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Abstract

Particle swarm optimization (PSO), a new population-
based algorithm, has recently been used on multi-robot
systems. Although this algorithm is applied to solve many
optimization problems as well as multi-robot systems, it
has some drawbacks when it is applied on multi-robot
search systems to find a target in a search space contain-
ing big static obstacles. One of these defects is premature
convergence. This means that one of the properties of basic
PSO is that when particles are spread in a search space, as
time increases they tend to converge in a small area. This
shortcoming is also evident on a multi-robot search
system, particularly when there are big static obstacles in
the search space that prevent the robots from finding the
target easily; therefore, as time increases, based on this
property they converge to a small area that may not
contain the target and become entrapped in that area.
Another shortcoming is that basic PSO cannot guarantee
the global convergence of the algorithm. In other words,
initially particles explore different areas, but in some cases
they are not good at exploiting promising areas, which will
increase the search time.

This study proposes a method based on the particle swarm
optimization (PSO) technique on a multi-robot system to
find a target in a search space containing big static obsta-
cles. This method is not only able to overcome the prema-
ture convergence problem but also establishes an efficient

balance between exploration and exploitation and guaran-
tees global convergence, reducing the search time by
combining with a local search method, such as A-star.

To validate the effectiveness and usefulness of algorithms,
a simulation environment has been developed for conduct-
ing simulation-based experiments in different scenarios
and for reporting experimental results. These experimental
results have demonstrated that the proposed method is
able to overcome the premature convergence problem and
guarantee global convergence.

Keywords Particle swarm optimization (PSO), multi-robot
search system, premature convergence problem, explora-
tion and exploitation

1. Introduction

A behaviour-based paradigm has had a strong impact on
multi-robot system research. The social characteristics of
insects and animals are analysed in order to examine and
apply these findings in designing multi-robot systems.
There are many algorithms (e.g.,, GA, ACO and PSO)
inspired by biological societies, which are applied in multi-
robot systems to develop similar behaviours like searching
[1,2,3] and foraging tasks [4]. Using a multi-robot system in
searching tasks can offer several major advantages over the
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single robot alternative. Searching can be run on a massive
pattern in parallel. Here a significant decrease in time
regarding the location of the targets and improved robust-
ness against failure of individual robots by redundancy, as
well as individual simplicity, is observed [5].

The particle swarm optimization technique is a population-
based stochastic search technique introduced by [6,7].
Recently, this technique has been applied to multi-robot
search systems. The first versions of PSO were proposed in
[1, 2, 8] on a multi-robot search system to find a target in
the environment, and studies have demonstrated that the
PSO algorithm has an acceptable performance in the
searching task. In several instances, adaptations of PSO
have been used for multi-robot odour searches [9, 10].
Adapted versions of PSO on distributed mobile robots have
been used to search the environment based on only local
information [2, 11]. These adapted versions of PSO dem-
onstrate that their performance in a group of robots is better
than the basic PSO algorithm; however, this adapted
version has its shortcomings, particularly when placed in
an environment with a high density of obstacles.

One of the main problems of basic PSO is premature
convergence; that is, the particles have a tendency to move
towards the best location found and converge to that area;
therefore, there is exploitative behaviour in PSO over time.
It is obvious that the global searching (exploration) of PSO
decreases as time progresses. Some of the variations among
many that improve its performance include: fuzzy PSO
[12], hybrid PSO [13], intelligent-particle swarm perform-
ance [14], addition of a queen particle [15], etc. These
variations are tested on the benchmark functions.

The problem of premature convergence is also evident in
the multi-robot search system in environments which
contain static obstacles. In other words, one of the basic PSO
properties is that the global searching or exploration of
robots decreases over time and they converge to a small
area, and then become unable to explore other promising
areas. This problem is called premature convergence.
Under this circumstance, when there are big obstacles in an
environment, these static obstacles amplify this problem.
These obstacles are bigger and taller than the robots and so
prevent them from observing the environment behind
them. When the target is placed near the obstacles, there-
fore, the probability of observing from the other side of the
obstacles is low, and as time increases the global searching
of the robots decreases. As a result they search the small
area continuously, and finally converge to that small area,
without being able to search the other promising areas.

Based on basic PSO, the robots” velocities in the early
iterations are high due to their greater inertia weight (w);
therefore, the global searching and exploration of the robots
is higher than that of local searching and exploitation. With
an increase in time, the inertia weight value decreases,
leading to a decrease in the global searching (exploration)
of PSO. Moreover, the robots may converge to the area that
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may not contain the given target. A few studies are run on
multi-robot search systems to solve the premature conver-
gence problem. In [16] two new methods are proposed
based on particle swarm optimization (PSO) and Darwin-
ian particle swarm optimization (DPSO), named RPSO and
RDPSO, respectively. These two newly developed methods
are adapted to multi-robot search systems where obstacle
avoidanceis of high importance. The results of their studies
determined that the RDPSO increases the search explora-
tion in order to avoid being stuck in local optima and a
rapid convergence to the desired objective value in com-
parison with RPSO.

