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Abstract 
 

This study proposes an optimized approach of designing in which a finite element model of the specially shaped composite tank for 

spacecrafts is built by applying the finite element analysis. The composite layer is preliminarily designed by combining the quasi-

network design method with numerical simulation, which determines the ratio between the angle and the thickness of the layer as the 

initial value of the optimized design. By adopting the adaptive simulated annealing algorithm, the angles and numbers of layers at each 

angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according 

to the number of layers of each angle in the optimized structure by applying the enumeration method and combining the general design 

parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study 

takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as 

the object to validate this method. The result shows that the quasi-network design method can improve the design of composite material 

layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design 

value of weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore 

proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading 

conditions. 
 

Keywords: Specially shaped composite tank; Finite Element Analysis; Optimal design; Quasi-network design method; adaptive simulated annealing algo-
rithm 

 

1. Introduction 

Composite materials are widely adopted in aeronautics and 

astronautics, watercrafts, architecture and ordnance industry 

because of their high specific strength, high specific modulus, 

favorable designability and low cost [1]. One specific applica-

tion of composite material is the design of pressure containers 

[13-14]. Different kinds of pressure containers are used in 

aeronautics and astronautics to store liquids and gases, exem-

plified by surface tension propellant tanks and gas cylinders 

for spacecraft propulsion system. Compared to traditional 

metal tanks, the pressure containers with composite material 

have lighter body, higher stiffness and stability, better fatigue 

resistance, favorable designability and lower cost [2], which 

attracts more attentions in recent developments of aircraft 

designs.  

The shape of tank for spacecrafts is primarily designed 

based on the structural and functional requirements of space-

crafts. Differences in functions can lead to the variance of 

morphologies in tanks. Traditional tanks are mainly spherical, 

cylindrical or ellipsoidal. However, based on the new re-

quirements of advanced craft design, specially shaped tanks 

are more widely used in spacecrafts nowadays. Because of the 

irregularity, it is difficult to apply traditional analytical design 

method of regular tanks in the design of specially shaped tanks. 

The design approach for irregularly shaped tanks should be an 

optimization of the conventional analytical methods by substi-

tuting the analytical solutions by advanced numerical model-

ling results to ensure the reliability and economic efficiency of 

the design [3]. 

In the process of designing specially shaped composite tank 

for spacecrafts, the shape, material and loading conditions are 

defined according to the requirements of task design. The 

thickness and initial value of angles of different parts in the 

tank are determined by adopting finite element method (FEM) 

to develop the numerical model, the quasi-network design 

method (QNDM) and the combination of FEM and this 

QNDM. The tank will be finally optimized to reduce its 

weight and increase the buckling limit.  

 

2. Model Details 

The total height of inner part of the tank is 1800mm, the di-

ameter of the front end is 900mm, and the diameter of the rear 

end is 1500mm. The major semi axes of the ellipsoids of the 
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front, middle and rear are 500mm, 525mm and 580mm re-

spectively, and the ratio between the major and minor semi 

axis is 1.6:1. The thickness of metallic liner is 1.5mm, and the 

thickness of each layer of the composite material is 0.2mm. 

There are connection frames on the upper and lower end of the 

tank, whose length is 200mm. Fig. 1 shows the FE model of 

the composite tank, which is developed on the commercial 

platform of ANSYS .  

 
Fig. 1. Finite element model of tank  

(a) 1/2 finite element model (b) the whole finite element model 

 

The metallic liner and the connection frames are applied 

with the element of SOLID 95, and the layers of composite 

material adopted are of SOLID 46 element. The properties of 

metallic liner and composite material are provided in Table 1 

and Table 2, and the material positions can be found in Fig. 2. 

