26 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 99:1) yielded SGA-140 (109) as 

colorless oil (140 mg, 0.287 mmol, 46%).  

Rf = 0.30 (9:1 hexanes/EtOAc).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.54 – 7.50 (m, 2H, 4’-H, 6’-H), 7.20 (ddt, J = 7.6, 3.0, 1.5 

Hz, 1H, 3’-H), 6.55 (s, 1H, 4-H), 4.27 (q, J = 7.1 Hz, 2H, CH2CH3), 3.59 (d, J = 7.1 Hz, 2H, CH2-
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cy), 2.59 (s, 3H, CH3), 1.60 – 1.54 (m, 3H, cy), 1.38 – 1.32 (m, 6H, CH2CH3, cy), 1.07 – 0.99 

(m, 3H, cy), 0.68 – 0.59 (m, 2H, cy).  

13C NMR (121 MHz, CDCl3) δ/ppm = 165.6 (COOEt), 146.3 (C-2’), 137.6 (C-3), 135.7 (C-6’), 

132.4 (C-4’), 129.0 (C-5’), 126.5 (C-5), 122.1 (C-3’), 120.3 (q, JCF = 260.2 Hz, OCF3), 119.9 

(C-1’), 112.6 (C-2), 112.2 (C-4), 59.6 (CH2CH3), 50.8 (CH2-cy), 39.0 (cy), 30.6 (cy), 26.2 (cy), 

25.7 (cy), 14.7 (CH2CH3), 12.1 (CH3).  

IR (ATR) ṽmax/cm-1 = 2976, 2925, 2854, 1699, 1254, 1240, 1206, 1190, 1169, 1080, 1064, 774.  

HRMS (ESI): calcd. for C22H26
79BrF3NO3 (M+H)+ 488.10427; found 488.10459.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-methyl-1H-pyrrole-3-

carboxylic acid – TPC2-A1-P (17) 

 

According to general procedure D, LiOH (51.6 mg, 2.05 mmol, 10 eq.) and a solution of SGA-

140 (140, 100 mg, 0.205 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 2 h the 

reaction was completed and recrystallization from EtOH gave TPC2-A1-P (17) as colorless 

solid (51.2 mg, 0.111 mmol, 54%).  

Rf = 0.14 (9:1 hexanes/EtOAc).  

m.p.: 202 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 11.34 (s, 1H, COOH), 7.56 – 7.51 (m, 2H, 3’-H, 4’-H), 7.23 

– 7.19 (m, 1H, 6’-H), 6.61 (s, 1H, 4-H), 3.60 (d, J = 7.1 Hz, 2H, CH2-cy), 2.60 (s, 3H, CH3), 1.62 

– 1.56 (m, 3H, cy), 1.40 – 1.33 (m, 3H, cy), 1.09 – 1.01 (m, 3H, cy), 0.68 – 0.61 (m, 2H, cy).  

13C NMR (126 MHz, CDCl3) δ/ppm = 170.0 (COOH), 146.4 (C-2’), 138.8 (C-2), 135.7 (C-6’), 

132.6 (C-4’), 128.8 (C-5’), 126.8 (C-5), 122.2 (C-3’), 120.3 (q, JCF = 259.3 Hz, OCF3), 119.9 

(C-1’), 112.9 (C-4), 111.6 (C-3), 50.9 (CH2-cy), 39.0 (cy), 30.6 (cy), 26.2 (cy), 25.7 (cy), 12.3 

(CH3).  
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IR (ATR) ṽmax/cm-1 = 2961, 2924, 2875, 2853, 2359, 2342, 1667, 1266, 1243, 1212, 1198, 

1171, 925, 779, 658.  

HRMS (ESI): calcd. for C20H20
79BrF3NO3 (M-H)- 458.05841; found 458.05889.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate – SGA-43 (96) 

 

Following general procedure C, ethyl acetoacetate (94, 42.0 µL, 3.30 mmol, 1.1 eq.) in dry 

THF (12 mL), NaH (180 mg, 4.50 mmol, 1.5 eq.) and a solution of 2-bromo-1-phenylethan-1-

one (92, 0.405 mL, 3.00 mmol, 1.0 eq.) and KI (996 mg, 6.00 mmol, 2.0 eq.) in dry THF (10 mL) 

were used. Then, the residue was dissolved in acetic acid (10 mL) and 

cyclohexanemethanamine (95, 781 µL, 6.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 

9:1) yielded SGA-43 (96) as colorless solid (516 mg, 1.58 mmol, 53%). The compound is 

literature known, but no analytical data are available[103]. 

Rf = 0.49 (9:1 hexanes/EtOAc).  

m.p.: 91 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.42 – 7.36 (m, 2H, Ph), 7.35 – 7.29 (m, 3H, Ph), 6.53 (s, 

1H, 4-H), 4.27 (q, J = 7.1 Hz, 2H, CH2CH3), 3.78 (d, J = 7.1 Hz, 2H, CH2-cy), 2.60 (s, 3H, CH3), 

1.58 – 1.49 (m, 3H, cy), 1.41 – 1.31 (m, 6H, cy, CH2CH3), 1.06 – 0.95 (m, 3H, cy), 0.69 – 0.57 

(m, 2H, cy).  

13C NMR (121 MHz, CDCl3) δ/ppm = 165.9 (COOEt), 137.0 (C-2), 134.1 (qPh), 133.7 (C-5), 

129.6 (Ph), 128.5 (Ph), 127.4 (Ph), 112.0 (C-3), 110.0 (C-4), 59.4 (CH2CH3), 50.2 (CH2-cy), 

39.0 (cy), 30.6 (cy), 26.2 (cy), 25.8 (cy), 14.7 (CH2CH3), 12.1 (CH3).  

IR (ATR) ṽmax/cm-1 = 2975, 2926, 2850, 1738, 1698, 1420, 1242, 1224, 1191, 1062, 772, 702.  

HRMS (ESI): calcd. for C21H28NO2 (M+H)+ 326.21146; found 326.21121.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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1-(Cyclohexylmethyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylic acid – SGA-50 (100) 

 

According to general procedure D, LiOH (38.7 mg, 1.54 mmol, 10 eq.) and a solution of SGA-

43 (96, 50.0 mg, 0.154 mmol, 1.0 eq.) in dioxane/H2O (1.3 mL) were used. After 1 h the 

reaction was completed and gave SGA-50 (100) as colorless solid (40.4 mg, 0.136 mmol, 

88%). The compound is literature known, but no analytical data are available[103]. 

Rf = 0.18 (6:1 hexanes/EtOAc).  

m.p.: 196 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.42 – 7.38 (m, 2H, Ph), 7.36 – 7.32 (m, 3H, Ph), 6.59 (s, 

1H, 4-H), 3.80 (d, J = 7.2 Hz, 2H, CH2), 2.62 (s, 3H, CH3), 1.59 – 1.52 (m, 3H, cy), 1.42 – 1.33 

(m, 3H, cy), 1.06 – 0.97 (m, 3H, cy), 0.68 – 0.59 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 170.8 (COOH), 138.3 (C-2), 134.5 (C-5), 133.5 (qPh), 

129.7 (Ph), 128.5 (Ph), 127.5 (Ph), 111.2 (C-3), 110.7 (C-4), 50.3 (CH2), 39.0 (cy), 30.6 (cy), 

26.2 (cy), 25.8 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 3030, 2971, 2921, 2848, 1738, 1660, 1533, 1435, 1364, 1267, 1227, 

1205, 778, 768, 712, 703.  

HRMS (ESI): calcd. for C19H22NO2 (M-H)- 296.16572; found 296.16560.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-5-(2,5-dichlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate – 

SGA-48 (110) 
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Following general procedure C, ethyl acetoacetate (94, 208 µL, 1.65 mmol, 1.1 eq.) in dry THF 

(5.0 mL), NaH (90.0 mg, 2.25 mmol, 1.5 eq.) and a solution of 2-bromo-1-(2,5-

dichlorophenyl)ethan-1-one (402 mg, 1.50 mmol, 1.0 eq.) in dry THF (1.0 mL) were used. 

Then, the residue was dissolved in acetic acid (5.0 mL) and cyclohexanemethanamine (95, 

390 µL, 3.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 9:1), followed by 

recrystallization from EtOH yielded SGA-48 (100) as colorless solid (271 mg, 0.686 mmol, 

46%).  

Rf = 0.48 (9:1 hexanes/EtOAc).  

m.p.: 98 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.48 (d, J = 2.0 Hz, 1H, 6’-H), 7.29 (dd, J = 8.2, 2.0 Hz, 

1H, 4’-H), 7.25 (d, J = 9.1 Hz, 1H, 3’-H, collapses with chloroform), 6.51 (s, 1H, 4-H), 4.27 (q, 

J = 7.0 Hz, 2H, CH2CH3), 3.55 (d, J = 7.0 Hz, 2H, CH2-cy), 2.59 (s, 3H, CH3), 1.61 – 1.56 (m, 

3H, cy), 1.40 – 1.31 (m, 6H, cy, CH2CH3), 1.08 – 0.99 (m, 3H, cy), 0.68 – 0.58 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 165.6 (COOEt), 137.0 (C-2), 135.9 (C-1’ or C-5’), 134.8 

(C-1’ or C-5’), 134.0 (C-3’), 131.2 (C-2’), 129.6 (C-6’), 129.2 (C-5), 127.2 (C-4’), 112.2 (C-3), 

111.1 (C-4), 59.5 (CH2CH3), 50.8 (CH2-cy), 39.1 (cy), 30.6 (cy), 26.2 (cy), 25.8 (cy), 14.7 

(CH2CH3), 12.1 (CH3).  

IR (ATR) ṽmax/cm-1 = 2981, 2923, 2845, 1739, 1723, 1695, 1565, 1454, 1262, 1238, 1201, 

1159, 1076, 1066, 800, 771.  

HRMS (ESI): calcd. for C21H26
35Cl2NO2 (M+H)+ 394.13351; found 394.13343.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

1-(Cyclohexylmethyl)-5-(2,5-dichlorophenyl)-2-methyl-1H-pyrrole-3-carboxylic acid – 

SGA-52 (116) 

 

According to general procedure D, LiOH (63.9 mg, 2.54 mmol, 10 eq.) and a solution of SGA-

48 (110, 100 mg, 0.254 mmol, 1.0 eq.) in dioxane/H2O (1.3 mL) were used. After 1 h the 

reaction was completed and gave SGA-52 (116) as colorless solid (75.7 mg, 0.207 mmol, 

81%). 
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Rf = 0.18 (6:1 hexanes/EtOAc).  

m.p.: 180 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.48 (d, J = 2.0 Hz, 1H, 6’-H), 7.30 (dd, J = 8.2, 2.0 Hz, 

1H, 4’-H), 7.26 (d, J = 8.2 Hz, 1H, 3’-H, collapses with chloroform), 6.57 (s, 1H, 4-H), 3.57 (d, 

J = 6.4 Hz, 2H, CH2-cy), 2.60 (s, 3H, CH3), 1.63 – 1.57 (m, 3H, cy), 1.42 – 1.36 (m, 3H, cy), 

1.08 – 1.00 (m, 3H, cy), 0.68 – 0.59 (m, 2H, cy).  

13C NMR (126 MHz, CDCl3) δ/ppm = 170.7 (COOH), 138.3 (C-2), 136.0 (C-1’ or C-5’), 135.0 

(C-1’ or C-5’), 134.0 (C-3’), 131.0 (C-2’), 129.7 (C-6’), 129.6 (C-5), 127.2 (C-4’), 111.8 (C-4), 

111.4 (C-3), 50.9 (CH2-cy), 39.0 (cy), 30.7 (cy), 26.2 (cy), 25.8 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 3014, 2970, 2926, 2851, 1739, 1659, 1449, 1365, 1270, 1228, 1217, 

1204, 814, 776.  

HRMS (ESI): calcd. for C19H20
35Cl2NO2 (M-H)- 364.08766; found 364.08783.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 5-(5-bromo-2-methoxyphenyl)-1-(cyclohexylmethyl)-2-methyl-1H-pyrrole-3-

carboxylate – SGA-54 (97) 

 

Following general procedure C, ethyl acetoacetate (94, 143 µL, 1.10 mmol, 1.1 eq.) in dry THF 

(5.0 mL), NaH (60.0 mg, 1.50 mmol, 1.5 eq.) and a solution of 2-bromo-1-(5-bromo-2-

methoxyphenyl)ethan-1-one (93, 308 mg, 1.00 mmol, 1.0 eq.) in dry THF (1.0 mL) were used. 

Then, the residue was dissolved in acetic acid (5.0 mL) and cyclohexanemethanamine (95, 

260 µL, 2.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 9:1) yielded SGA-54 (97) as 

colorless solid (411 mg, 0.947 mmol, 95%).  

Rf = 0.37 (6:1 hexanes/EtOAc).  

m.p.: 83 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.45 (dd, J = 8.7, 2.5 Hz, 1H, 4’-H), 7.37 (d, J = 2.5 Hz, 

1H, 6’-H), 6.81 (d, J = 8.7 Hz, 1H, 3’-H), 6.48 (s, 1H, 4-H), 4.25 (q, J = 7.1 Hz, 2H, CH2CH3), 
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3.76 (s, 3H, OCH3), 3.56 (d, J = 7.2 Hz, 2H, CH2-cy), 2.58 (s, 3H, CH3), 1.60 – 1.54 (m, 3H, 

cy), 1.41 – 1.29 (m, 6H, cy, CH2CH3), 1.08 – 0.97 (m, 3H, cy), 0.68 – 0.57 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 165.7 (COOEt), 156.6 (C-2’), 136.9 (C-2), 135.2 (C-6’), 

132.3 (C-4’), 128.9 (C-5), 124.8 (C-1’), 112.8 (C-5’), 112.6 (C-3’), 112.1 (C-3), 110.6 (C-4), 

59.3 (CH2CH3), 55.9 (OCH3), 50.9 (CH2-cy), 39.0 (cy), 30.7 (cy), 26.3 (cy), 25.8 (cy), 14.7 

(CH2CH3), 12.1 (CH3).  

IR (ATR) ṽmax/cm-1 = 2979, 2928, 2849, 1695, 1676, 1473, 1461, 1434, 1253, 1234, 1187, 

1176, 1060, 1048, 1027, 774, 619.  

HRMS (ESI): calcd. for C22H29
79BrNO3 (M+H)+ 434.13253; found 434.13229.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-methoxyphenyl)-1-(cyclohexylmethyl)-2-methyl-1H-pyrrole-3-carboxylic 

acid – SGA-55 (115) 

 

According to general procedure D, LiOH (88.4 mg, 3.51 mmol, 10 eq.) and a solution of SGA-

54 (97, 152 mg, 0.351 mmol, 1.0 eq.) in dioxane/H2O (1.3 mL) were used. After 1 h the reaction 

was completed and gave SGA-55 (115) as colorless solid (90.0 mg, 0.222 mmol, 63%). 

Rf = 0.72 (1:1 hexanes/EtOAc).  

m.p.: 224 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.46 (dd, J = 8.8, 2.5 Hz, 1H, 4’-H), 7.38 (d, J = 2.5 Hz, 

1H, 6’-H), 6.82 (d, J = 8.8 Hz, 1H, 3’-H), 6.54 (s, 1H, 4-H), 3.77 (s, 3H, OCH3), 3.57 (d, J = 7.2 

Hz, 2H, CH2-cy), 2.59 (s, 3H, CH3), 1.62 – 1.52 (m, 3H, cy), 1.43 – 1.33 (m, 3H, cy), 1.10 – 

0.98 (m, 3H, cy), 0.69 – 0.58 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 170.4 (COOH), 156.6 (C-2’), 138.2 (C-2), 135.2 (C-6’), 

132.4 (C-4’), 129.3 (C-5), 124.6 (C-1’), 112.8 (C-5’), 112.6 (C-3’), 111.4 (C-4), 111.3 (C-3), 

55.9 (OCH3), 51.0 (CH2-cy), 39.0 (cy), 30.7 (cy), 26.3 (cy), 25.8 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 3027, 2969, 2926, 2850, 1739, 1658, 1476, 1462, 1442, 1362, 1274, 

1244, 1205, 1018, 808, 782, 619.  
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HRMS (ESI): calcd. for C20H23
79BrNO3 (M-H)- 404.08668; found 404.08697.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-5-(4-fluorophenyl)-2-methyl-1H-pyrrole-3-carboxylate – 

SGA-59 (111) 

 

Following general procedure C, ethyl acetoacetate (94, 208 µL, 1.65 mmol, 1.1 eq.) in dry THF 

(5.0 mL), NaH (90.0 mg, 2.25 mmol, 1.5 eq.) and a solution of 2-chloro-1-(4-

fluorophenyl)ethan-1-one (259 mg, 1.50 mmol, 1.0 eq.) and KI (249 mg, 1.50 mmol, 1.0 eq.) 

in dry THF (3.0 mL) were used. Then, the residue was dissolved in acetic acid (5.0 mL) and 

cyclohexanemethanamine (95, 390 µL, 3.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 

9:1) yielded SGA-59 (111) as yellow oil (499 mg, 1.45 mmol, 97%).  

Rf = 0.43 (9:1 hexanes/EtOAc).  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.28 – 7.23 (m, 2H, 2’-H, 6’-H), 7.10 – 7.01 (m, 2H, 3’-H, 

5’-H), 6.48 (s, 1H, 4-H), 4.25 (q, J = 7.1 Hz, 2H, CH2CH3), 3.71 (d, J = 7.2 Hz, 2H, CH2-cy), 

2.57 (s, 3H, CH3), 1.58 – 1.48 (m, 3H, cy), 1.38 – 1.28 (m, 6H, cy, CH2CH3), 1.06 – 0.89 (m, 

3H, cy), 0.68 – 0.53 (m, 2H, cy).  

13C NMR (121 MHz, CDCl3) δ/ppm = 165.7 (COOH), 162.2 (d, JCF = 247.0 Hz, C-4’), 136.9 (C-

2), 132.8 (C-5), 131.3 (d, JCF = 8.0 Hz, C-2’, C-6’), 129.7 (d, JCF = 3.3 Hz, C-1’), 115.4 (d, JCF 

= 21.3 Hz, C-3’, C-5’), 111.9 (C-3), 110.0 (C-4), 59.3 (CH2CH3), 50.1 (CH2-cy), 39.0 (cy), 30.5 

(cy), 26.1 (cy), 25.7 (cy), 14.6 (CH2CH3), 12.0 (CH3).  

IR (ATR) ṽmax/cm-1 = 2977, 2925, 2853, 1693, 1242, 1227, 1218, 1195, 1152, 1062, 844, 811, 

774.  

HRMS (ESI): calcd. for C21H27FNO2 (M+H)+ 344.20203; found 344.20193.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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1-(Cyclohexylmethyl)-5-(4-fluorophenyl)-2-methyl-1H-pyrrole-3-carboxylic acid – 

SGA-66 (117) 

 

According to general procedure D, LiOH (169 mg, 6.71 mmol, 10 eq.) and a solution of SGA-

59 (111, 230 mg, 0.671 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 2 h the 

reaction was completed and gave SGA-66 (117) as colorless solid (186 mg, 0.590 mmol, 88%). 

Rf = 0.24 (6:1 hexanes/EtOAc).  

m.p.: 171 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.35 – 7.27 (m, 2H, 2’-H, 6’-H), 7.14 – 7.04 (m, 2H, 3’-H, 

5’-H), 6.57 (s, 1H, 4-H), 3.75 (d, J = 7.1 Hz, 2H, CH2-cy), 2.61 (s, 3H, CH3), 1.63 – 1.51 (m, 

3H, cy), 1.41 – 1.32 (m, 3H, cy), 1.08 – 0.97 (m, 3H, cy), 0.70 – 0.57 (m, 2H, cy).  

13C NMR (121 MHz, CDCl3) δ/ppm = 171.2 (COOH), 162.37 (d, JCF = 247.1 Hz, C-4’), 138.3 

(C-2), 133.3 (C-5), 131.42 (d, JCF = 8.1 Hz, C-2’, C-6’), 129.6 (d, JCF = 3.4 Hz, C-1’), 115.57 (d, 

JCF = 21.5 Hz, C-3’, C-5’), 111.2 (C-3), 110.8 (C-4), 50.3 (CH2-cy), 39.0 (cy), 30.6 (cy), 26.2 

(cy), 25.8 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 2927, 2854, 1739, 1652, 1568, 1494, 1449, 1265, 1223, 1203, 1158, 840, 

776, 582.  

HRMS (ESI): calcd. for C19H21FNO2 (M-H)- 314.15618; found 314.15635.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-5-(4-methoxyphenyl)-2-methyl-1H-pyrrole-3-carboxylate – 

SGA-61 (112) 

 

Following general procedure C, ethyl acetoacetate (94, 208 µL, 1.65 mmol, 1.1 eq.) in dry THF 

(5.0 mL), NaH (90.0 mg, 2.25 mmol, 1.5 eq.) and a solution of 2-bromo-1-(4-
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methoxyphenyl)ethan-1-one (344 mg, 1.50 mmol, 1.0 eq.) and KI (249 mg, 1.50 mmol, 1.0 eq.) 

in dry THF (3.0 mL) were used. Then, the residue was dissolved in acetic acid (5.0 mL) and 

cyclohexanemethanamine (95, 390 µL, 3.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 

9:1), followed by recrystallization from EtOH yielded SGA-61 (112) as colorless solid (274 mg, 

0.770 mmol, 51%).  

Rf = 0.37 (9:1 hexanes/EtOAc).  

m.p.: 88 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.25 – 7.21 (m, 2H, 2’-H, 6’-H), 6.95 – 6.89 (m, 2H, 3’-H, 

5’-H), 6.47 (s, 1H, 4-H), 4.27 (q, J = 7.1 Hz, 2H, CH2CH3), 3.84 (s, 3H, OCH3), 3.73 (d, J = 7.3 

Hz, 2H, CH2-cy), 2.58 (s, 3H, CH3), 1.60 – 1.51 (m, 3H, cy), 1.42 – 1.31 (m, 6H, cy, CH2CH3), 

1.07 – 0.96 (m, 3H, cy), 0.70 – 0.59 (m, 2H, cy).  