Another problem of basic PSO is the lack of guarantee in
global convergence. Establishing an efficient balance
between exploration and exploitation is one of the draw-
backs of basic PSO. Researchers have proposed several
methods to solve this problem in different domains [17,
18]. This drawback is evident in multi-robot search systems
designed on basic PSO. In a sense, in some cases, the robots
are placed near the target but have to move based on the
velocity and position equations of basic PSO, which may
guide the robots to move to the position located farther
from the target. This situation obviously causes the search
time to increase, particularly when there are obstacles near
the target. In this situation the best global robot (g,,,;) may
be entrapped in the local optima. In [19], a new method is
proposed, named MPSO, for the multi-robot search system.
In their study, they added the local search method to the
PSO and established a balance between exploration and
exploitation. In the method, the robots are deployed in the
search space and look for the target. When the robot can see
the target, the value of fitness function is calculated, and if
the value of fitness function in its current position exceeds
half of the goal fitness function value, which is assumed by
the author, the robot uses the local search strategy instead
of basic PSO. In addition, the environment does not contain
any big obstacles that prevent the robots from observing
the area surrounding the static obstacles; therefore, there
are no areas where the robot becomes stuck and after a
while converges to that area.

In this article, a simple and effective PSO named the
‘Modified PSO with Local Search (ML-PSO)’ is proposed.
This ML-PSO is based on the modification of basic PSO
developed by [20], which was applied in the exploration
search space. Here, a new method is proposed on a multi-
robot search system which increases the global searching
and guides the robots to escape from the local optima and
explore different areas to find the desired target. The
attempt is made to overcome two problems: premature
convergence through increasing the global searching of
robots, and adding a local search algorithm such as A-star
to guarantee global convergence with a reduction in the
search time.

The study is organized as follows. Section 2 introduces the
important tools that are used by this proposed algorithm.
Section 3 thoroughly describes the proposed algorithm



(ML-PSO). The computational results are provided in
Section 4. Lastly, some conclusions are provided in Section
5.

2. Theoretical Background

2.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a new optimization
search technique which solves numerical optimization
problems. In this method, particles fly through the multi-
dimensional search space to find the potential solution.

To model the swarm, each particle starts to search with a
randomized position (x;;) in the n-dimensional search
space with (possibly) randomized velocity (v;,) (Initializa-
tion). In each step, an objective function is used to evaluate
particle success (fitness function). If the value of fitness
function is better than any found so far, it is stored as the
best position, called p,,,. The particle with the closest
position to the goal gets the highest value in fitness function
and is stored as g,

The next position vector x;(t+1) and the next velocity
vector v, (t + 1) of each particle are highly dependent on the
current position vector x,(t), velocity vector v,,(t), local best
vector p,, () and global best vector g, (f) information.
Candidate solutions are optimized by flying the particles
through the virtual space, with attraction to the best
positions in the space indicating the best result. At each
time step, the velocity is updated (next velocity) and the
particles move to the new position (new position) that is
calculated by the previous position and the new velocity as
follows:

x,(t+1)=v,(t+1)+x,(t) 1)

The velocity of each particle is updated by the following
equation:

v, (t + 1) =wv,, (t) +c *n ¥ (pmr (t) -Xx, (t)) @
+0, 1, ¥ (8 (£) = X4(1)

Equation (2) contains three members: the first member is

momentum, while the second and third members are

cognitive and social components, respectively.

Momentum: v,(t)
Cognitive component: ¢; * 7, * ( Py () = x4 (1))
Social component: ¢, * 1, * (g5 (£) — X;4(t))

Momentum pulls the particle towards the previous velocity
direction. The cognitive component is the force that pulls
the particle to its best position found thus far, and the social
component attracts the particle towards the bestsolution
found among all the particles. The inertia weight w [21, 22]
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and acceleration constant ¢, ¢, are assumed to be 0.9....
0.5and 2 and 2, respectively, and r,, r, are the uniformly

generated random numbers in the range of (0,1). Figure 1
shows the steps of the basic PSO algorithm mentioned
above.

Program Basic PSO
{
Initialization ();
While not done
{
Calculate fitness function ();
Next velocity ();
Next position ();
}
}

Figure 1. The pseudo code of basic PSO

In order to match the basic PSO to the multi-robot system,
some modifications are needed. In the next section the
necessary modification for this study is proposed.

2.2 Modification of PSO for the multi-robot search system

The use of one-to-one matching between particles in the
PSO swarm and robots in the multi-robot system motivates
our PSO-inspired multi-robot search algorithm. It is
assumed that the robots have access to the map of the search
space and therefore have complete knowledge about their
location in the environment. If the robots do not access the
whole map of the environment, it may cause a localization
error, in most of these cases preventing the system from
accomplishing the search task. There are some key differ-
ences between PSO and PSO in the multi-robot search that
requires us to make some modifications to the algorithm.

2.2.1 Search space and static obstacles

A real search space was transformed into two-dimensional
search space and discretized into non-overlapping cells.
The environment in this study includes some static obsta-
cles and a single target. The positions of the obstacles are
known, but the location of the target is unknown. The cells
that are occupied with the obstacles in the discretized map
are marked as unsafe cells and the rest of the cells are
considered as safe cells. Therefore, the robot, during the
path planning, moves to the safe cells. The centre of each
cell is considered a point of interest. This means that if the
robot visits the centre of the cell, the entire cell is considered
to be a visited cell.

2.2.2 Robot

In this study, it is assumed that the geometrical shape of the
robot is like a circle with the determined radius (o) and has
the same size as a cell. The state of each robot in the search
space is represented by six variables (x, y, v, 0,, 0., t), which
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are the position of the robot in the 2-D dimensional search
space, speed of the robot, head of the robot, the direction in
which the robot is determined to move to the next position,
and the time in that position, respectively. The maximum
turning radius is assumed to be 360 degrees; therefore, the
robot can move easily to the adjacent cells around its
current position (Figure 2).

