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Abstract

We consider integral equations on the half-line of the form x(s)—'[:k(s,t)x(t)dt:

¥(s) and the finite section approximation x, to x obtained by replacing the infinite

limit of integration by the finite limit 5. We establish conditions under which, if the
finite section method is stable for the original integral equation (i.e.x; exists and is

uniformly bounded in the space of bounded continuous functions for all sufficiently
large p), then it is stable also for a perturbed equation in which the kernel & is
replaced by £ + h. The class of perturbations allowed includes all compact and some
non-compact perturbations of the integral operator. Using this result we study the
stability and convergence of the finite section method in the space of continuous

functions x for which (1+s)”x(s) is bounded. With the additional assumption that
|k(s,t)| < |k(s - t)| where ke L,(R)and k(s)= O(S’q)as s — 400, for some q >1,
we show that the finite-section method is stable in the weighted space for 0< p<gq ,

provided it is stable on the space of bounded continuous functions. With these results
we establish error bounds in weighted spaces for x - xz and precise information on
the asymptotic behaviour at infinity of x. We consider in particular the case when
the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this
case with a Wiener-Hopf integral equation arising in acoustics.
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1 Introduction

We consider integral equations of the form

xs) —J-:k(s, t(t)dt = ys), seR" =[0,00), (1.1)

where x, y,€ X , the space of bounded continuous functions on R". We abbreviate

(1.1) by
x—Kx=y
where K is the integral operator defined by

Kyfs)=["Ks.hAe)s seR". (1.2)
A major concern of the paper is to examine the convergence of xp to x as
-,
Where x; € X, is a finite-section approximation, defined by

xp(s)= [ K(sut s (0)d = (s . seR*. (1.3)

We abbreviate (1.3) in operator form as
Xg=KgXg =Y,
where K is defined by

kﬂl//(s) :_[

k(s e, seR". (1.4)

Continuing the studies of [7,4,17,21,11] we shall be concerned to establish con-
ditions for the existence and uniform boundedness, for all sufficiently large P,

of(I—Kﬂ)*1 as an operator on X (or on certain subspaces of X). Provided this sta-
bility property of the approximate operators can be established, Atkinson [7] and
Anselone and Sloan [4] have shown that, under quite general conditions on the

kernel k, the convergence of xz to x uniformly on finite intervals of R can be
proven, and useful error bounds have been obtained in [17,21,20].

Conditions for the existence and uniform boundedness of (I -K 2 )_1 on X have

been obtained by Anselone and Sloan [4] for the special case when K = K+H,
where K is a Wiener-Hopf integral operator, defined by

keyls) = 'ro k(s — )yt t, SER", (1.5)

0

with ke L, (R), and H is an integral operator of the form (1.2) which maps X onto

X':={xe X :lim,_ x(s)exists} and is compact. The results in [11] can be used

s+



Integral equations on the half-line 2

to establish the uniform boundedness of (I—K ﬁ)_l in the case k(s,t) = k(s-2)z(t)
with ke L, e(R)andz € Lm( +).

Sections 2 and 3 of this paper consider the effect of perturbations on the stability of
the finite section method. Given that (I -K, )_1 is uniformly bounded for sufficiently

large B, conditions on a sequence {Hj} are established such that (1 -K,-H, )7] is

also uniformly bounded. In particular, defining H and Hg by (1.2) and (1.4) with &
replaced by h, these results apply provided h satisfies mild regularity conditions
(Assumptions A and B below, which ensure that H is a bounded operator on X) and

provided HH -H, ” — 0 as f— . This latter condition is satisfied if H is compact
and is also satisfied by a class of non-compact integral operators.
In Section 4 we utilise this perturbation result to study the solvability of (1.1) and (1.3)

in the subspace X, = {x eX:|x" =sup . (1+s)"x(s)1 < oo} We make

an additional assumption, A', on the kernel 4: that ‘k |(s, t)| <k |(s - t] ,s,teR", for

some keL (R), and k(s)=0(s’q),s—>+oo, for some q > 1. We show that if
I — K is invertible on X then / — K is invertible on Xp for 0< p<gq. Further, if

I — K is invertible on X and (/ - Kp ! exists and is uniformly bounded on X for all
sufficiently large B, then / — K is invertible and (/ - Kp y" exists and is uniformly
bounded for all sufficiently large B on Xp, for 0< p<gq. Thus, the stability of the

finite section method on X implies its stability on Xp for 0< p<gq.

These results extend and sharpen previous work of Prossdorf and Silbermann
[20,21] and of Chandler-Wilde [10], the work of Prossdorf and Silbermann considering
specifically the case when K is a compact perturbation of a Wiener-Hopf operator.

The solvability of (1.1) in the subspaces X ; = {x eX, im, | (1+5) x(s)
exists} and Xg = {xeXp :lim l+s)px(s)=O} is examined in Section
5. Amongst the results obtained we show that if / — K is invertible on X and &
satisfies A' and B, then / — K is invertible X 2 on for 0<p<g.and on X [’, if also

lim K1(s) exists.

S—>+00

S+ (

To illustrate all the previous results, in Section 6 we study the important special
case K =K+ H, with K the Wiener-Hopf operator (1.5) and H a perturbation of

K of the class studied in Section 2 (this class including all compact and certain non-
compact integral operators). Our first result, on the existence and uniform bounded
ness of (I - Kp Y on X, is a generalisation of that in Anselone and Sloan [4]. We
then show the existence and uniform boundedness of (/ - Kp )' on the weighted
spaces Xp,0<p<q, if k satisfies the additional assumption A'. Our final result

considers the pure Wiener-Hopf case K=K, and shows that if k(s)=as™ +()(s‘q),s —>+oq
for some constants a and ¢ >1, and /—K is invertible on X, then / — K is invertible

on X for 0< p<g; inparticularif y € X! then the solution of (1.1), x =(7 — k) y, satisfies
s)+as [ x(¢)t
2 [

1= [ k{e)ar
It is an interesting feature of the results in Sections 5 and 6 that such precise informa-

+O(S_q),S — 40 (1.6)
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tion on the asymptotic behaviour of the solution of (1.1) at infinity can be obtained
from general, largely functional analytic arguments.

In Section 7, ilustrating the results of Section 6, we consider a specific Wiener-
Hopf equation arising from a boundary integral equation reformulation of a mixed
impedance boundary value problem for the Helmholtz equation in a half-plane. This
problem has previously been studied as a model of outdoor sound propagation [14,12,

. . .3
15,16]. In this case K = K. with k(s)~ ae"s %25 - 4o for some constant a. We

prove stability and derive error estimates for the finite section method in the space
Xp, 0<p<3/2, and derive the leading order asymptotic behaviour of the solution

at infinity.
2 Operator Equations on the Half-Line

Let {xﬂ}={xﬁ :ﬂeR*} be an ordered family of functions in X with the natural
ordering induced by R*. The following definitions made for {xﬁ}carry over directly
to {x,: € R'| for any unbounded subset R'c R".

We say that {x,| converges strictly, and write x,——>x if {x,} is bounded and
xﬂ(s)—> x(s) uniformly on every finite interval. This is convergence in the strict

topology on X of Buck [8]. We shall also be concerned with ordinary norm conver-
gence in X (||.|| denoting the supremum norm), and write x, — x if”xﬂ —xH -0,

i.e. x,(s)— x(s) uniformly on R".
Following Anselone and Lee [3] we call x e X a strict cluster point of {x, | if

x;>x with B R'for some R'c R*, and say that {x, | is s-compact if {x,: e R’|

has a strict cluster point for any R’ R*. The following equivalence follows by a
diagonal argument from the Arzela-Ascoli theorem (see [4]):

{x, | bounded, equicontinuous < {x,} s-compact.

