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Abstract 
 

Each year, 15 million infants are delivered preterm (< 37 weeks of gestation) and this accounts for 

10% of all births worldwide. Preterm births can be further classified by the gestational age at which 

the infant is delivered into early preterm (< 32 weeks of gestation) or late preterm (LPT; 32 – 36 

weeks). Greater than 75% of all preterm births occur LPT; however, the aetiology of LPT birth is 

currently unclear. Upper genital tract (UGT) infections are a major antecedent of preterm birth and 

the human Ureaplasma species are the bacteria most frequently isolated from the amniotic fluid or 

placentae of women who deliver preterm.  

 

Within this thesis, the prevalence and diversity of microorganisms within placentae (n = 535) of 

women (n = 477) who delivered LPT or at term (≥ 37 weeks of gestation) were investigated, and the 

incidence of chorioamnionitis was determined. Microorganisms were detected in 9.9% of LPT and 

14.1% of term chorioamnion tissues and of these, Ureaplasma spp. were the most prevalent clinical 

isolates (42/61; 68.8%). The presence of microorganisms was correlated with a history of 

chorioamnionitis in previous pregnancies (p = 0.025), and this may be a risk factor used by clinicians 

to identify women ‘at-risk’ of UGT infection in a current pregnancy. Significantly, the presence of 

Ureaplasma spp. within the chorioamnion (but not other microorganisms) was associated with 

histological chorioamnionitis (68.4% vs. 26.7%, p < 0.001). Despite the strong association between 

Ureaplasma spp. and histological chorioamnionitis, the detection of ureaplasmas within the 

chorioamnion was not always associated with histological chorioamnionitis and 14 (33.3%) 

placentae that were infected with Ureaplasma spp. demonstrated no evidence of histological 

chorioamnionitis. We identified no correlation between the number of ureaplasma CFU within the 

chorioamnion and the severity of disease, indicating that there may be other factors which influence 

the progression of disease.  

 

To better understand why only some women with ureaplasma chorioamnion infection developed 

histological chorioamnionitis, the ureaplasma clinical isolates (n = 42) that were isolated from 

chorioamnion tissues were characterised. A novel real-time polymerase chain reaction (PCR) and 

high resolution melt (HRM) assay was designed and optimised to serotype the U. parvum clinical 

isolates. While U. parvum was the most frequently isolated species (85.7%) and the U. parvum 

serovars 1, 3 and 6 were the most frequently isolated serovars (23.8%, 21.4% and 28.6%, 

respectively); there was no association with ureaplasma species or serovars and the development of 

adverse pregnancy or neonatal outcomes. The clinical ureaplasma isolates were also tested by 

western blot and PCR to investigate changes/alterations in a major surface-exposed lipoprotein, the 
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multiple banded antigen (MBA), which is a predicted virulence factor of Ureaplasma spp. UGT 

infection. Previously, MBA size variation has been identified within a pregnant sheep model of UGT 

infection and differences in the size of the MBA was associated with differences in the severity of 

histological chorioamnionitis, but as yet no studies have investigated ureaplasma MBA size variation 

in human pregnancies. Within our study, some clinical isolates demonstrated MBA protein bands 

that were the same size as Ureaplasma spp. American Type Culture Collection (ATCC) strains (i.e. no 

MBA variation was occurring), but in numerous clinical isolates, different sized MBA protein bands 

were observed. Clinical ureaplasma isolates that demonstrated MBA size variation were associated 

with a decreased incidence of histological chorioamnionitis (p = 0.023). By contrast, when 

ureaplasmas isolated from the chorioamnion demonstrated no MBA size variation then these 

placentae demonstrated severe histological chorioamnionitis. Furthermore, MBA size variation 

correlated with the concentration of specific cytokines within cord blood. When Ureaplasma spp. 

were detected within the chorioamnion, this was associated with significantly increased levels of 

cord blood granulocyte colony-stimulating factor (G-CSF) (489.35 ± 183.8 pg/mL, p = 0.04), when 

compared to uninfected placentae. Furthermore, when MBA size variation was also present, there 

were differences in the levels of cord blood cytokines. In placentae which were infected with 

ureaplasmas, but no MBA variation was detected, there were significantly higher levels of G-CSF and 

interleukin (IL)-8; while ureaplasma-infected placentae in which MBA size variation was detected 

had significantly lower levels of G-CSF and IL-8 (p = 0.008 and p = 0.04, respectively). These results 

are consistent with Ureaplasma spp. modulation of the host immune response.  

 

The specific host immune responses to U. parvum within an ex vivo placental tissue model of 

chorioamnion infection was further investigated. This pilot study utilised chorioamnion tissue from 

four human placentae that were processed within one hour of delivery. From each placenta, six 

sections of chorioamnion tissue were cut and suspended within Ussing chambers (n = 6 chambers 

per placentae). The chorioamnion tissue within each Ussing chamber acted as a barrier (both 

physical and immunological, mimicking its function in vivo) and each side of the membranes was 

separately perfused with sterile M199 media supplemented with urea and fetal calf serum. In each 

experiment, the maternal (chorion) side of the membranes was stimulated with live U. parvum 

serovar 6 clinical isolate (n = 2 chambers), UV-inactivated U. parvum serovar 6 clinical isolate (n = 2 

chambers) or vehicle control (n = 2 chambers) and perfusing media was collected from both the 

maternal and fetal compartments of the Ussing chambers over time. Exposure of the maternal side 

of the chorioamnion membrane to live U. parvum, but not UV-inactivated U. parvum resulted in 

elevated secretion of the anti-inflammatory cytokine IL-10 (20.4 ± 2.8 pg/mL, p = 0.046) within the 



 

iv 
 

maternal perfusates at 20 and 30 hours post-infection. Exposure of the chorioamnion to live U. 

parvum also resulted in increased MMP-9 production, ureaplasma invasion of the chorioamnion 

tissue, degradation of the chorioamnion membrane and detachment of the chorioamnion 

membranes, and these changes are consistent with the initial stages of membrane rupture (pPROM). 

 

The data presented within this thesis has improved our understanding of Ureaplasma spp. infections 

of the placenta within human pregnancies. Here, we confirm that Ureaplasma spp. are an  

aetiological agent of adverse pregnancy outcomes and demonstrated, for the first time, that 

infection with Ureaplasma spp. alone within the chorioamnion was associated with histological 

chorioamnionitis. It was also identified that ureaplasma clinical isolates obtained from the 

chorioamnion of human pregnancies demonstrated differences in the size of their MBA protein and 

variation of the size of the surface-exposed MBA was associated with a decreased incidence of 

histological chorioamnionitis. Furthermore, we demonstrated that the presence of Ureaplasma spp. 

infection in human pregnancies was associated with host immune responses and elevated levels of 

cord blood G-CSF; however, when MBA protein variation was present, there was a significant 

reduction in of G-CSF and IL-8 within cord blood, despite high numbers of ureaplasmas being present 

within the chorioamnion. We also identified that ex vivo stimulation of chorioamnion tissues 

resulted in elevated levels of the immunosuppressive cytokine, IL-10. Taken together, these results 

identify the initial host immune responses to ureaplasma infections within the chorioamnion, and 

these first immune responses by the host may be integral for the establishment of chronic, 

asymptomatic UGT Ureaplasma spp. infections during pregnancy.  
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Chapter One:  

 

Introduction 
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1.1 Description of the scientific problem investigated 
 

One in ten infants (10% of all births) are delivered preterm (<37 weeks of gestation) each year. 

Despite significant research and targeted intervention strategies, rates of preterm birth (PTB) 

continue to rise in almost every country (March of Dimes 2012). The most significant increase in 

PTBs has occurred within the late preterm (LPT) period (32 – 36 weeks of gestation), and in the last 

decade the rates of LPT birth have increased by more than 40% and LPT infants now account for 80% 

of all preterm infants (Raju 2006; Goldenberg et al. 2008b). Infection of the upper genital tract (UGT) 

is one of the most common causes of preterm delivery, with 25 – 40% of all PTBs associated with 

intrauterine infection (DiGiulio et al. 2008; Goldenberg et al. 2008b; DiGiulio 2012). Whilst these 

estimated rates of PTB associated with infection appear to be high, these may actually be minimal 

estimates, as some microorganisms have fastidious nutritional requirements and are not always 

detected/cultured during routine microbiological processing.  

 

The human Ureaplasma species (Ureaplasma parvum and Ureaplasma urealyticum) are the 

microorganisms most frequently isolated from the amniotic fluid (AF) and placentae of women who 

deliver preterm and this finding is consistent in studies which utilise traditional culture-based 

methods and/or newer molecular based methods (DiGiulio et al. 2008; DiGiulio 2012). Unlike other 

intraamniotic pathogens, which often cause acute infections resulting in PTB and fetal deaths, 

infections with Ureaplasma spp. are frequently chronic and asymptomatic. Ureaplasmas have been 

isolated from amniotic fluid as early as 15 weeks of gestation (Cassell et al. 1983; Cassell et al. 

1993a; Gerber et al. 2003). Despite the absence of signs of infection, ureaplasma infections are 

frequently associated with adverse pregnancy and neonatal outcomes, including chorioamnionitis, 

funisitis, neonatal infections (including pneumonia, sepsis and meningitis) (Hillier et al. 1988; Cassell 

et al. 1993b; Goldenberg et al. 2002; Schelonka and Waites 2007; Waites et al. 2009; Kasper et al. 

2010). Remarkably, these fastidious microorganisms are able to survive (and thrive) within the 

amniotic cavity, even in the presence of maternal/fetal immune responses. Given this, it is likely that 

Ureaplasma spp. have developed specific mechanisms that facilitate access to the amniotic cavity 

and the ability to chronically colonise/infect the AF during pregnancy without eradication. The 

overall hypotheses of this PhD program of study are:  

(i) The Ureaplasma spp. infiltrate the placenta and chorioamnion during pregnancy; 

(ii) Ureaplasma spp. are an aetiological agent of late preterm births and may be associated 

with adverse pregnancy and neonatal outcomes.  
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(iii) The host immune system may not always recognise ureaplasmas, as these 

microorganisms possess the ability to vary the size of their surface-exposed lipoprotein, 

the multiple banded antigen (MBA).  

These hypotheses were examined in human pregnancies, and in a human chorioamnion tissue ex 

vivo model of ureaplasma infection. 

 

1.2 Specific aims of this study: 

 

(i) To determine the prevalence and diversity of microorganisms, particularly Ureaplasma 

spp. within the chorioamnion of late preterm placentae.  

(ii) To detect, identify and serotype the most prevalent Ureaplasma species and serovars 

using a novel real-time polymerase chain reaction (PCR) and high resolution melt (HRM) 

assay.  

(iii) To characterise the immunodominant surface lipoprotein of clinical ureaplasma isolates 

(the multiple banded antigen (MBA)) and to detect variations of this surface-exposed 

protein.  

(iv) To investigate the host-microbe interactions of Ureaplasma spp. using an ex vivo model 

and human chorioamnion tissue.  

By understanding these fundamental aspects of Ureaplasma spp. UGT infections, this project may 

lead to a better understanding of the role of host immune responses during Ureaplasma spp. 

infections, the identification of novel biomarkers which may predict or identify women at-risk of 

delivering preterm due to infections and may inform targeted therapeutic strategies. These are 

greatly needed in order to reduce the high rates of PTB and its associated neonatal morbidity and 

mortality.  
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2.1 Preterm birth: A global issue 

  
Preterm birth (PTB: delivery < 37 weeks of gestation; term = 40 weeks) remains the single greatest 

obstetric challenge in the Western world (March of Dimes 2012). In 2012, 15 million births (10% of 

all births worldwide) occurred preterm, and whilst intervention strategies have reduced the 

neonatal mortality associated with PTB, rates of PTB continue to increase in almost every country 

(Bick 2012; March of Dimes 2012). Unlike many other health issues, PTB is a truly global issue with 

low- (LI), middle- (MI) and high-income (HI) countries being affected. While rates of PTB range from 

5 – 18% in different countries (March of Dimes 2012), the highest reported rates of PTB are in India 

(MI), China (MI), the Democratic Republic of the Congo (LI) and the United States (HI) (March of 

Dimes 2012). In HI countries, there were 1.2 million (8%) PTBs in 2012 and more than 42% of these 

occurred within the United States alone (March of Dimes 2012). 

 

Within Australia, rates of PTB increased from 6.8% in 1991 to 7.7% in 2012 (Lancaster et al. 1994; 

Hilder et al. 2014). Similarly, within the United States, rates of PTB have increased from 10.9% in 

1991 to 11.7% in 2011 (Hamilton et al. 2012). These figures suggest that the current intervention 

strategies employed by clinicians are not effectively curbing the high rates of PTB, and due to the 

high number of surviving infants this places an increased burden on our healthcare system. Many 

countries are only now experiencing and reporting on the full extent and long-term outcomes of PTB 

survivors (March of Dimes 2012). Whilst the adverse effects of PTB are seen most frequently in 

infants born extremely preterm, there is increasing evidence that all preterm infants (regardless of 

their gestational age) are at increased risk of adverse sequelae (Figure 2.1).  

 

2.1.1 Consequences of prematurity: why term babies are worth the wait 

 

PTB remains one of the most significant threats to the health and wellbeing of infants, claiming the 

lives of more than 1 million children each year (Bick 2012; March of Dimes 2012). Forty percent of all 

newborn deaths (death within four weeks of delivery) are as a consequence of PTB, and PTB is also 

the second leading cause of death in children under the age of 5 (the leading cause of death is 

pneumonia) (March of Dimes 2012). Whilst mortality rates are inversely proportional to the age at 

which the child is delivered, there are also discrepancies in mortality rates between LI, MI and HI 

countries. A child delivered at 24 weeks of gestation has a 50% chance of survival in an HI country, 

whilst a child delivered at 34 weeks of age has only a 50% chance of survival in LI or MI countries 

(Figure 2.1) (March of Dimes 2012).  
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Those infants who survive their prematurity are often faced with a lifetime of disability or 

impairment, and this is predominantly as a consequence of immature organ systems. The most 

frequently encountered adverse outcome of preterm infants is lung injury, resulting from 

bronchopulmonary dysplasia (BPD; also known as chronic lung disease of prematurity) (Doyle et al. 

1999). Higher incidences of recurrent respiratory infections/illnesses (Greenough 2012) and 

childhood asthma (Hack et al. 2005) are also commonly associated with PTB. Other organ systems 

are also at risk and children born preterm may experience visual and hearing deficiencies and 

language or behavioural problems (Moster et al. 2008). PTB is also associated with more severe 

sequelae, such as neuromotor and coordination disorders (Gorga et al. 1988), autism spectrum 

disorders (Abel et al. 2013)  and cerebral palsy (Oskoui et al. 2013).  

 

The childhood and long-term health outcomes of premature children are also inversely proportional 

to their gestational age at birth. Preterm infants (< 32 weeks of gestation) have higher rates of 

severe conditions (e.g. cerebral palsy), whilst those delivered at later gestations have less severe 

conditions (such as increased risk of non-communicable diseases later in life; Figure 2.1). Despite the 

apparent decreased severity of outcomes in later gestations, infants born late preterm (LPT) account 

for more than 75% of all PTBs and are therefore likely to have the greatest long-term impact on our 

healthcare system (Wang et al. 2004; Raju 2006). A review article on the prevention of preterm birth 

stated that “the true costs of prematurity, especially on a long-term, global level, are poorly 

understood and likely to be grossly underestimated” (Simmons et al. 2010). This is particularly true 

for infants born LPT, as despite their large numbers this cohort has remained largely unstudied.  
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Figure 2.1. Overview of preterm birth and its associated outcomes. 

HI – high income, MI – middle income, LI – low income. Image adapted from (March of Dimes 2012)

MONTHS                     5        6               7                            8                       9                            

 First Trimester       Second Trimester                             Third Trimester 

PREGNANCY 

 

 

FETAL OUTCOMES 

PRETERM BIRTH 

Very preterm 
Birth 

291 - 316  

Extremely preterm 

birth  

≤ 28 weeks  

Term 
 

≥ 37 

Late preterm 
birth 

320 - 366  

34 weeks:  

50% chance of survival 

in LI/MI country 

24 weeks:  

50% chance of survival 

in HI country 

 

 

OUTCOMES FOR  

CHILDREN 

Children with moderate/severe long-term 

disability e.g. cerebral palsy, mental retardation 

Children with mild long-term 

disability e.g. learning 

difficulties, respiratory disorders 

Children with other short/long-

term outcomes e.g. respiratory 

illness, rehospitalisation, 

asthma, behavioural problems 

FETAL DEATHS 
2.6 million stillbirths annually 

 
1.1 million neonatal deaths annually  
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2.2 Late preterm birth: A seldom studied population at risk 
 

Worldwide (Australia and the United States included), the most significant increase in PTB has been 

for neonates delivered within the LPT period (320 – 366 weeks of gestation), increasing by more than 

40% between 1981 and 2005 (Loftin et al. 2010). LPT infants were traditionally referred to as “near 

term” as they were delivered just a few weeks early and were thought to be comparable to infants 

delivered at term (≥ 37 weeks). There is compelling evidence that LPT infants are physiologically and 

developmentally immature, and are at greater risk of severe outcomes (Table 2.1) than term-born 

infants. In the United States, the total cost of treating children born very preterm (at 25 weeks of 

gestation) was found to be $38.3 million dollars, while the cost of treating LPT infants was $39.3 

million dollars (Gilbert et al. 2003). Despite the high costs of treating very premature children, the 

cost of treating LPT infants is higher due to the greater numbers born in this period and the 

increased number of surviving children. In Australia, an alarming 79.9% of preterm infants are born 

in the LPT period and in the US this statistic is even higher at 84.5% (Hamilton et al. 2012; Li et al. 

2013). This represents a very large number of children who are at risk of chronic health problems.  

 

LPT infants are at increased risk of temperature instability (Wang et al. 2004; Laptook and Jackson 

2006), hypoglycaemia (Wang et al. 2004; Adamkin 2011), respiratory distress (Escobar et al. 2006a; 

Escobar et al. 2006b; Ramachandrappa and Jain 2009; Colin et al. 2010; Harijan and Boyle 2012), 

apnea (Raju 2006) and jaundice (Boyle and Boyle 2013) within the first month of life. Of those LPT 

infants delivered before 34 weeks of gestation, more than half will require admission to the neonatal 

intensive care unit (NICU) (Mally et al. 2010), highlighting the risk of being born “just a few weeks” 

preterm. The adverse outcomes for LPT infants include a higher rate of rehospitalisation, with these 

infants being readmitted twice as frequently as term-born infants (Escobar et al. 2006a; 

Ramachandrappa and Jain 2009; Harijan and Boyle 2012). A study by Wang and colleagues identified 

that the cost of caring for LPT infants during their initial admission at birth was three times higher 

than the cost for term infants (Wang et al. 2004). These infants are also at greater risk of ongoing 

morbidities including acute bronchitis, otitis media and pneumonia, which were associated with 2-

fold higher healthcare costs for the first three years of life, when compared to the costs of treating 

term-born infants (Berard et al. 2012). More recently, a study by Gunay et al. (2013) examined the 

blood pressure and renal function of LPT children (age range: 4 – 13 yrs; n = 65) and compared these 

to sex- and age-matched term-born children. While the renal function of LPT children was similar to 

that of the term-born cohort, the mean blood pressure levels were significantly different between 

the cohorts. Day time, night time and 24-hour readings for both systolic and diastolic blood pressure 
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levels were significantly higher in the LPT group, compared to the term-born group. This may lead to 

childhood hypertension and ongoing health issues later in life .  