13C NMR (126 MHz, CDCl3) δ/ppm = 165.9 (COOH), 159.0 (C-4’), 136.6 (C-2), 133.8 (C-5), 

130.9 (C-2’, C-6’), 126.1 (C-1’), 113.9 (C-3’, C-5’), 111.7 (C-3), 109.5 (C-4), 59.3 (CH2CH3), 

55.4 (OCH3), 50.1 (CH2-cy), 39.0 (cy), 30.6 (cy), 26.2 (cy), 25.8 (cy), 14.7 (CH2CH3), 12.1 

(CH3).  

IR (ATR) ṽmax/cm-1 = 3016, 2970, 2928, 2847, 1739, 1693, 1568, 1532, 1496, 1443, 1424, 

1373, 1243, 1226, 1195, 1175, 1064, 1031, 835, 817, 795, 774.  

HRMS (ESI): calcd. for C22H30NO3 (M+H)+ 356.22202; found 356.22192.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

1-(Cyclohexylmethyl)-5-(4-methoxyphenyl)-2-methyl-1H-pyrrole-3-carboxylic acid – 

SGA-67 (118) 

 

According to general procedure D, LiOH (78.7 mg, 3.12 mmol, 10 eq.) and a solution of SGA-

61 (112, 111 mg, 0.312 mmol, 1.0 eq.) in dioxane/H2O (1.3 mL) were used. After 2 h the 

reaction was completed and gave SGA-67 (118) as colorless solid (95.3 mg, 0.291 mmol, 

90%). 

Rf = 0.20 (6:1 hexanes/EtOAc).  
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m.p.: 198 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.27 – 7.23 (m, 2H, 2’-H, 6’-H), 6.95 – 6.91 (m, 2H, 3’-H, 

5’-H), 6.54 (s, 1H, 4-H), 3.85 (s, 3H, OCH3), 3.75 (d, J = 7.2 Hz, 2H, CH2-cy), 2.60 (s, 3H, CH3), 

1.62 – 1.53 (m, 3H, cy), 1.43 – 1.33 (m, 3H, cy), 1.09 – 0.98 (m, 3H, cy), 0.70 – 0.59 (m, 2H, 

cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 171.3 (COOH), 159.0 (C-4’), 137.8 (C-2), 134.1 (C-5), 

131.0 (C-2’, C-6’), 125.9 (C-1’), 113.9 (C-3’, C-5’), 111.0 (C-3), 110.2 (C-4), 55.3 (OCH3), 50.2 

(CH2-cy), 38.9 (cy), 30.5 (cy), 26.2 (cy), 25.8 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 3027, 3002, 2970, 2925, 2849, 1738, 1652, 1569, 1535, 1494, 1435, 

1364, 1266, 1247, 1228, 1203, 840, 778.  

HRMS (ESI): calcd. for C20H24NO3 (M-H)- 326.17617; found 326.17633.  

Purity (HPLC): 93% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-5-(2,4-difluorophenyl)-2-methyl-1H-pyrrole-3-carboxylate – 

SGA-62 (113) 

 

Following general procedure C, ethyl acetoacetate (94, 208 µL, 1.65 mmol, 1.1 eq.) in dry THF 

(5.0 mL), NaH (90.0 mg, 2.25 mmol, 1.5 eq.) and a solution of 2-chloro-1-(2,4-

difluorophenyl)ethan-1-one (286 mg, 1.50 mmol, 1.0 eq.) and KI (249 mg, 1.50 mmol, 1.0 eq.) 

in dry THF (3.0 mL) were used. Then, the residue was dissolved in acetic acid (5.0 mL) and 

cyclohexanemethanamine (95, 390 µL, 3.00 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 

9:1) yielded SGA-62 (113) as yellow solid (424 mg, 1.17 mmol, 78%).  

Rf = 0.43 (9:1 hexanes/EtOAc).  

m.p.: 94 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.27 (td, J = 8.4, 6.5 Hz, 1H, 6’-H), 6.96 – 6.85 (m, 2H, 3’-

H, 5’-H), 6.53 (s, 1H, 4-H), 4.26 (q, J = 7.1 Hz, 2H, CH2CH3), 3.60 (d, J = 7.1 Hz, 2H, CH2-cy), 

2.58 (s, 3H, CH3), 1.59 – 1.53 (m, 3H, cy), 1.38 – 1.30 (m, 6H, cy, CH2CH3), 1.06 – 0.98 (m, 

3H, cy), 0.68 – 0.58 (m, 2H, cy).  
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13C NMR (121 MHz, CDCl3) δ/ppm = 165.5 (COOEt), 162.9 (dd, JCF = 250.1, 11.6 Hz, C-4’), 

160.2 (dd, JCF = 248.9, 12.0 Hz, C-2’), 137.2 (C-2), 133.5 (dd, JCF = 9.4, 4.1 Hz, C-6’), 126.2 

(C-5), 117.6 (dd, JCF = 15.7, 3.9 Hz, C-1’), 112.3 (C-3), 111.6 (dd, JCF = 21.1, 3.7 Hz, C-5’), 

111.3 (C-4), 104.20 (t, JCF = 25.8 Hz, C-3’), 59.4 (CH2CH3), 50.6 (d, JCF = 3.0 Hz, CH2-cy), 39.0 

(cy), 30.5 (cy), 26.1 (cy), 25.7 (cy), 14.6 (CH2CH3), 12.0 (CH3).  

IR (ATR) ṽmax/cm-1 = 2971, 2929, 2848, 1739, 1698, 1571, 1426, 1371, 1235, 1199, 1067, 834.  

HRMS (ESI): calcd. for C21H26F2NO2 (M+H)+ 362.19261; found 362.19247.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

1-(Cyclohexylmethyl)-5-(2,4-difluorophenyl)-2-methyl-1H-pyrrole-3-carboxylic acid  - 

SGA-68 (119) 

 

According to general procedure D, LiOH (167 mg, 6.61 mmol, 10 eq.) and a solution of SGA-

62 (113, 239 mg, 0.661 mmol, 1.0 eq.) in dioxane/H2O (1.3 mL) were used. After 1 h the 

reaction was completed and gave SGA-68 (119) as colorless solid (170 mg, 0.511 mmol, 77%). 

Rf = 0.29 (6:1 hexanes/EtOAc). 

m.p.: 168 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.33 – 7.25 (m, 1H, 6’-H, collapses with chloroform), 6.98 

– 6.86 (m, 2H, 3’-H, 5’-H), 6.60 (s, 1H, 4-H), 3.62 (d, J = 7.1 Hz, 2H, CH2-cy), 2.61 (s, 3H, CH3), 

1.65 – 1.51 (m, 3H, cy), 1.49 – 1.32 (m, 3H, cy), 1.14 – 0.94 (m, 3H, cy), 0.72 – 0.56 (m, 2H, 

cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 171.0 (COOH), 163.0 (dd, JCF = 250.3, 11.6 Hz, C-4’), 

160.3 (dd, JCF = 249.0, 12.0 Hz, C-2’), 138.5 (C-2), 133.6 (dd, JCF = 9.5, 4.0 Hz, C-6’), 126.7 

(C-5), 117.5 (dd, JCF = 15.8, 3.8 Hz, C-1’), 112.0 (C-3), 111.7 (dd, JCF = 21.3, 3.8 Hz, C-5’), 

111.6 (C-4), 104.3 (t, JCF = 25.9 Hz, C-3’), 50.72 (d, JCF = 3.0 Hz, CH2-cy), 39.0 (cy), 30.6 (cy), 

26.2 (cy), 25.7 (cy), 12.2 (CH3).  

IR (ATR) ṽmax/cm-1 = 2970, 2926, 2854, 1739, 1666, 1573, 1450, 1433, 1364, 1265, 1239, 

1200, 1140, 778.  
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HRMS (ESI): calcd. for C19H20F2NO2 (M-H)- 332.14676; found 332.14697.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-(trifluoromethoxy)phenyl)-2-methyl-1-pentyl-1H-pyrrole-3-carboxylic acid 

– SGA-149 (123) 

 

Following general procedure C, ethyl acetoacetate (94, 87.6 µL, 0.693 mmol, 1.1 eq.) in dry 

THF (4.0 mL), NaH (37.8 mg, 0.945 mmol, 1.5 eq.) and a solution of ketone 102 (200 mg, 

0.630 mmol, 1.0 eq.) and KI (105 mg, 0.630 mmol, 1.0 eq.) in dry THF (2.0 mL) was used. 

Then, the residue was dissolved in acetic acid (5.0 mL) and n-pentylamine (146 µL, 1.26 mmol, 

2.0 eq.) was added. FCC (hexanes/EtOAc 99:1) yielded ethyl 5-(5-bromo-2-

(trifluoromethoxy)phenyl)-2-methyl-1-pentyl-1H-pyrrole-3-carboxylate as colorless oil (81.5 

mg, 0.176 mmol). The product was used without further purification or characterization for the 

next step. 

Rf = 0.51 (9:1 hexanes/EtOAc).  

According to general procedure D, LiOH (44.4 mg, 1.76 mmol, 10 eq.) and a solution of this 

ester (81.5 mg, 0.176 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 18 h the 

reaction was completed and gave SGA-149 (123) as colorless solid (40.5 mg, 0.0933 mmol, 

15% over two steps). 

Rf = 0.06 (9:1 hexanes/EtOAc).  

m.p.: 121 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.57 – 7.51 (m, 2H, 4’’-H, 6’’-H), 7.24 – 7.20 (m, 1H, 3’’-

H), 6.61 (s, 1H, 4-H), 3.74 – 3.68 (m, 2H, 1’-H), 2.61 (s, 3H, CH3), 1.49 – 1.43 (m, 2H, 2’-H), 

1.19 – 1.06 (m, 4H, 3’-H, 4’-H), 0.80 (t, J = 7.2 Hz, 3H, 5’-H).  

13C NMR (101 MHz, CDCl3) δ/ppm = 169.4 (COOH), 146.6 (C-2’’), 138.3 (C-2), 135.9 (C-6’’), 

132.8 (C-4’’), 128.7 (C-5’’), 126.1 (C-5), 122.5 (q, J = 279.8 Hz, OCF3), 122.4 (C-3’’), 120.0 (C-

1’’), 112.7 (C-4), 111.4 (C-3), 44.7 (C-1’), 30.2 (C-2’), 28.8 (C-3’), 22.1 (C-4’), 13.9 (C-5’), 11.9 

(CH3).  
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IR (ATR) ṽmax/cm-1 = 2929, 1663, 1471, 1436, 1247, 1212, 1194, 1160, 781.  

HRMS (ESI): calcd. for C18H20
79BrF3NO3 (M+H)+ 434.05732; found 434.05765.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

1-Benzyl-5-(5-bromo-2-(trifluoromethoxy)phenyl)-2-methyl-1H-pyrrole-3-carboxylic 

acid – SGA-150 (125) 

 

Following general procedure C, ethyl acetoacetate (94, 104 µL, 0.821 mmol, 1.1 eq.) in dry 

THF (4.0 mL), NaH (44.8 mg, 1.12 mmol, 1.5 eq.) and a solution of ketone 102 (237 mg, 0.746 

mmol, 1.0 eq.) and KI (124 mg, 0.746 mmol, 1.0 eq.) in dry THF (2.0 mL) were used. Then, 

the residue was dissolved in acetic acid (5.0 mL) and benzylamine (204 µL, 1.87 mmol, 

2.5 eq.) was added. FCC (hexanes/EtOAc 97:3) yielded ethyl 5-(5-bromo-2-

(trifluoromethoxy)phenyl)-1-isopropyl-2-methyl-1H-pyrrole-3-carboxylate as colorless oil (107 

mg, 0.222 mmol). The product was used without further purification or characterization for the 

next step. 

Rf = 0.44 (9:1 hexanes/EtOAc).  

According to general procedure D, LiOH (55.9 mg, 2.22 mmol, 10 eq.) and a solution of this 

ester (107 mg, 0.222 mmol, 1.0 eq.) in dioxane/H2O (3.0  mL) were used. After 16 h the 

reaction was completed and gave SGA-150 (125) as colorless solid (34.4 mg, 0.0757 mmol, 

10% over two steps). 

Rf = 0.27 (9:1 hexanes/EtOAc).  

m.p.: 185 °C.  

1H NMR (400 MHz, CD2Cl2) δ/ppm = 11.12 (s, 1H, COOH), 7.51 (dd, J = 8.8, 2.5 Hz, 1H, 4’-

H), 7.39 (d, J = 2.5 Hz, 1H, 6’-H), 7.30 – 7.18 (m, 4H, 3’-H, Ph), 6.83 – 6.77 (m, 2H, Ph), 6.70 

(s, 1H, 4-H), 5.00 (s, 2H, CH2), 2.49 (s, 3H, CH3).  

13C NMR (121 MHz, CD2Cl2) δ/ppm = 169.9 (COOH), 147.0 (C-2’), 139.6 (C-2), 137.4 (C-1’), 

136.3 (C-6’), 133.4 (C-4’), 129.3 (Ph), 128.5 (qPh), 128.0 (Ph), 127.3 (C-5), 126.2 (Ph), 122.8 
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(C-3’), 120.8 (q, JCF = 258.7 Hz, OCF3), 120.3 (C-5’), 113.1 (C-4), 112.3 (C-3), 48.7 (CH2), 12.2 

(CH3).  

IR (ATR) ṽmax/cm-1 = 2925, 2360, 1670, 1249, 1223, 1198, 1171, 733.  

HRMS (ESI): calcd. for C20H14
79BrF3NO3 (M-H)- 452.01146; found 452.01168.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-ethyl-1H-pyrrole-3-

carboxylic acid – SGA-152 (121) 

 

Following general procedure C, ethyl propionylacetate (99.9 µL, 0.693 mmol, 1.1 eq.) in dry 

THF (4.0 mL), NaH (37.8 mg, 0.945 mmol, 1.5 eq.) and a solution of ketone 102 (200 mg, 

0.630 mmol, 1.0 eq.) and KI (105 mg, 0.630 mmol, 1.0 eq.) in dry THF (2.0 mL) were used. 

Then, the residue was dissolved in acetic acid (5.0 mL) and cyclohexanemethanamine (95, 

164 µL, 1.26 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 99:1) yielded ethyl 5-(5-bromo-

2-(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-ethyl-1H-pyrrole-3-carboxylate as 

colorless oil (98.0 mg, 0.195 mmol). The product was used without further purification or 

characterization for the next step. 

Rf = 0.58 (9:1 hexanes/EtOAc).  

According to general procedure D, LiOH (49.2 mg, 1.95 mmol, 10 eq.) and a solution of this 

ester (98.0 mg, 0.195 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 18 h the 

reaction was completed and gave SGA-152 (121) as yellow solid (30.8 mg, 0.0649 mmol, 9% 

over two steps). 

Rf = 0.24 (9:1 hexanes/EtOAc).  

m.p.: 152 °C.  

1H NMR (500 MHz, CDCl3) δ/ppm = 11.35 (s, 1H, COOH), 7.57 – 7.50 (m, 2H, 4’-H, 6’-H), 7.20 

(dd, J = 8.6, 1.4 Hz, 1H, 3’-H), 6.61 (s, 1H, 4-H), 3.61 (d, J = 7.2 Hz, 2H, CH2-cy), 3.04 (q, J = 

7.4 Hz, 2H, CH2CH3), 1.64 – 1.54 (m, 3H, cy), 1.39 – 1.31 (m, 3H, cy), 1.23 (t, J = 7.4 Hz, 3H, 

CH2CH3), 1.08 – 0.99 (m, 3H, cy), 0.70 – 0.60 (m, 2H, cy).  
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13C NMR (121 MHz, CDCl3) δ/ppm = 169.8 (COOH), 146.3 (C-2’), 145.1 (C-2), 135.5 (C-4’ or 

C-6’), 132.5 (C-4’ or C-6’), 129.1 (C-1’), 126.7 (C-5), 122.3 (C-3’), 120.3 (q, JCF = 259.2 Hz, 

OCF3), 120.0 (C-5’), 113.2 (C-4), 110.8 (C-3), 50.9 (CH2-cy), 39.6 (cy), 30.7 (cy), 26.2 (cy), 

25.8 (cy), 19.2 (CH2CH3), 14.5 (CH2CH3).  

IR (ATR) ṽmax/cm-1 = 2927, 2359, 1659, 1469, 1441, 1250, 1212, 1192, 1172.  

HRMS (ESI): calcd. for C21H22
79BrF3NO3 (M-H)- 472.07406; found 472.07418.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-(trifluoromethoxy)phenyl)-1-isopropyl-2-methyl-1H-pyrrole-3-carboxylic 

acid – SGA-153 (124) 

 

Following general procedure C, ethyl acetoacetate (94, 87.6 µL, 0.693 mmol, 1.1 eq.) in dry 

THF (4.0 mL), NaH (37.8 mg, 0.945 mmol, 1.5 eq.) and a solution of ketone 102 (200 mg, 

0.630 mmol, 1.0 eq.) and KI (105 mg, 0.630 mmol, 1.0 eq.) in dry THF (2.0 mL) were used. 

Then, the residue was dissolved in acetic acid (5.0 mL) and isopropylamine (108 µL, 

1.26 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 99:1) yielded ethyl 5-(5-bromo-2-

(trifluoromethoxy)phenyl)-1-isopropyl-2-methyl-1H-pyrrole-3-carboxylate as colorless oil (65.9 

mg, 0.152 mmol). The product was used without further purification or characterization for the 

next step. 

Rf = 0.55 (9:1 hexanes/EtOAc).  

According to general procedure D, LiOH (38.3 mg, 1.52 mmol, 10 eq.) and a solution of this 

ester (65.9 mg, 0.152 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 18 h the 

reaction was completed and gave SGA-153 (124) as colorless solid (32.4 mg, 0.0798 mmol, 

12% over two steps). 

Rf = 0.11 (9:1 hexanes/EtOAc).  

m.p.: 192 °C.  

1H NMR (400 MHz, C3D6O) δ/ppm = 7.75 (dd, J = 8.8, 2.6 Hz, 1H, 4’-H), 7.65 (d, J = 2.6 Hz, 

1H, 6’-H), 7.44 (dq, J = 8.8, 1.5 Hz, 1H, 3’-H), 6.47 (s, 1H, 4-H), 4.27 (p, J = 7.0 Hz, 1H, CH), 

2.72 (s, 3H, CH3), 1.45 (d, J = 7.0 Hz, 6H, CH(CH3)2).  
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13C NMR (101 MHz, C3D6O) δ/ppm = 166.4 (COOH), 147.7 (C-2’), 137.5 (C-2), 137.0 (C-6’), 

134.0 (C-4’), 130.5 (C-1’), 126.4 (C-5), 123.7 (q, J = 257.6 Hz, OCF3), 123.5 (C-3’), 120.6 (C-

5’), 113.9 (C-3), 113.0 (C-4), 50.2 (CH), 22.0 (CH(CH3)2), 13.0 (CH3).  

IR (ATR) ṽmax/cm-1 = 2936, 2358, 1672, 1248, 1214, 1200, 1166.  

HRMS (ESI): calcd. for C16H14
79BrF3NO3 (M-H)- 404.01146; found 404.01164.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

5-(5-Bromo-2-(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-phenyl-1H-pyrrole-3-

carboxylic acid – SGA-154 (122) 

 

Following general procedure C, ethyl benzoylacetate (134 µL, 0.693 mmol, 1.1 eq.) in dry THF 

(4.0 mL), NaH (37.8 mg, 0.945 mmol, 1.5 eq.) and a solution of ketone 102 (200 mg, 0.630 

mmol, 1.0 eq.) and KI (105 mg, 0.630 mmol, 1.0 eq.) in dry THF (2.0 mL) were used. Then, 

the residue was dissolved in acetic acid (5.0 mL) and cyclohexanemethanamine (95, 328 µL, 

2.52 mmol, 4.0 eq.) was added. FCC (hexanes/EtOAc 99:1) yielded ethyl 5-(5-bromo-2-

(trifluoromethoxy)phenyl)-1-(cyclohexylmethyl)-2-phenyl-1H-pyrrole-3-carboxylate as yellow 

solid (151 mg, 0.274 mmol). The product was used without further purification or 

characterization for the next step. 

Rf = 0.50 (9:1 hexanes/EtOAc).  

According to general procedure D, LiOH (69.2 mg, 2.74 mmol, 10 eq.) and a solution of this 

ester (151 mg, 0.274 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 18 h the reaction 

was completed and gave SGA-154 (122) as yellow solid (91.5 mg, 0.175 mmol, 28% over two 

steps). 

Rf = 0.12 (9:1 hexanes/EtOAc).  

m.p.: 170 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.61 (d, J = 2.5 Hz, 1H, 6’-H), 7.55 (dd, J = 8.7, 2.5 Hz, 

1H, 4’-H), 7.47 – 7.41 (m, 3H, Ph), 7.39 – 7.35 (m, 2H, Ph), 7.23 (dq, J = 8.7, 1.3 Hz, 1H, 3’-
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H), 6.74 (s, 1H, 4-H), 3.56 (d, J = 7.4 Hz, 2H, CH2-cy), 1.48 – 1.42 (m, 3H, cy), 1.11 – 1.05 (m, 

2H, cy), 1.03 – 0.95 (m, 1H, cy), 0.90 – 0.82 (m, 3H, cy), 0.43 – 0.32 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 167.7 (COOH), 146.1 (C-2’), 141.7 (C-2), 135.2 (C-6’), 

132.7 (C-4’), 131.7 (C-5, C-1’, C-5’ or qPh), 131.0 (Ph), 128.8 (C-5, C-1’, C-5’ or qPh), 128.7 

(Ph), 128.3 (Ph), 122.4 (C-3’), 120.4 (q, JCF = 266.3 Hz, OCF3), 120.2 (C-5, C-1’, C-5’ or qPh), 

113.8 (C-4), 112.7 (C-3), 52.0 (CH2-cy), 38.7 (cy), 30.3 (cy), 26.1 (cy), 25.6 (cy). One 

quaternary carbon is missing.  

IR (ATR) ṽmax/cm-1 = 2915, 2335, 1667, 1487, 1248, 1208, 1169, 1127, 796, 697.  