Let K,K, € B(X) for feR", where B(X) denotes the space of bounded linear
operators on X. Following [3] call K s-continuous if

x;——>x = Kx, ——>Kx.
Call K sn-continuous if

X, ——>x=> Kx; > Kx
and s-compact if

{xﬂ} bounded = {Kxﬁ}s—compact.

Call {k, | asymptotically compact if
{xﬂ}bounded = {Kﬁxﬁ} precompact.
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and asymptotically s-compact if

{xﬂ }bounded = {K 5Xp } s —compact.
Also, write Kz —K if Kg converges strongly to K, i.e. Kpx — Kx for all x € X, in
which case also

Xp—>X = KﬁXﬁ—>Kx.
Similarly, write K, — K if

Xy ——>x= K,x, ——>Kx.
and K, —— K if

x;——x = K,x, > Kx.
Clearly

KﬁLK:Kﬂ;)K,KﬁaK. (2.1)

If either K;,——>K or Kz — K then {Kz} is bounded by the Banach-

Steinhaus theorem. We have also

Lemma 2.1 {K;} asymptotically compact, K, —— K = K;,——>K
Proof Since K, —>K,
Xy, ——>x = K x;, ——>Kx. (2.2)

We will prove that also Kpxp —Kx by showing that every subsequence has a subse-
quence converging to Kx.
Let R'c R". Since {Ky} is asymptotically compact

Kﬂxﬂ —>y, feR", (2.3)
for some y € XandR' c R'. Comparing (2.2) and (2.3), y = Kx. O
Setting Ky =K, Be R", in Lemma 2.1 we see that

K compact, s-continuous = K sn-continuous.
The following condition on operator families {Kg} will be necessary:

For feR*, I - Ky injective =(I - K, )" e B(X), (2.4)

Clearly (2.4) is satisfied if each / - Kp is a Fredholm operator of index zero, in
particular if K is compact.
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Our first theorem is an abstraction of Theorems 6.3 and 6.5 in [4] and is
proved in the same way. (Also cf. Theorem 1.6 in [2].)

Theorem 2.2 Suppose that / - K is injective, that {Kp} is asymptotically s-
compact, that K,—— K, and that (I -K, )71 e B(X) and is uniformly bounded for

all sufficiently large B. Then (/ - K)' € B(X) and (1 - Kp)" —— (-K)"

Our next result shows that the uniform boundedness of (/ - KB)'1 is stable to a class
of perturbations of {Kp}.
Theorem 2.3  Suppose that {Kp} satisfies the conditions of Theorem 2.2, that

H,H,eB(X) for BeR", that I - K - H is injective, that {Ks+ Hp} satisfies (2.4),

and that {Hp}is asymptotically s-compact and Hy —"— H. Then (I - K; - Hp)" €
B (X) and is uniformly bounded for all sufficiently large /.
Proof  Suppose that the theorem is false. Then there exists {xs - x € R'} with
HxﬁH =1, # € R'such that

x,—Kyx,—H,x, >0, ek (2.5)
Since {Kp + Hp} is asymptotically s-compact,

Kyx,+Hyx, —>x, feR",
for some xe X and R"c R'. From (2.5), x3—5 x with feR". Since K3—* 5 K and
H,——H,

Kyx,——Kx, H,x, — Hx, feR". (2.6)

Thus x = Kx + Hx and, since [ - K - H is injective, x = 0. Thus Hx = 0 and,
combining (2.5) and (2.6),
Xy —Kﬁxﬂ —0, feR"

But this is a contradiction since (/ - KB)'IGB(X) is uniformly bounded for suffi-
ciently large 8 and ||xz| = 1. ©
Combining Theorems 2.2 and 2.3 we have

Corollary 2.4 Suppose that the conditions of Theorem 2.3 are satisfied. Then
(I-K-H)" eBX)and (I-Ks- Hy)' ——(1-K-H)"

An interesting special case of the above results is obtained by setting Kg = K = 0
for fe R,

Corollary 2.5 Suppose that H, HzeB(X) for fe R, that [ - H is injective,
that {Hp} satisfies (2.4) and is asymptotically s-compact, and that H,—=—>H. Then

(I - Hy)"' € B(X) and is uniformly bounded for all sufficiently large g, (I - H)"'
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B(X),and (I- H)"' —— (1-H)", (I-Hy)"' —(I-H)".

Proof Except for (/ - HB)'1 — (I - H)', the result follows immediately from
Theorems 2.2 and 2.3. To see ({ - HB)'l — (I - H)"', suppose that yp — y and
define xp : = (I - Hp)' yp, x : = (I - H' y. Then (I - Hp)xp — (I — H)x. But
(I-Hp)'—— (I-Hy' = x,—>x, and H,—"—>H = Hyx, — Hyx. Thusx, — x.

m

3 Integral Equations on the Half-Line

We apply the results of the previous section to the case in which K € B(X) is an
integral operator, defined by (1.1). Let ky(¢) = k(s,£). We suppose that k e LI( +)

for all s € R"and impose at least the following conditions on the kernel :
A. Sup _,. .[Ow|k(s,t]dt < o0,

B.J.:|k(s',t)—k(s,t1dt —0as s'—>s, for all seR".

Throughout the remainder of the paper, for an integral operator K of the form
(1.1), with kernel &, let Ky, feR", denote the finite section version of K, defined

by (1.4).
It is easy to see that if & satisfies A and B then K, Kye B(X), BeR", with
Il < 1K = sup [ (s t)ar. 3.1)
Further

{Kx: ||x|| <1}u {Kﬁx :BeR”,
It follows from (3.2) that K is s-compact and {Kp} is asymptotically s-compact.
Anselone and Sloan [4] also show that

x|| < 1} is bounded and equicontinuous. (3.2)

A, B = K s-continuous, K, ——K . (3.3)

A and B are not sufficient to ensure that K is compact. But K is certainly
compact if k satisfies A and B and the following additional hypothesis [4]:

C.["[k(s.t)dt >0 as s o,

Alternatively, Anselone and Sloan [5] show that K is compact if &k is uniformly
con-tinuous and satisfies

D.supseRJr J.;|k(s,t1dt —0 as o>

From (3.2) and (3.3) we see that Theorem 2.2 applies to K and K, if k satisfies

A and B, and this is Theorem 6.5 in Anselone and Sloan [4]. To apply Theorem 2.3
we need a criterion forK ,——K .
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Lemma 3.1 Suppose that k satisfies A and B (so that k,k, e B(X),ﬂ eR").
Then the following are equivalent:

(1) K is sn-continuous and K ;, —— K;

(i1)|| Kp-K]|—0;

(ii1) k satisfies D.

Proof (ii) < (iii). This is immediate since

|, =k = sup [ Jis.e)ar

(i) & (i). Suppose that HK s —KH—)O and that x , ——>x Then, for all aeR”,
[, =Ky < (& = & ey |+ (K = K o= x|+ [K (e =, ).