 

2.3 Adverse outcomes associated with late preterm birth 
 

Most organ systems of preterm infants remain vulnerable, even at late gestational ages and this 

predisposes infants to a range of short- and long-term adverse outcomes (Table 2.1). The final six 

weeks of gestation are crucial for fetal brain development, making this organ particularly vulnerable 

to insult following LPT birth. The brain of a LPT infant weighs one third less and the cerebral volume 

is approximately half the volume of a term-born infants’ brain. LPT myelination and interneuronal 

connectivity remains incomplete, and any insult (including preterm birth) during this stage of 

development can lead to poor long-term outcomes for the neonate (Ramachandrappa and Jain 

2009). The brainstem, which controls the suck-swallow rhythm associated with feeding is also less 

mature and this may result in feeding difficulties and “failure of the offspring to thrive” (Darnall et al. 

2006; Mally et al. 2010). This exacerbates other sequelae of LPT infants, including dehydration, 

hypoglycaemia and jaundice (Boyle and Boyle 2013). Other studies have shown that preschool 

children who were born LPT (n = 44) performed poorly on ‘verbal inhibitory control’ and ‘short-term 

verbal memory tests’, compared to term-born infants of the same age (Brumbaugh et al. 2013) and 

these LPT infants had lower ‘general conceptual abilities’, lower ‘verbal and non-verbal scores’ and 

poorer ‘visual and dexterity outcomes and adaptability’, compared to term-born children (p < 0.01) 

(Baron et al. 2013). Up to one third of 7 year old children delivered LPT were reported by their 

teachers to have difficulties in basic motor skills (29%), speaking (21%), writing (32%) and 

mathematics (19%) (Huddy et al. 2001).  

 

LPT birth has also been associated with more severe neurological conditions such as cerebral palsy, 

and rates of cerebral palsy are up to three times higher for children delivered late preterm, 

compared to their term-born counterparts (Adams-Chapman 2006; Petrini et al. 2009; Mally et al. 

2010), particularly where intraamniotic infection and/or inflammation are also reported at birth 

(Goldenberg et al. 2008b). A study of 900 000 children, including almost 33 000 children born LPT 

reported higher incidences of cerebral palsy (relative risk: 2.7 - 14.1), mental retardation (relative 

risk: 1.6 – 2.1), behavioural and emotional disturbances (relative risk: 0.8 – 1.0) as well as other 

severe disabilities including blindness or decreased vision, hearing loss and epilepsy (relative risk: 1.5 

– 2.3) for children born LPT (Moster et al. 2008).  
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The fetal lung is also particularly vulnerable following LPT birth. A study by Colin and colleagues 

likened the function/development of the LPT lung as more similar to that of a very preterm infant 

than that of a term infant (Colin et al. 2010). LPT infants’ lungs are at the saccular stage of 

development, which is characterised by an increase in the number of bronchi, alveoli and at this 

time, surfactant is produced. Associated with these changes is the rapid increase in lung volume and 

lung development can be altered if infants are delivered LPT. Respiratory distress (RDS) may occur as 

a consequence of interrupted alveolar development and is associated with poor gas exchange due to 

lack of surfactant production. Infants born LPT are 8 times more likely to be diagnosed with RDS, and 

9 times more likely to require continuous positive airway pressure (CPAP) ventilation due to their 

immature lungs, compared to term-born infants (Wang et al. 2004) (Ramachandrappa and Jain 

2009).   

 

This is consistent with other studies which identified LPT infants as having significant respiratory 

morbidities as evidenced by high rates of assisted ventilation, the use of oxygen at 36 weeks 

(gestational age of the infant following LPT birth) (Escobar et al. 2006b) and with reduced respiratory 

compliance, when compared to matched term-born control infants (McEvoy et al. 2013). A follow-up 

study identified a significant link between late PTB and recurrent wheezing up to three years of age 

(Escobar et al. 2010). Another study of 7295 children monitored the outcomes of infants from birth 

to 18 months of age (age at enrolment: 34 - 36 weeks) and showed a significant correlation between 

birth in the LPT period and a diagnosis of asthma within the first 18 months of age (adjusted odds 

ratio: 1·68) (Goyal et al. 2011). These studies confirm the significant impact of late PTB and identify 

and that the burden associated with late PTB may be underestimated. Both the short- and long-term 

adverse outcomes for these infants born LPT place further strain on our healthcare system and 

further research is required to understand the pathogenesis of LPT birth and to identify risk factors 

and causes of LPT birth.   
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Table 2.1.  A comparison of neonatal and long-term outcomes for extremely preterm, very preterm, 

late preterm and term infants. Outcomes of children born late preterm are more closely related to 

those of children born very preterm, rather than those delivered at term. 

 

 

  

 Extremely 

Preterm 

Very Preterm Late Preterm Term n =  Reference 

Gestational age at 
birth (week

day
) 

≤ 276 280 - 316 320 - 366 ≥ 370 N/A (March of Dimes 
2012) 

Proportion of total 
birth 

0.4% 0.8% 6.5% 92.3% 301 810 (Li et al. 2011) 

Proportion of 
preterm birth 

5.2% 10.4% 84.4% N/A 301 810 (Li et al. 2011) 

Mortality rate  
(per 1000 live births) 

392.7 27.2 3.5 0.4 301 810 
 

(Li et al. 2011) 
 

INITIAL STAY AND REHOSPITALISATION  
Mean weight 

(grams) 
752.6 ± 350.3 1420.2 ± 454.2 2643.1 ± 580.3 3607.5 ± 478.4 1 390 742 (Raisanen et al. 2013) 

Initial length of stay 
(days) 

 

78.2 ± 0.70 35.92 ± 1.21 7.28 ± 0.29 2.0 ± 0.78 458 366 
 

(Gilbert et al. 2003) 

Rehospitalisation 28.75% 19.5% 13.74% 2.0% 263 883 
 

33 276 

(Underwood et al. 
2007) 

(Escobar et al. 2005) 
Average cost of 

rehospitalisation 
$ 15.12 million $ 16.66 million $ 64.9 million Insufficient data 263 883 (Underwood et al. 

2007) 
NEUROLOGICAL DISORDERS 

Cerebral palsy 
 

9.1% 6% 2.2% 0.1% 903 402 (Moster et al. 2008) 

Mental retardation 
 

4.4% 1.8% 1.7% 0.4% 903 402 
141 321 

(Moster et al. 2008) 
(Petrini et al. 2009) 

Autism spectrum 
disorder 

0.6% 0.4% 0.08% 0.05% 903 402 (Moster et al. 2008) 

Psychological and 
behavioural 

disorders 

2.5% 0.7% 0.6% 0.2% 903 402 (Moster et al. 2008) 

RESPIRATORY DISORDERS  
Respiratory distress 
 

74.3% 44.2% 28.9% 4.2% 458 366 
7 474 

(Gilbert et al. 2003) 
(Wang et al. 2004) 

Bronchopulmonary 
Dysplasia 

Up to 40% 
 

Up to 24.8% 
 

28.9% 
 

4.2% 4 185 (Gortner et al. 2011) 

OTHER  
Visual impairment, 
blindness, hearing 
loss and epilepsy 

10.6% 8.2% 6.6% 
 

1.7% 903 402 (Moster et al. 2008) 

TOTAL COST 
Average cost per 
gestational age 

group 

$ 38.3 million $ 35.95 million $ 39.26 million $ 69.95 million 458 366 
 

(Gilbert et al. 2003) 
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2.4 In utero infections: the (often) silent threat to a healthy pregnancy  
 

In utero infection during pregnancy is the most common (potentially) preventable antecedent of PTB 

(Goldenberg et al. 2000b; Goldenberg et al. 2008b). A seminal study conducted by Hillier and 

colleagues tested the placentae of women following delivery and identified that 61% of women (n = 

38) who delivered preterm had bacteria present within the chorioamnion (membranes which 

surround the fetus during pregnancy) and of these, 47% were infected/colonised with Ureaplasma 

spp. (Hillier et al. 1988). It has been consistently shown that the human Ureaplasma spp. are the 

microorganisms most frequently isolated from the amniotic fluid and placentae of women who 

deliver preterm (Gray et al. 1992; Cassell et al. 1993b; Knox et al. 1997; Goncalves et al. 2002; 

Gerber et al. 2003; Aaltonen et al. 2007; Hecht et al. 2008; Onderdonk et al. 2008; DiGiulio et al. 

2010; Kasper et al. 2010). DiGiulio compared the results from 37 studies that reported on the 

prevalence and diversity of bacteria within amniotic fluid (15 – 37 weeks) and found that this clinical 

fluid was most frequently infected with Ureaplasma spp. (24%), Fusobacterium spp. (20%) or 

Streptococcus spp. (16%), and less frequently with Mycoplasma spp. (4%), Bacteroides spp. (4%) and 

Gardnerella spp. (8%). It was also reported that Ureaplasma spp. was the most frequently isolated 

microorganism in cases of preterm premature rupture of membranes (pPROM); and the second 

most frequently isolated organism from women who delivered preterm without rupture of the 

membranes (DiGiulio 2012). Ureaplasma spp. infection has been identified in the amniotic sac as 

early as 15 weeks of gestation (Gerber et al. 2003) and whilst it has been reported that ureaplasmas 

can be isolated from discoloured amniotic fluid without any other clinical signs of infection (Cassell 

et al. 1983), they are most frequently isolated from women with clear amniotic fluid (as ureaplasmas 

are so small that they do not produce turbidity in liquids – including in vitro cultures in broth) and 

macroscopically normal placentae (though there may be histological evidence of 

inflammation/chorioamnionitis). This means that not only are ureaplasma infections of the amniotic 

cavity asymptomatic, but also that ureaplasma infection is not immediately suspected as a cause of 

preterm birth or adverse pregnancy outcomes.  

 

Furthermore, it has been identified that only 35% of preterm births are medically indicated; whilst 

the remaining 65% of preterm births occur as a result of spontaneous premature labour and pPROM 

(Goldenberg et al. 2008b), most frequently as a result of intrauterine infection (approximately 25 – 

40% of all preterm births are as a result of intrauterine infection) (Goldenberg et al. 2000b; 

Goldenberg et al. 2008b; DiGiulio 2012). Taken together, this indicates that intrauterine infection is 
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prevalent and often extremely difficult to identify/diagnose, as women appear to be apparently 

healthy until preterm labour ensues.  

 

Kenyon et al. published two of the largest randomised clinical trials investigating antibiotic 

treatment of women with pPROM (Kenyon et al. 2001a) and spontaneous preterm labour (Kenyon et 

al. 2001b) (both are classical symptoms of intrauterine infection). The ORACLE I trial studied the 

efficacy of erythromycin or amoxicillin and clavulanic acid (augmentin) treatment versus placebo 

controls in 4826 women with pPROM. The administration of antimicrobials was effective, reducing 

adverse neonatal outcomes (oxygen dependency and surfactant therapy of the neonate, cerebral 

abnormalities and positive blood cultures); however, the use of augmentin was associated with 

necrotising enterocolitis (NEC) in neonates (p = 0.0005). Therefore, augmentin was contraindicated 

for use in pPROM (Kenyon et al. 2001a). The ORACLE II clinical trial investigated the effectiveness of 

erythromycin or augmentin treatment in a cohort of 6295 women with spontaneous preterm labour. 

In contrast to the ORACLE I trial, the ORACLE II clinical trial showed no significant improvements for 

neonates outcomes (parameters mentioned above) in either of the erythromycin (useful in the 

treatment of ureaplasmas) or augmentin (not useful in the treatment of ureaplasmas) treatment 

groups, or in the placebo (no antimicrobial treatment) control group; however, there was a reduced 

incidence of maternal infection in those women who were administered antimicrobials. They 

therefore concluded that women in spontaneous preterm labour should not be routinely 

administered antimicrobials unless there was clinical evidence of infection (Kenyon et al. 2001b). 

However, the problem largely remains that identification of intrauterine infection is extremely 

difficult, due to the predominantly asymptomatic nature of the infection.  

 

A 7-year follow-up of the children born to mothers administered antimicrobials vs. placebo during 

the ORACLE II randomised clinical trial found there were no significant differences in the children’s 

rate of death, the medical conditions they developed, their behavioural patterns or the educational 

attainment levels of the children. However, children born to mothers who received erythromycin 

had greater functional impairment (mild, moderate or severe impairment of vision, speech, 

dexterity, emotion, cognition or pain) compared to those children born to mothers who did not 

receive erythromycin (658/1554, compared to 574/1498, odds ratio: 1·18). Even more significant 

was the risk of developing cerebral palsy (in both erythromycin/augmentin treatment groups); 

children born to women treated with either antimicrobial were more likely to develop cerebral palsy 

compared to children who did not receive antimicrobials (erythromycin: 53/1611 compared to 
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27/1562, odds ratio: 1·93; augmentin: 50/1587 compared to 30/1586, odds ratio: 1·69) (Kenyon et 

al. 2008).  

 

More recently, Acosta et al. (2014) identified that multiple-dose maternal intravenous azithromycin 

eradicated U. parvum with a 95% success rate in a non-human primate model. However, other 

studies investigating the effectiveness of erythromycin treatment during pregnancy have reported 

conflicting results. Dando et al. (2010) showed that maternal intramuscular administration of 

erythromycin failed to eradicate intrauterine ureaplasma infection in an ovine model. The failure of 

erythromycin treatment may be due to poor trans-placental transfer; as a previous study reported 

that the trans-placental transfer rate of erythromycin was as low as 3%, so these antimicrobials may 

not be reaching the placentae or amniotic fluid in therapeutic concentrations (Heikkinen et al. 2000). 

Dando et al. (2014) subsequently sequenced the domain V of the 23S rRNA gene of ureaplasmas 

isolates from their 2010 study and demonstrated significant genetic differences between 

ureaplasmas isolated from the chorioamnion and amniotic fluid of pregnant sheep. While 

ureaplasmas isolated from amniotic fluid showed 100% 23S rRNA sequence homology to the original 

strain injected, isolates from the chorioamnion demonstrated significant genetic variation (only 64 – 

82% sequence homology) when compared to the original strain injected. Furthermore, the 

ureaplasmas isolated from the chorioamnion of sheep demonstrated the presence of macrolide 

resistance genes and the presence of these genes (erm(B) and msr(D)) were associated with variable 

minimum inhibitory concentrations (MICs), regardless of whether the isolates were exposed to 

erythromycin in vivo. Therefore, these results suggest that the microbial niche (i.e. amniotic fluid or 

chorioamnion tissue) may act as a selective pressure that allows the growth of some ureaplasma 

variant strains in vivo. This may also explain why it is so difficult to treat intraamniotic Ureaplasma 

spp. infections.  

 

Other studies have also reported mutations within the 23S rRNA gene and erythromycin resistance 

patterns; however, macrolide resistance in these populations was low (Xiao et al. 2011a). A follow-

up study in sheep by Kemp et al. (2014) attempted to resolve intraamniotic ureaplasma infections 

with erythromycin treatment and combinations of single or repeat intraamniotic and maternal 

intramuscular injections but failed to eradicate ureaplasmas from the amniotic cavity of pregnant 

sheep. While erythromycin treatment reduced the number of viable ureaplasmas present, the 

authors demonstrated the presence of several erythromycin-resistant strains following in vivo 

treatment (Kemp et al. 2014). Redelinghuys et al. (2014) have also demonstrated increasing 

antimicrobial resistance in human clinical isolates. Self-collected vaginal swabs were obtained from 
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pregnant women (n = 96) attending an antenatal clinic in South Africa. Specimens were screened 

and 76% (73/96) contained Ureaplasma spp. and the majority of isolates were U. parvum. 

Antimicrobial susceptibility assays were performed and > 80% of isolates were resistant to 

erythromycin (a class A antimicrobial therapy suitable for treating pregnant women), and 

surprisingly 73% of ureaplasma isolates were also found to be resistant to tetracycline (a class D 

antimicrobial therapy – contraindicated during pregnancy). Other studies have also indicated that 

tetracycline resistance of Ureaplasma spp. is increasing (Xiao et al. 2011a). These studies highlight 

the failure of erythromycin to treat intraamniotic ureaplasma infections. These findings highlight the 

need for further studies to identify methods to detect asymptomatic UGT infections and adequate 

treatment strategies to eradicate these complex pathogens during pregnancy.  

 

In a review of drug therapies for the prevention of preterm birth, it was stated that “if the right 

antibiotics (with appropriate activity against a particular microorganism) were administered to 

women prior to 22 weeks of gestation (and before inflammation/damage in utero) then the 

incidence of preterm birth may be reduced by 40 – 60%” (Lamont and Jaggat 2007). However, the 

difficulty remains that: (i) intrauterine infections in early gestational periods are often polymicrobial 

and require more than one antibiotic to effectively treat the different microorganisms causing the 

infection (Kallapur et al. 2013); (ii) a large proportion of women have clinically silent intrauterine 

infections (Goldenberg et al. 2000b); and (iii) routine screening/testing of pregnant women for UGT 

infection is not part of current obstetric practice (Australian Government Department of Health and 

Ageing 2012). 

2.4.1 Routes of in utero infections 

 

The female upper genital tract (UGT) was traditionally considered to be a sterile site, as it was 

thought that infants developed within a sterile site and were first exposed to bacteria during birth 

(Tissier 1900; Wilson 2005). However, increasing evidence suggests that the UGT is not sterile and 

that there are specific mechanisms by which microorganisms gain access to the UGT. Goldenberg et 

al. (2000) proposed four major mechanisms: retrograde spread from the peritoneal cavity (via the 

Fallopian tubes), haematogenous dissemination via the placenta and maternal blood supply, 

accidental contamination at the time of invasive procedures such as amniocentesis or chorionic 

villus sampling, and ascending invasive infections from the LGT to the UGT (Fig. 2.2). Of these, the 

most widely accepted mechanism is that microorganisms originating from the LGT (e.g. Ureaplasma 

spp.) ascend through the cervix into the choriodecidual space and cross the chorioamnion 

membrane to reach the amniotic fluid and the fetus (Kim et al. 2009). A study by Hansen et al. 
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(2014) identified that despite the presence and intense antimicrobial activity of the cervical mucus 

plug (a gel-like structure which fills the cervix), Ureaplasma spp. were still isolated within the cervical 

mucus plug, indicating that its presence does not block the movement of Ureaplasma spp. to the 

UGT. A previous study identified that migration of radio-labelled particles from the vagina to the 

UGT can occur within 2 minutes (Zervomanolakis et al. 2007) and further studies conducted by 

Kundsin et al. (1984) demonstrated the recovery of Ureaplasma spp. increased as the duration of 

rupture of membranes increased, providing further evidence that bacteria can ascend from the LGT 

and are likely to be the primary source of UGT infections. Knox et al. (2003) also demonstrated that 

Ureaplasma spp. were adherent to human spermatozoa and were not always removed by assisted 

reproductive technology (ART) washing procedures (29/73, 39.7% remained ureaplasma-positive). 

