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Abstract 

Migraine is a common neurological disorder, affecting approximately 12 % of the Australian 

Caucasian population. It is ranked as one of the top twenty most debilitating disorders in 

developed countries by the World Health Organisation (WHO). This common neurological 

disease poses a significant personal and economic burden, with the cost of absenteeism from 

the work place far exceeding the cost of effective treatment. Current therapies are only 

effective for a proportion of sufferers and new therapeutic targets are desperately needed to 

alleviate this burden. Genetic studies aim to identify regions of susceptibility in the human 

genome and reveal new targets for therapeutic interventions. 

 

Genes involved in neurological, vascular or hormonal pathways have all been implicated in 

predisposition towards developing migraine. Given the clear gender bias of migraine with a 

2:1 ratio of affected females compared to males, X-linked and/or mitochondrial inheritance 

could be involved. Furthermore, given the role of mitochondria in a number of neurological 

disorders and in energy production it is possible that mitochondrial variants may play a role in 

the pathogenesis of this disease. Few variants in the mitochondrial genome have so far been 

investigated in migraine and this is the first comprehensive molecular genetic study aimed 

towards investigating the role of mtDNA in this common disorder.  

 

The aim of this study was to investigate the role of mitochondrial dysfunction in relation to 

migraine susceptibility by using samples and technology available within the Genomic 

Research Centre (GRC) located within the Institute for Health and biomedical Innovation 

(IHBI), Queensland University of Technology (QUT). It was the aim of this study to 

investigate both mitochondrial variants and nuclear encoded variants affecting mitochondrial 
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function, thereby comprehensively addressing genetic variance which influences 

mitochondrial dysfunction. The specific aims of this study included investigation of full 

mitochondrial genome sequences in the genetically isolated Norfolk Island population, 

investigation of Nuclear Encoded Mitochondrial Proteins (NEMPs) in the Norfolk Island 

population and replication of significant findings in large Australian Caucasian migraine 

case-control populations. Techniques utilised to achieve these aims included full 

mitochondrial genome sequencing using the latest next generation sequencing technologies 

and genotyping selected variants using the high throughput Sequenom platform. In addition to 

these main aims, the study aimed to define mitochondrial haplogroups of those individuals 

that underwent sequencing and to interpret these findings in relation to human migration as 

well as disease burden. 

 

Norfolk Island is a genetically isolated population situated off the East coast of Australia and 

is useful for studying complex disease due to the reduced genetic and environmental 

heterogeneity. Samples from this population were selected from the most related individuals, 

coalescing back to the original founders for full mitochondrial genome sequencing on the Ion 

Torrent platform. Initially a pilot project was undertaken to develop a cost effective method 

for sequencing and to prove the feasibility of the experiment. Following on from this proof of 

concept, the main project involving 315 Norfolk Island individuals was undertaken. 

 

In the pilot project mt sequence variation was identified in 48 NI individuals and found to 

differ from the Reconstructed Sapiens Reference Sequence (RSRS) at 296 variable sites. Of 

these variant sites, 29 variants were common in the 48 NI individuals (>5 %). Many of these 

common variants are the defining markers of mitochondrial haplogroup B, and its further 

substructure (haplotypes) such as B4a1a1, to which Polynesians belong. There were 136 
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singleton variants identified and a further 160 variants were shared by two or more 

individuals. Variants found in 3 or less samples (less than 5 % of the co-hort) were defined as 

rare variants and 51.2 % of the variants identified within migraine samples were found to be 

rare compared to 45.8 % in the control group.  

 

High quality sequence information was generated at a sufficient depth of coverage to detect 

heteroplasmic variants up to a 10 % threshold based on the calculations that sequencing the 

19 kb mitochondrial genome at a minimum of 100 x coverage would be achievable by 

multiplexing 6 samples on a 314 chip. The manufacturers’ specifications (10 Mb per 314 

chip) were far exceeded and on average between 250-550 x coverage of the entire 

mitochondrial genome was obtained for each of the 48 samples. After the initial pilot project 

48 samples were plexed on 316 chips in order to achieve high throughput sequencing with 

maximum coverage obtained in excess of 10 000 x. 

 

Importantly, preliminary data identified 6 novel (undocumented) mtDNA variants in the NI 

sample. An extended database search of mtDB (34) and Mitomap (35) for these variants 

returned no hits, thus these positions are deemed to be novel. Interestingly, 5 out of 6 of the 

novel variants were found in individuals who are migraine sufferers.  Also of note, the 

majority of rare variants found only in migraine sufferers are clustered in the genes encoding 

for the ATPase8 protein and the NADH dehydrogenase subunits, which are core components 

of the oxidative phosphorylation pathway and essential for the production of ATP. These may 

well be of functional importance to migraine pathophysiology. 

The main part of the study which involved full mitochondrial genome sequencing in n=315 

individuals from the Norfolk Island population identified 3 homoplasmic and 11 
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heteroplasmic variants to be significantly associated with migraine susceptibility. Logistic 

regression analysis showed that mt 930 G>A located within the 12S rRNA subunit is 

significantly associated with migraine. A Fisher’s exact test identified two rare variants 

associated with migraine susceptibility. We hypothesize that mt 6480 G>A situated within the 

COX1 gene presents genetic evidence that there could be a shared pathogenic mechanism 

involved in common migraine and stroke. This is the first genetic evidence corresponding to 

documented biochemical evidence showing a link between NADH dehydrogenase and 

migraine. NADH reductase deficiency has been successfully treated with riboflavin and this 

presents a new therapeutic avenue. Interestingly based on the available data it appears that 

heteroplasmic variants which may be acquired during the lifetime may play a more significant 

role than inherited homoplasmic variants and this idea needs to be explored further. 

 

The three SNPs found to be significantly associated with migraine in the Norfolk Island 

population were investigated in a replication study as specified by the aims of the project to 

replicate significant findings. The mt 11930 A>G variant was not detected in any of the 

Australian outbred samples, suggesting that this novel variant is Norfolk specific. The other 

two SNPs identified to be significantly associated with migraine in Norfolk Island, mt 930 

G>A and mt 6480 G>A were detected in very few case-control samples and were not found to 

be significantly associated with migraine, again suggesting that these variants are specific to 

Norfolk Island and do not play an important role in the Australian Caucasian population. 

However this study has still identified key mitochondrial regions that should be investigated 

further as other variants in these regions could play a role in migraine pathogenesis in the 

Australian population. It has also provided conclusive evidence for the first time that 

mitochondrial variation is linked to migraine susceptibility. 
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The majority of proteins involved in mitochondrial function are encoded by nuclear DNA and 

imported into the matrix. In order to comprehensively investigate the role of mitochondrial 

dysfunction in relation to migraine susceptibility, nuclear encoded mitochondrial protein 

(NEMP) gene variants needed to be tested for association with migraine susceptibility in 

addition to mitochondrial encoded variants. In the discovery phase 16820 SNPs in 315 

individuals from the large multigenerational pedigree from NI were tested and it was found 

that 667 NEMP SNPs were significantly associated with migraine. Of these, 21 SNPs 

significantly associated with migraine with p<0.0001 were selected for replication in a large 

outbred migraine case-control cohort (544 cases, 584 controls). Replication analysis 

identified 9 SNPs to be significantly associated with migraine located in the genes ELOVL6 

(p=2.55E-05), SARDH (p=0.000248), CSNK1G3 (p=0.007141) and PCDHG (p=0.008661).  

 

Interestingly, four variants out of the 9 were found to be located within the PCDHG cluster, 

providing further evidence implicating this locus in migraine susceptibility. Variants within 

the large PDHG gene region could alter the way in which connections are established and 

maintained in the brain, making an individual more susceptible towards developing 

migraines. An association with multiple variants within this region strengthens the evidence 

that this gene cluster is a key component in migraine pathogenesis. Haplotype analysis 

showed some level of LD between these variants and a strong association between haplotypes 

containing these variants and migraine susceptibility. Given the discovery of this gene cluster 

being involved in migraine susceptibility in the genetically isolated Norfolk Island population 

and the very clear replication in a large outbred population, this gene should be investigated 

further in great detail. Variants playing a key role in MA were also identified in the NEMP 

genes ELOVL6, SARDH, and CSNK1G3.  
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In line with the project aims, haplogroups were defined in all individuals that underwent 

mitochondrial genome sequencing. Mainly Polynesian and European haplogroups were 

identified, confirming historical accounts which detail maternal Polynesian and paternal 

European population origins. Of further interest was the discovery that haplogroup K 

significantly increases an individual’s risk of developing migraine. This finding supports the 

theory of adaptation according to geographical region and temperature zones where specific 

mitochondrial changes alter an individual’s vulnerability to energy reliant processes.  

 

Through full mitochondrial genome sequencing on the Ion Torrent platform we identified 3 

homoplasmic and 11 heteroplasmic variants to be significantly associated with migraine 

susceptibility in the Norfolk Island population. Haplogroup K was also found to be associated 

with migraine in the Norfolk Island pedigree. We further investigated NEMPs as specified by 

our aims and found the PCDHG gene region to play a particularly important role in migraine 

pathogenesis. All of the aims set out by this project were achieved and new avenues of 

research to pursue in future studies were identified. It would be valuable to further investigate 

full mitochondrial genome information in an Australian outbred Caucasian population, 

specifically with regard to heteroplasmic variants. It would also be useful to further explore 

the role of NEMPs in migraine through deep sequencing, genotyping and gene expression 

studies in case-control populations, the Norfolk Island pedigree and migraine family samples. 
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Chapter 1:  Introduction 

The first sections of this chapter outline the background and context of the research, and its 

purposes. The next section describes the significance and scope of the research. Finally, the 

last section includes an outline of the remaining chapters of the thesis. 

Aims and Significance 

Migraine is a common neurological disorder characterised by debilitating head pain and an 

assortment of additional symptoms which can include nausea, emesis, photophobia, 

phonophobia and occasionally visual sensory disturbances.  Migraine is a complex disease 

caused by interplay between predisposing genetic variants and environmental factors. Genes 

involved in neurological, vascular or hormonal pathways have all been implicated to play a 

role in predisposition towards developing migraine. All of these are nuclear encoded genes, 

but given the role of mitochondria in a number of neurological disorders and in energy 

production it is possible that mitochondrial variants may play a role in the pathogenesis of 

this disease. Few variants in the mitochondrial genome have so far been investigated in 

migraine and this is the first study to comprehensively asses the molecular genetic role of 

mitochondrial dysfunction in relation to migraine susceptibility. 

 

This study hypothesises that development of migraine is influenced by mitochondrial 

dysfunction. The aim of this project was to conduct a complete mitochondrial genome scan 

to:  
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•  identify the full spectrum of mtDNA variation in a selection of the  Norfolk Island 

pedigree  

• determine whether the variants are associated with risk of migraine and  

• whether these mtDNA variants or mitochondrial influencing variants from nuclear 

encoded genes modify migraine risk associated with key environmental factors. 

Rationale, Hypotheses and Objectives 

This study was aimed at identifying variants in the mitochondrial genome which contribute 

towards migraine susceptibility. Subsequent to conducting full mitochondrial genome 

sequencing utilising Next Generation Sequencing (NGS) technology to identify these 

variants, this project aimed to examine nuclear encoding genes involved in mitochondrial 

pathways which modify migraine risk. To date a number of variants within the broad 

categories of neural, vascular and hormonal class genes have been identified to play a role in 

predisposing individuals towards developing migraine. Given the role of mitochondria in a 

number of neurological disorders and in energy production, mitochondrial dysfunction may 

lower the threshold for migraine attacks through insufficient adenosine triphosphate (ATP) 

production which is critical for correct neural functioning. Mitochondrial dysfunction in 

relation to migraine has only been previously researched in a limited number of small studies 

and remains a largely unpursued area.  

 

While a proportion of variants attributing to the heritability of migraine have been accounted 

for, common variants with large effect sizes have yet to be identified necessitating novel 

approaches to understand the genetic causes of migraine. The role of rare genetic variants in 

familial migraine is becoming increasingly apparent given the results of recent Genome-Wide 
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Association Studies (GWAS) and candidate gene studies that have thus far had limited power 

to detect variants which play a significant role in common migraine. This suggests that the 

missing heritability in migraine is in part contributed to by rare variants. Families with 

multiple affected individuals are likely to be enriched for rare genetic variants that contribute 

to disease and therefore provide an ideal avenue for their discovery. Genetically isolated 

populations, such as the Norfolk Island (NI) population are also a valuable resource for 

discovering variants which contribute towards complex disease susceptibility. Heritability for 

migraine has been shown to be significantly higher in the Norfolk Island population than in 

the local outbred Australian Caucasian population, making genetic studies utilising the 

Norfolk DNA stocks valuable in identification of disease causative variants.  The reduction in 

phenotypic and genetic diversity observed in migraine as a result of geographic isolation 

reduces the heterogeneity of this complex disorder and increases the likelihood of identifying 

true susceptibility variants.  

 

This project provided complete mitochondrial genome sequence information for a selection 

of the Norfolk Island Core pedigree. The Norfolk Core pedigree consists of the most related 

individuals which coalesce back to the original founders. Ultimately this allowed 

identification of genetic variants contributing to disease within Norfolk Island and migraine 

families which will subsequently provide insight into the molecular pathology of migraine. 

Current therapeutics are only effective for a proportion of sufferers, making the identification 

of novel therapeutic targets of paramount importance. 

 

Hypothesis  

The pathophysiology of migraine is influenced by mitochondrial dysfunction. 
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Specific Objectives: 

a) Obtain entire mitochondrial genome sequence information from selected samples using the 

Ion Torrent platform. 

b) Align the mtDNA sequence information with independent worldwide samples to identify 

unique variants and determine frequencies of known variants as well as phylogenetic 

haplogroups. 

c) Align sequence information with previously obtained data from the genetically isolated 

Norfolk Island population and identify regions of similarity. 

d) Collect genotype data from nuclear encoded mitochondrial influencing genes. 

e) Statistically model the association of mtDNA variants and haplogroups with heritable 

migraine traits.  

f) Statistically model the effects of key environmental factors on mtDNA and ancestry 

associations. 

g) Perform validation studies in independent cohorts. 

 

Study Subjects:  

For this study the mtDNA of the Norfolk Island pedigree samples was sequenced and case-

control cohorts already available at the Genomics Research Centre (GRC) were used for 

validation. These subjects were selected on the basis of being affected with migraine and 

were all diagnosed according to International Headache Society criteria [1].  Medical 

information and informed consent as well as ethical approval was obtained for all patient 

samples. 
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Mitochondrial Genome Sequencing:  

The Ion Torrent platform available in the GRC was used to perform full mitochondrial 

sequencing for all samples. The Sequenom instrument was used for collection of genotype 

data from nuclear encoding genes which influence mitochondrial function. 

 

Statistical Analysis:  

Statistical modelling of the association of mitochondrial variants, ancestry and environmental 

variables with heritable migraine traits was performed using linkage-based multivariate 

regression methods. Plink version 1.07 was  the main statistical tool used. 

 

Expected Outcomes 

This study will contribute to current knowledge about migraine pathogenesis and identify 

genetic variants which affect the risk of developing migraine. New information identifying 

novel genomic regions involved in the pathogenesis of this disease may also lead to drug 

targets and the potential for new treatments. 

 

BACKGROUND 

Migraine is a common neurological disorder characterised by severe head pain and an 

assortment of additional symptoms which can include nausea, photophobia, phonophobia and 

for some subtypes of migraine additional neurological symptoms. Migraine is classified 

according to the International Headache Society into two broad categories namely migraine 

without aura (MO) and migraine with aura (MA) [2, 3]. Most patients suffer from MO, with 

only 20 % of sufferers experiencing an aura before the onset of a migraine attack. 

Approximately 12 % of the Caucasian population suffers from this debilitating disease with 
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almost 2/3 of sufferers being female. Migraine is classified by the World Health Organisation 

(WHO) as one of the top twenty most debilitating diseases in the developed world and poses 

a significant personal and economic burden [4].  

 

During a migraine all areas of a patient’s life (work, home and leisure) can be considerably 

disrupted [5]. A number of studies have shown a significant inverse correlation between 

migraine disability and quality of life (QOL) [6-8]. The disease also incurs substantial 

economic costs with an early survey by the Australian Bureau of Statistics estimating that the 

total cost of migraine was ~$721 M pa (ABS, 1990). Recent studies have shown that most of 

the annual financial burden stems from lost productivity and/or reduced occupational 

effectiveness [9, 10], however the costs associated with healthcare utilisation are also sizable, 

with millions spent on medical consultation, hospital beds and treatment [9]. Similar trends 

have been observed in Europe with reports in 2010 estimating that headache disorders in 

Europe cost an estimated €43.5 billion per year [11]. These studies concurred that the cost of 

continuous absenteeism from the work place is actually higher than the direct cost of 

treatment. It was also found that the total percentage of costs attributed to loss of work place 

productivity caused by chronic disease is dominated by migraine with 81 % attributed to 

migraine and only 19 % for other chronic conditions [12]. Current therapies are only effective 

for a proportion of sufferers and new therapeutic targets are desperately needed to alleviate 

this burden. 

The burden of migraine is further compounded by the high comorbidity of this disorder with 

other neurological and vascular conditions that are associated with poor health-related 

outcomes and a decreased QOL. Studies have shown a high prevalence, and increased risk of 

depression and other psychiatric disorders in migraineurs [13, 14]. Similarly research has 

shown that women who suffer from the subtype Migraine with Aura (MA) demonstrate a 1.7-
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fold increase risk for ischemic stroke [15], an effect that is independent of common risk 

factors such as smoking and contraceptive use [16, 17]. Although the mechanisms leading to 

these comorbidities remains unclear, there are several lines of evidence, including the 

effectiveness of some medications in treating migraine and depression [18], that suggest a 

bidirectional aetiology [19]. In addition the strong familial occurrence of these disorders 

supports the proposed hypothesis of a shared genetic basis. Overall the burden of migraine is 

substantial, encompassing social and economic costs caused by reduced productivity, 

healthcare utilisation and compounded by high comorbidity with other disorders that similarly 

cause significant disability and reduced QOL. Therefore investigations into migraine 

aetiology will provide direct benefits in diagnosis, treatment and management options as well 

as potentially providing insights into a number of other highly comorbid disorders. 

 

Migraine Diagnosis  

Migraine presents with variable clinical phenotypes which can be heterogeneous in the 

population. In the absence of laboratory based diagnostics, migraine is currently clinically 

diagnosed based on the International Classification of Headache Disorders 2nd Edition 

(ICHD-II). The ICHD-II [20]formally classifies migraine into two main subtypes; Migraine 

with/without Aura (MA and MO, respectively). These subtypes have substantial symptomatic 

overlap; however MA sufferers also experience distinguishing neurological disturbances that 

usually precede the headache phase of an attack. Overall, MO and MA sufferers account for 

~70 % and 20-30 % of migraineurs, respectively. There are a number of other rare sub-types 

of migraine that are accompanied by distinctive neurological symptoms, including Familial 

Hemiplegic Migraine (FHM), in which headache is accompanied by prolonged hemiparesis 

[20]. 
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Migraine Pathophysiology 

There is strong evidence that migraine pathophysiology is caused by neuronal dysfunction. 

Within this broad theory are subdivisions based on the mechanism which primarily activates 

the trigeminal vascular system. The earliest ideas pertaining to a neuronal mechanism go back 

to Leao’s work originating in the 1940’s. Leao proposed that cortical spreading depression 

(CSD) activates the trigeminal nerves and is the phenomenon responsible for migraine 

attacks.  Cortical spreading depression is a wave of neuronal and glial depolarization/ 

neuronal hyperexcitability followed by a long lasting suppression of neural activity [21]. This 

electrophysiological event has been linked to aura in the human visual cortex and is thought 

to be partly responsible for the sensory and motor disturbances experienced during MA 

attacks.   

 

New studies have challenged this theory and propose that the importance of CSD in 

generating a migraine attack has been overstated and may only account for a proportion of 

cases. Lambert have put forward the view that migraine pain and trigeminovascular activation 

are caused by a central mechanism which doesn’t require primary sensory input [22, 23]. The 

most recent theory behind migraine pathogenesis describes migraine as a dysfunction of the 

subcortical brain structures including the brainstem and diencephalic nuclei which are 

involved in modulating sensory inputs. The theory suggests that aura is triggered by 

dysfunction of these nuclei and that the same mechanism is responsible for the pain and other 

symptoms experienced during migraine attacks [24]. 

 

Several lines of evidence exist to suggest that mitochondrial dysfunction may also contribute 

to the pathogenesis of at least some sub types of migraine. The hypotheses are based on the 

idea that an impaired mitochondrial oxidative metabolism may contribute to the pathogenesis 
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of migraine by interrupting proper nervous functioning. Brain and muscle are highly 

dependent on oxidative metabolism and are therefore the most severely affected tissues in the 

mitochondrial disorders. A variety of morphological, biochemical, imaging and genetic 

studies have provided evidence that mitochondrial dysfunction may play a role in migraine 

susceptibility [25]. 

 

Mitochondrial Dysfunction and Migraine 

Genes involved in neurological, vascular or hormonal pathways have all been implicated in 

predisposition towards developing migraine. All of these are nuclear encoded genes, but 

given the role of mitochondria in a number of neurological disorders and in energy production 

it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. 

Mitochondrial DNA has been a useful tool for studying population genetics and human 

genetic diseases due to the clear inheritance shown through successive generations. Given the 

clear gender bias found in migraine patients it is of importance to investigate X linked 

inheritance and mitochondrial related variants in this disorder. Few variants in the 

mitochondrial genome have so far been investigated in migraine and new studies should be 

aimed towards investigating the role of mitochondrial DNA in this common disorder [26]. 

 

Generating an action potential is a process that requires large amounts of energy as Adenosine 

tri-phosphate (ATP) is used to restore ion gradients after the generation of synaptic and action 

potentials.  Even though the brain only makes up 2 % of our body mass, it accounts for at 

least 20 % of our energy expenditure each day [27, 28] therefore an adequate supply of blood 

glucose and oxygen is essential to sustain neuron function. Based on this information it is 

possible that an insufficient energy supply caused by mitochondrial dysfunction could 

predispose individuals to migraine attacks by lowering the cortical spreading depression 
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threshold. By-products of energy metabolism including adenosine and lactate have been 

shown to directly induce increased blood flow to the brain [29, 30]. A change in blood flow 

such as has been documented during CSD is clearly an important factor of migraine attacks. 

Thus energy metabolism could influence migraine attacks via an accumulation or deficit of 

by-products.  

 

Other neuropathic diseases which may share some pathways with migraine pathogenesis have 

been associated with mtDNA variants in a large number of studies. These diseases include 

encephalomyopathies such as MELAS, MERRF and Kearns-Sayre syndrome [31].  Given the 

co-morbidity of MA with stroke, the study of genes involved in MELAS are especially 

promising starting points. Other neurological diseases with mitochondrial associations 

including major depression, bipolar disorder and schizophrenia have also been shown to be 

co-morbid with migraine, strengthening the idea of shared pathways and susceptibility 

variations.  

 

A rare form of migraine, familial hemiplegic migraine type 1 (FHM1) is caused by mutations 

in the CACNA1A gene. Electrophysiological studies have shown that either an increased or 

decreased influx of Ca2+ ions into cells caused by mutations in the CACNA1A gene has an 

effect on the depolarised state of cells [32].  It has been shown that FHM1 mutations can 

produce gain-of-function Ca (V) 2.1 channels and as a result initiate cortical spreading 

depression which is the phenomenon thought to underlie migraine aura. 

 

Other functional studies have examined the role calcium ions play in increased blood flow to 

the brain and have shown that an increased calcium concentration within astrocytes causes 

vasoconstriction during cortical spreading depression. This process is mediated by a 
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phospholipase A2 derivative (an arachidonic acid metabolite) [33, 34]. Since mitochondria 

are involved in calcium ion homeostasis, a process essential for the normal functioning of 

neurons, then it is logical that an imbalance of calcium ions could lead to an increased 

susceptibility to migraines. Hence variants found in mitochondrial DNA which affect calcium 

homeostasis could show association with migraine sufferers. 

 

Examination of muscle tissue has shown a correlation between abnormal mitochondria and 

migraine sufferers. Ragged red fibres and cytochrome-c-oxidase fibres have been found in the 

skeletal muscle of some migraine patients [35]. This association was only observed for the 

more severe cases such as those patients affected by migraine with prolonged aura and FHM 

patients [36-38]. Ragged red fibres (RRFs) have an abnormal number of sacrcolemmal 

mitochondria [39], while cytochrome-c-oxidase (COX) negative fibres often have increased 

fat concentrations  [40, 41]. COX negative fibres are found in most patients suffering from 

mitochondrial encephalomyopathies and are considered to be histologically characteristic of 

the disease [31, 39, 42, 43].                                                                  

 

Examination by electron microscope has revealed clusters of giant mitochondria with 

paracrystalline inclusions in migraine sufferers [36, 44].  Additional ultra-structural changes 

of the mitochondria in affected individuals have also been recorded and may reflect 

alterations caused by impaired oxidative metabolism. With particular reference to ultra-

structural changes, accumulation of subsarcolemmal mitochondria have been found in muscle 

fibres of patients suffering from migraineous stroke (MS) [45].Despite many promising 

morphological associations,  pathogenic mtDNA variations remain to be detected. A more 

detailed investigation into this area is needed in order to produce significant results. Most 
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studies have been limited by small number of study participants and examination of larger 

cohorts in combination with DNA testing may produce significant results. 

 

A number of studies dating as far back as 1973 have shown that there is evidence supporting 

the hypothesis that a deficit in the muscular and/or cerebral mitochondrial energy metabolism 

is significantly associated with migraine attacks. Analysis of intermediates in the oxidative 

phosphorylation and Krebs cycle pathways have demonstrated this relationship. Physiological 

studies have shown that lactate levels in the cerebral spinal fluid (CSF) are increased 

compared to normal levels during migraine attacks [44, 46, 47].  

 

Elevated levels of lactate in the CSF is considered to be an indicator of a defective oxidative 

metabolism as lactic acidosis is indicative of an impaired utilisation of pyruvate in the Krebs 

cycle [48]. This finding has led to further study of other metabolite intermediates and 

enzymes involve in the oxidative phosphorylation pathway and also the Krebs cycle. These 

compounds include pyruvate, monoamine-oxidase (MAO), succinate-dehydrogenase, NADH 

cytochrome-c-reductase, succinate-cytochrome-c-reductase, NADH-dehydrogenase and 

citrate synthetise [36, 49, 50]. In each study the findings indicated a correlation between 

impaired mitochondrial metabolism and migraine attacks. A more recent study further 

showed a correlation between carnitine deficiency and MA. In these patients treatment by 

carnitine replacement resulted in lessening of headache severity and frequency [51, 52]. 

 

Phosphorus magnetic resonance spectroscopy is an imaging technique which allows 

researchers to non-invasively investigate brain energy metabolism in vivo [53]. It has proven 

to be a very useful tool in examining altered oxidative phosphorylation metabolism in 

migraine sufferers. The functionality of mitochondria are assessed by measuring intracellular 
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levels of phosphocreatine (PCr), inorganic phosphate (Pi) and adenosine diphosphate (ADP). 

Under anaerobic conditions or when mitochondrial enzymes are near saturation, additional 

energy is generated by transferring Pi from PCr to ADP to form ATP. This reaction is 

catalysed by creatine kinase and the efficiency at which it takes place is considered to be a 

measure of mitochondrial functionality. Thus by calculating the PCr/Pi ratio a measurement 

of the energy status of the cell is obtained. The lower the ratio, the less energy is available in 

the cell [54-56]. An additional measure of oxidative metabolism is the V/Vmax ratio. This is 

indicative of the velocity of oxidative metabolism in relation to its maximum capability. A 

further method of monitoring metabolism is the measurement of intracellular pH [57]. As 

mentioned previously lactic acidosis is indicative of inefficient pyruvate metabolism. 

 

A large number of studies investigating mitochondrial metabolism in MA, FHM, MPA, MS 

and the related disorders CPEO, MELAS, LD, MERRF, LOHN, MS, MM and RP have all 

identified similar patterns of metabolic abnormalities. In almost all cases a low PCr/Pi ratio 

indicating low availability of free energy was observed. Increased ADP indicating a lower 

energy reserve in the brain cells and an increased V/Vmax ratio were also recorded. An 

increase V/Vmax ratio is indicative of a defective respiratory chain that supplies insufficient 

energy to meet the cell’s demands.  This pattern has suggested to be typical of mitochondrial 

disorders [58-62]. However whether these changes are caused by a primary mitochondrial 

dysfunction or are merely a side effect of brain hyperexcitability remains unclear [56, 63]. 

 

The Genetic Basis of Migraine 

For human diseases and other complex traits, heritability can be estimated from the 

concordance rate between monozygotic and dizygotic twins [64]. More complex models 

which examine the correlation of offspring and parental phenotypes can be used to estimate 
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heritability via complex statistical methods. These are employed when phenotypic measures 

are available on individuals with a mixture of relationships, both within and across multiple 

generations, or when there are unequal numbers of observations per family [65]. A number of 

twin studies in migraine have shown that the heritability of migraine ranges from 40-60 % 

and that the contribution of non-shared environmental factors is 35-55 % [66-68]. Based on 

this information it is clear that both genetic factors and environment play an approximately 

equally important role in the pathogenicity of migraine. Previously, much emphasis has been 

placed on genetic studies and conducting large Genome Wide Association Study (GWAS) 

experiments, but with the knowledge that environmental factors may directly trigger migraine 

attacks, more inclusive models which take into account environmental factors are needed 

[69]. 

 

To date, a number of causative genes have been identified in a rare, severe form of migraine – 

FHM that shows autosomal dominant inheritance. These genes include the CACNA1A, 

SCN1A and ATP1A2 genes that can contain any of numerous identified mutations that 

independently cause the disorder. This rare subtype exemplifies the significant genetic and 

allelic heterogeneity in the aetiology of the disorder. Despite this knowledge however, the 

number and identity of genes involved in the MA and MO subtypes of migraine that are 

considered in this project, is not clear, suggesting an even more complex aetiology of these 

subtypes involving a multifactorial interplay of both environmental and genetic factors.  

 

GWAS have had some success in identifying variants that contribute to MA and MO. The 

MTDH gene, involved in glutamate homeostasis, was the first to be implicated in a large two-

stage study conducted by the International Headache Genetics Consortium. In subsequent 

studies the TRPM8 gene, and the lipoprotein receptor have also been implicated [70].Variants 
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in these genes all demonstrated genomewide significance and are plausibly integrated into the 

current understanding of migraine pathophysiology. However the effect size of each variant is 

small to moderate supporting the proposed effects of rare genetic variants. 

 

Genomewide linkage studies using migraine pedigrees also support a heterogeneous genetic 

basis for both MA and MO. Numerous linkage studies have been undertaken with over 15 

migraine susceptibility loci mapped to date on chromosomes 1-6, 9-11, 14,15,17-19 and the 

X chromosome. However few of these have been replicated or had causal genes identified. 

This is possibly a consequence of the current methods for gene identification in linkage 

regions that have largely consisted of candidate gene association studies using large unrelated 

population cohorts. This approach is not designed to identify rare variants and generally does 

not detect allelic heterogeneity within a gene, thus true susceptibility variants are often 

undetected.  

 

Genetically Isolated Norfolk Island Population 

Following a mutiny aboard the British Royal Navy ship HMS Bounty on 28 April 1789, 

mutineers settled Pitcairn Island in an effort to avoid detection by the British Navy [71]. 

When the population grew too large for this small island 193 people from Pitcairn Island, all 

descended from 9 ‘Bounty mutineers’ and 12 Tahitian women, moved to the uninhabited 

Norfolk Island in 1856 [72]. Due to geographical isolation this population has largely 

remained a genetically isolated population making it an ideal population for the study of 

complex multi-factorial diseases including migraine [73].  

 

Extensive family histories have been documented and maintained by Norfolk Island 

inhabitants and more recently genealogists. A database exists which contains detailed 
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information about almost the entire Norfolk Island population and in 2005 the pedigree 

included 6379 individuals comprising 2185 families dating back to the original founders over 

an 11 generation period [71]. The database is maintained in a popular genealogy program 

Brother’s Keeper (Version 6.0, Rockford, Mich, USA) [74].  

 

Due to the many inbreeding loops found in Norfolk’s early generations along with the size 

and complexity of the pedigree it has necessitated the need to split the larger 6500 individual 

pedigree into smaller branches. A core pedigree containing the lower generations and 

consisting of members originating directly from the population founders has been constructed 

using a peeling algorithm in the pedigree database management system PEDSYS. This 

pedigree has been used in previous studies examining risk traits for complex disease [75, 76]. 

The most up to date core pedigree structure includes 1388 individuals [77]. Contained within 

this pedigree is a large migraine affected family (n=21 individuals, 7 migraine sufferers) 

which is of particular interest because the family members are expected to have Polynesian 

mtDNA haplotypes inherited from the original founders and the family spans four 

generations.  

 

Significance 

Migraine is a highly prevalent disorder with clear social and economic burdens and 

significant negative impact on quality of life. Despite this, the underlying mechanisms that 

contribute to migraine remain largely unknown resulting in poor management and ineffectual 

treatment for many sufferers. Epidemiological and genetic studies have clearly demonstrated 

that migraine has a genetic aetiology however to date few causal genes have been 

conclusively identified. This is largely attributed to the phenotypic diversity that migraine 
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displays and a polygenic genetic basis with significant allelic heterogeneity. GWAS have 

shown limited success in unravelling the genetic basis of this disease, indicating that rare 

variants and allelic heterogeneity have a stronger influence on migraine. Here we propose a 

new approach to identify these rare variants. This approach takes advantage of our large 

migraine pedigree resources and novel NGS technologies that have significantly lowered the 

costs of sequencing.  

 

This study aimed to develop and use highly cost effective in-house methods to conduct full 

mitochondrial genome sequencing for the entire Norfolk Island Core pedigree samples. The 

results of this study will identify new migraine genes and provided new candidates for 

functional studies to investigate migraine aetiology. The identification of causal variants can 

also be immediately translated into lab-based diagnostics within our laboratory. The ultimate 

goal of this research is to translate the outcomes to clinicians and patients. 
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Thesis Outline 

Chapter 2 provides a detailed and critically reviewed account of the current migraine 

literature followed by experiments and results in Chapters 3, 4, 5 and 6. Parts of Chapter 2 

have been published as 4 literature reviews as follows: 

 

Stuart, S., Cox, H. C., Lea, R. A. & Griffiths, L. R. The role of the MTHFR gene in 

migraine. Headache: The Journal of Head and Face Pain 52, 515-520 (2012). 

 

Stuart, S. & Griffiths, L. R. A possible role for mitochondrial dysfunction in migraine. 

Molecular Genetics and Genomics 287, 837-844 (2012). 

 

Stuart, S., Maher, B. H., Oikari, L. & Griffiths, L. R. Molecular Genetics of Migraine. eLS 

DOI: 10.1002/9780470015902.a0022493 (2013). 

 

Roos-Araujo, D., Stuart, S., Lea, R. A., Haupt, L. M. & Griffiths, L. R. Epigenetics and 

migraine; complex mitochondrial interactions contributing to disease susceptibility. Gene 

543, 1-7 (2014). 

 

 

Chapter 3 outlines initial genotyping experiments carried out in an outbred migraine case-

control population investigating mitochondrial variants in relation to migraine susceptibility. 

This initial work was critical in terms of molecular genetic training, providing the basic 

knowledge and skills to continue with more complex aims and remains unpublished. 
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 In Chapter 4 the optimisations carried out to develop a cost effective method for full 

mitochondrial genome sequencing are described as well as the initial pilot project undertaken 

in n=48 samples.  

 

Chapter 5 describes the largest portion of the project where full mitochondrial genome 

sequencing was undertaken on n=315 individuals comprising the Norfolk Island core 

pedigree. It also details analysis undertaken so far and draws on conclusions based on these 

findings. Chapter 5 has been written as a manuscript in preparation and therefore some 

portions such as the introduction contain repetitive elements. 

 

 In Chapter 6 one of the final project aims is addressed by assessing the role of Nuclear 

Encoded Mitochondrial Proteins (NEMPs) in migraine susceptibility. This chapter describes 

the methods and results using a Sequenom mass array study approach to investigate 

mitochondrial findings in relation to migraine susceptibility. This chapter has also been set 

out as a manuscript in preparation and contains some repetitive elements. 

 

Due to the nature in which this thesis has been set out with an introduction, literature review, 

preliminary findings and two results chapters formatted as papers in preparation, some 

repetitive elements are found throughout the thesis. The final chapter provides an overview of 

planned future research leading on from this project and recommends a number of further 

avenues to pursue. 
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Chapter 2:  Literature Review 

Migraine 

Migraine is currently classified by the World Health Organisation (WHO) as being one of the 

top twenty most debilitating diseases [78]. It  is a common neurological disorder 

characterised by severe head pain and an assortment of additional symptoms which can 

include nausea, emesis, photophobia, phonophobia and occasionally visual sensory 

disturbances  [79].  Migraine is a complex disease caused by a combination of predisposing 

genetic variants and environmental factors. It is hypothesised that variants of small to 

medium effect occur in a combination which when exposed to particular environmental 

triggers bring about migraine attacks [80]. 

 

 This disease affects approximately 12 % of the Caucasian population, with two thirds of 

affected cases being female [81]. Migraine has been shown through twin and family studies to 

have a significantly heritable component, which has driven genetic studies aimed at 

identifying causal variants [82]. Specific causal mutations have been identified in both rare 

familial forms of migraine such as familial hemiplegic migraine (FHM) as well as common 

types of migraine. However the inheritance patterns of rare familial migraine types are more 

clearly defined than for common types of migraine, making it easier to identify causal 

variants [83].  

 

The underlying pathophysiology of migraine is still poorly understood. Current ideas are 

based on the theory that activation of the trigeminal nerve system by a neural, vascular or 

neurovascular trigger leads to a migraine. The trigeminal nerves carry pain signals from the 
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meninges and blood vessels infusing the meninges to the trigeminal nucleus in the brain stem 

which in turn sends signals to the sensor cortex via the thalamus. The sensor cortex processes 

pain signals and other senses, thus leading to the sensation of pain experienced during 

migraine attacks. This concept is illustrated in the Figure 1 below. 

 

 The exact processes which activate the trigeminal nerve is still one that is being debated, but 

it is thought that neuronal over excitability and/or neuronal dysfunction caused by various 

physiological malfunctions play an important role [84]. Ion channels regulate the release of 

essential ions during the generation of an action potential and therefore any dysfunction of 

genes involved in this process could lead to the propagation of a migraine attack. This has led 

many researchers to study FHM and other ion channelopathies in the hopes of identifying 

common causal variants involved in migraine pathogenesis. FHM is discussed in further 

detail in section 1.2. 
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Figure 1: Upon activation of the trigeminal nerve, pain signals are carried to the 
trigeminal nucleus and then to the sensor cortex via the 

thalamus

 

Neural, vascular or chemical triggers can activate the trigeminal nerve. The trigeminal nerve 

innervates the meninges and activation results in a cascade effect with pain signals being carried to 

the sensor cortex where they are interpreted as pain. This process is thought to cause the throbbing 

pain associated with a migraine attack. 

 

 Migraine Mechanisms 

The neuronal hypothesis is based on Leao’s ideas originating as early as the 1940’s. Leao 

proposed that cortical spreading depression (CSD) activates the trigeminal nerves and is 

thereby the phenomenon responsible for migraine attacks [85].  Cortical spreading depression 

is a wave of neuronal and glial depolarization/ neuronal hyperexcitability followed by a long 

lasting suppression of neural activity [21]. This electrophysiological event has been linked to 
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aura in the human visual cortex and is thought to be partly responsible for the sensory and 

motor disturbances experienced during MA attacks. Even though only 20 % of migraine 

attacks include an aura, a role for CSD has been suggested by the neurovascular hypothesis in 

the pathogenesis of MO as well. 