As described, the search space is discretized; then the path
planning of the robot from its current cell to the goal cell is
discretized and the robot must cross through the centre of
the cells on its route. For a single path the environment is
considered to be a static world, and the problem is solved
by the A-star algorithm [23]. The traditional A-star method
computes the optimal path from the start position to the
goal position among the static obstacles, but it fails in a
dynamic environment.

2.2.3 Fitness function

It is assumed that the robot camera, which can capture a
picture from the environment, is a fitness function. The
robot sees up to 10 cells from its current position in eight
different directions. Figure 2 shows eight directions from
the current position of the robot. When the robot uses the
camera to observe its surroundings, if the target is placed
in the range of view of the camera (placed in its surround-
ings) then the fitness function based on equation (3) is
calculated; otherwise, it returns to zero. The fitness function
is as follows:

z :1:1P0,<
m

Pi

fitness function =

®)

j=1

Where po,={po,, po,, po,... po,} a set of pixels of the target
in the captured by the camera and
pi={pi Py ps-.-p,} is a set of pixels of the whole image

image is

captured by the camera. It is clear that the target is a part
of the whole image; therefore, the amount of pixels of the
target is less than that of the whole image, and the value of
the fitness function is always (0, 1). When the robot is
moving towards the target and is placed near it, the value
of the fitness function is higher compared to when the robot
is moving away from the target, in which case the fitness
function value is decreased. If the robot cannot observe the
target, the fitness function value is equal to zero, and when
the robot is located exactly beside the target, this valueis 1;
otherwiseitis between 0 and 1. The value of fitness function
for each robot is calculated by them, and then these values
are sent to the central station.

2.2.4 Movement limitation of robots

Although the particles in the basic PSO do not have limited
acceleration and velocity, in the real world the robots have
limited velocities that are discretized into discrete values.
The velocity of each robot is placed between [~v,,,,, 7,

ma. max]
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A
v

Figure 2. The adjacent cells of the robot in its current position

where the v, represents the maximum velocity of the

max

robot along its direction and the -v,,. is the maximum

X
velocity of the robot, but in the reverse direction. If the
velocity of the robot is placed out of this range, we set the

maximum velocity value on each side for the robot.

2.2.5 Collision avoidance among the robots

Using the basic PSO particle displacement at each iteration,
detecting any collisions that might occur along the path is
not possible. Therefore, approximating the continuous
movement of the robots by dividing the displacement into
multiple steps and checking for collisions at each iteration
isneeded. In a multi-robot system, the robots and the target
have some volume, and therefore have to avoid collision
with each other and static obstacles. In this study, in order
to avoid possible collisions among robots, the method
proposed in [24] is used. In this study, it is assumed that
each robot is equipped with a microcontroller that is able
to calculate some simple formulae. Here, the value of the
fitness function of each robot is calculated by each of them
and is then sent to the central station. The next position and
velocity of each robot is calculated by the central station,
and then the route of each robot from its current position
to the next position is generated. Finally, the collision
between the path of the robots and the static obstacles in
the search space is checked and the collision-free path is
sent to each robot.

2.2.6 Communication among the robots

In this study, at each iteration the robots move to the next
position, and the value of fitness functions in these posi-
tions are evaluated by each robot. After this, the informa-
tion about their current positions and their fitness function
values are sent to the central station in parallel. The central
station updates the map of the environment based on the
current positions of the robots. This means the current
positions of the robots on the map are marked as visited
cells, and are updated at each iteration. The central station
based on the obtained information calculates the next
velocity and next position of each robot. The next positions
and next velocities of the robots are calculated based on the
given algorithms (ML-PSO or basic PSO). Finally, the next
positions and next velocities of each robot are sent to the



robots, and they move to them synchronously at the next
iteration.

3. The algorithm

This proposed algorithm (ML-PSO) is a new version of the
basic PSO that is segmented into three: 1) initialization,
where each robot is placed in a random manner in the
search space with the random velocity and headings. 2) The
fitness function of each robot is evaluated according to Eq.
(3). If the value of fitness function is greater than any found
so far, it is stored as the best position, named p,,;. The robot
with the closest position to the goal gets the highest value
in fitness function and is stored as g,,,;.Here, when t=0, the
Ppest(0) is the first position of each robot and g,,,,(0) is the
first position of the first robot, so that, 3) there are two
alternative strategies in guiding the robot to move to the
next position (first or second). If the fitness function is
larger than zero, the local search algorithm is run in order
to guide the robot to move towards the target; if not, then
first of all the percentage of cells visited (PVC)is calculated
to determine whether each robot is stuck in the local optima
or not. Second, the next velocity of each robot based on Eq.
(5) is calculated. Finally, the next position of each robot is
calculated according to basic PSO, Eq. (1). Steps 2 and 3
above are repeated until the termination criteria are met.

The termination criteria are essential for obtaining the
proper solution in a rational time. In this study, if one of the
robots reaches the target or the number of iterations
exceeds the maximum iterations, which are assumed to be
400 iterations, the termination criteria are reached and the
program terminates.

If the number of iterations exceeds 400 iterations, it means
that the algorithm could not find the target.

Figure 3 represents the steps of ML-PSO.

Two strategies are proposed in this method. The first
strategy establishes an efficient balance between explora-
tion and exploitation by adding the local search method.
The second strategy attempts to overcome the premature
convergence problem by attracting the robots to the
unrevealed area and increases global searching.