HRMS (ESI): calcd. for C25H22
79BrF3NO3 (M-H)- 520.07406; found 520.07418.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl 1-(cyclohexylmethyl)-2-methyl-5-(2-(trifluoromethoxy)phenyl)-1H-pyrrole-3-

carboxylate (114) 

 

Following general procedure C, ethyl acetoacetate (94, 123 µL, 0.972 mmol, 1.1 eq.) in dry 

THF (4.0 mL), NaH (53.0 mg, 1.32 mmol, 1.5 eq.) and a solution of ketone 101 (250 mg, 0.883 

mmol, 1.0 eq.) and KI (147 mg, 0.883 mmol, 1.0 eq.) in dry THF (2.0 mL) were used. Then, 

the residue was dissolved in acetic acid (5.0 mL) and cyclohexanemethanamine (95, 230 µL, 

1.77 mmol, 2.0 eq.) was added. FCC (hexanes/EtOAc 9:1) yielded ester 114 as colorless solid 

(345 mg, 0.845 mmol, 95%).  

Rf = 0.46 (9:1 hexanes/EtOAc).  

m.p.: 66 °C.  

1H NMR (100 MHz, CDCl3) δ/ppm = 7.44 – 7.29 (m, 4H, 3’-H, 4’-H, 5’-H, 6’-H), 6.53 (s, 1H, 4-

H), 4.27 (q, J = 7.1 Hz, 2H, CH2CH3), 3.59 (d, J = 7.1 Hz, 2H, CH2-cy), 2.59 (s, 3H, CH3), 1.59 

– 1.52 (m, 3H, cy), 1.40 – 1.32 (m, 6H, cy, CH2CH3), 1.06 – 0.94 (m, 3H, cy), 0.67 – 0.54 (m, 

2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 165.8 (COOEt), 147.4 (C-2’), 137.1 (C-2), 133.4 (C-4’, 

C-5’ or C-6’), 129.6 (C-4’, C-5’ or C-6’), 127.9 (C-5), 126.9 (C-1’), 126.7 (C-4’, C-5’ or C-6’), 



EXPERIMENTAL PART 

167 

120.5 (q, JCF = 257.4 Hz, OCF3), 120.4 (C-3’), 112.2 (C-3), 111.4 (C-4), 59.5 (CH2CH3), 50.7 

(CH2-cy), 39.0 (cy), 30.6 (cy), 26.2 (cy), 25.8 (cy), 14.7 (CH2CH3), 12.1 (CH3).  

IR (ATR) ṽmax/cm-1 = 1934, 1692, 1447, 1422, 1242, 1192, 1155, 1059, 769.  

HRMS (ESI): calcd. for C22H27F3NO3 (M+H)+ 410.19375; found 410.19336.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

1-(Cyclohexylmethyl)-2-methyl-5-(2-(trifluoromethoxy)phenyl)-1H-pyrrole-3-carboxylic 

acid – SGA-162 (120) 

 

According to general procedure D, LiOH (142 mg, 5.62 mmol, 10 eq.) and a solution of ester 

114 (230 mg, 0.562 mmol, 1.0 eq.) in dioxane/H2O (3.0 mL) were used. After 2 h the reaction 

was completed and gave SGA-162 (120) as colorless solid (199 mg, 0.523 mmol, 93%). 

Rf = 0.11 (9:1 hexanes/EtOAc). 

m.p.: 170 °C.  

1H NMR (400 MHz, CDCl3) δ/ppm = 11.13 (s, 1H, COOH), 7.46 – 7.30 (m, 4H, 3’-H, 4’-H, 5’-

H, 6’-H), 6.59 (s, 1H, 4-H), 3.60 (d, J = 7.1 Hz, 2H, CH2-cy), 2.61 (s, 3H, CH3), 1.61 – 1.52 (m, 

3H, cy), 1.41 – 1.31 (m, 3H, cy), 1.09 – 0.96 (m, 3H, cy), 0.67 – 0.55 (m, 2H, cy).  

13C NMR (101 MHz, CDCl3) δ/ppm = 169.9 (COOH), 147.4 (C-2’), 138.3 (C-2), 133.4 (C-4’, 

C-5’ or C-6’), 129.8 (C-4’, C-5’ or C-6’), 128.3 (C-5), 126.8 (C-4’, C-5’ or C-6’), 126.7 (C-1’), 

120.5 (q, JCF = 260.2 Hz, OCF3), 120.4 (C-4’), 112.1 (C-4), 111.2 (C-3), 50.8 (CH2-cy), 38.9 

(cy), 30.6 (cy), 26.2 (cy), 25.7 (cy), 12.3 (CH3).  

IR (ATR) ṽmax/cm-1 = 2927, 1642, 1473, 1444, 1249, 1199, 1156, 776, 759.  

HRMS (ESI): calcd. for C20H21F3NO3 (M-H)- 380.14790; found 380.14805.  

Purity (HPLC): > 96% (λ = 210 nm). 
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5.2 Preparation of TPC2 inhibitors 

5.2.1 General procedures  

General Procedure E – Protection  

Following a general procedure published by Schrittwieser et al.[149], the appropriate amines or 

phenols (1.0 eq.) were dispersed in dry CH2Cl2 and cooled to 0 °C, followed by dropwise 

addition of NEt3 (1.5-3.5 eq.) and ethyl chloroformate (162, 1.3-2.5 eq.). The reaction mixture 

was stirred at rt or was refluxed for 4-72 h, before water was added. The mixture was extracted 

thrice with CH2Cl2, the combined organic layers were dried over Na2SO4 and concentrated in 

vacuo. Purification was accomplished by flash column chromatography (FCC) to yield 

carbamates and carbonates. 

 

General Procedure F – Wittig reaction 

(Methoxymethyl)-triphenylphosphonium chloride (1.2 eq.) was suspended in dry THF and 

cooled to -4 °C, before LDA (20% in THF/ethylbenzene/heptane, 1.0-1.2 eq.) was added 

dropwise. The mixture was stirred for 20 min. at -4 °C, followed by slow, dropwise addition of 

a solution of the appropriate aldehyde (1.0 eq.) in THF. The solution was stirred for 16-50 h, 

then poured on water and the mixture was extracted thrice with CH2Cl2. The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuo. The crude product was 

purified by FCC to give the desired cis/trans-enol ethers. The products were directly used for 

the next step without further analysis. 

 

General Procedure G – N-acyl Pictet-Spengler reaction 

Carbamate (1.0 eq.) and enol ether (1.0-1.2 eq.) were dissolved in dry CH2Cl2, 4 Å molecular 

sieves (1.00 g per 20 mL solvent) was added and the mixture was cooled to 0 °C, before TFA 

(10-11 eq.) was added dropwise. The mixture was allowed to warm to rt and stirred for 18-90 h, 

before the molecular sieves was removed by filtration and sat. aq. NaHCO3 solution was 

added. The mixture was extracted thrice with CH2Cl2, the combined organic layers were 

washed with 2 M aq. HCl solution and brine, dried over Na2SO4, filtered and concentrated in 

vacuo. Purification was accomplished by FCC to yield the desired racemic 

tetrahydroisoquinolines. 
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General Procedure H – Lithium alanate reductions of nitroolefins, carbamates and 

carbonates 

According to Cava et al.[152], LiAlH4 (7-12 eq.) was suspended in dry THF and a solution of 

carbamate (1.0 eq.) in dry THF was added dropwise and the suspension was refluxed for 3-

20 h. The mixture was allowed to cool to rt and Na2SO4 x 10 H2O was added in small portions 

under vigorous stirring over 20 minutes. Water was added and the mixture was extracted thrice 

with EtOAc. The combined organic layers were extracted with 2 M aq. HCl solution, the acidic 

phase was neutralized with sat. aq. NaHCO3 solution and extracted thrice with EtOAc again. 

This organic layer was dried over Na2SO4 and concentrated in vacuo to give tertiary amines if 

not otherwise described.  

 

General Procedure I – Chan-Evans-Lam coupling 

According to Evans et al.[155], phenols (1.0 eq), Cu(OAc)2 (1.1 eq. per phenolic group), boronic 

acid (3.0 eq. per phenolic group) and 4 Å molecular sieves (1.00 g per 40 mL solvent) were 

suspended in dry CH2Cl2 and a mixture of NEt3 and pyridine (1:1, 2.5 eq. each) was added 

dropwise. The reaction mixture was stirred for 13-22 h at rt under ambient atmosphere, 

followed by filtration through a celite pad. The organic filtrate was washed with sat. aq. NaHCO3 

solution, 10% aq. citric acid solution and brine, dried over Na2SO4, filtered and concentrated 

in vacuo. The crude products were purified by FCC or HPLC to obtain the desired diaryl ethers.  

 

General Procedure J – Formation of hydrochloride-salts 

To receive solid and stable compounds for biological experiments, the tertiary amines were 

dissolved in 1.25 M methanolic HCl solution (3.0 mL per 100 mg amine) and concentrated in 

vacuo to yield the amorphous hydrochloride salts as solids. Melting points were obtained from 

the hydrochloride salts, remaining analytical data from the free amines, unless stated 

otherwise. 

  



EXPERIMENTAL PART 

170 

5.2.2 Synthetic procedures  

5.2.2.1 Synthesis of arylethylamine building blocks  

 

(E)-1-(Benzyloxy)-2-methoxy-4-(2-nitrovinyl)benzene (173) 

 

Following a procedure published by Pouysegu et al.[148], 4-benzyloxy-3-methoxybenzaldehyde 

(172, 10.0 g, 41.3 mmol, 1.0 eq.) and ammonium acetate (2.80 g, 36.4 mmol, 0.90 eq.) were 

dissolved in glacial acetic acid (24 mL) and nitromethane (16.0 mL, 299 mmol, 7.4 eq.) was 

added under nitrogen atmosphere. The mixture was heated to reflux for 3 h. Water (5.0 mL) 

was added, the precipitate was collected by filtration and was washed with cold MeOH. The 

crude product was recrystallized from MeOH to yield nitroolefin 173 (7.08 g, 24.8 mmol, 62%) 

as yellow crystals. Analytical data are in accordance with literature. 

Rf = 0.46 (4:1 hexanes/acetone).  

m.p.: 123 °C. [lit.[148]: 124-125 °C] 

1H NMR (400 MHz, CDCl3) δ/ppm = 7.95 (d, J = 13.6 Hz, 1H, CHCHNO2), 7.51 (d, J = 13.6 

Hz, 1H, CHCHNO2), 7.44 – 7.32 (m, 5H, PhCH2), 7.10 (dd, J = 8.4, 2.0 Hz, 1H, 5-H), 7.02 (d, 

J = 2.0 Hz, 1H, 3-H), 6.92 (d, J = 8.4 Hz, 1H, 6-H), 5.22 (s, 2H, PhCH2), 3.93 (s, 3H, OCH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 152.1 (C-1), 150.2 (C-2), 139.4 (CHCHNO2), 136.2 (qPh), 

135.4 (CHCHNO2), 128.9 (Ph), 128.4 (Ph), 127.4 (Ph), 124.5 (C-5), 123.2 (C-4), 113.6 (C-3), 

111.0 (C-6), 71.0 (PhCH2), 56.3 (OCH3). 

IR (ATR) ṽmax/cm-1 = 3112, 3048, 2980, 2358, 1629, 1491, 1258, 1224, 1142, 976, 805, 746, 

697.  

HRMS (EI): calcd. for C16H15NO4 (M)•+ 285.0996; found 285.0994.  

Purity (HPLC): > 96% (λ = 210 nm). 

 

 

 



EXPERIMENTAL PART 

171 

2-(4-(Benzyloxy)-3-methoxyphenyl)ethan-1-amine (171) 

 

Similar to general procedure H, LiAlH4 (1.70 g, 44.8 mmol, 5.1 eq.) in dry THF (10 mL) and 

nitrovinyl (173, 2.53 g, 8.87 mmol, 1.0 eq.) in dry THF (20 mL) were used and the resulting 

mixture was stirred at 80 °C for 18 h. Amine 171 (1.44 g, 5.60 mmol, 63%) was isolated as 

yellow oil. Analytical data are in accordance with literature[148]. 

Rf = 0.30 (9:1 CH2Cl2/MeOH).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.46 – 7.41 (m, 2H, 2’-H, 6’-H), 7.39 – 7.34 (m, 2H, 3’-H, 

5’-H), 7.29 (ddd, J = 7.2, 4.8, 1.4 Hz, 1H, 4’-H), 6.82 (d, J = 8.1 Hz, 1H, 5-H), 6.75 (d, J = 2.0 

Hz, 1H, 2-H), 6.67 (dd, J = 8.1, 2.0 Hz, 1H, 6-H), 5.13 (s, 2H, PhCH2), 3.88 (s, 3H, OCH3), 2.94 

(t, J = 6.8 Hz, 2H, CH2CH2NH2), 2.68 (t, J = 6.8 Hz, 2H, CH2CH2NH2).  

13C NMR (101 MHz, CDCl3) δ/ppm = 149.7 (C-3), 146.7 (C-4), 137.4 (C-1’), 133.0 (C-1), 128.5 

(C-3’, C-5’), 127.8 (C-4’), 127.3 (C-2’, C-6’), 120.8 (C-6), 114.3 (C-5), 112.7 (C-2), 71.2 

(PhCH2), 56.0 (OCH3), 43.6 (CH2CH2NH2), 39.5 (CH2CH2NH2). 

IR (ATR) ṽmax/cm-1 = 3032, 2938, 2909, 2869, 2838, 1512, 1260, 1227, 1139, 1032, 738, 696.  

HRMS (ESI): calcd. for C16H20NO2 (M+H)+ 258.14886; found 258.14886.  

 

Ethyl (4-(benzyloxy)-3-methoxyphenethyl)carbamate (170) 

 

Following general procedure E, amine 171 (1.40 g, 5.44 mmol, 1.0 eq.) in CH2Cl2 (20 mL), 

NEt3 (1.10 mL, 8.16 mmol, 1.5 eq.) and ethyl chloroformate (162, 680 µL, 7.07 mmol, 1.3 eq.) 

were used. The reaction was completed after 72 h and the product was purified by FCC (4:1 

hexanes/acetone) to yield carbamate 170 (861 mg, 2.61 mmol, 48%) as light yellow solid. 

Analytical data are in accordance with literature[149]. 

Rf = 0.28 (4:1 hexanes/acetone).  
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m.p.: 76 °C. [lit.[149]: 80-81 °C] 

1H NMR (500 MHz, CDCl3) δ/ppm = 7.43 (dt, J = 8.1, 1.9 Hz, 2H, 2’-H, 6’-H), 7.36 (ddt, J = 8.1, 

6.4, 1.3 Hz, 2H, 3’-H, 5’-H), 7.32 – 7.28 (m, 1H, 4’-H), 6.82 (d, J = 8.1 Hz, 1H, 5-H), 6.76 – 6.70 

(m, 1H, 2-H), 6.66 (dd, J = 8.1, 2.0 Hz, 1H, 6-H), 5.13 (s, 2H, PhCH2), 4.65 (s, 1H, NH), 4.11 

(q, J = 7.0 Hz, 2H, CH2CH3), 3.88 (s, 3H, OCH3), 3.40 (q, J = 6.8 Hz, 2H, CH2CH2NH), 2.74 (t, 

J = 6.8 Hz, 2H, CH2CH2NH), 1.23 (t, J = 7.0 Hz, 3H, CH2CH3).  

13C NMR (126 MHz, CDCl3) δ/ppm = 156.7 (CO), 149.9 (C-3), 147.0 (C-4), 137.4 (C-1’), 132.1 

(C-1), 128.7 (C-3’, C-5’), 127.9 (C-4’), 127.4 (C-2’, C-6’), 120.8 (C-6), 114.4 (C-5), 112.6 (C-

2), 71.3 (PhCH2), 60.9 (CH2CH3), 56.1 (OCH3), 42.3 (CH2CH2NH), 35.9 (CH2CH2NH), 14.8 

(CH2CH3). 

IR (ATR) ṽmax/cm-1 = 3333, 2980, 2936, 1682, 1515, 1252, 1228, 1138.  

HRMS (ESI): calcd. for C19H24NO4 (M+H)+ 330.16998; found 330.17056.  

Purity (HPLC): > 96% (λ = 210 nm). 

 

Ethyl (4-((ethoxycarbonyl)oxy)-3-methoxyphenethyl)carbamate (165) 

 

Following general procedure E, 3-methoxytyramine hydrochloride (160, 5.00 g, 24.5 mmol, 1.0 

eq.) in CH2Cl2 (25 mL), NEt3 (12.0 mL, 58.9 mmol, 3.5 eq.) and ethyl chloroformate (162, 

5.90 mL, 61.4 mmol, 2.5 eq.) were used. The reaction was completed after 16 h and the 

product was purified by FCC (4:1 hexanes/acetone) to yield carbamate 165 (5.86 g, 

18.8 mmol, 77%) as colorless solid.  

Rf = 0.10 (CH2Cl2).  

m.p.: 68 °C.   

1H NMR (500 MHz, CDCl3) δ/ppm = 7.05 (d, J = 8.0 Hz, 1H, 5-H), 6.81 – 6.74 (m, 2H, 2-H, 6-

H), 4.68 (s, 1H, NH), 4.31 (q, J = 7.0 Hz, 2H, OCOOCH2CH3), 4.11 (q, J = 7.0 Hz, 2H, 

NCOOCH2CH3), 3.84 (s, 3H, OCH3), 3.43 (q, J = 6.5 Hz, 2H, CH2CH2NH), 2.80 (t, J = 6.5 Hz, 

2H, CH2CH2NH), 1.38 (t, J = 7.0 Hz, 3H, OCOOCH2CH3), 1.23 (t, J = 7.0 Hz, 3H, 

NCOOCH2CH3).  
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13C NMR (126 MHz, CDCl3) δ/ppm = 156.7 (N-CO), 153.5 (O-CO), 151.3 (C-3), 138.9 (C-4), 

138.1 (C-1), 122.5 (C-5), 120.9 (C-6), 113.2 (C-2), 65.1 (OCOOCH2CH3), 60.9 

(NCOOCH2CH3), 56.1 (OCH3), 42.1 (CH2CH2NH), 36.3 (CH2CH2NH), 14.8 (OCOOCH2CH3), 

14.3 (NCOOCH2CH3).  

IR (ATR) ṽmax/cm-1 = 3336, 2980, 2940, 2872, 1750, 1686, 1541, 1514, 1283, 1251, 1208, 

1059, 1032.  

HRMS (ESI): calcd. for C15H22NO6 (M+H)+ 312.14416; found 312.14425.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl (4-hydroxy-3-methoxyphenethyl)carbamate (166) 

 

Following general procedure E, 3-methoxytyramine hydrochloride (160, 10.2 g, 50.0 mmol, 1.0 

eq.) in CH2Cl2 (50 mL), NEt3 (24.0 mL, 175 mmol, 3.5 eq.) and ethyl chloroformate (162, 

12.0 mL, 125 mmol, 2.5 eq.) were used. After 18 h, a 1 M ethanolic NaOH solution (100 mL) 

was added and the mixture was stirred for 3.5 h. The reaction mixture was neutralized using 

2 M aq. HCl solution, followed by extraction with CH2Cl2 (4 x 80 mL). The combined organic 

layers were dried over Na2SO4 and concentrated in vacuo. Purification was accomplished by 

FCC (4:1 hexanes/acetone) to yield carbamate 166 (3.49 g, 14.6 mmol, 29%) as colorless 

solid. Analytical data are in accordance with literature[73]. 

Rf = 0.18 (4:1 hexanes/acetone).  

m.p.: 98 °C. [lit.[73]: 95.0 – 95.5 °C] 

1H NMR (400 MHz, CDCl3) δ/ppm = 6.85 (d, J = 8.4 Hz, 1H, 5-H), 6.74 – 6.63 (m, 2H, 2-H, 

6-H), 5.50 (s, 1H, OH), 4.64 (s, 1H, NH), 4.11 (q, J = 7.1 Hz, 2H, CH2CH3), 3.88 (s, 3H, OCH3), 

3.40 (q, J = 7.1 Hz, 2H, CH2CH2NH), 2.74 (t, J = 7.1 Hz, 2H, CH2CH2NH), 1.23 (t, J = 7.1 Hz, 

3H, CH2CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 156.7 (CO), 146.7 (C-3), 144.4 (C-4), 130.8 (C-1), 121.5 

(C-2 or 6), 114.6 (C-5), 111.4 (C-2 or 6), 60.9 (CH2CH3), 56.0 (OCH3), 42.4 (CH2CH2NH), 36.0 

(CH2CH2NH), 14.8 (CH2CH3). 

IR (ATR) ṽmax/cm-1 = 3276, 2979, 1688, 1516, 1237, 1033.  
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HRMS (ESI): calcd. for C12H16NO4 (M-H)- 238.10848; found 238.10860.  

Purity (HPLC): > 96% (λ = 210 nm). 

 

Ethyl (3-methoxy-4-phenoxyphenethyl)carbamate (167) 

 

Following general procedure I, carbamate 166 (2.00 g, 8.36 mmol, 1.0 eq.), phenylboronic acid 

(168, 3.06 g, 25.1 mmol, 3.0 eq.), copper(II) acetate (1.67 g, 9.20 mmol, 1.1 eq.), NEt3 

(2.90 mL, 20.9 mmol, 2.5 eq.) and pyridine (1.70 mL, 20.9 mmol, 2.5 eq.) in CH2Cl2 (40 mL) 

were used. The reaction was completed after 22 h and the product was purified by FCC (4:1 

hexanes/acetone) to yield diaryl ether 167 (2.24 g, 8.36 mmol, 85%) as colorless solid.  

Rf = 0.35 (4:1 hexanes/acetone).  

m.p.: 40 °C.   

