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Zusammenfassung

Diese Doktorarbeit enthält die Resultate mehrerer Forschungsprojekte mit Fokus auf kos-
mologischen und astrophysikalischen Magnetfeldern. In der folgenden Zusammenfassung
wird der Inhalt dieser Projekte kurz wiedergegeben. Referenzen und Würdigungen bezüglich
bereits publizierter Arbeiten werden den Kapiteln vorangestellt.

Das erste Kapitel enthält die erste Vorhersage der Stärke und dreidimensionalen Struk-
tur des heutigen Überbleibsels eines primordialen Magnetfeldes innerhalb eines sich mit-
bewegenden Volumens mit einer Kantenlänge von 600 Mpc/h. Die grobe Idee ist hier das
Materiedichtefeld, inferiert aus der heutigen, großräumigen Struktur des Universums, bis
zu dem Punkt in die strahlungsdominierte Epoche zu übersetzen, an dem der kosmische
Horizont wesentlich kleiner als die kleinste durch die Daten auflösbare Skala ist. Das
so erhaltene primordiale Dichtefeld kann als Startwert für den sogenannten Harrisoneffekt
genutzt werden, durch welchen Magnetfelder bis zur Rekombination generiert werden. Von
da an werden die Magnetfeld- und Materiedichteentwicklung mit einer magnetohydrody-
namischen Simulation zu Rotverscheibung z = 0 gebracht, wo die Magnetfeldstruktur im
heutigen Universum offenbart wird.

In den Kapiteln zwei bis vier werden mehrere Analysen des galaktischen Faradaytiefen-
himmels präsentiert. In einem ersten einfachen Inferenzmodell wird eine erste Abschätzung
des Faradayhimmels aus den verstreuten Datenpunkten gegeben. Eine Komponente der In-
ferenz, welche die Amplitude des Effekts am Himmels erklären soll, zeigt große Ähnlichkeit
mit dem galaktischen Emissionsmaß der Bremstrahlung freier Elektronen und Protonen.
Darauf aufbauend werden zusätzliche Daten verwendet um den Faradayhimmel in seine
Komponenten aufzulösen. In einem ersten phänomenologischen Model wird die Signatur
des lokalen galaktischen Arms mit Hilfe der Bremstrahlungsdaten entdeckt. In weiteren
Ansätzen werden zusätzlich Dispersionmaße galaktischer Pulsare verwendet um eine quan-
titative Vorhersage des sichtliniengemittelten Magnetfeldes zu machen.

Im letzten Kapitel werden zwei Projekte bezüglich Zirkularpolarisation im Radiobere-
ich zusammengefasst. In der ersten Arbeit werden der Faradayhimmel und Synchrotrone-
missionsdaten verwendet um eine Vorhersage über den galaktischen Zirkularpolarisation-
shimmel zu geben. Durch die Sensitivität der Synchrotronstrahlung auf die Ladung des
emittierenden Mediums können Aussagen über den Ladungsinhalt der Milchstraße gemacht
werden. Dieselbe Eigenschaft wird in der zweiten Arbeit dazu verwendet zu zeigen, dass
Beobachtungen von Stokes V dabei helfen könnten zu entscheiden, ob der Inhalt von Ra-
diojets hadronischer oder leptonischer Natur ist.
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Summary

This thesis comprises several research efforts centering around cosmological and astrophys-
ical magnetic fields. In the following summary, these are shortly outlined. References and
acknowledgments to the respective works are put in front of each chapter.

The first chapter entails the first prediction of today’s remnants of a primordial large
scale magnetic field both in strength and in three dimensional morphology within a co-
moving box with edge length of 600 Mpc/h. The general idea here is to translate the
matter density field inferred from large scale structure data into the radiation dominated
epoch up to the point where the horizon scale is much smaller than the smallest scale
resolvable by the data. The density field obtained this way is used as initial conditions
for the so called Harrison effect, which results in a magnetic field being generated up to
recombination. From there on, magnetic field and matter evolution are simulated via a
Magnetohydrodynamics solver up to red-shift z = 0, revealing the magnetic field structure
today.

In chapters two to four several analyses of the Galactic Faraday depth sky are presented.
Here, rotation measures of extra-Galactic point sources are used to constrain the Galactic
component of the Faraday rotation sky. In a first simple inference model a full sky estimate
is build from the scattered data points. A component of the inference, which is intended to
model the sky amplitude, is found to have strong resemblance with the Galactic free-free
emission measure sky. Hence, building on the simple model, additional data is used to
disentangle the Faraday sky into its components. In a first phenomenological model, the
signature of the local Galactic arm is discovered with the help of emission measure data.
In further attempts, dispersion measure data from Galactic pulsars is additionally used to
give a quantitative prediction of the line-of-sight averaged Galactic magnetic field sky.

In the last chapter, two research projects revolving around circular polarization in the
radio regime are summarized. In the first work, the Faraday depth sky and synchrotron
intensity data are used to give a prediction on the Galactic synchrotron circular polarization
sky. Due to the sensitivity of circular polarization to the charge of the synchrotron light
emitting medium, statements on the leptonic content of the Milky Way can be made. The
very same property of circular polarization is used in the second paper in order to show that
observations of Stokes V may help to decide whether the content of radio jets is hadronic
or leptonic.
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Chapter 1

Introduction

The beauty of electricity or of any
other force is not that the power is
mysterious, and unexpected, touching
every sense at unawares in turn, but
that it is under law, and that the
taught intellect can even now govern
it largely.1

Michael Faraday

Since the profound discoveries of Faraday and Maxwell in the 19th century, electro-
magnetic forces are a fundamental fragment of our understanding of nature. Beginning on
the smallest scales with description of atoms, the interaction of molecules up to the scales
of human interaction with the world, magnetism is ubiquitous and, usually, well described
by Maxwell’s laws that allow us to govern it.

Yet on the other end of the spectrum of scales, on distances which are necessary to de-
scribe the Milky Way and beyond, the observable Universe, the mere existence of magnetic
fields, let alone their influence on the formation of structures are very often still mysteri-
ous and unexpected. The reason for this is of course not that they would be subject to
different laws than their smaller relatives, but that their origin and evolution is hidden in
the mysteries of the early Universe. Hence, if we understand the word law in the above
quotation as being equivalent to a statement resulting in predictions and explanations of
unexpected phenomena, it is surely uncontroversial to say that we have not yet been able
to fully embed cosmological and astrophysical magnetic fields into a picture which Michael
Faraday might have called beautiful. Consequently, the overall ambition of this thesis is
to shed a small amount of light on what is potentially one of the most fruitful sources of
information in cosmology and astrophysics.
In the course of this text, I will touch on several manifestations of magnetic fields in the
observable Universe, both on cosmological scales and for the case of the Milky Way. The

1Jones (1870)
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usual goal is to either reconstruct the magnetic field itself or a observable associated to
it from available data sets. Irrespective of whether we are interested in three dimensional
volumes or projections on the sphere, this reliance on real observational data implies that
we naturally will always be dominated by structures close to us. This makes all of the
reconstructions presented here ‘ocal’ relative to the scale of the object of interest. In order
to to set the stage for the upcoming chapters, in the rest of the introduction contains a
short description of both the cosmological and the Galactic environment shall be given.

In most comprehensive descriptions of the Universe, its state and evolution are, some-
what unsurprisingly, described in terms of its dominant components. In case of the preva-
lent ΛCDM model these are radiation and matter, temporally encompassed by scalar fields
necessary to explain the exponential expansion during inflation and in today’s epoch. Com-
pared to these, large scale magnetic fields lead a somewhat shadowy existence under the
reign of the dominating players, as they never reach the energy densities necessary to di-
rectly influence the large scale evolution of the Universe. However, they have the attractive
property of being extremely stable and resilient in contrast to e.g. large scale electric fields
(Grasso & Rubinstein 2001), which allows them to potentially preserve information on the
early Universe. In partially motivation by this, several possible mechanisms of primordial
magnetogenesis during inflation and the reheating epoch have been conceived, the remnants
of which could provide us with important information on these still very poorly constrained
ages. Unfortunately, as very often these are based on non standard-model physics, neither
of these processes are forced by theoretical necessity or required by observational evidence.
This reflects a general problem of primordial magnetic fields, as no unambiguous empiri-
cal proof demonstrates their existence. Our best probe of the early Universe, the cosmic
microwave background (CMB), excludes magnetic fields with a strength above several nG
(Planck Collaboration et al. 2016b). The mere presence of magnetic fields in galaxies and
galaxy clusters may be a hint, as the dynamo mechanisms present there need seed fields
to be amplified. Unfortunately, these seeds can alternatively be provided by magnetic out-
flows of galaxies and stars, respectively (Subramanian 2019). Some further indirect hints
are given by inspection of the photon energy spectrum of blazars, which lack significant flux
in the GeV regime (Neronov & Vovk 2010). The flux would be expected as a result from
pair production and annihilation ensuing from TeV photons interacting with the CMB in
cosmic voids. Magnetic fields would then lead to a deflection of electrons and positrons,
thereby reducing the observed photon flux. But yet again, this claim has been disputed
and alternative mechanisms can explain the phenomenon without invoking the existence
of magnetic fields (Pfrommer et al. 2013). Even if magnetic fields are the culprit in this
case, Langer & Durrive (2018) have shown that these can be generated during the epoch of
reionization as well, both in sufficient magnitude and volume filling. However, regardless
the somewhat shaky observational status of primordial magnetic fields, the fact that they
may contain profound information on the early Universe has sparked continuous interest
of cosmologists.

Intriguingly, the existence of a small primordial magnetic field is almost forced by con-
ditions in the radiation dominated epoch of the Universe. As demonstrated by Harrison
(1970), the small under-densities present in the matter and radiation fields in the primor-
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dial plasma generate vorticity structures, which together with different behavior of the
still relativistic electrons and non-relativistic protons, result in a battery effect suitable for
magnetic field generation. In the first chapter of this thesis, a three dimensional recon-
struction the primordial magnetic field remnant as induced by the Harrison mechanism
is presented, constrained by data of today’s large scale structure of the Universe. This
is first time such a prediction was made for the local Universe. Under the conservative
assumptions made here the resulting fields strengths are to low to explain the missing link
to today’s magnetic fields in galaxy clusters or voids. The work nonetheless opens up a
path to make testable predictions for alternative mechanisms of magnetogenesis.

Just as in the case of the evolution of our Universe, magnetic fields lead a somewhat
passive existence in the formation of galaxies and clusters, which is dominated by grav-
itational collapse. Yet this time, this superficial statement does not hold up to closer
inspection. Magnetic pressure is comparable to gas and cosmic ray pressure in the late
stages of galaxy evolution, which at least makes some relevant influence debatable. Even
more importantly, magnetic fields directly impact the distribution of cosmic rays as these
diffuse easier along field lines. These highly relativistic particles heavily influence key prop-
erties of the interstellar medium such star formation. This makes magnetic fields indirectly
an potential major player in shaping their host galaxies (Naab & Ostriker 2017).

The most notable contrast to primordial magnetic fields, however, is the far better
observational situation. Magnetic fields have been observed in both galaxy clusters and
filaments (Govoni et al. 2019). In galaxies, they have been observed up to red-shift z ≈ 0.5
with the help of strong gravitational lensing (Mao et al. 2017). Indeed, it seems to be almost
impossible to find compact structures in the Universe with no magnetic field associated to
them.

Consequently, the problem here is not so much proving the existence of magnetic fields,
but to unambiguously determine role in the dynamics of their hosting structures . In
order to achieve this, their strength and morphology need to be determined, a task, that
is hindered by the fact that all observables to our disposal couple the magnetic field with
other quantities in often very non-trivial ways. This means that its usually necessary to
additionally constrain e.g. the thermal or relativistic electron density, dust properties or
stellar density. In addition to that projections effects further complicate the problem. This
is especially severe in our home Galaxy the Milky Way, which although naturally resolvable
to unprecedented scale compared to all other galaxies, has the severe disadvantage of being
only observable from our position within the Galactic disc. Hence, reconstruction efforts of
the Galactic magnetic field have to rely on a variety of sources in order to overcome these
problems. In this work, the focus lies on the Faraday effect as such a source of information.
Within a magnetized ionized medium, this effect leads to the rotation of linearly polarized
light. In this work, the most up to date version of the Galactic sky projection of this effect
is given, both in methodology and data. Building on that, additional data sets are used to
bypass the problems mentioned earlier. This has enabled the discovery of hidden magnetic
structures in the sky and resulted in a first time prediction of the line-of-sight averaged
magnetic field strength of the Milky Way.
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Chapter 2

The primordial magnetic field in our
cosmic backyard

References and Acknowledgment
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authors helped proofreading the manuscript.

2.1 Introduction

Inference of primordial magnetic fields opens a unique window into the Early Universe
between inflation and recombination. Although a variety of different astrophysical pro-
cesses may generate magnetic fields, the primordial magnetic seed may very well be the
origin of observed magnetic fields in galaxies and clusters. Primordial magnetic fields are a
viable candidate for the 10−16 G to ≈ 10−15 G (Neronov & Vovk 2010; Neronov & Semikoz
2009; Tavecchio et al. 2010; Dolag et al. 2011) fields expected in cosmic voids due to the
non-observation of GeV emission from TeV blazars among other explanations (Pfrommer
et al. 2013). In any case, they represent by definition the minimal amount of magnetic
fields present in the Universe. Literature provides a variety of very diverse effects for the
generation of primordial magnetic fields coherent on a large range of scales. A incomplete
list of possible magnetogenesis effects may include mechanisms at the end of inflation (e.g.
during the reheating phase or exploiting the electroweak phase transitions), during QCD
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phase transitions or effects that make use of speculative non-standard model physics such
as gravitational coupling of the gauge potential or string theory effects. Very often these
mechanisms struggle with producing the necessary field strengths and/or, especially the
post inflationary models, the necessary coherence lengths for large-scale magnetic fields.
The scale problem might be solved, at least for helical magnetic fields, via an inverse cas-
cade which transfers magnetic power to larger scales (Saveliev et al. 2012, 2013). Recent
works have shown that a similar mechanism exists for non-helical fields (Brandenburg et al.
2015), although the process is still poorly understood (Reppin & Banerjee 2017). For a
further discussion on different magnetogenesis models, we refer the reader to comprehen-
sive review articles (Kandus et al. 2011; Subramanian 2016; Yamazaki et al. 2012; Durrer
& Neronov 2013).

A more conservative Ansatz solely relying on the assumption of a ΛCDM Universe and
conventional plasma physics was proposed by Matarrese et al. (2005). This approach is
based on a mechanism initially proposed by Harrison (1970). During the later phases of
the radiation dominated epoch of the Universe a two fluid battery effect occurred between
the proton fluid and the tightly coupled electron-photon fluid. The densities ρ(α), with
α ∈ {m, γ} for baryons and the electron-photon fluid respectively, of the two components
scale with the scale factor a(t) as ρ(m) ∼ a(t)−3 and ρ(γ) ∼ a(t)−4, respectively. Therefore,
the separately conserved angular momenta L(α) ∼ ρ(α) ω(α) r

5 in a rotational setup with
radius r(t) ∼ a(t) requires the angular velocities ω(α) to depend on a(t) with ω(m) ∼ a−2

and ω(γ) ∼ a−1, respectively. In other words, protons spin down faster than electrons, as
the latter are carried by the still dominant photons. This difference in rotation then leads
to currents that induce magnetic fields (Harrison 1970). The necessary vortical motion of
both proton and radiation fluid are caused by effects that can be expressed as second order
perturbations of the fluid equation (Matarrese et al. 2005).

The recent progress on the inference of the actual 3D realization of the large-scale
dark matter structure and its formation history in the Local Universe and the fact that
the Harrison mechanism is solely founded on well established plasma physics allows us to
calculate the seed magnetic fields that had to be generated by this effect as well as their
present day morphology and strength. Since these fields have to exist today in combination
with fields of other sources, we are therefore able to provide credible lower bounds on the
primordial magnetic field strength in the Nearby Universe. We structure this article as
following:

Section 2.2 first summarizes the outcome of Matarrese et al. (2005) and then presents
the computational steps that take us from dark matter over densities to magnetic fields.
Section 2.3 gives a short overview on the dark matter density reconstruction used in this
work. Section 2.4 provides the intermediate results on magnetic field configuration and
power spectrum at radiation matter equality. Section 2.5 shows the results of the sub-
sequent MHD simulation. Section 2.6 contains a summary and an outlook on potential
improvements.
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Parameter Value
H0 67.74 km Mpc−1s−1

h 0.6774
ΩΛ 0.6911
Ωm 0.3089
Ωr 5.389 · 10−5

Ωk 0.0
zeq 3371

Table 2.1: Table of cosmological parameters used in this work (Planck Collaboration et al.
2016a).

2.2 Theory

This paper strongly relies on the theoretical framework outlined by Matarrese et al. (2005).
This approach describes primordial density perturbations in the Early Universe before the
recombination epoch as sources of magnetic fields via the Harrison mechanism (Harrison
1970). In the first part of this section we will summarize their assumptions and results. The
second part describes the implemented reconstruction approach to translate our knowledge
on dark matter over-densities into magnetic field estimates, first described by Dorn (2016).

2.2.1 Basics

All calculations here are performed using the standard ΛCDM model assuming the cos-
mological parameters described in Tab.2.1 following the 2015 results of the Planck mission
(Planck Collaboration et al. 2016a). Following Matarrese et al. (2005) we further assume
that the dominant constituents of the Universe in the relevant time frame behave as perfect
fluids of dark matter, electrons, protons and photons. All equations and calculations are
performed in Poisson gauge with the following line element:

ds2 = a2(η) (−(1 + 2φ) dη2 + 2χi dη dx
i

+ ((1− 2ψ) δij + χij) dx
idxj) (2.1)

a is the scale factor depending on conformal time η. φ and ψ are the Bardeen potentials,
χi and χij are vector and tensor perturbations, respectively.
The perfect fluid assumption results in a vanishing anisotropic stress tensor, which yields
φ = ψ ≡ ϕ to first order in perturbation theory.

As perfect fluids are assumed, the energy momentum tensor simplifies to

T (α)µ
ν = (P (α) + ρ(α))u(α)µu(α)ν + P (α)δµν . (2.2)

with P (α) the pressure, ρα the density and uµα the bulk velocity for each component α.
Pressure and density of a component are related via an equation of state

P (α) = w(α) ρ(α) . (2.3)
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We define the energy over-density with respect to the mean energy density ρ(α) (which is

the same quantity as ρ
(α)
0 in Matarrese et al. (2005)) of a component as

δ(α) =
ρ(α)

ρ(α)
− 1 . (2.4)

All quantities (δ(α), u(α), ϕ, χi, χij) can now be perturbed up to second order and related via
their respective momentum equations including source terms to describe interactions. The
coupling between the baryonic and radiation components is assessed by a tight coupling
approximation to zeroth order which implies v

(p)
i ≈ v

(e)
i ≈ v

(γ)
i . This sets Thomson and

Coulomb interaction terms to zero in this order. The curl of the momentum equations for
the proton and photon components of the fluid gives evolution equations for the respective
vorticities. The magnetic fields will be generated by vortical structures in the conductive
non-relativistic baryonic component. To understand this, however, we turn our eye to
the dominating photon component in that fluid. If a fluid component α was considered
separately, its vorticity ω(α) is a conserved quantity as stated by Kelvin’s circulation the-
orem. This holds for each order of perturbation theory separately, in particular for the
dominating photons:

ω′(γ) = 0. (2.5)

Given that we expect no vorticity in the initial conditions, external sources are absent and
we have an ideal fluid where pressure and density gradients are aligned, photon vorticity
should always be zero. There is however a subtelty that that comes into play due to the
fact that photons experience pressure. The photon vorticity equation in second order is
(Matarrese et al. 2005)

ω
(γ)
i (2) = − 1

2a2
εijk

[
av

j,k (γ)
(2) + aχj,k(2) (2.6)

+v
j (γ)
(1) ϕ,k(1) + v

′j (γ)
(1) v

k (γ)
(1)

]
The vorticity of photons in second order perturbation is not equal to the curl of the

second order perturbed velocity field, but includes coupled first order terms. Since we need
to obeye the conservation law in Eq. (2.5) and these first order terms are non-zero, a curl
in the photon velocity field needs to be induced. If we now turn our eye to the proton
vorticity equation these squared first order terms are absent due to the vanishing pressure:

ω
(p)
i (2) = − 1

2a
εijk

[
v
j,k (p)
(2) + χj,k(2)

]
(2.7)

The crucial connection is now that the tight coupling of the fluid components does
not couple the vorticities of protons and photons but their velocities. Therefore the right
part in Eq. (2.7) is non-zero and acts as a external source term for vorticity. Connecting
this with Maxwells equations, we get an equation for the generation of magnetic fields.
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In other words the arising proton vorticity needs to be offset by an external (magnetic)
force, in order to keep angular momentum conserved. The tight coupling approximation
is discussed in more detail in 2.2.3.

Matarrese et al. (2005) expressed the evolution equation for the magnetic field in terms
of the first order scalar perturbations of the metric ϕ(1) which in the Newtonian limit
gives the gravitational potential. By assuming negligible resistivity and therefore omitting
magnetic diffusion terms and performing (at least partially) an analytic integration, they
get (Matarrese et al. 2005; Dorn 2016)

B = − mp
e aH2

[
2∇ϕ′ ×∇ϕ− 1

12H∇ (∆ϕ)×∇ϕ
− 1

12H2∇ (∆ϕ′)×∇ϕ
]

− 1
a2

∫ η
ηI
dη̃ a
H ∇ϕ′ ×∇ϕ+

a2I
a2
BI (2.8)

for the magnetic field at time η, assuming some initial field BI at time ηI . A prime denotes
derivation by conformal time. mp is the proton mass, e the elementary charge, a the
scale factor and H = a′/a the comoving Hubble constant. In the formulation above, the
generation of magnetic fields is the result of a coupling between first order temporal and
spatial gradients of the scalar perturbations. In other words, the generation of magnetic
fields is the result of dynamics in the gravitational potential, which in turn are a result
of the gravitational pull on infalling matter through the horizon and the counteracting
radiation pressure. This close connection to the Baryo Accoustic Oscillations (BAOs) will
be evident in the power spectra of our results at recombination. Even for ϕ′ = 0, which is
true in the matter dominated era, this terms is not zero, as the second term only depends
on spatial gradients. The formulation above is very convenient, as the sole dependence on
the scalar perturbations makes the connection to initial conditions and the corresponding
state of the Universe today very easy, as will be demonstrated in the next section. The
integral term was omitted by Matarrese et al. (2005) in their analysis on the correlation
structure of the field. The initial field BI can safely be set to zero due to the a2

I/a
2 factor.

The assumption of small resistivity can be justified via considering the diffusion timescale

τdiff = 4πσL2, (2.9)

where L typical scale of magnetic structures and σ is the electron conductivity. Electron
momentum transfer is dominated via Thomson scattering, we can therefore write σ =
nee2

nγmeσT
. Plugging everything in, using the cosmological parameters from the Planck mission

(Planck Collaboration et al. 2016a) e.g. at recombination and L ≈ 1 Mpc, yields

τdiff ≈ 1042 s, (2.10)

which is orders of magnitude higher than the age of the Universe at tU ≈ 4.4 · 1017s.
Therefore once generated magnetic structures survive for a very long time and ignoring
the diffusion term is justified. In general, this is true throughout the history of the Universe,
at least after inflation and on large scales (Turner & Widrow 1988). High conductivity
also implies flux freezing, which will lead to magnetic field amplification during structure
formation in the late time evolution of the magnetic field as we will see in our results.