By attaching to the surface of sperm, ureaplasmas may gain access to the UGT (Nunez-Calonge et al. 

1998; Knox et al. 2003) and it is possible that ureaplasmas and other microorganisms may 

asymptomatically colonise the endometrium at (or prior to) the time of conception.  

 

A recent study found that 10% of all endometrial samples contained Ureaplasma spp. (Cicinelli et al. 

2012). This is in accordance with previous studies that report the isolation of ureaplasmas (and other 

bacteria) from the endometrium of healthy, asymptomatic women (Idriss et al. 1978; Cassell et al. 

1993b). Pathogenic microorganisms have been identified within the endometrium of women 

without any evidence of pelvic infection and with negative cervical cultures (Lucisano et al. 1992), 

and there is a low correlation between microorganisms isolated from the cervix and those found 

within the endometrium, with 67% of endometrial specimens having distinct microbial populations, 

when compared to the corresponding cervical specimen (Cicinelli et al. 2012). It has been suggested 

previously that endometrial infection/colonisation may be present at the time of implantation, and 

that this may explain abnormal placentation (Jones et al. 1998), pre-eclampsia (Viniker 1999), 

adverse pregnancy outcomes (Gibbs et al. 1992) and spontaneous and recurrent abortions 

(Naessens et al. 1987). These studies provide significant evidence that not only is the UGT not sterile, 

but that it contains a unique population of microorganisms that may be suited to this anatomical 

niche. Further studies are required to determine the diversity of microorganisms present within the 

UGT and to follow the outcomes of women who fall pregnant whilst bacteria are present in the UGT, 

in order to determine the effects of these microorganisms during gestation.  
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Figure 2.2. Ascending invasive infections are predicted to be the most common route of in utero infection. 

Bacteria may ascend from the LGT; invade the chorioamnion (maternal/fetal) membranes, gaining access to 

the amniotic fluid and fetus during pregnancy. Image source: Goldenberg et al. (2000). 

 

2.4.2 Microbial mechanisms leading to preterm birth  

 

Infection-associated PTB is most commonly thought to occur from microbial invasion of the UGT, 

specifically the choriodecidual space (maternal/fetal interface). Activation of the host immune 

system at the time of invasion is recognised by pattern-recognition receptors (PRRs), such as the 

Toll-like receptors (TLRs). Activation of host TLRs result in the production of cytokines, such as 

interleukin (IL)-1β, IL-6, IL-8, IL-10 and tumour necrosis factor (TNF)-α. These cytokines and microbial 

toxins initiate prostaglandin synthesis, which in turn initiates contractions of the myometrial and 

cervical muscles, triggering uterine contractions and opening of the cervix in preparation for labour 

(Goldenberg et al. 2000b; Challis et al. 2009). Increased levels of cytokines at the site of microbial 

invasion/infection also result in the recruitment of neutrophils and the expression of matrix 
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metalloproteinases, which attack and weaken the chorioamnion membranes, ultimately leading to 

rupture of membranes (Goldenberg et al. 2000b). The combination of these events results in 

premature labour and preterm delivery of the baby, unless intervention strategies are quickly put in 

place. 

 

2.5 Ureaplasma species: Taxonomy and classification  
 

Ureaplasma species are among the smallest self-replicating microorganisms. These were first 

isolated from urethral exudates in males with primary and recurrent non-gonococcal urethritis 

(Shepard 1954). Due to their close resemblance to Mycoplasma spp. and small colony size (size 

range 5 – 20 µm, compared to 200 – 500 µm of Mycoplasma spp.) (Shepard 1954), they were 

referred to as the T (tiny) strain mycoplasmas. In 1974, Shepard distinguished the T-strain 

mycoplasmas from other Mycoplasma spp. by their unique ability to hydrolyse urea as their major 

(95%) energy source, and so he proposed that these organisms be reclassified into their own genus: 

Ureaplasma (Shepard 1974).  The urease enzyme of ureaplasmas breaks down urea (present within 

urine, the genital tracts of men and women and also within amniotic fluid) to produce ammonia, 

resulting in de novo ATP synthesis (Smith et al. 1993). Production of ammonia is also the 

distinguishing characteristic used for the identification of ureaplasmas in routine diagnostic in vitro 

broth culture (Shepard and Lunceford 1976), the growth of ureaplasmas is confirmed by an alkaline 

shift and pH indicator colour change.  

 

Ureaplasmas belong to the division Tenericutes, within its own class, the Mollicutes (Latin: mollis – 

soft; cutis – skin). The Mollicutes are unique in their cell structure, lacking a peptidoglycan cell wall 

and are surrounded only by a plasma membrane. Ureaplasma spp. are further classified in the order 

Mycoplasmatales and the family Mycoplasmataceae, along with the closely related Mycoplasma 

spp. (Figure 2.3) (Bergey et al. 1994; Krieg 2012). U. urealyticum was initially proposed as a single 

species infecting humans, containing eight antigenically distinct serovars; however, 14 serovars have 

now been identified based on the results of metabolic inhibition tests and epifluorescence assays 

(Robertson and Stemke 1982). These 14 serovars were divided into two distinct biovars, the “parvo” 

biovar (also known as biovar 1 or A; containing serovars 1, 3, 6 and 14) and the “T960T” biovar (also 

known as biovar 2 or B; containing serovars 2, 4, 5, 7 - 13) (Christiansen 1981). However, the 

accumulation of phenotypic and genotypic differences between these biovars, including differences 

in genome size, restriction fragment length polymorphisms (RFLPs), DNA-DNA hybridisation, 16S 

rRNA and 16S-23S rRNA intergenic region differences as well as manganese inhibition patterns and 

clustering of antigenic types prompted the revision of this taxonomy into two distinct species: U. 
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parvum (the “parvo” biovar) and U. urealyticum (the “T960T” biovar), which were formally proposed 

(Robertson et al. 2002). This revised taxonomy of two species and 14 serovars of Ureaplasma spp. 

was formally accepted, however, this taxonomy has not been widely adopted within the literature, 

and often the 14 serovars are still referred to as U. urealyticum. 

  

There are currently seven species of ureaplasmas: U. parvum, U. urealyticum, U. diversum, U. cati, U. 

gallorale, U. felinum and U. canigenitalium (Robertson et al. 2002). Of these, U. parvum and U. 

urealyticum (often referred to as “the ureaplasmas”) infect human hosts and are most closely 

related to the Mycoplasma pneumoniae taxonomic group. Ureaplasma spp. have unique genomes, 

with the highest A+T content of all bacteria (Glass et al. 2000). They have the second smallest 

genome of all free-living prokaryotes (the smallest being M. genitalium) with genomes ranging in 

size from 0.75 Mbp – 1.2 Mbp (Glass et al. 2000). These minimal genomes are thought to have 

evolved from closely related low G+C-content Gram positive bacteria by extensive degenerative 

evolution (Glass et al. 2000) and phylogenetic analysis identified Clostridium spp. (Clostridium 

innocuum and Clostridium ramosum) as the closest relatives of ureaplasmas and mycoplasmas 

(Woese et al. 1980). More recently, studies have revealed that ureaplasmas are also closely related 

to the Bacillus spp., Streptococcus spp. and Lactobacillus spp.; and of these the Lactobacillus spp. 

and Streptococcus spp. are the closest relatives of ureaplasmas, based on phosphoglycerate kinase 

sequencing (Wolf et al. 2004). It is also very interesting to note that several key genes found in all 

other bacteria are absent in Ureaplasma spp. The genes encoding the heat shock proteins GroEL and 

GroES that mediate protein folding are found in all sequenced microbial genomes, with the 

exception of Ureaplasma spp. (Glass et al. 2000). Perhaps the most interesting absence within the 

ureaplasma genome is the gene which encodes the cell division protein FtsZ (Glass et al. 2000). This 

protein forms the “Z-ring” that constricts between two dividing cells during replication and is 

thought to be essential in the binary fission of free-living bacteria. However, Ureaplasma spp., 

Chlamydiae and Aeropyrum pernix are the only bacteria that do not contain this protein. Given this, 

the genetic mechanisms by which ureaplasma cells divide currently remain unknown.  
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Figure 2.3. Phylogenetic relatedness of Ureaplasma spp., along with other Mollicutes 

including Mycoplasma spp., Acholeplasma spp., Anaeroplasma spp. and Spiroplasma spp. 

and Firmicutes including Escherichia coli. 16S rRNA direct solid-phase DNA sequencing was 

employed on well-characterised variable regions of the 16S rRNA gene. In this figure, U. 

urealyticum is representative of all 14 serovar belonging to U. parvum and U. urealyticum 

and is most closely related to Mycoplasma pneumoniae. Image from (Pettersson et al. 1994) 

  

2.6 Ureaplasma species: Association with disease 
 

 2.6.1 LGT colonisation 
 

  2.6.1.1 LGT colonisation of females  

 

Ureaplasma spp. are considered to be normal flora of the urogenital mucosal epithelia and are 

found in 40 – 80% of females of reproductive age (Cassell et al. 1993b). Ureaplasma spp. 

colonisation of the genital tract has been associated with a number of factors, including: age (most 
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frequently in 14 - 25 year age group and carriage declines with increasing age) (Tibaldi et al. 2009; 

Ruzman et al. 2013), ethnicity (particularly African American and Indigenous women) (McCormack et 

al. 1986; Knox et al. 1997; Tibaldi et al. 2009), level of education (Tibaldi et al. 2009), the number of 

recent sexual partners (McCormack et al. 1986; Knox et al. 1997; Nelson et al. 2007; Ruzman et al. 

2013), age at first sexual intercourse (≤ 16 yrs) (Knox et al. 1997; Ruzman et al. 2013) as well as the 

use of non-barrier contraceptives (Knox et al. 1997) and IUDs (Tibaldi et al. 2009). Due to their high 

prevalence, ureaplasmas are considered to be of low virulence in the female LGT and are often 

referred to as asymptomatic colonisers (Volgmann et al. 2005). Studies have demonstrated that 

there were no significant differences in the isolation rates of Ureaplasma spp. from endocervical, 

vaginal or urethral swabs collected from women of reproductive age with or without symptoms of 

infection (and irrespective of pregnancy status) (Casari et al. 2010; Hunjak et al. 2013). By contrast, 

others have reported ureaplasmas as a potential source of genital tract infection, including urinary 

tract infections, bacterial vaginosis and vaginitis (Tibaldi et al. 2009; Patel and Nyirjesy 2010).  

 

The presence of Ureaplasma spp. in the female LGT has also been proposed as a risk factor for 

adverse outcomes including chorioamnionitis, low Apgar scores at birth (infants are scored at 1 and 

5 minutes after birth with respect to appearance, pulse rate, reflexes, activity and respiratory effort), 

admission of the infant to the NICU and preterm birth (Abele-Horn et al. 2000; Kwak et al. 2014). 

However, the majority of studies in pregnant women have demonstrated that Ureaplasma spp. 

colonisation of the LGT is not significantly associated with adverse pregnancy outcomes (Donders et 

al. 2009; Lee et al. 2009). A recent study conducted by Anderson et al. (2013) studied a population of 

47 pregnant and 16 non-pregnant women and obtained vaginal swabs on four occasions during 

routine clinical visits at gestations of: < 14 wks, 14 – 28 wks, > 28 wks and 4 – 6 wks postpartum. 

Non-pregnant women were also screened at 12 week intervals. Ureaplasma spp. was prevalent in 

vaginal swabs from pregnant women (> 60% in all visits during pregnancy), particularly within the 

first and second trimesters. However, there were no significant associations between the gestational 

age at delivery (mean: 39 wks; range: 33 – 41 weeks), birth weight (mean: 3255 g; range: 2070 – 

4640 g) or any adverse maternal or neonatal outcomes of those women colonised with Ureaplasma 

spp. (Anderson et al. 2013). Conversely, Breugelmans et al. identified Ureaplasma spp. as a risk 

factor for preterm delivery and 52/97 (53.6%) of women who had positive cervical cultures for 

Ureaplasma spp. delivered preterm (p = 0.02). However, they failed to comment on the fact that 

ureaplasmas were also isolated from the LGT of 783/1981 (41.4%) women who delivered at term 

(Breugelmans et al. 2010). Overwhelmingly, these studies indicate that Ureaplasma spp. are part of 
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the normal vaginal microflora of both pregnant and non-pregnant women and are LGT colonisation 

with ureaplasmas is not a significant predictor of preterm delivery.   

2.6.1.2 LGT colonisation of males 

 

Ureaplasma spp. are also considered to be asymptomatic colonisers of the male urogenital tract and 

can be found in up to 50% of urethral specimens (Cassell et al. 1993b; Volgmann et al. 2005; 

Nakashima et al. 2014). Ureaplasma spp. in the male LGT are often associated with non-gonococcal 

urethritis (Yoshida et al. 2005; Shimada et al. 2014), epididymitis (Zeighami et al. 2009) and chronic 

prostatitis (Skerk et al. 2002), though their role in these disease states are often controversial. 

Ureaplasmas have also been isolated in seminal fluid from both fertile and infertile men and have 

been associated with male infertility and adverse fertility parameters. The prevalence of Ureaplasma 

spp. in the sperm of infertile men varies from 10 – 40% (Keck et al. 1998) and has been correlated 

with: alterations in sperm motility (both increases/decreases) (Nunez-Calonge et al. 1998; Knox et al. 

2003; Liu et al. 2014), changes in sperm pH (Wang et al. 2005), altered sperm membrane 

morphology (Nunez-Calonge et al. 1998), reduced sperm concentration and viscosity (Wang et al. 

2006), decreased or abolished acrosomal reaction (impairing sperm penetration ability and 

increasing apoptosis of sperm) (Kohn et al. 1998) and membrane lipid peroxidation and oxidative 

stress in sperm (Fraczek et al. 2007). A study conducted by Shi et al. (2007) demonstrated cross-

reactivity between antigens belonging to Ureaplasma spp. and human sperm membrane proteins 

(hSMP). They identified anti-ureaplasma antibodies in the semen of infertile men with ureaplasma 

infections and these antibodies also reacted with hSMP. Immunofluorescent analysis showed 

specific reactivity at the posterior sperm head, the area where sperm-egg binding occurs. The 

authors suggested that this may be a mechanism by which ureaplasma-related infertility blocks or 

inhibits sperm-egg binding. The authors then explored this further by pre-incubating murine 

spermatozoa with antibodies generated against Ureaplasma spp. prior to in vitro fertilisation with 

murine ova. No significant impairment of sperm motility was seen, however, there was significant 

inhibition of sperm-egg binding in the group pre-incubated with the cross-reactive Ureaplasma spp. 

antibodies. This inhibition of binding was abolished when the antibodies were diluted to a lower 

level. A similar result was seen when female mice were pre-immunised with these cross-reactive 

antibodies, with more than 75% of female mice becoming sterile (Shi et al. 2007). These results 

suggest that not only are spermatozoa affected by these cross-reactive antibodies, but that the 

presence of cross-reactive antibodies in female mice may also be a cause of infertility. Furthermore, 

the presence of Ureaplasma spp. has also been correlated with molecular changes to spermatozoa, 

including premature chromatic decondensation (which compromises DNA integrity), mitotic 
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alterations and chromatid breaks and gaps (Wang et al. 2010). DNA damage may affect the ability of 

sperm to fertilise oocytes and can have a damaging effect on embryogenesis. This may have severe 

implications for infertility, abortion and overall reproductive health and so further studies are 

required to elucidate the role of Ureaplasma spp. in sperm function, DNA damage and infertility. 

2.7 In utero ureaplasma infection is associated with adverse neonatal 

outcomes 
 

Ureaplasmas may be acquired by the fetus in utero or during delivery and this can result in severe 

adverse neonatal outcomes. A recent study by Hahn et al. (2014) determined the rate of vertical 

transmission of microorganisms during delivery. Of the 455 women tested, 64 (14.1%) were found to 

have sexually transmitted infections (STIs) cultured/detected from the LGT. For 17.2% of these 

women, microorganisms were transmitted vertically from the mother to the neonate. The human 

Ureaplasma spp. were found to be the most frequently identified microorganisms isolated from the 

LGT of mothers (n = 36; 50%) and also from the oral secretions of the neonate immediately following 

delivery (8/11%; 72.2%).  

 

During development in utero, the fetus swallows and inhales amniotic fluid as part of normal fetal 

development, preparing fetal organs for their ex utero roles (such as swallowing and breathing). If 

this amniotic fluid is infected, this allows microorganisms, including ureaplasmas, to directly access 

the fetal lung and gut. Ureaplasmas have been isolated from the fetal lung following delivery and are 

associated with respiratory disorders including pneumonia (Cassell et al. 1993b), RDS, (Castro-

Alcaraz et al. 2002; Kotecha et al. 2004; Cultrera et al. 2006) and bronchopulmonary dysplasia (BPD) 

(Benstein et al. 2003; Viscardi et al. 2006; Schelonka and Waites 2007; Sung 2010). Systemic 

infections were also observed in a sheep model study by Knox et al. (2010), in which Ureaplasma 

spp. injected intraamniotically were detected in numerous fetal body sites, including the GIT, liver, 

kidney, lung and cerebrospinal fluid post-delivery.  

 

RDS is an acute dysfunction of the lung, where there is insufficient surfactant (liquid that aids gas 

exchange) (Hallman et al. 1991), while BPD is a more severe respiratory disease in which alveolar 

development is arrested, resulting in fewer but larger alveoli (Jobe and Bancalari 2001). Both disease 

states are strongly associated with inflammation, resulting from in utero exposure to ureaplasmas 

(or other microorganisms) and chorioamnionitis or funisitis. The relationship between ureaplasmas 

and BPD was first proposed in 1988, with several studies identifying a causative agent of BPD in low 

birth weight infants as Ureaplasma spp.(Cassell et al. 1988; Sanchez and Regan 1988; Wang et al. 
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1988). Since these reports, there has been an increasing body of evidence for the involvement of 

Ureaplasma spp. in BPD.  

 

Studies utilising animal models of ureaplasma infection and the impact on fetal lung development 

have been used extensively. In non-human primate animal models, intraamniotic injection of 

Ureaplasma spp. resulted in fetal pneumonia, alveolar type II cell proliferation and lung injury (Novy 

et al. 2009). Pregnant baboons were exposed to Ureaplasma spp. in utero for 2 days and their 

fetuses subsequently demonstrated either (i) clearance of the infection and had normal lung 

function at birth; or (ii) were colonised persistently in the fetal lung with Ureaplasma spp. with 

inflammation and poor lung function was demonstrated at the time of delivery (Yoder et al. 2003). 