1H NMR (400 MHz, CDCl3) δ/ppm = 7.32 – 7.26 (m, 2H, 3’-H, 5’-H), 7.07 – 7.01 (m, 1H, 4’-H), 

6.96 – 6.92 (m, 2H, 2’-H, 6’-H), 6.90 (d, J = 8.1 Hz, 1H, 5-H), 6.83 (d, J = 1.8 Hz, 1H, 2-H), 

6.74 (dd, J = 8.1, 1.8 Hz, 1H, 6-H), 4.69 (s, 1H, NH), 4.12 (q, J = 7.2 Hz, 2H, CH2CH3), 3.83 

(s, 3H, OCH3), 3.45 (q, J = 7.0 Hz, 2H, CH2CH2NH), 2.81 (t, J = 7.0 Hz, 2H, CH2CH2NH), 1.24 

(t, J = 7.0 Hz, 3H, CH2CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 158.1 (C-1’), 156.7 (CO), 151.6 (C-3), 143.8 (C-4), 135.7 

(C-1), 129.6 (C-3’, C-5’), 122.6 (C-4’), 121.3 (C-5 or 6), 121.3 (C-5 or 6), 117.3 (C-2’, C-6’), 

113.5 (C-2), 61.0 (CH2CH3), 56.2 (OCH3), 42.3 (CH2CH2NH), 36.2 (CH2CH2NH), 14.8 

(CH2CH3). 

IR (ATR) ṽmax/cm-1 = 3303, 2971, 1688, 1490, 1272, 1255, 1222, 1035, 754. 

HRMS (ESI): calcd. for C18H22NO4 (M+H)+ 316.15433; found 316.15425.  

Purity (HPLC): > 96% (λ = 210 nm). 
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Ethyl (3,4-dimethoxyphenethyl)carbamate (169) 

 

Following general procedure E, 3,4-dimethoxyphenylethylamine (161, 5.00 mL, 29.6 mmol, 1.0 

eq.) in CH2Cl2 (30.0 mL), NEt3 (12.0 mL, 88.9 mmol, 3.0 eq.) and ethyl chloroformate (162, 

5.70 mL, 59.3 mmol, 2.0 eq.) were used. The mixture was heated to reflux for 4 h and 

extraction yielded carbamate 169 (7.05 g, 27.8 mmol, 94%) as colorless solid. NMR data are 

in accordance with literature[160]. 

Rf = 0.25 (4:1 hexanes/acetone). 

m.p.: 63 °C.   

1H NMR (400 MHz, CDCl3) δ/ppm = 6.81 (d, J = 8.0 Hz, 1H, 5-H), 6.78 – 6.65 (m, 2H, 2-H, 6-

H), 4.65 (s, 1H, NH), 4.11 (q, J = 7.1 Hz, 2H, CH2CH3), 3.88 – 3.85 (m, 6H, 2x OCH3), 3.41 (q, 

J = 6.8 Hz, 2H, CH2CH2NH), 2.75 (t, J = 6.8 Hz, 2H, CH2CH2NH), 1.23 (t, J = 7.1 Hz, 3H, 

CH2CH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 156.7 (CO), 149.2 (C-3), 147.8 (C-4), 131.5 (C-1), 120.8 

(C-2), 112.1 (C-6), 111.5 (C-5), 60.9 (CH2CH3), 56.1 (OCH3), 56.0 (OCH3), 42.3 (CH2CH2NH), 

35.9 (CH2CH2NH), 14.8 (CH2CH3). 

IR (ATR) ṽmax/cm-1 = 3372, 2935, 1697, 1514, 1258, 1234, 1139, 1027.  

HRMS (ESI): calcd. for C13H20NO4 (M+H)+ 254.13868; found 354.13885.  

Purity (HPLC): > 96% (λ = 210 nm). 
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5.2.2.2 Synthesis of enol ethers 

 

Ethyl (4-formylphenyl) carbonate (176) 

 

Following general procedure E, 4-hydroxybenzaldehyde (175, 1.00 g, 8.19 mmol, 1.0 eq.) in 

CH2Cl2 (10 mL), NEt3 (1.70 mL, 12.3 mmol, 1.5 eq.) and ethyl chloroformate (162, 860 µL, 

9.01 mmol, 1.1 eq.) were used. The reaction was completed after 14 h and the product was 

purified by FCC (CH2Cl2) to yield aldehyde 176 (1.53 g, 7.90 mmol, 97%) as colorless solid.  

Rf = 0.63 (CH2Cl2).  

m.p.: 121 °C.   

1H NMR (500 MHz, CDCl3) δ/ppm = 9.99 (s, 1H, CHO), 7.93 – 7.91 (m, 2H, 3-H, 5-H), 7.40 – 

7.32 (m, 2H, 2-H, 6-H), 4.36 – 4.32 (m, 2H, CH2CH3), 1.41 – 1.38 (m, 3H, CH2CH3).  

13C NMR (126 MHz, CDCl3) δ/ppm = 190.9 (CHO), 155.7 (C-1), 152.9 (CO), 134.2 (C-4), 131.4 

(C-3, C-5), 121.9 (C-2, C-6), 65.4 (CH2), 14.3 (CH3). 

IR (ATR) ṽmax/cm-1 = 1757, 1668, 1602, 1254, 1210, 1159, 1055, 998, 840, 775.  

HRMS (EI): calcd. for C10H9O4 (M)•+ 194.0579; found 194.0579.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Ethyl (4-(2-methoxyvinyl)phenyl) carbonate (177) 

 

Following general procedure F, (methoxymethyl)-triphenylphosphonium chloride (9.53 g, 

27.8 mmol, 1.2 eq.) and LDA (20% in THF/ethylbenzene/heptane, 11.6 mL, 23.2 mmol, 1.0 

eq.) in dry THF (50 mL) and aldehyde 176 (4.50 g, 23.2 mmol, 1.0 eq.) in dry THF (50 mL) 

were used. The mixture was stirred for 16 h and the product was purified by FCC (9:1 
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hexanes/EtOAc) to yield the desired cis/trans-enol ether 177 (3.30 g, 14.8 mmol, 64%) as 

colorless oil.  

Rf = 0.28 (4:1 hexanes/EtOAc).  

1H NMR (cis/trans, 400 MHz, CDCl3) δ/ppm = 7.59 – 7.55 (m, 2H, cis 3-H, 5-H), 7.24 – 7.20 

(m, 2H, trans 3-H, 5-H), 7.10 – 7.06 (m, 4H, cis/trans 2-H, 6-H), 7.00 (d, J = 13.0 Hz, 1H, 

trans CHCH-O), 6.13 (d, J = 7.0 Hz, 1H, cis CHCH-O), 5.79 (d, J = 13.0 Hz, 1H, trans CHCH-

O), 5.21 (d, J = 7.0 Hz, 1H, cis CHCH-O), 4.31 (qd, J = 7.1, 1.6 Hz, 4H, cis/trans CH2CH3), 

3.78 (s, 3H, cis OCH3), 3.68 (s, 3H, trans OCH3), 1.38 (td, J = 7.1, 1.6 Hz, 6H, 

cis/trans CH2CH3). 

13C NMR (cis/trans, 126 MHz, CDCl3) δ/ppm = 153.9 (trans CO), 153.8 (cis CO), 149.2 

(trans CHCH-O), 149.2 (trans C-1), 148.9 (cis C-1), 148.1 (cis CHCH-O), 134.5 (trans C-4), 

134.0 (cis C-4), 129.3 (cis C-3, C-5), 126.1 (trans C-3, C-5), 121.3 (trans C-2, C-6), 120.8 

(cis C-2, C-6), 104.9 (cis CHCH-O), 104.3 (trans CHCH-O), 64.9 (trans CH2CH3), 60.8 

(cis CH2CH3), 56.7 (cis/trans CH2CH3), 14.4 (cis/trans CH2CH3).  

Cis/trans-ratio according to 1H-NMR is 0.83. 

HRMS (EI): calcd. for C12H14O4 (M)•+ 222.0887; found 222.0879.  

 

1-(2-Methoxyvinyl)-4-phenoxybenzene (178) 

 

Following general procedure F, (methoxymethyl)-triphenylphosphonium chloride (1.18 g, 

3.43 mmol, 1.2 eq.) and LDA (20% in THF/ethylbenzene/heptane, 1.90 mL, 2.86 mmol, 1.0 

eq.) in dry THF (10 mL) and 4-phenoxybenzaldehyde (500 µL, 2.86 mmol, 1.0 eq.) in dry THF 

(10 mL) were used. The mixture was stirred for 50 h and the product was purified by FCC (9:1 

hexanes/EtOAc) to yield the desired cis/trans-enol ether 178 (384 mg, 1.70 mmol, 59%) as 

colorless oil. 

Rf = 0.73 (4:1 hexanes/EtOAc).  

1H NMR (cis/trans, 400 MHz, CDCl3) δ/ppm = 7.60 – 7.53 (m, 2H, cis 3-H, 5-H), 7.36 – 7.28 

(m, 4H, cis/trans Ph), 7.22 – 7.18 (m, 2H, trans 2-H, 6-H or 3-H, 5-H), 7.12 – 7.05 (m, 2H, 

cis/trans Ph), 7.02 – 6.91 (m, 9H, 4x cis/trans Ph, trans CHCH-O, cis/trans 2-H, 6-H or/and 3-
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H, 5-H), 6.11 (d, J = 7.0 Hz, 1H, cis CHCH-O), 5.81 (d, J = 13.0 Hz, 1H, trans CHCH-O), 5.22 

(d, J = 7.0 Hz, 1H, cis CHCH-O), 3.78 (s, 3H, cis OCH3), 3.69 (s, 3H, trans OCH3). 

13C NMR (cis/trans, 101 MHz, CDCl3) δ/ppm = 157.8 (cis/trans qPh), 157.7 (cis/trans qPh), 

155.2 (cis/trans C-1), 154.9 (cis/trans C-1), 148.5 (trans CHCH-O), 147.4 (cis CHCH-O), 131.8 

(cis/trans C-4), 131.5 (cis/trans C-4), 129.9 (cis/trans Ph), 129.8 (cis/trans Ph), 129.7 (cis C-3, 

C-5), 126.5 (trans C-2, C-6 or C-3, C-5), 123.1 (cis/trans Ph), 123.0 (cis/trans Ph), 119.6 

(cis/trans Ph or C-2, C-6 or C-3, C-5), 119.1 (cis/trans Ph or C-2, C-6 or C-3, C-5), 118.7 

(cis/trans Ph or C-2, C-6 or C-3, C-5), 118.6 (cis/trans Ph or C-2, C-6 or C-3, C-5), 105.1 

(cis CHCH-O), 104.5 (trans CHCH-O), 60.8 (cis OCH3), 56.7 (trans OCH3). 

Cis/trans-ratio according to 1H-NMR is 0.75. 

IR (ATR) ṽmax/cm-1 = 3036, 2935, 2831, 1488, 1234, 1150, 1092, 750, 691.  

HRMS (EI): calcd. for C15H14O2 (M)•+ 226.0988; found 226.0987.  

 

1-(Benzyloxy)-4-(2-methoxyvinyl)benzene (179) 

 

Following general procedure F, (methoxymethyl)-triphenylphosphonium chloride (4.11 g, 

12.0 mmol, 1.2 eq.) and LDA (20% in THF/ethylbenzene/heptane, 7.90 mL, 12.0 mmol, 1.2 

eq.) in dry THF (50 mL) and 4-(benzyloxy)benzaldehyde (2.12 g, 9.99 mmol, 1.0 eq.) in dry 

THF (50 mL) were used. The mixture was stirred for 16 h and the product was purified by FCC 

(6:1 hexanes/EtOAc) to yield the desired cis/trans-enol ether 179 (2.04 g, 8.49 mmol, 85%) as 

yellow solid.  

Rf = 0.68 (4:1 hexanes/EtOAc).  

m.p.: 62 °C.   

1H NMR (cis/trans, 400 MHz, CDCl3) δ/ppm = 7.53 – 7.49 (m, 2H, cis 3-H, 5-H), 7.45 – 7.29 

(m, 10H, cis/trans PhCH2), 7.18 – 7.13 (m, 2H, trans 3-H, 5-H), 6.95 – 6.88 (m, 5H, cis/trans 2-

H, 6-H, trans CHCH-O), 6.06 (d, J = 7.0 Hz, 1H, cis CHCH-O), 5.78 (d, J = 13.0 Hz, 1H, 

trans CHCH-O), 5.18 (d, J = 7.0 Hz, 1H, cis CHCH-O), 5.09 – 5.03 (m, 4H, cis/trans PhCH2), 

3.76 (s, 3H, cis OCH3), 3.66 (s, 3H, trans OCH3). 

13C NMR (cis/trans, 101 MHz, CDCl3) δ/ppm = 157.2 (cis/trans C-1), 157.0 (cis/trans C-1), 

147.8 (trans CHCH-O), 146.6 (cis CHCH-O), 137.3 (cis/trans qPh), 137.2 (cis/trans qPh), 
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129.5 (cis C-3, C-5), 129.3 (cis/trans C-4), 129.2 (cis/trans C-4), 128.8 (cis/trans Ph), 128.7 

(cis/trans Ph), 128.1 (cis/trans Ph), 128.0 (cis/trans Ph), 127.6 (cis/trans Ph), 126.3 (trans C-

3, C-5), 115.3 (trans C-2, C-6), 114.8 (cis C-2, C-6), 105.4 (cis CHCH-O), 104.7 (trans CHCH-

O), 70.2 (cis/trans PhCH2), 70.1 (cis/trans PhCH2), 60.6 (cis OCH3), 56.6 (trans OCH3).   

Cis/trans-ratio according to 1H-NMR is 1.1. 

HRMS (EI): calcd. for C16H16O2 (M)•+ 240.1145; found 240.1146.  

 

5.2.2.3 N-Acyl Pictet-Spengler reaction 

 

(±)-Ethyl 7-((ethoxycarbonyl)oxy)-1-(4-((ethoxycarbonyl)oxy)benzyl)-6-methoxy-3,4-

dihy-droisoquinoline-2(1H)-carboxylate (180) 

 

Following general procedure G, carbamate 165 (348 mg, 1.12 mmol, 1.0 eq.), enol ether 177 

(248 mg, 1.12 mmol, 1.0 eq.) and TFA (840 µL, 11.2 mmol, 10 eq.) were dissolved in CH2Cl2 

(15 mL). The reaction was completed after 18 h and the product was purified by FCC (5:1 

hexanes/acetone) to yield compound 180 (452 mg, 0.901 mmol, 81%) as colorless oil.  

Rf = 0.20 (4:1 hexanes/acetone).  

1H NMR (400 MHz, C2D2Cl4, 100 °C) δ/ppm = 7.03 (s, 4H, 2’-H, 3’-H, 5’-H, 6’-H), 6.69 – 6.63 

(m, 2H, 5-H, 8-H), 5.19 (t, J = 6.6 Hz, 1H, 1-H), 4.28 – 4.22 (m, 4H, 2 OCOOCH2CH3), 4.05 – 

3.92 (m, 3H, NCOOCH2CH3, 3-H), 3.79 (s, 3H, OCH3), 3.23 (ddd, J = 13.6, 9.7, 4.6 Hz, 1H, 3-

H), 3.00 (h, J = 6.6 Hz, 2H, α-H), 2.81 (ddd, J = 15.8, 9.7, 5.8 Hz, 1H, 4-H), 2.61 – 2.54 (m, 

1H, 4-H), 1.35 – 1.31 (m, 6H, 2 OCOOCH2CH3), 1.12 (t, J = 7.2 Hz, 3H, NCOOCH2CH3).  

13C NMR (101 MHz, C2D2Cl4, 100 °C) δ/ppm = 155.6 (N-CO), 153.6 (O-CO), 153.3 (O-CO), 

150.4 (C-4’), 150.3 (C-6), 139.1 (C-7), 136.0 (C-1’), 133.4 (C-4a), 130.7 (C-2’, C-6’or C-3’, C-

5’), 129.3 (C-8a), 121.3 (C-5 or C-8), 120.9 (C-2’, C-6’ or C-3’, C-5’), 113.6 (C-5 or C-8), 65.1 
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(OCOOCH2CH3), 64.9 (OCOOCH2CH3), 61.5 (NCOOCH2CH3), 56.6 (OCH3), 56.0 (C-1), 42.5 

(C-α), 38.6 (C-3), 28.7 (C-4), 14.8 (NCOOCH2CH3), 14.4 (OCOOCH2CH3), 14.3 

(OCOOCH2CH3).   

IR (ATR) ṽmax/cm-1 = 2981, 2940, 1758, 1692, 1248, 1215, 1198.  

HRMS (ESI): calcd. for C26H35N2O9 (M+NH4)+ 519.23371; found 519.23373.  

Purity (HPLC): > 96% (λ = 210 nm). 

 

(±)-Ethyl 1-(4-((ethoxycarbonyl)oxy)benzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate – SG-089 (181) 

 

Following general procedure G, carbamate 169 (5.60 g, 22.1 mmol, 1.0 eq.), enol ether 177 

(4.92 g, 22.1 mmol, 1.0 eq.) and TFA (18.0 mL, 243 mmol, 11 eq.) were dissolved in CH2Cl2 

(50 mL). The reaction was completed after 20 h and the product was purified by FCC (5:1 

hexanes/acetone) to give SG-089 181 (7.50 g, 16.9 mmol, 77%) as colorless solid.  

Rf = 0.28 (4:1 hexanes/acetone).  

m.p.: 134 °C.   

1H NMR (400 MHz, C2D2Cl4, 100 °C) δ/ppm = 7.10 – 6.97 (m, 4H, 2’-H, 3’-H, 5’-H, 6’-H), 6.57 

(s, 1H, 5-H), 6.23 (s, 1H, 8-H), 5.15 (t, J = 6.6 Hz, 1H, 1-H), 4.26 (q, J = 7.1 Hz, 2H, 

OCOOCH2CH3), 4.13 – 3.98 (m, 2H, NCOOCH2CH3), 3.98 – 3.82 (m, 1H, 3-H), 3.78 (s, 3H, 6-

OCH3), 3.61 (s, 3H, 7-OCH3), 3.30 (ddd, J = 13.4, 9.4, 4.7 Hz, 1H, 3-H), 3.09 (dd, J = 13.4, 6.8 

Hz, 1H, α-H), 2.94 (dd, J = 13.4, 6.8 Hz, 1H, α-H), 2.77 (ddd, J = 15.6, 9.4, 5.9 Hz, 1H, 4-H), 

2.57 (dt, J = 15.6, 4.7 Hz, 1H, 4-H), 1.34 (t, J = 7.1 Hz, 3H, OCOOCH2CH3), 1.17 (t, J = 7.1 

Hz, 3H, NCOOCH2CH3).  

13C NMR (101 MHz, C2D2Cl4, 100 °C) δ/ppm = 155.7 (N-CO), 153.6 (O-CO), 150.3 (C-4’), 

148.8 (C-6), 148.1 (C-7), 136.4 (C-1’), 130.8 (C-2’, C-6’), 129.0 (C-8a), 127.0 (C-4a), 120.9 (C-

3’, C-5’), 113.3 (C-5), 112.3 (C-8), 64.9 (OCOOCH2CH3), 61.5 (NCOOCH2CH3), 56.7 (OCH3-

6), 56.6 (OCH3-7), 56.5 (C-1), 42.6 (C-α), 39.1 (C-3), 28.2 (C-4), 14.8 (OCOOCH2CH3), 14.4 

(NCOOCH2CH3).  
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IR (ATR) ṽmax/cm-1 = 3006, 2918, 2849, 1754, 1673, 1281, 1260, 1245, 1206, 1096, 859.  

HRMS (ESI): calcd. for C24H30NO7 (M+H)+ 444.20168; found 444.20143.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-Ethyl 1-(4-((ethoxycarbonyl)oxy)benzyl)-6-methoxy-7-phenoxy-3,4-dihydroisoquino-

line-2(1H)-carboxylate (182) 

 

Following general procedure G, carbamate 167 (1.60 g, 5.06 mmol, 1.0 eq.), enol ether 177 

(1.35 g, 6.07 mmol, 1.2 eq.) and TFA (3.80 mL, 50.6 mmol, 10 eq.) were dissolved in CH2Cl2 

(50 mL). The reaction was completed after 90 h and the product was purified by FCC (5:1 

hexanes/acetone) to yield compound 182 (2.30 g, 4.55 mmol, 90%) as yellow oil.  

Rf = 0.31 (4:1 hexanes/acetone).  

1H NMR (400 MHz, C2D2Cl4, 100 °C) δ/ppm = 7.25 – 7.21 (m, 2H, Ar), 6.99 (s, 5H, Ph), 

6.86 – 6.82 (m, 2H, Ar), 6.69 (s, 1H, 5-H), 6.54 (s, 1H, 8-H), 5.13 (t, J = 6.6 Hz, 1H, 1-H), 4.25 

(q, J = 7.1 Hz, 2H, OCOOCH2CH3), 4.04 – 3.92 (m, 3H, NCOOCH2CH3, 3-H), 3.75 (s, 3H, 

OCH3), 3.26 (ddd, J = 13.2, 9.6, 4.6 Hz, 1H, 3-H), 3.02 (dd, J = 13.7, 7.0 Hz, 1H, α-H), 2.94 

(dd, J = 13.7, 7.0 Hz, 1H, α-H), 2.86 – 2.77 (m, 1H, 4-H), 2.60 (dt, J = 15.8, 4.6 Hz, 1H, 4-H), 

1.33 (t, J = 7.0 Hz, 3H, OCOOCH2CH3), 1.12 (t, J = 7.2 Hz, 3H, NCOOCH2CH3).  

13C NMR (101 MHz, C2D2Cl4, 100 °C) δ/ppm = 158.5 (C-4’), 155.7 (N-CO), 153.5 (O-CO), 

150.8 (C-6), 150.3 (C-7), 144.1 (C-8a), 136.0 (qPh), 131.2 (C-4a), 130.6 (Ph), 129.8 (C-1’), 

129.6 (C-2’, C-6’ or C-3’, C-5’), 122.6 (Ph), 120.8 (Ph), 120.4 (C-8), 117.5 (C-2’, C-6’ or C-3’, 

C-5’), 114.5 (C-6), 64.9 (OCOOCH2CH3), 61.5 (NCOOCH2CH3), 56.8 (OCH3), 56.0 (C-1), 42.5 

(C-α), 38.9 (C-3), 28.5 (C-4), 14.8 (NCOOCH2CH3), 14.4 (OCOOCH2CH3). 

IR (ATR) ṽmax/cm-1 = 2980, 1759, 1688, 1508, 1252, 1215, 1096, 747.  