3.1 First strategy: Local search

The basic PSO cannot guarantee the global convergence of
the algorithm. In the ML-PSO, the local search algorithm
can guarantee that the robot reaches the target when the
robot is placed near it, and its fitness function is more than
zero. The reason behind this strategy is that the local search
is better able to guide the robot towards the target when the
robot is near it, while the basic PSO may guide the robot to
escape from the target. This means that when the robot
becomes closer to the target, it will be able to track the target
faster by applying local searches. In this study, A-star
algorithm [23] is applied as a local search algorithm.
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Program ML-PSO
{
Initialization ();
While the termination criteria are not met
{
Calculate fitness function ();
If Fitness Function>0
[[first strategy
Local-search ();
Else
{
//second Strategy
Calculate PVC ();
Update velocity ();
New position ();
}
}
}

Figure 3. The pseudo code of ML-PSO algorithm

If heuristic function never overestimates the actual solution
cost, then A-star always finds an optimal solution if one
exists, which is the main advantage of A-star in comparison
with other heuristic algorithms. Another advantage of A-
star is that it considers fewer nodes than any other admis-
sible search algorithm with the same heuristic. These
properties make this algorithm the most well-known
heuristic search algorithm that is widely used in path
finding methods to determine the local search [25].

In this study, when the fitness function of each robot is
larger than zero, its next position is calculated based on the
local search strategy (A-star) instead of the second strategy.
In the A-star, the search is started from the current node,
and it continues until reaching the determined look ahead.
The look ahead is defined as the number of next positions
that the robot has to move to. In this study, the look ahead
value is equal to 1. As described before, there are eight
adjacent cells around the current position of the robot that
it can move to in a specific direction. When the camera of
the robot rotates, it can evaluate the fitness function for each
of eight directions. Then the A-star algorithm, by selecting
the highest f-value that belongs to the specific direction,
moves towards the adjacent cell along this specific direc-
tion. The f-value for these directions is calculated by the
following equation:

f(n)=g(n)+n(n) o)

According to Eq. (4), the h (n) is the cost-to-go, which is
assumed to be the fitness function value of the robot’s
current position in the specific direction. Meanwhile, g (n)
is the cost-thus-far, which is the cost from the current node
to the next position, and as the look ahead is equal to one,
the g (n) in this study is equal to one. A-star uses two lists:
Open and Close. The Open list is the list that stores all the
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acceptable directions of the robot which has a specific
fitness function value, and then sorts them. The sorting of
the Open list is based on the Max-Heap in this study, and
as each direction is added to the Open list, the list is
reordered based on the highest f-value. This means that the
top of the list corresponds to the highest f-value. The
selected direction with the highest f-value pops up from the
Openlist and is put into the Close list. The algorithm selects
the direction from the Close list and then calculates the next
position of the robot based on the selected direction, a
position located among the adjacent cells around its current
position. Finally, the robot moves to the next position.

3.2 Second strategy: Overcome the premature convergence
problem

When the fitness function of each robot returns to zero, it
means the robot did not see the target in this iteration, and
as time increases based on the basic PSO property its global
searching decreases, and the local searching increases.
Therefore, the probability of becoming entrapped in a small
area (local optima) increases and robots may converge to
the small area, meaning they cannot search the other areas
to find the target.

The ML-PSO is inspired by the modification of PSO
introduced by [20]. The measurement of fitness function in
this method is different. The authors assume that each robot
can sense its surroundings and calculate how much space
around it is unrevealed. This means that when the robot is
placed in one cell, by accessing the map of the search space
it can mark its position as a visited area and then calculate
how much of the space around its current position it has
not yet visited. In order to increase the global searching, the
cognitive component (p,.,) is considered a dynamic
component. This means the p,,; in each iteration represents
the position with the highest fitness function among all
particles. Here, a fourth component is added to the velocity
equation to increase the global searching. The velocity
equations are represented in equation (5):

v, (t + 1) =00, ; (t)

+Cl’rl'(phest (t) - (t)) (5)
+Co 1y (8ot () = X, () + €315 (py — 1, ()

In ML-PSO, the four presented components that affect the
movement of the robots are similar to those in [20]: mo-
mentum, cognitive and social, and the fourth component
which is the force between robots and unexplored space.
The fourth component in the velocity equation represents
the vector p_, [20], assumed to be directed towards the most
distant spot of the unexplored areas, and is modified based
on this domain. In [20], the value of ¢, is considered a
constant, but when applied in this domain it does not lead
to the desired solution. In this study, the value of ¢ is

considered variable and changes based on a PVC variable,
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which is described in detail in due course. Here, the
movement observed is not necessarily directed towards the
most distant spots, because of the variable nature of PVC,
which affects the ¢, generating variable vectors.

In [20], though, the global searching of basic PSO is
increased, and this method overcomes the premature
convergence problem; however, it has some drawbacks
when applied to the searching domain. One of the draw-
backs of this method is that when the target is placed near
the robots and the robot cannot visit it in the first iteration,
it is attracted through the fourth component (p; vector) to
immediately search the other unexplored areas. These
robots are not able to search the area surroundings them
due to the presence of the p_, vector with a fixed size and
dynamic p,,,. In other words, the size of p_; vector in this

method is considered a constant, and attains a high value
because of ¢, ; therefore, the robots have to leave their
current areas immediately and move towards the furthest
away unexplored areas when this component is added.
Although the presence of dynamic p,,, increases the global
searching, the robot loses its best experience achieved so
far; hence, the local searching of the algorithm is not
considered.