The loading condition of the tank is relatively complex, with 

the upper surface of the connection frame receiving axial force, 

shearing force and bending moments, and the internal surface 

of certain part (i.e. the internal surface of RJ part) receiving 

internal pressure. In the FE model, the circumference of each 

part (for the ellipsoids, their latitude line) is in X direction, i.e. 

the 0° direction of the composite material layer. The genera-

trix direction (for the ellipsoids, their longitudinal line) is in Y 

direction, i.e. the 90° direction of the composite material layer. 
Table 1. Material property of metallic liner 
 

Young’s modulus (GPa) 68.2 

Poisson’s ratio 0.3 

Yield Strength (MPa) 350 

UTS (MPa) 441 

Density (kg·m-3) 2840 

 

Table 2. Property of composite material 
 

Young’s modulus E11 (GPa) 125.4 

Young’s modulus E22,33 (GPa) 9.4 

Shear modulus G12,13,23 (GPa) 4.1 

Poisson’s ratio ν23 0.329 

Poisson’s ratio ν12,13 0.025 

UTS (MPa) 971 

Density (kg·m-3) 1500 

 

 
Fig. 2. The figure of the material position 

 

3. Design of Composite Layer by QNDM 

As the composite tank is specially shaped, and the loading 

condition is complex, the ‘network theory’ method applied in 

conventional filament-winding inner-pressure vessels cannot 

be adopted to define the thickness and laying angle. The pre-

liminary design can be realized by combining the quasi-

network design method and numerical modelling techniques, 

such as FEM. 

 

3.1 QNDM  

The QNDM is also called stress ratio design method [4-5]. 

We takes the example of filament winding design method to 

explain the process of QNDM. Based on the requirement of 

the conformance of the direction of filaments and the loading, 

only the bearing capacity of composite material is taken into 

account, leaving out the stiffness and strength of the structure, 

and distributing the number of filaments of each layer accord-

ing to the primary stress of the internal surface, thus determin-

ing the ratio of the number of layers of each direction. The 

specific process is as follows: 

(1) Calculating the stress: Calculate the stress of the lami-

nated boards σx, σy, σxy according to the properties of the 

boards of each direction; obtain the ratio of stress, σx: σy: 

σxy=1: a: b. 

(2) Determining the ratio of the number of layers of each di-

rection: set the angles as 0°, 90°, and ±45° based on the direc-

tions of stress, and correspond σx, σy, and σxy to the layers of 0°, 

90°, and ±45°. Make the number of layers (the ratio of layers 

of each direction) conform to the ratio: n0°: n90°: n±45°=1: a: 2b. 

(3) Calculating the stress again: Analyze the stress accord-

ing to the laminated board determined above, and obtain the 

corresponding stresses σx
′, σy

′, and σxy
′. 

(4) Differentiating the deviation of stress ratio: Compare σx
′, 
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σy
′, and σxy

′ with the original stress ratio 1: a: b. Given that the 

deviation is within the permissible range (take 5%), the result 

can be adopted; otherwise determine a new ratio of layers in 

accordance with the new stress ratio until the deviation gets 

into the permissible range. 

 

3.2 Ratio of the number of composite layers  

As the internal stiffness of composite laminated boards are 

only related to the layer angles and the ratio of layer numbers 

irrelevant to the sequence of the layers, after setting the angles 

0°, 90° and ±45° one only needs to determine the ratio of layer 

numbers [6]. In accordance with the QNDM, calculate the 

stresses of the sidings of each part σx, σy, and σxy based on the 

properties of each direction and the numerical simulation 

based on FEM, and obtain the stress ratio σx: σy: σxy=1: a: b. 

The initial values of the layers in each part can be found in 

Table 3. The following iterating results are all the largest 

stress of the results of the finite element calculation. 
 

Table 3. Initial value of composite material parameters of each part of 

the structure 
 

Position RF1 RF2 

Number of layers 8 8 

Layer Angle [0/±45/90]S [0/±45/90]S 

Thickness of single layer (mm) 1.0 1.0 

Total Thickness (mm) 8.0 8.0 

 

The results combining the data on Table 3 and the calcula-

tion of ANSYS are shown on Table 4. 
 