Similarly in a sheep model of intraamniotic Ureaplasma spp. infection, it has been shown that both 

acute and chronic durations of exposure to ureaplasmas have been associated with fetal lung 

inflammation and increased cytokine (IL-1β, IL-8 mRNA) expression, altered elastin and α-smooth 

muscle actin deposition, increased surfactant production and improved lung gas volumes at the time 

of birth (Collins et al. 2010).  

 

Prematurely born babies exposed to Ureaplasma spp. in utero also have demonstrated signs of lung 

fibrosis, elastic fibre accumulation and increased levels of TNF-α and transforming growth factor 

(TGF)-β within their lungs at the time of autopsy (Viscardi et al. 2002; Viscardi 2010). Once 

ureaplasmas have access to the fetal lung, they are able to disseminate to distant anatomical sites 

and have been isolated in 23% of umbilical cord blood cultures in preterm neonates (Goldenberg et 

al. 2008a). Ureaplasma spp. are also the most frequently isolated microorganism from the 

cerebrospinal fluid (CSF) of neonates and are a causative agent of sepsis (Waites et al. 1989; Cassell 

et al. 1993b), meningitis (Garland and Murton 1987; Stahelin-Massik et al. 1994; Biran et al. 2010), 

brain lesions (Olomu et al. 2009) and intraventricular haemorrhage (Viscardi et al. 2008). In severe 

cases of infection, ureaplasmas are also a cause of fetal and neonatal death. The Ureaplasma spp. 

are associated with severe, potentially life-threatening neonatal infections and warrant further 

investigation. By first understanding the pathogenesis of fetal infections, more effective treatments 

may be developed in order to avoid severe infection or potential long-term morbidity.   

 

Ureaplasmas are able to gain direct access to the fetal gut when the fetus swallows infected 

amniotic fluid. A recent study by Wolfs et al. (2013) utilised an ovine model of ureaplasma infection; 

ewes were intraamniotically injected with ureaplasmas and fetal gut was collected after surgical 

delivery of the fetus at 3, 7 or 14 days post-infection. Inflammatory responses were detected within 
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the neonatal gut of all animals exposed to ureaplasmas. Within 7 days of infection, there was 

significant damage to the villus epithelium, deterioration of the gut barrier and enterocyte 

proliferation, differentiation and maturation were significantly reduced. By 14 days of infection, 

severe villus atrophy was evident in animals exposed to ureaplasma infection. When animals 

infected with ureaplasmas were also given recombinant human IL-1 receptor agonist, these 

outcomes were largely prevented (Wolfs et al. 2013). These results are very important, and are the 

first to discuss the outcomes of the fetal gut following exposure to ureaplasmas. It is unknown what 

effect ureaplasmas may have on the human fetal gut, particularly as in utero infection with 

Ureaplasma spp. may be chronic (Cassell et al. 1993b) (much longer than the exposure times utilised 

in this study). Further studies focused on the fetal and infant gut would be of great interest to 

determine if exposure to ureaplasmas in utero adversely affects the fetus/infant.  

 

2.8 Long-term sequelae of in utero ureaplasma infections 
 

The developmental origin of health and disease (DOHaD) paradigm was initially proposed 25 years 

ago and evolved from epidemiological studies correlating rates of infant mortality and birth weight 

with certain types of diseases in these same infants later in life. Hales and Barker (1992) stated that 

“environmental factors during a phase of developmental plasticity (in utero development) interact 

with genotypic variation to change the capacity of the organism (fetus) to cope with its environment 

in later life”. He further illustrated the severe consequences of this paradigm by identifying 

significant associations between chronic diseases in adulthood (e.g. heart disease, metabolic 

syndrome) and deficiencies and/or insults to the fetus during in utero development (Hales and 

Barker 1992; Hales and Barker 2001; Benyshek and Watson 2006). Whilst some studies have 

identified links between some microorganisms and long-term sequelae (Ternhag et al. 2008; 

Puntener et al. 2012), currently no studies have reported the long-term outcomes of infants exposed 

in utero to ureaplasmas. This is due to a lack of follow-up studies beyond the neonatal period and 

the difficulties in identifying a causative agent and the associated sequelae, particularly when the 

origin may be multifactorial.  

 

Studies have identified that Ureaplasma spp. intrauterine inflammation was associated with 

elevated IL-6 and IL-8 levels, a potential risk factor for cerebral palsy (Yoon et al. 1997). Further 

studies (Berger et al. 2009) confirmed that the presence of Ureaplasma spp. in utero  was associated 

with adverse neuromotor outcomes for two year-old children, compared to children who were not 

exposed to ureaplasmas in utero. Normann et al. (2009) examined the murine fetal brain after in 

utero exposure to Ureaplasma spp. Pups exposed to ureaplasmas showed decreased neuron density 
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and impaired production/maturation of interneurons, which are key to healthy cognitive function. In 

utero exposure to ureaplasmas was also correlated with abnormal myelination. This is the first 

report of Ureaplasma spp. altering brain development in an animal model of infection. A 

combination of animal model experiments and studies of neonates will further elucidate the role of 

Ureaplasma spp. in adverse neurodevelopmental outcomes.  

 

Studies have also linked Ureaplasma spp. in the upper respiratory tract with respiratory symptoms 

over the first three years of life. Kundsin et al. (1996) recruited children (n = 88) between 2 months 

and 3 years of age who presented with respiratory symptoms. Throat swabs were collected for each 

patient and were screened for the presence of Ureaplasma spp. and Mycoplasma hominis. Overall, 

29/88 (33%) of children within the study were positive for the presence of Ureaplasma spp. and 

colonisation was highest within the 0-12 month (25%) group and the 1- 2 year (43%) group. 

Significantly, the presence of Ureaplasma spp. was associated with a much higher incidence of 

wheezing of the infants (mean: 14 days; p < 0.01), compared to those infants with respiratory 

symptoms who were not colonised with Ureaplasma spp. (3 days) and the control group (0 days).  

The authors also noted no significant differences between infants with respiratory symptoms who 

were born prematurely and those born at term, which suggests that colonisation of infants occurs 

independently of gestational age and is associated with adverse respiratory outcomes (Kundsin et al. 

1996). 

 

A larger study of almost 3000 infants and their mothers identified a higher risk of wheezing in infants 

less than 3 years of age and the presence of Ureaplasma spp. (odds ratio: 2.0). The authors 

suggested that colonisation with ureaplasmas, acquired at or before birth, may cause reactive 

airway disease. Furthermore, the authors also suggested that the acquisition of certain 

microorganisms, such as Ureaplasma spp. contributes to the establishment of infant microflora and 

the subsequent development of allergies and wheezing (Benn et al. 2002). While these studies show 

significant associations between Ureaplasma spp. and the wheezing respiratory phenotype, it is 

unclear if Ureaplasma spp. also contribute to other long-term adverse respiratory diseases, such as 

asthma.  

 

2.9 Ureaplasmas as a controversial pathogen 

  
Although Ureaplasma spp. have been isolated most frequently from women who deliver preterm, 

the role of ureaplasmas in adverse pregnancy outcomes is complicated as not all pregnant women 

who are infected/colonised with Ureaplasma spp. in the UGT deliver preterm or experience adverse 
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pregnancy outcomes. Gerber et al. (2003) tested amniotic fluid from 254 asymptomatic pregnant 

women at 15 – 17 weeks of gestation by PCR and detected Ureaplasma spp. in 29/254 (11.4%) of 

subjects. Significantly, 24% of women with intra-amniotic Ureaplasma spp. infection delivered 

preterm with or without signs of P-PROM, compared to 4.4% of women without Ureaplasma spp. 

infection (p < 0.0001). However, 76% of women identified as having Ureaplasma spp. in utero 

delivered at term with no apparent adverse outcomes. Women who were infected with ureaplasmas 

and delivered preterm also had a higher rate of preterm labour in previous pregnancies (consistent 

with the proposal that Ureaplasma spp. may be present as colonisers or as an asymptomatic 

infection in the endometrium prior to conception), this study failed to comment on the large 

proportion of women who did not experience any adverse outcomes and delivered at term (Gerber 

et al. 2003).  

 

To explain the discrepancies in these studies, researchers have suggested that there may be more 

“virulent” serovars of Ureaplasma spp.; however, there is little evidence that particular ureaplasma 

serovars are more virulent than others. Studies have reported that (i) U. urealyticum serovar 4 was 

associated with recurrent abortion (Quinn et al. 1983; Naessens et al. 1988) (ii) U. parvum serovars 3 

and 14 were significantly associated with the absence of Lactobacillus spp. and genital tract 

symptoms including vaginal/cervical discharge or pain during urination (De Francesco et al. 2009) (iii) 

U. parvum serovars 3 and 6 were most frequently isolated from women who delivered preterm in an 

Australian population (Knox and Timms 1998); and (iv) U. parvum serovar 6 was the most adherent 

serovar to the surface of spermatozoa, following standard ART washing procedures (Knox et al. 

2003). Zheng et al. (1992) tested ureaplasma isolates from the CSF of neonates and identified that U. 

parvum serovars 1, 3 & 6 and U. urealyticum serovar 8 & 10 were capable of causing systemic 

infections (Zheng et al. 1992). These results suggest that there is no single “virulent” Ureaplasma 

species or serovar, and that the serovars isolated in these studies may simply be the most prevalent 

microorganisms within the population studied.  

 

It has been suggested that instead of “virulent” serovars, there may be other 

virulence/pathogenicity mechanisms by which microorganisms can affect the host immune response 

and the outcomes of those infected with Ureaplasma spp.  

 

2.10 Ureaplasma virulence factors 
 

Whilst Ureaplasma spp. are normal regional flora of the human LGT and are considered to be of low 

virulence, the Ureaplasma spp. have been implicated in adverse pregnancy outcomes (as described 
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in section 2.6) and specific virulence factors which enable ureaplasmas to contribute to disease have 

been investigated. There are five proposed proteins that have been investigated as virulence factors 

of Ureaplasma spp.: the multiple banded antigen (MBA), urease, immunoglobulin (Ig) A protease, 

phospholipase A and phospholipase C proteins (Robertson et al. 1984; De Silva and Quinn 1986; 

Teng et al. 1994; DeSilva and Quinn 1999; Glass et al. 2000).  

 2.10.1 The MBA 

 

The MBA is the major antigen recognised by the host immune system in response to ureaplasma 

infections (Shimizu et al. 2008). This major antigen was first detected by Watson et al. (1990) by sera 

from patients who were infected with ureaplasmas. These patients’ sera recognised a predominant 

71 kDa ureaplasmal protein and subsequent monoclonal antibodies identified less intensely stained 

MBA bands of varying molecular weights, which formed a laddering (multiple banded) pattern 

(Watson et al. 1990).  

 

Zheng et al. (1995) cloned and sequenced the gene, which encodes the U. parvum serovar 3 MBA 

protein. This gene was found to contain a single large open reading frame of 1230 bp, encoding a 

409 amino acid protein. The N-terminal region of the protein consisted of a typical prokaryotic signal 

peptide and a membrane lipoprotein attachment site (transmembrane domain). Following the 

transmembrane domain, a C-terminal hydrophilic (surface-exposed) gene region was identified and 

was found to contain tandem repeating units, which were unique to each Ureaplasma spp. serovar 

(Zheng et al. 1995). Glass et al. (2000) demonstrated that the mba gene had no homology to any 

other known gene and was unique to Ureaplasma spp. (Glass et al. 2000). Shimizu et al. (2008) 

further confirmed that the MBA is a lipoprotein, due to its ability to be isolated in the detergent 

phase of Triton X-144 partitioning, and confirmed the antigenicity of the MBA, with this major 

antigen activating nuclear factor (NF)-kB and the production of TNF-α via TLRs 1, 2 and 6.    

 

The first studies to characterise variation in the size of the MBA protein/gene used polymerase chain 

reaction (PCR) to demonstrate that the differences in MBA size correlated with differences in the 

number of tandem repeating units (Zheng et al. 1994). Antigenic size variation has been reported in 

other Mycoplasma spp. and is predicted to modulate the interaction between bacteria and host cells 

(Citti et al. 2010). Knox et al. (2010) demonstrated ureaplasma MBA size variation following 69 days 

of (chronic) intraamniotic ureaplasma infections within an established ovine model. A non-clonal U. 

parvum serovar 6 clinical isolate (with a single MBA antigen) was injected into the amniotic fluid and 

after delivery the number of MBA size variants within the amniotic fluid was assessed. When the 
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amniotic fluid of these pregnant ewes contained less than 5 MBA size variants, severe histological 

chorioamnionitis was seen within chorioamnion tissues. However, when amniotic fluid was found to 

contain nine or more MBA size variants, there was little or no evidence of histological 

chorioamnionitis within the chorioamnion of the ureaplasma-infected ewes. Based on these 

findings, it was suggested that the size variation of the ureaplasma MBA may be a mechanism by 

which Ureaplasma spp. can evade host immune recognition, allowing chronic infections to develop.  

 

Robinson et al. (2013) further confirmed the ability of clinical ureaplasma isolates to vary in size. A 

non-clonal U. parvum serovar 3 clinical isolate was injected into the amniotic fluid of pregnant ewes 

(n = 32) and the fetuses were then delivered surgically after acute (3 or 7 days) or chronic (69 day) 

infections. Harvested amniotic fluid was tested for the presence of MBA size variants by PCR and 

western blot. Amniotic fluid infected with ureaplasmas for 3 or 7 days showed minimal evidence of 

MBA variation (when compared to the original strain injected), whilst amniotic fluid infected with 

ureaplasmas for 69 days showed significant MBA size variation (Robinson et al. 2013).  

 

Dando et al. (2012) utilised Ureaplasma spp. isolated from the amniotic fluid of sheep infected in 

previous experiments (originally published in Knox et al. 2010). Two ureaplasma cultures were 

cloned and filtered to obtain two populations each derived from a single colony-forming unit (CFU). 

These two inocula were then injected into the amniotic fluid of cohorts of pregnant ewes. Amniotic 

fluid specimens were collected every two weeks of gestation and antigenic size variation was 

observed throughout gestation. Significantly, this is the first study to identify MBA size variations 

over the course of gestation. It was determined that there was an inverse correlation between the 

number of Ureaplasma spp. CFU/mL within amniotic fluid and the numbers of MBA size variants; the 

greater the number of MBA size variants within amniotic fluid, the fewer the numbers of ureaplasma 

(CFU/mL) present within the amniotic fluid. This suggests that the variation of the MBA is an 

important mechanism to maintain diversity within their population in vivo (Dando et al. 2012). It is 

proposed that the production of MBA size variants in vivo results in an inability of the host to 

accurately respond to the many antigens (MBA variants) present, and this may facilitate 

establishment of chronic infections. The ability of ureaplasmas to vary their surface-exposed MBA is 

a major virulence factor and requires further studies to fully elucidate the role of MBA variation and 

the host immune responses but as yet MBA variation in ureaplasmas from human infection has not 

been studied.  
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The ureaplasma MBA is also able to undergo phase variation, which involves the “switching on/off” 

of the MBA in vitro. This alternating expression of surface-exposed proteins is also proposed to be an 

important microbial strategy for host adaptation and evasion of the immune response, in order to 

maintain diversity and a propagating population (Monecke et al. 2003; Zimmerman et al. 2011; 

Dando et al. 2012). Phase variation has been demonstrated previously in other Mycoplasmatales 

(Citti et al. 2010), such as the variable surface antigen (vsa) of Mycoplasma pulmonis (Bhugra and 

Dybvig 1992; Bhugra et al. 1995) and the variable protein of Mycoplasma agalactiae (vpma) (Glew et 

al. 2000; Glew et al. 2002; Chopra-Dewasthaly et al. 2008). Monecke et al. (2003) and Dando et al. 

(2012) showed the MBA protein was able to be “switched off” by serially passaging ureaplasmas in 

broth containing polyclonal antibodies specific to ureaplasmas. The absence of the MBA was shown 

by western blot and variation in the length of the mba gene was demonstrated by PCR. “Switching 

off” of the MBA was shown to be reversible and this mechanism may be used by ureaplasmas to 

evade the host immune response in vivo.  

 

Zimmerman et al. (2009) further investigated phase variation of the MBA by analysing the MBA 

locus. They identified the UU376 gene, a Ureaplasma spp.-specific conserved hypothetical gene, 

encoding a ureaplasmal protein. Expression of the MBA and UU376 was assessed by serially 

passaging ureaplasmas in the presence of polyclonal antibodies generated against the MBA or 

UU376. The alternate expression of the MBA and UU376 was associated with a DNA inversion event 

between the non-repetitive region and an intergenic region between the MBA and a region 

downstream of UU376. It was proposed that these DNA inversion events serve as a mechanism by 

which Ureaplasma spp. express their MBA protein or “switch off” the expression of this protein 

(Zimmerman et al. 2009).  

 

These same researchers provided further evidence of DNA inversion events between the ureaplasma 

genes UU171, UU172 and UU144. Using polyclonal antibodies, they again used selective pressures to 

mediate alternate expression of these genes, and found that the open reading frames associated 

with these genes were not expressed alone, but were only expressed in conjunction with the N-

terminal sequence of UU172. Phase variation was previously suggested to occur as a result of 

slipped-strand mispairing (Rocha and Blanchard 2002); however, Zimmerman et al. provided 

evidence that phase variation occurred between two inverted repeat regions – one of which is 

located in the ORF of UU172 and another in the intergenic region between UU171 and UU172  

(Zimmerman et al. 2011). As yet the mechanisms by which these organisms alter their surface-

exposed proteins have not been characterised nor is it known if these events occur in vivo. Further 
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investigation is required to elucidate the mechanisms, which govern surface antigen variation and 

the effect this has on infections within the host.  

 

Recently, Paralanov et al. (2012) sequenced the genomes of 19 ureaplasma clinical isolates and 

compared these to American Type Culture Collection (ATCC) strains. The major finding of this study 

was that the mba gene is part of a large and complex superfamily, comprising more than 180 genes. 

This study confirmed that each serovar/isolate contained an mba gene that consisted of a conserved 

upstream portion, attached to downstream unique tandem repeating units. Significantly, this study 

also identified that the majority of ureaplasma ATCC strains and clinical isolates contained additional 

tandem repeating unit sequences that were not attached to the mba gene. These extra tandem 

repeating units were found in other locations within the genome and were surrounded by putative 

recombination sites, which suggest that these tandem repeating units may also be part of a phase-

variable system. Experimental evidence is required to substantiate these claims, in order to observe 

the attachment of these additional tandem repeating unit sequences to the upstream conserved 

portion of the mba gene. It would be of great interest to investigate the potential phase variation of 

these tandem repeating units, as some may be immunogenic and contribute to the differential 

pathogenicity of ureaplasma clinical isolates/strains (Paralanov et al. 2012). These mechanisms of 

MBA gene expression and antigenicity are crucial in our understanding of why only a small 

proportion of patients with Ureaplasma spp. develop clinical symptoms whilst others remain 

asymptomatic. This is particularly pertinent to our current understanding of chronic asymptomatic 

ureaplasma intrauterine infections. 