Now, givene> 0 the second term is < e€/2 provided a is chosen large enough,
and, for any fixed value of « , the remaining terms tend to zero as £ — . Thus

K,-Kyx; —0 and we have shown that K, —=— K . Similarly we show that X is

sn-continuous.
(i) = (ii). Suppose that K is sn-continuous and K , —— K but HK s —K H -+ 0. Then

there exists a bounded sequence {xﬁ}c X such that HK P —KHx 5 > 0 But define

{yﬂ}cX such that {yﬂ} is bounded and
( ) 0 s<p-1
S)=

Vs xﬂ(s), s<p

Then (K, —K)y,=(K,~K)x, A 0but also y,—>0 so that (K, ~K)y, -0, a
Contradiction. O

To illustrate the above result, note that assumptions A, B, and D are all satisfied
if k(s,t)= a(s,t)/(t) with [ e LI(R+) and a(s,t) bounded and continuous. Less
obviously we have the following result:

Lemma 3.2 If the integral operator K is a compact operator on X then k satisfies
A, B, and D.
Proof Let B denote the unit ball in X. If K is compact then KB must be bounded
and also equicontinuous at every point s e [O,oo): these requirements necessitate A
and B (for more details see [22]).

To show further that k satisfies D note that, from (3.3), Lemma 2.1, and Lemma
3.1, we need only show that {Kj;} is asymptotically compact. But, if K is compact
and k satisfies A and B then [18, p.306] K:Lw(R+)—>X and this mapping is

compact. Thus U, , +K,Bc {Kx:xel, }(R*l”x” <1 is precompact in X; i.e.

{Kj3} 1s collectively compact and so is asymptotically compact. O
To see that A, B, and D, while necessary, are not sufficient to ensure the com-
pactness of K, consider the following example (cf. [5, Example 6]).
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Example 3.1 Let k(s,?) = a(s,0)l(¢) where a(s,?) = €™,

1, 0<t<l
I(t)=

0, t>1

Then k satisfies A, B, and D but K is not compact. For, defining {xg} by xs(f) =
e, it follows that Kx; (s) — 0 as s — oo with j fixed but Kxy(f)= 1 for feR",
so that {xz} is bounded but {Kxs} has no convergent subsequence.

The above example also illustrates that K is not necessarily compact, even if &

satisfies A and B. However, if k satisfies A and B, the integral operator IN( son C[0, f],
defined by

Kyp(s)= [ k(s, 0l (e)at, 0<s<p

is certainly compact and so (I—IZ/,)_1 eB(c[O,,B]) if I—Izﬂ is injective. But
observe that the integral equation (1.3) reduces to one on [0,5] so that / — K, and

I-K » are equivalent to the extent that they are injective and surjective together.

Thus
k satisfies A,B = {Kﬁ,} satisfies (2.4). 3.4)

In the following results H is the half-line integral operator with kernel h(s,t),
defined by (1.2) with K and k replaced by H and 4. The first theorem is an immediate
consequence of the observations made above (in particular (3.2), (3.3), and (3.4)),
Lemma 3.1, Theorem 2.3, and Corollary 2.4.

Theorem 3.3  Suppose that k£ and 4 satisfy A and B and that % satisfies in addition
D. Suppose that / — K — H is injective and that /- K, is injective and (I -K, )_l

uniformly bounded for all sufficiently large f. Then (I -K-H )71 eB(X ), -
K,-H ﬁ)_1 € B(X ) and is uniformly bounded for all sufficiently large f, and

-1 s -1
(1-k,-H,'—=>(i-k-H )"
The above result can certainly be applied if

||K|| = sselIl{Ii I:|k(s,t)dt <1

for then, by (3.1), KﬁHS||K||<1 and (I—Kﬁ)_leB(X),,b’eR+ with

i 1
H(J—Kﬁ)lusm.

This observation gives us
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Corollary 3.4 Suppose that k satisfies A and B with ||K || <1 , h satisfies A, B, and
D, and I—-K—H is injective. Then (I-K-H)' eB(X)(I-K,~H,)" e B(X)
and is uniformly bounded for all sufficiently large f , and (] -K,-H, )71 — (-
K—-H)™"

Applying Corollary 2.5 and Lemma 3.1 we obtain a slightly stronger conclusion
in the case K = Kz = 0.

Corollary 3.5 Suppose that % satisfies A, B, and D and that / — H is infective. Then
(I-H)" e B(x) (I -H, )_1 € B(X)and is uniformly bounded for all sufficiently

large f, (I -H, )7] — (I -H)" and H([ -H, )_l - (1 —H)_IH —0.
We can state this as a result about the solvability of equations (1.1) and (1.3).

Theorem 3.6 Suppose that & satisfies A, B, and D (which, by Lemma 3.2, is
certainly the case if K is compact), and that the homogeneous version of equation
(1.1) has only the trivial solution. Then equation (1.1) has a solution, x, for every
¥ € X and (1.3) a solution xg, for all sufficiently large 8. Moreover x, — x (i.e.

Xp (s) - x(s) uniformly on R").

We remark that the uniform convergence proved in Therorem 3.6 is at first sight

Slight surprising given that the result applies to cases whrn x,y, and Kx all fail to
be uniformly continuous.

4 The Finite Section Method in Weighted Spaces

We use the results of the previous section to investigate the solvability of the half-line
integral equation and its finite section approximation in the subspace Xp of X, where

X, &= {xeX: ||x||Hp = prxH<oo} , p=>0 and (1+|s|)p clearly, xe X,

p
If xis continuous and x(s)=0(s7),s— .
Note first that equation (1.1) is equivalent to the integral equation

x(p)(s)_k(p)x(p)(s): y(p)(s)’s eR", (4.1)

where x?) = WX, y(”) =w,y and K () is the half-line integral operator of the

form
(1.2) with kernel

k(")(s,t) = ks(p) (t):= (wp (s)/ w, (t))k(s, t). (4.2)

From this equivalence it is easy to see that
K" eB(X)= K eB(x,) (4.3)

I-KW injective on X<>/-K injective on X, <=/—K injective on X, (4.4)
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(1-K®)J" eB(X)e (1-K)" eB(X,) (4.5)

Further, ifK® eB(X)andK e B(X p),thenHK(p)H: ||K||and it (1-k®)"
B(X)and (1 -K)"' e B(Xp), then H(I - H H ‘ Thus for R'cR",
{1-xP)": per| bounded inB(X)

= {(1-K,)": feR} bounded inB(X, )
Consider first the case K(s,t) = k(s - t) with k eL,(R). A reasonably frequent
practical case is that in which

(4.6)

k(s.) ~as™,s — +o,

for some constants a > 0 and p > 1 (see the example in Section 7). It is easy to see
that a necessary condition for K € B(Xq) in this case is that p>q This motivates
the introduction of the following hypothesis which implies Assumption A:
A'.k(s,t] < |k(s—t], for all s,teR",where kel (R) and k(s)=0O(s?) as
S — +oo, for some ¢>1.