In the following we discuss the implementation of equation (2.8).
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2.2.2 Implementation

We now need to calculate ϕ and its spatial and temporal derivatives with respect to con-
formal time. We begin our calculation by translating the CDM density perturbations
measured1 shortly before the last scattering surface δcdm(z ≈ 1000) into primordial initial
conditions deep inside the radiation epoch at zp. Magnetogenesis can only take place on
scales which have entered the cosmic horizon at the corresponding epoch. Therefore it
makes sense to make this the criterion for zp. We know that the horizon condition can be
roughly written as

kh · ηh ≈ 1 (2.11)

with the conformal time measured in units of one over length, the speed of light set to
one and with η indicating conformal time. Knowing that the smallest scales of the grid
correspond to k256 ≈ 2.39hMpc−1 and k512 ≈ 4.78hMpc−1 with respective grid sizes of
256 and 512 points respectively, we know that the initial times must be on the order of the
grid resolution η256 ≈ 0.42 Mpch−1 and η512 ≈ 0.21 Mpch−1 with the speed of light set to
one. The equivalent redshifts are z256 ≈ 9.7 · 105 and z512 ≈ 1.9 · 106. Finally, zp = 107 was
adopted in this work, as it safely satisfies the aforementioned condition. We obtain δcdm(zp)
by using linear cosmological transfer functions and calculate the total energy over-densities
δtot(zp) from it,

δtot(zp) =
4

3
δcdm(zp) =

4

3
T (k, zp, zrec) δcdm(zrec) (2.12)

The 4/3 factor comes from the adiabatic super-horizon solutions for the density per-
turbations (see e.g. Ma & Bertschinger (1995)). The transfer functions T (k, zp, zrec) in
Poissonian gauge were calculated by the CLASS code (Blas et al. 2011). They contain all
relevant physics at linear order.
The peculiar gravitational potential ϕ(k, η) in the radiation epoch (implying w(γ) ≈ 1/3)
evolves as (see, e.g., Matarrese et al. (2005))

ϕ(k, η) =
3 j1(x)

x
ϕ0(k) (2.13)

in Fourier space with initial conditions ϕ0 at redshift z = 107, j1 is the spherical Bessel
function of first order and

x =
k η√

3
. (2.14)

Furthermore, the linearised Einstein equations relate the total energy perturbations to the
potential by

δtot =
2

3H2
(∆ϕ− 3H [ϕ′ +Hϕ]) . (2.15)

1For further comments on the data see section 2.3 and (Jasche et al. 2015)
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With this equation we can calculate the initial ϕ0 in Fourier representation as

ϕ0(k) =
3H2

2k2 j1(x)
x
− 6H

[
∂
∂ η

(
j1(x)
x

)
+H j1(x)

x

] δtot. (2.16)

From there on we can use Eq. (2.13) again to calculate the potential and its derivatives
at any time up to zeq.
The potential ϕ will tend to a constant after radiation-matter equality, as pressure be-
comes negligible. This means that the first and third term in Eq. (2.8) do not contribute
to magnetogenesis from the epoch of radiation-matter equality to recombination. We there-
fore evaluate these terms at radiation matter equality (z ≈ 3371). From there on, these
magnetic field terms are then propagated to recombination at redshift z = 1088 via the
induction equation of magneto-hydrodynamics (MHD) (assuming again perfect conductiv-
ity):

∂B

∂η
= ∇× (v ×B) (2.17)

The fluid velocity v is also calculated in first order perturbation theory. The second
term of equation (2.8) contains no time derivative of the potential and is therefore evaluated
at recombination (z = 1088).

We illustrate the steps of the calculation in Fig. 2.1.

2.2.3 Simplifications

This calculation contains simplifying assumptions to keep the evolution equation for the
magnetic field anaytically solvable. For completeness, those shall be discussed here.

The evolution of the potential via Eq. (2.13) is performed for a radiation dominated
Universe with an equation of state given in Eq. (2.3). The transition to the matter domi-
nated era is modelled in an abrupt way with w = 1

3
before equality and w = 0 afterwards.

As the real transition is smooth, scales in the order of the equality horizon maybe affected
by the modelling and magnetogenesis may even take place even after recombination. A
heuristic modelling via e.g. hyperbolic functions was not performed as the additional time
dependence makes the evolution equations for the potential not analytically solvable. This
could be incorporated in the model if needed for the price of more contrieved calculations.
Related to that, the coupling between electrons and photons is modelled via the tight cou-
pling approximation as mentioned earlier. Thomson scattering is very efficient for scales
larger than the mean free path of the photons, which at recombination can be estimated
via

dThomson =
1

neaσT
≈ 2 Mpch−1 (2.18)

in comoving scales. As we will see in the next section, our calculation is performed on
a ≈ 1.3Mpch−1 grid. Therefore the tight coupling should ideally be expanded to higher
order in case of the Thomson coupling.
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The above mentioned shortcomings where overcome by more detailed studies on the
the generation of primordial magnetic fields via the Harrison mechanism, which have been
conducted by several authors in the past 15 years. Gopal & Sethi (2005) showed that
differences between electron and photon velocities lead to source terms for magnetic field
generation. Saga et al. (2015) and Fenu et al. (2011) have refined this calculation by
including anisotropic stresses stemming from the imperfect Thomson coupling. A similar
calculation was done by Christopherson et al. (2011) first on the generation of vorticity in
second order and later on the subsequent magnetic field generation (Nalson et al. 2014)
via the introduction of non-adiabatic pressure terms.

All of these approaches give source terms on which the Harrison mechanism can operate.
The corresponding equations can in principle all be solved given suitable initial conditions.
Only the approach shown above, however, gives an analytically integrable expression. All
other models require the iterative solution of the respective magnetic field evolution equa-
tion in combination with all relevant quantities throughout the whole plasma era of the
Universe up until recombination. This requires considerable computational effort to be
implemented on the 5123 voxel grid used in this work. For this reason, and as the field
strengths which were found in (Gopal & Sethi 2005; Saga et al. 2015; Nalson et al. 2014;
Fenu et al. 2011; Fidler et al. 2016) are comparable to the ones found by Matarrese et al.
(2005), we find the above mentioned simplifications acceptable. Fidler et al. (2016) show
that the exact treatment of the Thomson coupling gives rise to significant magnetogenesis
even after last scattering, which highlights that a better modelling around recombination
would be desirable, given that one can shoulder the resulting computational complications.

2.3 Data

This work builds upon three dimensional dark matter density fields previously inferred
from the 2M++ galaxy compilation (Lavaux & Hudson 2011) via the BORG algorithm
(Lavaux & Jasche 2016). The BORG algorithm is a full scale Bayesian inference framework
aiming at the analysis of the linear and mildly-non-linear regime of the cosmic large scale
structure (LSS) (Jasche & Wandelt 2013; Jasche et al. 2015). In particular it performs dy-
namical LSS inference from galaxy redshift surveys employing a second order Lagrangian
perturbation model. As such the BORG algorithm naturally accounts for the filamentary
structure of the cosmic web typically associated to higher order statistics as induced by
non-linear gravitational structure formation processes. A particular feature, relevant to
this work, is the ability of the BORG algorithm to infer Lagrangian initial conditions from
present observations of the galaxy distribution (Jasche & Wandelt 2013; Jasche et al. 2015;
Lavaux & Jasche 2016). More specifically the algorithm explores a LSS posterior distri-
bution consisting of a Gaussian prior for the initial density field at a initial scale factor of
a = 0.001 linked to a Poissonian likelihood model of galaxy formation at redshift z = 0
via a second order Lagrangian perturbation theory (2LPT) model [for details see (Jasche
& Wandelt 2013; Jasche et al. 2015; Lavaux & Jasche 2016)], that is conditioned to the
2M++ galaxy compilation (Lavaux & Jasche 2016). Besides typical observational sys-
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z = 0 2M + + B

z = 1088 δCDM Brec

z = 3402 ϕeq Beq

z ≈ 1e7 δp ϕp

(a)
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Figure 2.1: An illustration of the implemented algorithm. The ellipses indicate relevant
redshifts. The labels near the arrows refer to the following steps: (a) Dark matter inference
from galaxy data via BORG, (b) Linear dark matter transfer functions (Eq. 2.12), (c)
translation of dark matter density to potential ϕ (Eq. 2.16), (d) time evolution of the
potential via Eq. 2.13, (e) calculation of the magnetic field (Eq. 2.8), (f) induction equation
(Eq. 2.17), (g) full MHD solver (see section 2.4)
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tematics and uncertainties, such as survey geometries, selection functions and noise this
algorithm further accounts for luminosity dependent galaxy bias and performs automatic
noise calibration (Lavaux & Jasche 2016). The BORG algorithm accounts for all joint
and correlated uncertainties in inferred quantities by performing a Markov Monte Carlo
chain in multi-million dimensional parameter spaces via an efficient implementation of a
Hamiltonian Monte Carlo sampler (Jasche & Wandelt 2013). As a result the algorithm
provides a numerical representation of the LSS posterior in the form of data constrained
realizations of the present three dimensional dark matter distribution and corresponding
initial conditions from which it formed. It is important to remark that each individual
Markov sample qualifies for a plausible realisation of the LSS. Each sample of the dark
matter distribution consists of a box with 2563 grid points and 677.7 Mpch−1 edge length,
resulting in a resolution of approximately 2.5 Mpch−1. For one sample of BORG we in-
crease the resolution of the grid to 5123 by augmenting the large scale modes with random
fluctuations consistent with the known dark matter power spectrum. This sample is then
propagated into todays configuration via a MHD simulation as explained in the following
section. As described above we now apply the Harrison mechanism on data constrained
initial conditions of the Nearby Universe.

2.4 MHD simulations

The MHD computation is started from the magnetic field generated at z = 1088 and
is evolved to z = 0 using the cosmological code ENZO (Bryan et al. 2014). ENZO is a
grid based code that follows the dynamics of dark matter with a particle-mesh N-body
method, and a combination of several possible shock-capturing Riemann solvers to evolve
the gas component (Bryan et al. 2014). The MHD method employed in this paper is the
Dedner “cleaning” method (Dedner et al. 2002), which makes use of hyperbolic divergence
cleaning to keep the (spurious) divergence of the magnetic field as low as possible during
the computation. The magnetic fluxes across the cells are computed with a piecewise linear
interpolation method and the fluxes are combined with a Lax-Friedrichs Riemann solver,
with a time integration based on the total variation diminishing second order Runge-
Kutta scheme (Wang & Abel 2009). Thanks to the capabilities of ENZO of selectively
refining interesting patches in the domain at higher resolution, we used adaptive mesh
refinement (AMR) to selectively increase the dynamical resolution in the formation region
of galaxy clusters and groups, which is necessary to properly resolve structure formation
and overcome the effect of magnetic field dissipation in converging flows at low resolution
(Vazza et al. 2014).

In detail, we apply AMR only in the innermost (120 Mpch−1)3 region of the simulation,
centred on the Milky Way location, and allowed for 5 levels of refinement (by increasing
the resolution of a factor 2 at each level, therefore up to a 25 = 32 refinement) whenever
the local gas/dark matter density exceeded the mean density of surrounding cells by a
factor of 3; the procedure is recursively repeated at each AMR level. This ensures that
the magnetic field evolution in the innermost clusters regions is typically followed with a



2.5 Reconstructing primordial magnetic fields 15

spatial resolution of 61− 122 kpch−1 (comoving) within the innermost AMR region of our
volume. To confirm the consistency of our result, we show a slice through the gas density
resulting from the simulation in Fig. 2.2. This plot indicates that we reproduce the large
scale structure consistently with observations.

2.5 Reconstructing primordial magnetic fields

We will present the results of our work in two steps. First we focus on the statistical prop-
erties of the field at recombination. By applying the procedure described in the previous
sections to an ensemble of data constrained initial conditions we can propagate observa-
tional uncertainties of the matter distribution as traced by the 2M++ survey to the derived
magnetic fields. In doing so we arrive at an ensemble of initial magnetic fields which con-
stitutes a numerical description of the magnetic field posterior distribution at redshift
z = 1088 conditional on 2M++ galaxy data. The goal here is to show how these uncer-
tainties translate onto the calculated primordial magnetic field and to give scale dependent
estimates on correlations and field strengths at this epoch.

The second part will show the results after the MHD run at redshift z = 0. Here we
will also turn our face on one particular realisation of the primordial magnetic field. We
will show the large scale primordial magnetic field of some clusters of galaxies as well as
the field in the close proximity to Earth. The resulting fields are available for download at
2.

2.5.1 Recombination

Means and Variances

To illustrate the uncertainties we show slice plots of the input data and the resulting
magnetic field strength at recombination in Figs. 2.3 and 2.4. All plots are slices through
the (677.7 Mpch−1)3 cube. The first plot shows the field resulting from one particular
sample of the BORG algorithm. The comoving root mean square (rms) field strength is
around 10−23 G. The uncertainties are rather large compared to the mean. This is a
consequence of the sparse data, which is more constraining on the large scales than the
small ones. Structures in the field appear to be rather small, typically with Mpc-scale (see
Section 2.5.1).

Figs. 2.3 and 2.4 give an impression of the Bayesian properties of the BORG algorithm,
which is translated onto our magnetic field realisations. They show the posterior mean and
variance field of the magnetic field strength generated from 351 samples from the BORG
posterior distributions. Areas which are highly constrained by data have well distinguish-
able structures in the mean, and have low uncertainty variance. The outer regions are less

2https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/data.html or
doi:10.5281/zenodo.1190925

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/data.html
http://dx.doi.org/10.5281/zenodo.1190925
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Planck(2015) This work
ln (1010As) 3.064± 0.023 ≈ 3.1

ns 0.9667± 0.0040 ≈ 1

Table 2.2: Comparison of inflation parameters provided by the Planck collaboration
(Planck Collaboration et al. 2016) and as inferred from the samples used in this work.

constrained, structures which are well visible in one particular sample are averaged out in
the mean, and the variance is high.

Power spectra

Information on the correlation structure of a scalar field s(x) can be gained from the
corresponding scalar power spectrum defined as:

〈s(k)s∗(k′)〉P (s) = (2π)3 δ(k − k′)Ps(k) (2.19)

where the asterisk denotes the complex conjugate. In case of a magnetic field B, the
statistically isotropic and homogeneous correlation tensor is defined as

〈Bi(k)B∗j (k
′)〉P (B) = (2π)3 δ(k − k′)Mij(k), (2.20)

where the tensor Mij is defined as (see e.g. (Durrer & Caprini 2003)):

Mij =
1

2

(
δij − k̂ik̂j

)
PB(k) + iεijkk̂kPH(k). (2.21)

The helical part PH(k) is assumed to be zero in this work. The magnetic field power
spectra are therefore just the trace component of the magnetic field power spectrum tensor.

As a consistency check we first show the power spectrum of the initial CDM field and
the scalar perturbations ϕ through some of the time steps of the algorithm in Figs. 2.5,
2.6 and 2.7. These plots show the averaged spectra from 351 samples from BORG together
with the corresponding uncertainties. We also show the magnetic field power spectrum in
Fig. 2.8.

Despite some deviations on very large scales reflecting the uncertainties mentioned in
the previous section, the spectra agree to a very good level with our expectations. These
deviations can be noted in our intitial matter fields coming from the BORG algorithm (Fig.
2.5) and further on in all the other averaged power spectra. We note a clear k−3 dependence
in the primordial potential and matter power spectrum corresponding to an approximately
unity spectral index as expected for uncorrelated and scale invariant structures (Harri-
son 1970; Zeldovich 1972). We can compare the spectrum with the Planck results as a
consistency check, see Tab. 2.2 and the dashed line in Fig. 2.6.

The potential power spectrum at matter-radiation equality drops shortly above k =
0.1 Mpc−1 h, indicating the size of the horizon at that time. At small scales, the spectrum
shows oscillations in Fourier space, which stem from the functional form of the potential
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evolution equation in Eq. (2.13). Physically speaking, these are the Baryon-accoustic
oscillations (BAO’s) induced by horizon crossing during the radiation epoch. The uncer-
tainties again agree with the initial dark matter spectrum. The resulting power spectrum
of the magnetic field is plotted in Fig. 2.8. It rises for small k-values with approximately
k3.5 as expected for a uncorrelated source-free vector field (Durrer & Caprini 2003) and
peaks at kpeak ≈ 2 · 10−1 Mpc−1 h. The plot shows little ’bumps’ on small scales, which are
remnants of the oscillating potential in the radiation epoch. At this point it shall also be
noted that in the time frame of our calculation any turbulence due to primordial velocity
perturbations is not relevant. In Wagstaff et al. (2014) the authors show that given these
perturbations the very Early Universe has Reynolds numbers in the range of 103. This then
gives the perfect framework for a small-scale dynamo to amplify the magnetic seed fields
originating from the Harrison effect to fields with strengths of approximately 10−15 G, but
with typical correlation lengths of the order of parsecs. Given the Mpc resolution of our
grid, this is not relevant for this work.

Scale dependent mean field

To give a more intuitive picture of the expected magnetic field strengths, we convolve the
magnetic field power spectrum with a Gaussian kernel in position space to get an estimate
for B given a scale of reference λ.

B2
λ =

1

(2π)3

∫
PB(k) e−

k2λ2

2 d3k (2.22)

The result of this operation is shown in Fig. 2.9. For scales reaching from 2.65 Mpch−1

to ≈ 10 Mpch−1 the magnetic field strength weakly declines and has a typical strength of
approximately 10−23 G. For scales larger than 10 Mpch−1, Bλ roughly scales as

Bλ ∼ λ−2.5. (2.23)

The field strength reaches from 10−23 G at the smallest scales just over 1 Mpch−1 to less
than 10−27 G at scales over a 100 Mpch−1. This information is of course closely related to
the magnetic field power spectrum.

2.5.2 Today

Field strength and correlation structure

In Figs. 2.10a we depict the power spectrum of the magnetic field today for one sample of
the BORG posterior. We show the complete spectrum as well as the void power spectrum
inferred via negleting dens voxels with gas density ρ > 3 · ρ and the critical filter technique
(Knollmüller et al. 2017a), which assumes that the unmasked regions are typical for the
whole volume. The BAO signature and most small structures have been destroyed during
structure formation, leading to a mostly red spectrum. For the complete spectrum and
the voids, most power still lies on scales of about kpeak ≈ 10−1 Mpc−1 h. The morphology
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of the complete power spectrum is rather similar to the void power spectrum, which is
expected, as they compromise the largest volume share of the Universe and calculating a
power spectrum is effectively a volume averaging procedure. The decrease at large scales
again reflects the solenoidality of magnetic fields (∇ · B = 0) for uncorrelated signals
(Durrer & Caprini 2003), as the large scale structure has a characteristic size and therefore
larger scales are not strongly causally connected via gravity.

In Fig. 2.10b we show the joint probability function of matter density and magnetic
field strength. Most of the probability mass lies on rather small densities, with varying
magnetic field strengths. Large densities tend to be associated with large magnetic field
strength. The lower bound of this plot follows a B ∝ ρ

2
3 proportionality, which was

already found in previous simulations, e.g. Vazza et al. (2017). All in all this leads to the
picture that the magnetic field in the low density areas which are relatively little affected
by structure formation mostly retain their correlation structure and morphology. After
recombination, the field is frozen into the plasma. Therefore the field strength scales with
a(t)−2, explaining the field strengths somewhere around 10−29 G. Within dense structures
the field is at least amplified up to 10−26.5 G. We underline this view with specific examples
in the next chapter.

Field realisations

In Figs. 2.11 and 2.12 we show structures in the magnetic field and the density field
which belong to different morphological features of the Local Universe. We find that the
magnetic field strength strongly correlates with the gas density in all of these structures,
consistent with a frozen-in behaviour of magnetic fields. In very dense clusters such as
Virgo and Perseus-Pisces in Fig. 2.11, the magnetic field morphology seems to be driven
by the infall of matter on the cluster. Of course the simulation is too coarse to correctly
cover the structure formation and magnetic field behaviour on small scales within these
structures, for this reason any small scale structures in these plots are highly uncertain.
Also the maximum magnetic field strength maybe higher, as we cannot resolve any potential
dynamo mechanism during structure formation. In underdense regions as depicted in the
upper image in Fig. 2.12, we observe a morphology similar to the initial conditions, with
a characteristic scale of a few Mpc/h. Apart from the aforementioned a(t)−2 dependence
of the field strength, the morphology seems to relatively unaffected, which is consistent
with our view of a ’frozen’ magnetic field. In the lower image of Fig. 2.12 we show the
magnetic field in a slice around our galaxy. The field here is slightly amplified up to field
strengths of 10−28 G, as a slight overdense structure seems to have formed in the region,
which may correspond to the Local Group. The Local Group has a typical scale of about 2
Mpc, which is slightly below the smallest data constraint scale in our calculation, making
the association difficult.
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Full sky maps

We can use the results of the ENZO simulation to estimate the expected Faraday rotation
of linear polarized light under the influence of a magnetic field. Faraday rotation measure
(RM) is calculated via

RM =
e3

2πm2
ec

4

∫ Rmax

0

nthB dr (2.24)

in cgs units (see e.g. Oppermann et al. (2012c)). It is essentially a line of sight (LOS)
integration up to a distance Rmax over the magnetic field B weighted with the electron
number density nth. This can be computed using the publicly available Hammurabi Soft-
ware (Waelkens et al. 2009a), which performs the necessary LOS integration over a sphere
around the Earth3. The result can be seen in Fig. 2.15. The same software is also able to
calculate the dispersion measure of electrons (DM)

DM =

∫ Rmax

0

nth dr (2.25)

and the LOS averaged absolute magnetic field strength, shown in Figs. 2.16 and 2.13.
These maps nicely trace dense structures in the sphere over which we integrated. We also
used the output of Hammurabi for the LOS perpendicular components of the magnetic to
generate a polarization like plot in Fig. 2.14, which traces the magnetic field morphology
in the sphere. Comparing the plots we see that areas of large RM correspond to large
electron densities, as we expect given the linear nth dependence of RM. We also note again
that the magnetic field strength and morphology correlates with the density.

Of course the expected signal is beyond any chance of measurability, and in the realistic
case we expect that the memory of any such tiny seed field within clusters is entirely lost
due to the dynamo amplification process (Beresnyak & Miniati 2016), which is expected
to be much more efficient on scales smaller than what is resolved at our resolution here.
The void signal, however, although a few order of magnitudes smaller, may be relatively
undisturbed by such processes, at least away from other possible sources of magnetisation,
like dwarf galaxies (Beck et al. 2013).

2.6 Summary and Discussion

We calculated the large scale primordial magnetic field originating from the Harrison effect
(Harrison 1970) and second order vorticity generation in the radiation dominated era. This
is the first time a data constraint reconstruction of the remnant of a primordial magnetic
field was achieved.

For that, we used our knowledge about the large scale structure in the Universe coming
from the 2M++ galaxy survey and the BORG algorithm to infer the corresponding density

3We used a reimplementation of Hammurabi [Wang et al., in prep.];
https://bitbucket.org/hammurabicode/hamx
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distributions deep in the radiation epoch. Using an existing formalism for the magnetic field
generation from these initial conditions, we then found at recombination a field coherent
on comoving scales in the 10 Mpch−1 regime, with a maximum field strength of about
10−23 G at these scales. By means of a MHD simulation we evolved the magnetic field
through structure formation and came up with field strengths higher than ≈ 10−27 G
and ≈ 10−29 G in clusters of galaxies and voids, respectively. We specifically showed the
structure of the field around well known structures in the Local Universe, such as the Virgo
and Perseus Pisces cluster.

The above results, including the statistical properties of the magnetic fields, the mor-
phology of the field on above Mpc scales and the expected observables shown in Figs. 2.15
and 2.16 rely only on the assumption of a ΛCDM cosmology and conventional plasma
physics. We introduced further simplifications such as the tight coupling approximation
and the simplified modelling around the radiation matter equality due to computational
constraints. In Fenu et al. (2011) and Saga et al. (2015), the authors calculated the correct
evolution equations without these simplifications, leading to slightly different spectra, but
comparable magnetic field strengths. Large scale magnetic fields can also be produced
by more speculative mechanisms for primordial magnetogenesis, by transferring magnetic
energy of small scaled magnetic fields to larger scales via an inverse cascade and by mag-
netogenesis driven by radiation pressure during reionisation. For this reason, we view our
results as a lower limit on the magnetic field strength in the Local Universe. This is espe-
cially true for clusters, as for once small scales are not strongly constraint by our data and
moreover we where not able to resolve the relevant scales for magnetic field amplification
via turbulence, as predicted by e.g. Subramanian et al. (2006). We did arrive at magnetic
field strengths which could act as a seed field for the galactic dynamo (Davis et al. 1999),
however given the fact that we cannot adequately resolve sub-Mpc scales and galactic mag-
netic fields maybe explained without a primordial seed, we refrain from giving an estimate
to which extent the Harrison magnetic field could have influenced galactic magnetic fields.
If the non-observation of TeV-photons from blazars is caused by void magnetic fields of
strength 10−15 G (Neronov & Vovk 2010; Neronov & Semikoz 2009), our prediction is not
sufficient to explain these. However, these (non-) observations can also be explained by
other processes as shown by Pfrommer et al. (2013).

Considering the rather conservative assumptions made in our calculations, we can pro-
vide a credible lower bound on the strength of the large scale magnetic field today and
an impression of its expected morphology. The logical next step building up on this work
would be a refinement of the calculation via the implementation of more sophisticated
formalisms for the generation of primordial magnetic fields, especially including a more
accurate baryon photon interaction treatment.
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Figure 2.2: A slice through the gas density distribution of the innermost region of the box
averaged over 6 voxels in x direction at redshift z = 0 as a result of the ENZO simulation.
The plane is about 1 Mpch−1 thick. The red crosses indicate the positions of galaxies
found by the 2M++ survey in the same volume.
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Figure 2.3: The posterior mean (left) and uncertainty standard deviation field of the dark
matter overdensities (right) at redshift z = 1000. This is the mean of the input data for
our calculation averaged over 351 posterior samples of the matter field as generated by
BORG. Our galaxy is centered in the middle. Areas close to the center a very pronounced
in the mean, while areas further away are blurred out during the averaging. This reflects
the Bayesian nature of the BORG algorithm, as the closer areas are very constrained by
data, which leads to a relatively narrow posterior distribution in each pixel as reflected by
the uncertainty variance. Therefore each sample looks similar there. The outer regions are
barely constrained by data, leading to high uncertainties in the posterior.