HRMS (ESI): calcd. for C29H32NO7 (M+H)+ 506.21733; found 506.21721.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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(±)-Ethyl 7-(benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate - SG-145 (183) 

 

Following general procedure G, carbamate 170 (861 mg, 2.61 mmol, 1.0 eq.), enol ether 179 

(691 mg, 2.88 mmol, 1.1 eq.) and TFA (2.00 mL, 26.1 mmol, 10 eq.) were dissolved in CH2Cl2 

(25 mL). The reaction was completed after 18 h and the product was purified by FCC (5:1 

hexanes/acetone) to yield SG-145 (183, 444 mg, 0.825 mmol, 32%) as yellow solid.  

Rf = 0.26 (4:1 hexanes/acetone).  

m.p.: 96 °C. [lit.[152]: 115-118 °C] 

1H NMR (400 MHz, C2D2Cl4, 100 °C) δ/ppm = 7.36 – 7.27 (m, 10H, Ph), 6.95 – 6.92 (m, 2H, 

2’-H, 6’-H), 6.85 – 6.83 (m, 2H, 3’-H, 5’-H), 6.59 (s, 1H, 5-H), 6.37 (s, 1H, 8-H), 5.10 (t, J = 6.7 

Hz, 1H, 1-H), 4.99 (s, 2H, PhCH2), 4.86 (s, 2H, PhCH2), 4.10 – 3.90 (m, 3H, CH2CH3, 3-H), 

3.80 (s, 3H, OCH3), 3.28 – 3.20 (m, 1H, 3-H), 2.98 (dd, J = 13.6, 6.7 Hz, 1H, α-H), 2.86 (dd, J 

= 13.6, 6.7 Hz, 1H, α-H), 2.80 – 2.71 (m, 1H, 4-H), 2.56 – 2.50 (m, 1H, 4-H), 1.15 (t, J = 7.1 

Hz, 3H, CH2CH3).  

13C NMR (101 MHz, C2D2Cl4, 100 °C) δ/ppm = 158.0 (C-4’), 155.7 (CO), 149.5 (C-6), 147.2 

(C-7), 137.8 (qPh), 137.7 (qPh), 131.3 (C-1’), 131.0 (C-2’, C-6’), 129.5 (C-8a), 128.7 (Ph), 

128.6 (Ph), 128.0 (Ph), 127.9 (C-4a), 127.7 (Ph), 127.6 (Ph), 115.4 (C-8 or C-3’, C-5’), 115.3 

(C-8 or C-3’, C-5’), 113.9 (C-5), 72.2 (PhCH2), 70.7 (PhCH2), 61.4 (CH2CH3), 56.9 (OCH3), 

56.4 (C-1), 42.3 (C-α), 38.9 (C-3), 28.3 (C-2), 14.8 (CH2CH3).  

IR (ATR) ṽmax/cm-1 = 3007, 2940, 1673, 1510, 1254, 1236, 1224, 1200, 1093, 743, 697.  

HRMS (ESI): calcd. for C34H36NO5 (M+H)+ 538.25880; found 538.25880.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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(±)-Ethyl 6,7-dimethoxy-1-(4-phenoxybenzyl)-3,4-dihydroisoquinoline-2(1H)-

carboxylate (184) 

 

Following general procedure G, carbamate 169 (150 mg, 0.663 mmol, 1.0 eq.), enol ether 178 

(168 mg, 0.663 mmol, 1.0 eq.) and TFA (500 µL, 6.63 mmol, 10 eq.) were dissolved in CH2Cl2 

(5.0 mL). The reaction was completed after 6 h and the product was purified by FCC (4:1 

hexanes/acetone) to yield compound 184 (181 mg, 0.405 mmol, 92%) as colorless oil that 

solidifies upon freezing.  

Rf = 0.32 (4:1 hexanes/acetone).  

m.p.: 30 °C.   

1H NMR (400 MHz, C2D2Cl4, 100 °C) δ/ppm = 7.30 – 7.25 (m, 2H, Ar), 7.06 – 7.01 (m, 3H, Ph), 

6.95 (dd, J = 8.7, 1.1 Hz, 2H, Ar), 6.90 – 6.87 (m, 2H, Ph), 6.57 (s, 1H, 5-H), 6.30 (s, 1H, 8-H), 

5.17 (t, J = 6.9 Hz, 1H, 1-H), 4.05 (q, J = 7.1 Hz, 2H, CH2CH3), 4.00 – 3.89 (m, 1H, 3-H), 3.78 

(s, 3H, 6-OCH3), 3.66 (s, 3H, 7-OCH3), 3.30 (ddd, J = 13.5, 9.6, 4.7 Hz, 1H, 3-H), 3.07 (dd, J 

= 13.5, 6.8 Hz, 1H, α-H), 2.94 (dd, J = 13.5, 6.8 Hz, 1H, α-H), 2.78 (ddd, J = 15.8, 8.9, 6.1 Hz, 

1H, 4-H), 2.58 (dt, J = 15.0, 4.7 Hz, 1H, 4-H), 1.18 (t, J = 7.1 Hz, 3H, CH2CH3).  

13C NMR (101 MHz, C2D2Cl4, 100 °C) δ/ppm = 157.9 (C-4’), 156.2 (qPh), 155.7 (CO), 148.9 

(C-6), 148.1 (C-7), 133.7 (C-1’), 131.2 (Ph), 129.9 (Ar), 129.3 (C-8a), 127.1 (C-4a), 123.3 (Ph), 

119.1 (Ar or Ph), 119.0 (Ar or Ph), 113.3 (C-5), 112.5 (C-8), 61.4 (CH2CH3), 56.7 (6-OCH3 and 

7-OCH3), 56.5 (C-1), 42.6 (C-α), 39.0 (C-3), 28.3 (C-4), 14.9 (CH2CH3). 

IR (ATR) ṽmax/cm-1 = 2979, 1678, 1506, 1488, 1227, 1098, 694.  

HRMS (ESI): calcd. for C27H30NO5 (M+H)+ 448.21185; found 448.21224.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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5.2.2.4 Lithium alanate reductions of carbamates and deprotections of carbonates 

 

(±)-1-(4-Hydroxybenzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol 

((±)-N-methylcoclaurine) – SG-132 (159) 

 

Following general procedure H, carbamate 180 (2.58 g, 5.14 mmol, 1.0 eq.) in dry THF (40 mL) 

and LiAlH4 (1.35 g, 35.6 mmol, 7.0 eq.) in dry THF (40 mL) were used. The mixture was heated 

to reflux for 3 h to yield (±)-N-methylcoclaurine (159, 1.21 g, 4.04 mmol, 79%) as off-white 

solid.  

Rf = 0.09 (9:1 CH2Cl2/MeOH).  

m.p.: 86 °C. [lit.[191]: 110-112 °C] 

1H NMR (500 MHz, CD3OD) δ/ppm = 6.92 – 6.87 (m, 2H, Ar), 6.70 – 6.65 (m, 2H, Ar), 6.63 (s, 

1H, 5-H), 6.09 (s, 1H, 8-H), 3.80 (s, 3H, OCH3), 3.66 (dd, J = 7.5, 4.9 Hz, 1H, 1-H), 3.15 (ddd, 

J = 12.5, 9.4, 5.5 Hz, 1H, 3-H), 3.06 (dd, J = 13.8, 4.9 Hz, 1H, α-H), 2.85 (ddd, J = 15.8, 9.4, 

6.2 Hz, 1H, 4-H), 2.75 – 2.69 (m, 2H, α-H and 3-H), 2.63 (dt, J = 16.3, 4.9 Hz, 1H, 4-H), 2.45 

(s, 3H, NCH3).  

13C NMR (126 MHz, CD3OD) δ/ppm = 156.8 (C-4’), 147.8 (C-6), 145.0 (C-7), 131.7 (C-1’), 

131.6 (Ar), 130.7 (C-8a), 125.5 (C-4a), 116.0 (Ar), 115.8 (C-8), 112.6 (C-5), 66.0 (C-1), 56.3 

(OCH3), 47.5 (C-α), 42.6 (NCH3), 40.7 (C-3), 26.1 (C-4). 

IR (ATR) ṽmax/cm-1 = 2929, 1609, 1513, 1445, 1251, 1112, 1022, 830.  

HRMS (ESI): calcd. for C18H22NO3 (M+H)+ 300.15942; found 300.15932.  

Purity (HPLC): > 96% (λ = 210 nm). 
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(±)-4-((6,7-Dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)phenol 

((±)-armepavine) – SG-121 (185) and (±)-4-(6,7-dimethoxy-2-methyl-1,2,3,4-

tetrahydroisoquinolin-1-yl)phenol – SG-121-NP (189) 

 

Following general procedure H, SG-089 (181, 7.50 g, 16.9 mmol, 1.0 eq.) in dry THF (90 mL) 

and LiAlH4 (7.06 g, 186 mmol, 11 eq.) in dry THF (40 mL) were used. The mixture was heated 

to reflux for 3 h and the product was purified by FCC (9:1 CH2Cl2/MeOH) to yield 

(±)-armepavine (185, 1.83 g, 5.86 mmol, 35%) as off-white solid. NMR data are in accordance 

with literature[192]. 

Rf = 0.34 (9:1 CH2Cl2/MeOH).  

m.p.: 76 °C.  

1H NMR (400 MHz, CD3OD) δ/ppm = 6.90 – 6.86 (m, 2H, 2’-H, 6’-H), 6.72 – 6.68 (m, 2H, 3’-H, 

5’-H), 6.66 (s, 1H, 5-H or 8-H), 5.84 (s, 1H, 5-H or 8-H), 3.77 (s, 3H, OCH3), 3.72 (dd, J = 9.5, 

4.3 Hz, 1H, 1-H), 3.42 (s, 3H, OCH3), 3.24 – 3.14 (m, 2H, α-H, 3-H), 2.95 – 2.87 (m, 1H, 4-H), 

2.78 (ddd, J = 12.5, 6.3, 3.1 Hz, 1H, 3-H), 2.70 – 2.63 (m, 2H, α-H, 4-H), 2.52 (s, 3H, NCH3).  

13C NMR (101 MHz, CD3OD) δ/ppm = 157.0 (C-4’), 149.1 (C-6 or C-7), 147.5 (C-6 or C-7), 

132.0 (C-2’, C-6’), 131.3 (C-1’), 129.8 (C-4a or C-8a), 126.4 (C-4a or C-8a), 116.1 (C-3’, C-5’), 

113.0 (C-5 or C-8), 112.9 (C-5 or C-8), 66.0 (C-1), 56.3 (OCH3), 55.9 (OCH3), 47.0 (C-3), 42.4 

(NCH3), 40.0 (C-α), 26.0 (C-4). 

IR (ATR) ṽmax/cm-1 = 2979, 2901, 2834, 1509, 1251, 1226, 1100, 828.  

HRMS (ESI): calcd. for C19H24NO3 (M+H)+ 314.17507; found 314.17502.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

Column chromatography furthermore yielded SG-121-NP (189, 1.03 g, 3.44 mmol, 20%) as 

light yellow solid. Due to the instability of the enol ether (177) and for the sake of time, 

purification was reduced to a minimum during up-scale reactions. This resulted in impurities in 

form of 4-hydroxybenzaldehyde (175) after the Wittig reaction. During the following N-acyl 

Pictet-Spengler reaction, a side product was formed that was carried over as impurity to the 

next step. Reduction with LiAlH4 then yielded SG-121-NP (189).  
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Rf = 0.21 (9:1 CH2Cl2/MeOH).  

m.p.: 85 °C.   

1H NMR (400 MHz, CD3OD) δ/ppm = 7.23 – 7.13 (m, 2H, 2’,6’-H), 6.98 – 6.84 (m, 3H, 5,3’.5’-

H), 6.30 (s, 1H, 8-H), 5.49 (s, 1H, 1-H), 3.85 (s, 3H, OCH3), 3.74 – 3.62 (m, 1H, 3 or 4-H), 3.59 

(s, 3H, OCH3), 3.50 – 3.43 (m, 1H, 3 or 4-H), 3.30 – 3.26 (m, 1H, 3 or 4-H), 3.23 – 3.13 (m, 

1H, 3 or 4-H), 2.83 (s, 3H, NCH3).  

13C NMR (101 MHz, CD3OD) δ/ppm = 160.6 (C-4’), 150.9 (C-6 or C-7), 149.9 (C-6 or C-7), 

133.3 (C-1’, C-2’ and/or C-6’), 133.2 (C-1’, C-2’ and/or C-6’), 133.0 (C-1’, C-2’ and/or C-6’), 

124.8 (C-4a or C-8a), 124.7 (C-4a or C-8a), 117.0 (C-3’, C-5’), 112.2 (C-5 and C-8), 69.6 (C-

1), 56.4 (OCH3), 56.3 (OCH3), 41.2 (NCH3), 25.7 (C-3 or C-4), 25.6 (C-3 or C-4). 

IR (ATR) ṽmax/cm-1 = 3132, 2980, 2725, 1615, 1516, 1270, 1229, 1105, 838.  

HRMS (ESI): calcd. for C18H22NO3 (M+H)+ 300.15942; found 300.15964.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-4-((6-Methoxy-2-methyl-7-phenoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)phenol 

(186) 

 

Following general procedure H, carbamate 182 (1.80 g, 3.56 mmol, 1.0 eq.) in dry THF (20 mL) 

and LiAlH4 (1.62 g, 42.7 mmol, 12 eq.) in dry THF (20 mL) were used. The mixture was heated 

to reflux for 5 h to yield racemic compound 186 (1.21 g, 4.04 mmol, 79%) as off-white solid.  

Rf = 0.38 (9:1 CH2Cl2/MeOH).  

m.p.: 85 °C.   

1H NMR (500 MHz, CD3OD) δ/ppm = 7.26 – 7.20 (m, 2H, Ph), 6.99 – 6.96 (m, 1H, Ph), 6.84 

– 6.80 (m, 3H, 5-H, 2’-H, 6’-H), 6.72 – 6.68 (m, 2H, Ph), 6.61 – 6.56 (m, 2H, 3’-H, 5’-H), 6.10 

(s, 1H, 8-H), 3.73 (s, 3H, OCH3), 3.67 (dd, J = 8.6, 4.3 Hz, 1H, 1-H), 3.21 (ddd, J = 13.7, 9.3, 

6.1 Hz, 1H, 3-H), 3.08 (dd, J = 13.5, 4.3 Hz, 1H, α-H), 2.98 – 2.91 (m, 1H, 4-H), 2.79 – 2.73 

(m, 2H, 3-H and 4-H), 2.69 (dd, J = 13.5, 8.6 Hz, 1H, α-H), 2.50 (s, 3H, NCH3).  
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13C NMR (126 MHz, CD3OD) δ/ppm = 158.0 (qPh), 155.3 (C-4’), 149.9 (C-6), 142.0 (C-7), 

130.3 (C-2’, C-6’), 129.9 (C-4a, C-8a or C-1’), 129.6 (C-4a, C-8a or C-1’), 129.4 (C-4a, C-8a 

or C-1’), 129.0 (Ph), 121.8 (Ph), 120.5 (C-8), 116.5 (Ph), 114.7 (C-3’, C-5’), 112.6 (C-5), 64.4 

(C-1), 54.9 (OCH3), 45.9 (C-3), 41.2 (NCH3), 38.6 (C-α), 25.1 (C-4). IR (ATR) ṽmax/cm-1 = 2980, 

2889, 1590, 1508, 1489, 1261, 1215, 749, 690.  

IR (ATR) ṽmax/cm-1 = 2980, 2889, 1590, 1508, 1489, 1261, 1215, 749, 690. 

HRMS (ESI): calcd. for C24H26NO3 (M+H)+ 376.19072; found 376.19069.  

Purity (HPLC): > 96% (λ = 210 nm). 

 

(±)-7-(Benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydro-

isoquinoline  – SG-005 (187) 

 

Following general procedure H, carbamate 183 (310 mg, 0.557 mmol, 1.0 eq.) in dry THF 

(10 mL) and LiAlH4 (157 mg, 4.14 mmol, 7.2 eq.) in dry THF (20 mL) were used. The mixture 

was heated to reflux for 18 h and the product was purified by FCC (9:1 CH2Cl2/MeOH) to yield 

racemic amine SG-005 (187, 126 mg, 0.263 mmol, 46%) as colorless oil. The hydrochloride 

salt was formed according to general procedure J to yield a colorless solid. Analytical data are 

in accordance with literature[82]. 

Rf = 0.39 (9:1 CH2Cl2/MeOH).  

m.p.: 68 °C (HCl salt).  

1H NMR (500 MHz, CD3OD) δ/ppm = 7.37 – 7.22 (m, 10H, PhCH2), 6.96 – 6.93 (m, 2H, 2’-H, 

6’-H), 6.93 – 6.90 (m, 2H, 3’-H, 5’-H), 6.68 (s, 1H, 5-H), 5.85 (s, 1H, 8-H), 4.99 (d, J = 2.3 Hz, 

2H, 4’-OCH2), 4.60 – 4.54 (m, 2H, 7-OCH2), 3.78 (s, 3H, OCH3), 3.72 (dd, J = 9.4, 4.2 Hz, 1H, 

1-H), 3.23 – 3.15 (m, 2H, 4-H, α-H), 2.91 (ddd, J = 16.3, 9.9, 6.3 Hz, 1H, 3-H), 2.78 (ddd, J = 

12.5, 6.3, 3.2 Hz, 1H, 4-H), 2.71 – 2.65 (m, 2H, 3-H, α-H), 2.53 (s, 3H, NCH3).  

13C NMR (126 MHz, CD3OD) δ/ppm = 158.9 (C-4’), 149.7 (C-6), 146.7 (C-7), 138.7 (qPh), 

138.6 (qPh), 132.9 (C-1’), 132.2 (C-2’, C-6’), 129.6 (C-8a), 129.5 (Ph), 129.4 (Ph), 128.9 (Ph), 

128.8 (Ph), 128.6 (Ph), 127.1 (C-4a), 115.8 (C-3’, C-5’), 115.4 (C-8), 113.2 (C-5), 71.8 
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(PhCH2), 71.0 (PhCH2), 65.9 (C-1), 56.4 (OCH3), 47.1 (C-4), 42.4 (NCH3), 39.7 (C-α), 26.2 (C-

3).  

IR (ATR) ṽmax/cm-1 = 2932, 2850, 1608, 1509, 1454, 1222, 1099, 1013, 767, 696.  

HRMS (ESI): calcd. for C32H34NO3 (M+H)+ 480.25332; found 480.25476.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Separation of racemic SG-005 (187) via chiral HPLC (9:1 n-heptane/isopropanol + 0.45% 

diethylamine) yielded the two enantiomers (S)-SG-005 (209, colorless oil, retention time: 

~ 10 min) and (R)-SG-005 (210, colorless oil, retention time: ~ 20 min).  

 

(S)-SG-005 (209): [ ]  = + 54.3 (c = 0.078, CHCl3). 

(R)-SG-005 (210): [ ]  = - 65.4 (c = 0.052, CHCl3). (lit.[193]: -37.6 (c = 0.9, CHCl3). 

 

(±)-6,7-Dimethoxy-2-methyl-1-(4-phenoxybenzyl)-1,2,3,4-tetrahydroisoquinoline – 

SG-083 (188) 

 

Following general procedure H, carbamate 184 (110 mg, 0.246 mmol, 1.0 eq.) in dry THF 

(15 mL) and LiAlH4 (37.3 mg, 0.983 mmol, 4.0 eq.) in dry THF (10 mL) were used. The mixture 

was heated to reflux for 20 h and the product was purified by FCC (9.5:0.5 CH2Cl2/MeOH) to 

yield racemic amine SG-083 (188, 44.0 mg, 0.113 mmol, 46%) as light yellow oil.  

Rf = 0.55 (9:1 CH2Cl2/MeOH).  

1H NMR (500 MHz, CD3OD) δ/ppm = 7.35 – 7.31 (m, 2H, Ph), 7.10 – 7.05 (m, 3H, Ph, 2’-H, 6’-

H), 6.96 – 6.93 (m, 2H, Ph), 6.91 – 6.87 (m, 2H, 3’-H, 5’-H), 6.67 (s, 1H, 5-H), 5.97 (s, 1H, 8-
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H), 3.81 – 3.77 (m, 4H, 1-H, OCH3), 3.50 (s, 3H, OCH3), 3.25 – 3.18 (m, 2H, 3-H, α-H), 2.94 – 

2.86 (m, 1H, 4-H), 2.81 – 2.75 (m, 2H, 3-H, α-H), 2.67 (ddd, J = 16.6, 5.4, 3.3 Hz, 1H, 4-H), 

2.53 (s, 3H, NCH3).  

13C NMR (126 MHz, CD3OD) δ/ppm = 159.0 (qPh), 157.1 (C-4’), 149.2 (C-6), 147.7 (C-7), 

135.9 (C-1’), 132.4 (C-2’, C-6’), 130.8 (Ph), 129.9 (C-8a), 126.9 (C-4a), 124.2 (Ph), 119.8 (C-

3’, C-5’), 119.6 (Ph), 113.1 (C-5 or C-8), 113.0 (C-5 or C-8), 65.9 (C-1), 56.4 (OCH3), 56.1 

(OCH3), 47.1 (C-3), 42.5 (NCH3), 40.2 (C-α), 26.1 (C-4). 

IR (ATR) ṽmax/cm-1 = 2938, 2833, 1589, 1505, 1488, 1228.  

HRMS (ESI): calcd. for C25H28NO3 (M+H)+ 390.20637; found 390.20640.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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5.2.2.5 Chan-Evans-Lam couplings 

 

(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-phenoxybenzyl)-1,2,3,4-tetrahydroisoquinoline 

– SG-094 (192) 

 

Following general procedure I, SG-132 (159, 150 mg, 0.500 mmol, 1.0 eq.), phenylboronic acid 

(168, 366 mg, 3.00 mmol, 6.0 eq.), Cu(OAc)2 (200 mg, 1.10 mmol, 2.2 eq.), NEt3 (348 µL, 

2.50 mmol, 5.0 eq.), pyridine (202 µL, 2.50 mmol, 5.0 eq.) and CH2Cl2 (50 mL) were used. The 

reaction was completed after 18 h and FCC (9.9:0.1 CH2Cl2/MeOH) yielded racemic diaryl 

ether SG-094 (192, 158 mg, 0.350 mmol, 70%) as colorless oil. The hydrochloride salt was 

formed according to general procedure J to yield a colorless solid. 