In this proposed method (ML-PSO), the cognitive compo-
nent (p,,,) for each robot in the first iteration (t=0) repre-
sents their current positions, and in the next iterations will
be updated when the fitness function value of the robots’
current positions becomes higher than the p,,,.

In order to increase the global searching features of ML-
PSO, when the robot is stuck in a small area (local optima),
as well as providing a chance for the robots to search their
surroundings when they arrive at a new area, the vector
size of the fourth component is considered variable by
assigning a variable value to c,.

Whether or not the robots are trapped in the local optima
is determined by their observation of their surroundings
and the calculation of how much of their surrounding area
is explored. Equation (6) defines this phenomenon:

visited cellsinthe surrounding area
= X

PVC 100 ©6)

all cellsinthe surrounding area

In this study, the value of ¢, is changed based on the PVC
variable. There exists a direct relation between the PVC
value and the assigned value of ¢, ; therefore, if the vector

size of the fourth component is low, the robot has to search
its surroundings. Consequently, a high value of PVC makes
the ¢; value higher, which directly causes the vector size of

the fourth component to become larger.

In order to assign an appropriate value to c; the PVC is
calculated first. Based on Eq. (6) at each iteration, each robot
calculates the amount of cells visited in its surroundings so
far; if this value is high then it means that this area has been



searched before by other robots and the robots could not
observe the target in this area yet. In other words, based on
the Basic PSO formula (Eq. (2)), as time increases the value
of w decrease and the global searching (the exploration)
behaviour of PSO decrease; therefore, robot has become
entrapped in this small area (local optima) and is searching
its surroundings continuously. As a result, when the value
of PVC exceeds 50%, it means that it is possible that the
robot may become entrapped in the local optima.

In order to guide the robots to escape from that area, they
have to search the other unexplored areas. By increasing
the value of ¢, based on increasing the value of PVC, the
robots can escape from that region and pull towards the
other unexplored areas (Table 1). When the value of PVCis
less than 40%, the value of ¢, is set to zero, and the fourth
component is ignored. In this case the robots move and
search their surroundings based on the basic PSO velocity
and position equations.

PVC Value of ¢,

PVC<40% Zero
40% < PVC<50% 1
50% < PVC <60% o
60% <PVC <70% 2¢,
70% <PVC <80% 3¢
80% <PVC<90% 4c;
90% <PVC <100% 5¢;

Table 1. The value of c; based on the value of PVC

4. ML-PSO result

4.1 Simulation conditions

The ML-PSO and basic PSO are simulated and tested in
three different environments with four different target
positions in 100 test cases. The three environments with
increasing numbers of obstacles are simulated and present-
ed as (Env. 1, Env. 2, Env. 3) in order to show the function
and the performance of this proposed algorithm (ML-PSO)
when exposed to different numbers of obstacles and the
premature convergence problem. As discussed before, one
of the main problems of basic PSO is the premature
convergence which appears in this domain when there are
obstacles in the environment. Therefore, the presence of
obstacles in this environment is essential and contributes
towards obtaining an acceptable result. The four target
positions are placed near or behind the obstacles to
simulate the worst cases. In addition, the initial positions
of the robots are located in the worst places but in a random
manner; this means the initial positions of the robots are
placed randomly at the farthest positions from the target,
and they cannot see the target in the first iteration. The four
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points of the target in Env. 3 with maximum number of
obstacles are shown in Figure 4. Only one target position is
activated during each search run.
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Figure 4. The map of simulation search space (Env. 3) and the four different
target point locations

Unlike most of the PSO simulations, the search space in this
simulation is bounded. Due to the condition approximation
of the robot’s actual searching, the search space in this
simulation has a hard border. It is assumed that if the next
position of each robot were placed out of the search space,
it would reverse in order be placed inside the search space.

For the simulation results, the following parameter values
are used:inertia coefficient, w is set to 0.9.... 0.5 [21] and the
¢y, ¢, coefficients are both set to 2, 2. An initial v for each
robot is set to simulate the behaviour of the physical robot.
In this study only three robots are used, and therefore the
Ibest method is the same as the gbest.

Here, the basic PSO algorithm is adapted to the multi-robot
search system; therefore, unlike most of the PSO research
studies that track function value, this simulation searches
the target function. The simulation stops when the robot
reaches the target or the maximum number of iterations
(400 iterations) has elapsed.

4.2 Simulation result

To evaluate the effectiveness of ML-PSO, there are two
scenarios:

1. Inorder to show and compare the performance of ML-
PSO and basic PSO when exposed to the premature
convergence (local optima) problem, the amount of
space explored by the robots in three different envi-
ronments with an increasing number of obstacles is
evaluated. These three environments contain six, 10
and 14 obstacles, respectively.

2. The search time is selected as a measurement to
compare the performance of ML-PSO and basic PSO
algorithms when exposed to the two mentioned
problems. In this scenario the search time consumed
by ML-PSO and basic PSO algorithms in three envi-
ronments with an increasing number of obstacles is
evaluated as 100 runs.
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Figure 5. The results of simulated ML-PSO and basic PSO algorithms in Environment 1 with six static obstacles in 100 runs. The explored space is represented
by black dots and the target is shown by the green square. (a) The simulation result of the basic PSO algorithm with target point 1. (b) The simulation result
of ML-PSO with target point 1. (c) The simulation result of basic PSO algorithm with target point 2. (d) The simulation result of ML-PSO with target point 2.
(e) The simulation result of basic PSO algorithm with target point 3. (f) The simulation result of ML-PSO with target point 3. (g) The simulation result of basic
PSO algorithm with target point 4. (h) The simulation result of ML-PSO with target point 4.