Figure 2.4: The posterior mean (left) and uncertainty standard deviation (right) field of
the absolute value of the Harrison magnetic field at redshift z = 1088. Just as in the case
of the initial data in Fig. 2.3, we note a very similar pattern in the mean and variance
plots for regions closer and further away from Earth. The uncertainties of the density fields
translate into uncertainties of the magnetic field.
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Figure 2.5: The matter power spectrum at
z = 103. This is the spectrum of the input
data. The red line is the mean averaged over
the 351 samples. The grey area gives the
uncertainty in the spectrum.

Figure 2.6: The power spectrum of the pri-
mordial scalar perturbations at redshift z =
107 as extracted from the cosmic structure
reconstruction by Jasche et al. (2015). The
dashed blue line indicates the scale invariant
spectrum normalized with the Planck ampli-
tude parameter As, see Tab. 2.2.

Figure 2.7: The power spectrum of the
scalar perturbations at redshift z = 3402 at
the end of the radiation dominated epoch.
The oscillations in the spectrum are the
Baryon-Accoustic Osclillations (BAO).

Figure 2.8: The power spectrum of the mag-
netic field at redshift z = 1088 just before
recombination. The spectrum is defined of
a vector field is defined in Eq. (2.20) and
Eq. (2.21). The spectrum peaks at approxi-
mately ≈ 3 · 10−1 Mpc−1 h.
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Figure 2.9: Scale averaged magnetic field at recombination. This is the result of Eq. (2.22).
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(a) The magnetic power spectrum at z = 0, defined according to Eq. (2.20). The black line
indicates the spectrum for the complete magnetic field in the box. The green dashed line indicates
the void power spectrum, computed only from a part of the box. Here we considered voxels with
gas density ρ < 3 ·ρ as void voxels. The void power spectrum was inferred using the critical filter
technique (Knollmüller et al. 2017a), which assumes that the unmasked regions are typical for
the whole volume.

(b) Joint histogramn of the magnetic field and matter density at redshift z = 0 with 5122 bins.
The dashed line indicates the B ∝ ρ2/3 relation resulting from the flux freezing of the magnetic
field lines. This relation is also observed in simulations starting with unconstrained magnetic
field conditions, see e.g.Vazza et al. (2017).
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Figure 2.11: The magnetic field and gas matter density in a slice trough the Virgo (above)
and the Perseus-Pisces (below) cluster. The plots shows the gas matter density overplotted
with the y − z components of the magnetic field vectors. All colorbars have a logarithmic
scaling. The coordinates are defined via the equatorial plane with reference to the galactic
centre. The choice of the slice is purely for artistic reasons.
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Figure 2.12: The magnetic field and gas matter density in an underdense region (above)
and around the galactic center in the x− y plane. The plots shows the gas matter density
overplotted with the x− y components of the magnetic field vectors. All colorbars have a
logarithmic scaling. The coordinates are defined via the equatorial plane with reference to
the galactic centre.
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Figure 2.13: The magnetic field strength averaged over line of sights in units of Gauss
for sources within a distance of 60 Mpc/h from Earth. The plot is in galactic coordinates.
The two dominant clusters in this image are Perseus Pisces in the middle left of the image
and Virgo close to the North pole. Close ups of both structures are provided in Fig. 2.11.

Figure 2.14: A polarization-like plot visualizing the magnetic field morphology perpen-
dicular to the LOS. This plot was generated using the ’Alice’ module of the HEALPix
software and the linear integral convolution algorithm (Cabral & Leedom 1993). The plot
is in galactic coordinates.
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Figure 2.15: The primordial magnetic field Faraday rotation measure for polarized sources
located within a distance of 60 Mpch−1 from earth in units of radians per square metre.
The plot is in galactic coordinates. The colormap is logarithmic on both the negative and
the positve regime with a linear scaling between −10−29 and 10−29 rad·m−2, connecting
both parts of the scale. We used the rescaled gas mass density as an estimate for the
electron number density.

Figure 2.16: The electron dispersion measure in units of parsecs per cubic centimetre for
sources within a distance of 60 Mpc/h from Earth. The plot is in galactic coordinates. We
used the rescaled gas mass density as an estimate for the electron number density. The
two dominant clusters in this image are Persues Pisces in the middle left of the image and
Virgo close to the North pole. Close ups of both structures are provided in Fig. 2.11.
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Chapter 3

The Galactic Faraday sky revisited

References and Acknowledgment
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3.1 Introduction

The Faraday rotation effect is one of the primary sources of information on astrophys-
ical and cosmological magnetic fields. This includes the fields of planets (Boudjada &
Lecacheux 1991), stars (Kooi et al. 2017), other galaxies (Gießübel et al. 2013) and galaxy
clusters (Dreher et al. 1987b), as well as more curious objects such as radio jets, lobes, and
relics (e.g. Bonafede et al. (2013)). In particular, the study of the Faraday rotation induced
by the Milky Way magnetic field is of twofold importance. First of all it is an interesting
research topic on its own, due its connection to the formation and structure of our home
galaxy, but furthermore it also constitutes a non-negligible foreground component. All po-
larized light stemming from cosmological sources passes through the Galaxy and interacts
with the Galactic magnetic field, which affects its polarization direction. Accurate and
highly resolved Galactic foreground templates are therefore a necessary condition for any
precision measurement of extra-galactic magnetic fields via Faraday rotation.
Multiple efforts have been made to to map the Galactic Faraday sky, quite a few of them
already to remarkable accuracy (e.g. in Frick et al. (2001); Johnston-Hollitt et al. (2004);
Dineen & Coles (2005); Xu et al. (2006); Oppermann et al. (2012a); Xu & Han (2014), and
Oppermann et al. (2015)). The approach in Oppermann et al. (2012a) is especially impor-
tant to us, as we will rely on the same theoretical framework for our inference algorithms.
We will refer to this paper as NO12 and to its successor paper Oppermann et al. (2015) as
NO15 from here on.
Our goal in this work is to further sharpen our knowledge on the Faraday sky by ex-
ploiting correlations to the electron emission measure (EM) as traced by bremsstrahlung
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measured from electron proton interaction in the interstellar medium, commonly known as
the Galactic free-free emission. This is well motivated by observation as well as physical
considerations, as we will outline later on. In a more general context, we hope to demon-
strate an interesting test case of multi-wavelength astronomy, and show that the synthesis
of long existing data sets still can yield undiscovered information, under the condition that
our a priori physical knowledge is employed and the data is treated in a consistent way.
Our main result, the revised Faraday sky including the free-free data (from here on “re-
construction I”) is shown in Fig. 3.1a and the revised map without free-free data in Fig.
3.1b (from here on “reconstruction II”) .
The paper is structured as follows. In Sec. 3.2 we develop our updated reconstruction
method. This involves an amplitude field aiming at representing the overall Galactic struc-
ture and a sign field representing magnetic reversals and smaller scaled structures. It turns
out that the reconstructed amplitude field resembles the free-free EM of the Galaxy, which
is physically plausible. In order to take advantage of this, we extend the method to fold in
the measurements of the free-free EM sky in Sec. 3.3. We conclude in Sec. 3.4.

3.2 Improving the Inference of the Faraday sky

3.2.1 The physics

The rotation angle ∆λ of the polarization plane of linearly polarized light due to Faraday
rotation can be written in most astrophysical settings as (Burn 1966)

∆λ = φ (nth, BLOS)λ2, (3.1)

where λ is the wavelength at which the light is observed. The Faraday depth φ depends on
the thermal electron density nth and the line of sight (LOS) component of the magnetic field
BLOS. More specifically for a polarized extra-galactic source shining through the interstellar
medium, the Galactic part of the Faraday depth φgal can be written as (Brentjens & de
Bruyn 2005a)

φgal =
e3

2πm2
ec

4

∫
LOS

dl nthBgal,LOS, (3.2)

where Bgal is the galactic magnetic field, e is the electron charge, me is the electron mass
and c the speed of light. Contributions to the observed rotation angle not only come
from the Galactic magnetic field but also contain extra-galactic, potentially source internal
contributions. The Faraday rotation measure (RM) is commonly obtained by fitting the
rotation angle defined in Eq. (3.1) over λ2 and calculating the slope. Only in cases with
negligible foreground emission this slope is equal to φ. Otherwise, the resulting observed
curve in λ2 space will not be linear and φ must be obtained via a spectral analysis technique
commonly known as RM-synthesis (Brentjens & de Bruyn 2005a). In this work we will
use data points from both techniques and will therefore use the term ’Faraday data’ for
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(a)

(b) (c)

Figure 3.1: Reconstructions of the Faraday sky. Fig. (a) shows our main result, the
posterior mean of reconstruction I. This map uses the free-free EM map as a proxy for
the Faraday amplitude. The model furthermore contains fields that translate the free-
free map into a Faraday amplitude, thereby balancing effects that support and those that
disturb a direct relation of these two quantities. Fig. (b) contains the posterior mean of
reconstruction II. Here we did not use the additional free-free data. Fig. (c) shows the
posterior mean of the (NO15) reconstruction. We show the differences of the three maps
in Fig. 3.2. These maps and all maps following in this paper are presented in Galactic
coordinates centered at (l, b) = (0◦, 0◦).
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(a)

(b) (c)

Figure 3.2: Differences of the reconstructions of the Faraday sky shown in Fig. 3.1. Figure
(a) shows the difference between the NO15 map and reconstruction I. Figure (b) shows the
difference between the NO15 map and reconstruction II. Figure (c) shows the difference
between the Faraday depth skies resulting from reconstruction I and reconstruction II.
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both RM and RM-synthesis data, in the spirit of NO12. Similar to the approach taken by
NO12, it will be helpful to separate the Faraday depth signal into

φ = φgal + φetc. (3.3)

The terms φgal and φetc describe the aforementioned Galactic and other e.g. extra-
galactic, source intrinsic, or ionospheric contributions, respectively. Our goal in this work
will be the estimation of φgal as a correlated field on the sky. This implies the necessity
for an at least stochastic estimation of the other contributions. The connection of φ to the
observed data dφ is the topic of the next section.

3.2.2 The data

A measurement of the Galactic Faraday depth can be modeled via

dφ = Rφφ+ nφ, (3.4)

where we ignore for the moment the potential non-galactic contributions mentioned in
Eq. (3.3). The quantity nφ in Eq. (3.4) is the measurement noise. The operator Rφ is
called the response and describes the noiseless measurement process translating the signal
into data space. In this case, the evaluation of the response at the location of source i is
sufficiently described via

[Rφ]i =

∫
S2

dê φ (ê) δ(ê− êi), (3.5)

with ê being the radial unit vector on the 2-sphere. The measurement noise can be assumed
to be independent and Gaussian distributed according to

P (nφ) = G (nφ, Nφ) =
1√
|2πNφ|

e−
1
2
nφN

−1
φ n†φ , (3.6)

with zero mean and known noise covariance Nφ. The noise will play an important role for
our estimation of non-galactic contributions to φ, which will be discussed in more detail
in Sec. 3.2.3. For the moment we assume Nφ to be simply given by the observational
measurement uncertainties, therefore being a diagonal matrix in data space.
As we are conducting a Bayesian inference, our main task is the evaluation of the posterior
probability distribution. An integral part of this distribution is the likelihood, which in
our case is best described by the following Gaussian:

P (dφ|φ) = G (dφ −Rφφ,Nφ) (3.7)

The likelihood will be further determined by the the specific modeling of φ, which we will
present in Sec. 3.12. There we will also specify the different prior terms.
The data set used in this work is exactly the same compilation of Faraday rotation measures
as used in NO12 and is mostly publicly accessible 1. This compilation contains rotation

1https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/faraday_revisited.html

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/faraday_revisited.html
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measures, corresponding standard deviations and source positions for 41632 sources 2.
Similar to NO15 we multiply the uncertainties of the Taylor et al. (sub-)data set (Taylor
et al. 2009) with 1.22 according to Stil et al. (2011). We note that Vernstrom et al. (2019)
argue against this generic increase of the uncertainties and in contrast favor a decrease at
least for a subset of the Taylor catalog. Furthermore it was found by Ma et al. (2019) that
some of the data points of the same catalog suffer from nπ-ambiguities, which means that
the reported RM’s can be offset by multiples of ±652.9 rad m−2. We will discuss in the
model section how we deal with such systematic effects in the data.
No additional polarimetric information, such as e.g. Faraday spectra, was used in this
work. The data and the corresponding standard deviations are shown in Figs. 3.3a and
3.3b.
Next, we specify the modeling of φ in Eq. (3.4). We will furthermore explain the treatment
of the non-galactic components of dφ.

3.2.3 The model

The sky model

The results of the previous reconstruction (NO15) indicates that the Faraday sky has two
characteristics that necessarily need to be modeled for an optimal inference. Firstly, the
sign of the sky field changes rapidly, which reflects the rather abrupt directional changes
of the LOS magnetic field component. Secondly, the absolute value of the signal varies
over two orders of magnitude, most notably the Galactic disk will have a much stronger
signal than the Galactic poles. For these reasons, we chose to parameterize φ : S2 → R as
a point-wise product between two fields living on the sky, or explicitly

φ ≡ χeρ
rad

m2
, (3.8)

where χ : S2 → R will be called the sign field, as it is able to capture the information on the
sign of the Faraday depth, and ρ : S2 → R will be called the amplitude field, as eρ is strictly
positive after the exponentiation and is able to model the large amplitude variations of
the Faraday sky over orders of magnitude. Both fields are unitless. This is a more generic
approach than in NO12 where, instead of an amplitude field, a profile function was used to
capture the latitudinal dependence of the overall Galactic Faraday dispersion profile. Note
that the sign field is in no way constrained to only contain information on the sign of the

2Bonafede et al. (2010a); Broten et al. (1988); Brown et al. (2003); Taylor et al. (2003); Brown et al.
(2007); Haverkorn et al. (2006); McClure-Griffiths et al. (2005); Clarke et al. (2001); Clarke (2004); Clegg
et al. (1992); Feain et al. (2009, 2011); Gaensler et al. (2001a); Hammond (2011); Heald et al. (2009); Braun
et al. (2007); Hennessy et al. (1989); Johnston-Hollitt (2011, 2003); Johnston-Hollitt & Ekers (2004); Kato
et al. (1987); Kim et al. (1991); Klein et al. (2003); Gregorini et al. (1998); Vigotti et al. (1999); Lawler
& Dennison (1982); Dennison (1979); Mao et al. (2010, 2012a); Gaensler et al. (2005); Mao et al. (2008);
Minter & Spangler (1996); Oren & Wolfe (1995); O’Sullivan (2011); Roy et al. (2005); Rudnick & Jones
(1983); Schnitzeler (2011); Simard-Normandin et al. (1981); Tabara & Inoue (1980a); Taylor et al. (2009);
Condon et al. (1998); Van Eck et al. (2011); Wrobel (1993)



3.2 Improving the Inference of the Faraday sky 37

(a)

(b)

Figure 3.3: Sky map of the Faraday data set and its errors. Figure (a) shows the Fara-
day catalog used in this work projected on the sky. Figure (b) shows the corresponding
uncertainties. We note that the region corresponding to the terrestrial south pole is only
weakly constrained by data, except for the Galactic disk.
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signal, but also can capture morphological features, leading to a degeneracy between the
two fields. This could be broken by either imposing constraints on the correlation structure
for one, or both, of the fields, or by introducing new data that informs the algorithm on
one of the two fields. However, it turns out that the symmetry is sufficiently broken by
the Gaussian process priors we impose on both fields separately, in combination with the
specific functional form of φ as given by Eq. (3.8). Sign variations can only be captured by
the sign field, ensuring that it is structured. The overall amplitudes of these fluctuations,
which change as a function of position on the sky, are more easily represented by the
amplitude field, which therefore preferentially absorbs them. Both fields are assumed to
have independent and Gaussian isotropic statistics. Their joint prior probability function
is

P (χ, ρ|Sχ, Sρ) = G (χ, Sχ)G (ρ, Sρ) . (3.9)

In contrast to the distribution in Eq. (3.6), the covariances Sχ and Sρ are unknown. If
this were not the case, the above model in a Bayesian setting would directly lead to a
specific application of the well known (non-linear) Wiener filter (Wiener 1966; Enßlin et al.
2009). This is not the case unfortunately, as in our case we have little a priori knowledge
on the correlation structure. Similar inference problems have been solved in the past in
the previous reconstruction of the Faraday sky by NO12 and elsewhere (e.g. in Selig et al.
(2015); Pumpe et al. (2018); Leike & Enßlin (2019)).
All of these inferences relied on a framework laid out by information field theory (IFT)
(Enßlin et al. 2009; Enßlin 2019). IFT connects Bayesian statistics with methods from
statistical and quantum field theory, joining them into a inference scheme that connects
noisy, incomplete data with the underlying continuous field(s). Considering the problem
mentioned above, the requirement of simultaneously inferring the map and the correlation
structure of a field leads to the critical filter formalism, which was first formulated in IFT
by Enßlin & Weig (2010) and Enßlin & Frommert (2011). We will follow the most modern
formulation, as outlined in Knollmüller et al. (2017b).

The noise model

We also need to find an estimate for the non-galactic contributions to the Faraday rotation.
In this part of the inference, we follow the approach in NO12 very closely. We will start
by inserting Eq. (3.3) into the measurement equation (3.4) and define an effective noise
term ñφ:

dφ = Rφ(φgal + φetc) + nφ ≡ Rφφgal + ñφ (3.10)

We have no reason to drop the assumption of Gaussianity for the new noise term ñφ, but
have to adapt the covariance to include the increase in uncertainty. As we have no a priori
guesses on the specific systematics of the different sources, we will infer this increase (or
decrease) in uncertainty as well. This is implemented by introducing the following model

Ñφ = diag
(
ηφσ

2
φ

)
, (3.11)
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for the new noise covariance Ñ , where ηφ are the parameters that need to be inferred and
σ2
φ is the reported measurement uncertainty. We will assume ηφ to follow an inverse gamma

distribution:

P (ηφ|αφ, βφ) =
β
αφ
φ

Γ(αφ)
η
−αφ−1

φ exp

(
−βφ
ηφ

)
(3.12)

The hyper-parameters αφ and βφ need to be specified for the inference. Conveniently,
this model should also take care of sources suffering from nπ ambiguities, as an increased
noise term down-weights the respective data points in the inference.
We choose the slope parameter for the power law to be αφ = 2.5. Furthermore we demand
the prior expectation value of ηφ to be unity, which results in βφ = 1.5. Note that this is
a different choice of parameters as in NO12 and NO15, where the authors chose αφ = 1
and βφ such that the prior expectation value of ln(ηφ) is zero. This implies that we are
more restrictive for the noise correction parameters and make it harder for the algorithm
to classify data points as noise. This choice is motivated by the fact that we are now also
inferring the profile field. In the old algorithm of NO12 the Faraday profile was fixed during
the inference and only determined after the inference of the sign field was performed. This
made it easy for the algorithm to identify outliers, as for example cases where |dφ| � |φ| are
only explainable by the noise correction if the signal field is already sufficiently determined
at the location of the data point dφ. In our case, the profile is a priori much more flexible and
inferred simultaneously, making the identification of inconsistencies much more ambiguous.
If we a priori want to have single data points to have a comparable impact as in NO12,
we have to restrict the noise estimation to some degree. We chose αφ and βφ such that we
are able to reproduce the previous results, as we have no reason to distrust the results of
NO12 and NO15 and we have no better measure for the choice of hyper-parameters.

3.2.4 The inference

The hierarchical Bayesian model described in the previous sections can be symbolically
depicted as a hierarchical tree, of which the lower branches are shown in Fig. 3.12. The
higher branches of the tree contain the hyper-parameters and are discussed in the appendix
together with the more explicit likelihood and prior functions.
The evaluation of the posterior is a non-trivial task in our case, as the non-linearities in
the models lead to highly non-Gaussian distributions for which no analytical description
is known to exist. Furthermore, the fact that we aim for an simultaneous inference of the
fields determining the Faraday map, as well as their correlation structures, leads to a strong
interdependence between all degrees of freedoms. Our desired resolution of ≈ 10 arcmin
also leads to a high dimensionality. Together with the high dimensionality of the problem,
on the order of 106 unknown parameters, this leads to considerable numerical complexity.
IFT solves such problems by providing efficient and well-tested algorithms for posterior
evaluation. We employ here the Metric Gaussian Variational Bayes method (MGVI), which
is better suited for simultaneous map and correlation structure inference compared to the
maximum a posteriori algorithm used in Oppermann et al. (2012a). We furthermore im-
plement the aforementioned hierarchical tree as a forward model, which aims among other
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things for a more efficient numerical coupling between different parts of the model and
allows the employment of sampling methods.
On a technical side, the inference was conducted using version 5 of the NIFTy python
package (Selig et al. 2013; Steininger et al. 2017; The NIFTy5 team et al. 2019) for nu-
merical information field theory. NIFTy is specifically designed for IFT applications and
provides libraries for implementing the above mentioned models as well as for inferring
their parameters and the uncertainties of those.

3.2.5 The results

Comparison to older results

The posterior mean Faraday depth map of reconstruction II relying on Faraday data only
and inferred according to the model depicted in Fig. 3.12 is shown in Fig. 3.1b, the pre-
vious one of NO15 in Fig. 3.1c, with corresponding standard deviations in Figs. 3.4b and
3.4c, respectively. The difference of both maps are shown in Fig. 3.2b. A visual comparison
of the two maps reveals satisfying agreement. The difference map, however, shows that
there are indeed significant small scaled deviations of the maps in the area of the Galactic
disk. These may be a result of the different noise estimation parameters in the updated
inference and/or the different treatment of the amplitude field (see the discussion in Sec.
3.2.3). One should note that reconstruction II was conducted with a doubled resolution,
which may also be responsible for some of the very small scaled differences.
The uncertainty maps nicely demonstrate the impact of the sky modeling on the infer-
ence. Fig. 3.4c shows that the uncertainty of the previous reconstruction, which exhibits
imprints of the longitudinal galactic profile used in the amplitude modeling. Our updated
uncertainty map in Fig. 3.4b shows a decrease in uncertainty in certain regions, especially
in the galactic disk. This simply reflects the fact that our updated inference scheme can
use the correlation information encoded in the data much more efficiently.

A further quantity which needs to be inspected are the power spectra depicted in Fig.
3.5, as they have been inferred with different algorithms in NO15 and the approach chosen
in reconstruction II. We note that we can confirm the slope of the spectrum. The revised
map resulting from reconstruction II has significantly less power on small scales. Again,
the parameter change in the noise estimation may be the reason for this difference, as we
know that it can have a considerable impact on the smaller scales, as we change the ability
of the algorithm to increase uncertainties to accommodate outliers in the data.
With respect to the error estimation, we show in Fig. 3.6 the comparison of the reported
observational noise standard deviation σ and our estimate for the noise σ̃ according to Eq.
(3.10). The uncertainties of some sources have been multiplied by factors of up to 1000,
indicating strong internal or extra-galactic contributions to these particular Faraday data
points. Nonetheless, we confirm or even decrease the uncertainties for most measurements,
as demonstrated by the contour lines shown in the figure, which represent a normalized
density plot in the σ − σ̃ plane. We furthermore highlighted the 9 data points which were
identified by Ma et al. (2019) as nπ-ambigious. Our algorithm has down-weighted all of
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(a)

(b) (c)

Figure 3.4: Logarithmic posterior uncertainties of the different reconstructions. Fig. (a) is
the posterior uncertainty in φ of reconstruction I (the mean of which is shown in Fig. 3.1a).
Fig. (b) shows the posterior uncertainty corresponding to reconstruction II (shown in Fig.
3.1b). Fig. (c) shows the posterior uncertainty corresponding to the NO15 reconstruction
shown in Fig. 3.1c.
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Figure 3.5: Comparison of the power spectrum inferred by NO15 (dashed black) to the
spectrum of the Faraday map including the free-free EM data (reconstruction I, red) and
the results of reconstruction II in Sec. 3.2 (blue). The latter two inference algorithms also
produce uncertainties in the power spectrum, which are depicted as shaded areas in the
respective colors.
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them, indicating its capability to identify problematic data. The noise estimation results
for the subset of the Taylor catalog analyzed by Vernstrom et al. (2019) is shown in Fig.
3.6b. A large fraction of the error bars of these data points were decreased, in accordance
with Vernstrom et al. (2019), who draw their conclusions from a reanalysis of the original
polarimetric data.
With this we conclude the comparison between the NO15 results and our reconstruction II
and turn our face to the analysis of the underlying components of our sky model defined
in Eq. (3.8).