 

2.10.2 Urease 

 
The ability of Ureaplasma spp. to hydrolyse urea was first identified in 1966, and the production of 

adenosine triphosphate (ATP) via this mechanism appears to be unique within ureaplasmas (Purcell 

1966; Shepard 1966; Ford 1967; Shepard 1967). The urease enzyme of ureaplasmas is 30 – 180-fold 

more efficient than those reported for any other bacterial urease (Mobley et al. 1995) and the 

hydrolysis of urea creates an electrochemical gradient due to intracellular ammonia accumulation 

(with ureaplasmas having extremely high intracellular ammonia levels, measured at 21 times the 

extracellular concentration) (Smith et al. 1993). This gradient creates a chemiosmotic potential, by 

which Ureaplasma spp. are able to generate 95% of their ATP (Smith et al. 1993).  

 

Urease enzyme activity is another key virulence factor of ureolytic bacteria, as the production of 

ammonia has been shown to be lethal following intravenous injection of bacterial ureases in a 
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murine animal model (Takebe et al. 1984). Urinary tract ureaplasma infection was found to be 

associated with urinary stone formation, which was attenuated when urease inhibitors were added 

(Takebe et al. 1984). Whilst the urease enzyme complex of ureaplasmas comprises a major portion 

of the cytoplasm, due to its location, it is unlikely to be involved in immune stimulation or 

inflammatory responses. However, a recent publication within our group identified that chronic (69 

day) in utero infection with Ureaplasma spp. resulted in a significant increase in amniotic fluid and 

fetal lung pH in an ovine model of intra-amniotic ureaplasma infection. The increased pH was most 

likely due to the accumulation of ammonia within the amniotic fluid, which has a high concentration 

of urea and the urea concentration increases during gestation. This study also identified that the 

increased pH within the fetal lung was associated with lung damage, even in the absence of 

inflammatory responses (Robinson et al. 2013). Whilst this study provides the first evidence of 

increased pH in vivo due to ureaplasma infection, it remains unclear what the long-term effect of 

exposure to this alkaline environment may have on other fetal outcomes. 

 

There are seven genes, which encode the ureaplasma urease enzyme and they are clustered 

together in a similar conformation to other ureolytic bacteria, such as Proteus mirabilis and 

Escherichia coli. Urease (Ure) A, UreB and UreC encode the structural subunits of the urease enzyme, 

whilst UreE, UreF, UreG and the truncated UreD encode for urease accessory proteins, involved in 

the synthesis of the nickel metallo-centre. Despite the high urease enzyme efficiency, it is interesting 

to note that ureaplasmas encode a urease enzyme but they do not assimilate ammonia into 

glutamate or glutamine (Williams and Wernegreen 2010).  

 

2.10.3 IgA Protease 

 

Immunoglobulin A (IgA) protease activity has been reported as one of the major contributing factors 

to ureaplasma pathogenesis (Kilian et al. 1984). A primary defence of the human immune system is 

the secretion of IgA antibodies at the surface of the mucosa and the cleavage of IgA may enable 

ureaplasmas to invade the upper genital tract (particularly during pregnancy), causing adverse 

outcomes. IgA protease activity was first documented in ureaplasmas in 1984  (Robertson et al. 

1984) and was confirmed experimentally by Kilian and Freundt (1984) colleagues who showed the 

specific cleavage of IgA1, resulted in intact Fab and Fc fragments. All 14 serovars of Ureaplasma spp. 

have been shown experimentally to possess IgA1 protease activity (IgA1 present in serum and vaginal 

secretions); however, they do not possess any proteolytic activity against IgA2 (present in vaginal 

secretions but not in serum), IgM or IgG antibodies (Kilian et al. 1984). Studies conducted by 
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Spooner et al. (1992) identified that the IgA protease of ureaplasmas (a serine protease) cleaved 

human IgA specifically between proline and threonine residues within the hinge of the heavy chain.  

Despite experimental evidence of IgA protease activity, sequencing of the entire U. parvum serovar 3 

genome failed to identify the genes homologous to those in other urease producing bacteria that 

encode IgA proteases within ureaplasmas (Glass et al. 2000). Furthermore, genomes of the 14 ATCC 

strains along with Ureaplasma spp., along with 19 clinical isolates were compared and again there 

was no evidence of an IgA protease gene(s) within any of the isolates tested (Paralanov et al. 2012). 

Based on experimental evidence and the lack of computational gene evidence for an IgA protease, it 

has been suggested that the genes encoding this protease have evolved so significantly that it is no 

longer recognisable (when compared to orthologues in other prokaryotes) or that ureaplasmas 

possess a unique IgA protease with no sequence similarity to other bacteria. However, further 

evidence is required to confirm IgA protease activity and to identify the genes involved in its 

proteolytic activity, as this is likely to be a key virulence factor of Ureaplasma spp.  

 

2.10.4 Phospholipase A and C  

 
Phospholipases are a group of enzymes that hydrolyse phospholipids, producing fatty acids and 

other lipophilic substances (Istivan and Coloe 2006). Phospholipases have long been recognised as 

virulence factors in a range of microorganisms (Schmiel and Miller 1999), including Legionella 

pneumophila (Dowling et al. 1992), Listeria monocytogenes (Rouquette and Berche 1996), 

Staphylococcus aureus (Nygren et al. 1966) and Pseudomonas aeruginosa (Pollack 1984). The 

pathogenesis of phospholipases result from the production of membrane-destabilising compounds 

or the widespread degradation of the host cell membrane phospholipids (Istivan and Coloe 2006). 

There are four major types of phospholipases: A (divided into A1 and A2), B, C and D. Phospholipase 

A1 and A2 are responsible for the cleavage of sn-1 and sn-2 acyl chains of fatty acids, respectively. 

Cleavage of the sn-2 acyl chain releases arachidonic acid. Phospholipase C cleaves the 

phosphodiester bonds, resulting in the production of 1,2-diglyceride and phosphorylesters 

(Vasudevan 2011). Phospholipase activity has been identified in Ureaplasma spp. previously by De 

Silva and Quinn (1986). Endogenous phospholipase activity was demonstrated in vitro in ureaplasma 

serovars 3, 4 and 8, which were active over a wide pH range (5 – 9; the pH growth range of 

Ureaplasma spp.), and phospholipase activity of A1 and A2 differed from that documented in other 

bacteria. The unique activity of these ureaplasma phospholipases was significantly higher during the 

exponential growth phase compared to stationery phase growth, suggesting that these 

phospholipases are membrane-bound. The authors also demonstrated that U. urealyticum serovar 8 
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had a three-fold higher phospholipase A2 activity than serovars 3 and 4. Phospholipase A2 cleaves sn-

2 acyl chain, producing free arachidonic acid, an important intermediate in inflammation and the 

synthesis of prostaglandins. Prostaglandins play a key role in pregnancy, with prostaglandin levels 

naturally increasing at the onset of childbirth (Pawelec et al. 2013). Prostaglandins trigger uterine 

contractility and high levels of prostaglandins prior to the normal onset of labour may result in 

premature uterine contractions and preterm delivery of the fetus (Goldenberg et al. 2000b). Due to 

the large differences in phospholipase A2 activity in the different ureaplasma serovars tested, the 

authors suggested that these differences may account for virulence of particular serovars and the 

differences between the serovar may be of physiological importance due to their interactions with 

host tissues (De Silva and Quinn 1986). However, despite these previous findings, whole genome 

sequencing of Ureaplasma parvum serovar 3 showed no evidence of genes encoding the 

phospholipase A1, A2 or C enzymes (Glass et al. 2000). Further genome analysis of a range of 

Ureaplasma spp. ATCC serovars and clinical isolates again showed no significant evidence of 

phospholipase A1, A2 or C genes (Paralanov et al. 2012). The experiments of De Silva and Quinn 

were repeated in conjunction with a commercial kit to detect phospholipase C activity. However, no 

phospholipase activity at either the stationery or exponential phases of ureaplasma growth was 

detected and so it was suggested that ureaplasmas do not possess a phospholipase C enzyme. 

However, a gene containing significant similarities to phospholipase D enzyme was identified in all 

Ureaplasma spp. ATCC strains and in all clinical isolates tested (Paralanov et al. 2012). Further 

functional characterisation and determination of phospholipase D activity would be of great interest 

to further our understanding of this ureaplasma virulence mechanism.  

 

2.11 Host immune response to ureaplasma infections  
 

Immunologically, pregnancy is a unique period in which the maternal immune system undergoes 

significant changes. The presence of the fetus, an amalgam of two individuals, expresses MHC cell 

surface markers that would normally be recognised as 'foreign' by the host immune system 

(Abrahams 2008). Because of the capacity of the fetus to elicit such a strong immune response, it 

was historically thought that the interface between the mother and the fetus was immunologically 

inert, in order to prevent the eradication or rejection of the fetus; however, this hypothesis does not 

take into account in utero infections.  

 

Infection of the UGT during pregnancy are complex, as there is not simply a single host; but multiple 

hosts (both the mother and the fetus) that may respond to the invading pathogen. Numerous 

studies have shown that the fetal-maternal interface adopts a predominantly 'protective' TH2 
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immune phenotype and reduces any TH1 (proinflammatory) immune responses to protect the fetus 

and placenta. However, the host is still capable of recognising and responding to "infectious, non-

self" threats, such as bacterial infections (Koga and Mor 2010; Mor and Cardenas 2010; Mor et al. 

2011). Importantly, while the maternal immune responses to intraamniotic infection have been well 

characterised (such as E. coli lipopolysaccharide [LPS]), the human maternal immune responses to in 

utero Ureaplasma spp. infections are not well understood.  

 

2.11.1 Innate immune responses 

 

The innate immune system is the immunological “first line of defence” during pregnancy, providing 

an immediate response to invading pathogens. The innate immune system is unique during 

pregnancy and there are high numbers of circulating leukocytes (70% natural killer cells, 20 – 25% 

macrophages and 1.7% dendritic cells) within the uterus and placenta (Abrahams et al. 2005). Within 

serum, the complement system acts to identify pathogens and trigger proteolytic cascades, resulting 

in the production of proinflammatory mediators, opsonisation of the pathogen and targeted cell 

lysis. More recently, the complement pathway has been described as the functional “bridge” 

between the innate and adaptive immune systems, allowing an integrated host response to 

pathogenic organisms (Dunkelberger and Song 2010). 

 

Recently, Beeton et al. (2013) demonstrated the serovar-specific bactericidal activity of serum 

against ureaplasmas. U. parvum serovars 1, 3, 6 and 14 were incubated with human sera collected 

from normal healthy patients (n = 12) and from immunodeficient patients (n = 4) to determine the 

bactericidal activity against each particular serovar. Ureaplasma spp. killing was calculated as the 

fold decrease in ureaplasma colour changing units (CCU), when compared to the ureaplasma CCU 

incubated with heat-inactivated human serum from the same patient. Western blots using patient 

sera were carried out against all U. parvum serovars to determine specific immunoreactivity. The 

study identified that sera from healthy patients was frequently associated with bactericidal activity 

against U. parvum, when compared to the sera collected from immunodeficient patients (83% serum 

killing from healthy patients, compared to 25% serum killing from immunodeficient patients, 

respectively). Serovars 1, 6 and 14 activated classical complement pathways and an increased 

bactericidal activity was correlated with the presence of immunoreactive bands by western blot. 

Interestingly, U. parvum serovar 3 complement activation was harder to define, but was 

demonstrated to be completely C1q-dependent. Significantly, the serum-killing ability for all U. 

parvum serovars was abolished following removal of IgG1 from serum, showing that the bactericidal 

activity of serum is antibody-dependent. The results of this study suggest that surface-exposed 
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antigens may play a significant role in complement activation, and the immunodominant MBA 

antigen of Ureaplasma spp. (as described in section 2.10.1) would be an excellent target for further 

studies of complement activation and bactericidal activity against Ureaplasma spp.  

 
Antimicrobial peptides are also produced as natural antimicrobial agents and are present during 

gestation. Defensins, including α-defensins 1 – 3, 5; as well as β-defensins 1 – 3 have been identified 

at various sites of the UGT during pregnancy (including the decidua, amnion, chorion, trophoblast 

and syncytiotrophoblast). Other antimicrobial peptides such as secretory leukocyte protease 

inhibitors and elafin have also been identified within amniotic fluid and other tissues, suggesting the 

production of these natural antimicrobials within the uterus play an important role in prevention of 

intraamniotic infections during pregnancy (King et al. 2007). More recently, Xiao and colleagues 

further elucidated the role of antimicrobial peptide production in response to Ureaplasma spp. (Xiao 

et al. 2014). Monocytic (THP-1) cells co-cultured with U. parvum and U. urealyticum demonstrated 

significantly lower gene expression of α-defensins 1 and 6, β-defensin 1 and down-regulation of 

human cathelicidin genes, when compared to uninfected controls. The down-regulation of α-

defensins resulted in an inability of the host to inhibit different types of pathogens (bacteria, fungi 

and enveloped viruses), while down-regulation of β-defensins hindered the epithelial surfaces 

resistance to microbial colonisation. Furthermore, cathelicidns serve a critical role in mammalian 

innate immune defences against invasive bacterial infections. While the authors found no evidence 

of chromatin modification or DNA methylation alterations, they concluded that down-regulation of 

these antimicrobial peptides may be an important mechanism for Ureaplasma spp. to establish 

chronic infections and “avoid” this portion of the innate immune defences (Xiao et al. 2014). 

 

Another major facet of the innate immune system includes the TLRs, which are key mediators of 

inflammation during infection (Abrahams 2005; Mor and Cardenas 2010). TLRs recognise pathogen-

associated molecular patterns (PAMPS, expressed on the surface of microorganisms) and damage-

associated molecular patterns (endogenous nuclear/cytosolic molecules released during cell and 

tissue injury). There are ten known TLRs (TLR 1 – 10), all of which are expressed within the placenta, 

along with their various co-receptors and accessory proteins (Mitsunari et al. 2006).  

 

TLR expression changes over the course of pregnancy, both spatially and temporally, in order to 

protect the fetus. For example, TLRs 2 and 4 are expressed within the trophoblast and 

cytotrophoblast cells (the embryo), but not in syncytiotrophoblast cells (the outer epithelial cell 

layer). It is thought that this syncytiotrophoblast remains “TLR negative” as there is no immediate 

threat to the embryo unless a pathogen is able to breach this cell layer and reaches the TLR-
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expressing trophoblast and cytotrophoblast (Abrahams et al. 2004; Kumazaki et al. 2004). TLR 6 is 

expressed by trophoblast cells in the third trimester, but not during the first trimester of pregnancy 

(Koga and Mor 2010).  

 

Shimizu et al. (2008) first investigated the TLRs that interact/bind to Ureaplasma spp. by exposing 

murine macrophages to ureaplasmas in vitro. The ureaplasma surface-exposed MBA protein was 

specifically recognised by TLRs 1, 2 and 6, which activated NF-kB and signalled the production of 

cytokines TNF-α, IL-1β, IL-6 and IL-8. Triantafilou et al. (2013) further elucidated the role of TLR 

signalling in vitro. Human amniotic epithelial cells were exposed to Ureaplasma parvum serovars 3 

and 14. These amniotic epithelial cells expressed minimal levels of all TLRs tested (TLR 1 – 9) prior to 

ureaplasma stimulation, but upon exposure to ureaplasmas, expression of TLRs 2, 6 and 9 was 

significantly increased and this also corresponded to significant increases in TNF-α, IL-1β, IL-6 and IL-

8. Amniotic epithelial cells were further exposed to a recombinant Ureaplasma spp. MBA antigen 

and significant increases in TLRs 2 and 6 were measured. TLR 2/6 heterodimers recognise the 

diacylated MBA protein on the cell surface of Ureaplasma spp. The expression of TLRs 2, 6 and 9 was 

then silenced by RNA interference with the silencing of TLR 2 resulting in the most significant loss of 

cellular activation (as evidenced by significantly decreased IL-6 concentration). Silencing of TLRs 6 

and 9 also inhibited cellular activation, but to a much lesser extent (Triantafilou et al. 2013). 

 

Taken together, the findings of Shimizu et al. (2008) and Triantafilou et al. (2013) confirm that the 

ureaplasma MBA (the major antigen and pathogen-associated molecular pattern of Ureaplasma 

spp.) is recognised by TLR 2 and stimulates the production of TNF-α, IL-1β, IL-6 and IL-8. These 

cytokines have also been detected in human cells infected with Ureaplasma spp. (Triantafilou et al. 

2013) and also in animal cells infected with Ureaplasma spp. (Shimizu et al. 2008). Additional studies 

should investigate the efficacy of these immune modulators, in combination with others, as markers 

of ureaplasma infection. However, cytokines are not only elevated in response to infection, but have 

been shown to be elevated in other pregnancy sequelae. For example, increased IL-8 levels have 

been detected in the amniotic cavity of women with preeclampsia, in the absence of infection (Yada 

et al. 2010), suggesting that more reliable and consistent biomarkers should be investigated. 

Additionally, panels of biomarkers may prove a useful addition to current clinical practices, as the 

use of multiple markers of UGT infection may also improve the efficacy of successful detection and 

identification of sequelae.  
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More recently, Allam et al. (2014) also confirmed that expression of TLRs 1, 2, 6 and the accessory 

protein CD14 was significantly increased following intraamniotic U. parvum infection in BALB/c mice. 

Immunohistochemistry revealed intense co-localisation of TLR 2 and CD14 in syncytiotrophoblast 

cells, which lined the chorionic plate and also in neutrophils at the choriodecidual junction/chorionic 

plate. CD14 is an important accessory protein, which is known to be a signal enhancer of TLRs 

(including TLR 1, 2 and 6). Animals which displayed significant placental histopathology (funisitis and 

chorionic vasculitis) and fetal pathology (encephalitis, pneumonitis, myocarditis or hepatic necrosis) 

demonstrated the most intense co-localisation of TLR 2 and CD14, suggesting that these factors 

together may enhance the maternal inflammatory response to in utero ureaplasma infections and  

result in severe adverse outcomes for the pregnancy and for the fetus. This is significant, as over 

activation of the host immune system can lead to serious acute or chronic outcomes that have 

deleterious effects during pregnancy. Intraamniotic ureaplasma infection and inflammation has been 

linked to human fetal inflammatory response syndrome (Dammann et al. 2003) and other serious 

long-term neurological conditions, such as cerebral palsy (Berger et al. 2009). 

