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Abstract
We propose a novel technique for conducting robust voice activ-
ity detection (VAD) in high-noise recordings. We use Gaussian
mixture modeling (GMM) to train two generic models; speech
and non-speech. We then score smaller segments of a given
(unseen) recording against each of these GMMs to obtain two
respective likelihood scores for each segment. These scores are
used to compute a dissimilarity measure between pairs of seg-
ments and to carry out complete-linkage clustering of the seg-
ments into speech and non-speech clusters. We compare the
accuracy of our method against state-of-the-art and standard-
ised VAD techniques to demonstrate an absolute improvement
of 15% in half-total error rate (HTER) over the best performing
baseline system and across the QUT-NOISE-TIMIT database.
We then apply our approach to the Audio-Visual Database of
American English (AVDBAE) to demonstrate the performance
of our algorithm in using visual, audio-visual or a proposed fu-
sion of these features.
Index Terms: Voice activity detection, high noise, Gaussian
mixture modeling, complete-linkage clustering

1. Introduction
Voice activity detection (VAD) is the process of identifying pe-
riods of active speech in a given recording and is a necessary
front-end module to nearly all speech processing applications.
It is commonly used to discard the non-speech periods of a
recording prior to conducting speech recognition [1], speaker
diarization [2], speaker recognition [3] or speech coding [4].
It can be used for estimating the noise spectrum in speech en-
hancement applications [5], or to simply reduce the time and
effort required to listen to large sets of spoken recordings in hu-
man listening applications.

The proposed VAD techniques in the literature typically
consist of a feature extraction stage followed by speech/non-
speech classification. Some of the common features used for
VAD include energy, zero-crossing rate, cepstral coefficients,
autocorrelation features [6] and spectral divergence [7]. Most
VAD techniques use some combination of these. The typical
classification methods employed in recent VAD algorithms in-
clude simple techniques, such as heuristic-based approaches us-
ing tunable thresholds [8], or more complex classifiers such
as deep neural networks (DNN) [9], hidden Markov model-
ing (HMM) with Gaussian mixture models (GMM) [2], sup-
port vector machines (SVM) [10] and Gaussian likelihood ra-
tio testing (LRT) [11]. There are a large variety of techniques
in the literature that display inadequate performance in high-
noise recording scenarios and a clear lack of an all-round, noise-

robust VAD approach that can reliably be applied to multiple
recording domains and high-noise recordings - with signal-to-
noise ratios (SNR) of < 5 dB. At the same time, the need for
noise-robust and efficient audio processing is increasing, partic-
ularly in the fields of speech and speaker recognition [12, 13].
The development of such a VAD algorithm has been the moti-
vation for this work.

We propose a novel VAD approach for detecting speech
in noisy recordings and across a wide range of noise scenar-
ios. We first train two GMMs for representing the distribution
of speech and non-speech features in the training set, respec-
tively. For VAD on a previously unseen recording, we use our
trained GMMs to compute speech and non-speech likelihood
scores for smaller segments of the given recording. We then
draw from our work on speaker linking and clustering [14], to
propose a complete-linkage clustering classifier for conducting
VAD using the likelihood scores. We propose a pairwise dissim-
ilarity measure to compare segments and to cluster them into
classes of speech or non-speech using complete-linkage clus-
tering. We evaluate our algorithm on the QUT-NOISE-TIMIT
database [15] and against the performance of five baseline VAD
systems: ITU-T G.729 Annex B [4], advanced front-end (AFE)
ETSI [1] long term spectral divergence (LTSD) [7], Sohns like-
lihood ratio test (LRT) VAD [11] and a GMM based learn-
ing approach using mel-frequency cepstral coefficient features
(GMM-MFCC) [15]. We demonstrate that our proposed sys-
tem outperforms the best baseline VAD by up to 15% in ab-
solute half-total error rate (HTER) [6]. We then employ the
Audio-Visual Database of American English (AVDBAE) [16]
to demonstrate our VAD technique using visual or audio-visual
features, without the need for system tuning or thresholding.
Finally, we propose a score fusion approach for carrying out
audio-visual VAD (AV-VAD) with our system and show that we
can improve VAD performance using this fusion scheme.

