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Abstract

Public buildings and large infrastructure are typically
monitored by tens or hundreds of cameras, all capturing
different physical spaces and observing different types of
interactions and behaviours. However to date, in large part
due to limited data availability, crowd monitoring and oper-
ational surveillance research has focused on single camera
scenarios which are not representative of real-world appli-
cations. In this paper we present a new, publicly available
database for large scale crowd surveillance. Footage from
12 cameras for a full work day covering the main floor of a
busy university campus building, including an internal and
external foyer, elevator foyers, and the main external ap-
proach are provided; alongside annotation for crowd count-
ing (single or multi-camera) and pedestrian flow analysis
for 10 and 6 sites respectively. We describe how this large
dataset can be used to perform distributed monitoring of
building utilisation, and demonstrate the potential of this
dataset to understand and learn the relationship between
different areas of a building.

1. Introduction

A significant amount of recent research has focussed
on monitoring crowds, including tasks such as measuring
crowd size [5, 12] and monitoring pedestrian flow [4, 6, 7]
(i.e. how many people pass through a doorway). To date
this research has largely focussed on single camera scenar-
ios. However, large buildings such as those on a university
campus or complex infrastructure such as airports are cov-
ered by tens or even hundreds of cameras, and often even
individual areas within those buildings (i.e. a foyer) are
too large to adequately cover with a single camera. Fur-
thermore, when considering the operations and crowd lev-
els within an entire building the relationship between the
different elements of the building needs to be considered.
A crowd entering through the main door will subsequently

Figure 1. Floor plan of the monitored area, showing approximate
camera locations and landmarks. A number of areas are covered
including the approach to the building (C1), covered areas outside
the main entrance (C2-C5) including two external elevators (C3
and C4), the main entrance (C11), an interactive display area (C6-
C9), internal elevators (C10) and internal stairs (C12). Images
captured from each camera are shown in Figure 2.

disperse throughout the building, and by observing such
movements across multiple cameras over time it may be
possible to learn how this dispersal takes place, allowing es-
timates of crowd movements to be improved. However the
lack of a large multi-camera dataset that captures the crowd
interactions in and around a building has, to date, limited
researchers ability to investigate these problems.

To facilitate research into the large scale monitoring of
crowds and building utilisation, we present a publicly avail-
able 12 camera database collected from cameras positioned



(a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) C6

(g) C7 (h) C8 (i) C9 (j) C10 (k) C11 (l) C12

Figure 2. Images captured from the 12 cameras. The regions of interest for throughput estimation are shown in red, with the red arrow
indicating the primary direction of movement. Regions of interest for crowd counting are shown in green.

in and around a building on a university campus1. These
cameras capture the major entrances and approach to the
building, as well as large indoor and outdoor spaces, and el-
evator foyers (see Figures 1 and 2). 8 hours of data for each
camera captured on the same work day from 9am to 5pm, of
which 2 hours is annotated with ground truth (11am to 1pm)
for 10 crowd counting and 6 pedestrian flow areas. We de-
scribe a distributed architecture that is being used to monitor
this environment in real-time, and allows for scalable large
scale monitoring of buildings and complex infrastructure.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the proposed database; Section 3 describes
a distributed analytics system that is used to monitor this
environment; Section 4 evaluates of the analytics used and
demonstrates how this data may be used to monitor utilisa-
tion within a building; and Section 5 concludes the paper.

2. Building Monitoring Database
Data is captured from 12 cameras, all of which cover

aspects of a single floor of a busy university campus build-
ing. Figure 1 shows a floor plan with approximate cam-
era locations, and Figure 2 shows images from each cam-
era. Cameras cover a mix of indoor and outdoor environ-
ments, with overlap present between many of the cameras.
The mix of cameras covering doorways, elevators and other
choke-points, alongside cameras covering large open envi-
ronments allows a mix of algorithms to be deployed. In
particular, we focus on two types: 1) Algorithms to esti-
mate crowd sizes; and 2) Algorithms to estimate pedestrian
throughput. However, other algorithms including those to
estimate dwell times [3] or detect events (be they events of
interest or abnormal events [11]) could also be applied.