The sign and amplitude fields

The sign and amplitude fields, χ and ρ, are shown in Figs. 3.7b and 3.8b, respectively.
The sign field captured most of the small scale structure, but has more or less completely
lost all information on the Galactic disc profile, which was absorbed by the amplitude field,
as intended by our modeling. χ shows some similarity to the corresponding signal field
inferred by NO15, which is shown in Fig. 3.7c. The exponentiated amplitude field appears
to be relatively smooth with few distinguished features apart from the large scaled disk
profile. These features, however, show remarkable similarity to galactic emission measure
(EM) as traced by free-free emission, which was precisely mapped by missions investigating
the Cosmic Microwave Background (CMB) such as Planck (Planck Collaboration 2016a),
as it is a important foreground component in the microwave sky. We show the Planck
free-free EM map in Fig. 3.8a. The color scales were chosen to highlight the structures in
the maps of which we think that they originate from the same galactic structures. These
apparent resemblances (which can already be seen by simply taking the absolute value of
the NO15 map) between both maps have motivated us in including the free-free EM map
in our inference. A investigation of the physical plausibility of this correlation (and its
absence for some regions) is given in the next section.

3.3 Including the Free-Free emission

3.3.1 The physics

In addition to the visual similarities between the free-free EM map and our inferred am-
plitude field, we want to further motivate this apparent congruence by investigating the
physics of the free-free emission and the Faraday rotation a bit more closely. The EM traced
by the bremsstrahlung emitted by thermal electrons on protons in the warm interstellar
medium can be quantified via (see e.g. Smoot (1998))

EMff (nth) =

∫
LOS

dl n2
th ≡

∫
LOS

dl emff , (3.13)

where we defined emff ≡ n2
th as a source term for EMff .

If we turn to the Faraday depth and want to study Eq. (3.2) with the intention of an com-
parison to EMff , we must quantify the dependence of BLOS on the thermal electron density.
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(a)

(b)

Figure 3.6: These figures show the estimated noise standard deviations σ̃ compared to
the σ values given by the Oppermann catalog and for the subset of analyzed by Vernstrom
et al. (2019). To counteract the visual impression which is dominated by the outliers, we
overlaid contour lines from the underlying log probability density function estimated via
Gaussian kernels. Equality between the two quantities is marked by the red dashed line.
The red crosses indicate the data points identified by Ma et al. (2019) as nπ-ambigious.
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(a)

(b) (c)

Figure 3.7: Sign fields of the different reconstructions. Their primary purpose is to capture
the sign variations of the Faraday sky. Fig. (a) shows the field χ of reconstruction I as
defined by the model in Eq. (3.20). Fig. (b) shows the field χ of reconstruction II as
defined by the model in Eq. (3.8). Fig. (c) shows field s of the previous reconstruction by
NO15, which served a similar purpose. Note that the difference in the scales of these fields
is compensated by corresponding differences in the respective Faraday amplitude fields.
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Figure 3.8: Fig. (a) shows the Galactic free-free EM map as obtained by the Planck
Collaboration (Planck Collaboration 2016a). The further figures show the amplitude fields
of the different reconstructions, which where supposed to capture the amplitude variations
of the Faraday sky. Fig. (b) shows the exponentiated amplitude field ρ of the reconstruction
II as defined by the model in Eq. (3.8). This field is not constrained by free-free data.
Fig. (c) shows the exponentiated ε field defined in Eq. (3.18). This field is part of the
revised Faraday map resulting from reconstruction I as well as the denoised free-free sky.
A logarithmic version of this plot is shown in Fig. 3.9a. Fig. (d) shows the full Faraday
amplitude field of reconstruction I as defined by the model in Eq. (3.20). This field is part
of the result of the model in Eq. (3.20). A logarithmic version of this plot is shown in Fig.
3.9d.
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In general, we can assume the magnetic flux to be frozen into the Galactic interstellar
medium (ISM) (de Gouveia Dal Pino 2006). The exact nature of the B− nth relationship,
however, is complicated as it strongly depends on the morphology and dynamics of the
plasma under consideration. In the simplest case of an isotropically collapsing structure,

flux freezing leads to an |B| ∝ n
2
3
th dependence (Mestel 1966). For a realistic description the

ISM, however, one needs to consider non-linear magneto-hydrodynamics (MHD). Under
certain simplifying assumptions as shown in Passot & Vázquez-Semadeni (2003) one may
decompose the ISM flow into several wave types corresponding to different modes, leading
to different density dependencies of the magnetic field strength. Most notably in the low
density regime, the dominating mode approaches a constant in nth, implying no correla-
tion between |B| and nth in this regime. Furthermore, as waves corresponding to different
modes may very well travel trough the same regions within a short time span, the B− nth

correlation may be subject to large variability in all regimes of measured electron density
(Vázquez-Semadeni 2015). This pattern was confirmed for tracers of non-ionized hydrogen
such as Zeeman splitting by e.g. Crutcher et al. (2010), who found no B − nH correlation
for particle density regimes n < 300cm−3, and strong variations in the regime above in
molecular clouds, indicating a power law dependence of roughly |B| ∝ n0.65

H . Furthermore,
Harvey-Smith et al. (2011) found no correlation between nth and |B| in several known HII
regions as did Purcell et al. (2015) specifically for the Gum nebula.
We therefore assume the dependence of the magnetic field strength on nth to follow a power
law with an unknown and spatially dependent coefficient |B| ∝ npBth , which could very well
be zero. We can then rewrite the proportionality of the absolute value of integrand of the
Faraday depth in Eq. (3.2) on nth

BLOSnth = |B| cos(θ)nth ∝

∝ n1+pB
th cos(θ) ∝ em

1+pB
2

ff cos(θ). (3.14)

Here we introduced the angle θ indicating the orientation of the magnetic field with respect
to the LOS. Its impact will be discussed later on. If pB ≈ 1 for all locations along a line
of sight, the absolute value of the Faraday integrand does strongly depend on the free-free
emissivity and the additional electron density dependence has completely canceled. In
the unrealistic case that pB = −1, the absolute value of the Faraday integrand would be
completely uncorrelated to the free-free source term. As discussed before, in some cases
the electron density will not be a good tracer for the magnetic field strength and the LOS
projection might partly mask the relation in the observables, which again limits the above
relationship. Nonetheless, we think that the above considerations motivate the inclusion
of the free-free map as a proxy for the Faraday amplitude field in our inference, as most
realistic cases of the power law index pB will result in a correlation between the free-free
EM and the Faraday sky. On the other hand, this analysis also indicates that the effects of
ISM dynamics on the magnetic field strength have to be considered for a reliable inference.
A second effect that needs to be taken into account are sign reversals of the magnetic field
along the line of sight, which could strongly affect the value of φ in contrast to EMff . To
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consider these, we approximate the line of sight integral via

φ ∝
∫

LOS

dl |B| cos(θ)nth = L〈|B|nth cos(θ)〉L ≈

≈ L2〈|B|nth〉L〈cos(θ)〉L, (3.15)

where L is the length of the line of sight and 〈. . .〉L ≡ 1
L

∫
LOS

dl . . . indicates an averaging
process along the line of sight. The last approximation implies statistical independence
between the magnetic field strength and θ. This shows that, to good approximation, the
geometry of the magnetic field can lead to a multiplicative term, which is not constrained
by the free-free data alone and has to be considered independently. In our setup, it can
only be further determined by discrepancies between the Faraday and free-free data sets.
Both effects, the unknown B − nth correlation and the potential sign reversals might be
responsible for discrepancies between the free-free data and the Faraday amplitudes result-
ing from our reconstruction II (see Fig. 3.8b).
Similar to the first part of this paper, we will first discuss properties of the EM data and
then show the modeling of the respective sky maps in Sec. 3.3.3.

3.3.2 The data

In this work, we use the free-free EM map of the Planck 2015 release (Planck Collaboration
2016a). This map is a side product of a foreground subtraction process of the Planck team
in their pursuit of the CMB sky reconstruction. The free-free sky is a dominant component
of this foreground in the low frequency regime, along with synchrotron and spinning dust
emission (Planck Collaboration 2016b). Most components in the microwave sky are hardly
distinguishable, as they result from similar structures in the sky. Planck therefore employs
a sophisticated component separation algorithm called COMMANDER (Eriksen et al. 2008),
mostly exploiting the different energy spectra of the components. This algorithm uses the
Gibbs sampling technique to approximate the posterior distribution for all components,
also making use of the WMAP data (Bennett et al. 2013) and a 408 MHz survey map
(Haslam et al. 1982a; Remazeilles et al. 2015b) for the separation. An updated version of
COMMANDER employed in the 2018 release of Planck takes the correlation structure of the
components into account. However, Planck has not released an updated free-free map in
2018.
Note that the measured free-free EM also contains a dependency on the thermal electron
temperature Te. The Planck team has modeled the free-free emission as a analytical com-
bination of both EM and Te, which allowed to produce separate maps for both quantities.
This is a considerable advantage of the Planck data over other tracers of EM, such as e.g.
H-α data, for which also full sky maps exist, but for which temperature and EM have
not been separated. As we have no good model on the dependence of the magnetic field
and consequently the Faraday depth on Te, we prefer to use the pure EM data, as this
minimized the physical systematics that have to be modeled.
As a side product of the estimation of the posterior via sampling, Planck provides us not
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only with the posterior mean of the free-free component, but also with uncertainties, which
are a valuable source of information and lets us treat the free-free data as a slightly noisy
measurement of the true free-free EM with known uncertainties. Unfortunately, upon
inspecting the Planck data, we found some pixels to have extremely small and in case
of the free-free temperatures even zero variances. As this is rather surprising given the
large degeneracy between the components, we expect this to be a numerical artifact of the
sampling procedure or of the marginalization process that results in the uncertainties for
specific components. Our algorithm relies on accurate uncertainty measures for all pix-
els. In case of a severe underestimation of the errors in some specific area, this region is
over-weighted by the algorithm in the inference of the correlation structure, thereby imme-
diately affecting other parts of the sky and subsequently all other maps of the inference.
This has to be accounted for if one is not completely sure that the noise values are free
of systematics. We will therefore perform a similar noise estimation procedure as for the
Faraday data.
With this in mind, we write the measurement equation for the free-free EM data as

dff = RffEMff + nff,obs + nff,sys ≡ RffEMff + ñff . (3.16)

In case of Planck, the response Rff is just a unit matrix, as the data is already provided
as a full sky map on the resolution we desire. Here, we decompose the noise nff into
two components, namely an observed one obtained by COMMANDER and an unobserved one,
which contains systematics. As we do not consider the correlation structure of the noise
in for any data set, the procedure of noise estimation is the same from here on as in 3.2.3,
apart from different hyper priors. In this case, we choose αff = 1 and βff such that the
expectation value over ln(ηff) is zero, as we a priori expect most of the noise values to be
correct but the ηff parameter to vary over orders of magnitude in cases they are not.
The lower branches of the free-free sky model are shown in Fig. 3.13. The full extended
model for the hierarchical Bayesian model is shown in Fig. 3.14. Using the considerations
above, the likelihood for the free-free sky is again Gaussian in analogy to Eq. (3.7)

P (dff) = G
(
dff −RffEMff |Ñff

)
, (3.17)

with the noise covariance Ñff defined in analogy to Eq. (3.10). Again, we still need to
explain the detailed model for EMff and its priors. This is presented in the next section.

3.3.3 The free free model

The sky model

We now turn our head to the modeling of the free-free sky and its connection to the am-
plitude field of the Faraday sky under the constraint of the physical limitations considered
in Sec. 3.3.1. We model EMff with a log-normal approach, again to enforce positivity and
to capture the expected large variability of EMff on the sky:

EMff ≡ eε · pc

cm6
. (3.18)
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Figure 3.9: These figures shows the logarithmic amplitude field of reconstruction I as
defined by the model in Eq. (3.20) as well as its components. Fig. (a) shows the field
ε defined in Eqs. (3.20) and (3.18), constrained by free-free and Faraday data. This is
also the reconstructed log free-free map. Fig. (b) shows the second amplitude field δ
defined in Eq. (3.20). The red crosses indicate the approximate angular positions of the
Orion arm, as given by Vázquez et al. (2008) and Xu et al. (2009). Fig. (c) shows the
logarithmic amplitude of the Faraday sky as defined in Eq. (3.19) without the additional
δ contribution, while it is included in Fig. (d).
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(a)

(b)

Figure 3.10: Figure (a) shows the Faraday sky containing only the amplitude contribution
stemming from the field δ as defined in (3.21). This map is a rough estimate for the
enhancement of the Faraday signal by the Orion arm. Figure (b) shows the faraday sky
resulting from the complementary amplitude contributions (see also Fig. 3.9b).
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Figure 3.11: Linear Polarization fraction p =

√
Q2+U2

I
of dust calculated from the Planck

polarization data.
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If the true free-free EM sky were a perfect estimator for the amplitude field of the Faraday
sky, we could simply replace ρ in Eq. (3.8) with ε to simultaneously infer both quantities
from both data sets. However, as discussed in Section 3.3.1 a necessary condition for
a combination of the information of free-free EM and Faraday rotation measures is to
account for magnetic field reversals, different scalings with the thermal electron density
and potential systematics in the data sets. All issues can be accounted for by introducing
further terms to the model.
We start with our approach to model the differences in the electron density scaling and
the geometry factor introduced by the sign reversals. As we can only work with the LOS
integrated quantities, the most natural way of inferring the three dimensional effective
scaling factor 1+pB

2
in Eq. (3.14) is not possible, as this would necessarily imply setting

up the full 3D problem, for which we are lacking the necessary depth information. In
the future, this information might be provided by a sufficient number of rotation and
dispersion (DM) measures from pulsars, which was demonstrated with mock data for DM
by (Greiner et al. 2016a). We therefore choose to introduce two scaling fields γ : S2 → R
and ψ : S2 → R into the modeling according to Eq. (3.19). This essentially sets up a
linear fit for the logarithm of the Faraday amplitude field in terms of the reconstructed
logarithmic free-free sky:

φ =
(
eγε+ψ

)
χ. (3.19)

This model somewhat mimics the approximation derived in Eq. (3.15), with γ approxi-
mating the role of the power law coefficients and eψ the geometry factor. Unfortunately,
we loose the interpretation of the γ field in terms of 1+pB

2
in Eq.(3.14) due to the aforemen-

tioned lack of consistent 3D modeling. Furthermore, the large scale modes of the ψ and
γ fields are to a degree degenerated, making a quantitative interpretation of the ψ field
very hard, although the smaller scaled morphology may be informative. Altogether, these
terms should be able to capture sign reversal effects as well as strong deviations from the
proportionality of the magnetic field strength on the thermal electron density presented in
Eq. (3.14).
We further have to consider the case where the Faraday sky contains amplitude structure
not present in the EMff sky. This is done by expanding the model according to

φ =
(
eγε+ψ + eδ

)
χ. (3.20)

Here, the second amplitude field δ : S2 → R is not connected to the free-free EM map,
giving it the possibility to capture structures that are in the Faraday data but not in the
free-free data. All newly introduced fields are assumed to follow Gaussian statistics, so their
prior is similar to Eq. (3.9), again with unknown correlation structure. One should note
at this point that the obvious a priori degeneracies between the newly introduced helper
fields are usually broken during the inference, if sufficiently supported by data. This is
possible due to the joint correlation structure inference, which constrains the respective
fields just to the degree it is demanded by the inference problem.
Although there is motivation for each term, the above modeling might be viewed as ad hoc,
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χ ρ ηφ

φ nφ

dφ

Figure 3.12: Hierarchical Bayesian model for reconstruction II. We decompose the Faraday
depth φ into the fields χ and ρ, which are supposed to capture the sign and the overall
amplitude of the signal, respectively (see Eq. (3.8)). The Faraday depth field φ together
with the measurement noise nφ determine the observed data dφ via Eq. (3.4). The noise
nφ of every measurement i is assumed to be drawn from a Gaussian with variance ηiσ

2
i ,

where σi is the reported uncertainty and ηi a unknown uncertainty correction factor.

as one may certainly argue for the addition or omission of certain terms or a completely
different modeling altogether. There are certain limitations for potential models, as they
all have to be able to capture the physical characteristics (say e.g. the sign reversal of the
Faraday map), and should be kept as simple as possible. Unfortunately these requirements
already allow for a range of different parametrizations. We have varied the model during
our analysis by e.g. adding or omitting further terms in Eq. (3.20). We found little
variation in the overall morphology of the Faraday sky, apart form the disk, where e.g
omission of the γ and ψ field lead to an extremely pronounced features, with Faraday
depth values reaching regimes a magnitude higher than previous reconstructions. As we
think that the above presented physical considerations are too important to be neglected,
we deem the resulting maps in these cases as unrealistic. Given that all newly introduced
helper fields have captured distinct structures as we will show in Sec. 3.3.4, we view the
model in Eq. (3.20) as one of the simplest cases which can capture all relevant effects, but
nonetheless we deem the systematic errors higher than the statistical ones in this inference.
To gain some insights on the robustness of the obtained free-free EM map, we will further
perform an inference just for the EMff sky with the model in Eq. (3.18), unconstrained by
Faraday data. The comparison of the result to the outcome of the joint Faraday and EMff

inference will be presented in the results section. We can implement this extended model
numerically with similar algorithms as described in Sec. 3.2.4.

3.3.4 The Results

The revised Faraday map

In the following we show the results of the model depicted in Fig. 3.14. We show the mean,
the differences to the results of NO15 and reconstruction II, and the power spectrum in
Figs. 3.1a, 3.2a, 3.2c and 3.5, respectively. The inclusion of the free-free sky has lead
to a notable difference in our newly revised estimate of the Faraday sky. Driven by the
strong disc in the free-free data, the Faraday sky now has a similarly strongly pronounced
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ε ηff

EMff nff

dff

Figure 3.13: Hierarchical tree model for the free free EM sky. We model EMff via the
exponentiated field ε (see Eq. (3.18)). The field EMff is together with the noise nff

connected to the observed data via Eq. (3.16)
.

ηff ε γ χ ψ δ ηφ

nff EMff φ nφ

dff dφ

Figure 3.14: The full hierarchical model excluding the power spectrum hyper priors for the
fields. The lowest layer contains the data sets dff and dφ. These are connected by the Eqs.
(3.4) and (3.16) to the sky maps EMff and φ. The sky maps in turn are connected to the
Gaussian fields in the uppermost layer via the respective models defined in Eqs. (3.18) and
(3.20). From there on, the higher branches for the respective correlation structure inference
follow. These are not depicted here, but are shown and explained in the Appendix.
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disc feature as well. Other features mostly farther away from the Galactic plane remained
relatively stable, such as the northern arc of the Gum nebula, which is also strongly visible
in the free-free data. In Fig. 3.4a, we show the updated uncertainties. These have again
narrowed considerably compared to reconstruction II as shown in Fig. 3.4b. The innermost
part of the disc, however, is still quite uncertain. Furthermore one should be aware that any
model uncertainties are not considered in this plot. The region of increased uncertainty in
the Southern sky is not discernible anymore. This effect can be attributed to the inclusion
of the EM data, which now strongly constrains the profile field in this area. The new power
spectrum of the Faraday map is shown as the red line in Fig. 3.5. It is very similar to
that of reconstruction II, with a notable offset towards smaller scales, implying a slightly
steeper power law.

The components

We now discuss some of the components of the Faraday model in Eq. (3.20), apart from the
ε field in Fig. 3.9a, which will be more closely debated in the following section dedicated
to the inference results of the free-free EM sky.
The revised Faraday amplitude is shown in Fig. 3.8d. The comparison to the amplitude
field of reconstruction II in Fig. 3.8b and the free-free data in Fig. 3.8a demonstrate the
influence of both the Faraday and the free-free data on the new field. The field is enhanced
by roughly a factor of 4 compared to the old amplitude field. This may be a result of the
symmetry breaking process described in Sec. 3.2.3, as now the amplitude field is partially
constrained by the free-free sky. The comparison of the sign fields will demonstrate that
this factor was mostly absorbed there.
The second amplitude field δ is shown in Fig. 3.9b, its influence on the total logarithmic
Faraday amplitude is demonstrated by Figs. 3.9c and 3.9d. The field is dominated by
two diffuse structures of enhanced δ, centered in the Galactic plane and separated by
roughly 180◦ longitude. Remembering the discussion in Sec. 3.3.1, the δ field is supposed
predominately capture amplitude variations between the free-free and the Faraday sky.
Larger values of δ can be caused by systematic errors in either the EM or the Faraday
data and/or a high alignment of the magnetic field with the LOS in this direction. The
approximated longitudinal difference of the two δ enhancements of about 180◦ as well as
their positions seem to correspond to the angular positions of the Orion arm on the sky,
which are depicted in the plot as red crosses. In the first quadrant of the Milky Way,
at about 60◦ longitude, this minor arm is known to extend over several kiloparsec up to
the Sagittarius arm, with which it might merge (Xu et al. 2009). In the other direction
towards the third quadrant of the Galaxy, the structure of the arm is much more complex.
Even a bifurcation or a crossing with the Perseus arm seems possible (Vázquez et al.
2008). A overview over properties of the Local Arm is given by (Vallée 2018). Moreover,
the local arm can also be localized in three dimensional reconstructions of the local dust
distribution, see e.g. Lallement et al. (2018); Leike & Enßlin (2019). We have indicated
possible continuations of the arm in the plot at 240◦ and 260◦ longitude, respectively. The
δ field seems to reflect not only the position of the arm, but also its morphology, as the
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(a)

(b)

Figure 3.15: Fig. a) shows the difference between the field ε (as defined in Eq. (3.18)),
inferred only by free-free data and the same field resulting from the joint inference with
Faraday data (reconstruction I). Fig. b) shows the uncertainty of the ε field in reconstruc-
tion I. This demonstrates that the ε field is predominately determined by the free-free data
irrespective of the simultanous inference of Faraday sky. There exist considerable devia-
tions between the reconstructions near the Galactic poles. Figure (b) demonstrates thet
the reconstruction is also rather uncertain in these regions.
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Figure 3.16: Excerpt of the free-free reconstruction in the first slice, its uncertainty,
followed by the same excerpt in the Planck free free EM data. The residual is shown in
the last row.
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structure in the third quadrant is more diffuse, as opposed to the relatively pronounced
structure at 60◦ longitude. All in all, this would argue for a high magnetic field alignment
as a viable possibility for the interpretation of the second amplitude field. As the Sun is
positioned directly in the Orion arm, we expect more coherent magnetic fields along the
LOS directed pointed directly to the dominant direction of the arm. Remembering the
discussion in Sec. 3.3.1, this then may lead to a disproportionate increase in the observed
Faraday data as the free-free EM map would indicate at these positions. Furthermore, the
Faraday sky in Fig. 3.1a indeed shows opposite magnetic field signs for those regions, as
one would expect for a field traversing the solar location. We show the field

φOrion = eδχ (3.21)

in Fig. 3.10a, which corresponds to our estimate of the enhancement of the Orion Faraday
depth, should the above considerations be true and if the χ field really only captured
the sign. The complementary Faraday component (in terms of amplitude contributions)
is shown in Fig. 3.10b. The considerable differences to Fig. 3.1a in the sky regions
corresponding to the Orion arm reveal again the influence of the δ field there. Of course
we can not rule out any of the other explanations for the observed δ enhancements, the
plot in Fig. 3.10a should therefore be taken with care. On the other hand, we can find
additional evidence for magnetic field LOS alignment in the Orion Arm and the adjacent
sign revresal region as well as for a physical counterpart of the δ field in the literature. For
example, the enhancement in the Orion Arm and its correlation to EM was also noted by
Haverkorn et al. (2004), who compare EM and RM structure functions in the Southern sky
and see evidence for two spatially distinct Faraday screens, one of which they attribute to
the Local Arm. The region was also investigated by Brown et al. (2007), who again find
evidences for distinct Galactic arms. The field reversal region between the Orion and the
Sagittarius arm in the Northern sky is investigated by e.g. Ordog et al. (2017). They discuss
a diagonal progression of the reversal region from (l, b) = (67◦, 4◦) to (l, b) = (56◦,−2◦),
which is strongly visible in Fig. 3.10a- Especially interesting to us are the results of Bracco
et al. (2019), who were able to produce a map on the linear dust polarization fraction using
3D analytical models of the magnetic field under the assumption of a helical magnetic field
component. Their map shows strong morphological similarities to our δ field, with very
little polarization in the regions of the Local Arm. As dust polarization probes the planar
component of the magnetic field, this indicates that most of the magnetic field strength
lies in the LOS component of the magnetic field. This can be confirmed by comparing to
the Planck dust polarization fraction map calculated from the Planck Stokes parameter
maps in Fig. 3.11, which also show similar features in the respective regions of the Local
Arm.
The comparison of the amplitude field in Fig. 3.9c without the δ contributions with the
ε field alone (see Fig. 3.9a) reveal the linear rescaling of the free-free contribution by to
the γ and ψ fields according to Eq. (3.19). This mostly results in a much less pronounced
disk, which seems to be disfavored by the Faraday data.
Finally we discuss the sign field χ in Fig. 3.7a. Little has changed in this component
morphologically compared to Fig. 3.7b. The absolute value of the field has decreased by
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approximately a factor of 4. This factor was mostly absorbed into the new amplitude field,
as discussed before. Interestingly enough, we can still discern the region of under-dense
Faraday data in the southern sky in this plot, which has very little structure in it. This is
further evidence that the decrease in uncertainty in Fig. 3.4a in this region is caused by
the now strongly determined amplitude field, while the small-scaled structure of the sign
of the Faraday depth is still only vaguely known. Apart from that, the field has again fully
served its intended purpose, namely capturing the sign of the Faraday sky.
We now discuss the results of the inference of the free-free EM sky.