2. Relation to prior work
One of the main shortcomings of prior work on voice activity
detection (VAD) is the lack of adequate performance evalua-
tions that are conducted on a wide range of real noise recordings
(SNR < 5 dB) [15]. In addition, most VAD techniques require
some form of threshold tuning or calibration to achieve their re-
ported performance [8, 7]. Our work in this paper demonstrates
a highly noise-robust VAD algorithm that can be applied to mul-
tiple audio domains without any necessary tuning or threshold-
ing. We evaluate our technique over a wide variety of real noisy
recording scenarios (600 hours at 10 noise locations) and at
SNR levels as low as -10 dB, to demonstrate a 15% absolute



improvement in error rates over our best performing baseline
system. In addition, many VAD studies have often focused on
engineering specific VAD features for this task [7, 10, 6]. Our
approach does not require a specific feature recipe. We demon-
strate this by using audio, visual or audio-visual features for
VAD. In addition, we build upon our previous work on visual
VAD [17], to present a novel score fusion scheme for taking
advantage of audio and visual features for greater accuracy in
audio-visual VAD (AV-VAD) [18].

3. VAD algorithm
In our proposed voice activity detection (VAD) approach we use
two previously trained Gaussian mixture models (GMM) (de-
tailed in Section 4), one for speech and another for non-speech,
to compute two respective likelihood scores for segments of a
given recording. We then use the segment likelihood scores to
calculate a pairwise dissimilarity measure between segments.
This dissimilarity measure is used to cluster the segments into
speech and non-speech clusters, achieving a final VAD deci-
sion. It is important to note that the data used for training the
speech and non-speech GMMs does not overlap with the evalu-
ation data in any of the evaluations presented in this paper. The
training process and evaluations are detailed in Section 4.

3.1. Likelihood scoring

We begin VAD of a recording using our previously trained
speech and non-speech GMMs. We first extract common mel-
frequency cepstral coefficient (MFCC) features from the audio
and split the set of feature vectors into smaller segments X ,
where X = {x1, . . . ,xK} is a set of multi-dimensional fea-
ture vectors. The two GMMs can then be used to obtain the
likelihood of a segmentX being speech or non-speech.

GMMs can be used to model an arbitrarily-shaped continu-
ous density by using a sufficient number of Gaussian densities
and through adjusting the means, covariances and weights for
each of these Gaussian components [19]. We use an equal num-
ber of component densities (C) for training both the speech and
non-speech GMMs. The log-likelihood (LL) of a segment X
given a GMM (θ) can then be computed as,

logP (X|θ) =
K∑

k=1

log p(xk|θ) =

K∑
k=1

log

C∑
c=1

ωcg(xk|µc,Σc) ,

(1)

where g represents a Gaussian distribution function, ωC repre-
sents the mixture weights, µC the mean vectors and ΣC the
covariance matrices of the C mixture components.

For every segment X we obtain two log-likelihood scores:
the log-likelihood score ofX against the speech GMM referred
to as LLs(X), and the log-likelihood of X given the non-
speech GMM referred to as LLn(X) . This provides the clus-
tering stage (Section 3.2) of our algorithm with a set of two
log-likelihood scores for each segmentX .

3.2. Complete-linkage clustering

We use complete-linkage clustering to cluster segments based
on their speech and non-speech log-likelihood scores extracted
in Section 3.1. Complete-linkage clustering has previously been
used for speaker clustering in the context of speaker linking and
diarization [20]. Linkage clustering is a form of agglomerative

clustering that employs a linkage rule to update pairwise seg-
ment scores after a merge, thus allowing for efficient clustering
[21]. To do this, we need to compute a pairwise dissimilarity
measure between all pairs of segments. We define a simple dis-
similarity measure between two segments,Xi andXj as,

d(i, j) =
1

|LLR(Xi) + LLR(Xj)|
, (2)

where LLR(Xi) is the log-likelihood ratio for segmentXi and
the log-likelihood ratio for any segmentX is computed as,

LLR(X) = LLs(X)− LLn(X). (3)

From (2) and (3), d(i, j) will be lower for similar segments
(both speech or both non-speech), while it would be higher for
dissimilar segments (one speech and one non-speech).