Data is captured for an 8 hour period, covering 9am to
5pm on a single week day. Capture is performed by ex-
tracting data from a video management system (VMS), with

1Database available at http://www.qut.edu.au/research/
saivt, or contact the authors for details

the VMS responsible for ensuring videos are captured at
a consistent frame rate and thus maintain synchronisation.
Wide variation in crowd density (from empty scenes to in
excess of 50 people in a single camera) is observed through
the sequences, as people come and go throughout the day.
Footage is captured at a resolution of 856 × 480 (with the
exception of C1 which is captured at 768 × 578), and a
frame rate of 25 frames per second (except for C4, C5 and
C9 which are captured at 30 fps).

Ground truth annotation for all cameras is performed
for a two hour block from 11am to 1pm. For pedestrian
throughput estimation, a region of interest is defined and
all people who pass through the area in each direction (pri-
mary direction and the opposite direction) are annotated ac-
cording to when their approximate centre of mass is cen-
tred within the region of interest. Within the database, the
primary direction is always defined as the ‘inbound’ di-
rection (i.e. entering the building, entering the lift, etc.).
For crowd counting estimation, regions are defined in cam-
eras of interest and one frame every minute (120 frames
in total) is annotated with the location (approximate centre
of mass) of all people. It should be noted that this limits
the crowd counting annotation to local crowd counting ap-
proaches (i.e. those that aggregate counts for foreground
regions [12] or perform a per-pixel count [5]). However,
as recent studies (i.e. [13]) have shown local approaches to
be superior to holistic approaches, we argue that collecting
the impractically large amount of annotation that is often
needed for holistic approaches is of little benefit. Figure
2 shows the regions for throughput estimation and crowd
counting that are annotated for each camera, and the pri-
mary direction of motion for throughput estimation.

Cameras C2-C12 are also calibrated to a common world
coordinate scheme using Tsai’s approach [14]. Cameras are
calibrated against the building floor plans to allow for real-
world measurements to be made, and for multi-camera algo-
rithms to be used on the captured data. C1 is not calibrated
as the ground is uneven in this camera view, making accu-

http://www.qut.edu.au/research/saivt
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rate calibration very difficult. As C1 has minimal overlap
with other cameras except in the far field, this is not consid-
ered a significant limitation. A number of person bounding
boxes are also annotated for each crowd counting area to
allow average person height at any location to be estimated
to account for perspective distortion. Background segmen-
tation has also been computed for all cameras using [1].

3. System Architecture

A key consideration when monitoring a large area is the
need for the system to be scalable. With this in mind, a
distributed system is proposed where every instance of an
algorithm is run only on a single camera, potentially on it’s
own virtual machine, with results being aggregated across
multiple cameras. This distributed architecture is visualised
in Figure 3, and the approach is outlined in the following
subsections.

Figure 3. System Architecture: A number of analytics servers re-
ceive footage from a set of CCTV cameras. The outputs of the
analytics (i.e. counts) are stored in a database, which can then be
accessed by a web-server to display the outputs. In our installa-
tion, all servers are Ubuntu virtual servers.

3.1. Video Analytics

3.1.1 Crowd Counting

The size of a crowd in an intrinsically holistic measure,
however local approaches that aggregate counts over mo-
tion regions [12] or individual pixels [5] have been shown
to outperform their holistic counterparts [13]. Furthermore,
they require less training data and are applicable to multi-
camera scenarios. We adopt the local approach of [12]
which extracts features from regions of motion, and esti-
mates the number of people in each region. Features ex-
tracted from each motion region ( [1] is used to perform
motion segmentation) include the motion region area and
perimeter (size features), a perimeter orientation histogram
(shape features), an edge angle histogram (edge features),
and keypoint features. Gaussian process regression [9] is
used to estimate the number of people in each region, and
the total count is obtained by summing the region counts.