The number of iterations in this article is considered to be
400 based on trial and error, because in most cases if the
robots cannot reach the target before 400 iterations it means
they are stuck in the local optima and never reach the target
in this proposed domain. Since the main objective here is
to decrease the search time, 400 iterations could be consid-
ered a proper number.

4.2.1 Simulation result in Environment 1

The areas explored by three robots in four different target
positions in the environment (Env. 1) which include six
obstacles are shown in Figure 5(a-h). Here, it is assumed
that the minimum number of obstacles is six, which
prevents the robot seeing behind the obstacles.

Int J Adv Robot Syst, 2015, 12:86 | doi: 10.5772/60624

The number of areas explored by applying ML-PSO and
basic PSO on a multi-robot search system in this environ-
ment with six obstacles is evaluated.

Here, Figure 5(a) and 5(b) show the areas explored by basic
PSO and ML-PSO algorithms, respectively, at the target
point 1. In this case, the basic PSO could not find the target
and the robots are stuck in the local optima; therefore, the
area explored by basic PSO is smaller. The ML-PSO in this
case can find the target and reach it. In order for ML-PSO
to reach the target it explores more areas, which is not true
for basic PSO.

As seen in Figure 5(c) and 5(d), the robots subject to basic
PSO and ML-PSO can find the desired target and reach it.
In this situation, though the initial positions of the robots
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Figure 6. The result of the search time of the ML-PSO and basic PSO algorithm with four different target positions in Environment 1 containing six static

obstacles in 100 runs

are located in the worst positions in relation to the target,
the small number of obstacles in the way of the robots allow
the observation of the target in the firstiterations. Although
the behaviour of ML-PSQO in this situation is similar to that
of the basic PSO, more unexplored areas are explored
through this proposed method during 100 runs.

When the target is placed behind the obstacle and the initial
position of the robots is placed as far as possible from the
target (4(e)), the robots could not find the target and reach
it during 100 test cases through a basic PSO algorithm. The
reason here is that the initial positions of the robots are
located in the worst positions and are entrapped in the local
optima. In this case, in early iterations, when the global
searching of the robots is high, none of the robots see the
target due to the presence of the obstacles and the limita-
tions of observation by the robot camera. Here, the robots
can see only 10 cells around themselves, so in the first
iterations they could not observe the target. As the number
of iterations increases, the global searching of the robots
reduces, and they converge to small areas; hence, they
become entrapped in the local optima and never reach the
target.

As seen in Figure 5(f), although the target is placed behind
the obstacles, ML-PSO helps the robots to escape from the
local optima and search more unexplored areas during 100
runs by applying the second strategy. Then, by adopting
the local search method (first strategy), the robots move
towards the target more quickly.

The target point 4 is located near the corner. This case is
very difficult for basic PSO when the initial position of the
robots is placed in the farthest position, where the robots
could be entrapped in the local optima and converge to that
area, while in the case of ML-PSO, when each of the robots
finds that it is stuck in the local optima it tries to leave that
area and move towards the unexplored areas by applying
the second strategy.

Another strategy to evaluate the performance of both of the
algorithms in this environment is to compare the number
of iterations passed by each algorithm in finding the target.
The search times consumed by ML-PSO and basic PSO

Mohammad Naim Rastgoo, Bahareh Nakisa and Mohd Zakree Ahmad Nazri:
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algorithms in this environment with the four different
target positions are compared in Figure 6.

The basic PSO algorithm could find the target in one of the
target points (target point 2) but it could not find the target
in target points 1, 3 and 4 during 400 iterations in 100 runs
(Figure 6). The ML-PSO algorithm can find the target in
four different target points in a reasonable search time.

As seen in target point 1, the basic PSO algorithm could not
find the target in a given time during 100 runs. This is
because the robots are stuck in the local optima and cannot
escape. The number of iterations for the ML-PSO algorithm
in this case ranges between 20 and 50 iterations.

The number of iterations in ML-PSO and basic PSO slightly
increase in target point 2. The figure shows that the basic
PSO algorithm can find and reach the target in between 130
and 400 iterations while the ML-PSO can find and reach the
target in between 30 and 50 iterations.

In the remaining number of target points (target points 3
and 4), basic PSO could not find the target due to the
premature convergence problem. That is, the robots
converge to the small area and never search other areas.

As observed, in these two difficult target positions the ML-
PSO can find the target. The function of this algorithm is to
guide the robots to escape from the local optima and move
towards the unexplored areas through determining
whether or not they are stuck in the local optima. Here,
when each robot observes the target, it moves towards it
using the first strategy. The number of iterations of ML-PSO
in target point 3 varies between 25 and 50 iterations. The
search time in target point 4 in ML-PSO increases and
reaches around 70-140 iterations.

4.2.2 Simulation result in Environment 2

The areas explored by the robots in four different target
positions in the environment (Env. 2) with 10 obstacles in
100 test cases are shown in Figure 7(a-h). This environment
is more complex than the previous environment, and we
therefore expect the weakness of basic PSO to be more
evident than before.
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Figure 7. The results of simulated ML-PSO and basic PSO algorithms in Environment 2 with 10 static obstacles in 100 runs. Explored space is represented by
the black dots and the target is shown by the green square. (a) The simulation result of basic PSO algorithm with target point 1. (b) The simulation result of
ML-PSO with target point 1. (c) The simulation result of basic PSO algorithm with target point 2. (d) The simulation result of ML-PSO with target point 2. (e)
The simulation result of basic PSO algorithm with target point 3. (f) The simulation result of ML-PSO with target point 3. (g) The simulation result of basic
PSO algorithm with target point 4. (h) The simulation result of ML-PSO with target point 4.