 

The neurovascular theory is based on the concept that both vascular and neural stimuli 

leading to CSD are responsible for migraine attacks. The hypothesis is that meningeal 

inflammation occurs as a consequence of CSD and local mediators such as calcitonin, gene-

related peptide (CGRP) and substance P activate meningeal sensory neurons. It is 

hypothesised that these neuropeptides rather than vasodilation are directly responsible for 

activation of the pain pathway [86]. This theory contradicts the vascular theory upheld by 

Wolf, which states that the pain sensation is caused directly by the vasodilation of intracranial 

and extra cranial vessels [87]. Furthermore, according to the neurovascular hypothesis neuro-

inflammation, resulting from the release of inflammatory mediators such as cytokines and 

mast cells following CSD, may further promote and sustain the activation and sensitisation of 

meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine.  

 

New studies have challenged this theory and propose that the importance of CSD in 

generating a migraine attack has been overstated and may only account for a proportion of 

cases. Recently it has been suggested that migraine pain and trigeminovascular activation are 

caused by a central mechanism which doesn’t require a primary sensory input [22, 23]. The 

most recent theory behind migraine pathogenesis describes migraine as a dysfunction of the 

subcortical brain structures including the brainstem and di-encephalic nuclei which are 

involved in modulating sensory inputs. The theory suggests that aura is triggered by 
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dysfunction of these nuclei and that the same mechanism is responsible for the pain and other 

symptoms experienced during migraine attacks [24].  

 

Regardless of which theory is a more accurate description of migraine initiation, it is well 

known that the brain needs a continuous and sufficient supply of energy in the form of ATP 

in order to function efficiently. It is therefore highly feasible that any interruption in energy 

production could result if neuronal dysfunction and lower the threshold for initiation of a 

migraine attack. The majority of the body’s energy supply is produced via the oxidative 

phosphorylation pathway or the electron transport chain which is contained within the 

mitochondria [88]. Any disruption in mitochondrial function which adversely affects the 

production of energy is likely to affect the tissues which are most heavily reliant on a 

sufficient source of energy and in some cases cause a pathological state.  To date very few 

migraine studies have examined the association between mitochondrial variation and 

migraine susceptibility, making this an area which sorely needs to be addressed. 

 

While FHM studies and large migraine GWAS studies have significantly contributed towards 

our understanding of the possible mechanisms involved in migraine pathogenesis, all of the 

causal variants and how they interact with each other still remain to be fully elucidated. A 

large number of loci have been shown to have significant association with migraine and a 

number of genes/pathways are also known to play a role [81].  Continuous research in this 

complex arena is needed to improve our understanding further, aid in more accurate diagnosis 

and contribute to the development of ever improving therapeutics. 
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Familial Hemiplegic Migraine 

Familial hemiplegic migraine (FHM; OMIM 141500) is a rare hereditary subtype of migraine 

with aura. It is typically accompanied by hemiparesis and a variety of neurological symptoms 

which may include both visual and motor sensory disturbance [89, 90]. The prevalence of this 

disease has been estimated to be around 0.01 % in European populations, with familial FHM 

accounting for half the incidence rate. A sex ratio of three affected females to every one male 

has also been recorded, hence women are 3 times more likely to suffer from FHM than their 

male counterparts [91]. FHM is autosomally dominantly inherited but shows variable 

expressivity and genetic heterogeneity with 70 % to 90 % penetrance [92].  In most cases the 

phenotype is severe as a result of neural disturbances and in rare cases can be fatal after minor 

head traumas [93, 94]. Due to the strong genetic component  of FHM it has become a 

favourable target for the study of genes involved in migraine pathogenesis [95]. 

 

 Three main genes have been implicated in the pathogenesis of FHM namely CACNA1A (P/Q 

calcium channel), ATP1A2 (P type Na+/K+ ATPase) and SCN1A (Na+ channel α subunit), 

with a possibility of a fourth locus at 14q32 [96]. Mutations in the calcium channel gene 

CACNA1A located on chromosome 19p13 have been linked to FHM1 in a number of family 

studies [97]. Currently 21 different missense mutations which cause FHM1 have been 

identified in the CACNA1A gene as summarised in Table 1 below [98].  It is estimated that 

CACNA1A mutations account for 50 % of FHM patients and that it is this gene that is 

responsible for the majority of FHM cases [32]. CACNA1A encodes for the alpha 1A subunit 

of the neuronal voltage dependant P/Q-type calcium channel. 
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Table 1: Summary of known non-pathogenic polymorphisms in CACNA1A 

Exon DNA change Amino Acid 
Change 

Frequency rs Number Study First 
Reported In 

1 c.1-53_1-
54insGGC 

No 0.04 - [99] 

4 c.579G>A No 0.02 rs41276894 [100, 101] 
6 c.876A>G No 0.07 rs16006 [101, 102] 
9 c.1199-31A>G No 0.6 rs16008 [103] 
11 c.1360G>A No 0.02 rs41276886 [101, 104] 
16 c.2094G>A No 0.12 Rs16016 [101, 102] 
19 c.2978A>T No 0.62 Rs16023 [103] 
19 c.3060G>A No 0.62 Rs16025 [103] 
20 c.3313G>A No 0.25 Rs16027 [102] 
20 c.3549C>T No 0.02 Rs16029 [103] 
39 c.5742C>T No 0.006 Rs16044 [103] 
 

Ion channel genes play a critical role in normal functioning of the central nervous system and 

neuromuscular pathways. Functional studies have shown that FHM mutations can lead to 

both gain- and loss-of function of P/Q-type calcium channels, all of which affect the 

physiological functioning of the channels in a variety of ways [83] Electrophysiological 

studies have shown that either an increased or decreased influx of Ca2+ ions into cells caused 

by mutations in the CACNA1A gene has an effect on the depolarised state of cells as shown in 

Figure 2 [32]. It has been shown that FHM1 mutations can produce gain-of-function Ca (V) 

2.1 channels and as a result initiate cortical spreading depression which is the phenomenon 

thought to underlie migraine aura. The increased activity of the Ca(V) 2.1 channel facilitates 

increased Ca(V) 2.1 dependant neurotransmitter release from cortical neurons, in particular 

glutamate [105]. A large amount of phenotypic heterogeneity of clinical symptoms is still 

observed which is indicative of the complexity and variability of FHM1 [32].   
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Figure 2: The transmembrane topology of the Cav2.1-α1 protein with its four 
membrane complexes is illustrated in this figure. Gain of function mutations within the 

CACNA1A transmembrane protein can cause an increased influx of calcium ions 
resulting in neurotransmitter release. Adapted from [106]  

 

Gain of function mutations can result in an increased uptake of calcium ions as shown in the 

green arrow. The increased flow of calcium into the cytosol results in neurotransmitter release 

and neuronal activation. Purple bars indicate the four sub-complexes of the CACNA1A protein, 

situated within the phospholipid membrane of cells. 

 

Current diagnostic protocol for FHM involves analysis of patient information by a clinician 

according to criteria specified by the Headache Classification Subcommittee of the 

International Headache Society [89]. Suspected cases are then referred for molecular 

diagnosis by mutation analysis.  Treatments such as administration of Triptans or β-blockers 

are commonly used approaches to treat common migraine and can also be used to treat FHM 
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sufferers but have limited success depending on the individual [107, 108]. Other drugs used 

to treat hemiplegic migraines include verapamil, acetazolamide, ibuprofen and calcium 

channel blockers. Most of these treatments were originally designed to target different 

disorders like epilepsy, high blood pressure, cardiac arrhythmia and glaucoma. Any 

medications which constrict arteries need to be avoided as this increases the risk of stroke. 

FHM and MA sufferers are already at an elevated risk for stroke and drugs targeting high 

blood pressure can aggravate this predisposition [109]. For the most part treatments are still 

predominantly focused on alleviating symptoms and the development of new therapeutics 

targeting specific pathways, especially those involving FHM are needed. 

 

Common forms of Migraine 

Rare forms of migraine such as familial hemiplegic migraine (FHM) have better understood 

genetic causes with well-defined causal variants [96, 97, 110] as previously discussed. On the 

contrary underlying genetic mechanisms for common forms of migraine are still poorly 

understood.  Both MA and MO exhibit genetic heterogeneity with large phenotypic variance, 

confounding effects to identify causal variants resulting in increased susceptibility towards 

developing common forms of migraine. 

 

To try and investigate the most plausible candidate genes involved in common migraine 

pathogenesis, criteria utilising a combination of physiological functionality in conjunction 

with regions of genomic association are used. Thus far three different groups of genes have 

been identified and investigated on this basis. These are genes involved in neurological, 

vascular or hormonal pathways [111, 112]. Under the broad category of neurological genes 

include those involved in expressing or control of ion channels (CACNA1A, KCCN3, K Na-
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ATPase), the synthesis and/or release and binding of neuropeptides (CGRP protein, 

glutamate) and the dopamine and serotonergic pathways.  

 

The second category of genes includes those involved in blood pressure regulation, 

expression of endothelial cells, vasoconstriction and vasodilation (MTHFR, ACE) [82]. Many 

of the vascular type genes associated with migraine also exhibit an overlap with genes playing 

a role in elevated risk of stroke and heart disease. This is of particular relevance to migraine 

with aura which has been shown to have a significant co-morbidity with risk for stroke and 

depression. The third sets of genes seem to be most relevant to females which in some part 

explains the sex biased distribution of affected patients. Genes associated with females and 

menstrual migraine include those governing oestrogen and progesterone and fall into the 

bracket of hormonal pathways (ESR1, PGR) [113]. The increased preponderance of female 

suffers also suggests an X-linked or mitochondrial mode of inheritance. 

 

Neurological Genes 

Given the important role that the trigeminovascular system in conjunction with neuropeptides 

is thought to play during a migraine attack, genes encoding for neurological functions have 

been extensively studied. Signalling systems involving serotonin, glutamate, dopamine and 

GABA have all been implicated in migraine onset and genes encoding for products involved 

in these pathways as well as other ion channels expressed in the CNS have been the centre of 

many migraine studies [112].  

 

Serotonin (5-HT) is a neurotransmitter and a number of genes within the serotonergic system 

have been studied for associations with migraine susceptibility. These include the serotonin 

transporter gene SLC6A4 as well as tryptophan hydroxylase, monoamine oxidase and 
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calcitonin-gene-related peptide. However studies have produced conflicting results for many 

of the variants identified [114-118] and a clear role for serotonergic genes is yet to be defined.  

 

The dopaminergic system has also been extensively studied however, the mechanism through 

which it influences migraine remains unclear despite the fact that dopamine antagonists are 

known to be effective in relieving migraine symptoms. SNPs within the dopamine beta 

hydroxylase gene as well as an insertion/deletion polymorphism have shown significant 

association with MA in a number of studies. One SNP in particular namely, rs161115, is 

known to be responsible for 31-52 % of dopamine beta hydroxylase’s enzymatic functioning 

and is significantly associated with migraine in Caucasian populations [119-121]. 

 

The role of glutamate in migraine is becoming increasingly supported with evidence 

accumulating from GWAS [122] .Glutamate acts as a neurotransmitter and, as previously 

described, is thought to influence CSD susceptibility and activation of the trigeminovascular 

system [123].Several genes outside those identified in GWAS have also been considered 

including the GRIA receptors with associations identified at the GRIA1 and 3 genes [124]. 

 

Finally, dysfunction of other ion channels involved in neurotransmitter release and neuronal 

excitability are becoming a focus of many studies. This has been particularly exemplified by 

the KCNK18 gene that encodes the TRESK protein – a potassium channel involved in cellular 

excitability. This protein is expressed primarily in the dorsal root ganglion and trigeminal 

ganglia, key regions of the CNS thought to be involved in pain processing thus supporting a 

role for this gene in migraine. A frameshift mutation in this gene was identified as segregating 

perfectly with MA in an Australian family as well as a number of other mutations that have 

been identified only in migraine cases and not controls [125]. However, recent functional 
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investigations of these variants have demonstrated that a mutation causing a non-functional 

copy of the gene is not sufficient alone to cause migraine and therefore interactions with other 

genetic and/or environmental factors must be involved [126]. 

Overall, the study of neurological genes have demonstrated a strong contribution to migraine 

susceptibility however further studies are needed to examine and fully characterise the role of 

neurological genes in migraine pathogenesis.  

 

Vascular Genes 

Migraine is known to be co-morbid with other disorders many of which are vascular related 

diseases including stroke, hypertension and PFOs (Patent Foramen Ovale) [127]. This 

connection, combined with a known efficacy of vasoactive drugs in migraine treatment, has 

prompted researchers to investigate genes related to these disorders which may overlap with 

migraine pathogenesis. Two such key genes include the MTHFR gene encoding 

methylenetetrahydrofolate reductase and ACE encoding for Angiotensin I converting enzyme 

[82].  

 

MTHFR  

The MTHFR gene maps to chromosomal location 1p36.3 and has been studied extensively to 

try and identify associations between variants and increased risk for disease [128]. Numerous 

associations have been made for a variety of diseases, many of which are neural and/or 

vascular and may therefore be involved in pathways overlapping with migraine pathogenesis. 

The methylenetetrahydrofolate reductase (MTHFR) gene encodes for the MTHFR enzyme 

which is involved in the amino acid and purine biosynthesis pathway as illustrated in Figure 

3. The MTHFR enzyme catalyses the reduction of 5,10-methylenetetrahydrofolate to 5-

methyltetrahydrofolate which is needed for the conversion of homocysteine to methionine 
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[129, 130].  Folate is also needed to drive the pathway therefore a lack of dietary folate and/or 

reduced MTHFR enzymatic activity can result in an increase of homocysteine levels in the 

blood plasma. Hyperhomocysteinemia has been associated with a variety of metabolic 

disorders and increased risk for complex diseases including heart disease and stroke as well 

as migraine with aura [131-133].  

Figure 3: Flow diagram illustrating the production of homocysteine as part of the amino 
acid and purine biosynthesis pathway. Included in the illustration is the role of a key 

enzyme in this process, MTHFR. 

 

 

Abbreviations: dihydrofolate (DHF), deoxythymidine 5'-monophosphate (dTMP), deoxyuridine 

monophosphate (dUMP), S-adenosyl homocysteine (SAH), S-adenosyl methionine (SAM), 

tetrahydrofolate (THF), thymidylate synthase (TS). MTHFR catalyses the reduction of 5,10-

methylenetetrahydrofolate to 5-methyltetrahydrofolate which is needed for the conversion of 

homocysteine to methionine. A reduction in MTHFR activity results in an accumulation of 

homocysteine. 
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The clinical consequences of elevated homocysteine plasma levels include endothelial cell 

injury, spontaneous trigeminal cell firing and alterations in coagulant properties of blood 

[134]. Spontaneous trigeminal cell firing leading to inflammation in the meninges and 

dilation of cerebral vessels is thought in part to cause the pain associated with migraine [135]. 

Thus homocysteine dysfunction can clearly increase patient propensity for developing 

migraine. Oxidative damage to the vascular endothelium via formation of superoxide anions 

(auto-oxidation of homocysteine) may also increase the likelihood of migraine and other 

vascular disorders such as stroke [136]. Physiological studies have demonstrated these 

relationships, making it clear that genetic variants altering enzyme activity or substrate 

pathways can increase the risk for developing migraine and other vascular diseases. 

 

Variants within the MTHFR gene which result in decreased enzyme activity may therefore be 

associated with migraine and should be studied. Two variants in particular within this gene 

have been examined in previous studies. These are an A>C change occurring at position 1298 

of the MTHFR gene and a C>T change at position 677 [82]. The 1298 A>C variant results in 

decreased MTHFR activity to a somewhat lesser degree than the 677 C>T variant. It has been 

associated with neural tube defects and cardiovascular disease, but its role in migraine 

pathogenesis remains unexamined [137, 138]. 

 

 The question of whether or not the 677 C>T variant is associated with migraine generated 

some controversy. Six previous studies found a significant association between the MTHFR 

667 C>T variant and migraine with aura [139-144], while two conflicting studies found no 

association [145, 146]. Hinsanori Kowa conducted a study in a Japanese patient cohort in 

2000 to examine the association between the MTHFR 667 C>T variant and migraineous 

headaches (the T/T genotype has been found to increase homocysteine levels in the blood). 
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The study found a significant association between the T/T genotype and migraine sufferers. 

The homozygous transition was found in 20.3 % of migraine sufferers compared to 9.6 % in 

controls, and occurred in a remarkably high frequency in individuals suffering from MA (40.9 

%). Findings were concluded to be highly significant with an odds ratio of 6.5 [139]. 

 

A different study group examining Spanish patients suffering from migraine with aura also 

found a significant association with the T/T genotype. Patients were recorded as having 

elevated homocysteine blood plasma levels and were therefore also considered to be at risk of 

stroke and other vascular anomalies. While the odds ratio in this cohort was only 2.34, 

findings were still considered to be significant and authors concluded that the homozygous 

mutation is associated with MA in the population group they were studying [143]. Similarly 

Scher et al. and other studies found significant association between the T/T genotype and 

migraine with aura (odds ratios were in the region of 2.05). A subsequent large meta-analysis 

which pooled data from all previous studies regarding the association between 677 C>T 

found that migraine but only MA and not MO is associated with the C to T transition [147]. 

This significant study has provided compelling evidence that the MTHFR gene plays a critical 

role in MA pathogenesis. 

 

The Effects of Vitamin Supplementation and MTHFR 

The results of a recent clinical trial verifies that the 677 C>T MTHFR variant which results in 

reduced enzyme levels does in fact have a direct correlation with homocysteine levels in the 

blood and pathogenesis of migraine with aura. The results strengthen the hypothesis 

pertaining to the role of homocysteine in MA susceptibility by showing that vitamin 

supplementation leading to decreased homocysteine levels also brought about a decrease in 
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the frequency and severity of migraines in MA sufferers [148]. Homocysteine can be 

alternatively metabolised through a B6 dependent pathway [149] and therefore 

supplementation with folic acid, B6 and B12 can decrease homocysteine levels. The pilot 

study by R Lea et al showed that a combination of folic acid, B6 and B12 supplementation 

reduced the homocysteine levels in all patient’s blood samples and that this correlated with a 

reduction in the frequency and severity of MA attacks. Furthermore response to treatment was 

directly correlated to MTHFR 677 C>T genotype, with T/T homozygotes showing the 

smallest response to supplementation. It was suggested that dose should be dependent on 

genotype and that T/T individuals should receive the highest doses [148]. This is what is 

referred to as personalised medication, a concept that has been growing in popularity. 

 

Angiotensin I Converting enzyme 

Angiotensin I-converting enzyme catalyses the conversion of angiotensin I to angiotensin II, 

which acts as a vasoconstrictor.  ACE also plays a role in the inactivation of bradykinin, a 

strong vasodilator, thus having an overall powerful vasoconstrictory effect on blood vessels 

[150]. A modest risk factor for vascular disease involving the angiotensin I-converting 

enzyme (ACE) I/D polymorphism has also been implicated as a risk factor for migraine [151]. 

It has been suggested that the D/D genotype could have a synergistic effect in individuals 

carrying the MTHFR T/T genotype and result in a much greater propensity towards 

developing migraine. As with the MTHFR gene, ACE seems to play an important role in the 

pathogenesis of migraine with aura, rather than in migraine without aura. Studies by Paterna 

first suggested a role for the ACE D/D genotype in migraine and later an investigation in a 

Japanese cohort showed a relationship between the D allele and MA [152-154]. A recent 

study in an Australian cohort confirmed an over-representation of the D/D genotype in 
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patients experiencing MA and furthermore suggested that the MTHFR T/T genotype acts in 

combination with the D allele in increasing migraine susceptibility [155]. 

 

While several other vascular genes have been investigated with migraine susceptibility the 

results have been largely conflicting or negative. Calcitonin-Gene Related Peptide (CGRP) 

[156] and the NOTCH3 [157] genes are a few examples where studies may have been 

hindered by variability in ethnic cohorts, migraine subtypes or generally under-powered 

studies that have difficulty replicating associations especially when the effect size of the 

variant is minimal.  

 

Hormonal Genes 

It has been well documented that migraine affects three times as many females as male 

patients. The abrupt increase in female patients occurs at puberty and migraine incidence has 

been correlated with other hormonal changes such as menstruation, pregnancy and 

menopause [158, 159]. Therefore genes involved in hormonal processes during female 

development and the menstrual cycle have been a key area of migraine genetic studies. In 

particular genes governing oestrogen and progesterone have received significant attention. 

 

It has been proposed that the oestrogen receptor (ESR1) may play a significant role in 

migraine. The receptor is expressed in many parts of the brain including in neurons in the 

trigeminal ganglion [160] and there is evidence to show that oestrogen acts as a regulator of 

neurotransmitters involved in migraine including CGRP and serotonin. Overall it has been 

proposed that oestrogen plays a role in sensitization of the trigeminal neurons although the 

exact mechanisms through which this is achieved are yet to be defined. There is evidence to 

suggest that abrupt oestrogen withdrawal precipitates onset of a migraine episode [161] or 
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that oestrogen is involved in CSD susceptibility. At a genetic level associations at the 594 

G>A and 325 G>C SNPs in the ESR1 gene have been reported in several migraine 

populations [162-165], however contradicting results have also been observed in a number of 

studies.  

 

Other hormonal genes that have been investigated to varying degrees, and similarly with 

varying levels of validation [166], include the Progesterone receptor (particularly an Alu 

insertion at intron 7) [113, 167, 168], Androgen receptor [113], and Follicle Stimulating 

Hormone receptor [164]. While there is evidence to propose a role for these hormonal genes 

in migraine - such as expression levels in areas of the CNS involved in pain pathways, and/or 

interactions with known neurotransmitters that may also act in these pathways; the exact 

mechanisms through which these genes exert an influence on migraine susceptibility, and the 

extent of that influence, requires further investigation.   

 

Migraine with Aura 

Approximately 20 % of migraine attacks involve a preceding neurological disturbance known 

as an aura [169]. Numerous studies have linked cortical spreading depression with the visual 

scintillations typically experienced during aura and recently MRI has been used to confirm 

these findings in addition to describing underlying physiological mechanisms [170]. Cortical 

spreading depression (CSD) is a wave of neuronal and glial depolarization/ neuronal 

hyperexcitability followed by a long lasting suppression of neural activity [85]. CSD is 

thought to activate the trigeminal nerves thus resulting in the pain associated with migraines. 

This electrophysiological event has been linked to aura in the human visual cortex and is 

thought to be partly responsible for the sensory and motor disturbances experienced during 
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MA attacks. Furthermore a change in blood flow in the occipital lobe has been shown to 

correspond with the aura attack. This could be as a result of increased and decreased neuron 

firing and merely a side effect of energy metabolism or alternatively the altered blood flow 

may be a contributing factor towards triggering attacks.  This in conjunction with the fact that 

MA patients also have an elevated risk for stroke has made genes involved in vascular 

pathways good candidates for genetic studies [171-173]. 

 

Given the role of neuronal hyperexcitability in CSD any genes which may alter the 

electrophysiological signalling of neurons are also good candidate genes to examine. This 

idea has led to an interest in ion channel genes involved in channelopathies. Previous studies 

have shown that FHM mutations are not found in typical migraine with aura, suggesting that 

other ion channels may be involved. A recent and exciting study by Lanfreniere has 

highlighted the role that the TRESK potassium channel gene may play in common migraine 

with aura [125]. As discussed previously, TRESK encodes for K2P channels which are 

expressed throughout the central nervous system, including the trigeminal ganglion neurons 

[125]. They play an important role in controlling resting membrane potential and neuronal 

excitability [174], and therefore an alteration in expression could feasibly lower the threshold 

for CSD.  

 

A large cohort of both case-control individuals as well as families were studied, which 

identified a number of variants in the TRESK gene. The most notable variant identified was a 

frame shift mutation (F139WfsX24) which segregated perfectly in a family affected with 

typical MA.  All eight affected individuals carried the mutation while all eight unaffected 

individuals did not. The mutation was shown to suppress wild type channels and was thus 

classified as being a dominant-negative mutation inherited in a dominant fashion. Drug 
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induced inhibition of TRESK activity has previously been associated with an increase in 

headache frequency and/or intensity [175]. This adds to the growing body of evidence that 

TRESK plays a role in MA susceptibility. Lanfreniere and colleagues have highlighted the 

need to investigate other variants in the TRESK gene which may be associated with MA and 

have also suggested the potential role of agonist mediated drugs as a therapeutic target [125]. 

 

Previous Molecular Genetic Studies of Migraine 

 

GWAS 

A number of large GWAS studies aiming to identify associations between genetic variants 

and migraine have been conducted, with the first being published by the International 

Headache Genetics Consortium (IHGC) in 2010 [122]. This initial study examined 2,731 MA 

migraineurs in the Finish, German and Netherland population compared to 10,747 controls 

from the same population group. The study was replicated using an additional 3,202 cases 

and 40,062 controls including patients suffering from MO. After analysing 429,912 SNPs 

only one reached genome wide significance (p<5x10-8), with another 11 SNPs showing 

threshold significance levels. The discovery of rs1835740 gave support to the hypothesis that 

glutamate plays a role in migraine pathophysiology as this variant is located between the 

genes MTDH and PGCP which are both involved in the glutamate homeostasis pathway 

[176]. Earlier studies have shown that glutamate plays a role in trigeminovascular pain 

processing and may modulate the threshold for CSD [123]. This GWAS therefore 

strengthened theories relating to a neurological mechanism involved in the propagation of 

migraine attack. 
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Two subsequent GWAS studies conducted by the Dutch-Icelandic migraine genetics 

consortium (DICE) and the Women’s Genome Health Study (WGHS) failed to replicate the 

results from the first GWAS and only identified modest associations [177]. However a large 

meta-analysis of all the cohorts identified three new SNPs showing significance at the 

genome wide level namely rs2651899, rs10166942 and rs11172113 located in intron 1 of 

PRDM16, at 2q37 near TRPM8 and intron 1 of LRP1 respectively [178]. The role that 

PRDM16 may play in migraine is unknown, but TRPM8 encodes a cold burning pain sensor 

and has been found to be expressed in sensory neurons and the dorsal root ganglion [179]. 

Animal models have shown that TRPM may be a target of neuropathic pain and since 

migraine and neuropathic pain share some characteristics, it is biologically plausible for there 

to be a link between TRPM and migraine [180]. LRP1 is a lipoprotein receptor and is of 

particular interest as it interacts with NMDA glutamate receptors on neurons providing 

further support for a role of the glutamatergic system in migraine [176]. 

 

The most recent GWAS study has identified susceptibility loci for MO [181]. This was the 

first migraine GWAS which focused on MO as a pose to MA. The study examined 2,326 

migraineurs from headache centres in Germany and the Netherlands, with 4,580 population 

matched controls. The top 12 loci were then repeated in a replication study involving 4 

independent clinic-based European MO samples in a total of 2,508 cases and 2,652 controls. 

The MA susceptibility loci TRPM8 and LRP1 identified in the previously mentioned GWAS 

were replicated and therefore found to also be significantly associated with MO [178]. In 

addition SNPs located in the MEF2D gene (1q22) and near the TGFBR2 gene (3p24) showed 

highly significant association in both the discovery and replication datasets. Weaker 

association was also found for SNPs at the PHACTR1 and ASTN2 loci. 
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The MEF2D gene encodes for myocyte enhancer factor 2D which is a transcription factor 

highly expressed in brain tissue and responsible for regulation of neuronal differentiation. 

Activation of this transcription factor has also been shown to restrict the number of excitatory 

synapses lending evidence to the theory that dysregulation may affect neuronal excitatory 

neurotransmission [182]. TGFBR2 is also involved in regulation of cell proliferation and 

differentiation and encodes for a serine-threonine kinase. In a large family it was found that a 

missense mutation in TGFBR2 (p.Arg460His) caused monogenic familial aortic dissection 

along with migraineous headaches in 11 of out the 14 affected probands [183]. 

 

In summary genome wide studies in large case-control cohorts have provided evidence 

largely for neural and vascular mechanisms in the pathogenesis of migraine. 

 

Genomewide Pedigree Studies 

Families showing strong heritability of migraine provide unique advantages that cannot be 

replicated in outbred populations. In particular it is expected that families will have reduced 

heterogeneity in the variants that are functionally relevant to migraine susceptibility within 

their family. Although the caveat to this is that due to the relatively high prevalence of 

migraine in the general population (~12 %) it is often difficult to obtain a pedigree for study 

where migraine inheritance has not been moderately complicated by migraine affected 

spouses marrying into the family potentially contributing different susceptibility variants. 

Another potential advantage is that families allow for a small degree of control over 

environmental factors such as lifestyles and diet particularly where the family unit has been 

maintained in a defined geographical locale [184].  
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Linkage studies of multigenerational pedigrees have been successful in identifying several 

migraine susceptibility loci across the genome.  Key loci that have received considerable 

attention include 19p13 [185, 186], which encompasses a region that codes biologically 

plausible genes including CACNA1A (FHM1), INSR, NOTCH3 and LDLR; 15q11-q13 [187], 

which contains a cluster of genes encoding GABA receptor subunits; and Xq24-28 [186, 188, 

189] which contains another cluster of genes encoding GABA subunits, as well as a number 

of GRIA subunits. In addition several of these loci have been identified using a number of 

independent families and some, such as the regions on Chromosome 4 – 4q21 [190] and 4q24 

[191], have been identified as overlapping regions. However, perhaps due to the genetic 

heterogeneity of migraine as well as its diverse clinical presentation none of these loci have 

had causative genes conclusively identified within them. 

 

A final genomewide pedigree approach that has been employed is analysis of the Norfolk 

Island genetic isolate where migraine prevalence is observed at 25 % and heritability has been 

estimated as 0.53. A pedigree based GWAS implicated a SNP in the Zinc Finger Protein 555 

gene of unknown function. Further analysis involving biological prioritisation implicated 

SNPs within the neurotransmitter-related ADARB2, GRM7 and HTR7 genes [192]. In addition 

risk haplotypes at the Xq12 region encoding the HEPH and VSIG4 genes were also identified 

in this genetic isolate and showed replication in a large independent migraine cohort [193]. 

 

Overall pedigree based studies have provided a means to direct research to targeted regions of 

the genome. While identification of causative genes are still pending, this is likely a result of 

genetic and clinical heterogeneity in the samples being used to replicate these linkages and 

identify the genes. However, as the era of sequencing advances, it will be possible to 

reconsider these regions in smaller populations that display greater homogeneity in migraine 
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presentation using an approach that can interrogate the region at greater depth and coverage 

than current candidate gene studies.  

 

Current methods for diagnosis and treatment of migraine 

For individuals suffering from migraine attacks or migraine like symptoms it is recommended 

to see a general practioner (GP) who can make an initial assessment. Based on the patient’s 

symptoms and family history as well as the severity of the presented condition the GP will 

either prescribe some basic drugs or make a referral to a neurologist as necessary. In some 

cases it may be deemed necessary to rule out other possible causes by making use of 

diagnostic tests such as a computerised tomography (CT) or magnetic resonance imaging 

(MRI) scan and in some circumstances a spinal tap. Sub-types of migraine are diagnosed 

according to criteria as set out by the International Headache Society. 

 

Once a diagnosis has been made there are a plethora of drugs available for the treatment of 

migraines. There are two main categories of drugs namely preventative and pain-relieving. 

Some of the most common drugs prescribed to curb a migraine attack once the pain has 

already begun (preventative drugs) include anti-algesics such as ibuprofen, acetaminophen, 

paracetamol, triptans, ergotamine, anti-nausea medications, opiates and dexamethosone. In 

cases where a patient suffers from severe migraines on a regular basis preventative 

medication may be prescribed. These drugs are taken on a daily basis and include 

cardiovascular drugs such as beta blockers and calcium channel blockers, anti-depressants, 

anti-seizure drugs, cyproheptadine and botulinum toxin type A.  Unfortunately many of these 

drugs are only effective for a percentage of patients. Many individuals who suffer from 

migraine attacks do not receive adequate treatment and therefore development of new 
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therapeutics is of importance. Another downfall of many medications is their side effects 

which can be severe for some individuals. Commonly prescribed medications are listed in 

Table 2 below. 
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Table 2: Commonly prescribed drugs used to treat migraine  

CATEGORY Drug Name Side Effects 
Pain Relieving   
Anti-algesics Ibuprofen 

Acetaminophen 
Indomethacin 
Excedrin (acetaminophen, aspirin 
and caffeine combination) 

Stomach ulcers 
Gastrointestinal bleeding 
 Re-bound headaches 

Triptans* Sumatriptan 
Rizatriptan 
Almotriptan 
Naratriptan 
Zolmitriptan 
Frovatriptan 
Eletriptan 
Treximet (sumatriptan and 
haproxen sodium combination) 

 

Ergots Migergot 
Cafergot 
Dihydroergotamine 

 

Anti-nausea Metoclopramide 
Prochlorperazine 

 

Opiates Codeine Addictive 
Dexamethasone  Steroid toxicity  
Preventative   
Cardiovascular  Propranolol (Beta blockers) 

Verapamil (Calcium channel 
blocker) 
Lisinopril (Anti-hypertensive) 

Dizziness,  
Drowsiness  
 Light headedness 

Anti-depressants Amitriptyline 
Nortriptyline 
Protriptyline 
Venlafaxine 

 

Anti-seizure Valproate 
Topiramate 
Gabapentin 
Lamotrigine 

nausea and vomiting, 
diarrhea, cramps, hair loss, 
and dizziness 

Cyproheptadine   
Botulinum toxin type A    
*not suitable for patients who are at risk for stroke or heart disease 
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The Mitochondrial Genome 

Mitochondria are organelles found in eukaryotic cells, including all mammalian cells and 

function primarily to produce ATP via the oxidative phosphorylation chain. Human 

mitochondrial DNA occurs as a distinct set of DNA, apart from the nuclear DNA found 

within the nucleus of each cell. Each organelle contains its own genetic system capable of 

replication, transcription and translation [194]. Mitochondria range from 0.5 to 10um in size 

and are thought to originate from an endosymbiotic relationship with a bacterium in our 

distant evolutionary history[35]. The genome is a multi-copy, circular dsDNA molecule 

similar in structure to the bacterial genome. The number of copies found in each cell depends 

on the cell type, with liver and muscle cells containing the highest densities of mitochondria, 

to cater for their high energy needs. As many as several thousand mitochondria have been 

found per cell in muscle and neural tissues. 

 

The mitochondrial genome is significantly smaller than the nuclear genome, containing only 

16.6 kb of DNA which encodes for a total of 37 genes [195]. Of these genes, 13 are protein 

coding and encode polypeptides of the oxidative phosphorlylation pathway. The other genes 

encode RNAs involved in translational functions with 2 genes encoding for rRNAs and 22 for 

tRNAs. A control region or D loop enables the start of transcription and mutations within this 

region have been used to track human migration patterns through haplogroup combinations 

found along our ancestral lineages as shown in Figure 4 below. 
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Figure 4: World map showing proposed human migration patterns according to the 
“Out of Africa theory” 

  

Taken from http://mrbarlow.wordpress.com/2011/05/page/2/ 

Arrows indicate the initial migration thought to have occurred out of Africa approximately 100 

000 years ago, followed by subsequent migrations into Europe and Asia. Arrows indicate the 

direction of human migratory patterns and time estimates for each major migration event.  

 

Since mitochondrial DNA does not undergo recombination and is inherited exclusively along 

the maternal lineage, any changes that occur in the DNA sequence can be tracked through 

thousands of generations. By connecting maternal lines in living people from all over the 

world, we can all trace our ancestry back to a mitochondrial Eve who lived approximately 

150 000 years ago in Africa [194, 196]. Furthermore, all European lineages can be traced 

back to seven women who lived in a period dated to the first major human migration out of 

Africa [197]. This molecular evidence in conjunction with archaeological finds has made the 

“Out of Africa” theory the one that most scientists subscribe to. This theory states that all 

humans originated from Africa and that two major migrations, one 70 000 years ago and 

another more recently 35 000 years ago resulted in population of the rest of the globe. 
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Evolution from these time points onwards explains much of the genetic variability currently 

found between different ethnic groups [198]. While this is the most widely accepted theory 

concerning human evolution, opposition does still exist within some groups of scientists who 

have alternative views. 

 

The basic structure and organisation of the mitochondrial genome is shown below in Figure 5.  

 

Figure 5: Structure of the Mitochondrial Genome 

                                           

From: Inna Shokolenko, Susan LeDoux, Glenn Wilson and Mikhail Alexeyev (2011). 

Mitochondrial DNA Damage, Repair, Degradation and Experimental Approaches to Studying 

These Phenomena, DNA Repair - On the Pathways to Fixing DNA Damage and Errors, 

Francesca Storici (Ed.), ISBN: 978-953-307-649-2, InTech, Available from: 

http://www.intechopen.com/books/dna-repair-on-the-pathways-to-fixing-dna-damage-and-

errors/mitochondrial-dna-damage-repair-degradation-and-experimental-approaches-to-

studying-these-phenomena Each of the functional elements of the mitochondrial genome are 

shown above with arrows indicating the direction of transcription. Shown are 37 genes, 13 

protein coding, 2 encoding rRNAs and 22 encoding for tRNAs.  
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Despite the fact that the mitochondrial genome encodes for so few proteins, thousands of 

proteins are still found within the mitochondria. The rest of the proteins are encoded by the 

nuclear genome and are transported into the mitochondria via membrane receptor proteins. 

MitoProteome is a database which records all known nuclear encoded mitochondrial proteins 

and is curated on an ongoing basis. Currently 780 known nuclear encoded mitochondrial 

proteins are listed, with an additional 492 listed as putative mitochondrial proteins [199, 200]. 

These 1000+ proteins are targeted to the mitochondria and sorted to the different 

mitochondrial sub compartments following translocation through the mitochondrial 

membranes. Separate translocases in the outer (TOM complex) and inner (TIM complex) 

membrane assist in identifying pre-proteins and concurrently transporting them across the two 

membranes. Factors in the cytosol as well as molecular chaperones in the matrix assist in this 

process [201].  
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Figure 6: Illustration of the TOM Complex involved in import of nuclear encoded 
proteins into the mitochondria. Adapted from [201] 

 

The phospholipid membrane found surrounding all cells is depicted by a green circle 

representing the phosphate head and double lines representing the hydrophobic tails. Each sub-

unit of the TOM complex is shown with geometric shaded shapes and labelled accordingly. The 

TOM complex assists with identification of pre-proteins that need to be imported into the 

mitochondrial matrix for further processing and downstream pathways. This is essential for 

mitochondrial function and importing nuclear encoded proteins in this way allows the majority 

of functional molecules to perform their designated duties.  

 

New evidence suggests that regulators of gene expression including miRNAs are also 

imported into the mitochondria. A recent study showed that miRNAs which are already 

known to be transcribed within the nucleus and undergo processing and maturation in the 

cytosol also localise to the mitochondria. The study found 13 miRNAs to be significantly 
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enriched in the mitochondria and the authors hypothesize that post-transcriptional regulation 

via miRNAs could be a plausible mechanism to alter expression in response to metabolic 

conditions of the cell [202]. Two of the miRNAs namely miR-1974 and miR-1977 mapped to 

the mitochondrial tRNA and rRNA genes, suggesting that not all mitochondrial miRNAs 

originate from the nucleus. As is the case for proteins, it is likely that a combination of 

mitochondrial and nuclear genes are involved in the production of miRNAs which are 

involved in regulation of mitochondrial function.  