Rf = 0.61 (9:1 CH2Cl2/MeOH).  

m.p.: 75 °C (HCl salt).  

1H NMR (400 MHz, CD3OD) δ/ppm = 7.29 – 7.18 (m, 4H, Ph), 7.07 – 7.00 (m, 3H, 2’-H, 6’-H, 

Ph), 6.96 – 6.92 (m, 1H, Ph), 6.86 – 6.82 (m, 3H, 5-H, Ph), 6.79 – 6.75 (m, 2H, 3’-H, 5’-H), 

6.72 – 6.68 (m, 2H, Ph), 6.10 (s, 1H, 8-H), 3.75 (dd, J = 8.7, 4.4 Hz, 1H, 1-H), 3.72 (s, 3H, 

OCH3), 3.28 – 3.14 (m, 2H, α-H, 3-H), 2.96 (ddd, J = 15.5, 9.1, 6.6 Hz, 1H, 4-H), 2.83 – 2.74 

(m, 3H, α-H, 3-H, 4-H), 2.53 (s, 3H, NCH3).  

13C NMR (101 MHz, CD3OD) δ/ppm = 159.8 (qPh), 159.0 (qPh), 156.9 (C-4’), 151.7 (C-6), 

143.0 (C-7), 135.5 (C-1’), 132.2 (C-2’, C-6’), 131.9 (C-4a or C-8a), 130.8 (Ph), 130.6 (C-4a or 

C-8a), 130.4 (Ph), 124.0 (Ph), 123.0 (Ph), 122.6 (C-8), 119.9 (C-3’, C-5’), 119.5 (Ph), 117.3 

(Ph), 114.1 (C-5), 65.7 (C-1), 56.3 (OCH3), 47.3 (C-3), 42.6 (NCH3), 39.9 (C-α), 26.6 (C-4). 

IR (ATR) ṽmax/cm-1 = 3038, 2937, 2838, 2793, 1588, 1505, 1487, 1218, 749, 690.  

HRMS (ESI): calcd. for C30H30NO3 (M+H)+ 452.22202; found 452.22163.  
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Purity (HPLC): > 96% (λ = 210 nm). 

 

Separation of racemic SG-094 (192) via chiral HPLC (9.5:0.5 n-heptane/isopropanol + 0.45% 

diethylamine) yielded the two enantiomers (S)-SG-094 (211, colorless oil, retention time: 

~ 8 min) and (R)-SG-094 (212, colorless oil, retention time: ~ 11 min).  

 

(S)-SG-094 (211): [ ]  = + 74.5 (c = 0.043, CHCl3). 

(R)-SG-094 (212): [ ]  = - 52.5 (c = 0.057, CHCl3). 

 

(±)-6,7-Dimethoxy-1-(4-(4-methoxyphenoxy)benzyl)-2-methyl-1,2,3,4-tetrahydro-

isoquinoline  – SG-122 (193) 

 

Following general procedure I, SG-121 (185, 157 mg, 0.500 mmol, 1.0 eq.), 4-methoxyphenyl-

boronic acid (228 mg, 1.50 mmol, 3.0 eq.), Cu(OAc)2 (100 mg, 0.550 mmol, 1.1 eq.), NEt3 

(174 µL, 1.25 mmol, 2.5 eq.), pyridine (101 µL, 1.25 mmol, 2.5 eq.) and CH2Cl2 (50 mL) were 

used. After 18 h the reaction was completed and the product was purified by FCC (9.5:0.5 

CH2Cl2/MeOH) to yield racemic diaryl ether SG-122 (193, 185 mg, 0.441 mmol, 88%) as 

colorless oil. The hydrochloride salt was formed according to general procedure J to yield a 

colorless solid.  

Rf = 0.45 (9:1 CH2Cl2/MeOH).  

m.p.: 204 °C (HCl salt).  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.04 – 7.01 (m, 2H, 2’-H, 6’-H), 6.96 – 6.92 (m, 2H, Ar), 

6.88 – 6.83 (m, 4H, 2’-H, 6’-H, Ar), 6.56 (s, 1H, 5-H), 6.05 (s, 1H, 8-H), 3.84 (s, 3H, OCH3), 
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3.80 (s, 3H, OCH3), 3.69 (dd, J = 7.5, 5.2 Hz, 1H, 1-H), 3.60 (s, 3H, OCH3), 3.23 – 3.12 (m, 

2H, α-H, 3-H), 2.86 – 2.74 (m, 3H, α-H, 3-H, 4-H), 2.58 (dt, J = 15.6, 4.5 Hz, 1H, 4-H), 2.53 (s, 

3H, NCH3).  

13C NMR (126 MHz, CDCl3) δ/ppm = 156.9 (C-4’), 155.9 (qAr), 150.6 (qAr), 147.4 (C-6), 146.4 

(C-7), 134.3 (C-1’), 131.0 (C-2’, C-6’), 129.4 (C-8a), 126.1 (C-4a), 120.7 (Ar), 117.6 (C-3’, C-

5’ or Ar), 115.0 (C-3’, C-5’ or Ar), 111.3 (C-5), 111.2 (C-8), 65.0 (C-1), 55.9 (OCH3), 55.8 

(OCH3), 55.7 (OCH3), 47.0 (C-3), 42.8 (NCH3), 40.6 (C-α), 25.6 (C-4). 

IR (ATR) ṽmax/cm-1 = 2971, 2629, 1504, 1265, 1227, 1111, 1006, 845.  

HRMS (ESI): calcd. for C26H30NO4 (M+H)+ 420.21693; found 420.21657.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6,7-Dimethoxy-2-methyl-1-(4-(3,4,5-trimethoxyphenoxy)benzyl)-1,2,3,4-tetrahydro-

isoquinoline hydrochloride – SG-127 (194) 

 

Following general procedure I, SG-121 (185, 157 mg, 0.500 mmol, 1.0 eq.), 3,4,5-trimethoxy-

phenylboronic acid (318 mg, 1.50 mmol, 3.0 eq.), Cu(OAc)2 (100 mg, 0.550 mmol, 1.1 eq.), 

NEt3 (174 µL, 1.25 mmol, 2.5 eq.), pyridine (101 µL, 1.25 mmol, 2.5 eq.) and CH2Cl2 (50 mL) 

were used. After 18 h the reaction was completed and the product was purified by FCC (CH2Cl2 

+ 1% NEt3), followed by recrystallization in EtOH as hydrochloride salt to yield diaryl ether SG-

127 (194, 216 mg, 0.418 mmol, 84%) as colorless solid. Analytical data are related to the 

hydrochloride salt. 

Rf = 0.47 (9:1 CH2Cl2/MeOH).  

m.p.: 183 °C (HCl salt).  

1H NMR (500 MHz, CDCl3) δ/ppm = 13.13 (s, 1H, NH), 7.11 – 7.05 (m, 2H, 2’-H, 6’-H), 6.94 

– 6.90 (m, 2H, 3’-H, 5’-H), 6.64 (s, 1H, 5-H), 6.22 (s, 2H, 2’’-H, 6’’-H), 5.71 (s, 1H, 8-H), 4.21 – 

4.11 (m, 2H, 1-H, α-H), 3.86 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.78 (s, 6H, 2 OCH3), 3.76 – 

3.70 (m, 1H, 3-H), 3.50 (s, 3H, OCH3), 3.40 – 3.33 (m, 1H, 3-H), 3.12 – 3.04 (m, 2H, 4-H), 2.94 

– 2.91 (m, 1H, α-H), 2.89 (s, 3H, NCH3).  



EXPERIMENTAL PART 

193 

13C NMR (126 MHz, CDCl3) δ/ppm = 157.2 (C-4’), 154.1 (C-3’’, C-5’’), 152.9 (C-1’’), 149.5 

(C-6), 147.5 (C-7), 134.6 (C-4’’), 131.8 (C-2’, C-6’), 130.2 (C-1’), 120.9 (C-4a or C-8a), 120.6 

(C-4a or C-8a), 118.5 (C-3’, C-5’), 111.3 (C-5 or C-8), 111.2 (C-5 or C-8), 97.1 (C-2’’, C-6’’), 

65.8 (C-1), 61.2 (OCH3), 56.3 (2 OCH3), 56.1 (OCH3), 55.7 (OCH3), 44.5 (C-3), 41.0 (C-α), 

40.1 (NCH3), 21.5 (C-4).  

IR (ATR) ṽmax/cm-1 = 2970, 2834, 2441, 1496, 1221, 1126, 1110, 1009, 989, 857.  

HRMS (ESI): calcd. for C28H34NO6 (M+H)+ 480.23806; found 480.23789.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6,7-Dimethoxy-1-(4-(4-methoxyphenoxy)phenyl)-2-methyl-1,2,3,4-tetrahydro-

isoquinoline – SG-157 (195) 

 

Following general procedure I, SG-121-NP (189, 150 mg, 0.500 mmol, 1.0 eq.), 4-methoxy-

phenylboronic acid (228 mg, 1.50 mmol, 3.0 eq.), Cu(OAc)2 (100 mg, 0.550 mmol, 1.1 eq.), 

NEt3 (174 µL, 1.25 mmol, 2.5 eq.), pyridine (101 µL, 1.25 mmol, 2.5 eq.) and CH2Cl2 (50 mL) 

were used. After 18 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.8:0.2 CH2Cl2/MeOH) to yield diaryl ether SG-157 (195, 192 mg, 0.473 mmol, 95%) as 

colorless oil. The hydrochloride salt was formed according to general procedure J to yield a 

beige solid.  

Rf = 0.49 (9:1 CH2Cl2/MeOH).  

m.p.: 97 °C (HCl salt).  

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 7.22 – 7.16 (m, 2H, 2’-H, 6’-H), 7.03 – 6.92 (m, 4H, 

2’’-H, 3’’-H, 5’’-H, 6’’-H), 6.90 – 6.84 (m, 2H, 3’-H, 5’-H), 6.69 (s, 1H, 5-H), 6.08 (s, 1H, 8-H), 

4.15 (s, 1H, 1-H), 3.74 (s, 3H, OCH3), 3.71 (s, 3H, OCH3), 3.46 (s, 3H, OCH3), 3.02 – 2.95 (m, 

2H, 3-H, 4-H), 2.71 – 2.63 (m, 1H, 4-H), 2.49 – 2.44 (m, 1H, 3-H), 2.12 (s, 3H, NCH3).  
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13C NMR (126 MHz, (CD3)2SO) δ/ppm = 156.9 (C-4’), 155.5 (C-4’’), 149.5 (C-1’’), 147.2 (C-6), 

146.7 (C-7), 138.2 (C-1’), 130.4 (C-2’, C-6’), 130.1 (C-8a), 126.4 (C-4a), 120.6 (C-2’’, C-6’’ or 

C-3’’, C-5’’), 116.9 (C-3’, C-5’), 115.0 (C-2’’, C-6’’ or C-3’’, C-5’’), 111.8 (C-8), 111.4 (C-5), 69.0 

(C-1), 55.5 (OCH3), 55.4 (2 OCH3), 51.2 (C-3), 43.8 (NCH3), 28.4 (C-4). 

IR (ATR) ṽmax/cm-1 = 2970, 2903, 2837, 1514, 1263, 1225, 1025, 820, 744.  

HRMS (ESI): calcd. for C25H28NO4 (M+H)+ 406.20128; found 406.20099.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-(4-(trifluoromethyl)phenoxy)benzyl)-1,2,3,4-

tetrahydroisoquinoline – SG-153 (199) 

 

Following general procedure I, phenol 186 (150 mg, 0.400 mmol, 1.0 eq.), 4-(trifluoromethyl)-

phenylboronic acid (228 mg, 1.20 mmol, 3.0 eq.), Cu(OAc)2 (79.8 mg, 0.440 mmol, 1.1 eq.), 

NEt3 (139 µL, 1.00 mmol, 2.5 eq.), pyridine (080.8 µL, 1.00 mmol, 2.5 eq.) and CH2Cl2 (50 mL) 

were used. After 18 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.5:0.5 CH2Cl2/MeOH) to yield diaryl ether SG-153 (199, 50.7 mg, 0.0976 mmol, 24%) as 

brown oil. The hydrochloride salt was formed according to general procedure J to yield a yellow 

solid.  

Rf = 0.50 (9:1 CH2Cl2/MeOH).  

m.p.: 92 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.54 – 7.48 (m, 2H, 3’’-H, 5’’-H), 7.26 – 7.22 (m, 2H, Ph), 

7.08 – 7.04 (m, 2H, 2’-H, 6’-H), 7.01 – 6.92 (m, 3H, 2’’-H, 6’’-H, Ph), 6.87 – 6.79 (m, 4H, 3’-H, 

5’-H, Ph), 6.68 (s, 1H, 5-H), 6.36 (s, 1H, 8-H), 3.77 (s, 3H, OCH3), 3.69 (t, J = 6.0 Hz, 1H, 1-

H), 3.18 (ddd, J = 13.0, 7.8, 5.2 Hz, 1H, 3-H), 3.09 (dd, J = 13.3, 5.2 Hz, 1H, α-H), 2.90 – 2.82 

(m, 2H, α-H, 4-H), 2.80 – 2.74 (m, 1H, 3-H), 2.66 (dt, J = 15.7, 5.2 Hz, 1H, 4-H), 2.53 (s, 3H, 

NCH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 160.9 (C-1’’), 158.4 (qPh), 153.8 (C-4’), 150.0 (C-6), 

142.2 (C-7), 136.0 (C-1’), 131.4 (C-2’, C-6’), 130.1 (C-8a), 129.6 (Ph), 128.7 (q, JCF = 277.9 
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Hz, CF3), 127.2 (q, JCF = 3.6 Hz, C-4’’), 124.6 (q, JCF = 32.9 Hz, C-3’’, C-5’’), 124.4 (C-4a), 

122.3 (Ph), 121.0 (C-8), 119.8 (C-3’, C-5’), 117.6 (C-2’’, C-6’’), 116.7 (Ph), 112.8 (C-5), 64.6 

(C-1), 56.1 (OCH3), 47.4 (C-3), 43.0 (NCH3), 40.0 (C-α), 26.4 (C-4). 

IR (ATR) ṽmax/cm-1 = 2980, 2907, 1602, 1506, 1325, 1243, 1221, 1103, 1064, 749.  

HRMS (ESI): calcd. for C31H29F3NO3 (M+H)+ 520.20940; found 520.20907.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-(4-(trifluoromethoxy)phenoxy)benzyl)-1,2,3,4-

tetrahydroisoquinoline – SG-154 (198) 

 

Following general procedure I, phenol 186 (150 mg, 0.400 mmol, 1.0 eq.), 4-

(trifluoromethoxy)-phenylboronic acid (247 mg, 1.20 mmol, 3.0 eq.), Cu(OAc)2 (79.8 mg, 

0.440 mmol, 1.1 eq.), NEt3 (139 µL, 1.00 mmol, 2.5 eq.), pyridine (80.8 µL, 1.00 mmol, 2.5 eq.) 

and CH2Cl2 (20 mL) were used. After 13 h the reaction was completed and purification of the 

product via preparative HPLC (7:3 n-heptane/isopropanol + 0.45% diethylamine, 15 mL flow) 

yielded diaryl ether SG-154 (198, 99.6 mg, 0.186 mmol, 47%) as light yellow oil. The 

hydrochloride salt was formed according to general procedure J to yield a light yellow solid.  

Rf = 0.51 (9:1 CH2Cl2/MeOH).  

m.p.: 90 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.28 – 7.21 (m, 2H, Ph, collapses with chloroform), 

7.15 – 7.10 (m, 2H, 3’’-H, 5’’-H), 7.05 – 6.97 (m, 3H, 2’-H, 6’-H, Ph), 6.93 – 6.87 (m, 2H, 2’’-H, 

6’’-H), 6.85 – 6.79 (m, 4H, 3’-H, 5’-H, Ph), 6.67 (s, 1H, 5-H), 6.36 (s, 1H, 8-H), 3.77 (s, 3H, 

OCH3), 3.67 (t, J = 5.8 Hz, 1H, 1-H), 3.18 (ddd, J = 12.4, 8.0, 5.0 Hz, 1H, 3-H), 3.07 (dd, J = 

13.8, 5.8 Hz, 1H, α-H), 2.90 – 2.81 (m, 2H, 4-H, α-H), 2.76 (dt, J = 12.4, 5.2 Hz, 1H, 3-H), 2.65 

(dt, J = 15.9, 4.9 Hz, 1H, 4-H), 2.53 (s, 3H, NCH3).  

13C NMR (101 MHz, CDCl3) δ/ppm = 158.4 (qPh), 156.4 (C-1’’), 154.8 (C-4’), 150.0 (C-6), 

144.3 (q, JCF = 4.1 Hz, C-4’’), 142.2 (C-7), 135.3 (C-1’), 131.3 (C-8a), 131.2 (C-2’, C-6’), 130.2 

(C-4a), 129.5 (Ph), 122.6 (C-3’’, C-5’’), 122.2 (Ph), 121.0 (C-8), 120.7 (q, JCF = 256.5 Hz, CF3), 
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119.2 (C-3’, C-5’ or C-2’’, C-6’’), 119.1 (C-3’, C-5’ or C-2’’, C-6’’), 116.7 (Ph), 112.8 (C-5), 64.6 

(C-1), 56.1 (OCH3), 47.4 (C-3), 43.0 (NCH3), 40.0 (C-α), 26.4 (C-4). 

IR (ATR) ṽmax/cm-1 = 2980, 2889, 2440, 1510, 1497, 1239, 1218, 1187, 1163, 1106, 853, 751.  

HRMS (ESI): calcd. for C31H29F3NO4 (M+H)+ 536.20432; found 536.20393.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6-Methoxy-1-(4-(4-methoxyphenoxy)benzyl)-2-methyl-7-phenoxy-1,2,3,4-tetrahydro-

isoquinoline – SG-155 (196) 

 

Following general procedure I, phenol 186 (188 mg, 0.500 mmol, 1.0 eq.), 4-methoxy-

phenylboronic acid (228 mg, 1.50 mmol, 3.0 eq.), Cu(OAc)2 (100 mg, 0.550 mmol, 1.1 eq.), 

NEt3 (174 µL, 1.25 mmol, 2.5 eq.), pyridine (101 µL, 1.25 mmol, 2.5 eq.) and CH2Cl2 (20 mL) 

were used. After 20 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.9:0.1 CH2Cl2/MeOH) to give diaryl ether SG-155 (196, 162 mg, 0.336 mmol, 67%) as 

colorless oil. The hydrochloride salt was formed according to general procedure J to yield a 

light yellow solid.  

Rf = 0.49 (9:1 CH2Cl2/MeOH).  

m.p.: 81 °C (HCl salt).  

1H NMR (500 MHz, CD3OD) δ/ppm = 7.23 – 7.20 (m, 2H, Ph), 6.98 – 6.94 (m, 3H, 3’-H, 5’-H, 

Ph), 6.85 – 6.79 (m, 5H, 5-H, 2’’-H, 6’’-H, 3’’-H, 5’’-H), 6.72 – 6.68 (m, 4H, 2’-H, 6’-H, 3’-H, 5’-

H), 6.07 (s, 1H, 8-H), 3.77 (s, 3H, OCH3), 3.71 (s, 4H, 1-H, OCH3), 3.23 (ddd, J = 13.7, 9.4, 6.1 

Hz, 1H, 3-H), 3.15 (dd, J = 13.3, 4.4 Hz, 1H, α-H), 2.97 (ddd, J = 15.9, 9.4, 6.8 Hz, 1H, 4-H), 

2.82 – 2.73 (m, 3H, 3-H, 4-H, α-H), 2.53 (s, 3H, NCH3).  

13C NMR (126 MHz, CD3OD) δ/ppm = 159.8 (qPh), 158.2 (C-4’), 157.2 (C-4’’), 151.9 (C-6 or 

C-1’’), 151.7 (C-6 or C-1’’), 142.9 (C-7), 134.6 (C-1’), 132.0 (C-3’, C-5’), 131.8 (C-8a), 130.6 

(C-4a), 130.4 (Ph), 123.0 (Ph), 122.6 (C-8), 121.4 (C-2’’, C-6’’ or C-3’’, C-5’’), 118.7 (C-2’, C-

6’), 117.3 (Ph), 115.9 (C-2’’, C-6’’ or C-3’’, C-5’’), 114.1 (C-5), 65.7 (C-1), 56.3 (OCH3), 56.1 

(OCH3), 47.3 (C-3), 42.6 (NCH3), 39.8 (C-α), 26.6 (C-4). 
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IR (ATR) ṽmax/cm-1 = 2940, 2907, 2523, 2360, 1496, 1264, 1218, 750, 690.  

HRMS (ESI): calcd. for C31H32NO4 (M+H)+ 482.23258; found 482.23255.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-(3,4,5-trimethoxyphenoxy)benzyl)-1,2,3,4-tetra-

hydroisoquinoline – SG-161 (197) 

 

Following general procedure I, phenol 186 (100 mg, 0.266 mmol, 1.0 eq.), 3,4,5-trimethoxy-

phenylboronic acid (169 mg, 0.799 mmol, 3.0 eq.), Cu(OAc)2 (53.2 mg, 0.293 mmol, 1.1 eq.), 

NEt3 (92.8 µL, 0.666 mmol, 2.5 eq.), pyridine (53.9 µL, 0.666 mmol, 2.5 eq.) and CH2Cl2 

(50 mL) were used. After 20 h the reaction was completed and the product was purified by 

FCC (CH2Cl2 → 9.7:0.3 CH2Cl2/MeOH) to yield diaryl ether SG-161 (197, 100 mg, 0.185 mmol, 

69%) as colorless oil. The hydrochloride salt was formed according to general procedure J to 

yield a colorless solid.  

Rf = 0.65 (9:1 CH2Cl2/MeOH).  

m.p.: 82 °C (HCl salt).  