After obtaining the pairwise dissimilarity scores d, we be-
gin the complete-linkage clustering process by first merging the
most similar pair of segments to form a starting node. The pair-
wise measure d between this new node and each of the remain-
ing segments is then updated to reflect the most dissimilar score
between any of their elements. For example, if we merge two
segmentsXi andXj intoX ′

i = {Xi,Xj}, the score between
the newly formed cluster of segmentsX ′

i and any other segment
Xn will be updated to d(i′, n) where,

d(i′, n) = max(d(i, n), d(j, n)). (4)

Complete-linkage clustering provides a cautious clustering
rule that will consistently take into account the worst-case score
scenario after every segment merge. We use complete-linkage
clustering to cluster all segments, based on their pairwise dis-
similarity scores d defined in (2), down to two final clusters
C1 and C2. After achieving two dissimilar clusters, we then
need to decide which is the speech cluster and which is the non-
speech. We apply a simple relative comparison test using (3)
which is the log-likelihood ratio of a segment being speech; if
LLR(C1) > LLR(C2), then C1 is more likely (than C2) to
be the speech cluster, if not thenC2 is more likely to be speech.
This clustering and relative detection approach eliminates the
need for any decision thresholding or parameter tuning when
applying our proposed VAD approach across multiple audio do-
mains. Of course, this implies that we assume the existence
of active speech in every processed recording, which may be a
sound assumption in some speech recognition and speaker ver-
ification tasks. However, in scenarios where having no active
speech or no non-speech segments is a possibility, one can sim-
ply append a short dummy speech and non-speech segment to
the beginning of processed recordings to ensure the existence of
active speech and then ignore the VAD decisions for the portion
of the recording containing the dummy segment. Incorporat-
ing the reference knowledge regarding the nature of the dummy
segments can also be used to guide the clustering process. This
is possible in the case of our proposed algorithm as it employs
a relative comparison to separate the recording into speech and
non-speech clusters, which eliminates the need for tuning and
thus ensures its robustness across varied audio domains.

After obtaining VAD decisions that indicate speech and
non-speech portions of a recording, we apply a decision hang-
over based on our previous work [6]. We add 300 ms of preced-
ing speech and 500 ms of proceeding speech to every detected
speech segment, while removing segments shorter than 250 ms
if no speech event is present within their hangover period. We
do this to smooth and extend speech events and remove spurious
speech decisions.



4. Noise-robustness evaluations
We utilise the QUT-NOISE-TIMIT database for VAD evalua-
tions [15]. This corpus contains noisy recordings over vari-
ous signal-to-noise ratio (SNR) levels and noise scenarios. We
compare the performance of our proposed system to the evalua-
tion results of five baseline VAD techniques over QUT-NOISE-
TIMIT. These include two standardized off-the-shelf VAD sys-
tems: ITU-T G.729 Annex B [4] and advanced front-end (AFE)
ETSI [1]. Our implementation of two state-of-the-art baseline
VAD techniques: long term spectral divergence (LTSD) [7] and
Sohns likelihood ratio test (LRT) VAD [11]. As well as a GMM
based learning approach using MFCC features (GMM-MFCC)
that is proposed and detailed in the QUT-NOISE-TIMIT eval-
uation protocol [15]. It must be noted that the training of the
speech and non-speech GMMs is only carried out once prior to
the evaluations and that the data employed for training does not
in any way overlap (with respect to recording content or noise
scenarios) with the evaluation data. This is done to ensure an
unbiased evaluation. The experimental results are provided in
this section.

4.1. QUT-NOISE-TIMIT corpus and experiments

The QUT-NOISE-TIMIT dataset is designed for training and
extensive performance evaluation of VAD algorithms across
high noise recordings. This dataset was constructed by mix-
ing clean speech from the TIMIT corpus [22] with an exten-
sive range of real background noise recordings from the QUT-
NOISE corpus [15]. This dataset contains a total of 600 hours of
noisy spoken recordings, created across 24,000 files, with 200
files for one of six SNR levels, for each of 20 recording sessions
in the QUT-NOISE corpus. Figure 1 demonstrates the structure
of the QUT-NOISE-TIMIT corpus.