 

 Inheritance of Mitochondria 

Mitochondrial DNA is passed exclusively along maternal lineages as illustrated in Figure 7 

and previously discussed in the introduction [203]. This clear mode of inheritance has aided 

researchers in identifying causal variants involved in mitochondrial disorders through family 

linkage studies. However, as is the case for nuclear inherited variants, mitochondrial diseases 

can be Mendelian or complex. Most complex mitochondrial diseases involve nuclear encoded 

genes in addition to mitochondrial variants and can show variable expressivity with different 

levels of penetrance, even in the same family. Some of the variable expressivity can be 

explained by heteroplasmy (discussed in detail in section 2.2) and an age related 

accumulation of DNA changes [194]. 
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Figure 7: Mode of inheritance for mitochondrial DNA 

 

Coloured circles show the pattern of mitochondrial inheritance, with mitochondria passed 

directly down the maternal lineage. In each generation it can be seen that all offspring from the 

same female line exhibit identical mitochondria which are then successively passed down to both 

sons and daughters. Married in individuals present new mitochondrial lineages, but are only 

passed on through the female line. 

 

As we age the number of somatic mtDNA mutations increases. This is largely due to the 

higher mutation rate of the mitochondrial genome which is estimated to be around 100 times 

higher than the nuclear genome [204]. However as the number of mtDNA mutations 

increases, so does the rate at which free radicals are generated which further damages the 

mtDNA and can lead to clonal proliferation of the mutated mitochondria over time. 

Mitochondria exist as heterogeneous populations sometimes even within the same cell. Once 
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a ‘threshold’ level of mutant mitochondria is reached, mitochondrial disease may become 

clinically apparent depending on the functional effect of the mutation [194, 205]. 

 

 Heteroplasmy 

Each mitochondrion contains an average of five to ten mitochondrial genomes and up to 

several thousand mitochondria can be found in an individual cell [194]. This may give rise to 

a heterogeneous mixture of mitochondria and concurrently any particular variant may be 

present in only a proportion of the mitochondrial population. This is also true for disease 

causing mutations and the phenomenon is termed heteroplasmy. The percentage of 

mitochondria which contain a particular pathogenic mutation depends on both the proportion 

of wildtype versus mutant copies inherited upon fertilisation and also the accumulation of 

somatic mutations with age. Usually a threshold proportion of mutant versus wild type 

mitochondria needs to be exceeded in order for an individual to present with clinical disease 

symptoms [31]. This value varies depending on the mutation and functional effect.  

 

Due to this genetic heterogeneity of complex mitochondrial diseases; variable expressivity, 

variable penetrance and large phenotypic heterogeneity are observed even within families. 

This is further complicated by environmental interactions making it difficult to identify 

causative genetic variants and to provide accurate phenotypic predictions for complex 

mitochondrial diseases. Thus far some of the methods used to identify mitochondrial genetic 

variation include electrospray mass spectrophotometry, PCR based amplification, restriction 

fragment length polymorphism (RFLP) analysis and sequencing [206].  
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Due to heteroplasmy it can be difficult to make a definitive diagnosis using some of these 

more traditional methods. Next generation sequencing allows for the generation of multiple 

sequencing reads covering the same region. With an increase in coverage depth, heteroplasmy 

can be determined more accurately. MV Zaragoza showed that 10-20 x coverage is sufficient 

to detect homoplasmic variants, while 200 x coverage is needed to detect up to 10 % 

heteroplasmy [207]. To detect heteroplasmic variants at a lower frequency much deeper 

sequencing is required. Coverage needed to detect heteroplasmy >5 % and as low as 2 % is 

estimated to be 1500 x and 15 000 x respectively [208, 209]. 

 

The full length mtDNA consensus sequence is currently available and is used to help 

assemble random reads generated by mass parallel sequencing and to further aid in variant 

identification. Just like for nuclear DNA studies, mtDNA studies require large cohorts of 

cases and controls to detect small to moderate associations between mtDNA variants and 

complex disease. 

 

 Function of Mitochondria 

The known primary function of mitochondria is to produce ATP via the electron transport 

chain. ATP is used to power all cellular processes that require energy. Other main functions 

include production of reactive oxygen species (ROS), regulation of apoptosis and calcium 

homeostasis [35]. Neurons are heavily reliant on mitochondria to produce sufficient ATP and 

also to help regulate intracellular calcium levels [210]. Any pathogenic mutations affecting 

mitochondrial function can impair energy metabolism and ion homeostasis in neurons thus 

resulting in a range of downstream abnormalities, the full extent of which is not characterised 

or fully understood yet. Similarly accumulating damage from oxidative stress during the 
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aging process can render neurons vulnerable to neuronal degenerative diseases such as 

Parkinson’s disease and Alzheimer’s [211, 212]. 

 

One of the largest groups of mitochondrial disorders and perhaps the best defined are the 

mitochondrial myopathies and encephalomyopathies. Some of the most common syndromes 

are listed in Table 3 below. The mitochondrial myopathies comprise those diseases which 

cause muscle weakness and wasting with severity ranging from progressive weakening to 

death [194]. As mentioned previously muscle and neural tissues are the most sensitive to 

mitochondrial dysfunction, as they have the highest energy requirements out of all the body’s 

tissues. The combined effects of energy shortage and toxin accumulation give rise to many of 

the symptoms of mitochondrial myopathies which include muscle weakness, exercise 

intolerance, heart failure, movement disorders and droopy eyelids [213]. 

 

Table 3: Summary of the common mitochondrial myopathies and encephalomyopathies 

Disease Abbreviation Confirmed Causative 
Mutations 

Reference 

Kearns-Sayre syndrome KSS 5 kb deletion, 12315 G>A [214, 215] 
Leigh syndrome LS 3243A>G, 5537insT, 

8363G>A 
[216-218] 

Mitochondrial encephalomyopathy, 
lactic acidosis and stroke like episodes 

MELAS 583G>A, 3243A>G, 
3256C>T, 3271T>C, 
3291T>C, 4332G>A, 
12147G>A 

[216, 219-
225] 

Myoclonus epilepsy with ragged red 
fibres 

MERRF 8344A>G, 8356T>C, 
8363G>A, 12147G>A 

[225-228] 

Neuropathy, ataxia and retinitis 
pigmentosa 

NARP 8993G/C [229] 

Progressive external opthalmoplegia PEO 3243A>G, 4298G>A, 
4308G>A, 5703G>A, 
12315G>A 

[215, 230-
233] 

Leber hereditary optic neuropathy LHON 11778A, 14484C, 14459A, 
3460A 

[234] 

Deafness DEAF 1494C>T, 1555A>G, 
8363G>A 

[235-237] 
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Mitochondrial encephalomyopathies include a myopathy component in addition to a 

neurological aspect to the disease. Additional symptoms include hearing impairment, 

migraine-like headaches, seizures and in severe cases stroke like episodes [238]. Some of 

these symptoms can be controlled through prescription medication, but many individuals 

present with mitochondrial disease before the age of 20 and due to the progressive nature of 

the disease it can be fatal in many cases [239]. As briefly mentioned earlier, a reduction in 

oxidative phosphorylative activity can cause other severe neurological diseases later on in 

life, a process which is likely linked to aging and an increase in reactive oxygen species over 

time. Alzheimer’s and Parkinson’s disease affect many elderly people worldwide with 

devastating phenotypic characteristics. The risk of developing this disease is much greater if 

the proband has an affected mother, thus strengthening the hypothesis that mitochondrial 

dysfunction plays a role in susceptibility [194, 211]. 

 

Other common diseases that mtDNA variants have been associated with include cancer, 

diabetes, stroke, cardiomyopathy, mental retardation, migraine and male infertility [195]. 

Studies have found that there is an increase in the production of reactive oxygen species 

during neoplastic transformation for many types of cancer, a process which is known to 

damage the mitochondrial genome. This is thought to increase the rate at which somatic 

mutations occur within mitochondria promoting tumorigenesis. Given this finding some of 

these mutations have been proposed as being informative markers in early cancer detection. 

Mitochondrial mutations have been implicated in a wide range of cancers including breast, 

colon, oesophageal, endometrial, head and neck, hepatocellular, kidney, leukaemia, lung, 

melanoma, oral, prostate and thyroid cancer [194]. 
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 Mitochondrial Dysfunction and Migraine 

Several lines of evidence exist to suggest that mitochondrial dysfunction contributes to the 

pathogenesis of at least some sub types of migraine. The hypotheses are based on the idea that 

an impaired mitochondrial oxidative metabolism may contribute to the pathogenesis of 

migraine by interrupting proper nervous functioning. Brain and muscle are highly dependent 

on oxidative metabolism and are therefore the most severely affected tissues in the 

mitochondrial disorders. A variety of morphological, biochemical, imaging and genetic 

studies have provided evidence that mitochondrial dysfunction may play a role in migraine 

pathogenesis [35]. The female preponderance of migraine affected patients further 

strengthens the idea that mitochondrial genomic aberrations could increase migraine 

susceptibility. 

 

Generating an action potential is a process that requires large amounts of energy as Adenosine 

tri-phosphate (ATP) is used to restore ion gradients after the generation of synaptic and action 

potentials.  Even though the brain only makes up 2 % of our body mass, it accounts for at 

least 20 % of our energy expenditure each day [27, 28] therefore an adequate supply of blood 

glucose and oxygen is essential to sustain neuron function. Based on this information it is 

possible that an insufficient energy supply caused by mitochondrial dysfunction could 

predispose individuals to migraine attacks by lowering the cortical spreading depression 

threshold. By-products of energy metabolism including adenosine and lactate have been 

shown to directly induce increased blood flow to the brain [29, 30]. A change in blood flow 

such as has been documented during CSD is clearly an important factor of migraine attacks. 

Thus energy metabolism could influence migraine attacks via an accumulation or deficit of 

by-products.  
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Other neuropathic diseases which may share some pathways with migraine pathogenesis have 

been associated with mtDNA variants in a large number of studies. These diseases include 

encephalomyopathies such as MELAS, MERRF and Kearns-Sayre syndrome [31].  Given the 

co-morbidity of MA with stroke, the study of genes involved in MELAS are especially 

promising starting points. Other neurological diseases with mitochondrial associations 

including major depression, bipolar disorder and schizophrenia have also been shown to be 

co-morbid with migraine, strengthening the idea of shared pathways and susceptibility 

variations. 

 

Mitochondria and Calcium 

A rare form of migraine, familial hemiplegic migraine type 1(FHM1) is caused by mutations 

in the CACNA1A gene. Electrophysiological studies have shown that either an increased or 

decreased influx of Ca2+ ions into cells caused by mutations in the CACNA1A gene has an 

effect on the depolarised state of cells [32].  It has been shown that FHM1 mutations can 

produce gain-of-function Ca (V) 2.1 channels and as a result initiate cortical spreading 

depression which is the phenomenon thought to underlie migraine aura. 

 

Other functional studies have examined the role calcium ions play in increased blood flow to 

the brain and have shown that an increased calcium concentration within astrocytes causes 

vasoconstriction during cortical spreading depression. This process is mediated by a 

phospholipase A2 derivative (an arachidonic acid metabolite) [33, 34]. Since mitochondria 

are involved in calcium ion homeostasis, a process essential for the normal functioning of 

neurons, then it is logical that an imbalance of calcium ions could lead to an increased 

susceptibility to migraines. Hence variants found in mitochondrial DNA which affect calcium 

homeostasis could show association with migraine sufferers. 
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Morphological Studies 

A simplistic approach to identifying causes of migraines is to examine neuronal tissue of 

affected patients in order to try and identify any histological differences which may be 

pathogenic. Thus far ethical reasons have somewhat limited histological studies to accessible 

tissues such as blood. It has been shown that non-actively diving tissues are most affected by 

structural mitochondrial abnormalities. These tissues include skeletal muscle and neurons 

[39, 240]. Examination of muscle tissue has shown a correlation between abnormal 

mitochondria and migraine sufferers. Ragged red fibres and cytochrome-c-oxidase fibres have 

been found in the skeletal muscle of some migraine patients [35]. This association was only 

observed for the more severe cases such as those patients affected by migraine with prolonged 

aura and FHM patients [36-38]. Ragged red fibres (RRFs) have an abnormal number of 

sacrcolemmal mitochondria [39], while cytochrome-c-oxidase (COX) negative fibres often 

have increased fat concentrations  [40, 41]. COX negative fibres are found in most patients 

suffering from mitochondrial encephalomyopathies and are considered to be histologically 

characteristic of the disease [31, 39, 42, 43].                                                                  

 

Examination by electron microscope has revealed clusters of giant mitochondria with 

paracrystalline inclusions in migraine sufferers [36, 44].  Additional ultra-structural changes 

of the mitochondria in affected individuals have also been recorded and may reflect 

alterations caused by impaired oxidative metabolism. With particular reference to ultra-

structural changes, accumulation of subsarcolemmal mitochondria have been found in muscle 

fibres of patients suffering from migraineous stroke (MS) [45]. Despite many promising 

morphological associations, pathogenic mtDNA variations remain to be detected. A more 

detailed investigation into this area is needed in order to produce significant results. Most 
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studies have been limited by small number of study participants and examination of larger 

cohorts in combination with DNA testing may produce significant results. 

 

Biochemical Evidence 

A number of studies dating as far back as 1973 have shown that there is evidence supporting 

the hypothesis that a deficit in the muscular and/or cerebral mitochondrial energy metabolism 

is significantly associated with migraine attacks. Analysis of intermediates in the oxidative 

phosphorylation and Krebs cycle pathways have demonstrated this relationship. Physiological 

studies have shown that lactate levels in the cerebral spinal fluid (CSF) are increased 

compared to normal levels during migraine attacks [44, 46, 47].  

 

Elevated levels of lactate in the CSF is considered to be an indicator of a defective oxidative 

metabolism as lactic acidosis is indicative of an impaired utilisation of pyruvate in the Krebs 

cycle [48]. This finding has led to further study of other metabolite intermediates and 

enzymes involve in the oxidative phosphorylation pathway and also the Krebs cycle. These 

compounds include pyruvate, monoamine-oxidase (MAO), succinate-dehydrogenase, NADH 

cytochrome-c-reductase, succinate-cytochrome-c-reductase, NADH-dehydrogenase and 

citrate synthetise [36, 49, 50]. In each study the findings indicated a correlation between 

impaired mitochondrial metabolism and migraine attacks. A more recent study further 

showed a correlation between carnitine deficiency and MA. In these patients treatment by 

carnitine replacement resulted in lessening of headache severity and frequency [51, 52]. 

 

Phosphorus magnetic resonance spectroscopy studies 

Phosphorus magnetic resonance spectroscopy is an imaging technique which allows 

researchers to non-invasively investigate brain energy metabolism in vivo [53]. It has proven 
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to be a very useful tool in examining altered oxidative phosphorylation metabolism in 

migraine sufferers. The functionality of mitochondria is assessed by measuring intracellular 

levels of phosphocreatine (PCr), inorganic phosphate (Pi) and adenosine diphosphate (ADP). 

Under anaerobic conditions or when mitochondrial enzymes are near saturation, additional 

energy is generated by transferring Pi from PCr to ADP to form ATP. This reaction is 

catalysed by creatine kinase and the efficiency at which it takes place is considered to be a 

measure of mitochondrial functionality. Thus by calculating the PCr/Pi ratio a measurement 

of the energy status of the cell is obtained. The lower the ratio, the less energy is available in 

the cell [54-56]. An additional measure of oxidative metabolism is the V/Vmax ratio. This is 

indicative of the velocity of oxidative metabolism in relation to its maximum capability. A 

further method of monitoring metabolism is the measurement of intracellular pH [57]. As 

mentioned previously lactic acidosis is indicative of inefficient pyruvate metabolism. 

 

A large number of studies investigating mitochondrial metabolism in MA, FHM, MPA, MS 

and the related disorders CPEO, MELAS, LD, MERRF, LOHN, MS, MM and RP have all 

identified similar patterns of metabolic abnormalities. In almost all cases a low PCr/Pi ratio 

indicating low availability of free energy was observed. Increased ADP indicating a lower 

energy reserve in the brain cells and an increased V/Vmax ratio were also recorded. An 

increase V/Vmax ratio is indicative of a defective respiratory chain that supplies insufficient 

energy to meet the cell’s demands.  This pattern has suggested to be typical of mitochondrial 

disorders [58-62]. However whether these changes are caused by a primary mitochondrial 

dysfunction or are merely a side effect of brain hyperexcitability remains unclear [56, 63]. 
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Genetic Studies 

Molecular genetic studies investigating the potential role of mitochondrial variation in 

migraine susceptibility have primarily focused on the mtDNA mutations that are strongly 

implicated in the mitochondrial encephalomyopathies [35]. These include the mitochondrial 

encephalopathy, lactic acidosis and stroke-like episodes or MELAS mutations (mt 3243 A>G 

and mt 3271 T>C), the  myoclonus epilepsy with ragged red fibres or MERFF mutation (mt 

8344 G>A),  Kearns-Sayre syndrome common 4977 bp deletion and the Leber hereditary 

optic neuropathy or  LHON mutations [38, 45, 241-247]. No significant associations were 

found in any of these studies except for one false positive finding in a Japanese study.  Given 

that the largest patient sample size used was 47 this may have been a limiting factor. Similar 

to nuclear DNA studies, mtDNA studies require large cohorts of cases and controls to detect 

small to moderate associations between mtDNA variants and complex disease. Very large 

sample sizes are needed in order to obtain statistically significant results, especially for 

mitochondrial variants which can be rare and occur at very low frequencies of the population. 

Therefore future investigation of these already studied variants may be required. 

 

One previous study showed a positive association between one of the MELAS causative 

mutations, mt 11084 A>G and migraine in a Japanese population, but this was later shown to 

be an artefact of ethnicity. The mt 11084 A>G change was further investigated by the same 

research group and then determined to be a common polymorphism in the Japanese 

population and not associated with migraine [241, 248]. Since this study other research has 

shown significant association between mitochondrial variants and migraine susceptibility. 

  

Finnila et al found that patients with a rare mt 4336 A>G change, are at a significantly 

increased risk of developing sensorineural hearing loss and/or migraine in later life [249]. A 
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total of 13 individuals out of a patient cohort of 1072 were found to have the rare variant, 

while only 3 control samples out of 575 included the study of neurodegenerative disorders as 

well as diabetes, epilepsy, hearing loss, stroke, white matter disease and ataxia. Upon 

statistical analysis it was found that only migraine and sensorineural hearing loss were 

significantly associated with the rare mt variant at a 95 % confidence interval. However of the 

13 only 2 patients with the rare variant had migraine and of the 575 cases tested, only 42 were 

defined as migraine sufferers. Thus the rare variant was detected twice in a small cohort of 

migraine sufferers. Full mitochondrial genome sequencing was performed for 10 of the 

patient samples and all 3 controls that had the mt 4336 A>G change and it was found that the 

only variant that all 10 patients had in common was the mt 4336 A>G change.   

 

Recently Zaki showed significant association between the mitochondrial variants mt 16519 

C>T and mt 3010 G>A in haplogroup H cyclic vomiting syndrome patients compared to 

controls. The first variant identified, mt 16519 C>T, was further found to be significantly 

associated with migraine, with 26 % of migraineurs carrying the variant compared to 1.6 % of 

controls. The corresponding odds ratio of 15 illustrates a very high disease association [250]. 

The chronic vomiting syndrome cohort consisted of children recruited from the chronic 

vomiting syndrome (CVS) database of North America, whereas the migraine cohort was 

made up of adult affected migraine patients. A further study found that mt 16519 C>T and mt 

3010 G>A are only associated with CVS in paediatric onset cases, with adult onset cases 

showing no association [251]. 

 

Given the biological plausibility and presented evidence it is likely that other mitochondrial 

variants play a role in migraine susceptibility. Many studies have been limited by sample size 

and future studies which comprehensively assess mitochondrial variation in combination with 
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haplogroup status would be useful in advancing this field. It has been shown previously that 

entire haplogroups may harbour mutations which are disease causing. Majamaa found that the 

U mtDNA haplogroup constitutes a risk genome for migraine associated stroke. It was found 

that 83 % of Majamaa’s patient cohort had the U haplogroup [45]. Interestingly haplogroup U 

is more than 30 fold more common among the Finnish population as found by Finnila et al 

than for any other European population [252]. Further examination of haplogroup status and 

migraine susceptibility may prove useful.  

 

Norfolk Island Population 

Following a mutiny aboard the British Royal Navy ship HMS Bounty on 28 April 1789, 

mutineers settled Pitcairn Island in an effort to avoid detection by the British Navy [71]. 

When the population grew too large for this small island 193 people from Pitcairn Island, all 

descended from 9 ‘Bounty mutineers’ and 12 Tahitian women, moved to the uninhabited 

Norfolk Island in 1856 [72]. Due to geographical isolation this population has largely 

remained a genetically isolated population making it an ideal population for the study of 

complex multi-factorial diseases such as cardiovascular disease and migraine [73].  

 

Bellis conducted a study which involved recruiting 602 individuals participating in the 

Norfolk Island Health Study and obtaining consent for participation in genetic research 

studies. Ethical clearance was initially obtained from the Griffith University Human Research 

Ethics Committee for the study and subsequently ethical clearance was granted by the 

Queensland University of Technology (QUT). Blood samples were collected from each 

individual and analysed for plasma chemistry and additional samples were stored at -80 ⁰C 
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for subsequent DNA extraction [253]. Phenotype information was also collected for each 

individual including anthropometric measures such as weight, height, waist circumference, 

hip, body fat and blood pressure.  

 

In addition to this information participants were required to fill out detailed medical history 

questionnaires and provide information about family medical histories, lifestyle choices and 

existing medical history. Multiple complex disorders were assessed for each individual 

including cardiovascular disease and migraine. Each participant was allocated a number 

which corresponds to medical questionnaires, blood samples, DNA and other relevant 

information pertaining to each individual. A database was set up containing all phenotype 

information for each study participant which matches the respective DNA sample [72]. Since 

this original study additional participants have been recruited and included in the Norfolk 

Island DNA population at the Genomics Research Centre (GRC) situated within the Institute 

for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT). 

For many samples multiple collections have also been conducted allowing for retrospective 

studies. 

 

Pedigree Structure 

Extensive family histories have been documented and maintained by Norfolk Island 

inhabitants and more recently genealogists. A database exists which contains detailed 

information about almost the entire Norfolk Island population and in 2005 the pedigree 

included 6379 individuals comprising 2185 families dating back to the original founders over 

an 11 generation period [71]. The database is maintained in a popular genealogy program 
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Brother’s Keeper (Version 6.0, Rockford, Mich, USA) [74]. Other studies involving analysis 

of complex pedigrees found statistical analysis to be challenging with demanding computer 

resources required [254]. Due to the many inbreeding loops found in Norfolk’s early 

generations along with the size and complexity of the pedigree it has necessitated the need to 

split the large 6500 individual pedigree into smaller branches. A core pedigree containing the 

lower generations and consisting of members originating directly from the population 

founders has been constructed using a peeling algorithm in the pedigree database 

management system PEDSYS. This pedigree has been used in previous studies examining 

risk traits for complex disease [75, 76]. 

 

The most up to date core pedigree structure includes 1388 individuals as can be seen in 

Figure 8. In this figure the original Polynesian mtDNA lineages are coloured and the filled 

symbols represent migraine sufferers [77]. Contained within this pedigree is a large migraine 

affected family (n=21 individuals, 7 migraine sufferers) which is of particular interest because 

the family members are expected to have Polynesian mtDNA haplotypes inherited from the 

original founders and the family spans four generations.  
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Figure 8: Norfolk Island Core Pedigree Structure 

The large and complex Norfolk Island pedigree is depicted above with individuals represented by coloured pixels. Relationships between individuals within the pedigree are shown by connecting lines. As can be seen this is a multi-generational, large and 

complex pedigree originating from a small number of founding individuals. Multiple connections between individuals demonstrate the high degree of relatedness within the pedigree and clearly demonstrate a unique genetic admixture with reduced genetic 

heterogeneity.
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 Heritability 

Heritability is the proportion of a trait or disease phenotype which can be attributed to genetic 

variation. The official definition of heritability is the “proportion of phenotypic variation (VP) 

that is due to variation in genetic values (VG).” Genetic values (VG) include the combined 

effect of all loci as well as interactions within (dominance) and between (epistasis) loci. Two 

different basic heritability values can be calculated namely broad-sense and narrow-sense 

heritability. Broad-sense heritability, or H2 is defined as the proportion of phenotypic 

variation due to genetic values which include effects of dominance and epistasis (H2 = VG/VP) 

while narrow-sense heritability only considers genetic variation due to additive genetic values 

(h2 = VA/VP ) [74].  

 

For human diseases and other complex traits heritability can be estimated from the 

concordance rate between monozygotic and dizygotic twins [64]. More complex models 

which examine the correlation of offspring and parental phenotypes can be used to estimate 

heritability via complex statistical methods. These are employed when phenotypic measures 

are available on individuals with a mixture of relationships, both within and across multiple 

generations, or when there are unequal numbers of observations per family [65]. Heritability 

is a population parameter and is population specific which means that one value cannot be 

used to predict heritability across all population groups. Population specific factors such as 

allele frequencies, the effects of gene variants, and variation due to environmental factors 

effect heritability and as a result heritability needs to be calculated for each specific pedigree 

[255]. 
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A number of twin studies in migraine have shown that the heritability of migraine ranges 

from 40-60 % and that the contribution of non-shared environmental factors is 35-55 %. 

However, little significance has been found between migraine phenotype and shared 

environmental factors [66-68]. Heritability for migraine as well as for cardiovascular disease 

and metabolic syndrome has been shown to be significantly higher in the Norfolk Island 

population than in the local outbred Australian Caucasian population. This makes genetic 

studies utilising the Norfolk DNA stocks valuable in identification of disease causative 

variants. 

 

Epigenetics 

Epigenetics refers to partially heritable alterations which influence gene expression, not due 

to changes in DNA sequence but rather as a result of higher structural modifications. There 

are three main systems involved in epigenetic structuring namely: methylation, histone 

modification and RNA-associated silencing [256]. It is well known that epigenetics plays a 

crucial role in gene regulation, growth and especially in development [257]. Any alterations 

in epigenetic state may result in inappropriate expression or silencing of genes and 

consequently lead to a myriad of downstream problems. These alterations are often chemical 

additions or removals of methyl or acetyl groups that result in a change to the chromatin 

conformation and consequently a change in gene expression. Alterations can be caused by 

either environmental factors or trigged by ageing processes. Research has shown that 

epigenetics plays a crucial role in the development of many cancers, but more recently the 

role of epigenetics in the development of other complex diseases including migraine has 

become an emerging topic [258, 259].  
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Methylation 

Methylation is the main form of epigenetic modification and occurs by the addition of a 

methyl group to the 5’ cytosine of CpG groups. This chemical reaction is initiated and 

maintained by DNA methyl transferases. The addition of methyl groups promotes a closed 

chromatin conformation and prevents transcription from taking place. The mechanistic action 

blocking the binding of transcription factors and other regulatory sequences such as enhancers 

occurs through the recruitment of MECP2 proteins which bind to methylated cytosines and 

attract histone de-acetylases (HDACs). HDACs in turn function to promote a closed 

chromatin formation. This closed conformation also prevents the transcriptome, a critical 

complex involved in DNA polymerase binding, from associating with the promoter site 

which further down regulates transcription.  In this way methylation in conjunction with other 

intricate pathways partly controls gene expression [260-262].  

 

Histone Modifications 

Histones form the basis of chromatin modelling, a process which is intricately linked with 

gene regulation. Chemical modifications which alter histone structure include acetylation, 

ubiquination, phosphorylation, sumoylation and methylation. Acetylation occurs when the H 

atoms of the free amino group on particular lysine residues at the N terminus of histone 

molecules are substituted with acetyl groups, thus reducing the positive charge of the histone 

and allowing the chromatin to unwind. DNA is negatively charged due to the phosphate 

group constituting the phosphate backbone and therefore when in close proximity to 

positively charged histones, the DNA is strongly attracted to the charge and is kept in a tight 

conformation. The reduction of this positive charge by the addition of acetyl groups allows 

the DNA to take on a looser conformation and thus makes it more accessible to transcription 

[263]. 
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 These reactions are catalysed by histone acetyl transferase enzymes. Activators and inhibitors 

are also known to be involved in gene regulation by manipulating these chemical reactions. 

Histones can be acetylated by activators promoting chromatin structure from a closed to an 

open configuration. The reverse can occur where inhibitors direct deacetylation of histones 

with the opposite effect. 

 

Ubiquitination is another type of chemical modification that can alter histone structure. 

Ubiquitin, a small protein consisting of 76 amino acids forms an internal branched chain with 

lysine of histone 2A in position 119. This reduces the positive charge of the histone, which 

promotes a more open conformation and allows more transcription to take place. 

Phosphorylation is yet another modification which produces an open chromatin structure and 

allows transcription to take place. The negative charges of the phosphate groups make the 

histones less positive, and repel the negatively charged DNA [264].  

 

 Combinations of chemical changes can also affect chromatin structure such as 

phosphorylation of histone residue H3 on serine 10 which promotes acetylation on the 

adjacent lysine 14 residue. De-methylation of lysine 9 is accompanied by phosphorylation of 

serine 10 and acetylation of lysine 14 which produces an open chromatin conformation. All of 

these modifications play a major role in genome regulation and are important for normal 

cellular functions like X chromosome inactivation and genomic imprinting. It has been 

contemplated that a histone code exists which can be read and interpreted by different cellular 

factors. Recent research is placing more emphasis on the role that these processes play not 

just in normal cell functioning, but also in the development of complex diseases [259, 263, 

265]. 
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RNA Associated Silencing 

It has been experimentally proven that transcription is widespread throughout the genome and 

is many fold higher than originally predicted. It is now clear that non-coding transcripts are 

abundant throughout many cell types and that they play an essential role in gene regulation. 

Non-coding RNAs are divided into several sub-classes and have been associated with 

important functions, most of which are regulatory in nature. Functions which have been 

associated with ncRNAs include transcriptional activation, gene silencing, imprinting, dosage 

compensation, translational silencing, modulation of protein function and binding as 

riboswitches to regulatory metabolites. More specifically it has been well established that 

anti-sense RNAs can bind to complementary regions in the genome, mediating RNA 

degradation and effectively silencing gene expression. RNA associated silencing and the role 

that this regulatory mechanism plays in disease is becoming an important research focus [266, 

267]. 

 

Epigenetic therapy 

The initial thinking behind developing epigenetic therapies is that if it is possible to 

chemically manipulate factors such as methylation, acetylation etc., then it may be possible to 

alter regions where aberrant changes have taken place in order to try and restore the original 

state. Many agents capable of altering both methylation and acetylation have been discovered, 

and the applications of these are currently being tested [256]. Agents include 5-azatine, 5-aza-

2-deoxycytidine, procainamide, and tea extracts. The compounds 5-azacytine and 5-aza-2-

deoxycytidine were initially used as cytotoxic agents, but their dual functionality has since 

been exploited by use in inhibition of methylation [268]. By inhibiting methylation in regions 

where aberrant hyper methylation has occurred, appropriate gene expression may be restored 
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[269]. The mechanism by which this happens is the conversion of nucleoside analogues to 

deoxynucleotide triphosphates which are substituted into replicating DNA in place of 

cytosine. DNA methyltransferases get trapped on DNA containing modified bases such as 

azacytosine, 5-fluorocytosine, pseudoisocytosine or zebularine, resulting in the formation of 

heritably de-methylated DNA. 

 

Targeting epigenetic mechanisms other than methylation could also be an avenue to pursuing 

novel drug targets. By understanding the importance of acetylation in epigenetic modification, 

it then follows that this modification process is also a good target to manipulate epigenetic 

status. The association between silencing and histone deacetylation, which is catalysed by 

histone de-acetylases (HDACs), has been well established. A growing number of small 

molecules have been designed to inhibit HDACs and thereby activate gene expression in 

regions where aberrant silencing has taken place.  

An immediate and logical potential problem associated with taking such an approach is the 

cytotoxic properties of the above mentioned compounds. However clinical trials indicate that 

low doses of these compounds may procure benefits which far surpass any cytotoxic effects. 

A new trial has shown that myeloid dysplastic syndrome and other leukaemias can be 

somewhat effectively treated using this approach [270]. It may even be possible to make use 

of tea and sponge extracts in place of harsh chemicals to reverse methylation [271]. Current 

trials are underway to test the efficacy of such compounds.  

 

Different HDAC inhibitors are being used intravenously or orally in several phase I and II 

cancer clinical trials, in which changes in histone acetylation have been documented. 

Depending on the outcomes of this research, it may be that epigenetic therapy could become 

the novel therapeutic so desperately needed for the treatment of many complex diseases, 
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including migraine. However some caution must also be used with these approaches as 

treatment must be specific to the target gene region. Global de-methylation would be far more 

detrimental than any benefits of treatment. It will therefore be important in the future to 

design therapies which can target individual enzymes/ genes and thus increase the precision 

of this type of approach. Despite the promise of miracles, there remains much work to be 

done before epigenetic therapies can become mainstream treatment plans [256, 272]. 

 

Mitochondrial Methylation 

Research interests in the relationship between nuclear DNA methylation, environmental 

exposures and disease outcome are well established. Epigenetic profiling has already become 

integrated into clinical practise for early diagnosis of cancer and as a molecular tool for 

determining cancer stages [273, 274]. Bisulphite sequencing and methylated DNA immune 

precipitation in peripheral blood have been used to demonstrate the presence of methylated 

cytosines in the human D-loop of mtDNA, proving that the mitochondrial genome is 

methylated. For the first time, it has been shown that there is a difference in mtDNA 

epigenetic status between healthy controls and those with disease, especially for 

neurodegenerative and age related conditions [275-277]. Changes in the level of 5-methyl 

cytosine have been detected in mitochondria isolated from neurons of patients with 

amyotrophic lateral sclerosis (ALS) compared to healthy controls [278]. While still remaining 

to be investigated it has been suggested that mtDNA methylation could play an important role 

in the aetiology of Alzheimer’s disease, Parkinson’s disease and dementia [277, 279]. It may 

not be such a stretch of the imagination then to conclude that investigating mitochondrial 

methylation in relation to migraine could be a novel and useful avenue. 
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A Multi-layered Approach 

For complex diseases where both a genetic and environmental component play an integral 

role in pathogenesis, it is becoming more important to develop models which factor in both of 

these components. Epigenetic changes which are so heavily influenced by the environment 

have been intricately studied in the nuclear genome. Recent evidence directly suggests a link 

between nuclear epigenetic changes and migraine and indirectly suggests that the emerging 

field of mitochondrial methylation could provide a piece of the answer for the complex 

question: what causes migraine? The systems biology approach, where multiple layers of 

information are integrated is becoming more important in complex disease modelling. 

Merging genomic, epigenetic, transcriptomic, proteomic and metabolomic data in order to 

provide a complete model is becoming a focus in biomedical research. Creative thinking and 

new approaches are needed to develop better treatment strategies for diseases such as 

migraine which have such a profound personal and economic impact.
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Chapter 3:  Investigation of Mitochondrial Variants by RFLP 

Chapter 3 outlines initial genotyping experiments carried out in an outbred migraine case-

control population investigating mitochondrial variants in relation to migraine susceptibility. 

This initial work was critical in terms of molecular genetic training, providing the basic 

knowledge and skills to continue with more complex aims and remains unpublished. This 

study follows on from a published study by Finnila et al which identified two variants within 

the mitochondrial genome which were found to be associated with migraine susceptibility. 

Given the limited sample size presented by Finnila et al, the aim of this study was to provide 

a more conclusive link between these variants and migraine by utilising a large migraine case-

control population with sufficient statistical power to detect variants with a small to moderate 

effect on disease susceptibility. 
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Introduction 

Migraine is a common neurological disorder characterised by debilitating head pain and an 

assortment of additional symptoms which can include nausea, emesis, photophobia, 

phonophobia and occasionally visual sensory disturbances.  Migraine is a complex disease 

caused by an interplay between predisposing genetic variants and environmental factors. 

Genes involved in neurological, vascular or hormonal pathways have all been implicated to 

play a role in predisposition towards developing migraine. All of these are nuclear encoded 

genes, but given the role of mitochondria in a number of neurological disorders and in energy 

production it is possible that mitochondrial variants may play a role in the pathogenesis of 

this disease.  

 

Few variants in the mitochondrial genome have so far been investigated in migraine, however 

one mitochondrial variant, an A to G substitution occurring at position 4336 of the 

mitochondrial genome has been associated with migraine in a previous study investigating a 

variety of disorders in relation to mitochondrial sequence changes [280]. The aim of this 

study was to further investigate this variant and determine whether the mt4336A>G is 

significantly associated with migraine in a large Australian migraine case-control population. 

The mt 4336 A>G variant is found within the tRNA Q gene and is transcribed to produce the 

transfer RNA for glutamine. Any change in the sequence could have downstream effects on 

translation of mRNA to protein and may cause disease symtpoms. Studies have found that the 

G allele significantly increases an individual’s risk for developing both Alzheimer’s and 

Parkinson’s disease, making this an interesting marker to study in other neurological diseases 

such as migraine [211, 212, 281-283]. 
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The second SNP selected for this study was a T>C substitution occurring at position 4216 of 

the mitochondrial genome. Mt 4216 T>C is used as a marker to identify individuals 

belonging to haplogroups T and J. Given that haplogroups have been shown to harbour 

certain disease mutations, it may be valuable to test for association between haplogroups T 

and J and migraine [45]. Research has found that haplogroup J variants have a functional 

effect and are not just markers of human evolution. Individuals possessing haplogroup J have 

partially uncoupled OXPHOS which reduces the efficacy of ATP output in favour of heat 

production. As a result of this pre-existing tendancy, individuals belonging to haplogroup J 

who have very mild complex I mtDNA missense mutations have exacerbated symptoms 

associated with LHON compared to individuals belonging to other haplogroups [284]. 

 

Materials and Methods 

 

Sample Selection 

Migraine cases and controls were recruited for the local South East Queensland region as 

previously described [162]. All collected samples were of Caucasian origin, and diagnosed as 

having MA or MO based on criteria specified by the International Headache Society. An 

unaffected control group with no family history of migraine was matched for age (+/- 5 

years), sex and ethnicity. Blood samples obtained from patients were collected through the 

Genomics Research Centre (GRC) patient clinic (Ethics Approval Number 1300000484). 

This study was approved by the QUT ethics committee for experimental work on human 

samples. Two independent case control populations were genotyped for two mitochondrial 

SNPs.  
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 Molecular Analysis 

DNA was extracted and purified from blood using standard salting out procedures. A 

restriction fragment length polymorphism (RFLP) assay was then used to genotype each 

sample for the mitochondrial variant. First DNA was amplified by polymerase chain reaction 

(PCR) using forward 5’ GATTCCGCTACGACCAACTC 3’ and reverse 5’ 

GCACGGAGAATTTTGGATTC 3’ primers.  A final reaction volume of 20 uL containing 4 

uL buffer, 0.4 uL of forward and reverse primers, 0.4 uL dNTPs, 1.4 uL MgCl2, 0.2 uL 

Amplitaq Gold and 11.2 uL water was made up. Final reaction concentrations are given in 

Table 4 below. 

Table 4: Reaction conditions for PCR 

Reagent Stock 

concentration 

Final reaction 

concentration 

1x Volume 

Buffer 5x 1x 4 uL 

Primers 5uM 100nM 0.4 uL 

dNTPs 5uM 100nM 0.4 uL 

MgCl2 25mM 1.75mM 1.4 uL 

AmpliTaq 5 U/uL 1 U 0.2 uL 

 

Cycling conditions were as follows: 94 ⁰C for 10 min followed by thirty cycles of 94 ⁰C for 1 

min, 55 ⁰C for 1 min and 72 ⁰C for 1 min followed by a final extension at 72 ⁰C for 10 min. 