This approach is chosen as it is a local method (based
on counting motion regions) that is also able to operate
in a scene independent, multi-camera manner through the
use of camera calibration. We adopt the ‘pixel’ method for
multi-camera crowd counting (see [12]), that enables multi-
camera crowd counting to be performed as a secondary step.
This method assigns a fractional count to each pixel based
on the crowd density, weights the factional count according
to how many other cameras can see the pixel, and aggre-
gates these fractional counts across a multi-camera network.
This makes the method highly scalable, as each camera can
be counted independently, and a subsequent process can ag-
gregate the results and account for overlap.

3.1.2 The Virtual Gate

Previous approaches to pedestrian flow analysis have ex-
tracted features from a line or region within an image. Kim
[4] defined a virtual gate as a single line in the scene, and
integrated optical flow perpendicular to the gate over time
to estimate the crowd count; Lin [6] segmented entry/exit
events using a 2D virtual gate rather than a single line; while
Ma [7] used local HOG features and integer programming
to estimate the number of people passing a line. We use a
local feature approach that can be viewed as an analogue to
the crowd counting approach outlined in Section 3.1.1. It
is comprised of a counting line surrounded by a region of
interest (ROI), and a direction of interest (DOI) in which
pedestrians move. The set of pixels belonging to the ROI
is denoted R, and the unit vector pointing in the DOI is de-
noted d. The proposed algorithm accumulates optical flow
in the direction of interest at a set of points, determined ac-
cording to a feature point selection criteria. Each video se-
quence is divided into a set of sub-sequences, or windows,
in which the optical flow is accumulated. Regression is then
applied to each window independently to estimate the num-
ber of people passing through the virtual gate.

Three feature point selection criteria are used in this ap-
proach: 1) All Pixels: treats every pixel within the ROI as
a feature point; 2) Edges: Canny edge detection [2] is used
to detect edges in the ROI, and these pixels form the feature
set; 3) Corners: FAST [10] is used to locate a set of corners
to form the feature points.

The features within each window are calculated from the
optical flow. The optical flow field at time t is denoted vt,
and the optical flow at a pixel p is denoted vt(p). The com-
ponent of this flow which points in the direction of interest
d is referred to as the aligned optical flow, and is computed
using the dot product,

v̂t(p) = vt(p) · d. (1)

The set of feature points detected within the ROI at time t
is denoted Ft,f , where the subscript f represents the type



of feature under consideration (all pixels, edges or corners).
At each frame in the video we calculate the total aligned
flow as follows,

at,f =
∑

p∈Ft,j

v̂t(p). (2)

The video sequence is split into a series of time windows
enumerated by n. The set of frames belonging to the nth
window is denoted Wn, and each window is taken to be the
same length. Across each time windowWn the total aligned
flow is accumulated, αn,f =

∑
t∈Wn

at,f .
Although feature points are not explicitly tracked, this

summation will be roughly proportional to the number of
feature points crossing the counting line, as the summation
of aligned flow for each feature point is equal to the distance
it travels through the gate (i.e. the width of the ROI). This
results in the total aligned flow over a time window, αn,f ,
being proportional to the number of points crossing the gate.

Optical flow histograms are used to separate the effects
of potential noise and true motion. In practice, values of
optical flow are subject to error or noise. For instance, a
feature point belonging to a background object which does
not move has a true optical flow of 0, but in practice may
be assigned a small fractional value such as 0.02. In or-
der to separate the effects of noise and true motion, a his-
togram based on flow magnitude is used. Aligned optical
flow (Equations 1 and 2) is calculated within different his-
togram bins as follows:

1. Each pixel p is assigned to a histogram bin b based on
the magnitude of v̂t(p). Bin ranges of [0, 0.05), [0.05,
0.25) and [0.25,∞) are used in this paper. The set of
pixels belonging to bin b is denoted Hb.

2. The total aligned flow for bin b and for feature f is
denoted, at,f,b =

∑
p∈Ft,f∩Hb

v̂t(p).