The revised free-free map

The revised free-free EM sky constrained by both the Planck and the Faraday data is
shown in Fig. 3.8c, the logarithm of it is shown in Fig. 3.9a. We have also run a EMff

inference solely using the Planck data. The difference to Fig. 3.9a is shown in Fig. 3.15a.
There is little difference between the maps, indicating that the systematic differences of
the data sets were mostly absorbed by the second amplitude field δ and the rescaling
fields γ and ε. Notable differences appear only towards the Galactic poles, where Planck
has measured little to no free-free component, while considerable Faraday rotation exists.
These regions are also subject to strong uncertainty in the reconstructed free-free EM, as
indicated in Fig. 3.15b. The visual comparison of Fig. 3.8c to the data shown in Fig.
3.8a demonstrates good accordance. The main difference is the lack of small structures far
away from the disc, which were mostly absorbed into the noise.
Closer inspection reveals some small scaled deviations in the disc, which we want to in-
vestigate by showing an excerpt of the disc ranging from 0◦ to 60◦ longitude in Fig. 3.16.
This shows approximately the same region as the first plot of Fig. 7 in Planck Collab-
oration (2016b), where the Planck team compares their free-free temperature map with
independent measurements via the radio recombination line survey (RRL). While our re-
construction reproduced the overall morphology, some peaks in the picture experience
deviations around 20 %. In general our results seem to underestimate the amplitudes com-
pared to Planck. It is noteworthy that the comparison between Planck and RRL resulted
in a similar statement, as the Planck features were generally much more pronounced. We
will refrain from drawing physical conclusions from these discrepancies as these can only
be resolved by a detailed discussion of the Planck data analysis, which is beyond the
scope of this work. Note again that the Faraday data has little influence on this result.
The changes are mainly driven by the noise estimation and the full consideration of the
correlation structure of the free-free EM sky. We think that this deems the inclusion of
the correlation structure in the inference an important step for any component separation
algorithm, as also shown in Knollmüller & Enßlin (2017).
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3.4 Summary and conclusion

We infer the Galactic Faraday sky map using the same data as NO12 using an updated
algorithm. This involves the separation of the Faraday sky into the point wise product of
a sign and amplitude field, which both are supposed to mainly capture the sign and the
Galactic profile of the Faraday sky, respectively. In the first part of the paper, we can
largely confirm the old results in map and power spectrum. Smaller differences can be
explained by the algorithmic advancements. The biggest improvement here is the updated
uncertainty map, where we were able to significantly reduce the error bars over the whole
sky, especially in some locations in the galactic disc.
In the further proceedings we notice that the amplitude field has notable similarities to
the Galactic free-free EM map. In the second part of the paper we therefore incorporate
free free EM data as a potential proxy for the Faraday amplitude field into our inference.
This leads to a new Faraday map which now is notably different to previous results. The
Galactic disc is much more pronounced and uncertainties are largely reduced. Since a
pronounced Galactic disc is very sensible, as well as required by the data, which now is
more satisfied as in any of the other approaches, we regard this map as the most reliable
and therefore to be the main result of this work. Nonetheless, it has to be noted that our
error maps cannot incorporate modeling uncertainties of our inference model. In addition,
the component fields introduced in our model to resolve discrepancies between the two
data sets reveal indicators for more LOS aligned magnetic field structures in the direction
of the Orion arm. We also produce a denoised free-free EM map, which agrees with the
Planck data on which it is based to large extent, but which is free of many of the point
source like structures seen in the latter above the Galactic disc.
Of course any additional data will improve our work. Specifically for the Southern Sky new
RM data is already available and the analysis with our framework is under way. Looking
further into the future, the ongoing ASKAP-POSSUM survey (Gaensler et al. 2010) as
well as the anticipated SKA polarization surveys will allow us to resolve the Faraday sky
to unprecedented sharpness of detail.
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Chapter 4

The Galactic Faraday depth sky 2020

This chapter contains work to be submitted to Astronomy&Astrophysics. I was the lead
author of the paper under the supervision of Torsten Enßlin. The paper has a total of
28 additional co-authors, who contributed data to the catalog and to proofreading of the
manuscript. The numerical calculations were implemented by me. Apart from Sect. 4.2.3
(which was contributed by Cameron van Eck), all chapters were written by me.

4.1 Introduction

The Faraday effect describes the rotation of linearly polarized light in a magnetized plasma
and provides information on the line-of-sight (LOS) component of magnetic fields weighted
by the thermal electron density. These quantities are key puzzle pieces for the character-
ization and modeling of many astrophysical objects, such as galaxies and galaxy clusters.
A primary objective of research on cosmic magnetism has therefore been the investiga-
tion of the polarimetric properties of peculiar objects. Over the years, this has lead to a
dense coverage of rotation measure (RM) data spreading over the whole sky. These not
only depend on the properties of the objects in question but on that of all environments
through which the light has passed upon arriving at the telescope. This leads to a poten-
tial intertwining of information of completely different astrophysical environments. Most
notably, the plasma our home Galaxy is known to be largely magnetized and therefore
responsible for a significant degree of Faraday rotation. In order to disentangle this in-
formation, reconstruction procedures have been developed. Specifically in the case of the
Galactic Faraday depth sky, a useful measure for discerning Galactic and extra-Galactic
components is the similarity of RM values of nearby sources on the sky. One expects that
large angular correlations in RMs more likely result from local effects, implying that RMs
resulting from extra-Galactic processes should be mostly uncorrelated on angular scales
of arc-minutes or larger. First all-sky methods to reconstruct the Galactic Faraday sky
where developed by e.g. Frick et al. (2001); Johnston-Hollitt et al. (2004); Dineen & Coles
(2005); Xu et al. (2006); Oppermann et al. (2012a); Xu & Han (2014).
In this paper, we are continuing the work of Oppermann et al. (2012a), Oppermann et al.
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(2015) and Hutschenreuter & Enßlin (2020a). In the latter reference, henceforth abbre-
viated with HE19, the authors introduce two inference models. The simpler one is a
generalization of the model used in Oppermann et al. (2012a), while the more complicated
one informs the amplitude of the Faraday sky with data on the emission measure (EM) of
thermal electrons, as obtained from the Planck satellite.

These works use Bayesian inference schemes, that utilize the whole sky correlation
structure of the Galactic part of the Faraday depth sky, in order to (a) perform the afore-
mentioned component separation and (b) to interpolate between data points on the sky.
As the precise form of the correlation structure is unknown, it is also inferred jointly with
the sky map.

The aim of this paper is to provide the community with the most recent version of the
Faraday depth sky with a minimal set of physical assumptions. The combination of the
RM data set with other data sets as done in HE19 have also been performed and lead to a
variety of results. However, discussing those, in particular in the light of the many options
that exist for the inclusion of new data sets and modeling assumptions, exceeds the scope
of this paper, which is to provide a methodologically clean update on the Faraday sky
depth. Thus, we perform the same analysis as in HE19, but are restricting ourselves to
the simpler model which uses rotation measure (RM) data only. It should be noted, that
the Faraday depth maps of the simple analysis presented here and the more sophisticated
to be presented in a separate publication largely agree. This publication should therefore
be regarded as the primary reference for the Faraday depth sky 2020, whereas the other
as providing a physical interpretation, which depends more on assumptions.

We structure the paper as following: Sect. 4.2 shortly summarizes the relevant physics,
the modeling and the data used in this work. Sect. 4.3 then discusses the results and Sect.
4.4 gives a conclusive summary.

4.2 Modeling the Faraday depth sky

4.2.1 Physics

The angle of rotation ∆λ of the polarization plane linearly polarized light experiences
between emission and detection can be described by

∆λ = RMλ2 (4.1)

Burn (1966), where λ is the observational wavelength and RM is the rotation measure,
defined by this equation. Determining RMs is usually done by observing ∆λ at different
wavelengths and fitting the result in λ2 space. In the ideal case of a thin plasma screen
being the only source for the rotation effect, the RM is equal to the Faraday depth φ,
which is defined via

φ =
e3

2πm2
ec

4

∫
LOS

dl nthBLOS, (4.2)
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(a)

(b)

Figure 4.1: Sky projections of the van Eck catalog and corresponding uncertainties. Fig.
(a) shows the RMs, Fig. (b) the observed standard deviations These maps and all maps
following in this paper are presented in Galactic coordinates centered at (l, b) = (0◦, 0◦).
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(a)

(b)

Figure 4.2: Inference results for the Galactic Faraday sky. Fig. (a) shows the posterior
mean using the updated catalog, Fig. (b) the corresponding inferred standard deviations.
The color scale is saturated at ±250 rad

m2 in the mean and ±80 rad
m2 in the uncertainties to

highlight mid latitude features of the Galactic Faraday depth sky.
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(a)

(b)

Figure 4.3: Inference results for the Galactic Faraday sky. Fig. (a) shows the posterior
mean using the updated catalog, Fig. (b) the corresponding inferred standard deviations.
In contrast to Fig. 4.2, the color scale is saturated at ±1500 rad

m2 in the mean and ±400 rad
m2

in the uncertainties to highlight disc features of the Galactic Faraday depth sky.
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(a)

(b)

Figure 4.4: Figures (a) and (b) show the mean and uncertainty of the Galactic Faraday
depth sky as inferred by HE19.
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(a) (b)

(c) (d)

Figure 4.5: Slices through the inner part around the Galactic disc. Figs. (a) and (b)
show excerpts of the galactic Faraday sky, including RM data points in the respective
areas indicated by black pluses. The variance along the Galactic latitude is made visible
by color coding the latitude for the 2 degree width of the strip. Figs. (c) and (d) show
the same excerpts in the amplitude field eρ. The approximate locations of spiral arms
(Hou et al. 2009; Vallée 2017) are indicated as black filled circles. The slice in Fig. (a) is
also partly shown in Shanahan et al. (2019a), where the strong excess in Faraday depth in
tangential direction to the Sagitarrius arm was first noted.
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where nth is the thermal electron density and BLOS the line of sight (LOS) component of
the magnetic field. The physicals constants e,me and c describe the elementary charge, the
electron mass and the speed of light, respectively and the integral runs from the observer
to the source. Unfortunately, the relation RM = φ is generally not correct. Measurements
of φ are therefore very often obtained via more elaborate reconstruction techniques, such
as RM synthesis Brentjens & de Bruyn (2005a); Bell & Enßlin (2012). In this work we will
use data for φ which was determined either with a simple slope fit in λ2 space or via RM
synthesis. We will therefore refer to this data simply as ‘Faraday data’ in consistency with
HE19. Especially the slope fitted data is prone to systematical errors, as demonstrated
e.g. by Ma et al. (2019).

In this work, we are interested in the Galactic component of the Faraday depth sky
φgal. Due to the additivity of φ one can rewrite the data equation for the Faraday depth
as

dφ = Rφ+ nφ = R (φgal + φetc) + nφ = Rφgal + ñφ, (4.3)

where the R is a projection operator connecting the sky with data space and the (Gaussian)
noise term nφ contains the known observational error. The non-Galactic component φetc

contains e.g. extra-Galactic ionospheric contributions and is absorbed together with the
observational noise into an adapted noise term ñφ, which needs to be estimated. This is
done using the same noise estimation technique as first described in Oppermann et al.
(2012a) and by using the same hyper-parameters as used in HE19. This noise estimation
procedure also takes care of the systematical errors discussed earlier e.g. due to slope
misfitting.

4.2.2 Sky model

The sky model for φgal has been well motivated in HE19. Here, we would like to give
a very short alternative motivation, which provides connection points for additional data
sets, e.g. on the Galactic electron density. If one assumes no correlation between nth and
BLOS, which is reasonable for the warm ionized medium of the Galaxy (Harvey-Smith et al.
2011; Passot & Vázquez-Semadeni 2003) , Eq. (4.2) can be written as (Draine 2011)

φ ∝ DM 〈BLOS〉LOS , (4.4)

where we introduced the dispersion measure DM =
∫

LOS
dl nth and the LOS averaged

magnetic field strength 〈BLOS〉LOS. This equation is used to motivate the simplest model
for the Faraday sky,

φ = eρχ
rad

m2
, (4.5)

implemented already in HE19. Here, ρ and χ are Gaussian fields living on the sky with
unknown correlation structure that needs to be determined. The log-normal field eρ is
supposed to take over the role of the DM, while χ models the magnetic field average. As



4.2 Modeling the Faraday depth sky 71

Figure 4.6: Power spectrum for the Faraday depth sky derived in this work, compared
with results from HE19 and Oppermann et al. (2012a).
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already noted in HE19, one cannot break the degeneracy of this model and relate the
component fields to the respective physical quantities without further information and/or
assumptions. This is attempted in the mentioned separate work.

The inference of the correlation functions has been updated in accordance with recent
developments in numerical information field theory, for details see Arras et al. (2020). The
new model is equally flexible in representing different power spectra, but has the advantage
of more intuitive and better decoupled hyper-parameters. This inference was implemented
in the newest version of the NIFTy package (The NIFTy5 team et al. 2019).

4.2.3 Catalog

We have used a newly compiled master catalog of published extra-galactic source RM data1,
to be published by van Eck et al. (in prep.)2. This catalog was assembled independently of
the Oppermann et al. (2012a) catalog, but contains most of the same sources plus many
published since then. A list of the individual catalogs included can be found online with the
master catalog. This new master catalog is not yet complete, with papers being prioritized
for inclusion based on combination of catalog size, recency, ease of data access (i.e., Vizier
or machine readable tables were preferred to LATEX or PDF tables, which were preferred to
images of tables). The version of the catalog used here includes RMs from 44 papers, which
encompasses nearly all of the catalogs published in the past 20 years with more than 30
RMs. Sources reported with multiple RM values (from RM synthesis or QU-fitting) had all
components included as separate entries in the catalog. Catalogs of pulsar RMs were not
included in the current version, but pulsars present in the individual catalogs were included
and labeled as such where possible. The master catalog does not make any attempt to
identify duplicate RMs; if a source appears in multiple catalogs, all measurements are kept.
This results in a catalog of 52 413 RMs, which is a significant expansion on the 41 330
used by Oppermann et al. (2012a).

In this work, a a-priori noise level of 10% was a assumed for sources without error bars,
which was then subject to the same noise estimation procedure as all other data points.
We furthermore did not exclude duplicates or pulsars. In the case of duplicates, the noise
estimation technique of Oppermann et al. (2012a) is strictly speaking not optimal, as the
assumption of independence for the error estimates does not hold anymore. In our case

1Brown et al. (2003); Minter & Spangler (1996); Tabara & Inoue (1980a); Kim et al. (2016); Oren &
Wolfe (1995); Betti et al. (2019); Van Eck et al. (2011); Bonafede et al. (2010a); Clarke et al. (2001);
Johnston-Hollitt (2003a); Clegg et al. (1992); Gaensler et al. (2001b); Rudnick & Jones (1983); Wrobel
(1993); Kim et al. (1991); Lawler & Dennison (1982); Hennessy et al. (1989); Kato et al. (1987); Van Eck
et al. (2018); Costa & Spangler (2018); Taylor et al. (2009); Mao et al. (2010); O’Sullivan et al. (2017);
Roy et al. (2005); Battye et al. (2011); Broten et al. (1988); Heald et al. (2009); Law et al. (2011); Mao
et al. (2012a); Klein et al. (2003); Brown et al. (2007); Schnitzeler et al. (2019); Rossetti et al. (2008);
Simard-Normandin et al. (1981); Mao et al. (2012b); Vernstrom et al. (2018); Mao et al. (2008); van Eck
& Brown (in prep.); Anderson et al. (2015); Feain et al. (2009); Riseley et al. (2018); Costa et al. (2016);
Shanahan et al. (2019b); Kaczmarek et al. (2017)

2This master catalog can be found online at https://github.com/Cameron-Van-Eck/RMTable; this
paper used version 0.1.6 of this catalog.
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the number of duplicates is small, we therefore deem this approximation acceptable. In
future studies of the Faraday sky, this might have to be revised.

4.3 The results

In the following we present the results of the model introduced in Sect. 4.2. We show the
resulting Faraday sky and uncertainties in Figs. 4.2 and 4.3 on different color scales. For
comparison, the previous results of HE19 are shown in Fig. 4.4. On large scales, the results
are in good agreement with each other, while on smaller scales many more structures are
discernible in the new reconstruction. Furthermore, Fig. 4.3a reveals a strong disc with
absolute values often exceeding 1500 rad/m2, with a maximum above 4000 rad/m2, which
stands in strong contrast to the previous inference results which had a maximum only
shortly above 1000 rad/m2. This is highlighted in the slice plots in Fig. 4.5, which cut the
sky region in the inner Galactic plane in longitudinal direction. The excess to 4000 rad/m2

in the Sagitarrius region in Fig. 4.5a has been first noted by Shanahan et al. (2019a).
We note that excesses in Faraday depth are also notable towards the other known spiral
arms, although not as pronounced. This does not necessarily indicate exceptionalism of
the Sagitarrius region, but can also be explained by a lack of data coverage in other parts
of the plane, as especially the longitude region l ∈ (150, 360) still has a under-dense data
coverage and many older surveys are limited to moderate RM values.

We attribute the emergence of both the stronger disc as well as the new smaller scaled
structures mostly to the newly available data-points. A significant contribution to this
improvement might also come from the new correlation structure modeling implemented
in the newest version of NIFTy (Arras et al. 2020). A hint in this is given by the inferred
power spectrum plotted in Fig. 4.6, compared to the previous spectra inferred by HE19
and Oppermann et al. (2012a). The plot shows a significant offset of the new spectrum
compared to its predecessors. This indicates stronger fluctuations on all scales, which were
captured in previous results. The new power spectrum furthermore shows close resemblance
to a power-law on all scales, with a slope of ≈ 2. In contrast to that, the power spectra on
small scales where at least somewhat suppressed in HE19 and Oppermann et al. (2012a),
in the latter case to some degree due to the coarser resolution. This is consistent with the
stronger small scaled structures visible in Fig. 4.2a as compared to Fig. 4.4a. The scatter
plots in Fig. 4.7 investigate the correlation between the amplitude field (shown in Fig.
4.8a) and both the DM sky and the square root of the EM sky. The latter was inferred
from cosmic microwave data by the Planck survey (Planck Collaboration 2016a), while the
former is calculated from a parametric model of the Galactic thermal electron density (Yao
et al. 2017) based on pulsar DM data. Visually, although the EM map of Planck is much
more detailed and the DM map relies on very little data and strong modeling assumptions,
we see a much better correlation of the amplitude field with DM sky than with the EM map,
especially for small amplitude field values. This is confirmed by Pearson cross-correlation
coefficients of 0.854 for the log DM map and 0.746 for the log square root EM map. In the
case of the non-logarithmic maps, the contrast is not so strong as we calculate coefficients
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(a)

(b)

Figure 4.7: Histogram illustrating the correlation between the log amplitude field ρ and
the logarithmic DM (Fig (a)) and logarithmic square root EM (Fig. (b)) skies, respectively.
The former is calculated from a Galactic thermal electron model (Yao et al. 2017), while
the latter was inferred by the Planck survey from microwave data (Planck Collaboration
2016a).
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of 0.686 for the eρ − DM correlation and 0.711 for the eρ −
√

EM correlation. In the case
of the DM map some of the missing correlation to the amplitude map can be explained by
the fact that the Yao et al. (2017) electron model lacks small scale structure as it relies
on very little data. The differences to the square root EM map are best explained by the
missing volume filling factor that needs to be considered in order to equate the EM and
DM skies. Gaensler et al. (2008) show that this factor is variable over the sky and ranges
between 0.04 mid-plane to about 0.3 at higher latitudes. As demonstrated in HE19, the
EM sky is nonetheless a valuable source of information on the Galactic electron density
profile. It is however necessary to model these systematic volume effects by introducing
additional degrees of freedom, as implemented phenomenologically in HE19. We further
show the component fields eρ and χ in Figs. 4.8a and 4.8b. Both show strong similarity
to the analog component fields found in HE19.

We show that the amplitude field is a good tracer of dense Galactic structures also
on smaller scales in Fig. 4.9, where we show the Magellanic clouds in our Faraday depth
and amplitude reconstructions and in the EM and Hα skies. The comparison to especially
the EM sky shows good agreement on the morphology of the large Magellanic cloud.
In case of the small Magellanic cloud, the profile seems to be slightly offset towards the
known ‘wing’ feature, indicating somewhat enhanced magnetic field strengths in this region.
Furthermore, the region between the clouds shows small negative values in contrast to
the surrounding positive regions of Faraday depth. This is consistent with an additional
coherent magnetic field structure between the clouds as first reported by Kaczmarek et al.
(2017).

If the amplitude field is indeed a good tracer of the morphology of the DM, this implies
that by Eq. (4.4) the sign field in 4.8b should trace the morphology of the averaged LOS
component of the Galactic magnetic field to equal quality. This would indicate several
large scale regions in the mid-latitude magnetic field sky with a relatively strong LOS
component of the Galactic magnetic field coherently pointing in one direction.

4.4 Conclusion

We have reconstructed the Galactic Faraday depth sky using newly available RM data.
We have found a significantly enhanced Galactic disc with Faraday depth values up to
4000 rad/m2 consistent with recent measurements of Faraday excesses in the Sagitarrius
region and were able to improve our constraints on the small scaled structures in the sky
map. These improvements indicates a strong potential of the upcoming RM surveys of
ASKAP, Meerkat, LOFAR and SKA in increasing our knowledge on the Galactic magnetic
field, as they will provide a vast catalog of new RM measurements. This information will
in turn provide a pivotal role in constraining the Galactic magnetic field and is an impor-
tant input for upcoming three dimensional reconstructions of the magnetized interstellar
medium.
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(a)

(b)

Figure 4.8: Posterior means of the components defined in Eq. (4.5). Fig. (a) shows the
amplitude field eρ and Fig. (b) shows the sign field χ.
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(a) (b)

(c) (d)

Figure 4.9: The Magellanic Clouds as seen with different observables. Figs. (a) and
(b) show the Faraday depth and the underlying amplitude field as inferred in this work.
Figs. (c) and (d) show emission measure (EM) as obtained by the Planck satellite (Planck
Collaboration 2016a) and in Hα emission (Finkbeiner 2003; Gaustad et al. 2001).
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Chapter 5

Disentangling the Faraday sky

References and Acknowledgment

This chapter contains the results of a yet unpublished project lead by me under the super-
vision of Torsten Enßlin.

5.1 Introduction

The structure of the Milky Way is best expressed in terms gas and stellar density, velocities,
and force fields, as these can be related to the dynamical laws that govern the formation of
structure and the overall shape of galaxies today. To our fortune, these fundamental quan-
tities can be determined by a variety of observables, which, to our misfortune, in general
do not yield constraints for those individually, but are mixed and entangled in nontrivial
and sometimes nonlinear ways.
Prominent examples of such observables intervening several Galactic constituents are e.g
synchrotron radiation coupling the relativistic electron density nrel with the squared per-
pendicular component of the Galactic magnetic field B⊥, or stellar polarization in the
optical regime, which gives information on the magnetic field direction and dust prop-
erties. The only route to disentangle these and similar observables and to map out the
structure of the Galaxy is to cross-correlate them with each other and/or to compare with
simulations. For some observables, this has been successfully performed, e.g Polderman
et al. (2020) constrain the cosmic ray electron density and magnetic field strength from
synchrotron radiation and free-free absorption or Leike & Enßlin (2019) reconstruct the
local Galactic dust density from stellar absorptions and positions.

In this paper, we aim to disentangle the Galactic Faraday depth sky into its physical
components. The Faraday effect couples the line-of-sight (LOS) component of the magnetic
field B‖ with the thermal electron number density nth. It is the only observable that
provides direct information on B‖ for most regimes in the interstellar medium (ISM),
apart from longitudinal Zeeman splitting, which may be observable in very dense regions
such as molecular clouds (Beck & Wielebinski 2013) and circular polarization of synchrotron
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radiation, which will only be observable with next generation radio telescopes (Enßlin et al.
2017). The Faraday effect has long been used to constrain the magnetic field strength (Frick
et al. 2001; Han et al. 2006). Such works often exploit the information of pulsars, which
have the advantage of potentially providing RM and DM associated with a known distance.
The disadvantage is that few pulsars are known with independent distance measurements
(about X at the time of writing this paper) and hence, in case the large scale fields of the
whole Milky Way are to be constrained, one has to appeal to strong modeling assumption
on the magnetic field and/or the thermal electron density. Extra-Galactic RM sources have
also been used to constrain the Galactic magnetic field in conjuncture with EM information
stemming from free-free emission (Hutschenreuter & Enßlin 2020a).