 

Interestingly, in response to human intraamniotic infection with Ureaplasma spp. it has been 

reported that the levels of cytokines may be highly elevated (Holst et al. 2005; Witt et al. 2005), 

moderately elevated (Menon et al. 2009) or there may be no correlation between infection and 

cytokine levels (Perni et al. 2004). This could be, in part, attributed to the number of CFU of 

ureaplasmas present in utero; however, while some studies have shown correlations between the 

numbers of ureaplasmas present and the levels of inflammatory cytokines within amniotic fluid 

(Kasper et al. 2010), this is not always consistent. In sheep model experiments, the severity of 

inflammation within the chorioamnion and fetal tissues was different in each animal; varying from 

no inflammation in ureaplasma-infected tissues, to moderate/severe inflammation or to resolution 

of infection and scarring. This is despite the fact that all animals received identical inocula of the 

same strain and dose of Ureaplasma spp. (Knox et al. 2010; Robinson et al. 2013). Furthermore, 

after identical U. parvum strains/doses were introduced into the urinary tract of rats and different 

severities of infection ensued; non- complicated and complicated UTIs and urinary stone formation 

(Reyes et al. 2009). These animal models confirm that the severity of inflammation was independent 

of the numbers of ureaplasmas present. Similarly, human studies have also shown discordant host 

cytokine responses, depending on maternal ethnicity. Different cytokine profiles were generated in 

vitro within chorioamnion tissues incubated with autologous amniotic fluid. Tissues and amniotic 

fluid were derived from Caucasian and African-American women and were stimulated with either U. 

parvum or U. urealyticum (Peltier et al. 2012). These differences in host cytokine responses may be 
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as a result of the host-microbe interactions within the animals and individuals tested, but they may 

also be due to the ability of ureaplasmas to vary their surface-exposed antigens, including the MBA 

in vivo.  

 

2.11.2 Adaptive immune responses 

 

Adaptive immune responses to Ureaplasma spp. have been confirmed in pregnant women by the 

detection of circulating anti-ureaplasma IgA, IgM and IgG (Quinn 1986; Liepmann et al. 1988; 

Dinsmoor et al. 1989; Cunningham et al. 1996). Furthermore, the placenta allows circulating immune 

cells and some antibodies (IgG) to be transferred to the fetus, creating a feto-maternal 

microchimerism (Tan et al. 2011). However, the fetus also responds to ureaplasma infections in 

utero. A study by Cunningham et al. (1996) identified that immunoreactivity to ureaplasmas alters 

throughout pregnancy. Pregnant women (n = 80) were recruited for this study and maternal sera 

was collected at ≤ 30 weeks of gestation and again at the time of delivery. Anti-ureaplasma IgG and 

IgA antibodies were detected by western blot. Of the women tested, 93% were found to have serum 

IgG, which reacted against Ureaplasma spp. For five of these women (8%), the number of 

immunoreactive bands increased between the initial screening and at birth. Four of the five women 

who had increases in the number of immunoreactive bands also showed corresponding increases in 

the number of IgA bands against Ureaplasma spp. The authors concluded that maternal antibody 

responses to ureaplasmas altered during pregnancy and this may be a hallmark of ureaplasma 

infections (Cunningham et al. 1996).  

 

Other studies have correlated infection, anti-ureaplasma antibodies and pregnancy losses (Quinn et 

al. 1983), preterm delivery (Horowitz et al. 1995), postpartum fever (Lee and Kenny 1987) and low 

birth weight neonates and fetal death (Horowitz et al. 1995). Quinn et al. (1983) demonstrated 

strong links between serum anti-ureaplasma maternal antibodies and severe adverse neonatal 

outcomes. Anti-ureaplasma antibodies were detected in sera from mothers who experienced 

stillbirths (77%), neonatal deaths (69%) or had neonates with respiratory sequelae (58%). By 

contrast, only 6.5% of sera obtained from healthy mothers with healthy neonates had these anti-

ureaplasma antibodies (De Silva and Quinn 1986).   

 

Despite these results, the relationship between anti-ureaplasma antibodies and Ureaplasma spp. 

infection are not always clear. Anti-ureaplasma antibodies have been detected in the sera of women 

whose LGT specimens tested ureaplasma-negative (Liepmann et al. 1988), in women who delivered 

at term with no apparent complications and in healthy neonates (who were delivered at term) 



 

40 
 

(Horowitz et al. 1995). These reports demonstrate the variability in not only the innate inflammatory 

responses generated in vivo during ureaplasma infections, but also in the adaptive immune 

responses to ureaplasmas.   

 

In a sheep model study by Dando et al. (2012), ureaplasmas were isolated from the chorioamnion of 

a sheep with no apparent inflammation and from the chorioamnion of a sheep with severe 

inflammation (published in Knox et al. 2010). These isolates were cloned and filtered to produce two 

clonal cultures (an ‘avirulent’ strain and a ‘virulent’ strain) and the strains were then inoculated into 

the amniotic fluid of two pregnant sheep cohorts. Amniotic fluid from each animal was tested by 

western blot and these demonstrated that there was no difference in the propensity for these 

isolates to vary their surface-exposed MBA (i.e. antigenic variation is not specific to virulent strains 

of Ureaplasma spp.) and there was no difference in the maternal anti-ureaplasmal IgG antibody 

production in either the ‘virulent’ or ‘avirulent’ cohorts. Maternal and cord blood collected from 

these animals were also tested by western blot using the MBA proteins of the corresponding 

inocula. Interestingly, the anti-ureaplasma IgG antibodies detected in maternal sera by western blot 

did not always correlate with those MBA size variants found within the amniotic fluid of the same 

ewe. This is a novel finding and may be attributed to antigenic variation of Ureaplasma spp. in vivo. 

This further suggests that when antigenic variation occurs in vivo, the host may not be able to 

effectively produce neutralising antibodies to eradicate the Ureaplasma spp. Additionally, variation 

of the surface-exposed MBA throughout pregnancy may be a mechanism, which facilitates chronic in 

utero infections. These observations are significant, if ureaplasmas can evade/avoid host immune 

eradication; the fetus is exposed to live Ureaplasma spp. for extended periods, which may 

predispose the infant to severe adverse outcomes.  

 

2.12 Models for the study of ureaplasma infections 
 

Animal models including rats, mice sheep and non-human primates have been used to the study 

intraamniotic infections and their sequelae. The challenge is to use a cost-effective animal model, 

which accurately reflects disease pathogenesis in humans so that the findings are translatable to 

human gestation/parturition. There will always be concerns when comparing one animal model to 

another and ultimately extrapolating these data to human gestations. Therefore, it has been 

suggested that there is no “single best animal model”.  
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2.12.1 Murine models 

 

Rats and mice are among the most common cost-effective animal models. Rats and mice are easy to 

house, they have short gestations of approximately 20 and 22 days, respectively. Mice are able to be 

modified genetically they have well-characterised immune systems, with a wide variety of 

commercially available antibodies, small interfering ribonucleic acids (siRNAs) and microarrays are 

available (Kemp et al. 2010). Whilst studies have shown that treatment of mice with E. coli LPS 

resulted in an increase of IL-1 in maternal sera and preterm delivery of pups (Fidel et al. 1994); these 

models are not directly translatable to human intraamniotic infections as the major underlying 

mechanisms of parturition are very different. In mice and rats, labour and delivery results from the 

withdrawal of progesterone and corresponding luteolysis, brought about by the production of 

prostaglandin F2α (Mitchell and Taggart 2009). In contrast, human labour and delivery result from 

increased production of prostaglandin E2 or antiprogestin, oxytocin and their corresponding 

receptors. Furthermore, the placental anatomy of both mice and rats is very different to that of 

humans, with mice/rats having hemotrichorial labyrinthine placentae, whilst humans have 

hemomonochordial villous discoid placentae (Mitchell and Taggart 2009). Further to this, the short 

gestational period of rats and mice, as well as the poorly developed organ systems of the fetus 

(particularly the lung) at the time of birth limit the usefulness of these models for studying chronic 

intrauterine infections and fetal outcomes. This is particularly crucial in the study of Ureaplasma spp. 

infections, as these infections are often chronic and fetal outcomes are of great importance. Whilst 

mice are not particularly useful for studying pregnancy outcomes, both rats and mice have been 

used to study Ureaplasma spp. infections, including urogenital tract infections (Reyes et al. 2009; 

Allam et al. 2011), lung infections (Viscardi et al. 2002) and brain inflammation (Normann et al. 

2009) as well as infertility (Wang et al. 2010).    

 

In contrast to other rodent and mouse models, the Egyptian spiny mouse (Acomys cahirinus) is a 

more suitable rodent model for studying chronic intrauterine infections and fetal outcomes 

following infection and preterm delivery. The spiny mouse is a relatively new animal model, but is 

proving to be a valuable model in the studies of fetal and placental growth. This is due to the 

relatively long gestation (38 – 40 days) and small litter size (1 – 5; usually 2 – 3 pups per pregnancy). 

Furthermore, the offspring are relatively active from the time of birth with well-developed organ 

systems; including the kidney, liver, brain and immune system and are highly comparable to that of 

the human infant at the time of birth (Dickinson et al. 2008). Spiny mice have been utilised as the 

animal model of choice in birth asphyxia treatment and fetal neurodevelopmental outcomes (Hutton 

et al. 2009; Fleiss et al. 2012), fetal hypoxia (Ireland et al. 2011), placental development (O'Connell 
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et al. 2011), as well as fetal responses to a range of hormones (O'Connell et al. 2011; Quinn et al. 

2013). 

 

 2.12.2 Ovine models 

 

Both acute and chronic durations of ureaplasma intraamniotic infection have been studied using the 

ovine model; as their gestational period is significantly longer than that of rats and mice (term in 

sheep = approximately 147 days). Preterm fetal sheep are also comparable in weight to human 

fetuses (Mitchell and Taggart 2009) and have well-developed organ systems, particularly the lung; 

and so this also provides the opportunity to study fetal outcomes following in utero infections.  

 

Our research group has extensively utilised  ovine models for both acute and chronic Ureaplasma 

spp. infections (Moss et al. 2005; Moss et al. 2008; Moss et al. 2009; Collins et al. 2010; Dando et al. 

2010; Knox et al. 2010; Polglase et al. 2010; Dando et al. 2012; Robinson et al. 2013; Dando et al. 

2014). These studies have provided significant evidence that in utero Ureaplasma spp. infections are 

associated with increased surfactant production and lung maturation (Moss et al. 2005; Moss et al. 

2008; Polglase et al. 2010), histological chorioamnionitis (Knox et al. 2010) and infection and 

resultant inflammation caused by ureaplasmas within the fetal lung (Knox et al. 2010; Dando et al. 

2012; Robinson et al. 2013), fetal gut (Wolfs et al. 2013) and fetal cerebrospinal fluid (Knox et al. 

2010). However, there are several disadvantages in the use of an ovine model of intrauterine 

infection. Ovine parturitions are dependent on progesterone withdrawal, which occurs due to fetal 

adrenocorticotropic hormones and cortisol production (Mitchell and Taggart 2009). The production 

of cortisol stimulates the maturation of fetal lungs, signalling fetal tissues to produce estrogen and 

initiates labour (Mitchell and Taggart 2009). Other disadvantages of this model are that intrauterine 

inflammation does not trigger the induction of labour, nor does the production of inflammatory 

cytokines in the amniotic fluid and fetal tissues trigger preterm delivery. However, an advantage of 

this model is that long-term, chronic intraamniotic infections can be studied since preterm delivery is 

independent of inflammation. Furthermore, the placental anatomy of sheep is very different to that 

of humans. Sheep have a highly layered epithelial-chordial cotyledonary placenta, very different to 

the hemomonochodial villous, discoid placentae of humans (Enders and Carter 2004). The layered 

nature of the ovine placenta means that maternal antibodies and importantly antibiotics cannot 

effectively traverse the placenta to reach the amniotic fluid. This means that results relating to the 

maternal and fetal immune responses to UGT ureaplasma infections are not directly translatable to 

UGT infections within humans.  
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 2.12.3 Non-human primate models 

 

Pregnancies in non-human primates are the most similar to human pregnancies. The gestational 

length in non-human primates (term = 160 days) is longer than in the sheep model (term = 145 days) 

and is more comparable to that of human pregnancies (term = 266 days). The placental anatomy is 

very similar, with both humans and non-human primates having hemomonochordial villous, discoid 

placentae. Another major advantage of using non-human primates is that their labour and delivery 

are not dependent on progesterone withdrawal (as discussed above), and so this makes the non-

human primate an ideal model for studying intrauterine infection and preterm birth as a 

consequence of intrauterine infection/inflammation.  

 

Novy et al. (2009) utilised the non-human primate model (Rhesus macaques) for the study of 

Ureaplasma spp. intrauterine infection. Rhesus monkeys were infected with U. parvum serovar 1 

clinical isolate (n = 5; originally isolated from the placenta of a women who had chorioamnionitis and 

delivered an infant with ureaplasma sepsis) or with sterile media (n = 3). Intraamniotic injection of 

107 CFU of U. parvum resulted in the rapid proliferation of Ureaplasma spp. (to 14.8 ± 6.6 x 105 

CFU/mL) within the first 24 hours. Dramatic increases in cytokine concentrations of TNF-α, IL-1β, IL-6 

and IL-8 were detected in amniotic fluid within the first 48 – 72 hours. There were also dramatic 

increases in IL-1 receptor agonist (RA) in U. parvum infected animals at 48 – 72 hours, which 

persisted until preterm delivery. Levels of prostaglandins and matrix metalloproteinases (MMPs) 

were both significantly increased (p < 0.05), with prostaglandin E2 (PGE2), prostaglandin F2α and 

MMP-9 remaining significantly increased until delivery (however prostaglandin levels varied 

between animals preceding delivery). Infection with U. parvum also resulted in early acute 

chorioamnionitis or in animals with longer infection-to-delivery times, subacute inflammatory 

responses in both fetal membranes and decidua were evident.  

 

Non-human primate fetuses exposed to intraamniotic U. parvum were also affected by infection, 

with 100% of fetal lungs and fetal membranes testing culture-positive for Ureaplasma spp.. 

Bronchoalveolar lavage fluid and tracheal aspirates were predominantly culture-positive for 

ureaplasmas and this correlated with acute histological changes in fetal lungs. In some cases, 

pneumonia was evident (characterised by alveolar neutrophils and macrophages accompanied by 

necrosis of the airways). Fetuses infected with Ureaplasma spp. for greater than ten days showed 

partial resolution of acute inflammation, however, proliferation of epithelial cells and increased 

collagen deposition gave the appearance of thickened alveolar walls (a key characteristic of BPD) 

(Jobe and Bancalari 2001). Furthermore, in some experiments the fetal blood and cerebrospinal fluid 
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were also positive for the presence of Ureaplasma spp. The Rhesus monkey model of intraamniotic 

ureaplasma infection produced similar outcomes to those seen in human pregnancies; the severity 

of inflammation was consistent with human chorioamnionitis and human fetal bronchopulmonary 

dysplasia in the lung. Therefore, this model may be best used in future investigations to model the 

efficacy of treatment of Ureaplasma spp. infections (Novy et al. 2009). Other studies have utilised 

baboons to study the respiratory outcomes after the fetus was exposed to intraamniotic Ureaplasma 

spp. infection. Fetal lungs demonstrated extensive fibrosis and significant proinflammatory cytokine 

responses (Viscardi et al. 2006). Taken together, these studies confirm that non-human primate 

models of intraamniotic ureaplasma infections produce pregnancy and neonatal complications that 

are similar to those reported in humans’ pregnancies. However, there are strict ethical 

considerations in the use of human primates, and it has become increasingly difficult to obtain 

ethical clearance for these studies. This animal model is also very expensive to maintain and so 

fewer animals are tested in each cohort, reducing the scientific power gained from these 

experiments. This means that this animal model is not used routinely for the study of Ureaplasma 

spp., infections and is not available within Australia.  

 

An alternative is research that utilises human-derived cells and tissues. The ultimate goal of most 

research is to accurately model and reflect the mechanisms and consequences of intraamniotic 

infection, which is not always possible within a single animal model. This can be simplified by the use 

of human cells and tissues.  

 

 2.12.4 Human cell lines 

 

Cell lines derived from humans are frequently used for in vitro studies of cell-microbe interactions. A 

number of female reproductive tract cell lines and tissues have been used (either alone or in co-

culture systems) to model both healthy/normal interactions as well as disease states. Hormonal 

regulation of apoptosis by estrogen and progesterone has been studied using Ishikawa endometrial 

adenocarcinoma cell lines (Song et al. 2002), whilst another endometrial adenocarcinoma cell line, 

Hec1B, has been utilised for the study of invasive Neisseria gonorrhoeae infections (Shaw and 

Falkow 1988). Human placental (trophoblast) carcinoma cells (BeWo and JEG-3) have been used to 

model Toxoplasma gondii (Castro et al. 2013), hepatitis B virus (HBV) (Bai et al. 2013) and human 

immunodeficiency virus (HIV) 1 (Phillips and Tan 1992; David et al. 1995) infections to better 

understand invasion by these pathogens during pregnancy. Ureaplasma spp. have also been studied 

using cell culture systems, to investigate ureaplasma attachment to human cervical adenocarcinoma 

(HeLa) cells (Smith et al. 1994; Monecke et al. 2003). Human-derived cell lines offer a uniform 
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cellular population that originates from a well-defined tissue type, however, as with any model there 

are some disadvantages associated with the use of cell lines. Most cell lines used in research have 

undergone significant mutations to become immortalised, which can alter their cell biology and 

cellular processes. This means that some of the responses seen in vitro may not truly reflect the 

cellular responses seen in vivo. To circumvent these problems, primary cells obtained from human 

tissues have also been studied. Padmini et al. (2011) isolated placental endothelial cells from women 

with or without preeclampsia and these were exposed to U. parvum ex vivo to further understand 

stress responses to microbial stimuli in ‘healthy’ and ‘non-healthy’ pregnant women. Primary 

placental endothelial cells from both cohorts responded similarly to stimulation with U. parvum: 

changes in cellular iron, magnesium and calcium content were demonstrated, as well as increased 

apoptotic changes of the cells. While the responses seen in primary cell culture more closely mimics 

the responses seen in vivo, these experiments tested only a single cell type, which also limited study 

of the cell-to-cell signalling to a single cell type. This is different to the diverse cellular populations 

present in vivo and so therefore the immune responses seen may still not truly reflect what occurs 

during pregnancy.  

 

Human primary tissues may also be used to study the interactions of bacteria and human tissues. 

Again, whilst there are strict ethical and clinical considerations, which regulate the use of human-

derived samples, from a practical viewpoint, fetal tissues (such as placentae and umbilical cord) are 

easily obtained following delivery as these tissues are normally discarded as medical waste and are 

not often utilised for any other purpose. Primary tissue explants of the chorioamnion (also 

commonly referred to as the fetal membranes) have been used as the membranes are the major 

physical and immunological barrier of the amniotic sac, protecting the fetus against infection and 

insults during gestation. The chorioamnion contains a variety of cell types and the tissue integrity 

and 3-dimesional structure of tissue explants can be maintained ex vivo and utilised to study the 

host tissue immune response after exposure to microorganisms.  

  

2.12.5 Ex vivo models 

 

Abrahams et al. (2013) exposed chorioamnion explants to heat-killed M. hominis ex vivo and 

demonstrated increased mRNA expression of TLR 4, TLR 6 and TLR 8 and similarly U. parvum 

increased the mRNA expression of TLR 8. However, chorioamnion explants exposed to U. 

urealyticum induced no significant changes in mRNA expression of any TLRs. Menon et al. (2009) 

measured the cytokine and prostaglandin responses after chorioamnion tissue was exposed to heat-

killed microorganisms; E. coli stimulated the production of TNF-α and PGE2, whilst exposure to U. 
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parvum resulted in significantly elevated TNF-α and IL-10 concentrations. The greatest increases in 

IL-10 levels were detected after chorioamnion tissue was exposed to U. parvum; however, there 

were no detectable changes in prostaglandin levels when chorioamnion tissue was exposed to U. 

parvum. 