It is easy to see that, if k satisfies A and B, then k® satisfies B for p > 0. Further,
if k satisfies A', then, for some M, C > 0,

k(s,t) < [k(s-t),

< M(1+s-t)" s-t<c.
The next theorem (cf. [10, Theorem 4]) shows that A' and B are sufficient conditions
to ensure that K e B(Xq) for 0< p<q . In this theorem, and throughout the rest

of the section, we let, for o, £ 20,0+ > 1,

fafs):= f(1+t “(1+[s—t))” dt—LW:(S_t),SZO, (4.8)

(4.7)

and note that
F, =sup Iaﬁ (s)< oo (4.9)

$>0
and that, if , > 0,

fs(s)— 0,5 — +oo; (4.10)

See [10, Lemma 3].
Theorem 4.1 If k satisfies A' and B and 0 < p < q then k® satisfies A and B and

KeB(X ) K e(x)
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Proof In view of the above remarks and (4.3), it only remains to show that k™

satisfies A.
Note that Wp(s)/wp <1 for t>s2>0, while, forall s,t,eR,

w, (s, (1) = {lw}

1+ft|

< 2*’{1{' _ﬂ } 4.11)
1+ft|

Thus, if k satisfies A', then, for 0 <p<q and s>0,

j:\k“’)(s,t)dt\ < 2"]:{1 + (%Jp}‘k(s —t)dt + f|k(s —t)|‘dt

< 2[R+ ls—t) Pt e 20
and, using(4.7)
[ ee)e® (1 +fs =) "t < C"J.;|k(t)|dt+Mj:(1+t)p’q(l+|s—t|)_pdt
CPlkl, +MFy s

IN

Thus k™ satisfies A. o

Theorem 4.2 shows the much stronger result that K —k®) is compact for0< p<q
(cf. [10, Theorem 6]).
Theorem 4.2 If k satisfies A' and B and 0< p<(q then k — k®) satisfies A, B, and
C, so that K —K® is compact.
Proof We have that k —k® satisfies A and B from Theorem 4.1. It only remains
to show that k —k®) satisfies C.
From Assumption A', forall s, teR",

w, (s)
k(s,t)—k®(st) < [k(s —t)1 - —==. (4.12)
For all sufficiently large s > 1, from (4.7) and (4.11),
s-s/2 s | 2P 4] 2°
k(s,t)-kP(s,t)dt < M d
IO (st ( X '[0 {l+|$ t)’ (1+|s )" 1+t) }
p
—(2 qH)M (1+s%)_q +2°M ], (s) >0
as s = o by (4.10). Let
w, (s)) ( 1+5s j"
= 1-—= -1. 4.13
o= sup 1 ) s 1)
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Then, for s > 1, from (4.12),

[ k(s -k (s bt <c, (s)k], >0

$—§

as S — oo Finally, from (4.12) and since wp(t)z Wp(s),t >s,

Jo

as s — oo .Thus k —k® satisfies C. o
From the above theorem, the representation

| -K® =1 -K+K-K®,
(4.4), and the Fredholm alternative, it follows that ((1-K)"' eB(X)= (I -
K(p))’1 € B(X ),0 < p<qg. We have shown the following result:
Theorem 4.3  If k satisfies A' and B, 0<p<q, and (I - K)_l € B(X) then
(1-K®)" eB(X)and(1 -K)" eB(X,)

k(s,t)—kP(s, t)dt < jj/|k(—t)|dt >0

We now investigate further the case p = . We note first that the proof of Theorem
4.2 shows that

J,x
Define

— = [we(s=t)/w (tk(s,t), s>t >0,
o, t>s>0,

k(s,t)— k@ (s,t)dt — 0, s > on. (4.14)

(4.15)

and the half-line integral operator K, with kernel k by (1.2) with K, k replaced
by K , k Recalling that k satisfies (4.7) we see that, for f,520, writing S, =

[ﬁ’,oo)ﬁ [S —C,S],
Js

dt
(1+t)"

IN

oo < [ MO0

k(s,t)(dt

k(s—t)dt+Mm [

1+cY’ =t
{1+ﬁj K.+ Mjﬁ (1+t)°

so that k satisfies A and D. It is easy to see that k also satisfies B given that k
does.

We now show that K — K@ + K is compact so that, by Lemma 3.2, k —k@also
satisfies A, B, and D.

IN
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Lemma 4.4 If k satisfies A' and B then k—k® +k satisfies A, B, and C, so that
k—k@ +k compact.
Proof It follows from the above remarks and Theorem 4.1 that k —k@ +k satisfies

A and B. From (4.14) and since k satisfies D, to establish C we need only show
that

]

532
,(s):= L lk(s,t)dt — 0,5 — oo,

L) =]

Form (4.7), for all sufficiently large s,

k(s,t)—E(s,t)(dt 50,5 —> 0.

s—s% 1
1,(s)< Mjo (1+s,—t)“dt<ll(1+sé)1q —0
q_
as S— 0. Also,

LG6)=] |k(s,qwq(‘°"t)| ()

w, (t) ‘wq(s—t)

P w(s) | dt
<M, w,s=0) W)

dt

for all sufficiently large s by 4.7). Now, where Cy(S) is defined by (4.13),

4w, (s) dt _ Sdt
-[0 ‘Wq(s—t) w,(t) ol )IO (1+1)°

as S — oo. Further, from (4.11), for s, teR,

-1 -0

|Wq(5) ! <(2q+1)+ 20
wy(s=t) wy(t) " wy(t) w,(s-t)
so that
st%| Wy(s) | o <2(2% +1) St At
. ‘Wq(s_t) w, (t) (1)’

asS —> . Thus I5(Ss) > 0, S > .0

The following example shows that K is not necessarily compact, even if K is

compact. It thus follows, from the previous lemma, that K — K@ is not necessarily
compact.

Example 4.1 Forsome >1,r>0,ueR define

K(s.t)= expli(s® —ust +17)) .
(st (1+|s—t|)q(1+t)r ek
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Then

_ (.2 2 —r—q > >
k(s,t) _ exp(l(s ust +t )Xl + t) , 82120,
07 t>s2 0,
k satisfies A' and B, and k satisfies A, B, and D. K is compact only if u = 0 (cf.

Example 3.1). If » > 0 then £ satisfies C so that K is compact. If » =0 and u = 2
then £ is a convolution kernel and K a Wiener-Hopf operator.

Although K - K9 is not necessarily compact, k — K9 satisfies A, B, and D, as
does k - kP for 0 < p <g, by Theorem 4.3 and Lemma 3.2. Thus Theorem 3.3 is
applicable, and we obtain the following result which extends Theorem 4.3 to give a
criterion for the invertibility of 7/ - K on B(Xp) in the case p = ¢, and at the same
time considers the finite section method for solution of (1.1) in the weighted space
Xp.

Theorem 4.5 Suppose that k satisfies A' and B, that (/ - K)' € B(X) that
(I - K/;)'le B(X) and is uniformly bounded (in B(X)) for all sufficiently large
B, and that 0 < p < . Then (I — K”)'e B(X), (1-KY')" e B(X) and is
uniformly bounded for all sufficiently large £ > ,6’0,([ —K(ﬂ” ))71 EB(X , ), (I -K, )_1 €
B(X,) and is uniformly bounded (in B(X),)) for all sufficiently large f > S, and
-1 -1
(1-xP) ——(-x)".
We consider the implications of this result for the convergence of xz (defined by

(1.3)) to x (defined by (1.1)). Clearly, if the conditions of the theorem are satisfied
and y € X ,thenx,xs € Xp, for all sufficiently large . From the identity

X=Xp Z(I_Kﬁ>_l(K_Kﬁ)X’

it is easy to see that, for > f,
P

x—x, " <M |(K K,k
where Mp is a bound for {(I—Kﬁ )71 f = ﬂo}c B(Xp). Thus

Hx - xﬁHp <M, HK(”)Hsup‘wp (S)X(Sj .