In the latter reference, henceforth abbreviated with HE19, we included the free-free EM
sky as a phenomenological proxy for the Faraday depth amplitude and were thereby able
to make qualitative statements on the local structure of the Galactic magnetic field. In
particular, the alignment of the magnetic field with the local Orion spiral arm was revealed
thereby. In this work we will replace our phenomenological model used in HE19 with a
more physical one, with the aim to turn qualitative predictions into quantitative ones. This
will be attempted with the help of four different data sets, namely (mostly) extra-Galactic
Faraday rotation measures (RMs) as compiled by van Eck et al. (in prep.), pulsar DM data
(Manchester et al. 2005) and the emission measure (EM) map of the Planck survey. As
byproducts, we obtain sky maps on the volume filling factor that translates the EM and
DM skies and a cleaned EM sky field.

The statistical methodology of this work foots on the same grounds as previous infer-
ences of the Galactic Faraday depth sky in Oppermann et al. (2012a), HE19 and HE20,
namely Information Field Theory (IFT). IFT is information theory for fields and field-like
quantities and can cope with large, incomplete, and noisy data sets. For references to IFT
see Enßlin (2019) and for the accompanying python package NIFTy, in which the algorithm
used in this work is implemented in, see The NIFTy5 team et al. (2019).

We structure the paper as following: Sect. 5.2 describes the physics relevant for this
paper, putting special emphasis on effects that correlate the different relevant physical
quantities. Sect. 5.3 then explains the different models the data is interpreted in. Sect.
5.4 discusses the results and finally Sect. 5.5 gives a conclusive summary.

5.2 Observables

5.2.1 Faraday rotation measures

The angle of rotation ∆λ of the polarization plane of linearly polarized light travelling
through a magneto-ionic plasma, can be described by the following formula Burn (1966)

∆λ = RMλ2, (5.1)

where λ is the observational wavelength and RM is the rotation measure, defined by this
equation. Determining RMs is usually done by observing ∆λ at different wavelengths and
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fitting the result in λ2 space. In the ideal case of a thin plasma screen being the only source
for the rotation effect, the RM is equal to the Faraday depth φ, which is defined via

φ =
e3

2πm2
ec

4

∫
LOS

dl nthBLOS =

= 0.812

∫
LOS

dl [pc] nth

[
cm−3

]
BLOS [µG] , (5.2)

where nth is the thermal electron density and BLOS the LOS component of the magnetic
field. The physicals constants e,me and c describe the elementary charge, the electron mass
and the speed of light, respectively, and the integral runs from the observer to the source.
It should be noted that the Faraday effect is mostly a tracer of large scale magnetic fields.
This implies that the LOS averaged magnetic field strength significantly underestimates
the total magnetic field strength in strongly turbulent environments.

One can write down the measurement equation for the Faraday depth

dφ = Rφ+ nφ, (5.3)

where the R is a projection operator connecting the sky with data space and the (Gaussian)
noise term nφ contains the Gaussian statistical noise with known covariance. In this work,
we are using a newly compiled data catalog of RM measures (van Eck et al. in prep.). We
furthermore use the noise estimate provided by HE20 instead of the observational errors,
as in these the potential extragalactic components and observational systematics from e.g.
nπ-ambiguities (Ma et al. 2019) are already factored in.

5.2.2 Pulsar dispersion measures

Pulsars are magnetized and rapidly rotating neutron stars (Lorimer 2008), emitting beamed
electromagnetic radiation. This results in periodic radio pulses. As light travels slower
within interstellar plasma at lower frequencies, the arrival time t of the pulse varies with
frequency ν, which can be expressed as (Draine 2011)

∂t

∂ν
= − e2

πν3mec
DMi, (5.4)

where the dispersion measure DMi of pulsar i is defined as

DMi =

∫
LOSi

nth. (5.5)

The LOS goes from Earth to the pulsating neutron star. Therefore, DMs obtained from
pulsars provide a lower limit on the Galactic DM sky for the respective LOS they probe.
These are the ones we require for this work, as they probe the DM practically over the same
Galactic length as the background radio sources used to construct the Faraday rotation sky.
Identifying the subset of the known pulsar population that is located beyond the boundary
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(a)

(b)

Figure 5.1: Sky projections of the RMs coming from the van Eck catalog (Fig. (a)). Fig.
(b) shows the corresponding the estimated standard deviations from HE20. These and all
maps following are presented in Galactic coordinates centered at (l, b) = (0◦, 0◦).
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region of the Milky Way is a non-trivial task. Distance measurements independent of nth

are only available for a minority of pulsars, mostly via parallaxes, associations with known
structures or HI absorption. In this work we will use the Australia Telescope National
Facility (Manchester et al. 2005) catalog of pulsars 1. From this catalog, we identify
pulsars satisfying the condition

x2
Gal

(16 kpc)2 +
y2

Gal

(16 kpc)2 +
z2

Gal

(4 kpc)2 > 1, (5.6)

where xGal, yGal and zGal are the coordinates of the pulsar in a Galacto-centric coordinate
system. The corresponding DMs are collected in a data set dDM,edge. This data set is
illustrated in Fig. 5.2.

We explicitly exclude pulsars in the Magellanic Clouds, which on the one hand satisfy
Eq. 5.6, but on the other hand show strong internal DM scatter, indicating internal DMs
comparable to that of the Milky way in their direction. As we also have a large number
or RMs for the Magellanic Clouds and they are sufficiently resolved given the resolution
we would like to achieve, we treat them as a part of the Galactic sky. They and all other
pulsars which do not fulfill the condition in Eq. (5.6) all provide a lower limit for the DM
of their respective LOS and are therefore collected in a second data set dDM,lower.

5.2.3 The electron emission measure

In some of the reconstruction algorithms, we will constrain the amplitude of the Faraday
rotation sky by using additional information on the projected thermal electron density.
One of the – from a physical point of view – easiest obtainable measure on this quantity
is the electron emission measure (EM), defined via

EMP =

∫
LOSP

n2
th. (5.7)

The subscript P indicates the process that traces the EM. To give specific examples,
the EM can be e.g. constrained by observing radiation stemming from free-free emission
(the bremsstrahlung resulting from the interaction of free protons and electrons) or H-α
emission tracing the hydrogen Balmer-α line. H-α emission as a tracer of EM has the
disadvantage that both electron temperature and foreground dust absorption need to be
considered, which is beyond the scope of this work. Free-free emission is an important
Galactic foreground in the microwave sky, especially in the low-frequency regime around 30
GHz, and was therefore accurately determined by Cosmic Microwave Background (CMB)
missions such as Planck (Planck Collaboration 2016a) or WMAP (Bennett et al. 2013).
The observed free-free emission depends on two Galactic environmental variables, namely
the thermal electron density nth and the thermal electron temperature Te. Under the
assumption that the latter is constant along the LOS, the Planck team has produced both

1http://www.atnf.csiro.au/research/pulsar/psrcat

http://www.atnf.csiro.au/research/pulsar/psrcat
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(a)

(b)

Figure 5.2: Positions of the pulsars that are collected in data-set dDM,edge because they
can be assumed to lie at the Galactic edge. The horizontal cut through the Galaxy in
Fig. (a) contains only pulsars with a distance to the Galactic plane of |z| < 3 kpc,
while Fig (b) shows all pulsars in the data-set. The background images are an artist
impression (NASA/JPL-Caltech,R. Hurt (SSC/Caltech), Fig. (a)) or adapted from Gaia
Collaboration et al. (2018) (Fig. (b)).
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Te and EM maps (Planck Collaboration 2016a). The Te map is barely constrained by
the Planck data and therefore is of limited use here. In HE19, we used the EMff map to
construct a proxy for the amplitude of the Galactic Faraday depth sky. This will also be
the case here, albeit with updated models. It was furthermore discussed in HE19 that the
uncertainties given by the Planck team seem not to capture the full uncertainty (Planck
Collaboration 2016a). In this work, we will therefore rely on the same noise estimation
technique as in HE19.

5.3 The models

In general, we non-parametrically model the quantities that need to be inferred as a non-
linear combination of Gaussian fields defined over the sky, each characterized by a unknown
correlation structure, that needs to be inferred simultaneously with the field it character-
izes. The inference of the respective correlation functions is modeled slightly differently in
accordance with recent developments in numerical information field theory, for reference
see (Arras et al. 2020). As an example, to infer a flux density on the sky, we assume it to
be an exponentiated Gaussian process, as the resulting field is positive and large variations
in flux are easily representable this way.

In the following, we introduce the LOS-average over a quantity x

〈x〉LP
≡ 1

LP

∫ LP

0

dl x, (5.8)

with LP indicating the length of the LOS traced by a physical process P . This notation
allows an interpretation of the observables as expectation values or higher order moments
of the statistical distribution of x. This enables a calculus in which we can make physically
interpretable statements in order to justify the models we use. The integrals in Eqs. (5.2)
and (5.7) will typically receive their most significant contributions from the Milky Way
and in case of Eq. (5.2) maybe from the direct vicinity of the source. In some cases, the
observational tracers might be blocked, e.g. due to absorption, making it important to
distinguish averages stemming from different observables.

5.3.1 Revisiting the Faraday sky model

In order to motivate our modeling and later on interpret our results, we will further inves-
tigate the dependencies of φgal. We write according to Eq. (5.8):

φgal = 0.812 Lφ [pc]
〈
nth

[
cm−3

]
BLOS [µG]

〉
Lφ

(5.9)

In order to further constrain φ (apart from further RM measurements), one needs infor-
mation on either BLOS or nth or both. Observationally, the two quantities are generally
decoupled in the warm inter-stellar medium (ISM) (Crutcher et al. 2010), but maybe cor-
related in denser regions such as molecular clouds (Harvey-Smith et al. 2011; Purcell et al.
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(a)

(b)

Figure 5.3: Sky projections of the Planck data and corresponding uncertainties. Fig. (a)
shows the EM, Fig. (b) the corresponding standard deviations.
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2015) which may dominate the average for certain LOS. (see also discussion in HE19).
From a theoretical perspective, both anti - correlation (due to magnetic pressure compen-
sating lacking gas pressure in conditions close to pressure equilibrium (Beck et al. 2003))
or correlation (due to compression in shock fronts or gravitationally collapsing structures)
is reasonable. Either way, if such a correlation is to be assumed, one of the simplest model
assumptions to make is that the magnetic field strength scales with some power law of the
electron density or more explicitly

B =
npth
npth,0

Bcorr. (5.10)

Here, the amplitude corrected magnetic field Bcorr is now assumed to be uncorrelated to
the electron density. If the amplitude of the magnetic field is completely determined by
the electron density apart from a constant factor, BLOS,corr would only be proportional to
a geometry factor cos(θ), where θ is the angle between the LOS and the magnetic field
vector. Inserting this into Eq. (5.9) and exploiting the assumed independence of BLOS,corr

and nth, we get

φ = 0.812
Lφ

npLφth,0

〈
np+1

th

〉
Lφ
〈Bcorr cos(θ)〉Lφ , (5.11)

If we assume no correlation between nth and and BLOS by setting p = 0, this simplifies to

φ = 0.812 Lφ 〈nth〉Lφ 〈BLOS〉Lφ = DMφ 〈B cos(θ)〉Lφ , (5.12)

where we introduced the dispersion measure DMφ =
∫

LOS
dl nth. Regardless of the value of

p, on can use Eqs. (5.11) and (5.12) to motivate the simplest model for the Faraday sky,
used already by HE19 and HE20:

φ = eρχ
rad

m2
(5.13)

In both HE19 and HE20, the log-normal field eρ is phenomenologically models large vari-
ations in Faraday rotation amplitude, while χ is supposed to represent the sign of the
Faraday rotation sky and small ampliutude variations. In this work, eρ models the p-th
moment of the electron density (or the DM if p = 0), while χ models the magnetic field av-
erage, making this the base model for this work. The model is illustrated in Fig. 5.4. Both
fields have an unknown correlation structure that needs to be determined. As noted in
HE20, one cannot relate the component fields to the respective physical quantities without
further assumptions. To attempt this is the main ambition of this work.

5.3.2 Model 1 - Adding pulsar DM data

If we assume Eq. (5.12) to be correct for most part of the sky, we can use additional
DM data in order to break the aforementioned degeneracy between the ρ and χ field. As
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discussed in Sec 5.2, most pulsars will only provide us with a lower limit on the Galactic DM
sky, but a subset of distant, mostly high latitude pulsars may be used as noisy estimator of
the true full Galactic DM at their respective location on the sky due to their conjectured
location behind the Milky Way. The model for their associated true DMs is then

DMedge = Redgee
ρ, (5.14)

with Redge being a projection operator from the sky onto data-space. The pulsar data
dDM,edge is assumed to contain Gaussian noise. Instead of using the observational uncer-
tainties for its likelihood covariance, which are generally very small as timing information
is usually very accurate, we assume errors of at least one pc

cm−3 . This is done to account
for systematic uncertainties as e.g. unaccounted small scaled electron density structure
in the vicinity of the pulsar which might lead to an overestimation of DM or, vice versa
additional structure behind the pulsar which would lead to a local under estimation of
the Galactic DM sky. For all other pulsars, which can not be assumed to probe the full
LOS through the Galaxy, we need to account for the unobserved DM fraction behind the
pulsar by multiplying the respective sky value with a fudge factor r, for which we assume
a uniform prior between 0 and 1. This gives the following model for their associated true
DMs:

DMlower = rRlowere
ρ (5.15)

Again, Rlower is a projection operator. In order to enforce our prior knowledge that the
Galactic DM is strictly larger than the observed pulsar DM up to the observational error,
we implement a logistic likelihood function

P (DMlower|dDM,lower) ∝
1

1 + e−σ
−1(DMlower−dDM,lower)

, (5.16)

with σ being the observed DM error. This likelihood is close to zero for DMlower � dDM,lower

and nearly 1 for DMlower � dDM,lower. The steepness of the ascent in between is steered
by σ−1. This is an improper likelihood as it technically is not normalizable without a
cutoff at high DMlower. It is always possible to choose the cutoff high enough, such that we
never have to evaluate the likelihood near or above the cutoff. It then only appears in the
normalization term, but, as NIFTy uses log-likelihoods the normalization is a negligible
constant, which hence does not have to be specified.

We now have a model for the DM sky constrained by two data sets dDM,lower and dDM,edge,
which could be used to infer the sky on their own. If combined with the Faraday rotation
sky inference as illustrated in the graph in Fig. 5.5, the addition of pulsars allows for a
separation of the Faraday depth sky into DM and magnetic field average. The precision
mainly relies on the density of pulsars on the sky, specifically the ones lying in the outskirts
of the Milky Way. We will refer to this model as Model 1 in the further course of the text.
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MODEL 1

φ = 0.812 eρ χ
rad

m2
,

DM = eρ
pc

cm3
, (5.17)

5.3.3 Model 2 - Adding the EM data

In order to increase the precision of the DM sky inference, we include the Planck EM data
in the second model. For this, we need to relate the EM to the DM sky or more general to
the p-th moment of nth in Eq. (5.11). For that, we will make the generic assumption that
the electron distribution along the LOS can be modeled via a log-normal process

nth(l) = nth,0e
s(l), (5.18)

where s(l) is a Gaussian process with unknown correlation structure along the LOS. The
mean of the process can be completely absorbed in the pre-factor nth,0, it is therefore
sufficient to assume s to have zero mean. Using this, we can relate the EM to the DM
along the LOS via

EM =
DM2

LP

〈e2s(l)〉LP

〈es(l)〉2LP

=
DM2

LP fEM,DM

(5.19)

The filling factor fEM,DM is strictly positive and smaller than one. It is generally viewed
as a measure of clumpiness of the ISM (Pynzar’ 1993; Gaensler et al. 2008), as in the
limit of s(l) ≈ const. it approaches unity and EM and DM become directly translatable up
to the distance factor. In the other extreme, when s(l) is extremely small scaled fEM,DM

approaches 0.
If we assume p = 0 in Eq. 5.11, we easily integrate the EM into the model, under the

assumption that Faraday rotation and emission measure probe the same length of the LOS
(i.e. Lff = Lφ),

MODEL 2

φ = 0.812 eρ χ
rad

m2
,

DM = eρ
pc

cm3
,

EM = e2ρ+ψ pc

cm6
, (5.20)

where

eψ =
1

fEM,DMLP

. (5.21)
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In order to build a bridge to the phenomenological model of Hutschenreuter & Enßlin
(2020a), we consider potential variations in the p−factor, the equation relating the ampli-
tude of the Faraday sky and e.g. the EM is:

EM = LP

〈
np+1

th

〉 2
p+1

L
f−1

EM,p, (5.22)

where a new filling factor fEM,p is introduced. To model this, at least two additional degrees
of freedom have to be introduced, one catching the variable p factor and the other the new
filling factor. A viable model would be

EM ≡ eργ+ψ, (5.23)

where γ models the p-variations and ψ the new filling factor.
To make things complicated, a similar equation as Eq. (5.22) holds for the relationship

between DM and
〈
np+1

th

〉
L
, which implies that at least one other field (for yet another filling

factor, fp,DM) would need to be introduced in order to combine φ, DM and EM data under
the assumption of p deviating from 0. Given the sparsity of pulsars on the sky, the problem
is now vastly under-constrained, making a reliable inference in this case very hard.

Not using the DM data eases the problem numerically, however, in this cases the model
components become degenerate again, implying that if no further prior assumptions or
additional data are provided,they can not be mapped uniquely to the physical components.
One can, however, revert to a phenomenological model by introducing further degrees of
freedom, e.g.

φ = eρχ
rad

m2
,

EM ≡ eργ+ε + eδ
pc

cm6
(5.24)

were the additional δ field allows the qualitative absorption of specific structures on the
sky. This model is exactly the one implemented in HE19 which revealed the signature of
the Orion Arm, where however the above derivation was lacking. As we are focusing on
the extraction of the dispersion measure and magnetic field skies in this work, it is not
reimplemented here.

5.4 The results

5.4.1 Magnetic field sky

In the following we present the results on the magnetic field sky of Model 1 (Eq. 5.5)
and Model 2 (see Eq. 5.6). We see that both estimates widely agree on the large scale
scale structure on the sky. Mid-latitude regions are generally the most pronounced, with
magnetic field strengths reaching between 2.5µG in Model 1 and 1.5µG in Model 2. The
disc shows small averaged field strengths, consistent with a picture of many field reversals
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χ ρ ηφ

φ nφ

dφ

Figure 5.4: Graph illustrating the hierarchical Bayesian model used for the Faraday sky
inference by HE19 and HE20. This is the base model that all further models derive from.

ρ χ

DM φ

dDM,lower dDM,edge dφ

Figure 5.5: Graph illustrating the hierarchical Bayesian model described in Eqs. (5.17).

ψ ρ χ

EM DM φ

dEM,ff dDM,lower dDM,edge dφ

Figure 5.6: Graph illustrating the hierarchical Bayesian model described in Eqs. (5.20).
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and a rather small scaled (e.g. turbulent) magnetic field in the disc. It should be noted,
that above the overall variations in magnetic field strength between the models do not
necessarily imply that the inclusion free-free data leads to a significant difference, but may
also be a result of convergence issues of the numerical model. Nonetheless, both obtained
magnetic field strengths are consistent with measurements of the local large scale magnetic
field (Haverkorn 2015).

5.4.2 Dispersion measure sky

In Figs. 5.8a and 5.8b we show the results on the logarithmic Galactic dispersion measure
sky. The profile of both maps agrees rather well with each other on large scales. The results
of Model 1 are significantly smoother as the ones of the Model 2, while the latter has a very
pronounced disc. The smoothness of 5.8a may result from the limited information of the
scattered pulsars on the small scale structure of the map. In Fig 5.10, we show the log-DM
calculated from the Yao et al. (2017) electron model. The map here is somewhat more
pronounced in the disc, more akin to 5.8b. The slice plots in Fig. 5.9 reveal that the 5.8a
fits better to the (Yao et al. 2017) model. It should be noted that Yao et al. (2017) had
to enforce strong modelling assumptions on the thermal electron density, as their results
are only based on the few existing pulsar DMs with associated distances. The strong loop
feature at about 300◦ latitude is easily discernible in both our results and the Yao et al.
(2017) model.

5.4.3 The filling factor

In Fig. 5.11a, we show the results on the ψ field as defined in Eq. (5.21). This field traces
the logarithm of the inverse EM-DM filling factor times the LOS length. A direct com-
parison with the literature values on the filling factor is difficult, as in our case we cannot
disentangle it form the length of the LOS, LLOS. Nonetheless, a few qualitative statements
can be made. Since we find values of ψ between 2 and 6, this implies approximately that
0.1 > fEM,DM LLOS > 0.002. As the length of the LOS should almost always be on the
order of several kiloparsecs, fEM,DM must be extremely small for most LOS. On first sight,
this is in contrast to e.g. Gaensler et al. (2008), where they find the filling factor to be
between 0.04 and 0.3. Their method, however, relies on local measurements using close
by pulsars. The filling factor however is dependent on the length of the LOS, as it is
essentially a measure of the variance of the cumulative electron density. We can give some
further evidence that the map shows real structures by comparing it with the logarithmic
integrated dust density as derived by Leike & Enßlin (2019). This demonstrates a rather
strong anti-correlation of the two maps. This may indicate that the effective LOS lengths
in direction of local dust clouds are rather short and that hence the EM and DM skies
(and potentially the Faraday depth sky) have strong local features in these directions.
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(a)

(b)

Figure 5.7: The LOS parallel and LOS averaged magnetic field, Fig. (a) shows the
posterior mean of Model 1, Fig. (b) the corresponding results of Model 2. In both cases
the color scale is saturated at ±1.5µG.



94 5. Disentangling the Faraday sky

(a)

(b)

Figure 5.8: Inference results for the logarithmic Galactic DM sky. Fig. (a) shows the
posterior mean of Model 1, Fig. (b) the corresponding results of Model 2.
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(a) (b)

Figure 5.9: Slices through the Galactic DM sky. Fig. (a) shows the posterior mean
resulting from Model 1 (5.5), while Fig. (b) shows the posterior mean resulting from
Model 2 (5.6). The black dots indicate the corresponding results of Yao et al. (2017).

Figure 5.10: The logarithmic integrated electron density profile of Yao et al. (2017) in log
dispersion measure units.
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(a)

(b)

Figure 5.11: Inference results for the EM-DM filling factor (see Eq. (5.21)). Fig. (a)
shows the posterior mean of the psi field from Model 2 (5.5), while Fig. (b) shows the log
integrated dust density as derived by (Leike & Enßlin 2019). It should be noted that the
colorbars are reversed in the two plots to highlight the anti-correlation of the two fields.
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5.4.4 Faraday sky

For completeness, we show the results of the Faraday depth sky in Fig. 5.12. The general
agreement with the results obtained by HE20 is good, which gives an important validity
check for our method. Fig. 5.12b shows evidence of an amplified disc feature, in line with
the results of HE20.

5.5 Discussions

In this work, we use three different data sets in order to disentangle the Galactic Faraday
rotation sky into a its physical components, namely the averaged LOS parallel magnetic
field component and the DM sky. For this, we developed two models based on Faraday
rotation measure, pulsar dispersion measure and free-free emission measure data.

We find magnetic field values of around 2µG, consistent with local measurements. The
morphology of the magnetic field maps in Fig. 5.7 indicated the strongest field averages
in mid-latitude regions outside the turbulent Galactic disc.

In terms of large scale morphology, the DM skies shows good agreement with results
stemming from a methodologically independent analysis, but show significantly more small
scaled structures.

In our second model, we implement a joint analysis of Faraday rotation, EM and DM
sky. This allows us to constrain the filling factor that connects EM and DM skies, which
we find to be strongly correlated with the integrated local dust densities. This indicates
that many LOS are strongly influenced by these structures. Significant differences in the
results between the two models indicate the need for further inspection of the methods
implemented in this work.
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(a)

(b)

Figure 5.12: Inference results for the Galactic Faraday depth sky. Fig. (a) shows the
posterior mean resulting from Model 1 (5.5), while Fig. (b) shows the posterior mean
resulting from Model 2 (5.6).



Chapter 6

Circular polarization in the radio sky
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This chapter summarizes work related to circular polarization. This has lead to two pub-
lications (Enßlin et al. 2017a, 2019), in each of which Torsten Enßlin is the main author.
In both cases, I contributed to the analytical derivations, implemented the numerical cal-
culations and took part in writing of the manuscripts.