An 8 h digest using 6 U of the restriction enzyme NlaIII and 7 uL of PCR product made up to 

a final volume of 12 uL with water was then performed. RFLP products were electrophoresed 

on a 4 % (w/v) agarose gel at 5 V/cm and viewed under UV light. NlaIII cuts at the 

recognition site CATG and will produce different size fragments when either mt 4336 A>G 
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or mt 4216 T>C is present. For each SNP, when the mutant allele is present the recognition 

cut site for NlaIII is introduced as shown in red on the FASTA sequence below. Each 

genotype was confirmed by sequencing using an AB 3130 genetic analyser using BigDye® 

Terminator v3.1 chemistry (Catalogue Number 4337456). 

FASTA Sequence 

GCATTACTTATATGA[T/C]ATGTCTCCATACCCATTACAATCTCCAGCATTCCCCC

TCAAACCTAAGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAG

GAGCTTAAACCCCCTTATTTCTAGGACCAT[A/G]AGAATCGAACCCATCCCTGAG

AATCCAAAATTCTCCGTG 

 

Statistical Analysis 

The genotype counting method was used to determine the allele frequencies in both case and 

control populations. A Chi Square analysis was performed to test for significant allele 

frequency differences between the case and control population and to determine whether 

alleles were significantly associated with migraine. A Fisher’s exact test was also utilised for 

the mt 4336 A>G change to correct for low detection rate. A significance threshold of p<0.05 

was used. Secondary protein folding structure prediction software was used to predict any 

folding changes caused by the mt 4336 A>G substitution. 

 

Results 

When the wild type allele is present for both SNPs a single 323 base pair band can be seen, 

when mt 4336 A>G is present a 209 and 119 base pair band can be seen and when mt 4216 

T>C is present a 249 and 89 base pair band can be seen as shown in Figure 11. All samples 

containing the mt 4336 A>G nucleotide substitution were sequenced as shown in Figure 9. 
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Migraine Population 1 

 

mt 4336 A>G 

The nucleotide change at position 4336 of the mitochondrial genome was found in 1 case and 

7 controls (Table 5). Pearson’s Chi Square test indicated a significant difference between 

these values, with a p value of p=0.0031. When a Fisher’s exact test was used to adjust for 

small detection rate a p value of p=0.0367 was obtained. The odds ratio at a 95 % confidence 

interval was 0.14, implying that the G allele has a protective function. 

 

mt 4216 T>C 

This SNP is a diagnostic SNP used in haplogroup analysis. The presence of a 4216 T>C 

change indicates that the person belongs to either haplogroup T or J and is of European 

ancestry [285]. It was found that 23.1 % of cases and 21.0 % of controls belonged to 

haplogroup T or J. The Chi Square test indicated that there was no significant difference 

between cases and controls (p=0.3906). A summary of the above results can be seen in Table 

5 and 6. 

 

Table 5: Summary of Genotyping results for mt 4336 A>G in migraine population 1 

 

 Number of Samples Detected in Allele Frequency 

 A allele G allele A G 

Cases 298 1 99.7 % 0.3 % 

Controls 302 7 97.7 % 2.3 % 

    p Value=0.0031 
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Table 6: Summary of Genotyping results for mt 4216 T>C in migraine population 1 

 

 Number of Samples Detected in Allele Frequency 

 T allele C allele T C 

Cases 230 69 76.9 % 23.1 % 

Controls 244 65 79.0 % 21.0 % 

    P Value=0.3906 

 

Migraine Population 2 

 

mt 4336 A>G 

When we repeated our study in an independent population we found no significant 

association between mt 4336 A>G and migraine susceptibility. A Chi Square analysis 

indicated no significant differences observed between the case and control sample frequencies 

(p=0.3148) in the second population. A Fisher’s exact test gave a p value of 0.3263 which 

also falls below the significance threshold.  

 

mt 4216 T>C 

A similar distribution of alleles was found in both patient cohorts. Chi Square analysis 

revealed no significant differences between allele frequency distributions with a p value of 

p=0.0714. Tables 7 and 8 summarise the results from our second population. 

 

 

 

Chapter 3: Investigation of Mitochondrial Variants by RFLP 83 



 

Table 7: Summary of Genotyping results for mt 4336 A>G in migraine population 2 

 

 Number of Samples Detected in Allele Frequency 

 A allele G allele A G 

Cases 230 2 99.1 % 0.9 % 

Controls 250 3 98.8 % 1.2 % 

    p Value=0.3263 

 

 

Table 8: Summary of Genotyping results for mt 4216 T>C in migraine population 2 

 

 Number of Samples Detected in Allele Frequency 

 T allele C allele T C 

Cases 175 57 75.4 % 24.6 % 

Controls 203 50 80.2 % 19.8 % 

    P Value=0.0714 
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Figure 9: Validation of the 4336A>G mitochondrial variant in a positive 

control 

 

 

 

 

The Sanger sequence trace/electropherogram illustrates that the G allele is present in samples 

with the mt 4336 A>G variant and confirms the PCR/RFLP assay for the variant.  
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Figure 10: Position of nucleotide change in tRNA Q molecule 

 

 

Predicted secondary structure of the tRNA molecule, showing no predicted change when A is 

substituted to G at position 4336. The overall secondary structure remains intact with all 

functional domains preserved. 

 

Figure 11: The gel below shows genotype analysis of mt variants by size fractionation of 
NlaIII digested PCR products from migraine case/control cohort. Genotypes are 

visualised on 4 % (w/v) agarose gel and can be determined according to differential 
banding patterns. 

 

Banding patterns on a 4 % (w/v) agarose gel indicate the genotype of each sample. Every lane on the gel represents a unique sample. Wildtype and 

mutant banding patterns are shown by the green and red letters for both SNPs mt 4336 A>G and mt 4216 T>C respectively. When mt 4336 A>G is 

present a 209 and 119 base pair band can be seen and when mt 4216 T>C is present a 249 and 89 base pair band can be seen. A 100 base pair ladder is 

used as a size standard in the first lane. 

 
Size 
 
 
323 
249 
209 
 
 
119 
 
89 
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Discussion 

Limitations of mitochondrial studies which may distort the results include heteroplasmic 

conditions where mutant mtDNA may be present in undetectable amounts in blood cells. 

Mutated DNA may also be present in sufficient amounts only in non-actively dividing cells 

such as neural tissue which can’t be examined for ethical reasons [286-289]. Therefore 

negative results obtained using blood samples may not be true negative results at all. 

Furthermore genes which are nuclear encoded may be the ones having an effect on 

mitochondrial function. Many proteins are transported into mitochondria and are not 

manufactured there. It may be necessary to study a group of nuclear encoded genes in addition 

to the mitochondrial genome in order to investigate the role of mitochondrial variants in 

migraine [290-292]. 

 

The mt 4336 A>G variant is found within the tRNA Q gene and is transcribed to produce the 

transfer RNA for glutamine. Nucleotide 4336 is positioned in the region connecting the 

amino acid acceptor stem with the TψC stem and has been found to be moderately conserved 

across vertebrates [211, 283]. When the substitution is present, RNA secondary structure 

prediction software utilised by the mt SNP database [293] indicates that no structural changes 

occur as can be seen in Figure 10. As with all bioinformatic applications, this outcome is 

predictive only and is thus limited. Functional studies would need to be undertaken to 

investigate potential translational effects of this variant. 

 

Studies which have examined the role that mt 4336 A>G may play in contributing towards 

risk of developing Alzheimer’s and/or Parkinson’s disease are suggestive that the G allele is 

mildly deleterious. Despite some negative results, the majority of studies have found mt 4336 

A>G to be positively associated with both Alzheimer’s and Parkinson’s [294, 295]. A meta-
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analysis of all previous studies has indicated that the G allele does in fact significantly 

increase an individual’s risk for developing both Alzheimer’s and Parkinson’s disease [211, 

212, 281-283]. However a recent full mitochondrial genome sequencing project has suggested 

that when considered as a whole the contribution of rare mitochondrial variants towards 

developing Alzheimer’s or Parkinson’s is not significant and that APOE remains the single 

high risk gene [296]. The study further states that some mitochondrial variants may actually 

be protective.  

 

The only study which has previously examined the potential role of mt 4336 A>G in 

contributing towards the risk of developing migraine, rather than a neurodegenerative disease, 

found the G allele to be positively associated with migraine and sensineuronal hearing loss 

[249].  The minor allele frequency of the mt 4336 A>G variant is very low, which means that 

a very large sample size is needed to accurately genotype a select population. Skewing of 

allele frequencies in smaller cohorts due to chance can occur easily [297]. Allele frequencies 

of the minor allele in healthy Caucasian control populations have been estimated to be 

between 0.63 and 3.8 % depending on sample size and nationality [281-283, 298-302]. 

  

When data from eight studies was pooled the average minor allele frequency in a total of 

2751 Caucasian subjects at a 95 % confidence interval was 0.98 % [249]. In our study the 

frequency of the G allele is similar to reports in other healthy control populations thus 

suggesting that the G allele doesn’t play a significant role in migraine susceptibility. A Chi 

Square test indicated that there is a significant difference between case and control 

frequencies in one of our population cohorts, but given the lack of significance in our second 

cohort this may have been a sampling bias due to chance.  
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Contrary to Finnila et al, we found the mt 4336 A>G variant to have a mildly protective effect 

in one migraine case-control population but no significant effect in the second population 

genotyped. There may be a number of reasons why our results contradict the results found by 

Finnila et al, which could be attributed to differences in population, study design and analysis 

or simply insufficient sample size. Our study examined the mt 4336 A>G variant in an 

exclusive migraine patient cohort, while Finnila et al looked at a group of patients with an 

assortment of diseases simultaneously. 

 

 Finnila et al studied only 42 patients out of the cohort of 1072 case samples were migraine 

sufferers, with the rest belonging to other disease groups.  The mt 4336 A>G variant was 

detected in 2 migraine sufferers, while it was found in 3 healthy control individuals. The 

remaining 12 individuals with the mt 4336 A>G variant belonged to other disease groups. 

When interpreted in this manner it is clear that the mt 4336 A>G variant was found in more 

control samples than in migraine case samples. This outcome is consistent with our findings 

and it is only the analysis of the results which differ. Furthermore we had a much larger 

sample size of 299 migraine patients in our first cohort and 232 in our second, providing 

greater statistical power and decreasing the chance of sampling bias. The method of 

association analysis was not mentioned in Finnila et al, so it may be possible that differences 

in analysis could also produce slightly different results. In our study we performed a Chi 

square test as well as a Fisher’s exact test to correct for low detection rate of mt variants.  

Patient samples used by Finnila et al were all of Finnish origin, while our patient samples 

comprised a larger selection of European lineages, and thus there may also have been ethnic 

differences.  
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The second SNP, mt 4216 T>C, was not significantly associated with migraine in our patient 

cohort. While many samples were found to belong to haplogroups T and J, this result was 

expected due to the fact that all samples used in the study are from individuals of European 

descent. While it is known that entire haplogroups may harbour mutations which are disease 

causing, haplogroups T and J did not show any significant association in our study. Majamaa 

et al found that the U mtDNA haplogroup constitutes a risk genome for migraine associated 

stroke. It was found that 83 % of Majamaa’s patient cohort had the U haplogroup [45]. 

Interestingly haplogroup U is greater than 30 fold more common among the Finnish 

population in which Finnila et al conducted the study than for any other European population 

[252]. This may further explain our contradicting results and attribute the positive association 

found in Finnila et a to a variant other than mt 4336 A>G located within the U haplogroup. 

 

Conclusion 

According to our study in an Australian Caucasian population, the mt 4336 A>G change is 

not significantly associated with migraine susceptibility, with the mt 4336 A>G change 

occurring in similar frequencies in case and control individuals. It is unclear if this variant has 

an effect on final translation and protein function but due to a rare (<1%) minor allele 

frequency, investigation in a larger patient cohort may produce more accurate frequency data. 

Our data also showed that there is no association between haplogroups T or J and migraine in 

Caucasian populations. A study which further analyses the mitochondrial haplogroups, 

especially haplogroup U may prove useful.  
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Chapter 4:  Use of semiconductor sequencing technology to investigate 

mitochondrial variants in a subset of the Norfolk Island Core Pedigree 

In Chapter 4 the optimisations carried out to develop a cost effective method for full 

mitochondrial genome sequencing are described as well as the initial pilot project undertaken 

in n=48 samples.  The aim was to test the Ion Torrent technology which was new at the time 

of undertaking these experiments in order to prove the feasibility of using this approach in a 

large number of samples. A small sample selection was made in order to conduct a pilot-

project before undertaking the main part of the study. Developing a method which was as 

efficient as possible and highly cost effective was essential before undertaking a large study. 

This work has not been published yet. 
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Introduction to Semiconductor Sequencing Technology 

The launch of the Human Genome project propelled development of parallel DNA 

sequencing at an ever faster and more efficient rate. Next Generation Sequencing 

technologies arising from this era have had a profound impact on research and medicine 

[303]. Easy and cheap access to large amounts of sequence data has allowed us to progress in 

the field of molecular medicine. In this short period of time many sequencing applications 

developed from this explosion of genetic information are already changing the way that 

cancer and other heritable diseases are diagnosed [304-306]. Human Genetics is not the only 

field benefitting from the development of better sequencing technologies, with fields as 

diverse as ecology, conservation and the study of ancient DNA progressing as more 

information is accumulated [307-309]. Even though sequencing costs have dropped 

dramatically over the last ten years, there is a continuous demand and desire to continue 

dropping the cost of sequencing to further democratise the availability of sequence 

information. The goal has long been to reach the $1000 genome which has sparked much 

competition between biotechnology companies [310]. 

 

To date the most expensive component of sequencing has been orientated around costly 

nucleotides and other reagents which are excited upon laser exposure to release a light or 

fluorescent signal which is picked up by complex imaging technologies. This requirement for 

electromagnetic intermediates in the form of either X-rays or light has limited the reduction in 

cost of DNA sequencing [311-313]. The recent development of non-optical sequencing has 

shifted this paradigm and sparked a new cost reduction at an exponential rate consistent with 

Moore’s law. The use of CMOS processes which have already undergone decades of 

evolution through the computer and cell phone industry have largely made this possible 

[314]. Using highly scalable integrated circuits to detect the release of hydrogen ions upon 

92Chapter 4: Use of semiconductor sequencing technology to investigate mitochondrial variants in a subset of the Norfolk 
Island Core Pedigree 



 

incorporation of natural nucleotides is the concept upon which Ion Torrent technology is 

based [315]. 

 

Jonathon Rothberg leveraged the advances made in recent years in the semiconductor 

industry to produce an electronic sensor capable of detecting the release of hydrogen ions 

during sequencing by synthesis [315]. Ceramic beads or ion sphere particles bound to a single 

strand of template DNA and a complementary sequencing primer which provides the first OH 

group for the addition of natural nucleotides are loaded into single wells. The addition of 

DNA polymerase then allows for base pairs complementary to the template DNA to be 

incorporated through sequential flows of nucleotides [316]. During each known flow, a 

nucleotide is either incorporated or washed away according to the template sequence. Each 

time a nucleotide is incorporated, a hydrogen bond is formed between the preceding OH 

group and the incorporated nucleotide, resulting in the release of an H ion. Since H+ is acidic 

and lowers the pH of a given solution, this change in pH can be detected using a sophisticated 

pH meter. This change is then used to directly generate a digital signal which is used to 

determine the sequence of each template strand [314]. 

 

Materials and Methods 

In order to sequence either DNA or RNA samples, a lengthy sample preparation procedure 

must be followed to reach a suitable end product. Starting material varies according to 

individual application, therefore only DNA sequencing will be included in this discussion 

with workflows referring specifically to this research project. As little as 10 ng of whole 

genomic DNA extracted from any tissue of choice is sufficient for this application, however 

slightly higher DNA inputs are desirable. DNA was extracted from whole blood samples 
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collected during a previous study using salting out and was suitably stored for research 

purposes [72].  

 

Sample Selection 

Initially as a pilot project, a subset of 48 individuals were chosen from the Norfolk Island 

Core Pedigree (n=48) for full mitochondrial genome sequencing. The selection criteria used 

included selection of only female individuals, selection of individuals from each generation of 

the extended migraine family with all four individuals being migraine affected, selection of 

one sample from each original founder Polynesian lineage and selection of samples for which 

DNA is available within the GRC. Other factors taken into consideration included attempting 

to obtain an even mixture of migraine to non-migraine affected individuals with the final 

selection consisting of n=23 migraine (48 %) and n=25 non-migraine (52 %) individuals. 

Also a filter was applied for selection of larger families where possible and samples were 

further filtered based on available genotype information from previous studies. In total n=43 

(90 %) of individuals with genotype info, and n=35 (73 %) with expression data were chosen. 

This will allow for correlation between nuclear SNPs and mtDNA. 

Ethical clearance was obtained from the Griffith University Human Research Ethics 

Committee for the collection and utilisation of all DNA samples to be used in this study as 

required for research on human material. 
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Molecular Techniques 

 Any DNA or RNA target of sufficient quality can be sequenced through unique workflows 

on this platform. Library preparation is purposed to prepare your target sequence of choice 

such that by the end of this workflow single strands of appropriately sized target regions 

ligated to adapter sequences are ready to be attached to ion sphere particles (ISPs). During 

emulsion amplification the aim is for single template strands to attach to a single ISP. The 

purposes of the adapter sequences on either side of the target templates are to aid in positive 

selection of ISPs as well as to provide unique identifiers for each sample allowing for 

multiplexing. The goal following positive selection of ISPs is for a single ISP, attached to a 

single template strand, to be loaded into a single well of a sequencing chip. Each well sits 

above a single sensor plate capable of detecting small pH changes. As discussed in the 

introduction, when H+ ions are release after the incorporation of a natural nucleotide, the pH 

decreases due to the acidic nature of H+. This drop in pH results in a voltage change which is 

in turn directly interpreted as a digital signal or ionogram.  
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Figure 12: Following library preparation, target sequences of an appropriate size 
(200bp-400bp depending on sequencing chemistry) should have adapters ligated onto 

each end. During template preparation library products attach to ISPs. 

 

 

Ceramic ion sphere particles shown in grey, should ideally be ligated to a single strand of 

template following emulsion amplification. P1 adapters are shown in green and provide the link 

between ISPs and the target fragment of DNA to be sequenced. A adapters are represented by 

solid grey bars and contain biotin to facilitate positive selection of ISPs which are successfully 

ligated to template DNA. 

 

As shown in Figure 12 above, each template strand is sheared and size selected to the correct 

size. Adapters are then ligated onto each end. The P1 adapter can also contain a unique 

barcode made up of DNA sequence which provides a label specific to a given sample. The P1 

adapter also contains a library key sequence, complementary to a sequencing primer which 

provides the necessary OH to initiate sequencing by synthesis. The A adapter contains a 

biotin label which facilitates selection of only those ISPs which are attached to template 

through the use of streptavidin beads. 
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Overall Workflow 

Following long range amplification using two overlapping primers, samples are quantified 

and then undergo library prep, followed by emulsion PCR and sequencing. The overall 

workflow is illustrated in Figure 13 below. 

 

Figure 13: Overall workflow to conduct full mitochondrial genome sequencing on the 
Ion Torrent Platform 

 

 

 Samples underwent long range PCR, using overlapping primer pairs which allowed for 

full mitochondrial genome coverage. Following purification, mitochondrial fragments 

underwent library preparation and emulsion amplification before undergoing 

sequencing on the Ion Torrent platform. Sequence data was then aligned to a reference 

genome and variants were called relative to the reference sequence. 

 

Long Range 
PCR 
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Long Range PCR 

Samples were amplified by long range PCR, utilising two primer pairs which produce 

overlapping fragments covering the entire mitochondrial genome. Primer sequences as well as 

basic thermocycling conditions were obtained from Dr Richard Allcock at the University of 

Western Australia. PCR conditions were then optimised to maximise non-specific 

amplification. Parameters which were tested and accordingly altered include final primer 

concentration, DMSO concentration, final reaction volume, input DNA, annealing 

temperature and thermocycling conditions. We found that a higher DNA input (100 ng 

starting material) and larger reaction volumes resulted in better amplification. The optimum 

DMSO concentration was found to be 3 % and after a number of optimisations a final primer 

concentration of 200 nM was chosen. Also we found that the most effective way to address 

non-specific amplification was to break the thermocyling into two sets of cycling, with an 

initial lower annealing temperature followed by a second set of cycling at a higher 

temperature. Final reaction conditions are outlined in Table 9, 10 and 11 below. 

 

PCR products were run on 1 % (w/v) agarose gels to accommodate for large fragment sizes at 

2 V/cm and visualised under UV light. Ethidium bromide was used for staining at a 4 % 

concentration. Negative controls were included in each PCR run to check for contamination. 
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Table 9: Primer Pairs used for long range PCR 

 

 

Table 10: Final Reaction Conditions 

Reagent 1x Reaction Volume 

uL 

Final Concentration Stock Concentration 

Nuclease free water 28.3 - - 

Buffer 10 1 x 5 x 

dNTPs 2.5 0.5 mM 10 mM 

F/R primer 2 200 nM 5 uM 

DMSO 1.5 3 % 100 % 

Enzyme Mix* 0.7 0.05 U/uL 3.75 U/uL 

*Roche Expand Long Range Kit (Catalogue Number 04829042001) 

Amplicon Amplicon Position in 

Genome 

Primer Sequences Final 

Concentration 

mt_Frag1 569 (forward) 5’ AAC CAA ACC CCA AAG ACA CC 3’ 200 nM 

9819 (reverse) 5’ GCC AAT AAT GAC GTG AAG TCC 3’ 

mt_Frag2 9611 (forward) 5’ TCC CAC TCC TAA ACA CAT CC 3’ 200 nM 

626 (reverse) 5’ TTT ATG GGG TGA TGT GAG CC 3’ 
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Table 11: Final Thermocycling Conditions 

Temperature Time Cycles 

92 ⁰C 2 min 1 

92 ⁰C 10 s 9 

55 ⁰C 15 s 

68 ⁰C 9 min 

92 ⁰C 15 s 19 

60 ⁰C 20 s 

68 ⁰C 9 min 

68 ⁰C 7 min 1 

8 ⁰C ∞  

 

Post PCR 

Upon confirmation of successful amplification, samples were cleaned using QIAquick post 

PCR cleanup columns from QIAGEN (Catalogue Number 28106) to remove any excess 

dNTPs or other reagents. Once only the pure mitochondrial fragments remained, they were 

accurately quantified using Agilent DNA 12000 chips (Catalogue Number 5067-1508) on the 

bioanalyser. At this time point, each sample was divided into two fragments, corresponding 

with the two primer pairs used. Using the concentration in ng/uL obtained from the 

bioanalyser runs, the two overlapping fragments produced during the long range PCR process 

were pooled together in equimolar amounts for each sample. In order to achieve accurate 

equimolar pooling and thus even representation of each fragment upon DNA sequencing, 

both fragments were diluted to the same concentration and then equal volumes of each was 

added to a single tube.  
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After pooling and thorough mixing, the required amount of input DNA for library preparation 

was measured out. Initially 100 ng was used for library preparation, but it was found that 

larger amounts of input DNA were more desirable. 1ug was found to be sufficient for the Life 

Technologies Ion Express Library Kit (Catalogue Number 4471269) and later one it was 

found that as little as 250 ng of input DNA was highly effective when utilising NEB ion 

torrent compatible library kits (Catalogue Number 4474178). The quality of DNA greatly 

influences the efficacy of library preparation and ultimately sequence output. 
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Library Preparation 

Figure 14: Major steps involved in library preparation 

 

Following long range amplification, samples were purified, fragements were pooled in equimolar 

amounts to ensure even representation of both sides of the mitochondrial genome and were then 

sheared using sonication. After physical shearing, fragments were end repaired and ligated to 

adapter and barcode sequences. Libraries then underwent a size selection process to ensure 

optimal sequence output and maximum utilisation of reagents at the sequencing stage. Each library 

was quantified for accurate dilution and pooling thus ensuring even representation between 

barcoded samples. 
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Life Technologies Ion Express Library Preparation (used for first 29 samples) 

A number of different library preparation kits are commercially available. Each one makes 

use of similar molecular techniques and only vary slightly. To begin with the Life 

Technologies Ion Express Library Preparation kit (Catalogue Number 4471269) was used as 

proof of principal. Library preparation was the part of the workflow where our target products 

were processed to desirable sequence compatible fragments. This involved a number of 

detailed steps, each of which will be discussed. Following amplification, products of 

approximately 9000 base pairs were generated. Fragments of this size are too large to 

sequence directly on the Ion Torrent platform and were sheared to a target size of 200 base 

pairs. Both an enzyme shearing method and physical shearing were tested for efficacy. 

 

After shearing, fragments were repaired to produce blunt ends which are suitable for ligation 

of barcodes and adapter sequences. Adapters are a necessary component of the sequencing 

chemistry used and provide a library key sequence as well as a preceding nucleotide for Taq 

to add onto during sequencing by synthesis. The barcodes are unique DNA sequences which 

allow for multiplexing of samples. After successful adapter ligation, size selection was 

applied to select for a smaller size range of fragments thus maximising sequencing efficiency. 

Finally each library is accurately quantified and diluted to maximize template preparation. 

 

Physical shearing with the BioRuptor Sonication System 

The biorupter shears DNA by ultrasonic fragmentation and can be used for a wide 

concentration range of starting material. Shearing time can be adjusted to compensate for 

DNA concentration and desired fragmentation profile. Since we were making use of 200 base 

pair sequencing chemistry, samples were sheared for long time periods. The biorupter was 

operated in a sound proof box to compensate for the high frequency noise produced. 1 ug of 
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each pooled sample was pipetted into a 1.7 ml safe lock lo bind epindorf tube and carefully 

placed into the rotor. The lid of each tube was sealed to prevent any water from leaking in. 

Parameters were set as follows; high intensity, 30 s sonication followed by 30 s cool-down 

time for 15 cycles. Ice water was added to just above the fill line and replenished with ice 

after every cycle. Each sample was sheared for 15 cycles, 5 times. Following shearing, the 

DNA fragmentation profile was assessed using the bioanalyser system and Agilent DNA 

1000 chips (Catalogue Number 5067-1504). A fragment size range between 50 and 500 base 

pairs, with a peak at 200 base pairs is most desirable. Any samples which were fragmented 

insufficiently underwent a second round of shearing. 

 

End repair and purification of sheared DNA 

After checking the fragmentation profile of each sample, they were end-repaired and purified. 

Materials in the Ion Plus Fragment Kit were used to do this including 5 x end repair buffer 

and end repair enzyme as well as additional materials including nuclease-free water, LoBind 

tubes, Agencourt AMPure beads (Catalogue Number A63881) and a magnetic rack. Firstly all 

components were defrosted and pulse-spun. Also nuclease-free water was added to the 

sheared DNA to a total final volume of 158 uL. Since the initial pooled samples were 

aliquoted out according to concentration, the volume of each one differed, hence the need to 

bring each sample to a uniform volume. Then 40 uL of 5 x end repair buffer and 2 uL of end 

repair enzyme was added, followed by a 20 min incubation at room temperature. 

 

For the purification step which follows on from end repair, freshly prepared 70 % ethanol was 

used. A higher percentage of ethanol causes inefficient washing of smaller sized molecules 

while a lower percentage could cause sample loss. Therefore ethanol was carefully and 

accurately prepared before each use. Before the ethanol washing step, 360 uL of Agencourt 
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beads (Catalogue Number A63881) were added to each end repaired sample, pipetted up and 

down five times and incubated at room temperature for 5 min. Samples were then pulse spun 

and placed in the sample tube of a DynaMag magnetic rack for 3 min or until the solution 

cleared completely. The supernatant was removed without disturbing the pellet and discarded. 

Leaving the open tubes in the magnetic rack, 500 uL of 70 % ethanol was added followed by 

a 30 s incubation. The tube was turned around 180 ⁰ twice to move the beads around and 

maximize the ethanol wash. After the solution cleared, the supernatant was removed again. 

This washing step was repeated a second time. To remove residual ethanol, each tube was 

closed, pulse spun and placed back on the rack. A smaller 20 uL pipette was then used to 

remove any remaining supernatant. Keeping the tubes on the magnet, samples were air dried 

for 5 min. Then tubes were removed from the magnet and 25 uL of low TE was added to each 

sample and thoroughly mixed. After a further 1 min incubation tubes were placed back on the 

magnet and this time the clear supernatant containing the eluted DNA was transferred to a 

new Eppendorf tube.  

 

After purification the first optional stopping point was reached. At this step samples could be 

stored at -20 ⁰C before commencing with the next part of library preparation. 

 

Barcode and Adaptor Ligation 

Once all sheared samples were repaired to have blunt ends, barcodes and adapters were 

ligated on. This was done by transferring each sample into a 0.2 ml PCR tube and combining 

all reagents as indicated in Table 12 below into each tube and mixing well by pipetting up and 

down 
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Table 12: Table showing barcode reaction components and volumes 

Component Volume for 1ug input in uL 

DNA 25 

10 x ligase buffer 10 

Ion P1 adapter 10 

Ion Express barcode 10 

dNTP Mix 2 

Nuclease free water 31 

DNA ligase 4 

Nick repair polymerase 8 

 

After mixing the tubes were placed in a thermal cycler and run according to the following 

program: 

25 ⁰C 15 min 

72 ⁰C 5 min 

4 ⁰C ∞ 

Then all 100 uL were transferred to a clean Eppendorf tube and purified using freshly 

prepared 70 % ethanol and Agencourt beads (Catalogue Number A63881) as described in the 

section “end repair and purification of sheared DNA”. However only 140 uL of beads were 

used per sample for this clean up. At this point there was another optional stopping point. 

 

Size Selection 

The E-gel size select system (Catalogue number G6610-02) was used to size select the 

unamplified library according to desired read length. For 200 base pair sequencing chemistry 

the library was selected for a target peak of 330 base pairs. After installing the iBase unit on 

top of the safe imager transilluminator and connecting the power source, a 2 % (w/v) agarose 

e-gel was loaded into the iBase unit. The 2 % SizeSelect program was selected from the menu 
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and the timer was left at the default 12 min setting. Before loading sample onto the gel, 20 uL 

of low TE buffer was added to each purified, ligated DNA sample, bringing the total volume 

to 40 uL. Two adjacent top row wells were used for each sample and 20 uL was loaded into 

each well. The 50 bp ladder was diluted to 25 ng/uL which is a 1 in 40 dilution and 10 uL of 

diluted ladder was then added into the middle well. All empty wells including the bottom row 

of wells were filled with 25 uL of nuclease free water. 

 

The amber filter was then placed over the E-gel iBase unit and the Size Select program was 

initiated by pressing Go. After the 12 min program was complete, the collections wells or 

bottom row wells were re-filled with 10 uL of sterile water. After re-filling the same program 

was run again, but this time with constant supervision. As soon as the 350 base pair mark as 

shown by the ladder reached the top of the collection well, the run was stopped and samples 

were recovered from the collection wells using a pipette. Wells were refilled with 10 uL of 

nuclease free water and recovered again to ensure maximum recovery for each sample. Used 

gels were then disposed of as hazardous waste. 

 

Quantification 

Using the bioanalyser each library was quantified using an Agilent DNA 1000 chip 

(Catalogue Number 5067-1504). Samples were then grouped into pools according to previous 

barcoding and according to experimental design. It was decided to pool 6 samples on each 

chip and library preparation was carried out accordingly. For each pool, all samples were 

diluted to the same concentration and then equal volumes were added to a single tube. From 

the stock pool, a dilution was made for optimum template preparation. This was calculated 

according to the manual where: 
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Template Dilution Factor (TDF) = Library pool concentration in pM/26 pM 

 

After optimising template preparation it was found that for the Life technologies library 

preparation kit, the best results were obtained from doubling the recommended input library. 

 

NEB Library Preparation Kit (Catalogue Number 4474178) 

This kit makes use of the same major steps and principals as described with use of the Life 

Technologies library preparation kit and was used for all remaining samples. There are some 

slight variations and for that reason, I will describe the major steps and include reaction 

setups in this section. Also this process involves an additional compulsory amplification step. 

The advantage of using this kit is related to the massive cost saving. The generic kits cost 

only a fraction of the price, enabling more samples to be processed for the same budget. 

Please refer to the user manual for detailed reaction setup and steps. Approximately 250 ng of 

input DNA was used for each sample with this protocol. Where applicable the 100 ng 

protocol was used. 

 

Physical shearing with the BioRuptor Sonification System 

Shearing was conducted exactly the same as described in the previous section. 

 

End repair  

The following components were mixed in a sterile Eppendorf tube for each sample. Starting 

material from 100ng to 1ug can be used, with reagent volumes remaining the same regardless 

of input DNA. Samples were kept on ice throughout. 
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Table 13: NEB End Repair Protocol 

Component Volume 

Fragmented DNA 1-51 uL 

NEB End Repair Reaction Buffer 6 uL 

NEB End Repair Enzyme Mix 3 uL 

Nuclease free water Variable 

Total Volume 60 uL 

 

After mixing with a pipette samples were incubated in a thermal cycler for 25 min at 25 ⁰C 

and for a further 10 min at 70 ⁰C. Then samples were pulse spun and returned to ice, ready for 

preparation of Adapter Ligated DNA. 

 

Barcode and Adaptor Ligation 

The following was added to each tube from the previous step: 

Table 14: NEB Protocol for barcode and adapter ligation 

Component Volume 

Nuclease free water 16 uL 

T4 DNA Ligase Buffer 10 uL 

NEBNext DNA Library P1 Adapter 4 uL 

Barcode X 4 uL 

T4 DNA Ligase 6 uL 

Total Volume 40 uL 

 

After adding the above reagents, the volume for each sample was 100 uL. Contents were 

mixed using a pipette and then incubated in a thermal cycler for 15 min at 16 ⁰C.  
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Purification 

Here only 180 uL of AMPure beads (Catalogue Number A63881) were added to each sample. 

A pipette was then used to thoroughly mix samples, followed by a 5 min incubation at room 

temperature. After a quick pulse spin, each tube was placed in a DynaMag magnetic rack for 

1 min or until the solution cleared. The supernatant was removed, without disturbing the 

pellet and then 400 uL of 80 % ethanol was added while keeping the tubes on the magnetic 

rack. Each tube was rotated twice, for proper washing of beads. Then supernatant was 

removed again. This wash step was repeated a second time. Residual ethanol was removed by 

pulse-spinning each tube, returning the sample to the magnetic rack and using a P20 pipette to 

remove any remaining ethanol. Samples were air dried on the rack for 5 min and beads were 

resuspended in 25 uL of nuclease free water. The remaining beads were then spun in the tube, 

the sample was placed back on the magnet and the supernatant containing the purified sample 

was collected into a clean tube. 

 

Size Selection 

 Size selection was carried out as described in the Life Technologies protocol. 

 

PCR Amplification of Adapter Ligated DNA 

The following components were mixed in a sterile tube on ice: 

110Chapter 4: Use of semiconductor sequencing technology to investigate mitochondrial variants in a subset of the Norfolk 
Island Core Pedigree 



 

Table 15: NEB PCR Amplification Mix 

Component Volume 

Adapter Ligated DNA 40 uL 

Primers 4 uL 

Nuclease free water 6 uL 

One Taq Hot Start 2x Master Mix 50 uL 

Total Volume 100 uL 

 

Samples were placed on the thermocycler using the following cycling conditions: 

 

Table 16: PCR Cycling Conditions 

Step Temperature Time 

Nick Translation 68 ⁰C 20 min 

Initial Denaturation 94 ⁰C 30 s 

4-8 Cycles* 94 ⁰C 30 s 

 58 ⁰C 30 s 

 68 ⁰C 1 min 

Hold 4 ⁰C ∞ 

*Avoid over-amplification to optimize the number of unique molecules. For 100 ng 

input DNA use 6-8 cycles 

 

Purification 

140 uL of AMPure beads (Catalogue Number A63881) were used. All other steps were the 

same as described in “Purification” above. 
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Quantification 

Same as described in Ion Torrent library section. 

 

Template Preparation 

The Ion One Touch instrument was installed and set up according to the user manual. Before 

each use the amplification plate, reagent oil, recovery solution and plastic ware was set up as 

described in the user manual. Each time a new kit was used, all plastic ware and reagents 

were changed to correspond with the kit currently in use. Importantly the waste container was 

emptied before every run, as any backwash would cause permanent contamination of the 

entire instrument. An amplification solution was prepared and installed for each sample pool 

(6 samples). Before setting up the reaction, the Ion OneTouch 2 x Reagent Mix was thawed 

and subsequently kept at 4 ⁰C. Also the enzyme mix and pre-prepared library were vortexed 

just before use. In an Eppendorf tube the following components were added in the designated 

order: 

1. 280 uL Nuclease free water 

2. 500 uL Ion OneTouch 2x reagent mix 

3. 100 uL Ion OneTouch enzyme mix 

4. 20 uL Diluted library pool 

The Ion Sphere Particles (ISPs), included in the template preparation kit, were then vortexed 

at maximum speed for 1 min and immediately 100 uL was added to the 900 uL of 

amplification solution. The filter assembly was then prepared and installed by using a pipette 

to add the 1 ml prepared solution and 1.5 ml of OneTouch oil to the reaction filter. The filter 

was inverted and inserted into the OneTouch as described in the manual. An assisted run was 
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selected from the dropdown menu and after following each prompt, the run was started. The 

OneTouch was cleaned according to instruction after each use. 

 

Recovery of template positive ISPs 

Both of the recovery tubes were removed immediately after the last centrifugation step in the 

OneTouch and all but 50 uL of recovery solution was removed using a pipette. Care was 

taken not to disturb the pellet and the template-positive ISPs were resuspended in the 

remaining recovery solution. The ISPs were then washed in 1 ml of Ion OneTouch wash 

solution. At this stage ISPs could be stored for up to 3 days at 4 ⁰C. Just before sequencing 

ISPs were centrifuged for 2.5 min at 15500 x g, and all but 100 uL of supernatant removed. 

The pellet was then resuspended by vortexing. Each sample underwent this process and from 

here the sequencing part of the protocol was commenced. 

 

Sequencing 

The Personal Genome Machine (PGM) has been maintained according to manufacturer’s 

recommendations including weekly chlorite washes when the machine is in use and water 

washes after each run. Before each run the PGM was initialised in strict accordance with the 

user manual using a Life Technologies 200 base pair sequencing reagents kit (Catalogue 

Number 4482006). Before each run, a run plan was generated using the Ion Torrent browser 

on the server. The run plan specified sequencing settings, number of flows, kit type used in 

sample preparation, barcodes used and corresponding samples, sample type i.e. DNA and the 

reference file to be used. We used the revised Cambridge mitochondrial genome as our 

reference sequence. This allows the server to automatically assemble sequence fragments 

against this reference sequence. All torrent software was also updated regularly. 
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Template Positive ISP Preparation 

For quality assessment of each sequencing run, 5 uL of control ISPs were added to half of the 

100 uL volume of ISPs previously stored in the fridge. The other 50 uL were kept as reserve 

stores. The “A” and “D” test fragments found in this control mixture provided insight about 

the quality of sequencing runs and could be found in the run report generated from each run. 

After adding control fragments, 100 uL of annealing buffer was added and mixed in by 

pipetting up and down. The tube was centrifuged for 2 min at 15 500 x g and all but 3 uL of 

supernatant was removed. The sequencing primer was then annealed to each target fragment 

by adding 3 uL of thawed sequencing primer followed by a 95 ⁰C 2 min and 37 ⁰C 2 min 

thermal cycling step. 

 

314 Chip Loading 

The chip was placed on the PGM system via the grounding plate and “experiment” was 

selected on the main menu to initiate a chip check. Following a successful chip check, the 

chip was washed once with 50 uL of 100 % isopropanol and twice with 50 uL of annealing 

buffer. Sequencing polymerase was then added to the ISPS, to bring the total volume to 7 uL. 