Table 4. The computed result of the first iteration 
 

Position RF1 RF2 

σx(MPa) 40.999 33.687 

σy(MPa) 653.358 304.086 

σxy(MPa) 5.116 7.396 

σx:σy:σxy=1:a:b 1.000:15.936:0.125 1.000:9.027:0.220 

n0:n90:n±45=1:a:2b 1.000:15.936:0.250 1.000:9.027:0.440 

Recalculate the structure according to the layer number ra-

tio on Table 4, obtain the corresponding stress of each part σx
，

, 

σy
，
, and σxy

，
, and differentiate the deviation of stress ratio. 

The parameters of second iteration of composite material are 

provided in Table 5, and the calculated results are on Table 6. 
 

Table 5. Composite material parameters of the second iteration 
 

Position RF1 RF2 

Number of layers 4 4 

Layer Angle [0/90/45/-45] [0/90/45/-45] 

Thickness of single 

layer (mm) 
1.000/15.936/0.125/0.125 1.000/9.027/0.220/0.220 

Total Thickness 

(mm) 
17.186 10.467 

 

Table 6. The computed result of the second iteration 

 

Position RF1 RF2 

σx (MPa) 1354.690 643.027 

σy (MPa) 583.309 192.386 

σxy (MPa) 535.190 181.269 

σx:σy:σxy=1:a:b 1.000:0.431:0.395 1.000:0.299:0.282 

n0:n90:n±45=1:a:2b 1.000:0.431:0.790 1.000:0.299:0.564 

After six times of iterations, the deviation of stress ratio is 

lower than 5%. The trends of value a (the ratio of 90° layer) 

and value b (the ratio of ±45°) in accordance with the increas-

ing number of iteration are displayed in Fig. 3, and the final 

results are given in Table 7. 

 

 
Fig.3. Variation trend of the value “a” and “b” in every part of struc-

ture with the iteration times increasing 

(a) Variation trend of the value “a” with the iteration times increas-

ing (b) Variation trend of the value “b” with the iteration times 

increasing  

Table 7. The final iteration result 
 

Position RF1 RF2 

σx (MPa) 237.015 208.606 

σy (MPa) 237.034 90.398 

σxy (MPa) 201.905 78.487 

σx:σy:σxy=1:a:b 1.000:1.000:0.852 1.000:0.433:0.376 

n0:n90:n±45=1:a:2b 1.000:1.000:1.704 1.000:0.433:0.752 

According to Table 7, when the layer angles are 0°, 90°, 

and ±45°, the approximate value of layer number ratio of each 
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angle is n0:n90:n±45=1:1:1.7. For the convenience of pavement, 

take n0:n90:n±45=1:1:1.8; the layer number ratio of the external 

boards is approximately n0:n90:n±45=1:0.4:0.8. Thus the initial 

values of the optimized design of the composite material lay-

ers are shown on Table 8. 
 

Table 8. Initial parameters value of laminate composite optimization 

design in every part of the structure 
 

Position RF1 RF2 

Number of layers 8 8 

n0:n±45:n90 1:1.8:1 1:0.8:0.4 

Number of 0° layer 40 20 

Number of ±45° layer 72 16 

Number of 90° layer 40 8 

Total number of layers 152 44 

Thickness of single layer (mm) 0.2 0.2 

Total Thickness (mm) 30.4 8.8 

 

4. Structural Optimization of Laminated Structure 

The optimization of laminated structure in specially shaped 

composite tank can be divided into two procedures [9]: firstly, 

take the layer parameters of Table 8 as the initial parameters, 

integrate them with the optimization package (Isight) and 

FEM software (Ansys) and optimize the design of composite 

layers by applying the ASA with the target of minimizing the 

weight of the structure to define the number of layers of each 

direction. Secondly, select the best sequence of paving layers 

to enlarge the buckling limit of the structure [7-8]. 

The tank for spacecrafts is designed according to the stiff-

ness, and then its strength is calibrated. The allowable strain 

for the design of the filament direction of composite material 

is 4500με [4]. The allowable value for the design of stress of 

filament direction is obtained through the material strength 

limit divided by the safety factor 1.5, which results in 647MPa. 

The allowable value for the design of stress of metallic liner 

Mises is 441MPa. 