3. The total aligned flow across a time window Wn for
bin b and feature f is then calculated as follows,
αn,f,b =

∑
t∈Wn

at,f,b.

The set of all features and histogram bins, {αn,f,b}f,b, are
collected into a feature vector xn which describes the time
window Wn. Note that when multiple features and his-
togram bins are used, these features are concatenated to
form a larger feature vector. A regression model (Gaussian
Process Regression [9]) is then trained to learn the relation-
ship between the feature vectors {xn} and the ground truth
values. To allow for bi-directional counting, we split the
accumulation of aligned flow according to the sign of the
flow, such that positive and negative aligned flow are accu-
mulated separately for feature points. This results in two
feature vectors, xn,+ and xn,−, for each window, and by
training two regression models we can estimate pedestrian
flow is both directions.

Figure 4. Database Schema: The schema contains a coarse envi-
ronment definition as well as available cameras and algorithms.
Data and errors are associated with specific camera set-algorithm
pairs (instances) and are timestamped to allow for efficient re-
trieval.

3.2. Data Management

A relational database is used to store data generated by
the analytics, and allow for subsequent display and analysis.
The database schema is shown in Figure 4. The database
schema provides a coarse definition of the environment bro-
ken down into building, floors and sections (such as in-
side and outside) that allows counts for related regions to
be quickly aggregated. Separate tables define the cameras
(and sets of cameras) and algorithms, while another table
(instance) details which algorithms are run on which sets of
cameras. This allows both single and multi-camera algo-
rithms to be incorporated into the database, and for cameras
to be used by multiple algorithms. This structure also has
the potential to allow the automatic instantiation of virtual
machines for each instance. Data extracted by the instances
and errors raised are stored in further tables, both of which
use timestamps to allow data to be quickly queried.

3.3. Visualisation

A web server is used to visualise collected data. We use
the Django2 toolbox as a foundation for the web applica-
tion, and focus on two main pieces of functionality: the
ability to quickly view current system performance using
a floor plan dynamically updated with current observations,
and the ability to plot data from from one or more analyt-
ics for arbitrary time periods; both of which can be easily
achieved through interaction with the database server.

4. System Evaluation and Performance
We first evaluate the performance of the crowd counting

and virtual gate algorithms using the annotated portion of
the data to demonstrate the characteristics of and challenges
present in the data (see Section 4.1); after which we explore
the relationships between the counts obtained by different
cameras over the complete 8 hour sequence to demonstrate
how building utilisation may be explored (see Section 4.2).

2https://www.djangoproject.com/



Camera MSE MRE Camera MSE MRE
C1 1.71 26.67 C2 1.62 36.28
C3 1.20 24.98 C4 0.55 31.80
C5 17.96 39.44 C6 1.75 37.51
C7 4.82 47.21 C8 6.87 44.86
C9 3.75 84.86 C12 1.58 53.57

Table 1. Crowd Counting Accuracy. Mean Squared Error (MSE)
and Mean Relative Error (MRE) are reported, averaged for each
frame of ground truth. Frames with a ground truth of 0 are ex-
cluded from MRE calculations as the MRE is undefined.

Camera Inbounds Outbounds
MSE MRE RE MSE MRE RE

C3 0.91 108.6 252.7 1.28 65.6 417.0
C4 1.17 59.4 14.1 1.46 51.9 15.8
C9 0.79 29.9 3.7 0.77 27.6 8.3
C10 0.68 39.1 5.4 1.29 40.9 3.9
C11 3.93 32.2 1.1 4.34 30.5 5.5
C12 1.88 39.7 3.8 1.76 48.9 2.8

Table 2. Virtual Gate Accuracy. Mean Squared Error (MSE), Mean
Relative Error (MRE) (both computed over non-overlapping 1
minute windows) and Relative Error (RE) over the entire sequence
are reported for each direction. Windows with a ground truth of 0
are excluded from MRE calculations as the MRE is undefined.