6.1 Introduction

Radio synchrotron emission of astrophysical magnetized plasmas should be circularly polar-
ized due to the circular motions of relativistic charged particles in magnetic fields. Because
of the relativistic beaming effect of the particle’s motion on the emitted radiation we see
mostly the electrons that spiral around fields oriented perpendicular to the line-of-sight
(LOS) and therefore predominantly linearly polarized emission. The magnetic fields that
point towards us could be a source of circular polarization (CP), reflecting the circular
motions of the relativistic particles visible in this geometry. However, the aforementioned
beaming effect diminishes any radiation parallel to the magnetic field. The largest CP
emission should therefore result from magnetic fields with an inclination in between par-
allel and perpendicular to the LOS. The field component parallel to the LOS, B‖ , ensures
that a circular component of the electron gyration is visible to the observer, and deter-
mines thereby the sign of Stokes-V . The field component perpendicular to the LOS, B⊥,
enables the gyrating charged particles to send some beamed flux into the direction of the
observer and therefore largely determines the strength of the CP. The rotational sense of
the CP is entirely determined by the charge of the emitter, a property that is not shared
by the (usually much easier) linear polarized synchrotron emission. Hence, CP provides an
excellent tracer of the charge content of astrophysical plasmas, a property that is exploited
in the next chapter.
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6.1.1 Testing the charge composition of the emitters

In the following, we highlight specifically how the sensitivity of the sign of CP on the charge
of the emitting plasma can be used to determine the nature of astrophysical plasmas in
different environments. The first case will be concerned with the Milky Way and the second
case with relativistic jets ejected of Active Galactic Nuclei (AGNs).

The case of the Milky Way

The rotational sense of the CP flux should typically have the opposite sign of that of the
Faraday rotation if both are measured with the same convention and if the relativistic and
thermal particles involved have the same charge sign, e.g. are both electrons. The reason
is that the CP sense should directly reflect the gyro-motion of the relativistic particles
emitting the radio emission. Faraday rotation is caused by the different phase speeds of
left and right polarised electromagnetic waves in a magnetized plasma. The waves that
co-rotates with the lightest thermal charge carriers – usually the electrons – can interact
most strongly with them and gets the largest delay. Consequently, a linear wave that can
be regarded as a superposition of left and right circular waves gets rotated in the sense
of the faster wave, and therefore counter rotates with respect to the gyro-motion of the
light charge carriers. Thus, if the involved thermal and relativistic particles have the same
charge sign, CP and Faraday rotation produced in the same magnetic field counter rotate.
This opens the possibility to test for the existence of regions with positrons dominating
the radio synchrotron emission. The circular polarization sky of the Milky Way will be the
topic of Sect. 6.2.1.

The case of the Cygnus A Hotspots

In the case of hot-spots, the radiation of relativistic electrons and positrons is beamed in
the direction of their instantaneous motion and for this reason very little of the circular
motion of an ensemble of relativistic leptons gets imprinted onto their radiation as circular
polarization. Nevertheless, an asymmetry in the charge distribution of particles contribut-
ing to a given observational frequency should leave a weak CP signal. Such an asymmetry
should exist if the radio plasma is mainly an electron-proton plasma, as one might ex-
pect in case the radio jets consist of material launched magnetically from accretion discs
around super-massive black holes. On the other hand, no CP signal should arise in case
radio plasma is composed of electrons and positrons created in similar amounts and with
identical spectra by pair production events from hard photons in the vicinity of such black
holes. Thereafter, acceleration and energy loss mechanism should not distinguish between
electrons and positrons in case the radio plasma stays purely leptonic in its subsequent
evolution. Then the dynamics of electrons and positrons is (mirror) symmetric and they
should aquire similar energy spectra, which leads to cancellation of their individual CP
contributions.

Therefore, the detection of CP intrinsically emitted from radio plasma would indicate
that the charge symmetry of the synchrotron radiation arising from the plasma constituents
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is broken, and therefore either an electron proton plasma is dominant, or alternatively, the
particle acceleration mechanism favours electrons or positrons for a yet unknown reason.

More interesting, therefore, would be a reliable observational upper bound on the CP
flux from radio plasma, which is distinctly below the expected level for an electron-proton
plasma. That would be a strong evidence against emission from an electron-proton plasma
and therefore favor an electron-positron plasma.

Other sources of CP should be excluded before accepting the electron-proton plasma
scenario via CP detection. The primary candidates for this are Faraday conversion and
instrumental polarization.

Faraday conversion is the transformation of linearly polarized emission into CP by the
different dispersion a linear polarized wave experiences depending on whether its polariza-
tion is parallel or perpendicular to the magnetic field. It is believed to be the main cause of
the highly variable CP observed in compact objects (Jones & Odell 1977a,b; Hodge 1982;
Valtaoja 1984; Komesaroff et al. 1984; Bjornsson 1990; Beckert & Falcke 2002; Ruszkowski
& Begelman 2002; Enßlin 2003) like Sagrittarius A∗, GRS 1915, SS 433 (Bower et al. 1999;
Sault & Macquart 1999; Fender et al. 2000, 2002). Faraday conversion can be identified via
its characteristic dependence on wavelength to the third power, as long one does not probe
the extreme regimes like in AGNs (Vitrishchak & Gabuzda 2008). It operates most effi-
ciently in the strong magnetic fields and dense plasma present near these objects. Thus, if
we wish to minimise the contamination to CP on account of Faraday conversion, we should
investigate regions with weaker magnetic field strengths and lower particle densities. As
we still need a high brightness, the hot spots of radio galaxies seem to be ideal, and the
brightest of those are the ones seen at the tips of the radio lobes of Cygnus A, which will
therefore be the focus of Sect. 6.3

6.1.2 Circularly polarized synchrotron emission

In the following, we derive the necessary framework to give estimates on the strength and
sign of CP. The synchrotron emissivity of relativistic electrons with density nrel is dependent
on their energy spectrum, which we here assume to follow a power law spectrum as

dn(γ)

dγ
=

neγ
−p

γ1−p
min − γ1−p

max

(6.1)

between γmin and γmax with energy spectral index p. The synchrotron emissivity is (Pandya
et al. 2016)

j =


jI
jQ
jU
jV

 = j0nnrel
B

p+1
2
⊥ ν

1−p
2︸ ︷︷ ︸

jI


1
q
u
v

 , (6.2)
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where

j0 =
e2

c

(
e

2πmec

) p+1
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q = − p+ 1

p+ 7/3
cos (2ϕ) (6.4)

u = +
p+ 1

p+ 7/3
sin (2ϕ) (6.5)

v = − j1B‖

(ν B⊥)
1/2

(6.6)

j1 =
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(
3 e p
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)1/2

= 0.06268

(
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)1/2

. (6.7)

The symbols e, me and c denote the elementary charge, the electron mass, and the speed
of light, respectively. The magnetic field is

B =

B⊥ cos (ϕ)
B⊥ sin (ϕ)

B‖

 =

sin(θ) cos (ϕ)
sin(θ) sin (ϕ)

cos(θ)

 B,

with the z-axis being parallel to the LOS and ϕ the angle between the x-axis and the field
component in the plane of the sky, B⊥(Pandya et al. 2016).
The CP intensity as characterized by Stokes V for a given LOS is then approximately given
by

V = αV

∫
dl nrelB||B

p/2
⊥ , (6.8)

where
αV = −j0j1ν

− p
2 (6.9)

is a constant, which depends only on natural constants, model parameters and the CP-
observational frequency ν. Analogously, total intensity can be written as

I = αI

∫
dl nrelB

2
⊥, (6.10)

(6.11)

with
αI = j0ν

1−p
2 (6.12)

.
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6.2 The Galaxy in circular polarization:

all-sky radio prediction and the charge of leptonic

cosmic rays

6.2.1 Circular polarization in the Milky Way

So far only linear polarization has been detected and imaged in the diffuse radio-synchtron
emission of the Milky Way (Wolleben et al. 2006; Page et al. 2007; Pandya et al. 2016).1

CP should be much weaker and therefore harder to be detected and charted. Nevertheless,
Galactic CP emission should exist and therefore should in principle be observable. Since
the CP signal is weak, and has to be discriminated from instrumental polarization leakage
effects, it would be very helpful to have a prediction not only on the magnitude of this
emission, but also on its detailed morphology on the sky. This work provides such a pre-
diction.
To predict the CP emission accurately knowledge of the Galactic magnetic field (GMF)
strength and orientation is necessary throughout the Galactic volume, as well on the num-
ber density and the energy spectrum of the relativistic electron population. Currently we
are lacking this information, despite substantial efforts to model the GMF (Sun et al. 2008;
Waelkens et al. 2009b; Jansson et al. 2009; Jaffe et al. 2010; Sun & Reich 2010; Fauvet
et al. 2011; Jaffe et al. 2011; Jansson & Farrar 2012a,b; Planck Collaboration 2016d), the
Galactic thermal electrons (Cordes & Lazio 2002; Greiner et al. 2016b), and relativistic
electrons (Strong & Moskalenko 2001; Strong et al. 2004; Vladimirov et al. 2011; Opper-
mann et al. 2012b; Orlando et al. 2015; Mazziotta et al. 2016; Evoli et al. 2017) from
various observables. The observables informing us about the perpendicular GMF compo-
nent (times the relativistic electron density) are the linear polarization and total emission
of the synchrotron emission. The parallel GMF component imprints onto the Galactic
Faraday rotation measures of extra-galactic sources, however modulated by the thermal
electron density. Instead of using these observables to construct a 3D GMF model from
which CP can be predicted (King & Lubin 2016), here we exploit that a certain combina-
tion of these observables should be linearly correlated with the CP signal. Exploiting this
correlation without the detour of building a simplified 3D GMF model should permit to
predict more small-scale structures of the Galactic CP signal than by usage of a coarse 3D
GMF model.

The pieces of information that are put together, the Faraday signal as a tracer of
B‖ and the total synchrotron intensity as a tracer of B⊥, might report about different
locations along the LOS, whereas the combination of both components at the locations of
CP emission would be needed. The former signal results predominately from locations of

1CP from compact Galactic objects like Sagrittarius A∗, GRS 1915, SS 433 has been detected (Bower
et al. 1999; Sault & Macquart 1999; Fender et al. 2000, 2002), which seems to result from a different
process as discussed here, namely Faraday conversion operating in the much stronger magnetic fields of
these objects (Jones & Odell 1977a,b; Hodge 1982; Valtaoja 1984; Komesaroff et al. 1984; Bjornsson 1990;
Beckert & Falcke 2002; Ruszkowski & Begelman 2002; Enßlin 2003).
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high thermal and the latter of high relativistic electron density, and these do not need to
coincide spatially.

Fortunately, the GMF exhibits some spatial correlation as the observables are correlated
as a function of sky direction and this correlation should also hold in the LOS direction.
Therefore, information on field components resulting from slightly different locations might
still provide a good guess at a position. Some of the structures imprinted onto the observ-
ables are caused by structures in the underlying thermal or – to a lesser degree – relativistic
electron population and might, however, be misleading and lead to spurious structures in
a CP sky predicted this way.

Anyhow, a CP prediction constructed directly form such observables will be mostly
model independent and therefore ideal for template-based CP detection efforts. It will
have small angular scale structures that should also permit the usage of interferometer
data that usually lack large angular scale sensitivity. While using this CP template map,
it should just be kept in mind that it resembles an educated guess for the galactic CP
morphology, and is certainly not accurate in all details. It should, however, be a very
helpful template for the extraction of a detectable signal out of the probably noisy CP
data and help to verify the detection of the Galactic CP signal by discriminating this from
instrumental systematics that plague the measurement of weak polarization signals.

6.2.2 Model

The core insight for modeling the CP sky is that the building blocks of the CP signal
nrel, B||, and B⊥ (see Eq. (6.8)) appear in nearly the same combination in the Galactic
total synchrotron intensity I (see Eq. (6.10)) and the Faraday depth φ defined in previous
chapters. In particular, the data combination

d = φ I = αφαI

∫
dl

∫
dl′ nth(l)nrel(l

′)B||(l)B
2
⊥(l′) (6.13)

contains the same magnetic field components as V = αV
∫
dl nrel(l)B||(l)B

3/2
⊥ (l), although

with slightly different spatial dependence and a slightly different B⊥ dependence. Again,
a index of p = 2 was assumed for the spectrum in Eq. (6.1). The constant αφ = e3

2πm2
ec

4

entails the constant terms stemming from Faraday rotation. If the magnetic field would
be spatially constant along a LOS, d and V would be correlated according to

V

d
=

αV
αφαI

1∫
dl nthB

1/2
⊥

, (6.14)

so that knowing d would allow us to predict V ap art from the weak B⊥ dependence,
assuming we know the LOS integrated thermal electron density from other measurements
like pulsar dispersions. In reality, d and V will not be perfectly correlated as there are
unknown magnetic structures on the LOS. The ratio

V

d
=

αV
αφαI

∫
dl nrelB||B

3/2
⊥(∫

dl nthB||
) (∫

dl nrelB2
⊥
) (6.15)
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therefore encodes information on magnetic structures along the LOS, in particular on the
co-spatiality of Faraday rotating and synchrotron emitting regions. This information would
be interesting to obtain in order to improve our GMF models.

Before CP observations can be exploited for studying Galactic magnetism, the CP
signal has to be detected. For this, a rough model of the CP sky would be extremely
helpful, as it can be used to build optimal detection templates to be applied to the noisy
CP data. In the following, we construct such a predictive CP-polarization all sky map for
this purpose. As d is already an observable today, it can be used to predict V to some
degree.

V and d will in general be correlated. The production of CP is inevitably associated
with total intensity emission and the sign of the produced V is determined by the sign of
B||, which always also imprints into the Faraday depth (for emission locations with thermal
electrons). This correlation might be weak, in case the synchrotron emission and Faraday
depth signals are mostly created at distinct locations with mostly uncorrelated magnetic
LOS component B||. If, on the other hand, synchrotron emissions and Faraday rotation
are mainly co-spatial, a strong correlation between V and d can be expected. The fact that
the Galactic radio emission exhibits strong signatures of Faraday depolarization (Wolleben
et al. 2006) supports the idea of an intermixed Faraday rotating and synchrotron emitting
medium, which promises a large cross-correlation of d and V . Thus the prospects for pre-
dicting the CP sky signal to some degree are good.

All three observables under consideration here, I, φ, and V , could be predicted for
a given Galactic model in n = (nth, nrel) and ~B = (B||, ~B⊥), where we have chosen the
LOS direction to be always our first coordinate. Although we have rough models for the
3D Galactic electron distributions n, the full 3D GMF configuration is currently poorly
known. The existing GMF models (Sun et al. 2008; Waelkens et al. 2009b; Jansson et al.
2009; Jaffe et al. 2010; Sun & Reich 2010; Fauvet et al. 2011; Jaffe et al. 2011; Jansson
& Farrar 2012a,b; Planck Collaboration 2016d) largely exploit the available Faraday and
synchrotron data and therefore do not contain too much in addition to what these data-
sets have to offer. The additional information of these models is due to the usage of
parametric models of the GMF spiral structure, which are inspired from the observations
of other galaxies. Although this is certainly helpful information, the price to be paid for
it is a loss of small-scale structure in the model prediction as the parametric models do
not capture all complexity of the data sets they are fitted to. These small-scale structures
are, however, extremely important for detecting the Galactic CP signal, as many radio
telescopes and in particular radio interferometers are insensitive to large-scale angular
structures. Furthermore, a GMF model based prediction is only superior on large scales if
the included additional assumptions were correct. Although, this might well be the case,
to have a more model independent prediction is certainly healthy.

For these reasons, we will try to predict the CP sky from existing I and φ sky maps
directly, using only a minimal set of absolutely necessary model assumptions, which we
describe now. The inclusion of more information and assumptions is in principle possible
and would to lead more sophisticated V -map predictions as we are aiming for here.
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As the fluctuations in our observables are mainly caused by magnetic field structures
and to a lesser degree by structures in the electron densities n = (nth, nrel), for which rough,
but sufficiently accurate models exist, we will assume n to be known along any given LOS.
For nth we adopt the large-scale structure of the popular NE2001 model (Cordes & Lazio
2002) and nrel is modeled as a thick exponential discs, with parameters as specified in
detail in Sec. 6.2.4. Adapting a simplistic model for the electron densities means that
any structure in the RM sky, which is a consequence of not modeled structures in the
thermal electron density, will be attributed to magnetic field structures and imprints on
the resulting CP sky. Thus, the predicted CP sky will show some features not being
present in the real CP sky. Not modeled structures in the relativistic electron density will
imprint to both, the total intensity map and the CP map. Therefore, those will imprint
on the CP prediction despite the fact that the inference model assigns them to magnetic
sub-structures internally.

Although the detailed GMF is still a matter of research, reasonable guesses for how
the magnetic energy density scales typically with Galactic locations as expressed through
n exist and will be adopted here. This means, we assume that the GMF energy density is
largely a function of the electron density. We therefore need an expression for

B
2
(n) = 〈 ~B2〉( ~B|n) (6.16)

with 〈f(x, y)〉(x|y) =
∫
dxP(x|y) f(x, y) expressing the probabilistic expectation value of a

function f(x, y) (here ~B2) averaged over the conditional probability P(x|y) of an unknown

variable x (here ~B) given a known variable y (here n to characterize the different typical
environments in the Galaxy).

In this work, a simple parametrization of the form

B
2
(n) =

B2
0

nβthth0n
βrel
rel0

nβthth n
βrel
rel = B2

0 x
βth
th x

βrel
rel (6.17)

will be used, with xi ≡ ni
ni0

and plausible scaling indices of β = (βth, βrel) ∈ [0, 1]2 . To be
definitive, we adopt βth = 0 and βrel = 1 to model our intuition that the observed thick
synchrotron disk of the Milky Way and other galaxies probably require magnetic fields
which have a thick disk as well as the relativistic electrons causing this thick disk emission.
This is in line with the expectation that the relativistic fluid in galaxies, consisting of
mainly of relativistic protons, other ions, and electrons, drags magnetic fields with it when
it streams out of galactic disks.

In order to show to which degree our CP sky prediction depends on this assumption we
also show results for the complementary case β = (1, 0). It will turn out that β has only
a marginal effect on our prediction, indicating also that the 3D modeling of the electron
distributions is not the most essential input to our calculation. The exact normalization of
the scaling relation Eq. 6.17 is given by the parameters B2

0 , n
βth
th0 and nβrelrel0 . In the explicit

calculation later on we use B0 ≈ 6µG and nth0 ≈ 5 · 10−2cm−3. The parameter for the
relativistic electron density nrel0 drops out later on in the course of the calculation and
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is therefore left unspecified. The reason for this is that it affects the observable I in
exactly the same way as the predicted quantity V , and therefore becomes irrelevant when
conditioning our prediction on the observable I, which contains the necessary information
on nrel0 .

We will exploit the correlation of V with the quantity d = φI to predict the former.
These quantities depend on the magnetic field structure along a LOS in different ways.
Their cross-correlation depends on the magnetic field correlation tensor

Mij(~x, ~y) = 〈Bi(~x)Bj(~y)〉( ~B) (6.18)

as well as on higher correlations functions. A priori, we have no reason to assume that
within a roughly homogeneous Galactic environment (as defined by roughly constant n)
any direction or location to be singled out. Thus, a statistical homogeneous, isotropic, and
mirror-symmetric correlation tensor should model our a priori knowledge about the field,
which then is of the form (Subramanian 1999)

Mij(~x, ~y) = Mij(~r) (6.19)

= MN(r) δij + (ML(r)−MN(r)) r̂ir̂j,

with MN(r) and ML(r) normal and longitudinal scalar correlation functions, which depend
only on the magnitude r of the distance vector ~r = ~x − ~y with normalized components
r̂i = ri/r. These functions describe the correlation of the field at one location with that
at another location shifted in a normal or longitudinal direction with respect to the local
magnetic field orientation. These correlation functions are connected due to ~∇· ~B = 0 via

MN(r) =
1

2r

d

dr

[
r2ML(r)

]
(6.20)

and can be combined into the magnetic scalar correlation w(r) = 〈 ~B(~x) · ~B(~x + ~r)〉( ~B) =

2MN(r) +ML(r) so that B
2

= w(0) = 2MN(0) +ML(0) (Subramanian 1999).
In our calculations, only correlations along of LOSs are needed, leading to the restriction

~r = (r, 0, 0) if we identify the LOS direction with the first coordinate axis. This implies a
component-wise diagonal correlation structure

Mij(~r)|~r=(r,0,0) = [MN(r) + (ML(r)−MN(r)) δi1] δij

=

ML 0 0
0 MN 0
0 0 MN


ij

(r) (6.21)

and therefore no a priori expectation of any cross-correlation of B|| and B⊥ along a given
LOS. This simplifies the calculation of higher order magnetic correlation functions. For
such we will use the Wick theorem, e.g.

〈BiBjBkBl〉( ~B) = MijMkl +MikMjl +MilMjk,
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and therefore implicitly a Gaussian probability for the magnetic field components. The
real magnetic field statistics is most likely non-Gaussian, leading to differences between our
estimated higher order correlates and the real ones. However, since we do not know how to
model this non-Gaussianity correctly as we do not know even the sign of its effect on higher
order correlations, and as we also like to keep the complexity of our calculations moderate
we accept this simplification. We expect only a moderate and global multiplicative change
of order unity on our predicted CP sky if the nature of non-Gaussianity would be known
and taken into account in the prediction, as non-Gaussianity corrections would roughly
affect all LOSs more or less similarly.

Furthermore, we assume the longitudinal and normal magnetic correlation lengths (de-
fined here differently to match our later needs)

λL =

∫
drML(r)/ML(0) and

λN =

∫
drM2

N(r)/M2
N(0) (6.22)

to be much smaller than typical variations in the underlying electron density profiles, so
that e.g. the expected Farday dispersion can be calculated via

〈φ2〉( ~B|n) = α2
φ

∫ ∞
0

dl

∫ ∞
0

dl′ nth(l)nth(l′)〈B||(l)B||(l′)〉( ~B|n)

≈ α2
φ

∫ ∞
0

dl

∫ ∞
−∞
dr nth(l)nth(l + r)ML(r)

≈ 1

3
α2
φλL

∫ ∞
0

dl n2
th B

2
(n). (6.23)

We introduced the notation f(l) = f(l r̂LOS) for the value of the 3D field f(~r) along the
LOS coordinate l in direction r̂LOS . Here, and in the following we will treat the individual
LOSs separately. Furthermore, we assumed that magnetic structures are smaller than the
part of the LOS that resides in the Galaxy as expressed in terms of the structure of the
adopted thermal electron model, so that a negligible error is implied by extending the
integration over the relative distances r = l′ − l from minus to plus infinity or by using
the same thermal electron density for both locations, l and l + r. Furthermore, we used

ML(0) = MN(0) = 1
3
B

2
, which follows from isotropy and Eq. 6.21.

Finally, we assume the observed Faraday and total intensity skies to be noiseless. This
approximation will simplify the CP sky estimator and make it independent of the normal-
ization of the scaling relation Eq. 6.17 and the actual value of the correlation length λL as
long this does not vary (strongly) along a given LOS. The assumed correlations length λN

will have some small impact on our result, however, of sub-dominant order and therefore
it is also not necessary to specify it if only a rough CP sky prediction is required.
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Figure 6.1: Left: Synchrotron intensity at 408 MHz as provided by (Remazeilles et al.
2015a). Right: Faraday rotation map as constructed by (Oppermann et al. 2012b). Red
indicates magnetic fields predominantly pointing towards the observer and clockwise ro-
tation of the received linear polarisation. This is according to the IAU convention for
measuring angles and is therefore opposite to the mathematical convention.

I (βth = 0, βrel = 1)

0.001 0.5Jy/arcmin2

ασ (βth = 0, βrel = 1)

-5e-06 0m2

Figure 6.2: Left: Synchrotron emission intensity at 408 MHz of the simplistic 3D model.
Right: Map of the resulting conversion factor ασ, which translates the Faraday rotation
map φ into the fractional CP map V/I at 408 MHz. For both the relativistic electron
profile of Eq. 6.33 and β = (0, 1) were assumed.



110 6. Circular polarization in the radio sky

6.2.3 Estimator

We want to exploit the correlation of V with d = φ I to construct an optimal linear
estimator for V given d. This is given by

V = 〈V d〉( ~B|n)〈d2〉−1

( ~B|n)
d (6.24)

irrespectively the underlying statistics, since one can easily show that the quadratic error

expectation ε2 = 〈
[
V − V (d)

]2〉( ~B|n) is always minimized for linear estimators of the form

V (d) = v d for v = 〈V d〉( ~B|n)〈d2〉−1

( ~B|n)
:

dε2

dv
= −2〈[V − v d] d〉( ~B|n)

= 2
[
v〈d2〉( ~B|n) − 〈V d〉( ~B|n)

]
= 0. (6.25)

All remaining analytical work is to calculate the correlates which compose v. The sim-
pler one is

〈d2〉( ~B|n) = 〈φ2I2〉( ~B|n)

= α2
φα

2
I

∫
dl1 . . .