After a 5 min incubation period, ISPs were loaded onto the chip and equally distributed 

through a series of centrifugations. The run was then started. Each run took approximately 2 

and half hours. 
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Statistical Methods 

The FASTQ sequences generated from each run were aligned using bowtie2 and 

SAMTOOLS making use of the following command prompts: 

 

>bowtie2 -q hs_mtDNA_ref IonXpress_002_R_2012_06_07_23_47_49_user_SN1-9-

Shani_Run1_Auto_SN1-9-

Shani_Run1_9.fastq,IonXpress_002_R_2012_06_13_23_43_59_user_SN1-11-

Shani_Repeat_Run1_Auto_SN1-11-Shani_Repeat_Run1_11.fastq -S Shani_002_align.sam --qc-filter 

>samtools view -b -o Shani_002_raw.bam -S Shani_002_align.sam 

>samtools sort Shani_002_raw.bam Shani_002_sorted 

>samtools index Shani_002_sorted.bam 

 

This part of the process was performed by Miles Benton from our bioinformatics division. 

The aligned FASTA sequence was then run through MitoTool, using the revised Cambridge 

sequence as a comparison to each generated sequence. The variants found in each sample 

were then compared to MitoMap, a database which stores information pertaining to 

mitochondrial variants which are associated with disease risk.  

 

As an additional analysis undertaken by myself, raw sequence reads were aligned to the 

RSRS (Revised Cambridge Reference Sequence) mitochondrial genome sequence using 

default settings on the torrent server. Variants were then called in each sample relative to the 

reference sequence using a Java based pluggin Variant Caller on the torrent server. All 

variants were typed into an excel spreadsheet for comparison between case and control 

samples. Using a filtering process it was noted which variants were present only in cases and 

not control samples and vice versa. These variants were plotted on a circular plot according to 
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position in the mitochondrial genome to provide insights into functional effects. The variant 

frequencies were further assed and grouped according to common and rare variants. 
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Results 

 

Long Range PCR and Sample Pooling 

After several optimisations using the conditions described in the methods section, amplified 

product was obtained for each sample, with no non-specific bands. A single, bright ~9000 

base pair fragment was obtained for each sample (Figure 15). For the samples which didn’t 

work well on the first attempt, new dilutions were made from the original TE stocks and the 

PCR was repeated until sufficient amplification was obtained. Negative controls were set up 

with each run and checked on an agarose gel for contamination of any reagents. All runs were 

found to be contamination free. 

 

Figure 15: Size fractionation of long range PCR products to be used for sequencing 
library preparation. 

 

Samples were run on an agarose gel to confirm amplification and to check negative controls for 

contamination. The bright bands as seen under UV light indicate that all samples amplified very 

well, producing more template than what was required for library preparation. The expected 

fragment sizes were obtained as shown when comparing samples to a 1 kb ladder run in the first 

lane. All negative controls were contamination free. 
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Once it was confirmed that the PCR worked for each sample, samples were quantified using 

the bioanalyser as previously described. Each sample underwent two PCR reactions, one for 

each mitochondrial fragment. As shown in Table 17 below, both fragments were pooled for 

each sample, by diluting fragments to the same concentration and adding equal volumes of 

each diluted product. The required input for library preparation was then measured out 

according to concentration for each sample as shown below. 

 

Table 17: Example of pooling calculations 

 

Sample  
Lower 

Con*  

Higher 

Con*  

Volume Higher Con* to 

dilute  

Volume water to be 

added  

Volume for 

100 ng  

Volume for 1 

ug  

1146  17.34  23.4  37.1  12.9  5.8  57.7  

6885  19.64  27.74  35.4  14.6  5.1  50.9  

6919  15.99  36.97  21.6  28.4 6.3  62.5  

2476  23.16  49.25  23.5  26.5 4.3  43.2  

*Con=Concentration 
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Library Preparation 

Shearing 

 

Figure 16: Efficacy of physical shearing versus enzymatic shearing 

 

Physical shearing of DNA produced a normal distribution of fragment sizes with bp size shown 

on the x axis and relative fluorescence shown on the y axis. The lower and upper ladder markers 

can clearly be seen. As shown on the left hand side, enzymatic shearing did not produce 

fragments. Physical shearing is clearly the superior method. 

 

 As shown in Figure 16 above on the right side, enzymatic shearing was found to be 

ineffective. Physical shearing as seen on the left side was found to be a successful 

approach. Both the biorupter and covaris systems were found to be satisfactory, but due 

to cost effectiveness the biorupter was chosen to carry out shearing for all samples. 

 

Size Selection 

Following barcode and adapter ligation and all clean up steps, size selection was performed 

using an E-gel size select system (Catalogue number G6610-02). A manual approach of 

running products on an agarose gel, cutting the band out and selecting the target using a 

purification kit was also attempted but found to be unsuccessful. As can be seen in the image 

below the E-gel system was highly effective and allowed for accurate size selection according 

to the marker in the middle well. The first bright band that can be seen is the 350 base pair 

mark. 
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Figure 17: UV image of E-gel used for size selection of library products 

 

 

Each lane contains a unique library in the process of construction. The lower well facilitates 

capture of the target library. Lane 5 contains a 50 bp marker for accurate fragment size 

estimation. Once the first bright marker reached the top of the well, electrophoresis was halted and 

the target library was collected. The first bright line in the marker series indicates the 350 bp 

mark. 

 

Library Quantification 

Two methods were tested for the final library quantification. A real time PCR, using a serial 

E-coli dilution with a known concentration was used to construct a standard curve for 

comparison to each sample. This was found to be the most accurate method of quantification 

and is illustrated in Figure 18 below. However this approach can be costly and time 

consuming. Quantification using Agilent DNA 1000 bioanalyser chips (Catalogue Number 

5067-1504) was also performed and was found to be a satisfactory method for library 

quantification. A typical electropherogram utilising a Life Technologies kit is shown in 

Figure 19. As can be seen in Figure 20 the NEB library preparation kits (Catalogue Number 

4474178) were much more effective despite being more cost effective. 
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Figure 18: Library quantification by real time PCR 

 

 A serial E.coli dilution was used to construct a standard curve. Each sample was 

compared to the known standard curve in order to determine concentration. Cycles of 

amplification are depicted on the x axis with relative fluorescence shown on the y axis.  

 

Figure 19: Library quantification by bioanalyser (Life Tech) 

 

 The region tool was used to accurately quantify each sample using a bioanalyser 

instrument. The blue lines show the defined region quantified. As shown the library 

produced was in the expected size range of 300 to 400 bp which is ideal for 200 bp 

sequencing chemistry. This approach allowed for accurate quantification of all libraries 

to ensure accurate dilution and pooling of samples. 
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Figure 20: Library quantification by bioanalyser (NEB) 

 

 A much higher peak was obtained when using the NEB kits, indicating a greater library 

yield and overall more efficacious library preparation. The NEB kit was found to 

produce a superior result in comparison to the brand name Life Technologies kits. 

 

Template Preparation 

After several E.coli verification runs and a number of optimisations, it was found that for the 

Life Technologies kits, double the recommended amount of pooled library was optimum. For 

the NEB library kit (Catalogue Number 4474178), a much smaller input was sufficient. Too 

much library input resulted in a high percentage of polyclonal amplification and data loss. 

 

Sequencing 

Below in Figure 21, a series of heat maps are shown which correspond to the density of 

template positive beads sequenced on each chip. Blue depicts empty wells, while red is 

indicative of a high density of template positive ISPs. Poor template preparation or 

insufficient library input into template preparation results in low sequence coverage, as seen 

in the blue far left heat map. A higher recovery of template positive ISPs following template 
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preparation and good chip loading techniques results in a high yield of sequence information 

as shown in the second row. 

Figure 21: Heat maps depicting bead loading and template density 

 

The density of ISP deposition is shown with higher density levels in red and lower levels in blue. The more 

densely positive ISPs are deposited, the greater the sequence data output. The top row shows poor chip 

loading with large blue and green areas, indicating few positive ISPs. The bottom row illustrates 

acceptable chip loading metrics which corresponds to high sequence output. 
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 Preliminary Analysis 

After performing a preliminary analysis as described in the statistical methods section, a 

number of disease susceptibility variants were identified in both migraine cases and 

unaffected individuals as shown in Table 18 below. It is interesting to note that many variants 

associated with metabolic disorders were found, as Norfolk Islanders are known to have a 

higher rate of these type of disorders within their population [317]. Also the two migraine 

affected cases both carried the same two variants and none of the others.  
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Table 18: Variants found in first 6 samples sequenced according to MitoMap 

Sample (LAB 

ID) 

Migraine Status Variants Disease Associations 

2573 Not affected 195  Bipolar disorder, schizophrenia, depression  

  9055  Parkinson's Protective  

  11467  Altered brain pH  

  12372  Altered brain pH  

  16189  Cancer, Metabolic syndrome, endometrial cancer, 

diabetes, cardiomyopathy, respiratory chain 

defects  

 2525   Not affected  195  Bipolar disorder, schizophrenia, depression  

  3736  LHON  

  10398  Invasive breast cancer, Alzheimer's, Parkinson's, 

Bipolar lithium response, Type 2 diabetes  

321   Not affected  10398  Invasive breast cancer, Alzheimer's, Parkinson's, 

Bipolar lithium response, Type 2 diabetes  

  11467  Altered brain pH  

  12372  Altered brain pH  

  15693  Possible LVNC cardiomyopathy associated  

  16189  Cancer, Metabolic syndrome, endometrial cancer, 

diabetes, cardiomyopathy, respiratory chain 

defects  

6920   Not affected  195  Bipolar disorder, schizophrenia, depression  

  6480  Prostate Cancer  

  15043  Major Depressive disorder, schizophrenia, bipolar  

  16189  Cancer, Metabolic syndrome, endometrial cancer, 

diabetes, cardiomyopathy, respiratory chain 

defects  

2558   Migraine  195  Bipolar disorder, schizophrenia, depression  

  10398  Invasive breast cancer, Alzheimer's, Parkinson's, 

Bipolar lithium response, Type 2 diabetes  

1146   Migraine  195  Bipolar disorder, schizophrenia, depression  

  10398  Invasive breast cancer, Alzheimer's, Parkinson's, 

Bipolar lithium response, Type 2 diabetes  
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After the raw sequence reads were filtered and aligned to the Revised Cambridge Reference 

Sequence, variants were called relative to the reference and summarised according to 

migraine status. For each possible variant identified, the number of migraine sufferers who 

were found to carry the variant were summed and compared to the number of healthy control 

cases carrying the variant. We found a large number of rare variants which were only present 

in migraine sufferers and were not found in any controls. These are shown in Figure 22 which 

also shows the distribution of variants across the mitochondrial genes and the number of 

migraine sufferers identified who carry each rare variant.  
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Figure 22: Distribution of rare variants identified only in migraine sufferers and not 
found in any controls. The location of each identified variant in the mitochondrial 

genome is shown along with the number of migraine sufferers harbouring each variant 
indicated in brackets. 

 

Protein coding genes are depicted by solid coloured bars. Each arrow represents an identified 

variant with the location in the mitochondrial genome shown by the arrow. This diagram clearly 

illustrates the distribution of variants and clustering according to gene location. In brackets are 

the number of migraine suffers which were found to carry the variant. 
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The mt sequence variation identified in the 48 NI individuals differed from the RSRS 

at 296 variable sites. Of these variant sites, 29 variants were common in the 48 NI individuals 

(>5 %). Many of these common variants are the defining markers of mitochondrial 

haplogroup B, and its further substructure (haplotypes) such as B4a1a1, to which Polynesians 

belong. There were 136 singleton variants identified and a further 160 variants were shared by 

two or more individuals. As can be seen the majority of rare variants found only in migraine 

sufferers are clustered in the genes encoding for the ATPase 6 protein and the NADH 

dehydrogenase subunits, which are core components of the oxidative phosphorylation 

pathway and essential for the production of ATP. Variants found in 3 or less samples(less 

than 5 % of the cohort) were defined as rare variants and 51.2 % of the variants identified 

within migraine samples were found to be rare compared to 45.8 % in the control group. This 

trend is shown in Figure 23. 

 

Figure 23: Comparison between the percentage of rare variants identified in migraine 
sufferers compared to controls 

 

 The blue bar represents migraine sufferers, with healthy controls shown in red. As can 

be seen, more rare variants were identified in migraine sufferers compared to controls. 
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We were able to generate high quality sequence information at a sufficient depth of coverage 

to detect heteroplasmic variants up to a 10 % threshold and calculated that sequencing the 19 

kb mitochondrial genome at a minimum of 100 x coverage would be achievable by 

multiplexing 6 samples on a 314 chip. We far exceeded the manufacturers’ specifications 

(10Mb per 314 chip) and obtained on average between 250-550 x coverage of the entire 

mitochondrial genome for each of the 48 samples. 

 

Importantly, our preliminary data identified 6 novel (undocumented) mtDNA variants in the 

NI sample (see Table 19). An extended database search of mtDB (34) and Mitomap (35) for 

these variants returned no hits, thus these positions are deemed to be novel. Interestingly, 5 

out of 6 of the novel variants were found in individuals who are migraine sufferers.  Also of 

note, the majority of rare variants found only in migraine sufferers are clustered in the genes 

encoding for the ATPase8 protein and the NADH dehydrogenase subunits, which are core 

components of the oxidative phosphorylation pathway and essential for the production of 

ATP. These may well be of functional importance to migraine pathophysiology. 

 

The next aim which was achieved and is described in Chapter 5 was to conduct a full project 

using the cost effective in-house method already developed during the pilot project to 

sequence the remainder of the identified Norfolk Island Core pedigree individuals (n=306). 

We already showed the ability to sequence mitochondrial genomes with 100 % coverage in 

this pilot stage of the project and identified several novel variants only present in migraineurs. 

The next aim in line with the project objectives was to acquire additional mitochondrial 

sequences with the goal of identifying functional variants associated with migraine and 
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determining whether variants in the Norfolk pedigree are found more widely in outbred 

migraine populations. 

 

Table 19: Novel mtDNA variants identified in the Norfolk Island population 

Gene Nucleotide 

Change 

Homoplasmic Amino Acid 

Change 

No. 

Ind 

Migraine 

Sufferer 

 

ND1 3833T>C NO YES 1 NO  

ND2 5349C>T YES NO 1 YES  

CO1 7103C>T YES NO 1 YES  

ATPase8 8695A>T YES YES 1 YES  

ND5 13045A>C NO YES 1 YES  

Cytb 15050C>T YES NO 1 YES  
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Chapter 5:  Mitochondrial Genome Sequencing in the Norfolk Island Core 

Pedigree  

This chapter is formatted and presented as a manuscript in preparation for peer review. The 

appropriate headings and sub-headings have been used to correspond to scientific journal 

format so that this chapter can be submitted to an appropriate journal. Additional details have 

been included here for the purposes of the thesis and a condensed version will be used for 

publication. Analysis has been conducted in the most comprehensive manner possible and 

will be further expanded on to improve on the genotype, phenotype correlation. The 

continued use of sophisticated bioinformatics tools will further improve visualisation and 

understanding of this large body of data. Next generation sequencing technologies produce 

vast amounts of data which presents a challenge to all researchers for adequate visualisation 

and interpretation. As the field of bioinformatics evolves, the tools available will enable more 

comprehensive interpretation, making these large volumes of sequence information more 

useful in mapping the function of the human genome. This study produced terabytes of 

sequencing data which presents enormous analytical challenges. Through the use of 

commercially available software in conjunction with customised in-house bioinformatics 

tools, many of these challenges were overcome with the results described here. 
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Abstract 

Migraine is a complex disease and multifactorial in nature with both genetic and 

environmental components contributing to the overall phenotype. Molecular genetic studies 

have identified a number of susceptibility regions in the genome which contribute towards 

disease risk, but a large proportion of the genetic variance still remains to be elucidated and 

novel avenues of exploration are needed to address this area. Biochemical, morphological and 

therapeutic studies provide strong evidence that mitochondrial dysfunction could be involved 

in migraine pathogenesis. The aim of this study is to explore the role of mitochondrial 

dysfunction in relation to migraine susceptibility from the molecular genetics point of view. 

Norfolk Island is an ideal population for identification of complex disease traits as the genetic 

heterogeneity typical of complex disease is reduced. In total 315 individuals were selected 

from the most related individuals with direct ancestry to the original founders for full 

mitochondrial genome sequencing on the Ion Torrent platform. Logistic regression analysis 

showed that 1 SNP, mt 930 G>A located within the 12S rRNA subunit is significantly 

associated with migraine. A Fisher’s exact test identified two rare variants associated with 

migraine susceptibility. We hypothesize that mt 6480 G>A situated within the COX1 gene 

presents genetic evidence that there could be a shared pathogenic mechanism involved in 

common migraine and stroke. Further we present the first genetic evidence showing a link 

between NADH dehydrogenase and migraine. NADH reductase deficiency has been 

successfully treated with riboflavin and this presents a new therapeutic avenue for migraine 

sufferers. 
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Introduction 

Migraine is a common neurological disorder characterised by debilitating head pain and an 

assortment of additional symptoms which can include nausea, vomiting, photophonia and 

phonophobia [318]. Migraine has been classified by the International Headache Society into 

two main subtypes namely migraine with aura (MA) and migraine without aura (MO). 

Sufferers who experience additional neurological symptoms ranging in severity from visual 

scintillations to numbness and hemiplegia are categorised as MA sufferers, while patients 

who do not experience these additional symptoms fall into the MO classification [2, 319]. 

The World Health Organisation (WHO) ranks migraine as one of the top twenty most 

debilitating diseases in the developed world [4]. Migraine poses a significant personal burden 

to sufferers, but also has a major economic impact caused by lost productivity due to 

absenteeism from the workplace. It has been shown that the indirect costs associated with lost 

productivity far exceed the direct medical costs of treatment. However current treatments are 

only effective for a proportion of sufferers and new therapeutic targets are needed to alleviate 

the burden of migraine [5, 9-11]. 

 

Migraine is a complex disease and multifactorial in nature with both genetic and 

environmental components contributing to the overall phenotype. Twin studies have shown a 

high concordance rate between monozygotic and dizygotic twins, with heritability estimates 

ranging between 40-60 % [320]. A clear tendency for migraine to occur in families has been 

observed, further strengthening the evidence that there is a strong genetic contribution to the 

overall phenotype [321, 322]. Molecular genetic studies have identified a number of 

susceptibility regions in the genome which contribute towards disease risk, but a large 

proportion of the genetic variance still remains to be elucidated. Strategies have included 

large GWAS studies, family linkage studies, genotyping case control cohorts and more 
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recently sequencing genes or even entire genomes [323-327]. Scientific studies in conjunction 

with clinical investigations have improved our understanding of the pathophysiology of 

migraine, but the complete physiological process is still not fully understood. 

 

The current most widely accepted theory is that activation of the trigeminal nervous system 

through a variety of vascular and/or neurological mechanisms results in generation of a pain 

signal within the sensory cortex [328]. Cortical spreading depression (CSD) which is a wave 

of neuronal and glial depolarization or neuronal hyperexcitability followed by a long-lasting 

suppression of neuronal activity [329] is also thought to play a role in trigeminal activation, 

especially in the pathophysiology of MA. CSD has been linked with some of the additional 

neurological symptoms experience by MA sufferers such as visual scintillations [330]. An 

alternative proposal is that dysfunction of the diencephalic nuclei situated within the brain 

stem causes a signalling disturbance resulting in a migraine attack [331]. Given the complex 

multifactorial nature of migraine and highly variable phenotype it is likely that multiple 

pathways and different signalling cascades could result in the same phenotype, but differ 

between individuals. 

 

Thus far three main groups of genes have been found to be involved in migraine namely 

vascular, neurological and hormonal [332]. Given the vascular and neurological component 

of migraine, it is unsurprising that variants within genes which control these functions have 

been found to play an important role. Also given the female preponderance of migraine 

sufferers and the clearly defined sub-classification of menstrual migraine it is logical that 

hormonal genes influence disease state. Even with these discoveries, a large proportion of the 

genetic variance responsible for migraine remains unexplained. Novel avenues of exploration 

are needed to address this area of research. The link between mitochondrial dysfunction and 
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migraine was first suggested by scientists in the 1980’s and since then a growing body of 

evidence has strengthened this hypothesis [26, 333, 334]. The aim of this study is to explore 

the role of mitochondrial dysfunction in relation to migraine susceptibility. 

 

Mitochondria are the power houses of the cell and provide energy to the body’s tissues in the 

form of ATP via the oxidative phosphorylation (OXPHOS) chain. They also function 

critically in stabilising intracellular Ca2+ levels, protecting the cell from damaging Reaction 

Oxygen Species (ROS) and controlling vascular tone through Cytochrome C Oxidase (COX) 

and Nitrogen Oxide (NO). Mitochondria provide energy for the body through other metabolic 

pathways including production of ketones from fatty acids and anaerobic ATP synthesis. In 

mitochondrial disorders the tissues which are most adversely affected are those with the 

highest energy requirements namely muscle and nervous tissue. Strong evidence from 

biochemical, morphological and therapeutic studies show a link between mitochondrial 

dysfunction and migraine pathogenesis [47, 280, 333, 335-338]. Genetic studies have been 

limited by sample size and molecular data making this an area that needs to be addressed. 

Four mitochondrial variants have thus far been associated with an increased risk for 

developing migraine including mt 4336 A>G [280], mt 16519 C>T, mt 3010 G>A [339] and 

mt 15699 G>C [340] in a limited number of patient samples.  

 

This project is the first molecular genetic study to comprehensively examine the full 

mitochondrial genome in a large genetic isolate in relation to migraine susceptibility. Norfolk 

Island is a genetically isolated population situated off the cost of Australia, best known from 

the “Mutiny on the Bounty” historical account. This isolate is an ideal population for 

identification of complex disease traits as the genetic heterogeneity typical of these diseases is 

reduced. Geographical isolation further reduces environmental heterogeneity and 
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environment-gene interactions, increasing the chance of identifying true causal variants [341, 

342]. More than 1000 nuclear genes encode products which are imported into the 

mitochondria and thereby directly affect mitochondrial function [343]. This study further 

addresses the role of Nuclear Encoded Mitochondrial Proteins (NEMPs) and migraine 

susceptibility, results outlined in Chapter 6. 

 

Subjects and Methods 

Subjects 

Norfolk Island is a volcanic island situated 1600 kms east, north-east from Sydney Australia 

and has a unique history which has been well documented over time. Fletcher Christian 

aboard the British “Bounty” led a mutiny that resulted in Pitcairn Island being settled by 9 

sailors and 12 Tahitian women. Once the population exceeded carrying capacity almost 

everyone relocated to Norfolk Island on June 8, 1856. Since then geographic isolation and 

strict immigration policy has resulted in a unique genetically isolated population, with the 

majority of current residents being related to the original founders [342]. Genetic isolates 

such as Finish, Sardinian, Icelandic and other Scandinavian populations have been sampled 

and utilised in genetic studies to map genes causing disease [344, 345]. Given the population 

structure of Norfolk Island, it is a useful genetic isolate for complex disease mapping. Traits 

which are very prominent in this group include cardiovascular disease (CVD), diabetes, 

metabolic syndrome and migraine [341]. 

 

In the year 2000 collections were taken from 602 individuals residing on Norfolk Island as 

part of the Norfolk Island Health Study. Extensive anthropometric measurements were 

recorded for each individual including weight, height, waist circumference, hip 

136 Chapter 5: Mitochondrial Genome Sequencing in the Norfolk Island Core Pedigree   



 

circumference, body fat percentage and blood pressure. A blood sample was also taken for 

full plasma chemistry analysis and later DNA extraction. Each participant completed detailed 

questionnaires describing family medical histories, lifestyle choices and current medical 

conditions. DNA was extracted from whole blood samples using standard salting out and 

stored appropriately. Stock samples were diluted to a working concentration of 20 ng/uL for 

use in the lab. All participants consented to the collection and use of information as part of an 

ongoing genetic research study. Ethical clearance was obtained initially from the Griffith 

University Human Research Ethics Committee, and later from the Queensland University of 

Technology Ethics Committee, for the collection and utilisation of all DNA samples included 

in this study [342]. 

 

Accurate and detailed historical accounts have been used by genealogists to create and 

maintain a well-documented database of the entire Norfolk Island population, spanning all the 

way back to the original founders. This pedigree has been drawn up and is maintained in a 

genealogy program known as Brother’s Keeper. The pedigree includes ~5700 individuals 

coalescing over 11 generations or 200 years back to the original 9 European sailors and 12 

Tahitian women [346]. The Norfolk Island Health Study sampled individuals from the lower 

four generations of the pedigree  and included 386 (64 %) individuals possessing lineages 

back to the founders and 216 individuals (36 %) who were considered to be new founders and 

did not show direct ancestral links [342]. An updated core pedigree was constructed using 

this information and genetic information as it became available through genetic studies. 

Currently the core pedigree structure contains those individuals that are most closely related 

and coalesce directly back to the original founders [347]. For this study 315 individuals were 

selected from the core pedigree for full mitochondrial genome sequencing on the Ion Torrent 

platform. 
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Methods 

 
Molecular Techniques 

For this study mitochondrial DNA was enriched and purified before undergoing library 

preparation. Samples were amplified by long range PCR, utilising two primer pairs which 

produce overlapping fragments covering the entire mitochondrial genome. Parameters which 

were tested and accordingly altered include final primer concentration, DMSO concentration, 

final reaction volume, input DNA, annealing temperature and thermocycling conditions. Final 

reaction conditions are shown in Tables 20, 21 and 22. It was found that quarter reaction 

volumes were sufficient to produce quality fragments suitable for library preparation. PCR 

products were run on 1 % (w/v) agarose gels to accommodate for large fragment sizes at 2 

V/cm and visualised under UV light. Ethidium bromide was used for staining at a 4 % 

concentration. Negative controls were included in each PCR run to check for contamination 

and ensure adequate quality control. 

 

Table 20: Primer pairs used for long range PCR 

 

Amplicon Amplicon Position in 

Genome 

Primer Sequences Final 

Concentration 

mt_Frag1 569 (forward) 5’ AAC CAA ACC CCA AAG ACA CC 3’ 200 nM 

9819 (reverse) 5’ GCC AAT AAT GAC GTG AAG TCC 3’ 

mt_Frag2 9611 (forward) 5’ TCC CAC TCC TAA ACA CAT CC 3’ 200 nM 

626 (reverse) 5’ TTT ATG GGG TGA TGT GAG CC 3’ 
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Table 21: Final reaction conditions 

 

Reagent 1 x Reaction Volume 

uL 

Final Concentration Stock Concentration 

Nuclease free water 28.3 - - 

Buffer 10 1 x 5 x 

dNTPs 2.5 0.5 mM 10 mM 

F/R primer 2 200 nM 10 uM 

DMSO 1.5 3 % 100 % 

Enzyme Mix* 0.7 0.05 U/uL 3.75 U/uL 

 

 

Table 22: Thermocycling conditions for long range PCR 

 

Temperature Time Cycles 

92 °C 2 min 1 

92 °C 10 s 9 

55 °C 15 s 

68 °C 9 min 

92 °C 15 s 19 

60 °C 20 s 

68 °C 9 min 

68 °C 7 min 1 

8 °C ∞  
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Mitochondrial PCR fragments were cleaned using QIAquick post PCR cleanup columns from 

QIAGEN (Catalogue Number 28106) to remove any excess dNTPs or other reagents. Once 

only the pure mitochondrial fragments remained, they were accurately quantified using 

Agilent DNA 12000 chips (Catalogue Number 5067-1508) on a bioanalyser instrument. The 

two overlapping fragments produced during the long range PCR process were pooled together 

in equimolar amounts for each sample. After pooling and thorough mixing, 100 ng was 

aliquoted for library preparation. The NEB NextFlex Fast DNA Library Prep Set for Ion 

Torrent (Catalogue Number 4474178) was utilised for all remaining samples not sequenced 

during the pilot stage (Chapter 4) and manufacturer instructions were followed at all times. 

The aliquoted 100 ng of DNA was topped up to final volume of 51 uL using deionised water 

as a larger volume allows for more efficient DNA shearing. Samples were sheared using the 

NGS Biorupter system for 15 cycles of 30 sec on, 30 sec off on the high power setting at 4 

°C. 

 

Immediately following the shearing process samples were end repaired using the enzyme mix 

and reaction buffer provided by NEB in the tubes labelled with green caps. This process 

ensured that fragments were blunt ended and compatible with the adapter and barcode 

sequences which were ligated in the next step. The repair process also prevented any 

degradation of sheared DNA fragments. In total 6 uL of NEBNext End Repair Reaction 

Buffer and 3 uL of NEBNext End Repair Enzyme Mix was added to each sample, bringing 

the final volume up to 60 uL. An incubation step consisting of 20 min at 25 °C followed by 

10 min at 70 °C was applied at this stage. Samples were returned to ice before continuing to 

adapter and barcode ligation. 
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Unique barcodes were added to each sample to allow multiplexing and high throughput 

batching. Batches of 48 samples per chip were processed with each batch containing samples 

labelled with 48 unique barcodes. A P1 adapter was also ligated to the end repaired fragments 

and acted as a sequencing primer once attached to the Ion Sphere Particles. The following 

reagents were added to each sample: 19 uL sterile water, 10 uL T4 DNA Ligase Buffer for 

Ion Torrent, 1 uL Bst DNA Polymerase, 2 uL P1 adapter (Bioo Scientific), 2 uL barcode X 

(Bioo Scientific) and 6 uL T4 DNA Ligase in a total reaction volume of 40 uL. Bioo 

Scientific NEXTflex™ DNA Barcodes for Ion PGM™ (Catalogue Number 401004) were 

chosen as they were the most cost effective way of labelling samples for multiplexed batches. 

Samples were mixed by pipetting and incubated in a thermal cycler for 15 min at 25 °C, 

followed by 5 min at 65 °C. It was found that a faulty batch of DNA polymerase caused 

primer dimer reducing the efficacy of sequencing, and a replacement batch from the 

manufacturer corrected this problem without causing any significant data loss. 

 

Post adapter and barcode ligation, samples were cleaned using AMPure XP Beads (Catalogue 

Number A63881) from Agencourt. Exactly 180 uL of beads were added to each sample 

followed by a 5 min incubation at room temperature. Tubes were pulse spun and placed on a 

magnetic rack for 3 min after which the supernatant was carefully removed. Two ethanol 

washes were then performed using 80 % ethanol freshly prepared on the day of use. 500 uL of 

80 % ethanol was added to each tube, incubated for 30 sec and then removed using a pipette. 

This step was repeated to perform a total of 2 washes. Samples were then air dried for 5 min 

and re-suspended in 25 uL of 0.1 x T.E buffer. 20 uL of clear supernatant was transferred to a 

clean tube for the next step. It was critical not to transfer any of the beads and so 5 uL was 

discarded at this step. 
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A size selection process was undertaken to ensure maximal data output. A range of 290-350 

bp was recommended to be the most desirable target size and it was the aim to capture these 

fragments. An E-Gel size select system (Catalogue number G6610-02) was used to capture 

the desired fragments with a 2 % (w/v) precast agarose gel. Samples were loaded into the top 

well with 10 uL of marker into the middle well and run for 12 min. All empty wells were 

filled with 25 uL of deionised water and toped up with 15 uL after the initial 12 min run. 

Samples were then run for another approximately 4 min while being constantly viewed. As 

soon as the 350 bp marker entered the top of the collection well the run was stop and samples 

were collected into a fresh tube using a pipette. A second washing step using 15 uL of 

deionised water was undertaken to ensure maximum sample recovery. Each time water was 

added to the well, pipetted up and down and then transferred to the respective sample tube. 

 

Following size selection samples underwent library amplification. Here 10 uL of NEB 

Library Primers were added to each sample as well as 50 uL of NEBNext High-Fidelity 2 x 

PCR Master Mix. Each sample was mixed carefully using a pipette. PCR cycling conditions 

are given in Table 23 below. 
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Table 23: PCR amplification of adaptor ligated DNA 

STEP TEMPERATURE TIME 

Initial Denaturation 98 °C 30 s 

8 cycles 98 °C 10 s 

 58 °C 30 s 

 72 °C 30 s 

1 cycle 72 °C 5 min 

Hold 4 °C ∞ 

 

A final cleaning step was undertaken using 100 uL of AMPure Agencourt beads (Catalogue 

Number A63881). The procedure was identical to the initial cleaning step and only differed 

with the initial volume. The ratio of beads to sample is imperative to ensure collection of the 

correct sized fragments in an efficient manner. 

 

After the final amplification and purification step all libraries were quantified on a 

Bioanalyser using Agilent DNA 1000 chips (Catalogue Number 5067-1504). Samples for 

each multiplex were pooled in equimolar amounts and diluted to 26 pM. Initially 6 samples 

were pooled per 314 chip and later to increase thoroughput 48 samples were plexed into a 

single sequencing reaction on 316 chips. 

 

Analysis 

Raw sequence reads were aligned to the revised Cambridge Reference Sequence (rCRS) 

using SAMTOOLs to produce Binary Alignment (BAM) files which were subsequently 

indexed. A custom script was used to call all variants relative to the reference genome. This 

alignment and variant calling was undertaken by David Eccles and all subsequent analysis 
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were based on this custom pipeline developed by our bioinformatics team. As my own 

contribution all sequences were aligned using default settings on the torrent server and 

variants called using Java based pluggins. Interestingly there was good concordance between 

my own analysis and that undertaken by David, showing that tools available to wet lab users 

are of sufficient quality for sequence analysis. 

 

Variants which passed quality control were analysed using a logistic regression model in 

Plink [348]. In total 265 variants met all quality thresholds across 315 individuals. Individuals 

included 80 migraine sufferers, 235 healthy controls and an even gender ratio of 152 males 

and 163 females. Variants with a MAF of <0.01 were excluded from the final regression 

model to avoid skewing of results. In total 201 common SNPs were included in the regression 

model and 64 rare variants were analysed separately using a Fisher’s exact test in Plink v1.09. 

The regression test factored in for the covariates age, gender and kinship. RNAfold was used 

to predict secondary structural changes to 12S rRNA.  

 

The sequencing depth obtained with a maximum of 16000 x coverage allowed us to examine 

heteroplasmic variants, present in a proportion of sequencing reads. A specialised script was 

used to call heteroplasmic variants and to determine the percentage of mitochondria the 

variants are found in by using the percentage of sequence reads containing the variant as a 

direct estimate. As an initial analysis heteroplasmic variants were coded as 1 (heteroplasmy 

present) and 0 (no heteroplasmy) and a logistic regression model factoring in for the 

covariates age, gender and relatedness was used to test for association between heteroplasmic 

variants and migraine susceptibility. 
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Haplogroups were defined for all samples and an association test was undertaken comparing 

haplogroup to migraine status utilising a similar logistic regression model as described before. 

The Norfolk Island ancestry was explored using the haplogroup information obtained and a 

summary of haplogroups was generated. 

 

Quality Control 

Due to technical problems with the one touch/emulsion amplification equipment, several 

multi-plexes were repeated. This produced in excess of 240 duplicate sequences which were 

pure technical replicates. Having access to so many duplicate sequences enabled a very 

detailed quality control process to take place, where the sequencing accuracy of the torrent 

platform could be comprehensively assessed. A cut off QUAL score of 999 was used. Only 

sequences which exceeded a QUAL of 999 were considered for variant calling. This measure 

assesses the quality of an individual sequence read and the likelihood that the sequence is 

correct. A second quality control measure was then implemented, enabled by the duplication 

of samples. This primarily examined the variant calling process and looked for any 

inconsistencies between duplicate samples. Only variants which had an Inconsistent Allele 

Frequency (IAF) of 1 % or lower were considered to be true variants. This rigorous quality 

control process ensured that any sequencing errors were filtered out and that logistic 

regression analysis was based on true variant calls. As with all massive parallel sequencing 

platforms, some sequencing error bias was observed. It was found that long homopolymer 

stretches presented a challenge to the Ion Torrent platform and that some sequencing slippage 

occurred in regions containing long homopolymer stretches. This was found to be especially 

true for a common 9 bp Polynesian deletion, and manual curation of this region was required. 

Calling indels also presented a bioinformatic challenge due to sequencing error bias, requiring 
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a higher level of manual input. It is important to note here that all sequencing platforms are 

prone to their own types of sequencing error corresponding to the chemistry used [349]. 

 

Results 

Sequencing 

Due to the large volume of data generated, it is not feasible to present all of the sequencing 

data in a thesis. Each sequencing run would fill hundreds of pages, therefore a representative 

run has been selected and summarised here as an example of the data generated. The full run 

report for run 14_repeat is shown in Appendix D. 

 

As seen in Table 24 below, sequencing run 14_repeat produced in excess of two million 

sequencing reads, with a  total data output of 294.37 Mb and 260.49 Mb exceeding Q20 

(Phred score) quality. Phred quality scores were originally developed to assist in the 

automation of DNA sequencing in the Human Genome Project and have become widely 

accepted to characterize the quality of DNA sequences. The Pred (Q) score is calculated as a 

probability of a base being called incorrectly. A Pred (Q) score of 20 means that 1 in 100 base 

pairs are likely to be an error which seems relatively high, but is the currently accepted 

threshold for accurate sequence data [350].  Approximately 34 Mb of data was filtered out 

using this quality threshold, fortunately only a small fraction of the total data generated. In 

this example the average read length was 142 bp which is within the expected range for 200 

bp sequencing chemistry and the longest read was 376 bp indicating that the size selection 

process was successful and high quality libraries were generated. 
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Table 24: Per base quality scores for a representative sequencing run 

Quality Score Measurement 

Total Number of Bases (Mbp)  294.37 

Number of Q20 Bases (Mbp)  260.49 

Total Number of Reads  2,060,080 

Mean Length (bp) 142 

Longest Read (bp) 376 

 

 

Figure 24 below graphically represents the read length of each sequence generated during the 

run with base pair length shown on the x axis and number of reads represented on the y axis. 

Figure 24: Read length of each sequence generated during the sequencing run 

 

 
 The size of each fragment sequenced is shown in bp on the x axis with number of reads 

shown on the y axis. Most fragments sequenced were between 150 and 210 base pairs as 

expected when using 200 bp sequencing chemistry. While a number of smaller reads 

were found, the majority of sequences were in the target size range as shown by the clear 

peak in the diagram. 
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Figure 25: Distribution of barcoded samples 

 
 

 On average each barcoded sample is evenly represented. This was achieved through 

accurate library quantification and dilution prior to pooling. 
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The distribution between barcoded samples is represented in Figure 25 above with each 

barcode 1-48 shown on the x axis. As previously described, plexes of 48 were utilised. As can 

be seen, a mostly even distribution was obtained between samples ensuring that each sample 

was sequenced at an adequate depth of coverage. This demonstrates the accuracy of library 

quantification using the Bioanalyser as described in the methods section. While some 

variability can be seen between samples with barcodes 18 and 35 being slightly under-

represented, adequate depth of coverage was still obtained for all samples. 

 

Figure 26: Ion Sphere Particle Summary 

 

 

 

 

 

 

 

 

 Chip loading and sequencing metrics are given for an example run. The red colour 

indicates dense loading of positive ISPs which corresponds to high sequence output. The 

percentage of polyclonal reads, where multiple templates are attached to a single ISP, is 

41 %. This is slightly higher than manufacture recommendations and was corrected by 

decreasing the amount of library used during template preparation. Overall metrics 

indicate a successful sequencing run. 
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Figure 26 illustrates the summary properties of ion sphere particle (ISP) distribution. As 

explained in the methods section, ideally a single strand of template DNA is attached to each 

ceramic bead or ion sphere particle to produce an optimal sequencing run. Metrics such as 

these are useful for trouble shooting and provide information about the efficacy of library 

preparation, template preparation, chip loading and sequencing. Values falling outside of 

expected thresholds provide insight into the source of a potential problem. As shown above, 

chip loading was optimal with red indicating a high density of bead disposition. The red 

colour further indicates a high proportion of live ISPs, meaning that they are attached to 

amplified library fragments and this is ideal. Manufacturers recommend that at least 60 % of 

wells should contain live ISPs and with 79 % chip loading in the above example this 

threshold was exceeded. Test fragments are included in each sequencing run as a positive 

control and should constitute less than 1 % of fragments which was achieved in every run. 