4.1. Evaluation of Analytics Performance

For each camera, two hours of data (from 11am to 1pm)
is annotated with ground truth which is provided with the
dataset. We designate the first hour of this data for train-
ing, and the second for testing. We report accuracy for the
crowd counting and virtual gate approaches in Tables 1 and
2 respectively.

As can be seen by Tables 1 and 2, in the majority of cases
reasonable performance is achieved with low to moderate
levels of error. However, poor performance is observed
for some configurations. The crowd counting accuracy is
observed to be worse than the virtual gates in almost all
cases, however as can be seen in Figure 5, even the worst
performing cameras still follow the ground truth and detect
trends and changes. Inaccuracies are observed due to sev-
eral environmental factors such as shadows and reflections
(for the interior cameras) which causes false motion (and
thus counts), and due to people sitting still for long peri-
ods of time causing missed counts. Errors in the virtual
gates are in part due to the windowing effect, as can be seen
by greatly reduced RE over the whole sequence compared
to the MRE for individual windows. However particularly
poor performance is observed for the virtual gate in C3,
which monitors an external lift (see Figure 2 (c)). Figure
6 plots the estimated and ground truth counts for C3, and
it is evident that although the crowd size estimate closely
follows the ground truth, the estimate of throughput at the
elevator doors is highly inaccurate. The area around the lift
door is also frequently exposed to large amounts of crowd-
ing as students leave the building and lecture theatres, mak-

ing accurate estimation of entries and exits to the lift very
difficult. Similar problems, albeit less severe, are observed
for people entering the other external lift in C4.

Figure 5. Crowd size estimates and ground truth for the two least
accurate cameras (in terms of MRE), C9 and C10. Despite poor
MRE, both estimates follow the ground truth well and high MRE
is due to isolated errors, and errors made with very low crowd
sizes.

Figure 6. Crowd (‘CC’) and throughput (‘In’ and ‘Out’) counts
over time for C3. In C3 the elevator door is frequently obscured
by crowds, and high levels of crowding lead to very inaccurate
flow estimation for the elevator.

4.2. Monitoring a Complete Building

The database presented in this paper allows us to inves-
tigate how a building is utilised over time. Figure 7 shows
how pedestrian throughput at three points and crowd size
varies over the course of a day. It is clearly visible that
the crowd movements through the three cameras are re-
lated, and on closer inspection (Figure 7 (b)) it can be seen
that there is a small lag between the cameras for the vir-
tual gate counts, caused by the time it takes for people to
move from one area to another. The link between crowd
size and throughput can also be seen. As people enter the
building (or exit from the stairs or lift) a number will re-
main in the building and join the crowd; and reductions
in the crowd size can be traced to people leaving the area.
These relationships raise the question of whether estimates
for multiple virtual gates, crowd estimates, or even both, can
be performed simultaneously using aggregated data. Us-
ing techniques such as Gaussian processes [8] or Bayesian



(a) Full Sequence (9am-5pm)

(b) First Half Hour (9am-9.30am)

Figure 7. Crowd movements over time. The plots show virtual gate counts covering the building entry, lift, and stairs; and the crowd count
for the internal foyer (C6-9).

networks [15], it may be possible to combine multiple dis-
tributed observations to learn a much richer model that de-
scribes how people interact with the building.

5. Conclusions

In this paper we have presented a large, multi-camera
dataset for distributed pedestrian monitoring. Existing
crowd monitoring approaches and datasets have been pre-
dominately single camera and captured over short time
spans. The proposed database contains 8 hours of footage
from 12 cameras (96 hours total) located in and around a
busy university campus building. This database enables
new research opportunities to learn richer models of pedes-
trian movements and interactions by incorporating obser-
vations from multiple view points; something not possible
with existing datasets. We have also described a distributed
system to monitor such an environment in real-time using
crowd counting and throughput estimation. Future work
will concern investigation into modelling the relationships
between views, incorporating additional analytics, and ex-
tending the system to cover other areas (i.e. a public food
court, parking lots) or different infrastructure (i.e. airports).
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