 

To further understand the complexities of intraamniotic infection, this group also examined cytokine 

responses in tissues collected from women of different ethnicities. Chorioamnion explants were 

collected from Caucasian and African-American women and then incubated with heat-killed 

pathogens in the presence or absence of autologous amniotic fluid. U. parvum, M. hominis and U. 

urealyticum stimulated TNF-α and IL-10 production by the explants. Interestingly, the addition of 

autologous amniotic fluid affected the immune responses of both ethnicities in a race- and 

pathogen-dependent manner. Chorioamnion from African-American women exposed to U. parvum 

elaborated significantly higher TNF-α levels, compared to levels produced by tissues from Caucasian 

women. By contrast, tissues from Caucasian women when exposed to U. parvum secreted higher IL-

10 levels (p = 0.031) than the levels detected in tissues of African-American women (p = 0.630). The 

authors concluded that the host response to infection of the chorioamnion is complex and cannot be 

generalised, as evidenced by the significantly different racial differences and altered responses to 

the individual pathogens (Peltier et al. 2012). 

 

Whilst the results of these studies are intriguing, there are some experimental parameters that 

should be discussed. The use of heat-killed microorganisms may affect the results, due to a number 

of factors. Killing of the organisms means that the pathogen is no longer able to replicate and cannot 

produce biofilms, which may be a key to the pathogen’s successful invasion and establishment of an 

infection during pregnancy. Furthermore, the action of heat-killing may result in cell lysis and 

destruction of their surface receptors, such as the MBA lipoprotein of Ureaplasma spp. The lack of 

cell surface receptors may significantly augment TLR activation and subsequent immune responses. 

Therefore, the results of these experiments should be interpreted with caution as they may not truly 

reflect the immune responses to live Ureaplasma spp. (or other microorganisms) infections. Other 

limitations of these explant-based studies result from a lack of tissue structure and difficulties in 

distinguishing the specific cellular responses of the amnion and the chorion cells which comprise the 

chorioamnion.  

 

It is known that there are differences in cellular immune response of the amnion and chorion, so to 

further understand these differences, Keelan et al. (2009) developed and validated an ex vivo 
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chorioamnion tissue model to investigate an NF-kB pharmacological inhibitor in response to E. coli 

LPS. This model utilised an Ussing chamber, traditionally used to study permeability and secretory 

functions of the gut mucosa (Heyman et al. 1988; Foitzik et al. 1997; Hotz et al. 1998). The model 

produced by Keelan et al. contained two distinct compartments, separated by a barrier, the 

chorioamnion tissue itself. Each compartment was separately perfused with cell culture media that 

bathed the amnion and the chorion tissue. The ‘maternal’ (chorion) compartment was exposed to 

LPS over a 20 hour period. Aliquots of perfusing media were collected at different time-points and 

these samples were subsequently tested for cytokines, chemokines and prostaglandin levels in each 

chamber over the course of each experiment. The ex vivo Ussing chamber system used was found to 

be an accurate and valid method for studying immune responses to LPS, which approximated the 

conditions seen during pregnancy. Exposure of the decidual (‘maternal’) portion of the membranes 

to LPS resulted in increased accumulation of proinflammatory cytokines and chemokines, followed 

by an inflammatory response within the amniotic (‘fetal’) portion of the membranes. Most notably, 

increases in the concentrations of proinflammatory cytokines/chemokines macrophage-derived 

chemokine (MDC), TNF-α and PGE2 were seen, along with increases in the anti-inflammatory 

cytokine transforming growth factor (TGF)-β  were increased in both the ‘maternal’ and ‘fetal’ 

compartments following LPS exposure. Co-treatment with the NF-kB inhibitor resulted in an inability 

of nuclear translocation of NF-kB p65 and a subsequent inhibition of cytokine and chemokine 

production within the ‘maternal’ compartment. Similarly, cytokine and chemokine production was 

reduced within the fetal compartment, but to a much lesser extent. Whilst these results were 

promising, there was also a significant increase in the rate of apoptosis within the chorion, which the 

authors highlighted as a major concern regarding its effect on the placenta, if the treatment were to 

be administered during pregnancy (Keelan et al. 2009). However, these studies highlight the 

usefulness of human tissues, and in some cases human primary cells to better understand the 

variability observed in humans with intraamniotic Ureaplasma spp. infections. This ex vivo model 

may be further utilised to advance our current understanding of human placental host-microbe 

interactions occurring during ureaplasma infections.  

 

2.13 Summary 

 

This literature review has highlighted the need for further research, in order to better characterise 

the role of Ureaplasma spp. UGT infections during gestation. The results chapters (Chapters 4, 5 and 

6), which follow this review of literature report the findings of studies which investigate: the 

prevalence of Ureaplasma spp. chorioamnion infection in human pregnancies and the effect on 
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maternal and fetal outcomes; ureaplasma MBA variation in clinical isolates obtained from human 

chorioamnion tissue and the cord blood immune responses; and the optimisation and use of an ex 

vivo chorioamnion tissue model to investigate the host immune responses at the maternal and fetal 

interface, in response to Ureaplasma spp. exposure. This PhD project will address major knowledge 

gaps that have been identified within the area of research concerning Ureaplasma spp. infections 

during pregnancy and is the first major study to focus on ureaplasma infections within the 

chorioamnion (rather than the amniotic fluid) to investigate the role of ureaplasma infections on the 

mother and fetus. Within this thesis, the host immune response to Ureaplasma spp. infections in 

human cord blood and also within an ex vivo chorioamnion model of infection will be investigated to 

further our knowledge and understanding of host immune responses to infections caused by 

ureaplasmas. 
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Chapter Three:   

 

Materials and Methods 
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3.1 Experimental Design 
 
This thesis presents the results of a large prospective microbiological study of placentae obtained 

from 477 women within the United States of America (USA); and a second, smaller pilot study which 

examined the ex vivo immune responses of placentae from four women in Brisbane, Australia. 

 

For the microbiological component of this research, organisms were identified within placental 

tissue by traditional culture and molecular microbiological techniques (results discussed in Chapter 

Four) and the most prevalent microorganisms, the Ureaplasma spp., were characterised (results 

discussed in Chapter Five). A single clinical Ureaplasma parvum isolate cultured from the placenta of 

a woman enrolled in the study was used as an infectious agonist to challenge the maternal surface 

of human chorioamnion tissue immune response ex vivo. This pilot study is the final aim of this PhD 

study (results discussed in Chapter Six). All methods and materials pertaining to each of these 

research chapters are presented in this chapter.  

 

3.2 Microbiology study population and specimen collection  

 

From July 2010 to July 2013, women giving birth at the Good Samaritan Hospital (Ohio; United States 

of America) were recruited and enrolled in this study. Women who smoked during pregnancy and 

those with intrauterine growth restriction were excluded from this study. This study was approved 

by the ethics committees of the Good Samaritan Hospital (Ohio; USA) and Cincinnati Children's 

Hospital Medical Centre (CCHMC; Ohio, USA) and was reviewed by the human research ethics 

committee (HREC) of Queensland University of Technology (QUT; 2009001885) and deemed exempt 

from the need for university HREC review. Written informed consent was obtained from all women 

enrolled in this study. Placentae were collected and de-identified, with the demographic and 

outcome data from each pregnancy entered into the research electronic capture (REDCaP) database.  

 

Upon delivery, placentae were placed into sterile containers and transported to a procedure room 

for sampling under strict aseptic conditions within 24 hours of delivery. The external placental 

surface was decontaminated using 70% alcohol and areas in which the amnion had detached from 

the placenta were avoided for sampling, to minimise contamination of the membranes by vaginal 

microflora. Using sterile surgical implements, an incision was made into the amnion (fetal) 

membrane, until the interface of the chorion and amnion membranes was reached and identified. 

The amnion membrane was then lifted and chorioamnion specimens were excised from the placenta 

and placed into sterile cryogenic vials and then snap frozen. The exposed membrane interface was 
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then swabbed and swabs were placed into BBL-port-a-cul media (for isolation of bacteria and yeast; 

Becton Dickenson and Company, Maryland, USA) and into universal viral transport media (for 

isolation of ureaplasmas/mycoplasmas; Becton Dickenson and Company). All samples were stored at 

-80 °C and shipped on dry ice to the Institute of Health and Biomedical Innovation (IHBI), 

Queensland University of Technology (QUT), Queensland, Australia. Shipments were sent on a 

regular basis with 30 – 40 patient samples sets per shipment.  

 

3.3 Primary isolation media for culture of microorganisms  

 

Columbia horse blood agar and chocolate agar pre-prepared plates were purchased from Thermo 

Fisher Scientific (Thebarton, Adelaide; South Australia). Schaedler anaerobe agar, MacConkey no. 1 

agar, deMan Rogosa Sharpe agar, Sabauraud’s dextrose agar and Brewer’s thioglycollate medium 

were purchased from Thermo Fisher as dehydrated powders, were prepared according to the 

manufacturer’s instructions then poured into sterile Petri dishes. Thioglycollate broth was aliquotted 

into McCartney bottles and then autoclaved at 121 °C for 15 minutes.  

 

10B broth and A8 agar was used for cultivation of Ureaplasma spp. and these were prepared 

according to previously published protocols (Shepard and Lunceford 1976). The basal medium of 

both the broth and agar were autoclaved at 121 °C for 15 minutes. Sterile medium supplements 

were then added after the medium had cooled to < 56 °C. The complete medium was then 

dispensed into sterile single-use culture tubes or Petri dishes (Techno Plas, St Marys; South 

Australia).  

 

3.4 Ureaplasma spp. strains 

 

U. parvum and U. urealyticum strains were purchased from the American Type Culture Collection 

(ATCC, Virginia, USA), except for U. urealyticum serovar 8, which is a reference/progenitor strain of 

the ATCC strains (kindly provided by H. Watson; University of Sydney, Australia). All strains were 

cultured in 10B broth (Shepard and Lunceford 1976) and stored at -80 °C. Ureaplasma spp. strains 

have been summarised in Table 3.1. 
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3.5 Bacterial strains 

 

Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus 

pneumoniae, Streptococcus agalactiae, Listeria monocytogenes, Haemophilus influenzae, Klebsiella 

pneumoniae and Pseudomonas aeruginosa were obtained from the QUT culture collection (see 

Table 3.1). These microorganisms were inoculated onto Columbia horse blood agar (Thermo Fisher 

Scientific) overnight, then three to five well-isolated colonies were aseptically collected and used to 

inoculate heat-inactivated horse serum supplemented with 20 % v/v glycerol prior to storage. DNA 

was extracted from each of these microorganisms and these served as controls for 16S ribosomal (r) 

RNA and multiple banded antigen (mba) PCR assays.  

 

Table 3.1. Microorganisms utilised within the PhD program of study. 

Organism Source 

Ureaplasma parvum serovar 1 ATCC 27813 

Ureaplasma parvum serovar 3 ATCC 27815 

Ureaplasma parvum serovar 6 ATCC 27818 

Ureaplasma parvum serovar 14 ATCC 33697 

Ureaplasma urealyticum serovar 2 ATCC 27814 

Ureaplasma urealyticum serovar 4 ATCC 27816 

Ureaplasma urealyticum serovar 5 ATCC 27817 

Ureaplasma urealyticum serovar 7 ATCC 27819 

Ureaplasma urealyticum serovar 8 Reference strain 

Ureaplasma urealyticum serovar 9 ATCC 33175 

Ureaplasma urealyticum serovar 10 ATCC 33699 

Ureaplasma urealyticum serovar 11 ATCC 33695 

Ureaplasma urealyticum serovar 12 ATCC 33696 

Ureaplasma urealyticum serovar 13 ATCC 33698 

Staphylococcus aureus QUT culture collection 

Staphylococcus epidermidis QUT culture collection 

Streptococcus pyogenes QUT culture collection 

Streptococcus agalactiae QUT culture collection 

Streptococcus pneumoniae type II QUT culture collection 

Listeria monocytogenes QUT culture collection 

Haemophilus influenzae QUT culture collection 

Klebsiella pneumoniae QUT culture collection 

Pseudomonas aeruginosa QUT culture collection 
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3.6 Propagation and quantification of Ureaplasma spp.  

 

3.6.1 ATCC and Reference strain propagation 

 

Ureaplasma spp. stocks stored at -80 °C were thawed on ice prior to use. One volume of the 

ureaplasma ATCC/reference stock was added to 9 volumes of 10B broth and these were then 

incubated at 37 °C; under O2 until log-phase growth was achieved (indicated by the phenol red pH 

colour change). 

 

3.6.2 Quantification of Ureaplasma spp. 

 

To determine the number of Ureaplasma spp. colony forming units (CFU) within a given sample, 

serial dilutions (doubling or ten-fold) were carried out in 10B broth. A total of four dilutions for each 

sample were carried out and from each broth dilution, six 5 µL drops were then subcultured onto A8 

agar plates. A8 agar were then incubated at 37 °C, under 5% CO2 for a minimum of three days before 

examining microscopically using a stereomicroscope (Leica Microsystems; North Ryde, New South 

Wales). The number of ureaplasma colonies per drop of 10B broth were then counted, averaged and 

then calculations were performed to determine the total number of ureaplasma colony forming 

units (CFU) per swab or per gram of tissue.  

 

10B broth dilutions were also incubated at 37 °C, under O2 and checked daily for signs of log-phase 

ureaplasma growth.  

  

3.7 Culture of microorganisms from clinical samples 

 

All tissue and swab specimens were thawed on ice prior to culture.  

 

3.7.1 Ureaplasma swab culture protocol 

 

Swabs stored in universal viral transport media were inoculated into 10B broth and then serially 

diluted in four two-fold dilutions. The number of Ureaplasma spp. CFU was determined as detailed 

above (section 3.6.2). For specimens that were blood-stained, the inoculated broths were incubated 



 

54 
 

for 24 hours and subcultured daily for up to 5 days to ensure any ureaplasma growth was detected. 

Broths and plates were incubated at 37 °C, O2 for up to 14 days. 

 

3.7.2 Bacterial swab culture protocol 

 

Swabs stored in BBL port-a-cul media were inoculated into thioglycollate broth and onto a range of 

microbiological media, including: Horse blood agar, Chocolate Agar with Isovitalex, Schaedler 

anaerobe agar, Sabauraud’s Dextrose agar, deMan Rogosa Sharpe agar and MacConkey no. 1 agar, 

using a 16-streak technique. Media were incubated either aerobically, under 5% CO2 or anaerobically 

in jars (Oxoid anaerogen gas pack, 2.5L; Oxoid) as appropriate. Agar plates were checked daily for 

signs of growth for up to 5 days. Thioglycollate broths were checked daily for signs of growth for up 

to 14 days. Any positive thioglycollate broths (as evidenced by turbidity) were subcultured onto 

media (as above) for the identification of microorganisms growing within the broth.  

The number of bacterial CFU was measured semi-quantitatively after 24 hours by counting the 

number of colonies on the plate and multiplying by a factor of 102 (for a 10 µL inoculation loop) to 

give the number of CFU/mL of each organism present (see table 3.2; quantitative analysis was only 

possible for organisms that grew on primary isolation media after the direct subculture of the 

specimens and not for those isolates that were first enriched and then subcultured from 

thioglycollate broths). Each colony type was Gram-stained and a stock of the organism was stored at 

-80 °C for subsequent DNA extraction, 16S rRNA PCR and sequencing to identify the genus/species of 

each organism present.  

Table 3.2. Semi-quantitative method for determining the number of bacterial colony forming units 

(CFU/mL) from swabs and tissue specimens. 

Total amount of growth Number of colonies  Approximate CFU/mL 

0+ (primary inoculum only) 1 103 

1+ 1 – 10 104 

2+ 10 – 100 105 

3+ 100 – 1000  106 

4+ > 1000 > 106 
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3.7.3 Chorioamnion tissue culture protocol 

 

Tissue specimens were weighed and homogenised in sterile cryogenic vials containing 1 mL of sterile 

phosphate-buffered saline (PBS) and sterile glass beads using the Mini Beadbeater-16 cell disruptor 

(Daintree Scientific; Tasmania, Australia). Tissues were homogenised in one minute cycles for up to 

four minutes (average: three minutes) and placed on ice between each homogenisation step. This 

was performed to ensure that the samples did not overheat and affect the viability of any 

microorganisms present.   

Tissue homogenates were inoculated into 10B broth and doubling or ten-fold serial dilutions were 

carried out. The Ureaplasma spp. were quantified as previously described (see section 3.6.2). For 

specimens that were blood-stained, the inoculated 10B broths were incubated for 24 hours and then 

subcultured daily for up to 5 days to distinguish the ureaplasma growth.  

Tissue homogenates were also inoculated into thioglycollate broth and onto a range of bacterial 

media (as described above) and incubated either aerobically, under 5% C02 or anaerobically in jars. 

Agar plates were checked daily for up to 5 days and thioglycollate broths were checked daily for 

signs of growth for up to 14 days.   

Each morphologically distinct colony type isolated was Gram-stained and a stock of each 

microorganism was stored at -80 °C for subsequent DNA extraction, 16S rRNA PCR and sequencing 

to identify the genus/species of each clinical isolate. 

 

3.8 DNA extraction 

 

DNA was extracted from all specimens using the QIAamp mini DNA extraction kit (Qiagen) according 

to the manufacturer’s instructions. For DNA extractions a Proteinase K solution (100 µg/mL; Sigma-

Aldrich) was used instead of the Proteinase K provided with the DNA extraction kit. All DNA samples 

were eluted in sterile DNAse/RNAse-free dH20. Extracted DNA was stored at -20 °C until required.  

 

3.8.1 Ureaplasma spp. ATCC and clinical isolate cultures 

 

For the extraction of DNA from Ureaplasma spp., each Ureaplasma spp. ATCC and clinical isolate was 

culture in 10 mL of 10B broth until exponential growth was achieved. Broths were then centrifuged 
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at 5000 x g for 30 minutes at 4 °C. The supernatant was aspirated and DNA was extracted from the 

pellet using the manufacturer’s instructions for ‘tissues’.  

Prior to extraction, the specimen was incubated with a Proteinase K solution (100 µg/mL; Sigma 

Aldrich) at 56 °C for a minimum of 1 hour. DNA was then eluted in 400 µL of sterile DNAse/RNAse-

free dH20 (Gibco) in two elutions and then stored at -20 °C until testing.  

 

3.8.2 Clinical isolates and ATCC strains of other cultured microorganisms 

 

For the extraction of DNA from microorganisms cultured from tissue and swabs, three to five well-

isolated bacterial colonies (of the same colonial morphology) were aseptically transferred from the 

agar plate to a tube containing 500 µL of sterile PBS. The bacterial suspension was then centrifuged 

at 5000 x g for 5 minutes at room temperature. The supernatant was aseptically removed and the 

pellet retained for DNA extraction using the manufacturer's instructions for ‘tissues’.  