These are known Escherichia coli sequences which serve to provide a basis for sequencing 

efficacy and accuracy of each run. If the Ion Torrent platform is functioning optimally, at least 

85 % accuracy of the test fragments must be obtained. Any deviations from this threshold 

indicates that there could be an instrument malfunction and a field application specialist 

would need to assess the equipment. 

 

These metrics provide further quality control thresholds and provide useful information for 

optimisations in future runs. Ideally polyclonal reads, meaning more than one template strand 

of DNA is attached to a single ISP, should be between 20-30 %. The template dilution factor 

calculation and accurate quantification is critical to achieve this. Higher percentages of 

polyclonal amplification, as can be observed here with 41 % of the reads being polyclonal, 

results in excessive data loss. Reducing the amount of template used in the emulsion PCR 
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process would correct this problem and this action was taken to ensure maximum data output. 

An acceptable percentage of primer dimer and low quality libraries resulted in further data 

loss in the above example. This is expected for all sequencing runs due to the nature of 

massive parallel sequencing. The advantage of this technology is that despite numerous 

errors, the amount of data produced is so vast that even after the filtering process, excess 

coverage is available across all regions for all samples. 

 

Figure 27 shows the alignment of sequence data to the reference genome (RSRS), with 96 % 

of sequenced bases matching the reference and 4 % differing. This 4 % which differs to the 

reference, represents the variation which individuals possess. The aim of this project was to 

identify sequence variation and determine the correlation with migraine status. 
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Figure 27: Sequencing data aligned to the RSRS 

 

 

 96 % of sequenced bases aligned to the RSRS, with 4 % of sequenced bases not matching 

the reference sequence. This 4% are the variants identified through sequencing which 

are different to the reference sequence and possibly involved in modulating disease 

susceptibility 

 

Figure 28 shows a snap shot from Integrated Genome Viewer (IGV), a bioinformatics 

platform which aids in visualisation of sequence data. Each grey bar represents a sequencing 

read, with variants relative to the reference genome shown as coloured bars. Samples are 

represented as a panel on the left hand side, with each sample shown in its own panel. IGV 

allows viewing of multiple samples relative to the reference genome simultaneously and also 

provides a good indication of average read depth obtained across the genome.  
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Figure 28: FASTQ sequence observed in IGV 

 

 Sequence data was visualised in Integrated Genome Viewer (IGV) with each grey bar 

representing a sequence read. The coloured points indicate sites that differ from the 

reference sequence. These may be variants or possible mis-alignments. 

 

Analysis 

Raw sequence reads were aligned to the RSRS genome using both SAMTOOLS and the 

default torrent server suite settings. Overall alignments obtained were similar regardless of 

the method used. In-house bioinformatic tools were given preference over commercial 

software and variant calls were based on the alignments produced by SAMTOOLS. A custom 

pipeline was used for variant calling after stringent quality control methods were 

implemented. As a comparison, Java based pluggins were also used to call variants using the 

torrent server and again the variant calls obtained were similar to those produced by custom 

bioinformatics tools.  
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In total 265 variants met all quality thresholds across 315 individuals. Individuals included 80 

migraine sufferers, 235 healthy controls and an even gender ratio of 152 males and 163 

females. Variants with a MAF of <0.01 were excluded from the final regression model to 

avoid skewing of results. In total 201 common SNPs were included in the regression model 

and 64 rare variants were analysed separately using a Fisher’s exact test in Plink v1.09. The 

regression test factored in for the covariates age, gender and kinship. 

 

Common Variants 

Logistic regression analysis showed that 1 SNP is significantly associated with migraine 

susceptibility namely a G>A substitution at position 930 of the mitochondrial genome. This 

SNP is located within the 12S rRNA subunit and is transcribed to produce part of the 

ribosomal complex which translates transcripts from all the coding regions of the 

mitochondrial genome into proteins. Table 25 shows the top twenty hits ranked according to p 

value.  

 

Figure 29 depicts all 201 SNPs tested and shows the location of detected variants throughout 

the mitochondrial genome. As seen in this circle plot, the only variant which exceeds the 

significance threshold p<0.05 illustrated by the blue line is 930 G>A. This substitution has 

been reported 556 times previously in MitoMap and currently has no known disease 

associations [351].  The RNAfold webserver [352] was used to predict the secondary 

structural changes caused by this substitution as seen in Figure 30. According to the 

predictive algorithms no secondary structural changes occur as a result of this substitution. 

However these results are only best estimates and functional studies would be needed to 

determine the true outcome in terms of functional effect. 
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 Table 25:  Results of logistic regression analysis of common variants factoring in for all 

covariates 

 

Rare Variants 

A Fisher’s exact test was performed in Plink v1.09 to analyse the remaining rare variants. 

This showed that 2 SNPs are significantly associated with migraine and given that they were 

only found in healthy controls they may confer a slightly protective effect. Table 26 illustrates 

the results of this analysis for all variants which were polymorphic. Those variants which 

differed from the reference genome, but were present in all 315 individuals and therefore had 

a MAF of 0 are not shown in Table 26. The most significantly associated rare variant, mt 

11930 A>G is a non-synonymous amino acid substitution, with the affected codon causing a 

change from isoleucine to valine. This variant is novel and has never been previously reported 

Variant 
Base Pair 
Position Test Odds Ratio Rank P Value 

930.G 930 Additive 3.967 1 0.0233 
16239.C 16239 Additive 2.389 2 0.06759 
189.A 189 Additive 1.881 3 0.07081 
16224.T 16224 Additive 1.781 4 0.07441 
9380.G 9380 Additive 2.777 5 0.1093 
11253.T 11253 Additive 2.777 6 0.1093 
4727.A 4727 Additive 2.776 7 0.1095 
239.T 239 Additive 2.763 8 0.1109 
9055.G 9055 Additive 1.633 9 0.114 
7028.T 7028 Additive 0.7352 10 0.12 
1189.T 1189 Additive 1.859 11 0.1218 
2706.G 2706 Additive 0.7397 12 0.1272 
9698.T 9698 Additive 1.6 13 0.1272 
10550.A 10550 Additive 1.6 14 0.1272 
3480.A 3480 Additive 1.592 15 0.1312 
11299.T 11299 Additive 1.592 16 0.1312 
14167.C 14167 Additive 1.592 17 0.1312 
16129.A 16129 Additive 0.4517 18 0.132 
497.C 497 Additive 1.785 19 0.1416 
11719.A 11719 Additive 0.7746 20 0.1592 
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in MitoMap or mtDB [353]. It is situated in the mitochondrial gene encoding for NADH 

dehydrogenase, subunit 4 which forms a critical component of the oxidative phosphorylation 

chain. The second hit, mt 6480G>A is also a non-synonymous amino acid substitution, 

situated in the COX1 gene. It too causes a change from isoleucine to valine and has 

previously been associated with prostate cancer [354] . 
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Table 26: Fisher’s exact test, identifying association between rare variants and migraine 

Variant 
Base Pair 
Position 

MAF* 
Cases 

MAF* 
Controls P Value Odds Ratio 

11930.A 11930 0 0.02991 0.02628 0 
6480.G 6480 0 0.02979 0.0263 0 
279.T 279 0.0125 0.03863 0.1232 0.315 
10822.C 10822 0.0125 0.03863 0.1232 0.315 
5187.C 5187 0.0125 0.03846 0.1236 0.3165 
16169.C 16169 0.0125 0.03846 0.1236 0.3165 
16257.C 16257 0.0125 0.03846 0.1236 0.3165 
3918.G 3918 0.0125 0.0383 0.1239 0.3179 
6261.G 6261 0.0125 0.0383 0.1239 0.3179 
7873.C 7873 0.0125 0.0383 0.1239 0.3179 
12358.A 12358 0.0125 0.0383 0.1239 0.3179 
12873.T 12873 0.0125 0.0383 0.1239 0.3179 
12795.G 12795 0.0125 0.004274 0.2695 2.949 
9145.G 9145 0.025 0.01277 0.2842 1.983 
6905.A 6905 0.025 0.01282 0.2856 1.974 
1240.ACC 1240 0 0.01064 0.3391 0 
16280.A 16280 0.0125 0.03004 0.3821 0.4087 
4796.C 4796 0.025 0.01717 0.5138 1.468 
14893.A 14893 0.025 0.01717 0.5138 1.468 
14971.T 14971 0.025 0.01717 0.5138 1.468 
12103.C 12103 0.025 0.01724 0.5149 1.462 
14003.C 14003 0.025 0.01724 0.5149 1.462 
3736.G 3736 0.0125 0.02564 0.5356 0.481 
6782.T 6782 0.0125 0.02564 0.5356 0.481 
16271.T 16271 0.0125 0.02564 0.5356 0.481 
318.T 318 0.0125 0.02575 0.5358 0.4789 
10688.A 10688 0 0.008511 0.5769 0 
16356.T 16356 0.025 0.03617 0.6162 0.6833 
7559.A 7559 0.0125 0.008511 0.647 1.475 
198.C 198 0.025 0.0279 1 0.8935 
499.G 499 0.025 0.02778 1 0.8974 
3841.TGA 3841 0.007042 0.008969 1 0.7837 
5999.T 5999 0.025 0.02778 1 0.8974 
6047.A 6047 0.025 0.02778 1 0.8974 
8818.C 8818 0.025 0.02778 1 0.8974 
11332.C 11332 0.025 0.02766 1 0.9014 
12937.A 12937 0.025 0.02778 1 0.8974 
14620.C 14620 0.025 0.03017 1 0.8242 
15244.AGGC 15244 0 0.002262 1 0 
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Figure 29: Logistic Regression Analysis of 201 common variants depicted as a Circular 
Plot showing each variant according to mitochondrial genome position 

 

 The circular plot shows each identified common variant as a coloured dot according to 

location within the mitochondrial genome. Each gene is colour coded according to the 

key given on the right of the plot. The solid blue line represents the cut off for 

significance where p<0.05. Only a single common variant exceeds the solid blue threshold 

line. It is a G>A substitution at position 930, located in the 12S rRNA subunit. 
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Figure 30: Predicted secondary structural changes to 12s rRNA at position 930 

 
 
 
 

 

 

 According to RNAfold the predicted secondary structure of 12S rRNA does not change 

with mt 930G>A substitution. A and C show the centroid and the predicted base pair 

probability pairing respectively where the wildtype G allele is present. B and D show the 

same structures when the A substitution occurs. There is no change in the predicted 

secondary structure. 
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Heteroplasmic Variants 

Logistic regression factoring in for the covariates age, gender and relatedness identified 11 

variants to be significantly associated with migraine susceptibility. These results are presented 

in Table 27 below. 

Table 27: Results of heteroplasmic variant analysis 

CHR SNP BP A1 TEST OR STAT P 

26 8697{A} 8697 A ADD 0.3639 -2.56 0.01047 

26 16148{T} 16148 A ADD 0.4923 -2.559 0.0105 

26 10400{T} 10400 T ADD 2.029 2.551 0.01075 

26 279{C} 279 A ADD 2.11 2.489 0.0128 

26 10398{A} 10398 A ADD 0.5052 -2.376 0.0175 

26 8655{A;C} 8655 A ADD 1.96 2.293 0.02187 

26 16239{T} 16239 A ADD 0.2414 -2.254 0.02419 

26 12937{G} 12937 A ADD 1.926 2.232 0.02559 

26 1240-1246{D1-2} 1240 T ADD 2.032 2.188 0.02865 

26 9716{C} 9716 T ADD 1.72 2.01 0.04447 

26 8818{T} 8818 A ADD 0.5084 -1.963 0.04963 

26 16362{A;C;G} 16362 T ADD 0.5574 -1.919 0.055 

26 4529{T} 4529 A ADD 1.712 1.892 0.05855 

26 12103{A} 12103 T ADD 1.641 1.816 0.06931 

26 3505{G} 3505 A ADD 3.067 1.815 0.06951 

26 14022{C;G;T} 14022 A ADD 1.753 1.809 0.07042 

26 508-532{D1-2} 508 T ADD 1.728 1.755 0.07924 

26 239{C} 239 A ADD 0.3353 -1.707 0.08781 

26 9123{A} 9123 A ADD 0.5763 -1.704 0.08833 

26 9145{A} 9145 A ADD 1.597 1.69 0.09096 
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As described in the methods section heteroplasmic variants were defined and called using a 

custom script and an in-house developed bioinformatics pipeline. This analysis incorporated 

the depth of sequence and percentage of reads containing the identified variant. It is 

interesting that heteroplasmic variants were found to play a more significant role than 

homoplasmic variants in migraine susceptibility. This data suggests that acquired variants 

accumulating over time and reaching a threshold may be an important factor in migraine 

pathogenesis and other neurological diseases. This topic should definitely be explored further 

in future studies.  

Haplogroups 

Table 28: Haplogroup analysis 

CHR SNP BP A1 TEST OR STAT P 

26 K 12 A ADD 4.749 2.119 0.03408 

26 R 10 A ADD 4.478 1.364 0.1725 

26 B 2 A ADD 0.5751 -1.326 0.185 

26 W 13 A ADD 5.966 1.191 0.2336 

26 X 6 A ADD 2.088 0.7939 0.4273 

26 H 5 A ADD 1.452 0.7855 0.4322 

26 U 1 A ADD 0.7129 -0.4162 0.6773 

26 J 3 A ADD 0.7201 -0.4069 0.6841 

26 T 7 A ADD 1.271 0.2791 0.7802 

26 I 9 A ADD 3.27E-09 -0.00184 0.9985 

26 L 11 A ADD 2.59E-09 -0.00165 0.9987 

26 V 8 A ADD 1.95E-09 -0.0015 0.9988 

26 N 4 A ADD 3.24E-09 -0.00113 0.9991 
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As shown in Table 28 above, haplogroup K is significantly associated with migraine 

susceptibility. This finding is consistent with other studies which have found haplogroups to 

be significantly associated with complex disease [284]. This data suggests that individuals 

belonging to haplogroup K have an increased risk of developing migraine.  

 

The haplogroups identified were mostly of European (H, I, J, K, U) and Asian (B) origin 

which is in line with historical records and supports the reports of European paternal and 

Polynesian maternal origins. Figure 31 shows the distribution of defined haplogroups in the 

sequenced individuals, with 130 individuals belonging to haplogroup B and 60 belonging to 

Haplogroup H. Given the maternal Polynesian origins of the Norfolk Island population the 

fact that the majority of individuals carry haplogroup B, which is defining of Asian and 

subsequently Polynesian lineages, corresponds to historical accounts. The European and other 

non-Asian haplogroups most likely originate from married-in individuals who have 

introduced new mitochondrial lineages into the population. 
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Figure 31: Distribution of haplogroups in NI sequenced individuals 

 

 

 

The majority of sequenced individuals present with haplogroup B which is defining of the 

Polynesian lineage and corresponds to historical records. The European and additional non-

European haplogroups most likely originate from married-in individuals. 
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Key Findings and Replication 

The overall aim of this study was to obtain full mitochondrial genome sequence information 

from selected Norfolk Island individuals in order to identify mitochondrial variants associated 

with migraine susceptibility. The Norfolk Island pedigree is an ideal cohort for identifying 

variants involved in complex disease due to the reduced genetic and environmental 

heterogeneity. The power of advancing technology was utilised to achieve this goal through 

the development of a cost effective method capable of producing large volumes of sequence 

data quickly. In total 315 individuals from the Norfolk Island pedigree underwent full 

mitochondrial genome sequencing, producing a high level of coverage across the entire 

genome for each individual sequenced. These sequences were aligned to a reference genome 

(RSRS) and variants were called relative to this reference. Careful quality control and 

filtering processes were used to ensure that only true variants were called. 

 

A series of statistical tools were used to compare identified variants found in migraine 

sufferers with unaffected individuals with the aim of identifying variants involved in migraine 

susceptibility. A logistic regression model factoring in for gender, age and relatedness was 

used to undertake this comparison. It is important to correct for the above mentioned 

covariates, to prevent bias and skewing of results. In order for the regression model to be 

valid, only variants with a MAF>0.01 were considered. These were defined as common 

variants. Out of the 201 common variants tested, only one variant showed a significant allele 

frequency difference between migraineurs and controls. This was a G>A substitution at 

position 930 of the mitochondrial genome. This SNP is located within the 12S rRNA subunit 

and is transcribed to produce part of the ribosomal complex which translates transcripts from 

all the coding regions of the mitochondrial genome into proteins.  
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The identified variant, mt 930 G>A (p=0.0233) passed the unadjusted significance threshold 

of p<0.05. If a Bonferroni correction were to be applied or the significance threshold was to 

be adjusted to account for multiple testing, then this variant would not meet the significance 

threshold. Many researchers question the stringency of correcting for multiple testing and it 

has been suggested that doing so unnecessarily invalidates potentially real results [355]. The 

logistic regression model indicates an odds ratio of 3.967 for mt 930 G>A which is very high. 

This means that an individual who carries the G allele is almost four times more likely to 

develop migraine than an individual that carries the A allele. Given the location in 12S rRNA 

and the strong association of this region with sensineuronal hearing loss, a neurological 

condition, it is biologically plausible for this mitochondrial region to be strongly involved in 

migraine pathogenesis. 

 

The remaining 64 rare variants were analysed using a Fisher’s exact test which is a more 

statistically valid approach to take when comparing small numbers of alleles. This test does 

still contain limitations as with all other statistical measures and the rarer a variant is, the 

more difficult it becomes to meaningfully gauge whether it has an effect on disease outcome 

[356]. Using this statistical measure it was found that two rare variants are associated with 

migraine susceptibility namely mt 11930 A>G (p=0.026) and mt 6480 G>A (p=0.026). Both 

of these variants were only identified in unaffected controls and were not found in migraine 

sufferers, suggesting that the non-ancestral allele confers a slightly protective effect. Again 

these variants would not meet the significance threshold if applying correction for multiple 

testing. 
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In order to better understand the role of these variants in migraine susceptibility, a replication 

study was undertaken on a large Caucasian migraine case control population. The methods for 

this study are described in detail in Chapter 6. All three mitochondrial variants which were 

identified as potentially contributing to migraine susceptibility were genotyped using a 

Sequenom plex and analysed using an appropriate logistic regression model which corrected 

for gender bias. The results are shown below in Table 29. 

 

Table 29: Logistic Regression model of genotyped mitochondrial SNPs in a large 

migraine case control population 

CHR SNP BP A1 TEST NMISS STAT P 

26 rs41352944 930 A ADD 1051 0.3023 0.7625 

26 rs199476128 6480 A ADD 1070 0.00088 0.9993 

26 11930A>G 11930 0 ADD 1076 NA NA 

 

 

 NMISS stand for non-missing and indicates the number of individuals successfully 

genotyped. As can be seen in Table 29, the genotyping assay was largely successful and over 

1000 individuals were genotyped for each SNP. For the variant mt 11930 A>G which is a 

novel variant and has never been reported previously, no individuals were found to carry the 

G allele. All 1076 individuals typed carried the A allele, suggesting that this variant is either 

extremely rare or is a Norfolk specific variant. Given the unique genetic architecture specific 

to the Norfolk Island pedigree, it is likely that mt 11930 A>G is only found in the Norfolk 

pedigree. Studying other variants situated in the same region as mt 11930 A>G in an outbred 

population would be useful and provide evidence that NADH dehydrogenase is critical in 

migraine pathogenesis. 
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 Both mt 930 G>A and mt 6480 G>A were found not to be significantly associated with 

migraine susceptibility in the tested population. However when considering how few 

individuals were found to be carrying the alternate allele as shown in Table 30 below, it is not 

surprising that the results were not significant. F_A represents the MAF in cases and F_U for 

controls. Similarly these variants may be very rare or Norfolk specific and further 

investigation of the 12S rRNA region and the COX1 gene would be useful. 

 Table 30: Allele frequencies of mitochondrial variants tested in a large outbred 

migraine case control population 

 

In line with the aims of this study, sequence data was further assessed according to identified 

heteroplasmic variants and defined haplogroups. Calling heteroplasmic variants was more 

challenging and required a higher level of manual curation. Complex bioinformatic 

approaches were used to define heteroplasmic levels and assign appropriate calls. 

Heteroplasmic variants were coded categorically as either heteroplasmy present or absent and 

a logistic regression model was applied to assess differences between migraineurs and 

unaffected controls. This qualitative approach has limitations and a quantitative model of 

analysis would provide more accurate insights into the role of heteroplasmy in migraine. 

Using the available methods, 11 heteroplasmic variants were identified as being associated 

with migraine susceptibility. 

CHR SNP BP A1 F_A F_U 

26 rs41352944 930 A 0.05273 0.04808 

26 rs199476128 6480 A 0.001869 0 

26 11930A>G 11930 0 0 0 
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The most significant heteroplasmic variant was found to have a protective effect against 

developing migraine with p=0.0104 and an odds ratio of 0.363. An odds ratio smaller than 

one indicates relative reduced disease risk. Individuals carrying the A allele at position 8697, 

even when only present in a proportion of mitochondria, are protected from developing 

migraine (Table 27). It was an unexpected finding that heteroplasmic variants play a greater 

role in migraine susceptibility than their homoplasmic counterparts. This could be explained 

by an accumulation of mutations reaching a threshold level within the mitochondrial cell 

population and causing disease once the threshold is exceeded. The idea of accumulated 

mutations contributing to neurological disease corresponds to the observation of the severe 

mitochondrial neuropathies, where disease progression accelerates as time goes on [357]. 

Further investigation in an outbred population would provide much needed insight. 

 

With regards to haplogroup analysis, haplogroup K was found to be significantly associated 

with migraine susceptibility. Theories regarding this finding are discussed in Chapter 7. 

Overall 3 mitochondrial variants were found to be associated with migraine susceptibility, 1 

common variant mt 930 G>A (p=0.0233) and 2 rare variants; mt 11930 A>G (p=0.026) and 

mt 6840 G>A (p=0.026). Unfortunately none of these were replicated in an outbred 

population indicating that investigation of other variants in the identified gene regions would 

be useful. In addition to the initial findings, 11 heteroplasmic variants were identified as 

being associated with migraine and further deep sequencing studies in other populations 

would be useful to see if the same effect is observed.  
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Discussion 

 

Migraine and Stroke, Shared Pathogenic Mechanisms 

It has been well documented that migraine and stroke are co-morbid disorders. Recently it has 

been suggested that there may be common underlying mechanisms for the pathogenesis of 

both diseases and evidence is accumulating which strengthens the link between these 

conditions and suggests a shared pathway [358]. Data from epidemiologic studies have shown 

a high prevalence of migraine sufferers among stroke victims leading to the now established 

fact that these diseases are co-morbid [173, 359]. The finding of silent infarct-like brain 

lesions in patients suffering from migraine has strengthened the link between migraine and 

stroke, but has also raised the hypothesis that migraine could cause long lasting damage and 

in severe cases, especially in those individuals suffering regular attacks, result in stroke [360]. 

This hypothesis is further supported by the finding that stroke can occur during migraine with 

aura attacks, usually in more rare familial forms of migraine such as Familial Hemiplegic 

Migraine (FHM). This demonstrates a causal relationship between migraine and stroke and 

points to the idea of multiple MA attacks predisposing an individual towards having a stroke 

later in life [358, 361].  

 

It has been suggested that migraine and ischemic stroke may actually be caused by a common 

pathogenic mechanism resulting in a spectral phenotype ranging from migraine all the way to 

stroke. It has also been suggested that migraine could be a progressive disorder and have long 

term effects [361]. Further evidence of a common pathogenic mechanism is the shared 

symptoms of migraine and stroke in certain neurological diseases such as CADASIL (cerebral 

autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and 

MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) 
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[362, 363]. In these diseases and other similar neurological conditions, patients experience 

both severe migraine attacks as well as stroke. The overlap of symptoms in mitochondrial 

disorders such as MELAS and others, further suggests an underlying mitochondrial 

pathogenic mechanism. 

 

As mentioned in the introduction mitochondria play an important role in ion homeostasis, 

protecting the cell from damaging ROS and controlling vascular tone through COX and NO. 

NO is a potent vasodilator and has been shown to bind to COX and through this binding 

action regulate vasodilation [364, 365]. Studies have shown that in vessels rich with COX or 

where there is an alteration in COX functionality, there may be sequestration of NO, 

preventing vasodilation during strokes suffered by patients who present with MELAS [333, 

365]. Our results show a significant association with mt 6480 G>A situated within COX1 and 

for the first time suggests that this could be a pathogenic mechanism in common migraine 

sufferers and not just individuals suffering rare mitochondrial disorders. In this study those 

individuals carrying the variant are slightly protected from migraine rather than being 

predisposed. However Norfolk Island has a very unique genetic architecture and further 

genetic studies examining other COX1 variants in a large outbred population are warranted. 

Figure 32 below illustrates the proposed shared pathway between COX, NO, stroke and 

migraine. 
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Figure 32: Illustration of the interaction between COX, NO and resultant blood flow 
which affects both stroke and migraine.  

 

 

Nitric oxide is a potent vasodilator. COX inhibits NO activity by binding to free NO in the blood, 
resulting in reduced blood flow. This COX, NO mechanism and resultant reduction in blood flow 
has been shown to occur in stroke. We hypothesize that this could be a common underlying 
pathogenic mechanism in both stroke and migraine attacks, which are known to be co-morbid. Our 
study provides genetic evidence that there is a link between COX and migraine, lending support to 
the hypothesis that genetic variation which alters the binding of NO to COX (either increase or 
decrease) results in a pathogenic mechanism common to both migraine and stroke. Abbreviations 
cGMP: cyclic guanosine monophosphate, GMP: guanosine monophosphate, GTP: guanosine 
triphosphate, sGC: Soluble guanylyl cyclase, eNOS: endothelial nitric oxide synthase, NO: nitric 
oxide 
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Mitochondrial Dysfunction and Migraine 

Biochemical studies have shown that migraine sufferers have deficient levels of NADH 

dehydrogenase, citrate synthetase and COX compared to healthy controls. Research also 

found that migraine sufferers have impaired function in addition to lower levels of NADH 

dehydrogenase, citrate synthetase and COX leading to intravascular platelet dysfunction and 

vulnerability to oxidative stress [333, 336, 364, 366]. Our most significantly associated rare 

variant, mt 11930 A>G is situated in the mitochondrial gene encoding for NADH 

dehydrogenase, subunit 4 which forms a critical component of the oxidative phosphorylation 

chain. This is the first genetic evidence linking up with the already well documented 

biochemical evidence showing a link between NADH dehydrogenase and migraine.  

 

Strong therapeutic evidence strengthens this link and presents the possibility of a new 

treatment tailored specifically to individuals with deleterious mutations in the NADH gene. 

NADH reductase deficiency has been successfully treated with riboflavin (vitamin B2), which 

has also been shown to be an effective prophylactic treatment for migraine sufferers [367]. 

Riboflavin is an essential compound that is necessary for the Electron Transport Chain (ETC) 

to function. It is a precursor to flavin adenine dinucleotide, which functions by transferring 

electrons to donors such as NAD and NADP [368]. Research has shown that patients with 

non H haplogroups respond better to treatment [338, 369], making a comprehensive genetic 

diagnosis essential for predicting the efficacy of treatment. 

 

Biochemical, morphological and therapeutic studies all show that there is a relationship 

between mitochondrial dysfunction and migraine. Examination of muscle fibres in migraine 

sufferers has identified ragged red fibres, fatty COX- fibres, paracrystalline inclusions and 

subsarcolemmal mitochondria which are all hallmark characteristics of defective OXPHOS 
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function and overall impaired mitochondrial function [334]. Biochemical studies suggest that 

dysregulation of Ca2+ ions due to mitochondrial dysfunction alters the signalling properties of 

neurons and this phenomenon has been linked to CSD and peripheral pain mechanisms. This 

pathology has been compared to the dysfunction of calcium channel genes resulting in FHM 

[26, 333].  

 

Other biochemical studies have shown through P-MRS (phosphorus magnetic resonance 

studies) that migraine sufferers have a reduction in OXPHOS function [370]. Lactic acidosis 

has also been described in migraineurs, which is another hallmark characteristic of 

mitochondrial dysfunction. Perhaps the strongest evidence of all is response to therapy which 

targets different deficient mitochondrial pathways. Co-enzyme Q10, vitamin B2, Mg2+, 

niacin, carnitine, topiramate and thioctic acid have all been shown to be effective therapeutics 

in the treatment of migraine [367, 368, 371, 372]. All of these molecules target mitochondrial 

mechanisms. Further study of nuclear encoding mitochondrial genes and regulators of 

mitochondrial function would be valuable [373]. 

 

12S rRNA and Migraine 

12S rRNA forms part of the ribosomal machinery within the mitochondria for translation of 

transcripts into proteins. Mutations in this region are most commonly associated with 

sensorineural hearing loss (SNHL). The cochlea requires important mechanisms such as 

membrane depolarization, ion transport and transmitter release to take place in order to 

function correctly. These mechanisms are highly dependent on the ATP produced by 

mitochondrial oxidative phosphorylation and any impairment in function can result in 

deafness. Five rRNA mutations have been found to cause SNHL in the 12S rRNA gene, while 

no deafness-associated mutations in the 16S rRNA gene have been found thus far [374]. 
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Given the importance of mitochondrial function for this sensitive neuronal process, it is 

possible that variants in the 12S rRNA region could affect other neuronal processes including 

lowering the threshold for a migraine attack. Further studies are needed to examine this area 

in more detail. 

 

Conclusions 

The three SNPs found to be significantly associated with migraine in the Norfolk Island 

population were investigated in a replication study described in Chapter 6, following on from 

this chapter. Mt 11930 A>G was not detected in any of the Australian outbred samples, 

suggesting that this novel variant is Norfolk specific. The other two SNPs identified to be 

significantly associated with migraine in Norfolk Island, mt 930 G>A and mt 6480 G>A were 

detected in very few case-control samples and were not found to be significantly associated 

with migraine, again suggesting that these variants are specific to Norfolk Island and do not 

play an important role in the Australian Caucasian population. However this study has still 

identified key mitochondrial regions that should be investigated further as other variants in 

these regions could play a role in migraine pathogenesis in the Australian population. It has 

also provided conclusive evidence for the first time that mitochondrial variation is linked to 

migraine susceptibility. 

 

Significantly it appears that heteroplasmic variants which may be acquired during the lifetime 

may play a more significant role than inherited homoplasmic variants. We found 11 

heteroplasmic variants to be significantly associated with migraine in the Norfolk Island 

population and as part of the future research aims, further investigation into this finding is 

warranted. Recent literature explores the idea of acquired mitochondrial variants which 
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accumulate and reach a threshold later in life causing complex disorders. It has been 

suggested that these acquired age related variants play a more critical role in complex disease 

than previously thought [357]. This is the first study which produced mitochondrial genome 

sequencing at a depth of coverage deep enough to address this question of heteroplasmy and 

we present valuable findings here which should be explored further. 
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Chapter 6:  Nuclear Encoded Mitochondrial Proteins (NEMPs) and 

Migraine Association in the Norfolk Island Population 

Similarly to Chapter 5, this results chapter is presented as a manuscript in preparation. A 

condensed version of the results presented here has been submitted to American Journal of 

Human Genetics for peer review. 
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Abstract 

Migraine is a complex disease and multifactorial in nature with both genetic and 

environmental components contributing to the overall phenotype. Molecular genetic studies 

have identified a number of susceptibility regions in the genome which contribute towards 

disease risk, but a large proportion of the genetic variance still remains to be elucidated and 

novel avenues of exploration are needed to address this area. Biochemical, morphological and 

therapeutic studies provide strong evidence that mitochondrial dysfunction could be involved 

in migraine pathogenesis. The aim of this chapter is to explore the role of mitochondrial 

dysfunction in relation to migraine susceptibility from the molecular genetics point of view.  

 

Norfolk Island is an ideal population for identification of complex disease traits as the genetic 

heterogeneity typical of complex disease is reduced. In our discovery phase using this unique 

population it was found that 667 NEMP SNPs are significantly associated with migraine in 

the Norfolk Island population. Of these SNPs, 21 were carried forward to a replication study 

utilising a large migraine case-control cohort. Overall findings identified 9 SNPs to be 

significantly associated with migraine in the genes ELOVL6, SARDH, CSNK1G3 and the 

PCDHG family in both populations. Four variants out of the 9 significantly associated SNPs 

were found in to be in the PCDHG gene cluster, suggesting a particularly important role for 

this locus in migraine pathogenesis. Haplotype analysis shows that multiple risk alleles in the 

PCDHG gene region further increases the risk of developing migraine and this strengthens 

the link between migraine susceptibility and this locus. This is the first molecular genetic 

study to comprehensively investigate the role of NEMPs in migraine susceptibility and to 

conclusively identify a new link between mitochondrial dysfunction and migraine. 
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Introduction 

Mitochondria are thought to be ancient eukaryotes which formed a symbiotic relationship 

with our ancestors. As a result these organelles have evolved as a key part of all mammalian 

physiology. The mitochondrial genome encodes for 37 genes, of which 13 polypeptides are 

translated by the mitochondrial ribosomes to form subunits of the OXPHOS chain. The 

remainder of the proteins, enzymes and signalling molecules are all encoded by the nuclear 

genome and imported into the mitochondrial matrix. In total 99.995 % of all the molecules 

involved in mitochondrial function are imported from the cytosol. To comprehensively 

investigate the role of mitochondrial dysfunction in migraine susceptibility, the Nuclear 

Encoded Mitochondrial Proteins (NEMPs) genes must also be considered. In this chapter the 

role of NEMPs in relation to migraine are investigated. 

 

Mitochondria are the power houses of the cell and provide energy to the body’s tissues in the 

form of adenosine tri-phosphate (ATP) via the oxidative phosphorylation (OXPHOS) chain. 

They also function critically in stabilising intracellular Ca2+ levels, protecting the cell from 

damaging Reaction Oxygen Species (ROS) and controlling vascular tone through 

Cytochrome C Oxidase (COX) and Nitrogen Oxide (NO). Mitochondria provide energy for 

the body through other metabolic pathways including production of ketones from fatty acids 

and anaerobic ATP synthesis. In mitochondrial disorders the tissues which are most adversely 

affected are those with the highest energy requirements namely muscle and nervous tissue. 

Strong evidence from biochemical, morphological and therapeutic studies show a link 

between mitochondrial dysfunction and migraine pathogenesis [47, 280, 333, 335-338]. 

Genetic studies have been limited by sample size and molecular data making this an area that 

needs to be addressed.  
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The mitochondrial genome encodes for 13 polypeptides which are translated on the 

mitochondrial ribosomes and form structural subunits of the OXPHOS enzyme complexes. 

Complex I is composed of 46 polypeptides of which 7 are mitochondrially encoded, complex 

III includes just 1 mitochondrially encoded polypeptide our of 11 components and complex 

IV has 3 out of 13. Similarly only 2 out of 16 proteins in complex V are encoded by the 

mitochondria [357]. All the other components of OXPHOS including the entire subunit II are 

encoded by nuclear genes. In addition to structural components of OXPHOS, all the 

mitochondrial metabolic enzymes, transcriptions factors and other regulatory molecules 

which govern mitochondrial function are nuclear encoded [375]. Current estimates are that 

more than 1000 proteins are encoded by the nuclear DNA and imported into the 

mitochondrial matrix [343]. The vast majority of active molecules involved in mitochondrial 

function are imported into the matrix from the nucleus in this way with less than 1 % of 

mitochondrial function attributed to the mitochondrial genome itself [376]. The aim of this 

study is to investigate these nuclear encoded mitochondrial proteins (NEMPs) which are 

critical components of mitochondrial dysfunction in relation to migraine susceptibility. 

 

Norfolk Island is a genetically isolated population situated off the coast of Australia, best 

known from the “Bounty on the Mutiny” historical account. This isolate is an ideal population 

for identification of complex disease traits as the genetic heterogeneity typical of these 

diseases is reduced. Geographical isolation further reduces environmental heterogeneity and 

environment-gene interactions, increasing the chance of identifying true causal variants [341, 

342]. A large Australian outbred migraine case-control population provides a further valuable 

replication cohort. This is the first molecular genetic study to comprehensively investigate the 

role of NEMPs in migraine susceptibility.  
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Norfolk Island Population 

Sample Selection 

Genotyping data from previous studies were selected for all known NEMP genes in n=315 

individuals from the Norfolk Island pedigree. In total 16280 SNPs in known NEMP genes 

were genotyped across the entire cohort of individuals. The selected individuals also 

underwent full mitochondrial genome sequencing on the ion torrent platform, making up a 

full subset of samples where full mitochondrial information was available in conjunction with 

NEMP data. This study design was selected to comprehensively answer the research question 

posed which is: what is the role of mitochondrial dysfunction in relation to migraine 

susceptibility. Mitochondrial dysfunction involves both the mitochondrial genome and the 

1000+ proteins which are encoded by the nuclear genome and imported into this organelle. 

 

Data Files 

Data were formatted according to tped and tfam file specification for analysis in Plink v1.07. 

These are similar to ped and map files, but contain some transposed elements in the opposite 

orientation. The tfam file contained columns for family ID, individual ID, genomic co-

ordinates of each SNP and phenotype. For this analysis the phenotype included was migraine 

where 1=unaffected and 2=affected. The tped file had columns for each SNP tested and the 

corresponding genotype for all 315 samples selected. A covariate file was utilised to correct 

for gender, age and relatedness. The covariate file included columns for family ID and 

individual ID which matched the tfam file. Columns for gender, relatedness and age were also 

included corresponding to COVAR1, COVAR2 and COVAR3 respectively in the results. 
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Analysis 

Plink v1.07 was used for all analyses. The selected NEMP SNPs were tested for association 

with migraine using a logistic regression model which factored in for the covariates gender, 

relatedness and age. The final additive test value was considered for significant association 

with migraine. Results were ranked according to p value from smallest to largest.  

 

Replication Study in Migraine Association Population 

Sequenom Plex Design 

The 32 previously selected NEMP SNPs (Table 40, Appendix B) in conjunction with 3 

mitochondrial SNPs were grouped together for a plex design using Sequenom Assay Design 

Suite Software 1.0. The 3 mitochondrial SNPs were prioritised to be included in the plex 

during the design process as they were found to be significantly associated with migraine 

susceptibility (see previous mitochondrial genome sequencing Chapter 5). Due to primer 

interactions only a subset of the desired SNPs can be included in the final design. In total 21 

NEMP SNPs and 3 mitochondrial SNPs were selected for the final assay. These are shown in 

Appendix B. Known SNPs were included in the assay design using their designation rs 

number. One SNP, namely an A>G change at position 11930 of the mitochondrial genome, 

was novel and the convention used is given in (Table 41) Appendix B. 

 

Sample Selection 

Migraine cases and controls were recruited from the local South East Queensland region as 

previously described [377]. They were all of Caucasian origin, and diagnosed as having MA 

or MO based on criteria specified by the International Headache Society. An unaffected 

control group with no family history of migraine was matched for age (+/- 5 years), sex and 

181 Chapter 6: Nuclear Encoded Mitochondrial Proteins (NEMPs) and Migraine Association   
 



 

ethnicity. Blood samples obtained from patients were collected through the Genomics 

Research Centre clinic and DNA was extracted using a salting out method. Approval for the 

study protocol was acquired from QUT’s Ethics Committee. This Australian Caucasian 

migraine case-control population was genotyped for all 24 selected SNPs. In total 1128 

individuals comprising 544 cases and 584 controls were genotyped. Migraine sufferers 

included both MA and MO subtypes, with 381 MA cases and 163 MO cases. As is typical of 

migraine, samples were skewed in a 3:1 gender ratio with 294 males and 834 females 

included. 