Combining this inequality with the previous result we have

Corollary 4.6  Suppose that the conditions of the previous theorem are
satisfied and 0 < p" < p < g¢. Then equation (1.1) has a solution, xe Xp, for every yeXp,
and (1.3) a solution, x4 € Xp, for all sufficiently large B. Moreover, xg(s)— x(s)
uniformly on finite intervals of R” (uniformly on R" if p>0) and

s (1+s)p'(x(s)—xﬂ(s)]SCPﬂ”'_”.

seR*
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We will consider the application of Theorem 4.5 to a particular class of integral op-
erators in Section 6. We point out at this stage that it certainly applies (cf. Corollary
3.4)if

S

=sup, [ s, e <1. (4.16)

Corollary 4.7 Suppose that k satisfies A' and B and that (4.16) is satisfied. Then all
the conclusions of Theorem 4.5 apply. In particular, for 0 < p < ¢, (I - K)' € B(Xp)
and (7 - Kﬁ)-l € B(X,) and is uniformly bounded for all sufficiently large S.

5 Invertibility in Subspaces of Xp

We extend the results of the previous section on the invertibility of the operator
I - K on X or Xp to results on the invertibility of / - K on certain subspaces of

Xp, specifically X, :={x ex,:lim wp(s)x(s)exists}and X, ::{xeXﬁ, :
lim w, (s)x(s)=0}. For p > 0, X o and X , are closed subspaces of the Banach

s>+

§—>+00

space Xp. We will abbreviate X and X| as X° and X respectively, and, for x € X/,
let x(o0) = limy_.x(s).

Note first of all that, where X denotes X° and X » denotes X, , or X denotes X’

and )N(pdenotes X ]’J, (4.3)-(4.5) hold with Xp and X replaced by X » and X . That is,
where Ke B(X) and K% is defined by K"y = WpK(l///Wp ),l// eX,

K® eB(kj@KeB(i(pj, (5.1)
I— K injective on X & I-K injective on j(p <I—Kinjective on X, (5.2)
(1-x®)' e B()}j o (-K)' e B()Epj . (53)

We also have the following straightforward results:

Lemma 5.1 If K,HeBX,|H:X, »X,,(I-K)’ eB()Ep) ad (1-K-H)" e
B{Xp)then ([ -K-H)" ¢ B(X:pj .

Proof If yej(p and x : = (I—K—H)_ly then Hx+ye)~(p and x = (/ — K)" (Hx+
V) € 5(,;. o

Lemma 5.2 IfK (-K' e B(X,)and K (I-K)' € BX)) then K, (- K)"' «
B(X;) if and only if K(I/w),) € X;.

Proof In view of (5.1) and (5.3) and since K(1/w,) € X' ifand only if K'”1e X', it is

sufficient to consider the case p = 0 when w, = 1.
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The necessity of the condition K/ € X is obvious. To see the sufficiency, suppose
that K, (I - K)' € B(X), K, (I - K)'' € B(X°), and Kle X. Since X' < X, to
show that K, (I - K)' € B(X') we need only show that K, (/ - KX X.

For x € X', x - x:()l € X° so that Kx = K(x - x(0)l) + x(c0)KI € X'. Thus
K: X' — X and

Kx(0) = x(0)K1(0). (5.4)
Note that
Kl(0) %1 (5.5)

for otherwise (I - K)1 € X° which contradicts (7 - K)' € B(X°).

If yeX' then x:=(I-K)'yeX,y =y—(y(o)/(1-Kl(x))I -K)l e
X, x*:=(I-K)"'y*e X", and x = x* + (y()/(1 — K1(w))) le X" Thus
(I-K)': X' > X' and

(1-K)" y(w):ﬂ o (5.6)

For the remainder of this section let K, K¥ be the half-line integral operators,

with kernels £, k(p), defined in Section 4.
The next result is a criterion for the invertibility of 7 - K on X° and X. It also

relates, through (5.14), the rate of decay of (I - K)'y to that of y € X°.
Theorem 5.3 If k satisfies Assumptions A' and B then K € B(X) and Ke B(X°):
if also K1 € X then K € B(X). If k satisfies A' and B and (/ - K)” € B(X) then
(I - K)' e B(X°):ifalso KleX then (I - K)'eB(X).
Proof From Theorem 4.1, K € B(X). Also, if x € X° then, since k satisfies A,

|Kx(s) < j:|k(s—t] |x(t)dt

00

< |x J:/z k(s — t)dt + sup|x(z) I/2|k(s ~t)dt
< J'sz k() +320, () ]
-0

as s— . Thus K : K° — X° and K € B(X°). That Ke B(X) if Kle X’
follows as in the proof of Lemma 5.2.

Suppose that also (I - K)' e B(X). We shall show that (/ - K)"' : X° — X°,
From this it follows that (- K)' € B(X°), and that (I- K)' € BX) if K1 € X
from Lemma 5.2. To show that y € X° => (I - K)'y € X° we proceed by modifying
the argument of Theorems 4.2 and 4.3.
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Suppose that y €X’. Choose e in the range 0 < € < min{l/2, (¢ -1)/2} and
definev e C(R*) by

w(s) 1 = min ((1+s)€, ﬂj

so that v(s)—)oo as s —> o,

ls) < [/ v(s), 5.7

and v is monotonic increasing. Define w e C(R+)m C*(0,0) by

v(O), s=0,
w(s )—{

J‘ g,zv(t)dt, s >0,
s

and note that
1<0(s/2)< o(s)<o(s)<(@+s), seR™, (5.8)

sw(s) = (2v(s)-v(s/2)-w(s))/s = 0,

so that w is monotonic increasing. Note also that

and for s>0,

w'(s)/ o(s) < 2v(s)/ s =0(S€_1) (5.9

as s— 00,
Define X < X°by
X:.= {xeXO ||x w||

x(s)w(s] < oo} :

Then, from (5.7) and (5.8), ye X . We will show that ( - k)’ € B(X) so that

seR

xelX.
Let K be the half-line integral operator with kernel k(s )= (wls )/w( Mi(s,2).

Then (43) (4.5) hold Wlth K® and Xp replaced by K ad X Clearly k satisfies B,
andk satisfies A if k k satisfies C. Now

0
k

00
J‘Hsllz

K(s.6)— &(S,z)1dz <[ kls-1)

ws)
" (t) J‘dt (5.10)

and

k(s — t)|

wls)
0 1‘dx_jm| (~e)fdr -0 (5.11)
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as s— oo. For all sufficiently large s, from (4.7),

wls)

w(t)

1

l\dt <M W(S)J:_SA (1 +s - t|)7q dt

1/2

jo k(s —t)

< M w(s) J.Oloy (1+2)"dt

_ O( e—(1-g )/2)
(5.12)
as s — o, by (5.8). Let

and note that

s+s% !
'[ %W_(t)dtﬁzsl/z SUPIZW(S_'_t)/W(S_i_Z’) O(Se—l/z)

as s—w by (5.9), so that CP(S)=O(SE*”2) as s—oo. It follows that

s+s%

Joile

~1ldt< C,(s)k], >0 (5.13)

as s— .