We follow the exact training and testing protocol recom-
mended for the QUT-NOISE-TIMIT corpus [15]. This dataset
provides two independent and equal-sized sets of noisy record-
ings to allow for cross training and evaluation: Groups A and
B. From Figure 1, we will train speech and non-speech GMMs
on Group A to evaluate on Group B recordings, and vice versa.
This is also applicable to LTSD and Sohn VAD systems, which
were similarly trained (or tuned) on one Group and tested on
the other. We use 19 MFCC features including the zeroth order
coefficient with deltas and feature warping [23], extracted every
32 ms using a Hamming window and a 10 ms window shift. In
addition, we use 16 mixture components to train our speech and
non-speech GMMs. For likelihood segment scoring we use 5
feature vectors per segment, equivalent to a 50 ms.

4.2. Evluation results

We employ commonly used performance metrics to evaluate
our algorithm and baseline systems [15]. These are the false
alarm rate (FAR), miss rate (MR) and half-total error rate
(HTER) metrics. FAR is the total time that a system erroneously
makes speech decisions when there is no speech, over the total
length of non-speech regions in a recording. MR is the total
time that a system erroneously misses speech decisions, over
the total length of the true speech events in a recording. We
express these metrics as percentages and compute the HTER as
the equal-weighted average of FAR and MR percentages.

Figure 2 displays the performance of our proposed VAD al-
gorithm against the four baseline systems at each of three noise
levels: low noise (SNR = 10 and 15 dB), medium noise (SNR
= 0 and 5 dB) and high noise (SNR = -10 and -5 dB). In Fig-

Figure 1: An overview of the structure of the QUT-NOISE-
TIMIT corpus of noisy speech recordings [15].

Figure 2: Evaluation of VAD systems across QUT-NOISE-
TIMIT; the dark and light shaded portions of HTER bars repre-
sent the contribution of MR and FAR metrics, respectively.

ure 2 the HTER metric is displayed as a bar graph for each
system and noise level. This is the overall HTER metric cal-
culated across the entire dataset. Each bar is shaded, with dark
and light shaded portions indicating the contribution of MR and
FAR metrics to the overall HTER, respectively.

Our proposed VAD outperforms the evaluated baseline sys-
tems. This is particularly noticeable in the high noise evalua-
tions, where our algorithm outperforms the best baseline tech-
nique (GMM-MFCC) by an absolute value of 15% in HTER. In
addition, unlike the state-of-the-art techniques such as LTSD,
Sohn and GMM-MFCC VAD systems, our system does not em-
ploy any form of thresholding or tuning, nor does it depend on
a specifically designed feature like the LTSD approach [7].

5. Audio-visual VAD
In the task of speaker recognition in multimedia datasets, it is
often necessary to use multiple features in order to tie together
the face and speech of a person speaking [24]. We have pre-
viously carried out work on visual VAD using a GMM based
learning approach [17]. We now extend our work to audio-
visual VAD (AV-VAD) and evaluate our proposed VAD ap-
proach using the Audio-Visual Database of American English
(AVDBAE) [16]. This dataset contains relatively clean speech
and as we have shown that our system is significantly more ac-
curate than the baseline techniques in Section 4, we will hereon
use our proposed algorithm to demonstrate VAD performance.



Table 1: VAD evaluations using different features across the
AVDBAE corpus, where the audio-visual features are obtained
by appending visual features to their respective audio features.

Feature type HTER% FAR% MR%
Audio 3.9 7.1 0.7
Visual 9.7 17.9 1.5

Audio + Visual 6.2 6.9 5.5

In this section, we first conduct VAD using only audio features,
only visual features or these features appended to form audio-
visual features. We demonstrate that our proposed VAD per-
forms best using only audio features. We then present a score
fusion scheme for incorporating information from both audio
and visual features for AV-VAD using our system to show im-
provements over the audio-only VAD accuracy.

5.1. AVDBAE corpus and experiments

We use the Audio-Visual Database of American English (AVD-
BAE), which contains 14 speakers; 10 female (F02-F011) and
4 male (M01-M04) with approximately equal data for each
speaker [16]. We split this dataset into two non-overlapping
sets for cross training and evaluation. To do this, we select all
even numbered female and male speakers to form Group A =
{F02, F04, F06, F08, F010, M02, M04}, with the remainder of
the dataset forming Group B. As before, we train 16 mixture
GMMs on Group A to test on Group B, and vice versa.