∫
dl4 nth1 nth2 nrel3 nrel4 ×

〈B||1B||2B2
⊥3B

2
⊥4〉(B|n)

= α2
φα

2
I

∫
dl1 . . .

∫
dl4 nth1 nth2 nrel3 nrel4 ×

ML12

[
MN33MN44 + 2M2

N34

]
≈ 1

27
λLα

2
φα

2
I

[∫
dl n2

thB
2
]
×[(∫

dl nrel B
2
)2

+ 2λN

∫
dl n2

rel B
4

]
. (6.26)

Here, we used the abbreviations nth1 = nth(l1), B||2 = B||(l2), MN34 = MN(l3 − l4), and
the like, exploited the diagonal structure of the magnetic correlations along the LOS as
expressed by Eq. 6.21 while applying the Wick theorem, and inserted the correlation lengths
λL and λN as defined in Eq. 6.22 while applying the short correlation length approximation
as previously used in Eq. 6.23.

The calculation of 〈V d〉( ~B|n) is slightly more complicated. To handle the B
3/2
⊥ depen-
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dence of V , we Taylor expand it in terms of B2
⊥ around B2

⊥0 = 2
3
B2

0 via

B
3/2
⊥ = (B2

⊥)
3/4 =

∞∑
n=0

(
3/4

n

)
B

2( 3
4
−n)

⊥0
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)n
=

(
3/4

0

)
B

3/2
⊥0 +

(
3/4

1

)
B
− 1

2
⊥0

(
B2
⊥ −B2

⊥0

)
+O

(
B4
⊥
)

≈ 1

4
B

3/2
⊥0 +

3

4
B
−1/2
⊥0 B2

⊥. (6.27)

We choose to expand in B2
⊥ rather than B⊥, as the linear terms would vanish anyway

during the application of the Wick theorem.
We then find:

〈V d〉( ~B|n) = 〈V φ I〉( ~B|n)

= αV αφαI

∫
dl1 . . .

∫
dl3 nth1 nrel2 nrel3 ×

〈B||1B||2B
3
2
⊥2B

2
⊥3〉(B|n)

≈ αV αφαI

∫
dl1 . . .

∫
dl3 nth1 nrel2 nrel3 ×〈

B||1B||2

(
1

4
B

3/2
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3

4
B
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⊥0 B2

⊥2

)
B2
⊥3

〉
(B|n)

= αV αφαI
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2
rel B

6
]
. (6.28)

Again we used ML(0) = MN(0) = 1
3
B

2
and λL and λN as defined in Eq. 6.22. This gives

us in Gaussian units
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V = ασ φ I, with (6.29)

α =
3αV

4αφ αI B
1/2
⊥0

≈ −4.269 ·
√

m3
e c

7

e5 ν B0

≈ -2.189 · 1018
( ν

408 MHz

)−1/2
(
B0

6µG

)−1/2

(6.30)

being a LOS-independent dimensionless quantity and

σ =

(∫
dl n2

thB
2
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×[(∫
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(6.31)

a LOS-dependent constant with dimension of an area. The unknown λL canceled out and
the unknown λN affects only sub-dominant terms, as it is e.g. compared in the denominator

to the Galactic dimension L =
(∫
dl nrel B

2
)2

/
(∫
dl n2

relB
4
)
� λN. We therefore neglect

terms proportional to λN in the following and calculate

σ ≈
2
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∫
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)
(6.32)

for each LOS to translate d = φ I into V there.

6.2.4 Prediction

To give an estimate for the CP sky, we need maps of the total synchrotron intensity and the
Faraday rotation of the Milky Way. We use the 408 MHz map provided by (Remazeilles
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Figure 6.3: Predicted circular polarisation intensity at 408 MHz for β = (0, 1) (left) and
β = (1, 0). Red indicates clockwise rotation, according to the IAU convention for measuring
angles that is opposite to the mathematical convention.

V/I (βth = 0, βrel = 1)
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[V(βth = 0, βrel = 1)− V(βth = 1, βrel = 0)]/I
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Figure 6.4: Predicted V/I ratio at 408 MHz for β = (0, 1) (left) and the difference of the
β = (0, 1) and β = (1, 0) ratios (right) .
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et al. 2015a), which is based on the data of (Haslam et al. 1970, 1974, 1981, 1982b), and
the Faraday rotation map provided by (Oppermann et al. 2012b), which is largely based
on the data of (Taylor et al. 2009). These are shown in Fig. 6.1

We further need to quantify the σ parameter given in Eq. 6.32. For this we need the
thermal and relativistic electron distribution of the galaxy and thereby xrel and xth. For the
3D distribution of the thermal electron density in the Milky Way we use the NE2001 model
(Cordes & Lazio 2002) without its local features. The spatial and the energy distribution of
relativistic electrons in the Galaxy are more uncertain as we have only direct measurements
of the cosmic ray electrons near the Earth. Considerable effort to infer these distributions
have been made (Strong & Moskalenko 2001; Strong et al. 2004; Vladimirov et al. 2011;
Oppermann et al. 2012b; Orlando et al. 2015; Mazziotta et al. 2016; Evoli et al. 2017).
As we have shown in Eq. 6.32, we only need the spatial dependence and not the actual
normalisation of nrel, which means that this quantity only effects the relative strength
of different structures in the CP map and not the overall strength of the predicted CP
intensity itself. For this reason, and since we only aim for a rough estimate, we are content
with a simplistic large-scale relativistic electron model. Given the distribution of matter in
the galaxy, a exponential model for the spatial structure of cosmic ray electrons may make
sense, as already adopted by other authors ((Drimmel & Spergel 2001; Page et al. 2007;
Sun et al. 2008; Sun & Reich 2010)), at least in a similar way. In our case, we can use Eqs.
6.10 and 6.17 to give an estimate of the of total synchrotron map given our relativistic
electron model and the scaling parameters of Eq. 6.17, where we adopt β = (0, 1) and try
to reproduce the large scale pattern of the 408 MHz map shown in Fig. 6.1. We thereby
choose the following model for the spatial dependence of the relativistic electrons:

xrel = e−
~|r|/r0 · cosh−2(|~z|/z0) (6.33)

The vector ~r points in the radial direction in the galactic plane, the vector ~z points out
of the plane. As mentioned before, the parameters r0 and z0 are estimated via a naive
comparison of the observed and estimated synchrotron maps at 408 MHz shown in Figs.
6.1 and 6.2, respectively. The parameters adapted in this work are r0 = 12 kpc and
z0 = 1.5 kpc. Given the morphological complexity of the map in relation to the simplicity
of the model and the poorly understood nature of the origin and evolution of electron
cosmic rays we acknowledge that the parameters of this model are highly uncertain. Also
completely different parametrization of xrel might lead to the same estimate for I because
of the projection involved. The conversion factor ασ implied by our rough 3D model at
408 MHz is also shown in 6.2 for β = (0, 1).

The resulting estimate of the circular polarisation intensity of the Milky Way is depicted
in Figs. 6.3 for the two cases β = (0, 1) and β = (1, 0). The morphology of the resulting
maps is dominated by the morphology of the Faraday and the synchrotron map, what
seems natural given our formalism. The influence of the dependence of the magnetic field
on the different electron densities seems to be small, as the difference between between the
two complementary cases is negligible, as we show for the predicted V/I ratio in Fig. 6.4.
We predict a signal of up to 5 · 10−4 Jansky per square arcminute at 408 MHz and more
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Figure 6.5: Profiles of the thermal and relativistic electron density used in this work in
terms of the dimensionless quantities xth and xrel as defined in the context of Eq. 6.17.
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at lower frequencies. The CP is strongest in the center plane of the Galaxy. The relative
strength of the CP intensity to the total synchrotron intensity up to V/I ∼ 3 · 10−4 as
depicted in Fig. 6.4. The V/I ratio is largest just above and below the disc, as well as
in some spots in the outer disc. We expect this ratio to increase with ν−0.5, approaching
10−3 at 40 MHz, which might be a detectable level for current instrumentation(Myserlis
et al. 2018). The frequency scaling of V/I ∝ ν−0.5 was already predicted by (King & Lubin
2016) for the GHz range.

The diffusion length of relativistic electrons depends on energy, therefore, the radio
sky at different frequencies is not just a rescaled version of the 408 MHz map used as a
template here. The V/I map provided by this work, however, should – within its own
limitations – be valid at others frequencies as well. Therefore, it can be used after scaling
by (ν/408 MHz)−0.5 to translate total intensity templates at other frequencies into CP
expectation maps at the same frequency, which then incorporate any difference of the
radio sky due to spatially varying relativistic electron spectra.

Anyhow, even if a total intensity template is not available at the measurement fre-
quency, the main structure of the CP prediction, which are the sign changes induced by
the sign changes of the Faraday sky, will be robust with respect to a change in frequency.
Therefore, the CP template should be used as a structure expected on the sky, while al-
lowing the real sky to deviate by some factor from it due to errors induced by the assumed
frequency scaling and other simplifications. A template search method that is robust in
this respect, is discussed below.

The assumed scaling of the magnetic field energy density with the electron densities,
β has only a minor impact on the result. The difference between the β = (0, 1) and the
β = (1, 0) scenarios is less than 10%, as Fig. 6.4 shows. Together with Fig. 6.5 this is
indeed evidence for the robustness of our results, as the profiles of relativistic and thermal
electrons used in this work are quite different, nonetheless the different scaling does not
lead to significantly different CP maps.

6.3 Determining the composition of radio plasma via

circular polarization:

the prospects of the Cygnus A hot spots

6.3.1 Previous studies on the composition of hot spots

Previous proposals to settle the question of the composition of radio plasma were usually
based on energetic arguments. More importantly, from an observational standpoint, the
composition of the relativistic nonthermal plasma radiating in the jets and lobes of radio
galaxies continues to be a long-standing issue (e.g.,(Wardle et al. 1998; Sikora & Madejski
2000; Noerdlinger 1978; De Young 2006)). This question is crucial also because the acceler-
ation and deceleration of the jet near a supermassive black hole depends on the composition
of its plasma (e.g.,(Blandford & Znajek 1977; Blandford & Payne 1982; Phinney 1982)).
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Over the years, a number of authors have argued in favour of the dominance of relativistic
electron-positron pair-plasma in the jets ejected by the central engines of radio galaxies,
both from observational and theoretical perspectives (e.g.,(Kundt & Gopal-Krishna 1980;
Reynolds et al. 1996; Wardle et al. 1998; Hirotani et al. 2000)). More recent arguments
for a significant, if not dominant, presence of relativistic pair plasma in the radio lobes
include those put forward by Kawakatu et al. (2016) and Potter (2018) who also provide
a summary of the observational and theoretical work done on this topic.

According to a currently popular scenario, the generation of relativistic pair-plasma
begins with photon-photon pair production in the spark gap of the magnetosphere sur-
rounding a supermassive black-hole ((Blandford & Znajek 1977; Goldreich & Julian 1969))
and the process continues along the length of the jet, e.g. via dissipation of magnetic
energy by reconnection (see, e.g., (Potter 2018)). Although, at large distances from the
black-hole, some hadronic plasma may gradually get entrained in the jet flow, this process
is unlikely to be efficient at least in Fanaroff-Riley type II (FR II) radio galaxies, since
their jets remain effectively shielded by the cocoon of relativistic lobe plasma (Potter 2018;
Mizuta et al. 2004; Scheuer 1974). For FR I radio galaxies, the need for non-radiating
pressure support of the radio plasma hints at an efficient entrainment of protons into the
jet (Croston et al. 2018).

A hadronic jet model was proposed by Mannheim and collaborators (Mannheim 1996,
1998; Mannheim et al. 1991; Mannheim & Biermann 1992) to explain the TeV gamma-ray
emission of blazars. The same emission can, however, also be explained in terms of leptonic
models, which invoke synchrotron self-Compton (SSC) emission to produce TeV photons.

In the case of FR II radio sources, hadronic jets have been considered to explain their X-
ray emission in terms of proton synchrotron radiation, rather than as the inverse-Compton
boosted cosmic-microwave background photons (e.g., Aharonian 2002; Honda & Honda
2004; Uchiyama et al. 2006; Bhattacharyya & Gupta 2016; Breiding et al. 2017). The
needed high energy protons could even be injected into the jet via turbulent accelera-
tion in the shear layer of the jet (Ostrowski 2000). Alternatively, the x-ray jets could be
synchrotron radiation produced by the secondary electrons arising from photo-hadronic
interactions like the Bethe-Heitler process or photopion production (see Petropoulou et al.
2017; Kusunose & Takahara 2017; Bhattacharyya & Gupta 2016). In all such scenarios
of hadronic jets, one would expect neutrino emission from charged pion or neutron decay
resulting from interactions between high energy protons and photons (Mannheim & Bier-
mann 1989). The recent observation of a high energetic neutrino from the Blazar TXS
0506+056, is best explained by a hadronic emission process (IceCube Collaboration et al.
2018). A similar signal has not yet been observed from FR II radio galaxies, which may
constrain the hadronic jet model (Neronov et al. 2017).

Lepto-hadronic model for high-energy emission from FR I radio galaxies are consistent
with their observed high energy radiation (Reynoso et al. 2011).

Over the years, significant observational evidence has in fact emerged in support of
a dominant leptonic relativistic plasma component in the extended radio lobes of FR II
sources. The evidence has come mainly from balancing the observationally estimated pres-
sure of the external X-ray emitting thermal plasma and the internal lobe pressure due to the
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nonthermal plasma estimated by modeling of the combined synchrotron/inverse-Compton
spectrum of the lobe, as constrained by measurements at radio and X-ray energies, re-
spectively (e.g.,(Ineson et al. 2017; Hardcastle et al. 2002; Croston et al. 2004; Konar &
Hardcastle 2013)). This concurs with the conclusion reached indpendently for the lobes of
several FR II sources, including Cygnus A, based on modeling of the observed shapes of the
radio lobes (see (Kawakatu et al. 2016)). The X-ray emission from hotspots of powerful FR
II sources is often consistently explained in terms of the SSC mechanism, when the mag-
netic field is close to the equipartition value and under the assumption of an energetically
significant, if not a dominant, pair-plasma (vis a vis the electron-proton plasma) (Hardcas-
tle et al. 2004; Kataoka & Stawarz 2005), which is in accord with the findings for powerful
radio lobes of FRII sources (see above). Specifically, for the well studied case of Cygnus
A, the analysis of the X-ray emission from its hotspots has lent strong support to such an
interpretation (Hardcastle et al. 2004; Wilson et al. 2000). Clearly, pair-plasma dominated
powerful hotspots would be entirely in tune with the dominance of pair-plasma inferred
for FR II lobes (see above), since the latter are fed by the hotspots. Nonetheless, given
the various uncertainties involved, such as spatial inhomogeneities in the radiating plasma
and beaming of the radiation, independent observational constraints on the presence of
an energetic proton population in the hotspots would be very desirable. A population of
energetic protons in hot spots could be the origin of the ultra-high energetic cosmic rays
observed, as the hot spots of FR II radio galaxies are potential acceleration sites (see e.g.
(Eichmann et al. 2018) and reference therein). They would also be in line with the recent
detection of neutrinos from the Blazar TXS 0506+056 (IceCube Collaboration et al. 2018).

There is a long history of circular polarization measurements aiming to determine the
relativistic plasma composition near the jet’s base itself. More recently, VLBI imaging of
both circular and linear polarization have been carried out for a few blazars on sub-parsec
scale, sometimes at multiple radio frequencies (Homan et al. 2009; Gabuzda et al. 2008).
For the blazar 3C 279, Homan et al. (Homan et al. 2009) have reported a particularly
detailed observational study which also includes simulations of their sensitive VLBI results
in Stokes I, linear polarization, and circular polarization at 6 frequencies in the range
8 to 25 GHz. The significant detection of CP is thus interpreted by them primarily in
terms of Faraday conversion of the linear polarization within the nuclear jet. Their main
conclusion is that the jet is kinetically dominated by electron-proton plasma, though a
significant presence of pair-plasma may still contribute to the radiation. Clearly, even this
detailed analysis is vulnerable to uncertainties in the jet’s physical parameters, like bulk
speed and the minimum Lorenz factor of the relativistic plasma (γmin). Interestingly, these
uncertainties are largely obviated in the case of Cygnus A hotspots since not only is their
motion non-relativistic (like all hotspots on kiloparsec-scale) but estimates of γmin ∼ 600
are also available, based on recent spectral turnover measurements made with the LOFAR
telescope (McKean et al. 2016).

The energy of the leptons that are visible within the observationally accessible radio
wavebands is usually not sufficient to explain the rough pressure balance between radio
lobes and their surrounding thermal plasma. Additional relativistic protons could fill in the
deficit. However, a large population of leptons with lower than observable energies could as
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well bridge the gap, as would deviations from the usually invoked equipartition assumption
between particles and magnetic fields. For these reasons, a more direct determination of
the composition of radio plasma via CP measurements as proposed here would be very
important.

6.3.2 Estimation

In the following we estimate the expected fractional CP emission arising from the hotspots
of Cygnus A, in the case of a pure relativistic electron-proton plasma. A volume element
of a hotspot along a line of sight (LOS) may harbor ne relativistic electrons with a power
law spectrum following Eq.6.1. The emissivities for relativistic electrons is given by eqs
, relativistic positrons have exactly the same emissivities, with the only difference of an
opposite Stokes V sign. For this reason, there is no CP synchrotron emission in case the
electron and positron spectra are identical in slope and normalization. The total polarized
emission of our electron-proton plasma is then the volume integrated emissivity,

J =

∫
V
dx j(x) ≈

Ncell∑
i=1

Vi ji, (6.34)

which we assume to be made of Ncell similar sized cells with spatially constant emissivity
ji within the cell volume Vi ≈ Vcell.

For simplicity, we assume only the magnetic field orientation to vary from cell to cell,
whereas the field strength B and the electron spectrum dn(γ)

dγ
are taken to be approximately

the same within the entire emitting volume V = NcellVcell. As no magnetic field direction
is a priori preferred, we assume a random distribution of field orientations from cell to cell
and therefore get for the average, dispersion, and root mean square (rms) of a quantity X

X =
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ X(θ, ϕ), (6.35)

σ2
X =

(X −X)2

Ncell

, and (6.36)

Xrms =
√
X2 =

√
X

2
+ σ2

X . (6.37)

The expected mean of the emission is J = (I, 0, 0, 0)t, with I = jIV and jI ≈
0.719j0neB

3
2 ν

−1
2 for p = 2. For an individual emission region like a hot spot, the dif-

ferent Stokes parameters show nonzero variance:
σI
σQ
σU
σV

 =


0.190
0.106
0.106

0.0229B
1/2
Gauss ν

−1/2
GHz

 j0neB
3
2 ν

−1
2 V√

Ncell

(6.38)

One should note that the assumption of randomness in the directional distribution is
related to the cell sizes and the typical coherence length of the magnetic field, which may
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be rather large in Cygnus A due to the presence of shocks. In the most extreme limit of
a completely coherent magnetic field one may set Ncell = 1, in order to get a intuition for
this effect.

In any case, the cell model is just a simplification, which may be dropped for a more
elaborate calculation based on a physical model. It should, however, provide the right
order of magnitude of the expected effect in a statistical sense.

If we investigate the vector J ′ = (I, P, V )t with P =
√
Q2 + U2 being the total linear

polarization, we find J ′ = (1, p+1
p+7/3

1
Ncell

, 0)tI, since each cell has a fractional polarization

of p+1
p+7/3

≈ 0.69. Thus, we expect

σV
σP

=
σV√

σ2
Q + σ2

U

= 0.153B
1/2
Gauss ν

−1/2
GHz . (6.39)

Given that the fractional linear polarization of the Cygnus A hot spots is about fP =
σP/I ≈ 0.7 (Carilli et al. 1999) and and the field strength is B ≈ 1.5 10−4 Gauss (Wilson
et al. 2000), we expect a fractional circular polarization of about fV = σV /I ≈ 1.31 ·
10−3 ν

−1/2
GHz .

In order to be able to correctly assess the expeced CP emission, we must also con-
sider the Faraday conversion effect of the foreground, which translates linear into circular
polarized emission.

From the generic radiative transfer equations we know that

jV,conv = φcλ
3jQ,

where φc is called the conversion measure in analogy to the Faraday rotation measure φr.
In the thermal regime it can be sufficiently fitted via (Huang & Shcherbakov 2011)

φc ≈
e4

4π2m3
ec

6

∫
LOS

dr nth B
2
⊥,

under the assumption that the jQ emission takes place only in the hotspots. The thermal
electron density nth poses a problem, as we do not have precise information on the electron
column density of the Cygnus cluster in the vicinity of the hotspots, where most of the
conversion is likely to take place. We do, however, have precise measurements on the
Faraday rotation φr, which contains the same nth-dependence. We can write

φc ≈
eBICM

2πmec2

∫
LOS

dr
e3

2πm2
ec

4
nthBICM ≈

ecBICM

2πmec2
φr

under the assumption of a similar strength and correlation structure of the intracluster
magnetic field in both the parallel and perpendicular component of the line of sight. We
choose BICM = 8 · 10−6G as a typical value of the intracluster magnetic field (Carilli et al.
1988). Cygnus A has very high values of rotation measures with around |φr| ≈ ρφ

λ2
≈

1000 rad
m2 (Dreher et al. 1987a), which we will choose for our estimate. Therefore we arrive

at φcλ
3 ≈ 2.013 · 10−6ν−3

GHz.
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The mean Vc is again zero. For the variance we find

σVc = φcλ
3σQ ≈ 2.133 · 10−7 I

ν3
GHz

√
Ncell

and for the ratio
σVc
σV
≈ 9.32 · 10−6 1

B
1/2
Gaussν

2.5
GHz

.

Although small in the GHz regime, the above ratio reaches unity rather fast for smaller
frequencies. We expect σVc/σV ≈ 1 for ν ≈ 57 MHz and the aforementioned hotspot
magnetic field strength of B ≈ 1.5 10−4 Gauss. Therefore, observations well above 56 MHz
should not be significantly affected by Faraday conversion.

6.3.3 Conclusions

An electron-proton jet is expected to give rise to a fractional CP at a level of 10−3(ν/GHz)−1/2.
Clearly, this is very challenging to measure, given the faintness of the signal and the sys-
tematic cross talk of polarized radio receivers. Nevertheless, systematic effects change from
receiver to receiver, and even as a function of time as the relative orientation of sky and
the telescope changes with the Earth’s rotation. This engenders some hope that genuine
CP detection might become technically feasible.

Due to the effect of Faraday conversion of LP into CP, we expect the optimal frequency
window for the detection of CP to be around 70 MHz. This renders low frequency radio
telescopes like LOFAR most suitable. However, an excellent polarimetry is important as
well, so that the the JVLA and in future the Square Kilometer Array as well as its pre-
cursors, the MeerKAT and ASKAP telescopes, are promising. The necessary polarimetric
accuracies have already been achieved in observations (Rayner et al. 2000).

A detection of the CP signal and thereby a confirmation of the electron-proton jet sce-
nario might therefore be in reach soon. This would be very exciting, as it would contradict
the prevailing majoritarian view in the radio galaxy community on jet composition in FR
II radio galaxies. At the same time, it would make it more plausible that such galaxies
are the acceleration sites of ultra high energy cosmic rays and it would also be in line with
the recent detection of neutrinos from the Blazar TXS 0506+056 (IceCube Collaboration
et al. 2018). The exclusion of electron-positron jets would, however, not be absolute. A
possible scenario in which such jets can produce CP is the case of differing electron and
positron energy spectra. These could be caused by their acceleration in a charge asymmet-
ric environment, for example due to the entrainment of thermal electron-proton plasma
into the particle acceleration sites, so that plasma physical effects might engender different
acceleration efficiencies of electrons and positrons.

A non-detection with a sensitivity well below the CP flux level estimated here for the
hotspots of Cygnus A would also be very interesting, as it would argue strongly in favour of
an electron-positron pair plasma, where both electrons and positrons have similar energy
spectra, indicating a charge symmetric genesis and acceleration history for both species.
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The exclusion of the electron-proton jet scenario would be relatively firm in this case, as
the only remaining way to avoid predicting detectable CP emission would be that the
magnetic field in the hotspots points in a highly matched fashion towards and away from
the observer, such that the CP emission of those volumes cancel. Given the high linear
polarisation of the Cygnus A hotspots, and therefore an imbalance of the field orientations
projected on the plane of the sky, a symmetry along the line of sights seems unlikely.
Spatially resolved CP observations, or the study of a larger sample of hotspots of FR II
galaxies could negate such an explanation.

To conclude, we have shown that sensitive CP observations of radio galaxy hotspots are
a promising way to determine the composition of synchrotron plasma in radio galaxies in a
way which is independent of many of the assumptions made in other lines of investigation
probing this question.
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