We have shown, in (5.10)—(5.13), that /Ac—k satisfies C, and also l;satisﬁes A
and B Thus K € B(X) and K-K is compact. It follows from the representation
I - K =] - K + K - K (cf. Theorem 4.3) that (/ - K) €B(X) so that

A A

(I-K)”’ eB(Xj and x € (Xj . Thus x; € X°:in factx € (Xj implies rather more, that

x(s) =0ls <)+ 0(32,. () (5.14)
ass — 0. 0
Note that (see Section 3)

k satisfies A, B, C = K : X — X°and is compact. (5.15)
(In fact = can be replaced by < : see [4,22].) Combining this observation with the
above results we obtain the following extension of Theorem 4.1 to the subspaces X°

and X'. The half-line integral operator K is defined here as in Section 4 (see (4.15)).
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Theorem 5.4 If k satisfies A' and B then
iy For 0 <p < g, KeB (X°) and K?” e B(x°): if also K1 € X then Ke B(X'
p q 2 p

and K®' e B(X).
(i1)

KeB(X!')oK9eB(X')oK:X > X'and KI € X'

KeB(X")o KW eB(X' )oK X > x°
(iii) If K1 eX and either: (A) 0 <p < g; or (B) p = g and K:X —X°; then

(a) for allxe X', K”xe X' and
K(p)x(oo) = x(oo)Kl(oo); (5.16)

equivalently (b) for all x e X; , Kx e X; , and

Kx(s) = x(s)Kl(oo)+ o(s_p), 5§ —> o0, (5.17)
Proof We have already, from Theorem 4.1, that K (r) ¢ B(X ),OS p <q,and, from
Theorem 5.3, that K € B(X°), and K € B (X)) if KIeX'. It follows from the

representation KW =K+ (K(”) —K),Theorem 4.2, and (5.15), that K’ eB(X°)

for 0<p<g, and that K’ ¢ B(X)ifK1e X.
By Lemma 4.4 and (5.15) we have that

K9Y-K-K:X->X°. (5.18)
Thus, and from Theorem 5.3, it follows that K : X — X° implies that K @, x°—
X°, and that if K:X - X'andKleX then K9 : X' > x'.

Conversely, suppose that K @ . X 5 X where X denotes X° or X. To see that it

follows that K : X —> j( , note that we have shown before Lemma 4.4 that k satisfies

A, B, and D. Suppose that xe X and, for f > 1, define xze X° so that Hxﬁusnx”

and
x(S)’ N S IB - la
xﬁ(s): 0
, s> pf.
Then Xp — X, Kx, e X' c )N( for all p, since Ke B(X°) by Theorem 5.3, and thus

and by (5.18), Kx,=(K+K-K“),-Kx, X for all . Now, by
Lemma 3.1,xﬂ+v>xz>fxﬂ — Kx. It follows that Kx e )}since )} is a closed

subspace of X. Thus K¢ : 5(—>5(implies that K : X — X and hence, by (5.18),

Y X (4) 1
also that KX =X .1y particular, K" eB (X ) implies that K1 € X',
From (5.4), ifthe conditions of (iii) are satisfied so that, by (i) and (i), K¥'€
B(X),B(X°),B(X"), then K(Q)x(oo): x(oo)K(p)l(oo), for xe X' . Further, from
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the representation KP = (K® - K) + K and Theorem 4.2 if p < q, (5.18) if p = q,
K (P1(00) = K1(o0),
The remaining results of the theorem follow from (5.1). O

We can also extend the results of Theorems 4.3 and 4.5 in part to the subspaces
X°and X'.

Theorem 5.5 If k satisfies A’ and B and (I - K)"' € B(X) then
(i) For 0<p<q,(l-K")eB(X") and (1-K®)" eB(X?) : if also Kle X'
then (1 —K")e B(X ) and. (1 -K® )" e B(X")
i) If (1 =K " )e B(X ) then:

@ (1-K")eB(X!)and (1-K@)J" eB(X')if K:X > X' and KleX';

® (1-K")eB(X?)and (1-K@)" eB(X') if K:X —>X".
(i) If KleX' and cither: (A)0<p<gq;or (B) p=q,(1-K)" eB(X,) and
K:X — X° then

(a) forall y e X' ( )lyeX and
k@Y o) V() y(OO)
1=Ky =i (5.19)
equivalently (b)forall ye X ,(1-K)"'ye X, and
(1-K)"y(s)= LS)+o(s‘p)s, o, (5.20)

1-K1(e0)
Proof That (I -K™)eB(X?
Theorem 4.3, on noting, from (5.15), that KP - K is compact as an operator on X°

as well as on X. That (I - K)_1 IS X:) if Kle X' then follows from Theorems
4.3 and Lemma 5.2.

If (1I-K")eB(X,) and, K:X > X° then (1-K@)" eB(X) and, form
(5.18), it follows that K@ =K : X — X°. Now, by Theorem 53, (I-K)" e B(X").
It follows that (I - K(q))_1 = (I -K —(K(Q) - K)) € B(X ) from Lemma 5.1.

By a similar argument we establish that (I —K(q))_1 € B(X') in part (ii)(a),
noting that if also Kle X' then, from Theorem 5.3, K,(1-K)" e B(X') The

remaining results of (i) and (ii) follow from (5.3).
The conditions of part (iii) ensure that (I - _l)e B( l B( g), B(X L) and

also, from (5.16), that K (p)l(oo) = Kl(oo). Equation (5.19) then follows from (5.6).
]

) if 0<p<q, follows from the same argument as

The above result is of interest in that it shows, in part (iii), that if Kle X'
and y(s) ~ as®, s — w0 and (a # 0), and either: (A) 0< p<gq; or(B) p=g,
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(I —K"l)e B(Xq) and, K:X —> X; then, to leading order, the asymptotic
behaviour of (I — K)_1 y at infinity depends only on that of y. This leading order
asymptotic behaviour is given explicitly by (5.20). If p =g, (I1-K™)eB(X,),
K:X = X' but, KX & X°, then it is easy to see that (5.20) is replaced by
y(s)+ S_qR(Wq X Jo)
X(s)=
1-K1((w0))

where X := (I - K)_1 y.In this case the leading order behaviour of x at infinity is no

+0(s7) s = +o0, (5.21)

longer determined by that of y, but depends on the global values of y on the half-line.
We illustrate the results of this section by a theorem which will find application
in Section 6. We introduce the following stronger version of Assumption A'.

A".|k(s,t)|£|k(s—t), for all s,t €R", where kelLy(R) and k(s)=0(s™%) as
s — +oo, for some q>1.

Lemma 5.6 Suppose that k satisfies A”.and B. Then, for 0<p<q,k—k® satisfies
A, B, and C.

Proof From Theorems 4.1 and 4.2, k —k® satisfies A and B for 0< p<q and C
for 0 < p<q. To see that C is satisfied also for p = g, note (4.14) and that k satisfies

a stronger version of (4.7) with M replaced by M r(s - t), for some r e X° (and,
further, we may choose r to be monotonic decreasing with r(0) = 1). Making this
replacement in the proof of Theorem 4.2 we see that,

jH%‘k(S.t)— k@ (s,t)dt <£2qq—+_11M(1 s ) 2 M () £, () >

0

as S — oo by (4.9) and since re X°. o

Theorem 5.7 Suppose that, for some a e C (the set of complex numbers), k(s,t) =
a(l+|s—t|)_q +k*(s,t), where k* satisfies A" and B. Define k by (4.15) and let

K* denote the half-line integral operator with kernel k*. Then K and K-K,
0< p<g,are compact operators. Moreover, if K*1e X', then Ke B(XL)
0<p<q. If also (I-K)" eB(X) then (1-K)" eB(X') 0<p<gq. and, for
yeX,,
(5.20) for 0<p<q and, for p =, by

y(s)+as™ [ x(t)dt
X(S) - 1- Kl(oo)

the asymptotic behaviour of x(s) : = (I - K)_1 y(s) as S— oo 1S given by

+0(s™ ) 's > +oo. (5.22)

Proof To show that K and K —K® are compact operators we consider first the
two particular cases a = 0 and k* = 0.
In the first case (a = 0) it follows from Lemma 5.6, (5.15), and Lemma 4.4 that

K, K=K®™: X — X° and are compact.
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In the case k* = 0, K-K® :X - X° and is compact by Theorem 4.2 for
0< p<q Further, K =K, + K> where K; and K, have kernels K (s,t):= a(l+t)®

and
0, s>t>0,

a(l+t)", t>s>0.