1H NMR (500 MHz, CD3OD) δ/ppm = 7.23 – 7.18 (m, 2H, Ph), 7.04 – 7.00 (m, 2H, 2’-H, 6’-H), 

6.96 – 6.92 (m, 1H, Ph), 6.83 (s, 1H, 5-H), 6.80 – 6.76 (m, 2H, 3’-H, 5’-H), 6.71 – 6.66 (m, 2H, 

Ph), 6.20 (s, 2H, 2’’-H, 6’’-H), 6.14 (s, 1H, 8-H), 3.76 – 3.74 (m, 1H, 1-H), 3.73 (s, 3H, OCH3), 

3.71 (s, 3H, OCH3), 3.70 (s, 6H, 2 OCH3), 3.24 (ddd, J = 13.7, 9.1, 6.1 Hz, 1H, 3-H), 3.16 (dd, 

J = 13.4, 4.4 Hz, 1H, α-H), 2.99 – 2.92 (m, 1H, 4-H), 2.83 – 2.75 (m, 3H, 3-H, 4-H, α-H), 2.54 

(s, 3H, NCH3). 

13C NMR (126 MHz, CD3OD) δ/ppm = 159.8 (qPh), 157.1 (C-4’), 155.4 (C-1’’), 155.2 (C-3’’, C-

5’’), 151.7 (C-6), 143.0 (C-7), 135.4 (C-1’), 135.0 (C-4’’), 132.2 (C-2’, C-6’), 132.0 (C-8a), 130.6 

(C-4a), 130.4 (Ph), 123.0 (Ph), 122.6 (C-8), 119.6 (C-3’, C-5’), 117.3 (Ph), 114.1 (C-5), 97.6 

(C-2’’, C-6’’), 65.7 (C-1), 61.2 (OCH3), 56.5 (2 OCH3), 56.3 (OCH3), 47.5 (C-3), 42.7 (NCH3), 

39.9 (C-α), 26.7 (C-4). 

IR (ATR) ṽmax/cm-1 = 3725, 2940, 2360, 2341, 1496, 1216, 1124, 993, 690.  
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HRMS (ESI): calcd. for C33H36NO6 (M+H)+ 542.25371; found 542.25327.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-(p-tolyloxy)benzyl)-1,2,3,4-

tetrahydroisoquinoline hydrochloride – SG-162 (200) 
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Following general procedure I, phenol 186 (100 mg, 0.266 mmol, 1.0 eq.), 4-methylbenzene-

boronic acid (109 mg, 0.799 mmol, 3.0 eq.), Cu(OAc)2 (53.2 mg, 0.293 mmol, 1.1 eq.), NEt3 

(92.8 µL, 0.666 mmol, 2.5 eq.), pyridine (53.9 µL, 0.666 mmol, 2.5 eq.) and CH2Cl2 (20 mL) 

were used. After 20 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.7:0.3 CH2Cl2/MeOH) to yield diaryl ether SG-162 (200, 59.0 mg, 0.127 mmol, 48%) as 

light brown oil, which was, according to general procedure J, directly transferred into its 

hydrochloride salt to yield a beige solid. Analytical data are related to the hydrochloride salt. 

Rf = 0.61 (9:1 CH2Cl2/MeOH).  

m.p.: 79 °C (HCl salt).  

1H NMR (500 MHz, CD3OD) δ/ppm = 7.27 – 7.23 (m, 2H, Ph), 7.12 – 7.06 (m, 4H, 2’-H, 6’-H, 

2’’-H, 6’’-H), 7.03 – 6.98 (m, 2H, 5-H, Ph), 6.84 – 6.81 (m, 2H, 3’-H, 5’-H), 6.79 – 6.74 (m, 2H, 

3’’-H, 5’’-H), 6.72 – 6.68 (m, 2H, Ph), 6.07 (s, 1H, 8-H), 4.56 (dd, J = 10.0, 4.7 Hz, 1H, 1-H), 

3.90 – 3.83 (m, 1H, 3-H), 3.78 (s, 3H, OCH3), 3.54 – 3.48 (m, 1H, 3-H), 3.39 (dd, J = 13.2, 4.7 

Hz, 1H, α-H), 3.28 – 3.20 (m, 2H, 4-H), 3.11 – 2.99 (m, 4H, α-H, NCH3), 2.32 (s, 3H, CH3). 

13C NMR (126 MHz, CD3OD) δ/ppm = 159.0 (qPh), 158.8 (C-4’), 155.8 (C-4’’), 153.3 (C-6), 

144.4 (C-7), 134.4 (C-1’’), 132.3 (C-2’’, C-6’’), 131.3 (C-2’, C-6’), 130.6 (Ph), 130.4 (C-1’), 127.7 

(C-4a), 123.6 (C-8), 122.3 (C-8a), 120.2 (C-3’’, C-5’’), 119.6 (C-3’, C-5’), 117.8 (Ph), 114.2 (C-

5), 65.7 (C-1), 57.5 (C-α), 56.4 (OCH3), 46.5 (C-3), 40.7 (NCH3), 24.7 (C-4), 20.7 (CH3). 

IR (ATR) ṽmax/cm-1 = 3406, 2971, 2443, 1499, 1230, 1107, 749.  

HRMS (ESI): calcd. for C31H32NO3 (M+H)+ 466.23767; found 466.23751.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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(±)-6-Methoxy-2-methyl-7-phenoxy-1-(4-(pyridin-4-yloxy)benzyl)-1,2,3,4-tetrahydro-

isoquinoline – SG-163 (203) 

 

Following general procedure I, phenol 186 (100 mg, 0.266 mmol, 1.0 eq.), pyridine-4-boronic 

acid (98.2 mg, 0.799 mmol, 3.0 eq.), Cu(OAc)2 (53.2 mg, 0.293 mmol, 1.1 eq.), NEt3 (92.8 µL, 

0.666 mmol, 2.5 eq.), pyridine (53.9 µL, 0.666 mmol, 2.5 eq.) and CH2Cl2 (20 mL) were used. 

After 20 h the reaction was completed and the product was purified via preparative HPLC (6:4 

n-heptane/isopropanol + 0.45% diethylamine, 15 mL flow) to yield diaryl ether SG-163 (203, 

30.6 mg, 0.0676 mmol, 25%) as colorless oil. The hydrochloride salt was formed according to 

general procedure J to yield a colorless solid.  

Rf = 0.54 (9:1 CH2Cl2/MeOH).  

m.p.: 233 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 8.41 (dd, J = 4.8, 1.5 Hz, 2H, 2’’-H, 6’’-H), 7.27 – 7.22 (m, 

2H, Ph, collapses with chloroform), 7.11 – 7.07 (m, 2H, 2’-H, 6’-H), 7.01 – 6.96 (m, 1H, Ph), 

6.90 – 6.86 (m, 2H, 3’-H, 5’-H), 6.85 – 6.82 (m, 2H, Ph), 6.76 – 6.72 (m, 2H, 3’’-H, 5’’-H), 6.68 

(s, 1H, 5-H), 6.37 (s, 1H, 8-H), 3.77 (s, 3H, OCH3), 3.70 (t, J = 6.2 Hz, 1H, 1-H), 3.22 – 3.15 

(m, 1H, 3-H), 3.10 (dd, J = 14.0, 5.4 Hz, 1H, α-H), 2.90 – 2.75 (m, 3H, 3-H, 4-H, α-H), 2.65 (dt, 

J = 16.6, 5.1 Hz, 1H, 4-H), 2.54 (s, 3H, NCH3). 

13C NMR (101 MHz, CDCl3) δ/ppm = 165.1 (C-1’’), 158.4 (qPh), 152.2 (C-4’), 151.5 (C-3’’, C-

5’’), 150.0 (C-6), 142.2 (C-7), 136.9 (C-1’), 131.5 (C-2’, C-6’), 131.4 (C-4a), 130.0 (C-8a), 129.6 

(Ph), 122.3 (Ph), 121.0 (C-8), 120.5 (C-3’, C-5’), 116.7 (Ph), 112.8 (C-5), 112.1 (C-2’’, C-6’’), 

64.6 (C-1), 56.1 (OCH3), 47.5 (C-3), 43.0 (NCH3), 40.0 (C-α), 26.5 (C-4). 

IR (ATR) ṽmax/cm-1 = 3406, 2979, 2451, 1636, 1509, 1490, 1273, 1219, 747.  

HRMS (ESI): calcd. for C29H29N2O3 (M+H)+ 453.21727; found 453.21781.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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(±)-4-(4-((6-Methoxy-2-methyl-7-phenoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)-

phenoxy)benzonitrile – SG-164 (201) 

 

Following general procedure I, phenol 186 (100 mg, 0.266 mmol, 1.0 eq.), 4-cyanophenyl-

boronic acid (117 mg, 0.799 mmol, 3.0 eq.), Cu(OAc)2 (53.2 mg, 0.293 mmol, 1.1 eq.), NEt3 

(92.8 µL, 0.666 mmol, 2.5 eq.), pyridine (53.9 µL, 0.666 mmol, 2.5 eq.) and CH2Cl2 (50 mL) 

were used. After 20 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.7:0.3 CH2Cl2/MeOH) to yield diaryl ether SG-164 (201, 61.1 mg, 0.128 mmol, 48%) as 

colorless oil. The hydrochloride salt was formed according to general procedure J to yield a 

colorless solid.  

Rf = 0.65 (9:1 CH2Cl2/MeOH).  

m.p.: 124 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.56 – 7.51 (m, 2H, 2’’-H, 6’’-H), 7.27 – 7.22 (m, 2H, Ph, 

collapses with chloroform), 7.10 – 7.06 (m, 2H, 2’-H, 6’-H), 7.01 – 6.96 (m, 1H, Ph), 6.92 – 

6.88 (m, 2H, 3’’-H, 5’’-H), 6.88 – 6.81 (m, 4H, 3’-H, 5’-H, Ph), 6.68 (s, 1H, 5-H), 6.37 (s, 1H, 8-

H), 3.77 (s, 3H, OCH3), 3.69 (t, J = 6.1 Hz, 1H, 1-H), 3.18 (ddd, J = 12.8, 7.9, 5.1 Hz, 1H, 3-

H), 3.09 (dd, J = 13.8, 5.4 Hz, 1H, α-H), 2.90 – 2.74 (m, 3H, 3-H, 4-H, α-H), 2.65 (dt, J = 16.0, 

5.0 Hz, 1H, 4-H), 2.53 (s, 3H, NCH3). 

13C NMR (101 MHz, CDCl3) δ/ppm = 162.0 (C-1’’), 158.4 (qPh), 152.9 (C-4’), 150.0 (C-6), 

142.1 (C-7), 136.7 (C-1’), 134.2 (C-2’’, C-6’’), 131.5 (C-2’, C-6’), 131.4 (C-4a), 130.0 (C-8a), 

129.6 (Ph), 122.2 (Ph), 121.1 (C-8), 120.2 (C-3’, C-5’), 119.1 (C-4’’), 117.8 (C-3’’, C-5’’), 116.6 

(Ph), 112.8 (C-5), 105.6 (CN), 64.6 (C-1), 56.1 (OCH3), 47.4 (C-3), 43.0 (NCH3), 40.0 (C-α), 

26.4 (C-4). 

IR (ATR) ṽmax/cm-1 = 2940, 2225, 1596, 1495, 1245, 1218, 1166, 836, 750, 736, 690.  

HRMS (ESI): calcd. for C31H29N2O3 (M+H)+ 477.21727; found 477.21773.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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(±)-1-(4-(3,4-Dichlorophenoxy)benzyl)-6-methoxy-2-methyl-7-phenoxy-1,2,3,4-

tetrahydroisoquinoline – SG-165 (202) 

 

Following general procedure I, phenol 186 (100 mg, 0.266 mmol, 1.0 eq.), 3,4-dichlorophenyl-

boronic acid (152 mg, 0.799 mmol, 3.0 eq.), Cu(OAc)2 (53.2 mg, 0.293 mmol, 1.1 eq.), NEt3 

(92.8 µL, 0.666 mmol, 2.5 eq.), pyridine (53.9 µL, 0.666 mmol, 2.5 eq.) and CH2Cl2 (20 mL) 

were used. After 20 h the reaction was completed and the product was purified by FCC (CH2Cl2 

→ 9.7:0.3 CH2Cl2/MeOH) to yield diaryl ether SG-165 (202, 109 mg, 0.208 mmol, 78%) as 

brown oil. The hydrochloride salt was formed according to general procedure J to yield a beige 

solid.  

Rf = 0.58 (9:1 CH2Cl2/MeOH).  

m.p.: 92 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.31 (d, J = 8.8 Hz, 1H, 5’’-H), 7.28 – 7.22 (m, 2H, Ph, 

collapses with chloroform), 7.06 – 6.97 (m, 4H, 2’-H, 6’-H, 2’’-H, Ph), 6.87 – 6.83 (m, 2H, Ph), 

6.82 – 6.78 (m, 2H, 3’-H, 5’-H), 6.75 (dd, J = 8.8, 2.8 Hz, 1H, 6’’-H), 6.67 (s, 1H, 5-H), 6.40 (s, 

1H, 8-H), 3.78 (s, 3H, OCH3), 3.68 (t, J = 5.6 Hz, 1H, 1-H), 3.17 (ddd, J = 12.6, 7.8, 5.1 Hz, 

1H, 3-H), 3.06 (dd, J = 13.9, 5.6 Hz, 1H, α-H), 2.89 – 2.73 (m, 3H, 3-H, 4-H, α-H), 2.64 (dt, J = 

15.6, 5.1 Hz, 1H, 4-H), 2.52 (s, 3H, NCH3). 

13C NMR (101 MHz, CDCl3) δ/ppm = 158.3 (qPh), 157.1 (C-1’’ or C-3’’), 154.2 (C-4’), 149.9 

(C-6), 142.3 (C-7), 135.8 (C-1’), 133.2 (C-1’’ or C-3’’), 131.3 (C-2’, C-6’), 131.2 (C-4a), 131.0 

(C-5’’), 130.1 (C-8a), 129.5 (Ph), 126.1 (C-4’’), 122.3 (Ph), 120.9 (C-8), 120.1 (C-2’’), 119.2 (C-

3’, C-5’), 117.7 (C-6’’), 116.8 (Ph), 112.7 (C-5), 64.6 (C-1), 56.1 (OCH3), 47.6 (C-4), 43.0 

(NCH3), 40.1 (C-α), 26.4 (C-4). 

IR (ATR) ṽmax/cm-1 = 2979, 1585, 1505, 1489, 1466, 1261, 1223, 1119, 750.  

HRMS (ESI): calcd. for C30H28
35Cl2NO3 (M+H)+ 520.14408; found 520.14478.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 
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5.2.2.6 Further reactions 

(±)-7-(benzyloxy)-1-(4-(benzyloxy)-3-methoxybenzyl)-2-ethyl-6-methoxy-1,2,3,4-

tetrahydroisoquinoline – SG-158 (208) 

 

(±)-7-(Benzyloxy)-1-(4-(benzyloxy)-3-methoxybenzyl)-6-methoxy-1,2,3,4-

tetrahydroisoquinoline (Z6 (145), 100 mg, 0.188 mmol, 1.0 eq.), NEt3 (65.5 µL, 0.470 mmol, 

2.5 eq.) and KI (31.2 mg, 0.188 mmol, 1.0 eq.) were dispersed in CHCl3 (20 mL) and 

bromoethane (30.8 µL, 0.282 mmol, 1.5 eq.) was added. The reaction mixture was stirred at 

65 °C for 6 days and subsequently concentrated in vacuo. The residue was dissolved in CH2Cl2 

(30 mL) and washed with sat. aq. NaHCO3 solution (10 mL), 10% aq. citric acid solution 

(10 mL) and sat. aq. NaCl solution (10 mL). The organic layer was dried over Na2SO4, filtered 

and concentrated in vacuo. Purification by FCC (CH2Cl2 → 9.7:0.3 CH2Cl2/MeOH), followed by 

purification via preparative HPLC (6:4 n-heptane/isopropanol + 0.45% diethylamine, 15 mL 

flow) yielded racemic amine SG-158 (208, 23.2 mg, 0.0443 mmol, 24%) as colorless oil. The 

hydrochloride salt was formed according to general procedure J to yield a colorless solid.  

Rf = 0.54 (9:1 CH2Cl2/MeOH).  

m.p.: 211 °C (HCl salt).  

1H NMR (500 MHz, CDCl3) δ/ppm = 7.45 – 7.27 (m, 10H, PhCH2, collapses with chloroform), 

6.80 (d, J = 8.2 Hz, 1H, 5’-H), 6.62 (d, J = 1.9 Hz, 1H, 2’-H), 6.59 (s, 1H, 5-H), 6.55 (dd, J = 

8.3, 2.0 Hz, 1H, 6’-H), 6.05 (s, 1H, 8-H), 5.13 (s, 2H, PhCH2), 4.85 (d, J = 12.3 Hz, 1H, PhCH2), 

4.74 (d, J = 12.3 Hz, 1H, PhCH2), 3.86 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.75 (dd, J = 7.4, 

6.0 Hz, 1H, 1-H), 3.21 – 3.13 (m, 1H, 4-H), 3.04 (dd, J = 13.5, 5.2 Hz, 1H, α-H), 2.91 – 2.81 

(m, 2H, 3-H, 4-H), 2.72 – 2.66 (m, 3H, α-H, CH2CH3), 2.55 – 2.47 (m, 1H, 3-H), 1.12 (t, J = 7.1 

Hz, 3H, CH2CH3). 

13C NMR (126 MHz, CDCl3) δ/ppm = 149.4 (C-3’), 148.0 (C-6), 146.6 (C-4’), 145.6 (C-7), 137.5 

(qPhCH2), 137.5 (qPhCH2), 133.6 (C-1’), 129.8 (C-8a), 128.6 (PhCH2), 128.5 (PhCH2), 127.9 

(PhCH2), 127.8 (PhCH2), 127.4 (PhCH2), 127.3 (PhCH2), 127.1 (C-4a), 122.1 (C-6’), 114.2 (C-

2’), 113.9 (C-8 or C-5’), 113.8 (C-8 or C-5’), 111.9 (C-5), 71.3 (PhCH2), 71.0 (PhCH2), 62.6 (C-

1), 56.1 (2 OCH3), 47.8 (CH2CH3), 43.6 (C-3), 40.8 (C-α), 25.5 (C-4), 13.4 (CH2CH3). 

IR (ATR) ṽmax/cm-1 = 2998, 2359, 1589, 1514, 1264, 1226, 1021, 737, 696.  
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HRMS (ESI): calcd. for C34H38NO4 (M+H)+ 524.27954; found 524.28026.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-7-(Benzyloxy)-1-(4-(benzyloxy)-3-methoxybenzyl)-6-methoxy-2-methyl-1,2,3,4-

tetrahydroisoquinoline – SG-159 (206) 

 

A solution of (±)-7-(benzyloxy)-1-(4-(benzyloxy)-3-methoxybenzyl)-6-methoxy-1,2,3,4-

tetrahydro-isoquinoline (Z6 (145),100 mg, 0.188 mmol, 1.0 eq.) and 37% aqueous 

formaldehyde (70.0 µL, 0.940 mmol, 5.0 eq.) in HPLC grade MeOH (5.0 mL) was acidified with 

glacial acetic acid (0.50 mL, final pH ~ 5), before NaCNBH3 (24.9 mg, 0.376 mmol, 2.0 eq.) 

was added. The reaction mixture was stirred for 2 days at rt and concentrated in vacuo to give 

a light yellow solid. The residue was dissolved in EtOAc (40 mL) and was washed with sat. aq. 

NaHCO3 solution (15 mL), 10% aq. citric acid solution (15 mL) and sat. aq. NaCl solution 

(15 mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. The crude 

product was purified by FCC (CH2Cl2 → 9.7:0.3 CH2Cl2/MeOH) to yield racemic amine SG-159 

(206, 61.2 mg, 0.120 mmol, 64%) as colorless oil. The hydrochloride salt was formed 

according to general procedure J to yield a colorless solid.  

Rf = 0.57 (9:1 CH2Cl2/MeOH).  

m.p.: 87 °C (HCl salt).  

1H NMR (400 MHz, CDCl3) δ/ppm = 7.42 – 7.23 (m, 13H, PhCH2, collapses with chloroform), 

6.76 (d, J = 8.1 Hz, 1H, 5’-H), 6.61 – 6.54 (m, 2H, 5-H, 2’-H), 6.51 (dd, J = 8.1, 1.9 Hz, 1H, 6’-

H), 6.08 (s, 1H, 8-H), 5.11 (s, 2H, PhCH2), 4.84 (d, J = 12.3 Hz, 1H, PhCH2), 4.72 (d, J = 12.3 

Hz, 1H, PhCH2), 3.84 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.61 (dd, J = 7.2, 5.0 Hz, 1H, 1-H), 

3.17 – 3.02 (m, 2H, 3-H, α-H), 2.84 – 2.67 (m, 3H, 3-H, 4-H, α-H), 2.60 – 2.53 (m, 1H, 4-H), 

2.51 (s, 3H, NCH3). 

13C NMR (101 MHz, CDCl3) δ/ppm = 149.3 (C-3’), 147.9 (C-6), 146.6 (C-4’), 145.6 (C-7), 137.5 

(qPhCH2), 137.4 (qPhCH2), 133.2 (C-1’), 129.3 (C-8a), 128.7 (PhCH2), 128.6 (PhCH2), 127.9 

(PhCH2), 127.8 (PhCH2), 127.4 (PhCH2), 127.3 (PhCH2), 126.8 (C-4a), 122.0 (C-6’), 113.8 (C-
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8 or C-5’), 113.7 (C-8 or C-5’), 113.5 (C-2’), 111.7 (C-5), 71.2 (PhCH2), 70.9 (PhCH2), 64.8 (C-

1), 56.1 (2 OCH3), 47.2 (C-3), 42.9 (NCH3), 40.8 (C-α), 25.9 (C-4). 

IR (ATR) ṽmax/cm-1 = 2980, 2889, 2359, 1513, 1263, 1225, 1012, 696.  

HRMS (ESI): calcd. for C33H36NO4 (M+H)+ 510.26389; found 510.26339.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-7-(Benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydro-

isoquinoline – SG-005 (187) 

An alternative route to receive SG-005 (187): A solution of Z3 (137, 251 mg, 0.500 mmol, 1.0 

eq.) and 37% aq. formaldehyde solution (68.9 µL, 2.50 mmol, 5.0 eq.) in HPLC grade MeOH 

(5.0 mL) was acidified with two drops of glacial acetic acid (0.50 mL, final pH ~ 5) and sodium 

cyanoborohydride (66.1 mg, 1.00 mmol, 2.0 eq.) was added. The reaction mixture was stirred 

for 4 days at rt and concentrated in vacuo to give a white solid. The residue was dissolved in 

EtOAc (40 mL) and was washed with sat. aq. NaHCO3 solution (15 mL), 10% aq. citric acid 

solution (15 mL) and sat. aq. NaCl solution (15 mL). The organic layer was dried over Na2SO4 

and concentrated in vacuo. The crude product was purified by FCC (9.5:0.5 CHCl3/MeOH) to 

yield SG-005 (187, 133 mg, 0.278 mmol, 56%) as off white solid. Analytical data are stated 

above.  