The performance of the basic PSO and ML-PSO in explor-
ing the environment with 10 obstacles with four different
target positions in 100 runs is shown in Figure 7(a-h). This
environment (Env. 2) is more complex than Env. 1. When
the number of obstacles increases, the probability of
observing the target by the robots decreases.

As seen in Figures 7(a-h), the basic PSO algorithm can only
find the target and reach it at the target point 2 (6(c))
because the position of obstacles in this environment is
similar to the previous environment (Env. 1) with the same
target point. In this case, the added obstacles are not placed
in the way of the robots, and thus they can find and reach
the target.

In the remaining target points (6(a), 6(e), 6(g)), the basic
PSO algorithm fails to find and reach the target. The multi-
robot search system using the basic PSO algorithm is stuck
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in the local optima and converges to that area; therefore,
they cannot search other unexplored areas. This is because
of the number of static obstacles and the initial positions of
the robots which are closer to the target.

On the other hand, ML-PSO algorithm in four different
target points can find the target and reach it. Figure 7(b)
represents the amount of explored areas with ML-PSO
algorithms. The number of explored areas with ML-PSO is
more than the number forprevious environments with the
same target position. This is because of the obstacles being
added to the environment in a way that diverts the robots
to search the obstacles” surroundings more extensively.

As shown in Figure 7(c) and 7(d), although the basic PSO
could also find the target in this case and reach it, the
amount of areas explored by the ML-PSO is more than with
basic PSO. In this case, the robots’ movement through the
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Figure 8. The result of the search time of ML-PSO and basic PSO algorithm with four different target positions in Environment 2 containing 10 static obstacles

in 100 runs

basic PSO towards the target is the same as through ML-
PSO, but they search the same areas during the search time
because the global search decreases over time.

Figures 7(e) and 7(f) represent the amount of explored areas
using the basic PSO and the ML-PSO when the target is
placed in a difficult position (behind the obstacle). In this
case, the robots must move to the nearby area to see the
target. Global searching in the basic PSO decreases over
time, and thus the robots are stuck in the local optima and
cannot explore other areas. In the ML-PSO algorithm,
global searching (exploration) is increased by applying the
second strategy. This strategy pulls the robots to move
towards the unexplored areas; hence, they observe the
target by searching different areas. The amount of explo-
ration by the ML-PSO is about twice that of the basic PSO.

The difficult case in this environment is target point 4. In
this case the target position is near the corner of the search
space and the initial position of the robots is very far from
the target; therefore, the robots converge to local optima
and search that area continuously, and the amount of areas
explored though the basic PSO is low, while the robots can
find and reach the target through the ML-PSO algorithm.
In contrast, the amount of explored areas when applying
ML-PSO algorithm on a multi-robot search system is high
due to the initial position of the robots, which is far away
from the target, and this algorithm has to maintain the
global search at a high level to search many areas and find
the target.

Another strategy to evaluate the search time of ML-PSO
and basic PSO in this environment is illustrated in Figure
8. Figure 8 represents the search time (number of iterations)
the ML-PSO and the basic PSO needed to find the target.

As can be seen in Figure 8, in all target points except one
the basic PSO algorithm fails to find the target and cannot
reach it. The basic PSO in target point 2 can find the target
and reach it, and this case is similar to Environment 1 (Env.
1) with the same target point.

The number of iterations for ML-PSO in this environment
increases due to the added static obstacles. The number of
iterations in the target point 1 for ML-PSO is about 30-60
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iterations, while these figures increased in target point 2
and reached about 40-70 iterations. When the target is
placed behind the obstacles (target point 3) it is difficult for
the robots to find it; therefore, the search time increases and
ranges from 50 to around 100 iterations.

In target point 4, the target is placed in one of the hardest
positions and the multi-robot is located at the farthest
position from the target. This position shows the weakness
of the basic PSO in finding objects among 10 obstacles. In
this case, a multi-robot search system applying basic PSO
could not find the target, but ML-PSO can find the target
during 130-170 iterations despite the fact that this case is
very difficult.

4.2.3 Simulation result in Environment 3

This environment is the most complex environment in this
study, and contains 14 obstacles. The amount of explored
areaswith both basic PSO and ML-PSO is shown in Figure
9(a-h).

Figure 9(a-h) shows the amount of explored areas through
the ML-PSO and the basic PSO algorithms in the environ-
ment (Env. 3), which are the most complex environments
in this study and contain 14 static obstacles with four
different target positions in 100 test cases.

As shown in Figures 9(a),9(c), 9(e) and 9(g), the basic PSO
algorithm failed to find the target in four different target
points and could not reach the desired target during 100
runs. In these target positions, the multi-robot search
system is stuck in local optima and searches the same areas
during the desired search time. As a result, the amount of
explored areas is low.

On the other hand, although the environment is complex,
ML-PSO can successfully find the target in all target
positions and reach it in a given search time. Figures 9(b)
and 9(d) show the amounts of explored areasusing ML-PSO
algorithms. These amounts are higher than in other
environments (Env. 1, Env. 2) with the same target points.