Ez(s,t)z{

It is easy to see that Kk, satisfies A, B, and C, so that K. is compact. Also, Ki:X >
X', and is compact since it has a one-dimensional range. Thus, and by (5.15) and

Lemma 4.4, K and K—K@: X — X" and are compact. Further,

Kis)=a[ (1+]s-t) dt—>af "(1+f) ot
as s — oo,
From these particular cases it follows that K and K-K® o< p < qare compact

in the general case and that K:X — X' with

Kx(0) I t)(1+t)"dt,xe X .

Moreover, if K¥1e X" then Kle X', and, by Theorem 5.4 (i) and (ii), K € B(X L),
0<p<qlIf also(l—K)"eB(X) then, by Theorem 43, (I-K)'eB(X,)

0< p<g,and, since K- K@ is compact, (I—K)f1 € B(Xq) by the same argument.

The remaining results then follow from Theorem 5.5(i), (ii)(a), and (iii)(b), and from
(5.21). o

6 Wiener-Hopf and Related Operators

We apply the results obtained so far to the case when the integral operator K, defined
by (1.2), is a perturbation of a Wiener-Hopf operator. Precisely, suppose that
E.

k(s,t)=k(s—t)+h(s,t)steR", (6.1)
where k € L,(R) and h satisfies A, B, and D.

We write K = K + H in this case, where K, is the Wiener-Hopf operator, defined by
(1.5), and H is a half-line integral operator of the form (1.2) with kernel h. Note
that, from Example 3.1, the perturbation H is not necessarily compact, and that the
kernel k(s -t), with k e L, (R) satisfies A and B [4].

It is well known that the spectrum of the Wiener-Hopf operator K, can be char-
acterised in terms of the Fourier transform of k. Let

2):=1-["k(sk"ds, 2 R,
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and, in the case ¢(1)= 0,1 R , define the integer, wind (), to be the winding
number

L largg(a)}

27

wind(¢)
Then[19)7 - K )" B(X)if and only if
#(1)# 0,1 eR, wind(s)=0 (6.2)

Ansglone and Sloan [4] have proved the uniform boundedness of (I -K, )‘1 in the
case k(st)=k(s,)+h(s,t)+1(z), , with keL(R)/eL(R"), ad h satisfying
A, B, and C, under conditions which imply (6.2). K is a compact perturbation of K
in this case. For the particular case k(s,z) = k(s - t) they show the following result
in[6]:

Theorem 6.1 Condition (6.2) is satisfied if and only if (7 - K, )" € B(X) andiis
uniformly bounded for al sufficiently large .

Combining Theorems 6.1 and 3.3 we have the following generalisation of the results

of Anselone and Sloan [4]:

Theorem 6.2 Suppose that & satisfies condition E, that (6.2) is satisfied, and that
I - K is injective. Then (I-K)* eB(X),(I—Kﬁ)_l e B(X) and is uniformly

bounded for all sufficiently large 8, and (1 — K, )" ——(1 - K)™.

We now study the uniform boundedness of (7 - Kp)™ in the weighted spaces, Xp,
of Section 4, and define k¥ (by (4.2)) and k) as before. Combining Theorems 4.5
and 6.2 we have:

Theorem 6.3 Suppose that & satisfies A" and E, that (6.2) is satisfied,that0< p <gq.
and that the homogeneous version of equation (1.1), x = Kx, has only the trivia

solution in X. Then (I-k")"eB(x)(1-K% )" eB(X) and is uniformly
bounded for al sufficiently large A= f,,(1-K)" e B(x,)(-&,)" (x,)

and is uniformly bounded (inB(x,)) for g> 4, ad (I —Ké"))—l—s>(l —K("))_l
We remark that Theorem 6.3 remains true under the weaker condition that x= Kx
have only the trivial solution in Xp. To see this note that the argument leading up
to and including Lemma 4.4 shows that if £ satisfies A' and B and 0< p <gq. then
k —k¥) satisfies A, B, and D. Thus, if k satisfies A' and E and 0< p <g¢. then
k¥ also satisfies E, and can be written in the same form (6.1) as &, and with the
same Wiener-Hopf kernel k(s - 7). Thus Theorem 6.2 can be applied to k¥’ to give
Theorem 6.3 but under the weaker condition that 7 — K*) beinjective.
Combining Corollary 4.6 and Theorem 6.2 we have:

Corollary 6.4 Suppose that the conditions of Theorem 6.3 are satisfied and 0<
P <p<q. Then, where x and x; are the solutions of equations (1.1) and (1.3),
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respectively, xﬁ(s)—> x(s) uniformly on finite intervals of R* (uniformly on R* if
p > 0) and, for all sufficiently large p,

(1+s) ( (s)—xﬂ(s)] < Cp,ﬂ”””.

sup

It is interesting to compare the above to previous results obtained by Silbermann
[21] (or see [20]), who proves that, for g >0, (I -K ﬂ>_1 eB(X q) and is uniformly

boundedfor all sufficiently large P, provided that (] -K, )—1 c B( X, ) k(s,1) =
k(s — 1)+ h(s,z),
[+ ) refte < o, 6.3)

and

h(")(s,t): (wq (s) w, (t)h(s,t)) satisfies A.B, and C. (6.4)

We note that the condition (6.3) on the convolution kernel k(s—¢) is, in most cases
of practical application, a stronger requirement than Assumption A’. In particular,
A’ imposes no requirement on k(s) for s < 0 (beyond that k€ L (R)) and, in the

case which most frequently arises, that |k(s)~a|s|ﬁp,s—>oo for some constants
a and p > 1, k(s - ¢) satisfies A" if p>g¢g but (6.3) only if p>g+1. As previously
noted, 4" is a necessary and sufficient condition for K e B(X q) in this case.

For more general kernels we point out that A’ is a natural condition in many
practical cases (e.g. [10, Section 3]). However, A(s,f) may satisfy (6.4) but not
Assumption A’ as the following example shows.

Example 6.1 Choose a,b,c> 0 with @ + ¢- 1 > b > 1 and define

h(s,t) (1+|S t|) 1+ “(1+5)",s,teR".
Then
h(")(s,t) (1+|s—t|) L+ (1+s)"

< (1+]s =) (1 +e)
Since {l+#/1+s}” <l+[s—t Thus

j:h()stdmj )

defined by (4.8), and, from (4.9) and (4.10), 4% satisfies A, B, and C for 0<¢ <.
c+b+a—-1. However,

h(2t)=(1+¢) (14 2e) " ~27
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ast — « , sothat h does not satisfy A’ forqg>a +c.

We can include in our results perturbations satisfying (6.4) by combining Theo-
rems 3.3 and 6.3 to obtain

Corollary 6.5 The conclusons of Theorem 6.3 apply if the conditions of Theorem
6.3 hold but with "k satisfiesA’and E" replaced by "k = ki + k, where k; satisfies
A’ and Eand K (s,t):= (w, (s)/wp(t)K, (s,t) satisfies A, B, and C"

We now consider the application of the results of Section 5. Throughout the rest
of the section K, as before, is the haf-line integrd operator with kernd K defined by
(4.15).