 

Molecular Techniques 

Matrix-assisted desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry was 

used to genotype each sample in a multiplexed reaction [378]. The Sequenom instrument and 

accompanying software was used to carry out all genotyping work as well as the design of 

amplification and genotyping primers. Unique primer pairs were designed as described 

previously to amplify each region of interest such that only one region would be amplified for 

each primer pair. A genotyping primer was then designed to anneal directly adjacent to the 

SNP of interest, allowing for enzymatic extension of a single dideoxy base pair following 

PCR amplification. The extended primer was then robotically dispensed onto a silicon chip 

preloaded with matrix, ionised and released. The time of flight was recorded for each 

fragment. The density of each genotype differs slightly and can be interpreted as a scatter plot.  

 

Dilution of Annealing and Extension Primers 

Primers were ordered and arrived resuspended at a stock concentration of 100 uM. All PCR 

forward and reverse primers were diluted and pooled to a 0.5 uM concentration in a final 

volume of 2000 uL. Using the formula: 
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C1* C2  = C2* V2 

          (100 uM)*V1=0.5 uM*2000 uL 

      V1=1000/100 

             =10 uL of each primer 

 

Where C1=initial concentration 

 C2=final concentration 

 V1= initial volume 

 V2=final volume 

 

A total of 24 forward primers and 24 reverse primers were included bringing the total volume 

of primer up to 480 uL. To reach V2 1520 uL of deionised water was added to the pool. This 

resulted in an equimolar pool of primer pairs, each at a final concentration of 0.5 uM. 

 

Extension primers were ordered at a resuspended concentration of 500 uM and pooled 

according to individual molecular weight as shown in Table 42 in Appendix B. A total initial 

volume of 832.57 uL of undiluted extension primers were made up. A test extension primer 

reaction was run on the Sequenom and concentrations were adjusted accordingly.  An 

additional 4 parts and one half volume were added for rs2073815 and rs11748256 

respectively. This was done to obtain an approximately equal distribution of each extension 

primer represented in the total pool. A total volume of 2000 uL was then made up using 

distilled water. 
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Amplification and Purification Steps 

Before spotting samples onto the silica chips, three preparations were involved namely a 

PCR, SAP clean and extension PCR. The first PCR amplified each region of interest from 

genomic DNA, using forward and reverse primers. This reaction works in the same way as a 

standard PCR. After amplification the product was purified using shrimp alkaline 

phosphatase (SAP) to remove any excess dTNPs or impurities from the solution. Samples 

were incubated at 37 °C for 40 min followed by 85 °C for 5 min and held at 12 °C.  

Following the clean the final extension reaction was undertaken. During this step each 

extension primer amplifies the region of interest adjacent to each SNP assayed. The tables 

below outline the reaction conditions used for these steps. 

 

Table 31: PCR Preparation 

Reagent Final Concentration in 5 uL 

Rxn 

Volume of Reagent in 5 uL Rxn 

(uL) 

Deionised water - 1.8 

10x PCR Buffer 2x 0.5 

25mM MgCl2 2 mM 0.4 

25mM dNTP Mix 500 uM 0.1 

1uM Primer Mix 0.5 uM 1.0 

5U/uL Enzyme 1 U/rxn 0.2 

DNA 10ng 1.0 
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Table 32: PCR Thermocycling Conditions 

Temperature Time Cycles 

95 °C 2 min 1 

95 °C 30 sec 45 

56 °C 30 sec  

72 °C 60 sec  

72 °C 5 min 1 

12 °C ∞ Hold 

 

 

Table 33: SAP Reaction 

Reagent Final Concentration in 7 uL 

Rxn 

Volume of Reagent in 

2 uL Mix 

Deionised water - 1.53 

SAP Buffer 0.234 x 0.17 

SAP Enzyme 0.5U 0.30 

 

Table 34: Extension Primer Reaction 

Reagent Final Concentration Volume of Reagent in 

2 uL Mix 

Deionised water - 0.619 

iPLEX Buffer 0.222 x 0.2 

IPLEX Termination  1x 0.2 

Extend Primer mis 14 uM 0.94 

iPLEX Enzyme 1x 0.041 
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Table 35: Thermocycling conditions used for extension reaction 

Temperature Time Cycles 

94 °C 30 sec 1 

94 °C 5 sec 40 

52 °C 5 sec (5) 

80 °C 3 sec  

72 °C 3 min 1 

12 °C ∞ Hold 

 

Desalting Samples 

A final purification reaction was performed before dispensing samples to a chip. Resin was 

used to remove any remaining impurities from the solution. Clean resin was spread out across 

the accompanying 96 well plate mould so that exactly 15mg was added into each well. The 

resin was left to dry for 10 min and added after the addition of 41 uL of deionised water to 

each well. The plate was sealed and rotated for 15 min, followed by a 5 min spin in the 

centrifuge at 3200 x g. 

 

Dispensing to Chip 

The nanodispenser robot was used to distribute each sample onto a chip. Calibrant was added 

and used to determine the optimum dispense speed each day. On average a dispensing speed 

of 80 mm/sec was used. A 96 well to chip mapping method was used and all maintenance 

was adhered to including daily (ethanol) and weekly (NaOH) clean. 

 

Acquiring Data with MALDI-TOF 

Plain text files were created with sample information for each chip that was set-up and run. 

The Typer software was used to import the assay and sample information for each new plate 
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created. Once created, plates were linked with the corresponding chip using ChipLinker 

software. The iPLEX chemistry was selected with Genotype+Area data collection.  All 

SpectroCHIPs were run on the MassARRAY Typer Workstation with settings for 

iPLEXGold. 

 

Data Files  

A PED file and MAP file were created using the genotype data generated by Sequenom. The 

PED file was drawn up in excel and included columns for Family ID, Individual ID, Paternal 

ID, Maternal ID, Sex, Phenotype and Genotype. Since this was a case-control study, 

individuals are not related and Family ID was assigned as a unique numerical value for each 

sample. The Individual ID corresponded to the information imported from the text files where 

samples had a unique identifier corresponding to our databases. Paternal and Maternal ID 

were set to 0 as all individuals were unrelated. Sex was assigned to each sample where 

1=male and 2=female. The phenotype of interest in our study was migraine where 

1=unaffected and 2=affected. A separate PED file was also created for migraine 

subclassifications so that MA and MO could be compared to controls to identify any 

associations with these sub-classifications. 

 

The MAP file included headings for chromosome location, rs identifier or SNP ID, genetic 

distance between markers in cM and the base pair position of the marker. Genetic distance 

was set to 0 for the purposes of this analysis. All PED and MAP files were converted to text 

files and subsequently renamed to .ped and .map files respectively. 
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Analysis 

Plink v1.07 was used for all analysis. A logistic regression model was used to test for 

association between the SNPs genotyped and migraine susceptibility. The model was adjusted 

for the covariate gender to avoid skewing of results due to sex bias. A regression model was 

utilised for overall migraine cases as well as the subtypes MA and MO. In total 1128 

individuals comprising 544 cases and 584 controls were included in the analysis. Subtype 

analysis comprised 381 MA cases and 163 MO cases. Linkage disequilibrium was calculated 

across the 24 SNPs tested and haplotype blocks were constructed using this data. Association 

between haplotypes and migraine susceptibility was calculated in both Plink and Haploview. 

Hardy Weinberg Equilibrium (HWE) 

 was calculated and a threshold of p<0.002 was used taking into account multiple testing 

(0.05/24). 

 

The command prompts used are outlined below: 

 

Logistic Regression: (factoring in for sex) 

--plink –-noweb –-ped Migraine_Overall.ped –-map NEMP_MAP1.map –-logistic ---sex 

HWE: 

--plink –-noweb –-ped Migraine_Overall.ped –-map NEMP_MAP1.map –-hardy  

 

LD: 

--plink –-noweb –-ped Migraine_Overall.ped –-map NEMP_MAP1.map –-r  

Haplotype Block Construction: 

--plink –-noweb –-ped Migraine_Overall.ped –-map NEMP_MAP1.map –-hap plink.blocks –-hap-

freq 
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Haplotype Association: 

--plink –-noweb –-ped Migraine_Overall.ped –-map NEMP_MAP1.map –-hap-assoc 

For MA and MO analysis, the appropriate PED file was substituted each time. For MA: 

MA_Overall.ped and for MO: MO_Overall.ped 

 

Results 

 

Norfolk Island 

The initial logistic regression analysis using Norfolk Island samples showed that in total 667 

NEMP SNPs are significantly associated with migraine. The results of the logistic regression 

are shown in the Manhattan plot below, Figure 33. A clear peak can be seen on chromosome 

5, coloured in green, which shows the link between migraine and the PCDHG gene cluster. 

The logistic regression model factored in age, gender and relatedness and tested for 

association between 16280 previously genotyped NEMP SNPs and migraine susceptibility. It 

was found that 667 NEMP SNPs were significantly associated with migraine in the Norfolk 

Island population with the most significant associations showing p<0.0001.  The genes which 

were found to be most significantly involved in migraine susceptibility in the Norfolk Island 

population are CUB and Sushi multiple domains (CSMD) 1 and 3, phosphatidylserine 

decarboxylase (PISD), fatty acid elongase 6 (ELOVL6), casein kinase 1 gamma 3 

(CSNK1G3), sarcosine dehydrogenase (SARDH) and protocadherin gamma (PCDHG) C3 and 

B4.  

 

In order to select SNPs for a Sequenom plex results were prioritised according to a 

combination criteria of smallest p value and genomic location. Multiple SNPs were selected 
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from genes which recurred as being significantly associated with migraine. In this way it was 

attempted to represent a spread of SNPs across the most significantly associated genes in 

Norfolk Island for replication. A list comprising 32 of our highest priority SNPs is shown in 

(Table 40) Appendix B. Due to primer interactions only a subset of the desired SNPs could be 

included in the final design and 21 NEMP SNPs were included for replication in an outbred 

case-control population. 

 

Figure 33: Logistic regression analysis of genotyped NEMP SNPs in Norfolk Island 

 

 

 Each of the 16820 SNPs included in the logistic regression model are represented by a 

dot according to genomic location. Points are arranged according to chromosome 

number as shown on the x axis and the p value is reflected on the y axis. Shown in green 

is a significant peak on chromosome 5, in the PCDH gene region where multiple variants 

show a highly significant association with migraine susceptibility. 

190 Chapter 6: Nuclear Encoded Mitochondrial Proteins (NEMPs) and Migraine Association   



 

Replication Study 

The logistic regression model showed a significant association with several of the tested 

SNPs and migraine association as shown in (Table 43) Appendix C. When investigated 

according to migraine subtype it is clear that these markers are significantly associated with 

MA and not at all with MO. It is possible that the results were biased in favour of MA 

association due to the low number of MO cases available in our migraine case cohort, 

however for the most part the evidence suggests an MA specific association. When correcting 

for multiple testing, only a single SNP was out of HWE (rs13361997) as shown in (Table 44) 

Appendix C. This SNP was not found to be significantly associated with migraine and should 

be disregarded from further analysis and removed before publication.  

 

The haplotype association test showed 3 haplotype blocks amongst the tested SNPs with 

incomplete LD between SNP 4 and 5, 11 and 13 and 19 and 20 as shown in Figure 34 below. 

The composition of each haplotype block is illustrated in Table 45 Appendix C which shows 

the grouping of SNPs and the correlation between each haplotype block and migraine 

susceptibility. Haplotype block 1 and 2 show significant association with migraine 

susceptibility. Given the complex nature of migraine which is a multifactorial disease, it is 

important to consider interactions between SNPs and to examine them as groups and not just 

individual variants. 
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Figure 34: LD plot of tested SNPs as calculated and illustrated in Haploview 

 

 

 

The haplotype association test showed 3 haplotype blocks amongst the tested SNPs with 

incomplete LD between SNP 4 and 5, 11 and 13 and 19 and 20. Linkage disequilibrium is 

illustrated in red. 

 

The SNPs in PCDHG were further considered according to LD and haplotype analysis was 

undertaken in Haploview 4.2. Six SNPs located in the PCDHG gene cluster were included on 

the Sequenom assay and genotyped across our case-control population. One SNP, rs13361997 

was not in HWE equilibrium and excluded from further analysis. A ped and map file was 

drawn up for the five SNPs located in PCDHG to assess  LD between tested SNPs in this 

gene region and for further haplotype based association testing.  As seen in Figure 35 below, 
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there is a high level of LD between the PCDHG SNPs with 2 haplotype blocks estimated. The 

haplotype association test showed that individuals with the G allele for both rs11748256 and 

rs1195229 are at an increased risk of developing migraine. The results suggest that multiple 

risk alleles in the PCDHG gene region increases the risk of developing migraine and this 

further strengthens the link between migraine susceptibility and this locus. Given the complex 

nature of migraine which is a multifactorial disease, it is important to consider interactions 

between SNPs and to examine them as groups and not just individual variants. Table 46 in 

Appendix C shows the composition of each haplotype block and the correlation between each 

haplotype block and migraine susceptibility. 

 

Figure 35: Haplotype analysis of 5 tested PCDHG variants in outbred Australian 
population 

 

 

 

 

 

 

The 5 tested SNPs located within the PCDH gene region show significant LD as depicted by the 

red blocks. Individuals with multiple risk variants in this region have a further increased risk of 

developing migraine. 

 

Linkage disequilibrium was considered across the entire PCDHG gene region using available 

data from HapMap and compared between different population groups. Norfolk Island is a 

unique admixture of paternal European ancestry in combination with Polynesian maternal 

origins. The Polynesian lineage descends from an Asian background and so the CEU and 
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CHB population groups were used for this comparison. As can be seen in Figure 36 and 37 

below there are minimal differences in LD between these population groups for the PCDHG 

gene region.  

 

Haplotype blocks are slightly more broken up in the Asian compared to European population.  

To compare these populations with our unique Norfolk Island population, available genotype 

data was extracted for 165 SNPs across the PCDHG gene region and analysed in Haploview. 

Plink v1.07 was used to extract the relevant SNPs and generate new ped and map files to load 

into Haploview. As can be seen in Figure 38 below, LD in the PCDHG gene region in the 

Norfolk Island population more closely resembles Asian architecture than the European 

equivalent. The resolution is limited by the number of SNPs with available genotype data and 

more in-depth typing in this region may provide a clearer picture. 
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Figure 36: LD across the PCDHG gene region in the Ceu population according to 
HapMap 

 

 

 

The large red blocks indicate a high level of LD across PCDHG in the Caucasian population. Large 

portions of this gene region are inherited across generations together. Variants within the same LD block 

are likely to be passed onto offspring together. 
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Figure 37: LD across the PCDHG gene region in the CHB population according to 
HapMap 

 

 

 

Haplotype blocks are slightly more broken up in the Asian (CHB) compared to European populations.   
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Figure 38: LD across the PCDHG gene region in the Norfolk Island population 
according to available genotype information 

 

 

 

165 SNPs across the PCDHG gene region were included from the Norfolk Island population illustrating 

that LD in the PCDHG gene region in the Norfolk Island population more closely resembles Asian 

architecture compared to the European equivalent.  

 

Key Findings 

The Norfolk Island pedigree was used as a discovery population to identify variants in 

mitochondrial related genes or NEMPs which are involved in migraine susceptibility. The 

majority of functional proteins and enzymes are imported into the mitochondrial matrix after 

being transcribed by nuclear encoded genes. In order to comprehensively investigate 

mitochondrial dysfunction in relation to migraine susceptibility, these 1000+ NEMP genes 

need to be investigated. Genotype data available from previous GWAS and genotyping 

studies was utilised to investigate all typed NEMP variants in the Norfolk Island population. 

The same 315 individuals which underwent full mitochondrial genome sequencing were 
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selected for statistical analysis. This provided a complete data set for these 315 individuals in 

terms of mitochondrial dysfunction caused by both the mitochondrial genome and 

mitochondrially related NEMP genes. 

 

In total genotype data was available for 16280 previously genotyped NEMP SNPs in the 

selected individuals and a logistic regression model was used to compare variant frequencies 

between migraineurs and unaffected individuals. The model corrected for relatedness, gender 

and age in order to prevent bias or skewing of results. After correcting for all covariates, 667 

NEMP SNPs were found to exceed the threshold p<0.05 for significant association. An 

adjusted threshold for multiple testing was not used as this process disregards valid findings 

[355]. The significantly associated SNPs were ranked according to p value, and it was found 

that variants in PCDHGB5 are the most significantly associated autosomal NEMP variants 

involved in migraine susceptibility. Table 36 provides a brief summary of the most significant 

findings. A more comprehensive list of significantly associated SNPs can be found in full in 

Appendix A. 
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Table 36: Most significantly associated autosomal NEMP SNPs associated with 

migraine in the Norfolk Island population 

 

As shown in Table 36 above, the top 5  SNPs are all located in the PCDH gene region with 

rs1059029 (p=0.0001242), rs3749767 (p=0.0001328), rs13361997 (p=0.0001648), 

rs11952292 (p=0.0002058) and rs6860615 (p=0.0003411) all presenting with p<0.0004. The 

corresponding odds ratios are also high, where an individual carrying the G allele for 

rs1059029 is twice as likely to develop migraine compared to an individual who carries the 

ancestral allele. Similarly the other identified variants in the PCDH gene region confer 

significant disease risk and increase an individual’s risk of developing migraine on average by 

two fold. 

 

SNPs were prioritised according to genomic location and p value as shown in Appendix B 

and a selection of 21 SNPs was carried forward to a replication study. The three significantly 

associated mitochondrial SNPs were also included in the final plex. This part of the study is 

described in Chapter 5. While Norfolk Island is a valuable population for discovery of genetic 

variants involved in complex disease, any discoveries need to be replicated in an outbred 

population to assess the relevance of these variants in the population as a whole. A large 

Chr Gene Position Allele Test 
Odds 
Ratio 

Chi 
Square P Value 

5 PCDHGB5_rs1059029 140822723 G ADD 2.182 3.838 0.0001242 
5 PCDHGB5_rs3749767 140789933 T ADD 2.17 3.821 0.0001328 
5 PCDHGB5_rs13361997 140863674 C ADD 2.37 3.768 0.0001648 
5 PCDHGB5_rs11952292 140871249 T ADD 3.061 3.712 0.0002058 
5 PCDHGB5_rs6860615 140862840 G ADD 1.906 3.582 0.0003411 

22 PISD_rs12171042 32011225 C ADD 1.83 3.403 0.0006661 
9 SARDH_rs522676 136579589 C ADD 0.485 -3.358 0.0007839 
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outbred Australian Caucasian migraine case control population was genotyped using the 

Sequenom platform in order to assess the role of the 21 prioritised NEMP SNPs in the 

general Australian population. A logistic regression model was used to assess differences in 

allele frequencies between cases and controls. The model was corrected for gender to avoid 

skewing of results and migraine was further assessed according to subtype. 

 

As shown in Table 38, eight out of the 21 tested NEMP variants were found to be 

significantly associated with migraine susceptibility. This association was shown to occur in 

the MA migraine subtype and is of particular relevance to this patient group. These nine 

variants are significantly associated with migraine in both the genetically isolated Norfolk 

Island population and the outbred Australian Caucasian population, presenting strong 

evidence that NEMPs play a key role in migraine pathogenesis and that further focus on this 

area is warranted. Variants playing a key role in MA were identified in the genes ELOVL6 

(p=2.5 x10-5), SARDH (p=0.000248), CSNK1G3 (p<0.009) and the PCDHG (p<0.03) family. 

Four variants identified were found in to occur in the PCDH gene cluster, suggesting a 

particularly important role for this locus in migraine pathogenesis. Interestingly the most 

significant finding in ELOVL6 rs7681294 (p=2.5 x10-5) confers a protective effect indicated by 

an odds ratio of 0.6715. Table 37 illustrates the relative disease risk of each significant 

finding. 

 

Given the finding that four out of the eight significantly associated variants (Table 38) in both 

the Norfolk Island population and the outbred Australian Caucasian population are found in 

the PCDH gene region, further haplotype analysis was conducted. It was found that 

individuals carrying multiple risk variants have a further increased risk (p=3.318 x10-5) of 

200 Chapter 6: Nuclear Encoded Mitochondrial Proteins (NEMPs) and Migraine Association   



 

developing migraine compared to individuals only carrying a single risk variant. Specifically 

the haplotype association test showed that individuals with the G allele for both rs11748256 

and rs1195229 are at the greatest increased risk of developing migraine as shown in Table 37 

below. 

Table 37: Haplotype analysis between tested PCDH gene variants in outbred population 

Loc Hap F_A F_U CHISQ DF P value SNPs 

H1 GGT     0.04462     0.06176       3.036 1 0.08143 rs11748256|rs6860615|rs11952292 

H1 GGG 0.2245      0.1537       17.23     1 3.318e-005 rs11748256|rs6860615|rs11952292 

H1 AGG 0.04352     0.03937      0.2279     1 0.6331 rs11748256|rs6860615|rs11952292 

H1 ATG 0.6873      0.7452       8.638     1 0.003292 rs11748256|rs6860615|rs11952292 

 

LD across the PCDH gene region was assessed using available HapMap data in European and 

Asian populations and compared to LD Norfolk Island in the same region calculated on the 

available genotype data. As shown in the results, LD in the PCDHG gene region in the 

Norfolk Island population more closely resembles Asian architecture than the European 

equivalent. 

 

Overall 667 NEMP SNPs were identified in the Norfolk Island population as being 

significantly associated with migraine susceptibility and 21 prioritised SNPs were carried 

forward to replication. In total 9 NEMP SNPs were found to be significantly associated with 

migraine susceptibility in both the Norfolk Island and Australian Caucasian population, 

presenting strong evidence that NEMP variants modulate mitochondrial function in a manner 

which corresponds to migraine pathophysiology. In particular the PCDH gene region was 
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identified as a key component of this process, with four out of the nine significantly 

associated variants found in this region. Further investigation into the role of NEMPs in 

migraine susceptibility would be useful. 

Discussion 

Mitochondria function primarily to produce a constant supply of energy to the cells of the 

body in the form of ATP. The most efficient conversion of calories from our fuel intake 

(food) into useable energy is through the oxidative phosphorylative chain under oxidative 

conditions where glucose is converted to ATP. The main metabolic pathways include 

glycolysis, the conversion of acetyl-CoA to GTP and other intermediates through the citric 

acid cycle, the pentose phosphate pathway, the urea cycle, fatty acid oxidation and 

gluconeogenesis. Molecules from our dietary intake are metabolised according to their 

properties and the end products are passed along the OXPHOS units in the mitochondria to 

produce energy [357]. 

 

Reactive Oxygen Species (ROS) are produced as bi-products of the energy conversion 

process and can have damaging effects on cells if they are allowed to accumulate [379]. 

Additional functions of the mitochondria include calcium homeostasis which is critical for 

neuronal function and initiation of apoptosis. Mitochondria occur in proportion to each 

tissue’s energy requirements with muscle and nervous tissues containing several thousand 

mitochondria per cell [380]. It has been well established that mitochondrial dysfunction 

affects the tissues with the highest energy requirements and that the most severe 

mitochondrial disorders are neuromuscular diseases [381]. It has been hypothesised that the 

role of mitochondrial dysfunction in neurological conditions has been overlooked by the 

medical community and that further scientific investigations in this arena are warranted [357]. 
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This is the first study to comprehensively investigate the role of NEMPs which are critically 

involved in mitochondrial function in relation to migraine susceptibility.  

 

Our logistic regression model which factored in for the covariate gender showed a significant 

association between a number of SNPs and migraine susceptibility. Variants playing a key 

role in MA were identified in the genes ELOVL6, SARDH, CSNK1G3 and the PCDHG 

family. Four variants were found to be in the same gene cluster, suggesting a particularly 

important role for this locus in migraine pathogenesis. Further investigation of the PCDHG 

gene family would be useful to pursue in migraine affected families and other outbred 

population groups. Information about each SNP is summarised in Table 38 below. 

Table 38: Most significantly associated variants in relation to migraine susceptibility 

and corresponding locus information 

Chr SNP Odds 

Ratio 

P Value Function Gene 

4 rs7681294 0.6715 2.55E-05 Intron Variant ELOVL6 

9 rs2073815 1.434 0.000248 Synonomous Codon SARDH 

5 rs9327298 0.146 0.007141 Intron Variant CSNK1G3 

5 rs6860615 1.313 0.008661 Intron Variant PCDHGC3 

5 rs4530754 1.285 0.009949 Intron Variant CSNK1G3 

5 rs3749767 1.296 0.02412 Intron Variant, missense PCDHGB4 

5 rs11748256 1.272 0.02846 Intron Variant PCDHGC3 

5 rs11952292 0.6147 0.03245 Intron Variant, Synonomous Codon PCDHGC3 

 

Fatty Acid Elongase 6 (ELOVL6) 

Fatty acid elongases such as ELOVL6 use malonyl-CoA as a 2-carbon donor in the first and 

rate-limiting step of fatty acid elongation [382]. This gene encodes for an enzyme in humans 

which catalyses the elongation of saturated and monounsaturated fatty acids with 12, 14 and 

16 carbons. It has been found to be expressed in fatty tissues of the body and a recent study 

203 Chapter 6: Nuclear Encoded Mitochondrial Proteins (NEMPs) and Migraine Association   
 



 

has provided evidence for this to be a new candidate gene involved in energy deficiencies. 

Specifically variants in this gene have been associated with insulin sensitivity, suggesting an 

important role in metabolic processes [383]. Figure 39 taken from the KEGG database, below 

shows the major steps involved in fatty acid metabolism. Shown in red is the reaction 

governed by ELOVL6, which still takes place within the mitochondria itself [384, 385].  

Within this key gene, we found rs7681294 to be highly associated with migraine 

susceptibility (p=2.55E-05). The odds ratio of 0.6715 suggests that individuals who carry the 

C>T change are protected by the T allele. A relevant hypothesis would be that this variant 

somehow increases the enzymatic function of ELOVL6, thereby increasing the efficiency of 

energy metabolism which has the knock on effect of neurons being provided with a 

continuous energy source from fat stores. This way even when food supply is scarce the body 

is easily able to metabolise fat reserves and individuals who carry the T allele are protected 

from migraine in this way. Extensive functional studies would be needed to examine this 

hypothesis and elucidate the mechanism in which this variant is functioning to prevent 

migraine attacks. 

 

Even though this variant is situated within an intronic region and therefore traditionally 

considered to be less functionally relevant, new discussions and research are showing that 

non-coding regions of the genome are extremely important for regulation of body functions. It 

has been suggested that intronic regions are critical for gene expression and downstream 

pathway regulation. 
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Figure 39: Role of ELOVL6 in Fatty Acid Metabolism 
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Sarcosine Dehydrogenase (SARDH) 

Sarcosine dehydrogenase situated on chromosome 9 encodes for an enzyme which is 

localised to the mitochondrial matrix and catalyzes the oxidative demethylation of sarcosine. 

Mutations in this gene have been associated with sarcosinemia, a mild inborn error of 

metabolism [386]. Some reports have suggested severe problems associated with this disease 

including mental retardation and neurological problems [387]. However the majority of cases 

are thought to be fairly benign. There has been a lot of controversy over this disease and the 

variable phenotype. Evidence suggests that this could be a complex disorder rather than a 

straight forward autosomal recessive model as previously thought. This complexity would 

explain the variable penetrance found across individuals. The final phenotype is dependent on 

the functional importance of the SARDH variant and also if there are additional contributing 

risk variants at other loci having a synergistic effect [388]. 

 

Sarcosine dehydrogenase removes the methyl group from sarcosine, a unique amino acid 

intermediate, to form glycine and an active 1 carbon unit. Disturbances in this pathway can be 

caused by severe folate deficiency, dysfunction of the electron transfer protein or dysfunction 

of sarcosine dehydrogenase. This process occurs in the mitochondria of liver and kidney cells 

and is an important part of 1-C metabolism. Given the neurological symptoms which have 

been associated with this gene it is feasible for it to play a role in migraine pathogenesis. It is 

difficult to hypothesize what the exact mechanism involved would be. According to our 

logistic regression model individuals carrying the C>T change are at a significantly increased 

risk of developing migraine (p=0.000248). The odds ratio (1.434) shows that individuals 

carrying the T allele are more susceptible. It is possible that this variant could be causing a 

mild enzymatic dysfunction and subsequently lowering the threshold for developing 
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migraines. Since migraine is a complex disease it is likely that this variant would act in 

conjunction with many other variants to bring about the final phenotype. 

 

Casein Kinase I, Gamma 3 (CSNK1G3) 

The casein kinase gene family encodes for serine and threonine kinases which are involved in 

phophorylating acidic substrates using ATP as a phosphate donor. No previous association 

have been made between this gene and human disease. There is limited information available 

about the function of this gene and variations within this region have not been studied in 

detail. Further investigations are required to draw conclusions. 

 

Protocadherin Gamma Subfamily C (PCDHGC3 and PGDHGB4) 

These genes are part of a large cluster of tandemly linked genes on chromosome 5. Their 

organisation has been described as similar to the immunoglobulin genes and it is thought that 

they are regulated in a unique way rather than the classic single promoter region per gene 

model. The gamma cluster to which both PCDHG3 and PCDHB4 belong consists of 22 genes 

subdivided into 3 families namely A, B and C. Subfamily A contains 12 genes, subfamily B 

contains 7 genes and 2 pseudogenes, and the more distantly related subfamily C contains 3 

genes. PCDHGC3 belongs to subfamily C, while PCDHGB4 belongs to subfamily B. While 

these subfamilies are not exclusively linked, there is a shared gene element between them 

with 3 exons shared by all genes in this cluster. These genes encode for cadherin-like cell 

adhesion proteins and are thought to play a critical role in the establishment and function of 

specific cell-cell connections in the brain [389]. 

 

While the actual biological mechanism involved in a migraine attack is still debated, it is 

thought to be caused by activation of the trigeminal nerve causing pain sensation in the sensor 
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cortex of the brain and/or a dysfunction of the neuronal nuclei located within the brain stem 

[390].The trigeminal vascular theory states that activation of the trigeminal nerve system by a 

neural, vascular or neurovascular trigger leads to a migraine. The trigeminal nerves carry pain 

signals from the meninges and blood vessels infusing the meninges to the trigeminal nucleus 

in the brain stem which in turn sends signals to the sensor cortex via the thalamus. The sensor 

cortex processes pain signals and other senses, thus leading to the sensation of pain 

experienced during migraine attacks [391]. Dysfunction of neuronal nuclei can be explained 

by migraine pain and trigeminovascular activation being caused by a central mechanism 

which may not require a primary sensory input [22, 23]. The most recent theory explaining 

migraine pathogenesis describes migraine as a dysfunction of the subcortical brain structures 

including the brainstem and diencephalic nuclei which are involved in modulating sensory 

inputs. The theory suggests that aura is triggered by dysfunction of these nuclei and that the 

same mechanism is responsible for the pain and other symptoms experienced during migraine 

attacks [24]. 

 

Based on these theories, especially the idea of dysfunction within the neuronal nuclei, it is 

clear that signalling molecules/proteins involved in neuronal function and control are key 

targets for migraine pathogenesis. A disruption in cell-cell connections within the brain 

would lead to dysfunction within the neuronal nuclei as described in recent theories. Variants 

within the large PDHG gene region could alter the way in which connections are established 

and maintained in the brain, making an individual more susceptible towards developing 

migraines. We found 4 variants within this region to be very strongly associated with 

migraine susceptibility in a large case-control cohort. An association with multiple variants 

within this region strengthens the evidence that this gene cluster is a key component in 

migraine pathogenesis. Haplotype analysis showed some level of LD between these variants 
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and a strong association between haplotypes containing these variants and migraine 

susceptibility. Given the discovery of this gene cluster being involved in migraine 

susceptibility in the genetically isolated Norfolk Island population and the very clear 

replication in a large outbred population, this gene should be investigated further in great 

detail.  

 

Conclusion 

 
This is the first molecular genetic study to comprehensively investigate the role of NEMPs in 

migraine susceptibility we present empirical evidence for the first time to establish the link 

between mitochondrial dysfunction and migraine.
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Chapter 7:  Conclusions and Future Directions 

It was hypothesised that development of migraine is influenced by mitochondrial dysfunction. 

The aim of this project was to conduct a complete mitochondrial genome scan to identify the 

full spectrum of mtDNA variation in the Norfolk Island pedigree samples and to determine 

whether the variants are associated with risk of migraine. It was further aimed to investigate 

whether these mtDNA variants or mitochondrial influencing variants from nuclear encoded 

genes modify migraine risk associated with key environmental factors. 

The specific objectives were to: 

• Obtain entire mitochondrial genome sequence information from selected samples 

using the Ion Torrent Platform. 

• Align the mtDNA sequence information with independent worldwide samples to 

identify unique variants and determine frequencies of known variants as well as 

phylogenetic haplogroups. 

• Collect genotype data from nuclear encoded mitochondrial protein (NEMP) genes. 

• Statistically model the association of mtDNA variants and haplogroups with 

heritable migraine traits.  

• Perform validation studies in independent cohorts. 

All of the aims were achieved and new avenues of research to pursue in future studies were 

identified. Through full mitochondrial genome sequencing on the Ion Torrent platform 3 

homoplasmic and 11 heteroplasmic variants were identified to be significantly associated 

with migraine susceptibility in the Norfolk Island population. Haplogroup K was also found 

to be associated with migraine in the Norfolk Island pedigree. The role of NEMPs was further 
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investigated as specified by the aims and it was found that the PCDHG gene region plays a 

particularly important role in migraine pathogenesis. It would be valuable to further 

investigate full mitochondrial genome information in an Australian outbred Caucasian 

population, specifically with regard to heteroplasmic variants. It would also be useful to 

further explore the role of NEMPs in migraine through deep sequencing, genotyping and gene 

expression studies in case-control populations, the Norfolk Island pedigree and migraine 

family samples. 
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Functional Studies 

A recent study which aimed to develop an efficient method of assessing mitochondrial 

function in rat models for a range of neurological diseases made the finding that mitochondria 

are dysfunctional in a chronic migraine rat model [392]. The study identified a decreased 

spare respiratory capacity in the trigeminal nucleus caudalis (TNC) in a chronic migraine rat 

model. As stated throughout this thesis, it is hypothesised that the trigeminal nucleus plays a 

key role in migraine pathophysiology and so this finding of reduced oxidative 

phosphorylation in this key area of the brain is irrefutable evidence that mitochondrial 

function is linked to migraine. Many neurological disorders have already been associated with 

mitochondrial dysfunction including Alzheimer’s disease, Parkinson’s disease, amyotropic 

lateral sclerosis, Huntington’s disease and Friedreich’s ataxia showing that there is a clear 

link between bioenergetics and neurological disease [393, 394]. 

 

 Given these links and the existing evidence of mitochondrial dysfunction and migraine it was 

logical to develop an accurate method capable of measuring mitochondrial function from 

brain sections. Nathan T Fried developed a technique to assess basal respiration, ATP 

turnover, proton leak, maximal respiration and non-mitochondrial respiration using thin brain 

sections. They found that sectioning at 37 °C produced more reproducible results as enzymes 

were kept at physiologically functional temperatures. It was demonstrated that nearly all of 

the oxygen consumed by the neurological cells of brain sections is due to mitochondrial 

respiration and that neurons are almost entirely dependent on the production of ATP via the 

oxidative phosphorylative chain [392].  

These findings confirmed previously established knowledge that neuronal tissue is incredibly 

energy demanding, with oxygen consumption levels of a firing neuron thought to represent as 
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much as 80 % of a particular cell’s maximum respiration and therefore even minimal changes 

to the spare capacity of a cell’s mitochondria could have profound effects on neuronal 

function. This study showed for the first time that there is a decreased spare respiratory 

capacity within the TNC of a rat model with chronic migraine. The authors also demonstrated 

increases in glutamate in the TNC following exposure to glycerol trinitrate which is a classic 

molecule implicated in migraine pathogenesis. This functional work shows a clear 

relationship between mitochondrial dysfunction and migraine and strengthens the findings of 

this thesis, that molecular genetic variation which alters mitochondrial function is linked with 

the risk of migraine susceptibility. 

Therapeutic Response 

Riboflavin (B2) 

Riboflavin, more commonly known as vitamin B2, acts as an essential precursor to the 

production of coenzymes flavin mononucleotide (FMN) and flavin-adenosine-dinucleotide 

(FAD). FMN and FAD are mitochondrial coenzymes which function to transport electrons 

across complex I and III of OXPHOS through the transport of hydrogen ions. Sufficient levels 

of riboflavin are essential for the production of ATP via OXPHOS in the mitochondria as 

well as the breakdown of amino acids, fatty acids and purines. A number of studies have 

provided direct clinical evidence of this link between riboflavin and mitochondrial function. 

It has been shown that riboflavin improves the biochemical and clinical abnormalities of 

patients with MELAS and other known mitochondrial diseases [395, 396]. These therapeutic 

responses show a clear link between mitochondrial function and riboflavin. Other research 

has investigated the effect of riboflavin supplementation on migraine frequency and severity 

and in all cases it has been shown that riboflavin reduces the burden of migraine for sufferers 

[367, 397] [369]. Given the clear link between riboflavin and mitochondrial function, this 
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finding clearly establishes the link between migraine and mitochondrial function 

demonstrating that migraine is caused at least in part by an impaired oxidative metabolism 

[398]. This is clear therapeutic evidence that mitochondrial dysfunction plays a key role in 

migraine and further supports the findings of this thesis that molecular genetic factors 

affecting mitochondrial function increase an individual’s susceptibility towards developing 

migraine. 

 

Coenzyme Q10 

Further clinical evidence that migraine is a broad spectrum metabolic disorder is the clear 

therapeutic response to coenzyme Q10. Both riboflavin and coenzyme Q10 have been 

recommended as safe prophylactic migraine treatments [399]. The literature reflects that brain 

energy metabolism is abnormal in all types of migraine, with the most severe forms showing 

the greatest metabolic abnormalities [370]. Biochemical and phosphorus magnetic resonance 

studies have demonstrated marked metabolic defects in the brains of hemiplegic migraine and 

migraineous stroke sufferers. These metabolic abnormalities extend to the muscle cells, 

which also require a large supply of energy, in severely affected patients which shows the 

clear mitochondrial link. There are also strong similarities between migraine and some inborn 

errors of metabolisms, specifically the mitochondrial encephalomyopathies where there is an 

overlap of symptoms including lactic acidosis, stroke and migraineous headaches. Indeed 

there is strong biochemical and morphological evidence that migraine is a mitochondrial 

disorder. Until recently the molecular genetic evidence has been lacking, but we now show 

for the first time a clear molecular genetic link between genomic variants influencing 

mitochondrial function and migraine susceptibility [400].  
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Through next generation sequencing technologies a recent study showed a link for the first 

time between two mitochondrial variants and paediatric vomiting syndrome [339]. While this 

differs from adult onset migraine, it does demonstrate the power of next generation 

sequencing to unravel the molecular links with migraine. It has been suggested in many 

review papers that previous studies were negative because of low level heteroplasmic variants 

which could not be detected. This thesis validates these arguments and demonstrates a greater 

link between heteroplasmic (possibly accumulated) variants than homoplasmic germline 

variants [400]. 