When the target is in the hardest place, such as target points
3 and 4 (behind the obstacle and near the corner), the ML-
PSO algorithm guides the robots to search unexplored

11
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Figure 9. The results of simulated ML-PSO and basic PSO algorithms in Environment 3 with 14 static obstacles in 100 runs. Explored space is represented by
the black dots and the target is shown by the green square. (a) The simulation result of basic PSO algorithm with target point 1. (b) The simulation result of
ML-PSO with target point 1. (c) The simulation result of basic PSO algorithm with target point 2. (d) The simulation result of ML-PSO with target point 2. (e)
The simulation result of basic PSO algorithm with target point 3. (f) The simulation result of ML-PSO with target point 3. (g) The simulation result of basic
PSO algorithm with target point 4. (h) The simulation result of ML-PSO with target point 4.

areas further by increasing global searching; therefore, they
move towards the target and then move faster by using the
local search strategy.

The search time of the ML-PSO and the basic PSO in this
environment with four target positions is shown in Figure
10.

Figure 10 represents the search time consumed through the
ML-PSO and the basic PSO algorithms in the most complex
environments in this study. As can be seen in Figure 10,
through ML-PSO the robots can find the target in four
different target points, which is not true for the basic PSO

Int J Adv Robot Syst, 2015, 12:86 | doi: 10.5772/60624

algorithm. The number of iterations in four target points
increases in the ML-PSO algorithm in comparison with
previous environments (Env. 1, Env. 2).

In target point 1, the ML-PSO spends around 35-100
iterations while the basic PSO fails to find the target, and
the multi-robot system is stuck in the local optima. As in
previous environments with the same situation can be seen,
the basic PSO algorithm failed to find the target and became
entrapped in the local optima. When the global searching
of the algorithm is at a high level, the static obstacles in the
way of the robots prevent them from observing the target
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Figure 10. The results of the search time of ML-PSO and basic PSO algorithm with four different target positions in Environment 3 containing 14 static obstacles

in 100 test cases

in the first iterations; hence, they become entrapped in the
local optima, and as time increases they search the same
areas and cannot find the target.

In target point 2, the number of iterations required for ML-
PSO to find the target is between 60 and around 130.
Although in the previous environments with the same
target point the basic PSO could find the target and reach
it, in this environment the additional static obstacles in the
way of the robots lead to the robots being stuck in the local
optima and never finding the target, while the ML-PSO can
find the target and reach it in between 70 and 100 iterations.

The number of iterations in the basic PSO when the target
isplaced in target point 3 is 400. This means the robots could
not find the target through the basic PSO algorithm in this
case. In this case, ML-PSO algorithm can find the target and
reach it, and the number of iterations passed by this
algorithm varies from 70 to 100.

Target point 4 is the most difficult among all cases in all
three environments. In this case, the target is placed near
the corner and in the most distant possible position in the
search space. The basic PSO quickly became entrapped in
local optima and could not search the other areas to find
the target, while the ML-PSO could find the target and
reach it in 130-250 iterations.

5. Conclusion

A biologically inspired search strategy is developed and
tested for robot swarms. This search technique, named ML-
PSO, is based on bird flocking and basic PSO. The ML-PSO
algorithm is able to solve two problems of basic PSO, taking
into account static obstacles in the search space (Figure 3
represents the pseudo code of the ML-PSO algorithm). The
first problem of basic PSO is premature convergence, which
appeared in this domain when there are static obstacles in
the search space and the initial positions of the robots are
far from the target. In basic PSO, as time progresses, the
global searching (exploration) of the robots decreases and
the robots converge to a small area; thus, the system fails
to search the other areas and find the target. In order to
solve this problem, ML-PSO increases the global searching
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of the basic PSO by adding the fourth component to the
velocity equation (second strategy), which is inspired by
[20] and modified based on this domain. The value of the
fourth component varies in different cases when each of the
robots detects whether it is stuck in the local optima or not.
This variable helps the robot to escape from the local
optima and move towards and search the unexplored
areas.

Another problem is that basic PSO cannot guarantee that
the global optima (the target) will be reached and cannot
establish a balance between exploration and exploitation.
This means that in some cases when the robots see the target
and the fitness function value is high enough, the basic PSO
algorithm guides the robot to move to the positions that
may increase the distance between the robot and the target.
In order to decrease the search time and guarantee that the
robots can reach the target when they observe it, the local
search method is added to the ML-PSO algorithm. When
the robot sees the target, instead of using modified basic
PSO equations (second strategy), it moves towards the
target by applying a local search method such as A-star
(first strategy).

The ML-PSO and basic PSO algorithms are simulated and
tested on the multi-robot search system in the three
environments, with increasing numbers of static obstacles
with four different target positions. The results show that
the ML-PSO algorithm has better performance in compar-
ison with the basic PSO, as observed, and the amount of
areas explored through ML-PSO is higher than through
basic PSO in the same situation. In addition, the search time
in ML-PSO is less than in basic PSO in all three environ-
ments with four target positions.

This proposed method could be applied in real-world
environments with the same situations. This method can be
used to solve problems in finding an object in environments
with many static obstacles,e.g., factories, hazardous
environments, detecting water and oxygen in moon
exploration projects, etc.

It is worth mentioning that during the simulations in this
study one of the possible drawbacks could be the handling
of the localization task with respect to modification in the
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search environment. For instance, adding moving objects
into the search space while their movement information is
unknown to the robots could lead to the failure of the robots
in their localization task. Therefore, more in-depth studies
are necessary to overcome this drawback.
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