 

4.1 Sub-step 1: minimizing the weight of the structure 

Every part of the specially shaped composite tank, because 

of its complex loading condition, is expected to meet the re-

quirements of the allowable values in stiffness and strength. 

The mathematic model of the optimization problems can be 

presented as: 

X={ANG1, ANG2, R10, R1ANG1, R190, R20, R2ANG2, R290} 

Min: f(X) 

s.t. : R1STRAIN, R2STRAIN≤0.0045 

R1STRESS, R2STRESS≤647 

RJSEQV≤441 

15≤ANG1, ANG2≤75 

The designing variables are the layer angle of structure RF1 

saving 0° and 90°-ANG1, the layer number of 0°-R10, the 

layer number of (ANG1)°-R1ANG1, the layer number of 90°-

R190; the layer angle of structure RF2 saving 0° and 90°-

ANG2, the layer number of 0°-R20, the layer number of 

(ANG2)°-R2ANG2, and the layer number of 90°-R290. The ob-

jective of optimization is to minimize the weight of the struc-

ture. In the constraint conditions, R1STRAIN and R2STRAIN 

represent the maximum strains of single filament direction of 

RF1 and RF2 respectively, R1STRESS and R2STRESS repre-

sent the maximum stresses of single filament direction of RF1 

and RF2 respectively, and RJSEQV is the maximum stress of 

metallic liner Mises. 

The ASA is an overall optimization algorithm. The early-

stage Simulated Annealing (the SA) was proposed by Me-

tropolis et al.[12], which analogizes the combinational optimi-

zation problem and the thermal balance of statistic mechanics 

through simulated annealing, generates new design point from 

the original design point through variation, and finally verges 

into the global optimal solution. The SA algorithm succeeded 

in solving the combinational optimization problem of discrete 

variables and the minimization problem of continuous varia-

ble function. The ASA is an optimized algorithm put forward 

by Ingber et al. [10], which has a better performance in global 

optimal solution than the conventional SA algorithm. The 

advantages of ASA algorithm include: capability of dealing 

with arbitrary system and objective function; capability of 

probing the global optimal solution; being suitable for contin-

uous and discontinuous design spaces; and being applicable in 

dealing with real and discrete variables. These advantages 

make the ASA algorithm suitable for solving optimization 

problems of composite material laminated boards. However, 

due to its repetitive cycle of annealing process of ASA, the 

optimization is relatively slow, which makes it less efficient. 

Therefore it is not the fastest algorithm. 

The finite element calculation of the specially shaped com-

posite tanks is conducted by the Ansys Parametric Design 

Language (the APDL) approach. The optimization process is 

realized by integrating Ansys and Isight. The parameters of 

ASA are set as follows: the discreet value of maximum itera-

tion is 1000; the maximum difference value between the fea-

sible solution of each execution and the current optimal solu-

tion is 1.0×108; the relative ratio of the decreasing temperature 

parameter, the relative ratio of decreasing temperature loss 

function, relative velocity of quenching parameter and the 

relative quenching velocity of loss function are all set as one; 

the magnification time of penalty is 1000; and both the penal-

ty and objective function of failure solution are set as 1.0×1030. 

The flow chart of optimization is as Fig. 4. 
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Fig. 4. Flow chart of first step optimization design of specially 

shaped tank of composite material - optimization design of mass 

 

The optimization results from the calculation with parame-

ters of Table 8 and the ASA algorithm are presented on Table 

9. It shows that the ASA algorithm is very effective in the 

optimization of the weight of the tank that is decreased by 

20.5%. 
 