 

(±)-7-(Benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydro-

isoquinoline – SG-005 (187) 

An alternative route to receive SG-005 (187) via Mitsunobu reaction: SG-132 (159, 150 mg, 

0.500 mmol, 1.0 eq.) is dissolved in dry THF (5.0 mL), before PPh3 (629 mg, 2.40 mmol, 

4.8 eq.) and benzyl alcohol (145 µL, 1.40 mmol, 2.8 eq.) were added. The reaction mixture 

was cooled to 4 °C and DIAD (315 µL, 1.60 mmol, 3.2 eq.) was added dropwise. The mixture 

was allowed to warm to rt for 18 h and was then concentrated in vacuo. The residue was 

purified by FCC (9.9:0.1 → 9.7:0.3 CH2Cl2/MeOH) to yield SG-005 (187, 113 mg, 0.236 mmol, 

47%) as light yellow oil. Analytical data are stated above.  

 

5.2.2.7 Substances received from other sources 

Prof. Dr. Peter Pachaly† kindly provided tetrandrine (1) and fangchinoline (9) from natural 

sources and semi synthetic N,N-dimethyl-tetrandrine dichloride (139, Table 15). Prof. Dr. 
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Meinhart Zenk† kindly provided a compound library of 1-benzyl-1,2,3,4-tetrahydroisoquinolines 

(Z compounds, Table 15). 

Table 15: Substances received from other sources. *Analytical data are stated below.  

entry name abbreviation literature 

1 tetrandrine (1) - [143] 

2 fangchinoline (9) - [144] 

3 N,N- dimethyltetrandrine dichloride (139) - [145] 

4 (±)-coclaurine hydrochloride (141) Z1 [194, 195] 

5 R-coclaurine hydrochloride (142) Z2 [194, 195] 

6 
(±)-7-(benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-1,2,3,4-

tetrahydroisoquinoline hydrochloride (137) 
Z3 [82, 195]* 

7 

(+)-O,O-dibenzyl coclaurine / (+)-7-(benzyloxy)-1-(4-

(benzyloxy)benzyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline 

(143) 

Z4 [193] 

8 
(±)-6-(benzyloxy)-1-(4-(benzyloxy)benzyl)-7-methoxy-1,2,3,4-

tetrahydroisoquinoline hydrochloride (144) 
Z5 [196] 

9 

(±)-O,O-dibenzyl nororientaline / (±)-7-(benzyloxy)-1-(4-

(benzyloxy)-3-methoxy-benzyl)-6-methoxy-1,2,3,4-

tetrahydroisoquinoline (145) 

Z6 [197] 

10 R-norreticuline (146) Z7/Z8 [198, 199] 

11 (±)-laudanosine (147) Z9 [200] 

12 
(±)-6-(benzyloxy)-1-(3-(benzyloxy)-4-methoxybenzyl)-7-

methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (148) 
Z11 [201] 

13 
(±)-6,7-bis(benzyloxy)-1-(4-(benzyloxy)-3-methoxybenzyl)-2-

methyl-1,2,3,4-tetrahydroisoquinoline hydrochloride (149) 
Z12 [202] 

14 
(±)-5-(3,4-bis(benzyloxy)benzyl)-5,6,7,8-tetrahydro-

[1,3]dioxolo[4,5-g]isoquinoline hydrochloride (150) 
Z13 * 

15 
(±)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline (151) 
Z14 [203, 204] 

16 
(±)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-6-(benzyloxy)-7-methoxy-

1,2,3,4-tetrahydroisoquinoline (152) 
Z15 [205] 

17 
(±)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-6,7-bis(benzyloxy)-

1,2,3,4-tetrahydroisoquin-oline (153) 
Z16/Z17 [206] 
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18 
(±)-1-(benzo[d][1,3]dioxol-5-ylmethyl)-6,7-bis(benzyloxy)-3,4-

dihydroisoquinoline (154) 
Z18 [206] 

19 
(±)-6,7-bis(benzyloxy)-1-((6-bromobenzo[d][1,3]dioxol-5-

yl)methyl)-1,2,3,4-tetrahydro-isoquinoline hydrochloride (155) 
Z20 * 

20 
(±)-1-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)-3,4-

dihydroisoquinoline-6,7-diol (156) 
Z21 [207] 

21 
N-(4-(benzyloxy)-3-methoxyphenethyl)-2-(4-(benzyloxy)-

phenyl)acetamide (157) 
Z22 [208] 

22 

Epiberberine chloride / 8,9-dimethoxy-11,12-dihydro-

[1,3]dioxolo-[4,5-h]isoquinolino[2,1-b]isoquinolin-13-ium chloride 

(158) 

Z23 [209] 

 

 

(±)-7-(benzyloxy)-1-(4-(benzyloxy)benzyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline 

hydrochloride – Z3 (137) 

1H NMR (500 MHz, CD3OD) δ/ppm = 7.51 – 7.25 (m, 10H), 7.21 – 7.12 (m, 2H), 7.08 – 6.99 

(m, 2H), 6.84 (s, 1H), 6.45 (s, 1H), 5.09 (s, 2H), 4.84 (d, J = 2.7 Hz, 2H), 4.64 (t, J = 7.3 Hz, 

1H), 3.85 (s, 3H), 3.61 – 3.47 (m, 1H), 3.42 – 3.34 (m, 1H), 3.31 – 3.24 (m, 1H), 3.17 – 3.00 

(m, 3H).  

13C NMR (126 MHz, CD3OD) δ/ppm = 159.8, 151.2, 148.0, 138.6, 138.3, 132.0, 129.5, 129.5, 

129.0, 128.9, 128.9, 128.7, 128.6, 125.5, 124.3, 116.5, 114.0, 113.2, 72.0, 71.0, 57.4, 56.5, 

49.5, 49.3, 49.2, 49.0, 48.8, 48.7, 48.5, 40.3, 40.1, 25.8. 

HRMS (ESI): calcd. for C31H32NO3 (M+H)+ 466.23767; found 466.23798.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-O,O-dibenzyl nororientaline / (±)-7-(benzyloxy)-1-(4-(benzyloxy)-3-methoxy-benzyl)-

6-methoxy-1,2,3,4-tetrahydroisoquinoline – Z6 (145) 

1H NMR (500 MHz, CDCl3) δ/ppm = 9.27 (s, 1H), 7.51 – 7.23 (m, 10H), 7.04 – 6.99 (m, 2H), 

6.81 (s, 1H), 6.79 (dd, J = 8.2, 1.9 Hz, 1H), 6.63 (s, 1H), 5.05 (s, 2H), 4.90 – 4.76 (m, 2H), 4.59 

(t, J = 7.0 Hz, 1H), 3.75 (s, 6H), 3.32 – 3.29 (m, 1H), 3.27 – 3.09 (m, 3H), 3.03 – 2.87 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ/ppm = 159.8, 151.2, 148.0, 138.6, 138.3, 132.0, 129.6, 129.5, 

129.0, 128.9, 128.8, 128.7, 128.6, 125.5, 124.3, 116.5, 114.0, 113.2, 72.0, 71.0, 57.4, 56.5, 

40.3, 40.1, 25.8. 
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HRMS (ESI): calcd. for C32H34NO4 (M+H)+ 496.24824; found 496.24827.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-5-(3,4-bis(benzyloxy)benzyl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline 

hydrochloride – Z13 (150) 

1H NMR (500 MHz, CDCl3) δ/ppm = 10.22 (d, J = 7.6 Hz, 1H), 9.66 (d, J = 8.9 Hz, 1H), 7.42 – 

7.24 (m, 10H), 6.88 – 6.84 (m, 1H), 6.82 (s, 1H), 6.73 (dd, J = 8.2, 1.9 Hz, 1H), 6.51 (s, 1H), 

6.26 (s, 1H), 5.92 (d, J = 1.3 Hz, 1H), 5.89 (d, J = 1.2 Hz, 1H), 5.16 – 5.00 (m, 4H), 4.68 – 4.57 

(m, 1H), 3.44 – 3.34 (m, 1H), 3.27 – 3.16 (m, 2H), 3.08 – 2.95 (m, 2H), 2.83 – 2.71 (m, 1H). 

13C NMR (126 MHz, CDCl3) δ/ppm = 149.1, 148.4, 147.6, 146.8, 137.4, 128.7, 128.6, 128.4, 

127.9, 127.6, 127.5, 125.5, 124.2, 123.1, 121.5, 116.8, 115.6, 108.8, 107.0, 101.4, 77.4, 76.9, 

71.4, 55.3, 40.5, 38.9, 25.6. 

HRMS (ESI): calcd. for C31H30NO4 (M+H)+ 480.21693; found 480.21719.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

(±)-6,7-bis(benzyloxy)-1-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)-1,2,3,4-tetrahydro-

isoquinoline hydrochloride – Z20 (155) 

1H NMR (500 MHz, (CD3)2SO) δ/ppm = 9.30 (s, 1H), 7.51 – 7.24 (m, 10H), 7.18 (s, 1H), 6.96 

(s, 1H), 6.60 (s, 1H), 6.08 (d, J = 7.7 Hz, 2H), 5.13 (s, 2H), 5.07 – 4.92 (m, 2H), 4.61 – 4.41 

(m, 1H), 3.47 – 3.37 (m, 1H), 3.37 – 3.25 (m, 3H), 3.25 – 3.14 (m, 2H), 3.12 – 3.00 (m, 1H), 

2.91 – 2.77 (m, 1H). 

13C NMR (126 MHz, (CD3)2SO) δ/ppm = 147.8, 147.7, 147.3, 146.5, 137.0, 128.4, 128.4, 128.2, 

127.8, 127.8, 127.6, 127.3, 125.0, 123.8, 115.0, 114.1, 112.7, 112.5, 111.9, 102.1, 70.2, 70.0, 

53.6, 38.8, 24.5. 

HRMS (ESI): calcd. for C31H29
79BrNO4 (M+H)+ 558.12745; found 558.12829.  

Purity (HPLC): > 96% (λ = 210 nm), > 96% (λ = 254 nm). 

 

Berbamine dihydrochloride (10) was purchased from Sigma-Aldrich (now Merck, Darmstadt, 

Germany), cepharanthine (140) and dauricine (11) from Carbosynth (Compton, Berkshire, 

United Kingdom) and oxyacanthine sulfate (138) from abcr (Karlsruhe, Germany). 
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5.3 Biological methods 

5.3.1 High-throughput screening (HTS) 

The high-throughput screening was performed by Dr. Phuong Nguyen and myself in 

collaboration with the group of Prof. Dr. Michael Schaefer at the Rudolf-Böhm-Institut für 

Pharmakologie und Toxikologie, University of Leipzig. The experiments were run using a 

custom-made fluorescence imaging plate reader built into a robotic liquid handling station 

(Freedom Evo 150, Tecan, Männedorf, Switzerland) as previously described[22, 88].  

In brief, HEK-293 cells stably expressing human TPC2L11A/L12A-RFP and stably expressing 

human CLN3L253A/I254A -RFP were cultured at 37 °C with 5% of CO2 in Dulbecco’s modified 

Eagle medium (Thermo Fisher), supplemented with 10% fetal calf serum (Biochrom, Berlin, 

Germany), 2.00 mM L-glutamine, 100 U/mL penicillin, 0.100 mg/mL streptomycin, and 400-

800 µg/mL G418. Cells were incubated with Fluo-4/AM (15, 4.00 µM; Life Technologies, 

Eugene, Oregon, USA) for 30 min at 37 °C, washed and resuspended in a HEPES-buffered 

solution 1 (HBS1) comprising 132 mM NaCl, 6.00 mM KCl, 1.00 mM MgCl2, 1.00 mM CaCl2, 

10.0 mM HEPES, and 5.50 mM D-glucose (pH was adjusted to 7.4 with NaOH). Then, the cells 

were seeded on black walled, clear bottom 384-well plates (Greiner, Frickenhausen, 

Germany) and the plates were placed in the imaging reader. Experiments were performed with 

cell suspensions.  

For primary screening, individual compounds from Roche libraries (Xplore libraries X30 and 

X50, Roche, Basel, Switzerland) were diluted in HBS1 to a working concentration of 100 µM. 

After recording the baseline for 30 s, compounds were injected to a final concentration of 10 

µM. Recording continued for 180 s per quadrant (total 750 s for four quadrants). If high 

intensities were measured in both cell lines, the compounds were deemed false positives and 

excluded. From single hits with high intensities concentration effect experiments were 

performed. In case of a low IC50, hits were confirmed by single cell Ca-imaging. Concentration 

effect relationships were plotted using GraphPad Prism 5 and fitted to the Hill equation.  

Concentration-effect experiments were performed by Nicole Urban (Schäfer group) as 

described above.  

 

5.3.2 Single cell calcium imaging 

Single cell Ca2+ imaging experiments were performed as previously described[22, 115]. In more 

detail, HEK293 cells were cultured at 37 °C with 5% of CO2 in Dulbecco’s modified Eagle 

medium (Gibco), supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 0.100 

mg/mL streptomycin. Cells were plated onto poly-L-lysine (sigma)-coated glass coverslips, 

grown over two days and transiently transfected for 18-24 h with plasmids using TurboFect 
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(Thermo Fisher Scientific, Waltham, USA) according to the manufacturer’s instructions. 

Plasmids used for transfection were generated in the group of Prof. Christian Grimm and are 

literature known. Experiments for blockers were performed using HEK293 cells stably 

expressing TPC2L11A/L12A –RFP[14, 22, 28, 114, 115].  

Transfected cells were loaded for 1 h at 37 °C with 10% of CO2 with Fura-2/AM (126, 4.0 µM) 

and 0.005% (v/v) Pluronic® F-127 (both from Thermo Fisher) in HEPES-buffered solution 2 

(HBS2) comprising 138 mM NaCl, 6.00 mM KCl, 1.00 mM MgCl2, 2.00 mM CaCl2, 10.0 mM 

HEPES, and 5.50 mM D-glucose (pH was adjusted to 7.4 with NaOH). After loading, cells were 

washed in HBS2, and mounted in an imaging chamber. All recordings were performed in 

HBS2. Images were acquired every 2 s at 40X magnification using a monochromator-based 

imaging system (Polychrome IV mono-chromator, TILL photonics or a Leica DMi8 live cell 

microscope). Fura-2 (13) was excited at 340 nm/380 nm and emitted fluorescence was 

captured using 515 nm long-pass filters.  

Compound stock solutions (10 mM in DMSO) were pre diluted with HBS2 to a working 

concentration of 100 µM (1% DMSO). Chambers were filled with 450 µL HBS2 and the 

baseline was recorded for 50 s. Then, 50 µL of the compound solution to be tested were added 

to reach a final concentration of 10 µM. After 400 s the experiments were stopped. If no 

activation was observed or an inhibitor should be tested, a known activator was added to 

confirm the correctness of the experiment or if the substance is a blocker. Activation/inhibition 

was illustrated using GraphPad Prism 5.  

 

5.3.3 MTT 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed 

by Martina Stadler (Bracher group) and conducted with HL-60 cells. First the number of cells 

per mL was determined with a hepatocyte cell counter (Fuchs-Rosenthal). Then the cell 

suspension was diluted with medium to 9 x 105 cells mL-1.  

Compounds to be tested were dissolved in DMSO to give 10 mM stock solutions and used for 

a dilution series (10 mM, 5 mM, 2.5 mM, 1.25 mM, 0.625 mM, 0.3125 mM). For negative 

control 1% DMSO was used and for positive control Triton® X-100 solution with a final 

concentration of 1 µg/mL was added.  

Cell suspensions (99 µL each) were seeded on 96-well plates and incubated at 37 °C with 5% 

CO2 for 24 h. Then, compound solutions (1 µL) were added and again incubated at 37 °C with 

5% CO2 for 24 h. After that, 10 µL MTT solution (5.0 mg MTT in 1.0 mL PBS) was added to 

each well and further incubated for two hours, followed by addition of 190 µL DMSO. After one 

hour shaking continuously, photometric quantification was conducted at a wavelength of 570 
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nm with an MRX microplate reader (DYNEX Technologies, Chentilly, USA). Concentration-

effect relationships were plotted using GraphPad Prism 5.  

 

5.3.4 Agar diffusion test 

Agar diffusion tests were performed by Martina Stadler (Bracher group). Microorganisms were 

obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ, 

Braunschweig) and cultivated according to recommendations in liquid culture using different 

agars. For Saccharomyces cerevisiae (DSM number: 1333), Hyphopichia burtonii (DSM 

number: 70663), Yarrowia lipolytica (DSM number: 1345), Escherichia coli (DSM number: 426) 

and Pseudomonas marginalis (DSM number: 7527) all-culture agar (AC-agar, Sigma Aldrich) 

was used. Therefore 35.2 g AC-agar and 20 g agar were suspended in 1.0 L water and treated 

by autoclave. For Staphylococcus equorum (DSM number: 20675) and Streptococcus 

entericus (DSM number: 14446) an agar is likewise prepared from 10.0 g caseinpeptone, 5.0 

g yeast extract, 5.0 g glucose and 5.0 g sodium chloride in 1.0 L water. After treatment in the 

autoclave 15 mL of the warm, liquid agar was filled into Petri dishes and cooled to 8 °C for one 

hour. 

Solutions with 1% (m/V) compound in DMSO were prepared. Then, 3.0 µL of each solution 

was plated onto small filter plates (diameter 6 mm, Macherey-Nagel), equivalent to 30 µg 

substance. As positive control clotrimazole and tetracycline were used. Blind control was 

conducted with mere DMSO. The small filter plates were then dried for 24 hours at room 

temperature.  

For final experiments the germs were brought onto the different agars using cotton swabs. The 

platelets containing the substances, the reference, and the blind control were put onto the 

agar, too. The agar plates were incubated for 36 h at 32 °C (bacteria) or 28 °C (yeasts). Then, 

the diameters of growth inhibition (inhibition zones) were measured manually. 
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6 Appendices 

6.1 Abbreviations 

5‐HT  5‐hydroxytryptamine receptors  

Å  Angstrom 

ALS amyotrophic lateral sclerosis 

AM acetoxymethyl 

APCI atmospheric-pressure chemical ionization 

aq. aqueous 

ASAP atmospheric pressure solids analysis probe 

BK large conductance calcium-activated potassium channels/big potassium 

Bn benzyl 

calcd. calculated 

Cav voltage gated calcium channel 

CB1R cannabinoid‐1 receptor 

CLN3 battenin 

CTB cell titer blue 

cy cyclohexyl 

CYP cytochrome P 

DCC N,N′-dicyclohexylcarbodiimide 

DIPA diisopropylamine 

DMF dimethylformamide 

DMSO  dimethyl sulfoxide 

ECD Electronic circular dichroism spectra 

EDC ethylene dichloride 

EGF epidermal growth factor 

EI electron ionization 

eq. equivalents 

ESI  electron spray ionization 

FCC flash column chromatography 

h  hour 

HCT-15 human colorectal adenocarcinoma cells 

HEK293 human embryonic kidney cells 

HepaRG hepatic stem cells 

HepG2 human hepatocellular carcinoma cells 

HERG human Ether-à-go-go-Related Gene 

HIV human immunodeficiency virus   

HPLC high-performance liquid chromatography 

HRMS high-resolution mass spectrometry 

HSQC heteronuclear single quantum correlation 

HTS high-throughput screening 

HUVEC human umbilical vein endothelial cells 
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Hz hertz 

IR infrared spectroscopy 

JNCL juvenile neuronal ceroid lipofuscinosis 

KATP ATP-sensitive potassium channel 

LDA lithium diisopropylamide 

LHMDS lithium bis(trimethylsilyl)amide 

LOPAC Library of Pharmacologically Active Compounds 

LRRK2 leucine‐rich repeat kinase 2 

LSD Lysosomal storage disease 

m meta 

m  multiplet (NMR) 

M molar 

m.p. melting point 

Me methyl 

MERS‐CoV Middle East respiratory syndrome coronavirus 

min  minutes 

mmol  millimole 

mol mole 

MS multiple sclerosis 

mTOR mechanistic target of rapamycin 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid 

mw microwave 

n.a. not applicable 

NAADP nicotinic acid adenine dinucleotide phosphate 

Nav voltage gated sodium channel 

NBS N-bromosuccinimide 

n-BuLi n-butyllithium 

NMDA N ‐methyl‐D‐aspartate receptor 

NMR nuclear magnetic resonance 

ns not significant 

NT non-transfected 

o ortho 

p para 

PBMC peripheral blood mononuclear cells 

PG protecting group 

P-gp P-glycoprotein 

ph phenyl 

PI(3,5)P2 phosphatidylinositol 3,5‐bisphosphate 

PIKfyve FYVE finger-containing phosphoinositide kinase 

ppm  parts per million 

q  quartet (NMR) 

Rf  retardation factor 
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RFP red fluorescent protein 

rt  room temperature 

s  singlet (NMR) 

SAR structure-activity relationships 

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2  

sat. saturated 

SEM standard error of the mean 

SERM selective estrogen receptor modulators 

SSRI selective serotonin reuptake inhibitors 

TCA tricyclic antidepressants 

TFA  trifluoroacetic acid 

TFEB transcription factor EB 

THF tetrahydrofuran 

TLC thin-layer chromatography 

TPC two pore channel 

TRPA transient receptor potential channel ankyrin 

TRPC transient receptor potential channel canonical 

TRPM transient receptor potential channel melastatin 

TRPML transient receptor potential cation channel 

TRPV transient receptor potential channel vanilloid 

TTX tetrodotoxin 

VCR-R CEM vincristine-resistant acute lymphoblastic leukemia cells 

VEGF vascular endothelial growth factors 

WHO world health organization 

YFP yellow fluorescent protein 
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