For visual features, we extract the mean-removed lip
region-of-interest (ROI) for every frame of video at 29.97 fps
[25]. We then apply a two-dimensional discrete cosine trans-
form (DCT) to the mean-removed ROI, retaining the top 100
DCT coefficients according to the zigzag pattern, thus achiev-
ing a static visual feature vector. To extract dynamic speech
information, we apply inter-frame linear discriminant analysis
(LDA) to 7 consecutive frames (centered at the analysed frame)
to obtain a 60 dimensional LDA feature vector. Finally, we ap-
ply feature warping to the extracted LDA features [23]. For
audio analysis we use MFCC features as in Section (4.1), but
extracted at the video frame rate of 29.97 fps with no overlap.
This is to simplify the audio-visual feature fusion evaluations
in this section. For likelihood scoring (Section 3.1), we use 2
vectors per segment to achieve a length close to 50 ms.

5.2. Evaluation results

We apply our VAD approach to audio, visual and audio-visual
features. We obtain the audio-visual features by appending vi-
sual feature vectors to their respective audio feature vectors.
From Table 1, our proposed VAD provides enough robustness
to accommodate various features without tuning. It appears
that appending the visual features to audio features slightly de-
creases FAR while raising MR. To further explore this, we pro-
pose a weighted log-likelihood score fusion approach to com-
bine audio and visual segment likelihoods. Given a segment of
audio features Xa and their respective visual features Xv , we
modify (3) for weighted log-likelihood score fusion,

LLR(Xav) =
(
αLLs(Xa) + (1− α)LLs(Xv)

)
−
(
βLLn(Xa) + (1− β)LLn(Xv)

)
,

(5)

where α and β are the speech and non-speech likelihood
weighting factors, respectively, which range between 0.0 and
1.0 in steps of 0.1. From (5), α=β=1.0 would represent the

Figure 3: Weighted log-likelihood score fusion evaluations
where α, β, or both factors ({α, β}) are varied along the x-axis
with 0.0 weighting factor values representing visual-only per-
formance and values of 1.0 indicating audio-only performance.

audio-only experiments (Table 1) while setting both factors to
0.0 would represent the visual-only evaluations. We look at
three fusion cases where we vary both, or at least one of the
two weighting factors: (α = β = [0.0, 1.0]), (α = 1.0, β =
[0.0, 1.0]) and (α = [0.0, 1.0], β = 1.0). As the audio fea-
tures had the best performance, when we are not varying a fac-
tor we set it to 1.0 to favour audio features. The results are
shown in Figure 3. It can be seen that our weighted score fu-
sion approach outperforms the audio-only results (Table 1) at
(α = 0.9, β = 1.0). This result suggests that the visual fea-
tures may retain non-speech information which can be used to
improve VAD, thus opening up additional opportunities for fur-
ther investigation and improvement.

6. Conclusion
We proposed a noise-robust VAD, which we evaluated against
five baseline systems to demonstrate an absolute improvement
of 15% in error rate, over the best baseline VAD, across
QUT-NOISE-TIMIT dataset of noisy speech recordings. We
showed that through employing complete-linkage clustering we
can achieve threshold independence and outperform equivalent
GMM-based learning techniques for conducting VAD in high-
noise recording scenarios. We emphasise that no form of thresh-
olding was used in our proposed algorithm and that the pre-
trained speech and non-speech GMMs were trained on data that
did not overlap with our evaluation set (not even with respect to
noise type). We then used our proposed system to study its per-
formance in carrying out audio-visual VAD over the AVDBAE
corpus. To do this, we first evaluated our technique using audio-
only, visual-only and concatenated audio and visual features to
show that the best performance in this manner is achieved us-
ing audio-only features. We then proposed a novel score fusion
approach for incorporating audio and visual feature information
into our VAD scheme for AV-VAD and showed that we can out-
perform the best VAD performance, which was achieved using
audio-only features, across the AVDBAE corpus.
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