Table 9. The result of optimization design 
 

Algorithm Initial ASA 

ANG1 45 32 

ANG2 45 24 

R10 40 34 

R1ANG1 72 72 

R190 40 18 

R20 20 8 

R2ANG2 16 16 

R290 8 8 

R1STRAIN 0.005705 0.004269 

R1STRESS (MPa) 716.82 563.43 

R2STRAIN 0.001385 0.001796 

R2STRESS (MPa) 173.84 225.37 

RJSEQV (MPa) 185.77 269.93 

MASS (kg) 329.52 261.97 

 

4.2 Sub-step 2: maximizing the buckling limit 

With the settled paving angles and the number of layers of 

each angle, the buckling limit of the laminated structure de-

pends on the sequence of paving the layers [6]. The design of 

the laminated structure in this study is a balanced symmetrical 

laminated board. The optimization results of Table 9 indicate 

that the number of layers of RF1 part is relatively large, and it 

is inefficient to optimize the calculating time with the global 

optimization algorithm. Therefore it is more favorable and 

convenient to adopt the enumeration method to select the se-

quence, which can increase the efficiency of calculation [11]. 

The layer paving sequence can be determined primarily as the 

8 ways of sequencing in Table 10 based on the results of ASA 

shown on Table 9 and by combining the general principles of 

layer design of composite material laminates.  
 

Table 10. Layer sequence of the composite material of the tank 
 

Number Layer sequence of RF1 Layer sequence of RF2 

Initial [017/±3218/909]S [04/±244/904]S 

1 
[±32/0/[0/±32/90/±32/0]8/ 

90/±32]S 
[0/±24/90] 4S 

2 
[±32/0/[0/±32/90/±32/0]8/ 

90/±32]S 
[02/±242/902]2S 

3 
[±32/0/[0/±32/90/±32/0]8/ 

90/±32]S 

[±24/02/±24/902/±24/02/ 

±24/902]S 

4 
[±32/0/[0/±32/90/±32/0]8/ 

90/±32]S 

[ [±24/90/±24/0]2/ 

[90/0] 2]S 

5 [±32/[0/±32]8/[0/±32/90]9]S [0/±24/90] 4S 

6 [±32/[0/±32]8/[0/±32/90]9]S [02/±242/902]2S 

7 [±32/[0/±32]8/[0/±32/90]9]S 
[±24/02/±24/902/±24/02/ 

±24/902]S 

8 [±32/[0/±32]8/[0/±32/90]9]S 
[ [±24/90/±24/0]2/ 

[90/0] 2]S 

 

Based on the eigenvalue (linear) buckling analysis in FEM, 

the clamped constraints of the bottom connection frame and 

the unit load (pressure) on the upper connection frame are 

conducted. Because the load imposed on the structure is the 

unit load in static stress analysis, the obtained coefficient of 

the buckling limit is the buckling limit of the structure. The 

buckling limit values of the 8 layer paving sequence are given 

in Table 11. 
 

Table 11. The buckling limit values of different layer sequences 
 

Number Buckling limit (N) 

Initial 4.8610237×106 

1 5.8385854×106 

2 5.6821293×106 

3 5.7544069×106 

4 5.9606878×106 

5 5.8383219×106 

6 5.6819694×106 

7 5.7542284×106 

8 5.9603708×106 

The statistics of Table 11 and Table 10 show that the layer 

sequence of RF1 has little effects on the overall buckling limit 

of the structure. In the Sequence 4, the buckling limit of struc-

ture is the largest, which is 1.23 times the lowest buckling 

limit. Therefore Sequence 4 is adopted as the design scheme 

of the laminates of the tank. 

 

5. Conclusions and Remarks 

We have proposed a structural optimization approach for 

the design of specifically shaped composite tanks in space-

crafts. Based on the application on a cone-shaped cylinder 
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body, the following conclusions can be made correspondingly.  

1. The quasi-network design method combined with the fi-

nite element method can conduct the preliminary design the 

composite tank of complex loading condition. The preliminary 

design scheme can be adopted as the initial value of the opti-

mization design. 

2. The Adaptive Simulated Annealing (the ASA) can opti-

mize the weight of the structure, decreasing the weight by 

approximately 20%. 

3. When the number of layers is large, to maximize the 

buckling load of the structure, the enumeration method is used 

to select the sequence of layers, increasing the buckling load 

to 1.23 times of the previous tank. The method reaches a fa-

vorable result. 

 

Nomenclature 

E     : Young’s modulus    

ν      : Poisson’s ratio  

G     :Shear modulus  
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