Recall that, if k satisfies E, then k(s, t) = k(s - t) + h(s,t) with k e L,(R) and h
satisfying A, B, and D. If also k satisfies A" then |h(s,t] <|k*(s—t),s,teR" for

somek* e L,(R). Thus, and since h satisfies D,

[ [h(s t)t < j;/2|k* (s.t)dt + [ |n(s.t)dt — 0,5 — o0,
i.,e. h satisfies C. Thus, if k satisfies A’ and EKleX! with

K1(o)= [ k().
We obtain the following theorem by a straightforward combination of Theorems
5.4,5.5,and 6.3.

Theorem 6.6 Suppose that k satisfies A’ and E, that (6.2) is satisfied, and that
the homogeneous version of equation (1.1), x=KXx, has only the trivial solution

in X. Then, where X denotes X° and Xp denotes X°,or X denotes X' and X D

denotes X!, it follows that K®),(1 —=K’*)" e B(X )andK,(1 -K)*eB(X,) for

p’
0<p<q; andasoforp=qif K:X —> X For ye X; the asymptotic behaviour
of x:=(1-K)™'y at infinity is given by (5.20) for 0< p<q and, if K:X — X',
by (5.21) for p = g, with K1(e0) = J‘jwk(t)dt

Speciaising further to the pure Wiener-Hopf case, we can make the following
application of Theorem 5.7:

Theorem 6.7 Suppose that k(s,t)=k(s—t),s,teR" withk e L,(R)), and that
k(s)=as™ +0[sJass — +wo, for some constants acCand q >1. ThenK e
B(X,)B(X! )foro< p<q. If dso (6.2) is satisfied then (I-K)™"eB(X,).B(X")
for0<p<q. For ye X} the asymptotic behaviour of x:=(1 —-K)™y at infinity is
given by (5.20) for 0 < p < q and by (1.6) for p=q

p
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7 An Application in Acoustics

Consider the following boundary value problem for the Helmholtz equation in the
half-planeR? = {(s,t):s,t e R, t > 0} :

Au+u=F, inR?,

@Haazo, on R =0R?, (7.1)
on

u satisfies the Sommerfield radiation condition.

In (7.1), the functions o € L., (R) and F are supposed given, with Fe L,(R?
compactly supported. The function a is defined by

a,, $<0,
a(S) :{ (7.2)

a,, $<0,

Where a,,a, € C with .Re o, ,Rea, > 0.

The above boundary value problem has been used, for example, as a model of
sound propagation from road traffic over flat ground, the ground plane consisting of
two half-planes, one of relative surface admittance «,, the other of admittance o, (see
[14,12,16,15]).

Introducing the Green's function Gy (r,1), which satisfies (7.1) with F(r) =
d(r-1p), and os)=a, s € R the boundary value problem can be reformulated,
via Green's theorem, as a boundary integral equation for X, the restriction of U to the
half-line {(s,0) : s > 0}. Identifying this half-line with R", we can write the integral
equation as

x(s) = y(s)+i(a;, —a, )J:O Ou(s—tx(t)dt, seR". (7.3)

In equation (7.3), g, and y are defined by
Ju () =G ((£0),(0,0)),  teR, (7.4)
y(t) = J.R2 G, ((£,0), r)F(r)dA(r ), teR (7.5)

For Re o > 0, r=(s,0) € 0RZ, and 1o=(So,to) eR_f, the Green's function G, is

given explicitly by [12]

i
Gt =~ LB =507+ PuGs=50,t0) (7.6)

where Hf)l) is the Hankel function of the first kind of order zero and P, is defined by

d\A seR, teR", (7.7)

io J-+w exp(i(t(1—2A%)"* —skh)

P“(s’t) ::% o (1_)\{2)1/2((1_;\12)1/2 +a



Integral equations on the half-line 27

With 0 < arg{(1-A%)"*} <m/2.
Equation (7.3), an equation of Wiener-Hopf type, is identical to equation (1.1) if
we define

K(s,t):=k(s-t):=i(0t;-02)Fq1(s-t), s,t €R". (7.8)

It is shown in [13] that From P, € C” (R_i \{(0,00}) N C(R_i). From [9, equations
(2.1.87), (2.1.91), and (2.1.92)], it follows that

G801 = - {ai —“—°}ei<“°“/4>s” +0(s™), (79)

T 20

as s — + oo, uniformly in 1o = (s¢, t9) € D, where D is any bounded subset of R__2F .

Using these properties and certain standard properties of the Hankel function [1], it
follows that y € X, but y¢ X, for p>3/2, in general. Further, k € L,(R),

k(S)NL(ujei(ﬁnM)S%Q, $ —> +00, (710)

Var\ of

(0%

and, from [10], the Fourier transform of £ is

o — 0,

V=22 0,

so that @A) :=1- k(= (V1 =17 + a,)(V1- A% + a,) and (6.2) is satisfied.

Let y, be the finite section approximation to x, which satisfies

k(1) = (7.11)

X4(s)=y(s)+i(oy —az)'[oﬁgal(s—t)xﬁ(t)dt, seR". (7.12)

Applying Theorems 6.3 and 6.4 we have the following result:

Theorem 7.1 Equation (7.3) has precisely one bounded continuous solution x, and
this solution satisfies x(s) = O (s°%), s — + oo. For all sufficiently large f, (7.12)
has precisely one bounded continuous solution x3 and xs converges uniformly to x
as f— oo and satisfies xz (s) = O(s*?) as s — + oo , uniformly in S. Further, for
0 < p< 3/2, the error x — x5 can be bounded by

sup | (1+5)7 (x(s)—x4(s)|<C, B77".

seR

We now apply Theorem 5.7 to obtain more precise information about the asymp-
totic behaviour of x at infinity. Define X ,Ye€ X by
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Then (7.3) is equivalent to

X(s)=(s) + j: ¥ (s—0)X(t)dt, seR", (7.13)

where

k(s):=e"k(s), s €R.

From (7.5) and (7.9) it is easy to see that Y€ X}, : in fact

7171'714
w(s )— T IRz {(7,2 o } —zsoF(so,t ) ds,dt, e“s?4+0 (s7),

1 1

5 — +o0, (7.14)

Further, from (7.10),

k(s)~as™?, s > +0, a = L[al _%] e™. (7.15)

2n Otlz

Now the Fourier transform of & is 7c(k)=/l\c(7»—1),keR, so that (6.2) is still

satisfied by % . Thus Theorem 6.7 can be applied to obtain (on noting (6.4) and
A

that[*2 % (t)dt =k (0) = k(~1))

Corollary 7.2 The asymptotic behaviour at infinity of the solution of equation
(7.13) is given by

x(s)— y(s)+—aj Xo)dt s +0(s7?), s > + o0, (7.16)

so that

x(s) = p(s)+ S [ x@e™de e"s™ +0(s7%) , s >+ (7.17)
a, a,

We point out that the precise information on asymptotic behaviour of x(s) at
infinity that this corollary provides is a distinct improvement on what can be obtained
using previous results for integral equations on the half-line. Applying the results of
Chandler-Wilde [10] we obtain only that x(s) = O(s”), s —> oo, for all p < 3/2,
and, from the results of Prossdorf and Silbermann [20,21], only that x(s) = O(s?),
s— oo, for p < 1/2.
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