 

Coenzyme Q10 acts as an electron carrier in the mitochondrial respiratory chain. Several 

clinical trials demonstrate a high response rate to treatment with Q10 with migraine sufferers 

experiencing a decrease in the frequency and severity of their attacks. Treatment with Q10 

has been reported to be well tolerated with very few side effects and has been recommended 

as a safe prophylactic migraine treatment. Given coenzyme Q10’s key role in mitochondrial 

respiration, the therapeutic response to this molecule is strong evidence that mitochondrial 

dysfunction attributes to the migraine phenotype in those individuals who respond positively 

to Q10 treatment [399, 401]. 
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Mitochondria and Age Related Diseases 

 
Age-related and lifestyle induced diseases are on the rise in developed countries. The 

dramatic increase in diabetes, cardiovascular disease, cancers and other disorders has been 

documented across all the developed regions of the world and more recently similar trends in 

developing countries are starting to appear. Scientists aim to understand what the link 

between our genetic makeup and these diseases are in an effect to better identify individuals 

at an increased risk for early intervention strategies. The rate of evolution is slow and our 

molecular clocks do not change over a period of one generation. Since our genes have not 

changed much over the last 70 years, it is obvious that environmental changes are causing this 

rapid rise of disease. While pollution, stress and other environmental factors could be playing 

a role, the biggest change to the average human lifestyle has been diet and the availability of 

high fat, sugar and calorie food in almost unlimited quantities [402-404]. 

 

The clear relationship between food and disease has led researchers to try and understand 

what the genetic links are between diet and disease. Thus far nuclear DNA studies have had 

limited success in explaining these tendencies and a Mendelian system of inheritance very 

clearly does not hold true for these complex lifestyle disorders. Given the increase of disease 

frequency and severity with an increase in age, it is logical that what we may be searching for 

is a gradual accumulation of mutations over time. It would also make sense for this to be 

occurring in a genetic system where there are multiple copies of a gene, instead of just two 

and for an accumulation of changes to eventually reach a threshold where disease develops. 

Research has also shown a clear difference between the same disease in different ethnic 

groups giving rise to the thought process that the genetic system is differing according to 
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regional origin. In summary we are looking for a genetic system which differs according to 

region, accumulates mutations over time and is linked to diet and metabolism. Mitochondrial 

genetics fits perfectly with all of these descriptions and is the next obvious place to look [357, 

405]. 

 

The first evidence that mitochondria could play a key role in aging and age related 

degenerative diseases is the relationship between systematic disease caused by mtDNA 

mutations and the delayed onset of symptoms which then become progressive as time goes 

on. Pathogenic mutations including rearrangements mutations, polypeptide gene missense 

mutations and protein synthesis mutations (RNAs) affect the brain, heart, skeletal muscle and 

endocrine system in s similar way to what we observe in aging individuals. A further 

observation is the link between severity of disease and tissue distribution. It has been found 

that the distribution of a mutation has a larger effect on disease outcome than the actual 

mutation itself. The level at which the mutation occurs and the percentage of mitochondria it 

is found in greatly influences the severity of disease [406-408]. 

 

 This trend ties in nicely with the findings outlined in this thesis of heteroplasmic variants and 

migraine susceptibility. It was found that there is a stronger link between heteroplasmic 

variants and migraine susceptibility than their homoplasmic counterparts. This further 

explains the variable expressivity and complex inheritance patterns observed in migraine 

sufferers. As has been found repeatedly, the tissues with the highest energy requirement are 

usually the most adversely affected and is makes sense that the more affected mitochondria in 

a tissue population, the worse the disease outcome. An excellent known example of this 

phenomenon is a mtDNA mutation in the ATPase6 gene where T>G at position 8993 causes 
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NARP when present at low frequencies, but is lethal when present in a higher percentage of 

cells, causing lethal childhood Leigh syndrome [357]. 

 

The Link between Region of Origin and Disease 

Throughout human evolution our ancestors have continually been migrating across the globe 

to settle in locations with a variety of climates. Initially the first people left Africa around 70 

000 years ago with a subsequent second migration into Asia approximately 30 000 years ago. 

These migrations represented drastic climatic changes for those leaving Africa. Just like any 

other mammal, humans have evolved to adapt to their changing environment. One form of 

adaptation has been the acquisition of mtDNA mutations that partially uncoupled OXPHOS 

allowing for an increase in mitochondrial heat production to compensate for cold European 

temperatures. This change in physiology is evidenced by the observations that individuals 

with different haplogroups exhibit different responses to mitochondrial disease [357].  

 

The mitochondrial genome mutates at a faster rate than nuclear DNA and once a mutation has 

been acquired it is passed along the maternal lineage. All individuals descending from that 

maternal line with the new mutation also possess the change in their genetic code. In this way 

researchers have been able to track human migration through these acquired molecular 

markers in conjunction with paleo studies. Once the maternal origin of a particular marker has 

been matched with a geographic origin we know that all individuals carrying that marker 

descended from the same maternal line and a change in location is due to migration. Multiple 

mutations have taken place and been passed down through evolution and those occurring in 
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the hypervariable loop of the mitochondrial genome have been grouped and assigned 

letters/haplogroups according to geographic origin [409]. 

 

Research has found that haplogroup J variants have a functional effect and are not just 

markers of human evolution. Individuals possessing haplogroup J have partially uncoupled 

OXPHOS which reduces the efficacy of ATP output in favour of heat production. As a result 

of this pre-existing tendancy, individuals belonging to haplogroup J who have very mild 

complex I mtDNA missense mutations have exacerbated symptoms associated with LHON 

compared to individuals belonging to other haplogroups [284]. This theory has been further 

validated by the observation that individuals respond differentially to treatment with 

riboflavin according to haplogroup. This means that migraine sufferers treated with riboflavin 

will respond differently according to their haplogroup and provides a direct link between 

migraine and haplogroup [369]. This corresponds clearly with the finding that individuals 

who possess haplogroup K are at an increased risk of developing migraine. Further research 

into this area would be useful, especially in light of variable therapeutic response. 

 

Other lines of evidence prove that there is a connection between mitochondrial haplogroups 

and disease and that these markers are adaptive, not just neutral markers of evolution. The 

haplogroups have also been positively linked with increased lifespan and may play a role in 

the way in which we age. Some of the altered physiological function caused by mitochondrial 

mutations may actually be beneficial when exposed to the correct environmental stimuli. 

Studies have found haplogroup J, U and WIX to be overrepresented in centenarians and these 

same mtDNA lineages have also been found to be protective against neurodegenerative 

diseases [410-413].  
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The argument which explains how a haplogroup can cause exacerbated disease in one 

instance, but longevity in another resides in the physiological change caused by the relevant 

mitochondrial mutations. Individuals with uncoupled mitochondria burn more calories more 

rapidly to generate the required ATP plus heat and as a result the electron transport chains of 

these individuals exist in a more oxidised state which ultimately reduces the production of 

ROS. Hence individuals with uncoupled mitochondria are more prone to clinical problems 

related to energy deficiencies such as LHON and bipolar mental illness, but are protected 

from the ageing process through lower levels of damaging ROS [357]. 
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Co-morbid Spectrum Disorders 

Recently the idea of a common underlying mechanism which causes a spectrum type of 

disorder has arisen. The theory is based on the idea that depression, migraine, fibromyalgia 

and chronic anxiety disorders which have a high degree of overlap in symptoms and 

therapeutic response are a group of related conditions or ‘affective spectrum disorders”. It has 

also been suggested that mitochondrial dysfunction in conjunction with inflammation may 

cause a spectrum of disease based on complex and variable interactions. The most commonly 

used drugs prescribed to treat depression have been shown to alter mitochondrial function and 

inflammation pathways, suggesting that these are key components involved in the 

pathophysiology of depressive like disorders. Many treatments for depression are also used to 

treat migraine given the known co-morbidity between these two disorders and Gardner 

suggest that mitochondrial targeted treatments have an increased efficacy in the treatment of 

affective spectrum disorders [414]. 

 

Studies have identified a definitive relationship between mitochondrial dysfunction and major 

depressive disorders where post mortem studies have identified alterations of translational 

products linked to mitochondrial function in the frontal, prefrontal and tertiary visual cortices 

[415]. Alerted gene expression of both mtDNA encoded and NEMP encoded transcripts have 

been reported in major depression in addition to decreases of respiratory chain enzyme ratios 

and ATP production. These findings collectively highlight the role of mitochondrial function 

in depression [416, 417]. A clear link has furthermore been defined between mitochondrial 

dysfunction and other affective spectrum disorders with mitochondrial abnormalities such as 

RFF, COX negative fibres and reduced ATP output identified in fibromyalgia and migraine 

[334, 418]. 
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Gardner definse the role of inflammation in the affective spectrum disorders and further 

suggest that there is a combined role between inflammation and mitochondrial dysfunction in 

these spectrum disorders. Elevated levels of cytokines as well as alterations in inflammatory 

pathways have been reported in all the spectrum disorders, suggesting a complex interaction 

between mitochondrial dysfunction and inflammation [414, 419, 420]. Perusing this relatively 

novel avenue for treatment of affective spectrum disorders could be useful. Given the 

complex nature of these disorders, it is logical that multiple pathways are involved which can 

vary between individuals and according to environmental responses. 
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Summary and Concluding Comments 

 
Migraine is a complex disorder, caused by an interplay between genetic and environmental 

factors. While a lot of progress has been made over the centuries with regards to 

understanding this disease, the complete disease aetiology remains to be fully elucidated. 

Many prophylactic and acute prescription medications are available for the treatment of 

migraine sufferers, however these treatments are still only effective for less than half of all 

patients. Migraine poses a significant burden to both the economy and also the quality of life 

of those affected. Many studies have shown that the cost of leaving this disease untreated is 

significantly higher due to lost productivity in the workplace, than the cost to effectively 

address disease burden through the development of new therapeutics. 

 

Previous molecular genetic studies have made significant progress towards improving our 

understanding of migraine and ultimately developing more effective treatment strategies. 

Genetic studies have been particularly successful with the rare subtypes of migraine such as 

FHM which have clear patterns of inheritance through families and usually can be linked to a 

single causative variant. With the more common subtypes of migraine which are much more 

complex in nature, some progress has been made, but much more work is still required. With 

the significant improvements in technology and the rapid development of next generation 

sequencing technologies, our ability to investigate complex disease is improving at a rapid 

rate. This study harnessed the power of new technology and aimed to completely sequence 

full human mitochondria in a large subset of individuals belonging to a large genetically 

isolated pedigree. 
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This goal was achieved, initially by developing the methodology needed to carry out this 

experiment on a large scale in a small pilot project. Making use of available techniques to 

optimise this process in the most cost effective manner possible was a very important step 

and ultimately enabled this research to be undertaken on a larger scale. In total 315 unique 

individuals underwent full mitochondrial genome sequencing including 80 migraine sufferers 

and 235 healthy controls. These samples constituted 152 males and 163 females. In this study 

unprecedented levels of coverage were achieved, made possible by new technologies and the 

power of the optimised methodology. This allowed for the first time the investigation of the 

potential role of heteroplasmic variants in disease susceptibility. 

 

The Torrent Suite was used extensively to analyse sequencing results and data further 

underwent a rigorous bioinformatics analysis process, using custom scripts and in-house 

developed pipelines. These techniques are on the cutting edge of development and are 

pushing science to the next frontier. This research represents a significant step forward in 

comparison to what was previously possible. Initial analysis identified three SNPs which are 

significantly associated with migraine in the Norfolk Island population namely mt 930 G>A, 

mt 6480 G>A and mt 11930 A>G. One SNP is novel and has never been documented before 

(mt 11930 A>G), 1 SNP was defined as a common variant with a MAF>0.01 (mt 930 G>A) 

and 2 SNPs were defined as rare variants with a MAF <0.05 (mt 6480 G>A and mt 11930 

A>G). Unfortunately these results were not replicated in an outbred population suggesting 

that these variants are Norfolk specific and only play a role in migraine susceptibility in this 

particular pedigree.  
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Despite the lack of replication, this discovery still represents an important finding as it points 

us to the correct regions of the mitochondrial genome to investigate further in a large scale re-

sequencing project. The mitochondrial regions they are found in represent a lot of biological 

plausibility and this study has provided the justification to further investigate these regions in 

other migraine family samples. Of great interest is the finding that 11 heteroplasmic variants 

are significantly associated with migraine as this is the first time a molecular genetic study 

has shown that there could be a relationship between heteroplasmic variants and complex 

disease. This idea opens the door for the possibility that mutations acquired during an 

individual’s lifetime may play a significant role in disease progression once a defining 

threshold is met. This line of thinking aligns with new progressive ideas about mitochondrial 

disease kinetics, ageing and lifestyle issues. 

 

Of further interest is the discovery that haplogroup K significantly increases an individual’s 

risk of developing migraine. This finding supports the theory of adaptation according to 

geographical region and temperature zones where specific mitochondrial changes alter an 

individual’s vulnerability to energy reliant processes. The theory is based on the idea that 

European individuals evolved to have uncoupled mitochondria, favouring heat production 

over ATP production in order to survive the cold Northern climates. Hence certain 

haplogroups may predispose, protect against or aggravate mitochondrial related disorders. 

Previous studies have found disease to be associated with an individual’s haplogroup and our 

findings support this line of evidence. 

 

Technology is now moving forward at an unprecedented rate and we should harness every 

advantage to pursue our understanding of complex disease and bring about a new era of 
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modern medicine. As the costs of sequencing decrease, more ambitious projects fall into our 

reach. Future studies which involve full mitochondrial genome sequencing in multiple large 

case-control cohorts, twin samples and migraine family samples are warranted and will shed 

light on our existing findings. It would be useful to investigate heteroplasmy on a much larger 

scale and also in a more quantitative manner, rather than using categories in order to be more 

certain of our findings. Bioinformatic techniques need to be developed to match the 

technologies available in the laboratory and to keep up with the current changing pace. 

Effective analysis techniques are needed to better understand our sequence data. Further 

analysis according to haplogroups would be interesting from a population genetics 

perspective. 

 

As mentioned throughout this thesis, mitochondrial function is largely governed by nuclear 

encoded mitochondrial proteins which are imported into the mitochondrial matrix to perform 

their vital functions. The majority of proteins involved in mitochondrial function are 

produced in this way and therefore it is imperative to investigate these NEMP genes in a 

comprehensive manner in order to fully assess the relationship between mitochondrial 

dysfunction and migraine susceptibility. This study touched the tip of the iceberg in this 

arena, using available data in the Norfolk Island pedigree and a large Sequenom plex for 

validation of findings. The PCDHG gene cluster was identified to play a pivotal role in 

migraine susceptibility in both the Norfolk Island population and an outbred Australian 

Caucasian population. This finding is in line with a previous GWAS which identified this 

region to be important in common subtypes of migraine. 
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Future studies which investigate all 1000+ NEMP genes through comprehensive deep 

sequencing would be very useful. Gene expression studies investigating expression levels and 

pathways would also be useful. This research is original and has provided sound scientific 

evidence to support new ideas and hypothesis. As is typical of original research and pushing 

the known boundaries, it has also created new unanswered questions. 
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Appendices 

Appendix A 

Table 39: NEMP SNPs significantly associated with migraine in the Norfolk Island population 

Chr Gene Position Allele Test Odds Ratio Chi Square P Value 
5 PCDHGB5_rs1059029 140822723 G ADD 2.182 3.838 0.0001242 
5 PCDHGB5_rs3749767 140789933 T ADD 2.17 3.821 0.0001328 
5 PCDHGB5_rs13361997 140863674 C ADD 2.37 3.768 0.0001648 
5 PCDHGB5_rs11952292 140871249 T ADD 3.061 3.712 0.0002058 
5 PCDHGB5_rs6860615 140862840 G ADD 1.906 3.582 0.0003411 

22 PISD_rs12171042 32011225 C ADD 1.83 3.403 0.0006661 
9 SARDH_rs522676 136579589 C ADD 0.485 -3.358 0.0007839 
1 DAP3_rs12097744 155700042 G ADD 9.136 3.357 0.0007882 

22 PISD_rs9956 32015450 C ADD 1.817 3.354 0.0007959 
3 FHIT_rs687342 59853580 G ADD 2.241 3.242 0.001185 

10 KIAA1279_rs2487710 70782126 A ADD 2.381 3.189 0.001427 
9 SARDH_rs493901 136600201 C ADD 0.5578 -3.176 0.001491 
8 CSMD1_rs17066503 3452058 C ADD 3.349 3.174 0.001503 

11 ACAD8_rs1048761 134124124 T ADD 0.4674 -3.164 0.001557 
4 ELOVL6_rs11733718 111073867 G ADD 0.5673 -3.127 0.001769 
4 ELOVL6_rs900328 111074900 C ADD 0.5687 -3.125 0.001778 

10 TFAM_rs11006130 60150445 G ADD 1.964 3.123 0.00179 
17 PHB_rs6917 47481543 T ADD 2.135 3.067 0.002163 
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10 KIAA1279_rs12250707 70779436 T ADD 2.345 3.042 0.002348 
22 PISD_rs5994415 32004588 A ADD 1.726 3.018 0.002542 
8 CSMD1_rs7833750 4838089 A ADD 2.113 3.015 0.002568 
1 DBT_rs3806237 100715782 C ADD 6.973 3.014 0.00258 
8 CSMD3_rs16883388 113316520 C ADD 6.973 3.014 0.00258 
5 CSNK1G3_rs4530754 122855416 G ADD 0.5767 -2.999 0.002708 

19 CLPP_rs7253024 6362724 T ADD 2.109 2.992 0.002775 
17 PTRF_rs1905339 40582296 C ADD 1.656 2.969 0.002985 
9 SARDH_rs916620 136596750 A ADD 0.5372 -2.966 0.003012 
7 MRPL32_rs10486743 42979942 C ADD 2.57 2.964 0.003034 
8 CSMD1_rs6993396 2924014 T ADD 0.5707 -2.958 0.003096 
4 ELOVL6_rs7681294 111082310 T ADD 0.5882 -2.954 0.003141 

10 PCBD1_rs877034 72639621 T ADD 1.804 2.952 0.003157 
6 MTHFD1L_rs563440 151288991 G ADD 0.4867 -2.949 0.003186 

10 MTG1_rs4838680 135217956 G ADD 1.687 2.944 0.003241 
11 ACAD8_rs11223738 134128313 T ADD 0.4918 -2.942 0.003256 
20 CST2_rs6076132 23801747 C ADD 3.807 2.935 0.003336 
5 PCDHGB5_rs4151698 140753245 G ADD 2.158 2.931 0.003384 
9 SARDH_rs2073815 136573412 C ADD 1.683 2.93 0.003393 
9 AK3_rs3847258 4717635 C ADD 1.874 2.909 0.003621 
5 CSNK1G3_rs9327298 122850321 A ADD 1.697 2.907 0.003648 
5 CSNK1G3_rs7737667 122875622 G ADD 1.697 2.907 0.003648 
5 PCDHGB5_rs11748256 140861801 G ADD 1.714 2.893 0.003817 
5 CSNK1G3_rs2052485 122882219 A ADD 0.5863 -2.892 0.003828 
5 CSNK1G3_rs6595459 122908361 A ADD 0.5863 -2.892 0.003828 
5 CSNK1G3_rs7705070 122862876 T ADD 1.696 2.891 0.003838 
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8 CSMD3_rs16883751 113500330 A ADD 2.794 2.888 0.003875 
5 CSNK1G3_rs10037048 122961813 C ADD 0.5848 -2.888 0.003881 

15 PCSK6_rs3784457 101965792 T ADD 2.54 2.877 0.00401 
1 NDUFS5_rs10888650 39507161 G ADD 0.5823 -2.874 0.004047 
5 SDHAP3_rs7734561 1594096 G ADD 0.4644 -2.874 0.00405 

10 VDAC2_DUP_01_rs7894555 76998231 G ADD 0.3733 -2.863 0.004193 
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Appendix B 

Table 40: Prioritised SNPs for replication in MAP1 and MAP3 

Chr Gene_rsID 
Bp 
Position Allele Test 

Odds 
Ratio p Value 

8 CSMD1_rs6993396 2924014 T ADD 0.5707 0.003096 
8 CSMD1_rs7828513 3432054 T ADD 0.5825 0.004645 
8 CSMD1_rs17066503 3452058 C ADD 3.349 0.001503 
8 CSMD1_rs7815959 3460063 C ADD 1.73 0.004444 

22 PISD_rs5994415 32004588 A ADD 1.726 0.002542 
22 PISD_rs12171042 32011225 C ADD 1.83 0.0006661 
22 PISD_rs9956 32015450 C ADD 1.817 0.0007959 
4 ELOVL6_rs11733718 111073867 G ADD 0.5673 0.001769 
4 ELOVL6_rs900328 111074900 C ADD 0.5687 0.001778 
4 ELOVL6_rs7681294 111082310 T ADD 0.5882 0.003141 
8 CSMD3_rs16883344 113282795 A ADD 3.833 0.004581 
8 CSMD3_rs16883388 113316520 C ADD 6.973 0.00258 
8 CSMD3_rs16883751 113500330 A ADD 2.794 0.003875 
5 CSNK1G3_rs9327298 122850321 A ADD 1.697 0.003648 
5 CSNK1G3_rs4530754 122855416 G ADD 0.5767 0.002708 
5 CSNK1G3_rs7705070 122862876 T ADD 1.696 0.003838 
5 CSNK1G3_rs7737667 122875622 G ADD 1.697 0.003648 
5 CSNK1G3_rs2052485 122882219 A ADD 0.5863 0.003828 
5 CSNK1G3_rs6595459 122908361 A ADD 0.5863 0.003828 
5 CSNK1G3_rs10037048 122961813 C ADD 0.5848 0.003881 
9 SARDH_rs2073815 136573412 C ADD 1.683 0.003393 
9 SARDH_rs522676 136579589 C ADD 0.485 0.0007839 
9 SARDH_rs916620 136596750 A ADD 0.5372 0.003012 
9 SARDH_rs493901 136600201 C ADD 0.5578 0.001491 
5 PCDHGB5_rs4151697 140743661 G ADD 2.112 0.004523 
5 PCDHGB5_rs4151698 140753245 G ADD 2.158 0.003384 
5 PCDHGB5_rs3749767 140789933 T ADD 2.17 0.0001328 
5 PCDHGB5_rs1059029 140822723 G ADD 2.182 0.0001242 
5 PCDHGB5_rs11748256 140861801 G ADD 1.714 0.003817 
5 PCDHGB5_rs6860615 140862840 G ADD 1.906 0.0003411 
5 PCDHGB5_rs13361997 140863674 C ADD 2.37 0.0001648 
5 PCDHGB5_rs11952292 140871249 T ADD 3.061 0.0002058 
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Name convention used for novel SNP in Sequenom plex design: 

 
 
SNP_ID SEQUENCE 
11930_A-G
 ATGCTAAAACTAATCGTCCCAACAATTATATTACTACCACTGACATGACTT
TCCAAAAAACACATAATTTGAATCAACACAACCACCCACAGCCTAATTATTAGCA
TCATCCCTCTACTATTTTTTAACCAAATCAACAACAACCTATTTAGCTGTTCCCCA
ACCTTTTCCTCCGACCCCCTAACAACCCCCCTCCTAATACTAACTACCTGACTCCT
ACCCCTCACAATCATGGCAAGCCAACGCCACTTATCCAGTGAACCACTATCACGA
AAAAAACTCTACCTCTCTATACTAATCTCCCTACAAATCTCCTTAATTATAACATT
CACAGCCACAGAACTAATCATATTTTATATCTTCTTCGAAACCACACTTATCCCC
ACCTTGGCTATCATCACCCGATGAGGCAACCAGCCAGAACGCCTGAACGCAGGC
ACATACTTCCTATTCTACACCCTAGTAGGCTCCCTTCCCCTACTCATCGCACTAAT
TTACACTCACAACACCCTAGGCTCACTAAACATTCTACTACTCACTCTCACTGCC
CAAGAACTATCAAACTCCTGAGCCAACAACTTAATATGACTAGCTTACACAATAG
CTTTTATAGTAAAGATACCTCTTTACGGACTCCACTTATGACTCCCTAAAGCCCAT
GTCGAAGCCCCCATCGCTGGGTCAATAGTACTTGCCGCAGTACTCTTAAAACTAG
GCGGCTATGGTATAATACGCCTCACACTCATTCTCAACCCCCTGACAAAACACAT
AGCCTACCCCTTCCTTGTACTATCCCTATGAGGCATAATTATAACAAGCTCCATCT
GCCTACGACAAACAGACCTAAAATCGCTCATTGCATACTCTTCAATCAGCCACAT
AGCCCTCGTAGTAACAGCCATTCTCATCCAAACCCCCTGAAGCTTCACCGGCGCA
GTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATTCTGCCTAGCAAA
CTCAAACTACGAACGCACTCACAGTCGCATCATAATCCTCTCTCAAGGACTTCAA
ACTCTACTCCCACTAATAGCTTTTTGATGACTTCTAGCAAGCCTCGCTAACCTCGC
CTTACCCCCCACTATTAACCTACTGGGAGAACTCTCTGTGCTAGTAACCACGTTCT
CCTGATCAAAT[A/G]TCACTCTCCTACTTACAGGACTCAACATACTAGTCACAGCC
CTATACTCCCTCTACATATTTACCACAACACAATGGGGCTCACTCACCCACCACA
TTAACAACATAAAACCCTCATTCACACGAGAAAACACCCTCATGTTCATACACCT
ATCCCCCATTCTCCTCCTATCCCTCAACCCCGACATCATTACCGGGTTTTCCTCTT
GTAAATATAGTTTAACCAAAACATCAGATTGTGAATCTGACAACAGAGGCTTACG
ACCCCTTATTTACCGAGAAAGCTCACAAGAACTGCTAACTCATGCCCCCATGTCT
AACAACATGGCTTTCTCAACTTTTAAAGGATAACAGCTATCCATTGGTCTTAGGC
CCCAAAAATTTTGGTGCAACTCCAAATAAAAGTAATAACCATGCACACTACTATA
ACCACCCTAACCCTGACTTCCCTAATTCCCCCCATCCTTACCA 
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Table 41: Final Plex Design 

SNP ID Forward Primer 
ID 

Forward Primer Sequence Reverse Primer ID Reverse Primer Sequence Extended Pr  
ID 

    

rs11952292_W1 rs11952292_W1_F ACGTTGGATGTAAGACCCCTCAGCGTTCAG rs11952292_W1_R ACGTTGGATGCCCTCACCTGGCTCCGCTC rs11952292_     

rs199476128_W
1 

rs199476128_W1_
F 

ACGTTGGATGAATACCAAACGCCCCTCTTC rs199476128_W1_
R 

ACGTTGGATGTAGTATAGTGATGCCAGCAG rs199476128
E 

  

rs3749767_W1 rs3749767_W1_F ACGTTGGATGTTGACACAGAGACCAGGATG rs3749767_W1_R ACGTTGGATGATTCTGGCCATTGCCTTGCG rs3749767_W    

rs4530754_W1 rs4530754_W1_F ACGTTGGATGGAATTCCAGTGAGATTGGAG rs4530754_W1_R ACGTTGGATGATCCTATGGTCCTTCCCTTC rs4530754_W    

rs6595459_W1 rs6595459_W1_F ACGTTGGATGTAGAACTGTGTGGCCCTTAC rs6595459_W1_R ACGTTGGATGAGTAGCAAACCACCATGCAG rs6595459_W    

rs16883751_W1 rs16883751_W1_F ACGTTGGATGGTTTCTCATCACTGAACAGG rs16883751_W1_R ACGTTGGATGTTGGACACTGGGAGATTATA rs16883751_    

rs7828513_W1 rs7828513_W1_F ACGTTGGATGTGATCCACCCACTTTGGCCT rs7828513_W1_R ACGTTGGATGCTCCTACTATACTCAGACAC rs7828513_W    

rs9327298_W1 rs9327298_W1_F ACGTTGGATGAGGTGTATTGGAAGCATGGG rs9327298_W1_R ACGTTGGATGTGGAGTGTTACCAGCTCTAC rs9327298_W    

rs2073815_W1 rs2073815_W1_F ACGTTGGATGAACTACTCCGTCGTCTTCCC rs2073815_W1_R ACGTTGGATGTCCCCAGCAGGAGCTGTAG rs2073815_W    

11930_A-G_W1 11930_A-G_W1_F ACGTTGGATGTCTCTGTGCTAGTAACCACG 11930_A-G_W1_R ACGTTGGATGGGGCTGTGACTAGTATGTTG 11930_A-G_    

rs13361997_W1 rs13361997_W1_F ACGTTGGATGGCTAAGTGAAAAGCTTGCTC rs13361997_W1_R ACGTTGGATGTCCCTTTATCTGACACCAAG rs13361997_    

rs916620_W1 rs916620_W1_F ACGTTGGATGTAACTCTTATGCTGAAGCGG rs916620_W1_R ACGTTGGATGCTTTCTCCCAGAAGCCTTAG rs916620_W    

rs16883388_W1 rs16883388_W1_F ACGTTGGATGGGAATCAGAGAGAATAAAC rs16883388_W1_R ACGTTGGATGTGATATTTGACCAAGTAGCC rs16883388_    

rs41352944_W1 rs41352944_W1_F ACGTTGGATGGGTCACACGATTAACCCAAG rs41352944_W1_R ACGTTGGATGTTTAGCTTTATTGGGGAGGG rs41352944_    

rs7737667_W1 rs7737667_W1_F ACGTTGGATGACCTTGTATCCCTGTGTTAC rs7737667_W1_R ACGTTGGATGATACTAAAGGACAAAGGAC rs7737667_W    

rs9956_W1 rs9956_W1_F ACGTTGGATGGACCAGGTAGGACTTGAATG rs9956_W1_R ACGTTGGATGAGGAACGGGATAGGTTGAGG rs9956_W1_    

rs10037048_W1 rs10037048_W1_F ACGTTGGATGGAATGTGCTTCCTGACAAAG rs10037048_W1_R ACGTTGGATGCTGATCACTTATGGTCTTC rs10037048_    

rs5994415_W1 rs5994415_W1_F ACGTTGGATGATCTATTCCCAACTGACTGC rs5994415_W1_R ACGTTGGATGGTAGATCTCAAGCTCTAGCC rs5994415_W    

rs11748256_W1 rs11748256_W1_F ACGTTGGATGACCAGGTACTTGTTTTGGTG rs11748256_W1_R ACGTTGGATGGACTTACCTAAGCTAAACAAC rs11748256_    

rs16883344_W1 rs16883344_W1_F ACGTTGGATGGCTTGGAATTCCAAAGTTAC rs16883344_W1_R ACGTTGGATGTTGCTAGGAACTGAGAAGAC rs16883344_    

rs7681294_W1 rs7681294_W1_F ACGTTGGATGCCAGTGCAATGTAATCCAAG rs7681294_W1_R ACGTTGGATGGTTCAGGCTGTATATAATCC rs7681294_W   
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rs6860615_W1 rs6860615_W1_F ACGTTGGATGAGATGACAGTCACTGCAGAA rs6860615_W1_R ACGTTGGATGTCCCTTCACTTATGACTGAC rs6860615_W   

rs4151698_W1 rs4151698_W1_F ACGTTGGATGCCCCAAGGTCCTAAGAGATA rs4151698_W1_R ACGTTGGATGGCATTTAGAAGAGTGTAAGAG rs4151698_W   

rs7705070_W1 rs7705070_W1_F ACGTTGGATGTTCATTGCTATAGCTCTGTC rs7705070_W1_R ACGTTGGATGCCAGAACACAATGAAGATTGC rs7705070_W   
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Table 42: Extension Primer Pooling 

Assay Original 
Stock 
Concentration 

UEP 
Mass 

Target Reaction Concentration 
(uM) 

Target Working Concentration 
(uM) 

Volume from Stock 
(uL) 

rs11952292 500 4489.9 0.590 5.64 22.58 
rs199476128 500 4810.2 0.658 6.30 25.22 
rs3749767 500 4899.2 0.677 6.48 25.92 
rs4530754 500 5043.3 0.706 6.76 27.03 
rs6595459 500 5337.5 0.763 7.30 29.20 
rs16883751 500 5492.6 0.791 7.57 30.3 
rs7828513 500 5554.6 0.802 7.68 30.73 
rs9327298 500 5706.7 0.829 7.94 31.76 
rs2073815 500 5834.8 0.852 8.15 32.61 
11930a_g 500 5916.9 0.866 8.29 33.15 
rs13361997 50 6067 0.891 8.53 34.11 
rs916620 500 6207 0.913 8.75 34.98 
rs16883388 500 6320.1 0.931 8.92 35.67 
rs41352944 500 6431.2 0.949 9.09 36.34 
rs7737667 500 6536.3 0.965 9.24 36.96 
rs9956 500 6552.3 0.968 9.26 37.06 
rs10037048 500 6647.3 0.982 9.40 37.61 
rs5994415 500 7006.6 1.035 9.91 39.62 
rs11748256 500 7149.7 1.055 10.10 40.4 
rs16883344 500 7217.7 1.064 10.19 40.76 
rs7681294 500 7286.8 1.074 10.28 41.13 
rs6860615 500 7384.8 1.087 10.41 41.64 
rs4151698 500 7694 1.128 10.80 43.21 
rs7705070 500 7974.2 1.164 11.14 44.58 
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Appendix C 

Table 43: Logistic Regression Analysis between 24 selected SNPs and Migraine Association 

CHR SNP BP A1 TEST OR STAT P Migraine Overall P MA P MO 
4 rs7681294 1.11E+08 C ADD 0.7296 -3.576 0.0003492 2.55E-05 0.2771 
5 rs9327298 1.23E+08 A ADD 0.07592 -3.558 0.0003733 0.007141 0.9956 
9 rs2073815 1.37E+08 C ADD 1.371 3.35 0.0008086 0.000248 0.9643 
5 rs6860615 1.41E+08 G ADD 1.388 3.279 0.00104 0.008661 0.4156 
5 rs3749767 1.41E+08 T ADD 1.367 2.81 0.004956 0.02412 0.5187 
5 rs11748256 1.41E+08 G ADD 1.297 2.458 0.01396 0.02846 0.7193 
5 rs7705070 1.23E+08 T ADD 0.7955 2.234 0.0255 0.0935 0.6719 
5 rs4530754 1.23E+08 G ADD 1.199 1.972 0.04864 0.009949 0.2127 
5 rs11952292 1.41E+08 T ADD 0.6783 -1.908 0.05638 0.03245 0.954 
5 rs7737667 1.23E+08 G ADD 0.8347 -1.794 0.07286 0.1558 0.8067 
8 rs7828513 3432054 T ADD 1.191 1.684 0.09213 0.1393 0.8285 
8 rs16883344 1.13E+08 A ADD 1.392 1.489 0.1364 0.3709 0.5556 
5 rs10037048 1.23E+08 C ADD 1.135 1.391 0.1643 0.05318 0.2155 
2 rs9956 32015450 C ADD 0.8675 -1.361 0.1736 0.1037 0.5734 
5 rs13361997 1.41E+08 C ADD 0.8705 -1.181 0.2377 0.1859 0.7222 
5 rs6595459 1.23E+08 A ADD 1.111 1.147 0.2516 0.05761 0.1469 
8 rs16883751 1.14E+08 A ADD 0.7813 -1.115 0.265 0.5374 0.3743 
5 rs4151698 1.41E+08 G ADD 1.159 0.86 0.3898 0.6146 0.5111 

26 rs41352944 930 A ADD 1.089 0.3023 0.7625 0.4746 0.1641 
22 rs5994415 32004588 A ADD 1.025 0.2258 0.8213 0.9339 0.6168 
9 rs916620 1.37E+08 A ADD 0.99 -0.11 0.9124 0.4356 0.3605 
8 rs16883388 1.13E+08 C ADD 1.011 0.03409 0.9728 0.6235 0.3194 
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26 rs199476128 6480 A ADD 2.10E+09 0.00088 0.9993 0.9993 0.9994 
26 11930A>G 11930 0 ADD NA NA NA NA NA 

CHR SNP TEST A1 A2 GENO O(HET) E(HET) P 

4 rs7681294 UNAFF C T 137/254/156 0.4644 0.4994 0.104 
5 rs9327298 UNAFF A G 6/29/209 0.1189 0.1539 0.003048 
5 rs4530754 UNAFF G A 92/271/178 0.5009 0.4874 0.5381 
5 rs7705070 UNAFF T C 34/217/295 0.3974 0.3857 0.5788 
5 rs7737667 UNAFF G T 34/229/290 0.4141 0.3928 0.234 
5 rs10037048 UNAFF C A 91/265/180 0.4944 0.4862 0.7231 
5 rs6595459 UNAFF A G 94/269/172 0.5028 0.4894 0.5959 
5 rs4151698 UNAFF G A 2/65/487 0.1173 0.1168 1 
5 rs3749767 UNAFF T C 19/157/379 0.2829 0.2896 0.5591 
5 rs11748256 UNAFF G A 27/182/330 0.3377 0.342 0.8009 
5 rs6860615 UNAFF G T 37/202/313 0.3659 0.375 0.5709 
5 rs13361997 UNAFF C A 25/113/426 0.2004 0.2472 4.78E-05 
5 rs11952292 UNAFF T G 1/65/481 0.1188 0.115 0.7121 
8 rs7828513 UNAFF T C 48/140/196 0.3646 0.4257 0.005701 
8 rs16883344 UNAFF A G 1/37/513 0.06715 0.06828 0.5019 
8 rs16883388 UNAFF C T 1/19/547 0.03351 0.03635 0.1719 
8 rs16883751 UNAFF A C 1/49/503 0.08861 0.08797 1 
9 rs2073815 UNAFF C T 65/228/178 0.4841 0.4712 0.6248 
9 rs916620 UNAFF A G 80/256/223 0.458 0.4673 0.6511 

22 rs5994415 UNAFF A G 29/167/327 0.3193 0.3377 0.2427 
22 rs9956 UNAFF C A 39/165/318 0.3161 0.3572 0.009927 
26 rs41352944 UNAFF A G 0/0/0 nan nan NA 
26 rs199476128 UNAFF A G 0/0/0 nan nan NA 
26 11930A>G UNAFF  A 0/0/0 nan nan NA 
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Table 44: Hardy Weinbery Equillibrium 

Table 45: Haplotype Structure of tested variants and Association with Migraine Susceptibility 

 
     

 

 

LOC HAPLOTYPE F_A F_U CHISQ DF P 
 
SNPs 

H1 OMNIBUS NA NA 12.75 4 0.01258 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H1 GGCTCA 0.4294 0.4007 1.664 1 0.197 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H1 GGCTAA 0.03052 0.03317 0.111 1 0.739 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H1 AATGAG 0.05684 0.09985 12.3 1 0.000452 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H1 GATGAG 0.1783 0.1689 0.3038 1 0.5815 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H1 GACTAG 0.3049 0.2975 0.1287 1 0.7198 rs9327298|rs4530754|rs7705070|rs7737667|rs10037048|rs6595459 
H2 OMNIBUS NA NA 7.241 2 0.02677 rs11748256|rs6860615 
H2 GG 0.2642 0.2143 6.899 1 0.008623 rs11748256|rs6860615 
H2 AG 0.04193 0.03947 0.07777 1 0.7803 rs11748256|rs6860615 
H2 AT 0.6939 0.7462 6.853 1 0.008851 rs11748256|rs6860615 
H3 OMNIBUS NA NA 2.736 2 0.2546 rs13361997|rs11952292 
H3 CT 0.044 0.05985 2.642 1 0.1041 rs13361997|rs11952292 
H3 CG 0.067 0.06262 0.1654 1 0.6843 rs13361997|rs11952292 
H3 AG 0.889 0.8775 0.6629 1 0.4156 rs13361997|rs11952292 
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Table 46: Haplotype Structure of tested PCDH variants and Association with Migraine Susceptibility using Haploview 

LOCUS Haplotype F_A F_U ChiSQ DF P SNPs 

H1 Omnibus NA NA 19.53 3 0.000213 rs11748256/rs686015/rs119522 

 H1 GGT 0.04462 0.06176 3.036 1 0.08143 rs11748256/rs686015/rs119522 

 H1 GGG 0.2245 0.1537 17.23 3 3.32E-05 rs11748256/rs686015/rs119522 

 H1 AGG 0.04352 0.03937 0.2279 1 0.6331 rs11748256/rs686015/rs119522 

 H1 ATG 0.6873 0.7452 8.638 1 0.003292 rs11748256/rs686015/rs119522 
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