 

3.8.3 Placental tissue  

 

Tissue homogenates (approximately 500 µL) from each patient were incubated at 56 °C with tissue 

lysis buffer (provided with the commercial DNA extraction kit) and 100 µL of 100 µg/mL Proteinase K 

solution overnight, or until the tissue had completely degraded. DNA was extracted as per the 

manufacturer’s protocol for ‘tissues’.  

 

3.9 Conventional polymerase chain reaction (PCR) assays for the 

identification of microorganisms and Ureaplasma spp.  

 

All tissue homogenates and cultured microorganisms were tested by conventional PCR assays using 

the PTC-2000 Thermal Cycler (BioRad; Gladesville, New South Wales).  

 

3.9.1 16S rRNA polymerase chain reaction (PCR) assays  

 

PCR primers targeting a variable region of the 16S rRNA gene were designed by using the Primer3 

primer design program in conjunction with Geneious gene alignment software (Biomatters Ltd). Each 

16S rRNA PCR reaction, in a total volume of 20 µL, contained 4 µL of extracted DNA, 100 µM dNTPs 

(Roche), 1 X PCR buffer (Tris HCl, KCl, (NH4)2SO4, pH 8.7; Invitrogen), 2 mM MgCl2 (Invitrogen), 0.5 
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µM of both forward and reverse primers (Bact_RNA1F and Bact_RNA1R – see Table 3.3; Sigma-

Aldrich), 2.5 U Platinum taq polymerase (Invitrogen) and sterile DNAse/RNAse free dH20 (Gibco). PCR 

cycling consisted of initial denaturation at 95 °C for 5 minutes, followed by 30 cycles of 94 °C for 30 

seconds, primer annealing at 60 °C for 30 seconds and extension at 72 °C for 30 seconds.  

DNA extracted from pure cultures of Gram positive and Gram negative organisms served as the 

template for positive control PCR reactions (see Table 3.1). Negative controls included replicates of 

master mix only and water substituted for template in order to identify contamination. 

 

3.9.2 mba polymerase chain reaction (PCR) assays 

 

Ureaplasma spp., within tissue homogenates and cultured clinical isolates, were detected and 

speciated using a conventional PCR assay targeting the mba gene. Optimised PCR assays were 

carried out in a total volume of 20 µL and consisted of 4 µL of extracted DNA, 100 µM dNTP mix 

(Roche), 1 X PCR buffer (Invitrogen), 1.5 mM MgCl2 (Invitrogen), 0.5 µM of both forward and reverse 

primers (UMS-125 and UMA-226 – see Table 3.3; Sigma-Aldrich), 2.5 U of Platinum taq DNA 

polymerase (Invitrogen) and sterile DNAse/RNAse-free dH20 (Gibco). PCR cycling involved initial 

denaturation at 95 °C for 5 mins; followed by 35 cycles of denaturation at 95 °C for 30 seconds, 

primer annealing at 55 °C for 30 seconds and extension at 72 °C for 30 seconds.  

 

Positive PCR control reactions included DNA extracted from pure cultures of ATCC U. parvum and U. 

urealyticum serovars (See Table 3.1). U. parvum isolates produced a PCR product of ~404 bp, while 

U. urealyticum serovars produced a PCR product of ~448 bp. Negative controls included replicates of 

master mix only and reaction mixtures in which DNAse/RNAse-free dH20 was substituted for 

template.  

 

Table 3.3. PCR primers used for the 16S rRNA and mba conventional PCR assays 

1 Y – combination of C/T included into the primer sequence 

 

Primer Name Sequence1 Tm Source 

Bact_RNA1 F 5’ CYGGYAGYCCACGCCGYAAA 3’ 60 °C novel 

Bact_RNA1 R 5’ ACAYCYCACGACACGAGCYG 3’ 60 °C novel 

UMS-125 (F) GTATTTGCAATCTTTATATGTTTTCG 55 °C (Teng et al. 1994) 

UMA-226 (R) CAGCTGATGTAAGTGCAGCATTAAATTC 55 °C (Teng et al. 1994) 
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3.10 Agarose gel electrophoresis 

 

PCR amplicons were separated using a 2% agarose and Tris Borate-EDTA (TBE) gel containing 

ethidium bromide (final concentration 1 µg/mL). Products were electrophoresed at 100 V for 60 

minutes and then visualised using the Grab-It Gel Dock (Ultraviolet Products, Ltd., Cambridge, United 

Kingdom).  

 

3.11 Purification of PCR products 

 

PCR products were purified using the PureLink PCR purification kit (Invitrogen) according to the 

manufacturer’s instructions, with a final elution in sterile DNAse/RNAse-free dH20 (Gibco). 

 

3.12 Sequencing of PCR amplicons 

 

Purified PCR amplicons were then labelled with the BigDye Terminator (BDT) v3.1 cycle sequencing 

kit (Thermo Fisher Scientific; Scoresby, VIC) and both forward and reverse direction sequencing 

reactions were carried out for each PCR amplicon. In order to incorporate the BDT dye within the 

PCR amplicon, a BDT-labelling PCR assay was performed in a 20 µL reaction volume, which contained 

10 µL of purified PCR amplicon, 1 X BDT sequencing buffer, 1 µL of BDT ready reaction mix, 0.3 µM of 

the forward or reverse primer (16S rRNA or mba PCR primers – see Table 3.3; Sigma-Aldrich) and 

DNAse/RNAse-free dH20 (Gibco). PCR cycling included initial denaturation at 96 °C for 1 minute; 

followed by 35 cycles of denaturation at 96 °C for 10 seconds, primer annealing at 50 °C for 5 

seconds and extension at 60 °C for 4 minutes. BDT-labelled amplicons were purified using EDTA (125 

mM, pH 8.0), sodium acetate (3 M) and 100% ethanol. BDT-labelled amplicons were centrifuged at 

5000 x g for 20 minutes and the supernatant removed. Amplicons were then washed with 80% 

ethanol, centrifuged, and the tubes dried at 50 °C for 1 hour. Products were then sequenced at the 

Molecular Genetics Research Facility, QUT using the Ion personal genome machine (PGM) molecular 

sequencer (Life Technologies). 

Once generated, the forward and reverse sequence data were imported, manipulated and analysed 

using the Geneious bioinformatics software (Biomatters Ltd.). Forward and reverse sequences were 

trimmed and the sequence identity of each PCR amplicon was obtained using the basic local 

alignment search tool (BLAST; National Centre for Biotechnology Information [NCBI]).  
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3.13 Western blotting of Ureaplasma spp. multiple banded antigen (MBA) 

proteins 

 

All ureaplasma clinical isolates and ATCC strains were cultured in 10 mL of 10B broth until the late 

log-phase and then centrifuged at 5000 x g for 20 minutes at 4 °C. The supernatant was discarded 

and the pellet was resuspended in 100 µL of sterile PBS. The protein concentration was determined 

using the NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific) and proteins were stored at 

-20 °C prior to use.  

Protein from each clinical isolate (30 µg) was added to SDS-PAGE loading buffer (Tris HCl, pH 6.8, 

50% glycerol, 8% w/v SDS, bromophenol blue, 1 M dithiothreitol [DTT]) and incubated at 95 °C for 5 

minutes then electrophoresed in a 10% SDS-PAGE gel at 150 V for 1 hour. Proteins were then 

transferred from the SDS-PAGE gel to a nitrocellulose membrane (Pall Corporation; Cheltenham, 

Victoria) in transfer solution (10 mM 3-(cyclohexylamino)-1-propanesulfonic acid, 10% methanol, 

dH20) at 90 V for 1 hour. After protein transfer, the membrane was blocked to prevent non-specific 

binding using a skim milk solution (5% skim milk, 150 mM NaCl, 50 mM Tris) for 1 hour, prior to an 

overnight incubation with the primary antibody at 4 °C (serovar-specific anti-ureaplasma rabbit 

antisera kindly provided by Emeritus Dr Patricia Quinn (The Hospital for Sick Children, Toronto). The 

primary antibodies used were raised against whole ureaplasmas and we have shown previously that 

the protein band(s) demonstrated by western blot correspond directly to the amplicons generated 

by mba PCR assays (Knox et al. 2010). Concentrations for each primary and secondary antisera are 

summarised in Table 3.4. After incubation, the membranes were washed and incubated with a goat 

anti-rabbit IgG secondary antibody conjugated with horse radish peroxidase (Sigma Aldrich) for 1 

hour with gentle agitation. Membranes were again washed and the MBA protein visualised using 3’, 

3’-diaminobenzidine tetrahydrochloride (DAB) with cobalt chloride enhancer (Sigma Aldrich). Images 

were then captured (CanoScan 8600F). For each western blot, proteins obtained from ATCC and 

reference Ureaplasma spp. serovars served as positive controls. Sterile 10B medium was treated in 

the same manner as the ATCC ureaplasmas and clinical isolate cultures and this served as a negative 

control, to confirm the antibody did not react with components within the 10B medium.   
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Table 3.4. Primary and secondary antibody concentrations used for western blot analysis of the 

Ureaplasma spp. MBA protein 

Ureaplasma 

serovars 

Primary antibody 

concentration a 

Secondary antibody 

concentration b 

U. parvum    
1 1/100 1/1000 
3 1/10000 1/5000 
6 1/2500 1/5000 
14 1/20 1/1000 
U. urealyticum   
2 1/20 1/1000 
4 1/500 1/5000 
5 1/20 1/1000 
7 1/20 1/1000 
8 1/20 1/1000 
9 1/20 1/1000 
10 1/20 1/1000 
11 1/20 1/1000 
12 1/20 1/1000 
13 1/20 1/1000 

a Serovar-specific anti-ureaplasma rabbit antisera kindly provided by Emeritus Dr Patricia Quinn, The 

Hospital for Sick Children, Toronto 

b Goat anti-rabbit IgG conjugated to horse radish peroxidase was commercially sourced from Sigma-

Aldrich 

 

3.14 Polymerase chain reaction (PCR) targeting the downstream repetitive 

region of the mba 

 

The downstream repetitive region of U. parvum clinical isolates was targeted using previously 

published PCR assays (Knox et al. 2010; Robinson et al. 2013). These primers amplified U. parvum 

serovars 1 and 6; or serovars 3 and 14, by binding to regions surrounding the repetitive region of the 

mba gene and revealed mba size variants that resulted due to variation in the number of tandem 

repeating units.  

These PCR reactions were carried out in a 50 µL volume and consisted of: 8 µL DNA template, 100 

µM dNTPs (Roche Diagnostics), 1 x PCR buffer (Tris HCl, KCl, (NH4)2S04, pH 8.7 – Invitrogen), 1.5 mM 

MgCl2 (Invitrogen), 0.5 µM of forward (MPDF3; see Table 3.5) and reverse primers (3DR3 or 6DR4; 

Sigma-Aldrich – see Table 3.5), 2.5 U Platinum taq DNA polymerase (Invitrogen) and DNAse/RNAse-

free dH20 (Gibco). PCR cycling involved initial denaturation at 94 °C for 9 minutes; followed by 40 

cycles of denaturation at 94 °C for 45 seconds, primer annealing at 54 °C for 75 seconds, extension at 
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72 °C for 2 minutes; with a final extension step at 72 °C for 15 minutes. Positive PCR controls 

included DNA extracted from ATCC strain serovars (Serovars 1, 3, 6 and 14). Negative controls 

included master mix only with DNAse/RNAse-free dH20 substituted for template.  

PCR amplicons were analysed by agarose gel electrophoresis (section 3.10). The mba amplicon 

profiles of Ureaplasma spp. clinical isolates were then compared to the mba amplicons produced by 

ATCC strains. Ureaplasma spp. clinical isolates, which produced mba amplicons of the same size as 

ATCC strain controls were designated as having ‘no mba variation’; whilst clinical isolates which 

produced amplicons of a different size to that of ATCC strains were considered to be ‘mba variants’. 

In some cases multiple mba variants were amplified from the same clinical isolate. These isolates 

were further characterised as having a “single” or “multiple” unique mba size variants. These mba 

amplicon profiles were also correlated to the outcome of western blot analysis, to ensure that true 

MBA variation was occurring, at both the genetic and protein level.   

Table 3.5. PCR primers targeting the downstream repetitive region of the mba gene 

Primer Name Sequence Serovars amplified Tm Source 

MPDF3  5’ TAATCAAGACTTCAGGTTTG 3’  All U. parvum serovars 54 °C (Knox et al. 2010) 

3DR3 5’ TCGCTTTTTTCATTACGAGTC 3’ Serovars 3 and 14 54 °C (Knox et al. 2010) 

6DR4 5’ TAATGTAAATAAAGCACTTATTC 3’ Serovars 1 and 6 54 °C (Knox et al. 2010) 

 

3.15 Real-time polymerase chain reaction (PCR) for the speciation and 

serotyping of U. parvum clinical isolates 

 

3.15.1 PCR Primer Design 

 

Whole genome sequences for the 14 serovars belonging to U. parvum and U. urealyticum were 

downloaded from the GenBank sequence database (NCBI; http://www.ncbi.nlm.nih.gov/) and 

interrogated using the Geneious bioinformatics software (Biomatters Ltd). From each ureaplasma 

whole genome sequence, the mba gene and its surrounding intergenic (non-coding) regions were 

located. These sequences for the 14 ureaplasma serovars were then aligned and regions which 

contained high levels of homology (either within U. parvum, U. urealyticum or high homology to 

both Ureaplasma species) were identified. Single nucleotide polymorphisms (SNPs) that were unique 

to each individual ureaplasma serovar were also identified. 

http://www.ncbi.nlm.nih.gov/
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These regions were further scrutinised using the basic local alignment (BLAST) search tool (NCBI) to 

identify any homology with other bacterial species or with human chromosomal DNA. Primers were 

then designed to amplify regions (no greater than 400 base pairs); ) with specific homology to only 

U. parvum species, areas which also contained SNPs for each of the U. parvum serovars (1, 3, 6 and 

14).  

Multiple primer sets were designed, purchased from Sigma-Aldrich and tested for their efficacy in 

real-time PCR assays for their ability to amplify only U. parvum serovars. Primers were further tested 

for their ability to differentiate U. parvum serovars 1, 3, 6 and 14 by high resolution melt analysis.  

A number of PCR primer sets were designed to specifically amplify U. parvum serovars at different 

regions of the mba.   

Table 3.6. Novel PCR primers targeting areas of the multiple banded antigen (mba) gene, designed 

for use in real-time PCR and high resolution melt assays 

Name Primer Sequence Tm Source 

UpuF 5’ CTAATAATGTTATTGATAATGCAG 3’ 55 °C novel 

UpmbaR 5’ GTTTTCAATTTCGTAAACTGC 3’ 53 °C novel 

UpuF2 5’ TTATAATAAAAAATATCTAATAATG 3’ 50 °C novel 

UpmbaR2 5’ CCAGCTCCAACTAAGGTAAC 3’  58 °C novel 

UpuF3 5’ TTATATAATTAAAAGTGCAAGTGC 3’  55 °C novel 

UpmbaR3 5’ TTGTTCATTAGGTTTTGGTTCACGA 3’ 61 °C novel 

UpuF4 5’ GTGCTAAATAAAAAGTATTTGC 3’ 53 °C novel 

UpmbaR4 5’ CCTGAAGTCTTGATTAATCCAC 3’ 58 °C novel 

UpmbaR5 5’ GTTTCAAAGTTCACTTTTTCTG 3’ 55 °C novel 

Once primers were received, each PCR assay was optimised and validated in order to assess the 

ability of each PCR assay to selectively amplify U. parvum serovars 1, 3, 6 and 14.   

 

3.16 Design of U. parvum real-time polymerase chain reactions  

 

Conventional PCR assays were used to optimise PCR parameters for each primer set. Optimisation 

included identifying the ideal annealing temperature, annealing time, MgCl2 concentration and 

primer concentrations. Once optimised parameters were obtained for each primer set, the ability of 

primers to specifically amplify U. parvum serovars was assessed. Primers which selectively amplified 
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U. parvum serovars 1, 3, 6 and 14, but not U. urealyticum or any other bacterial strain tested were 

utilised for further analysis.  

 

3.17 Validation of U. parvum real-time PCR assays 

 

The optimised real-time PCR assays were further assessed for their ability to differentiate U. parvum 

serovars 1, 3, 6 and 14 by real-time PCR and high resolution melt (HRM) analysis.  

 

PCR assays were performed in a total volume of 20 µL and contained 5 µL of DNA (all samples were 

standardised to 5 µg), 100 µM dNTPs, 1 X PCR buffer, 1 X SYBR green dye, 2.5 U taq DNA polymerase 

and DNAse/RNAse-free dH20 (Gibco). Assays also included optimised concentrations of forward and 

reverse PCR primers and MgCl2. All real-time PCR assays were carried out in the Rotor-Gene 6000 

real-time PCR cycler (Qiagen). Cycling conditions included 95 °C for 3 minutes to activate Platinum 

taq DNA polymerase; followed by 40 cycles of 95 °C for 15 seconds, optimised annealing 

temperatures for between 20 - 30 seconds, and extension at 72 °C for 20 seconds. Rotor-Gene Q 

Series Software (Version 1.7, Build 87; Qiagen) was programmed to acquire fluorescent signals with 

each extension step of cycling.  

 

Real-time PCR cycling was followed by a standard melting program, which included continuous 

fluorescent monitoring between 65 °C - 85 °C, with temperature increasing at a rate of 1 °C/s. 

Standard melting profiles were assessed for the presence of a single fluorescent 'peak', which was 

consistent with the presence of only a single PCR amplicon. This was further assessed by 

electrophoresing real-time PCR products on agarose gels and imaging for the presence of a single 

PCR band/amplicon.  

 

Following standard melting, a high resolution melt (HRM) assay was performed. This included 

continuous fluorescent monitoring between 70 °C - 85 °C, with temperatures increasing at a rate of 

0.02 °C/s. Upon completion of all programs, data was viewed and manipulated using the Rotor-Gene 

Q Series Software.  

 

3.18 Differentiation of U. parvum serovars using high resolution melt (HRM) 

 

The Rotor-Gene Q series software enables HRM data to be viewed and manipulated as both 

normalised melting curves, or as difference plots. Normalised melting curves plot the negative 
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derivative of fluorescence over temperature and illustrate the amplicon melting temperatures and 

patterns (which may differ, depending on the presence of SNPs). Difference plots display a user-

defined high resolution melting curve as the 'baseline' (x-axis), by which all other melting curves are 

plotted against. To differentiate U. parvum serovars 1, 3, 6 and 14, a user-defined 'baseline' was 

selected and all remaining serovars were compared to the baseline. Melt curves were considered to 

be the 'same' as the user-defined control (serovar) if the highest fluorescent peak was within ± 5 

units (U). By contrast, melt curves were classified as 'different' from the user-defined control 

(serovar) if the highest fluorescent peak was greater than ± 5 U (Stephens 2008).  

 

PCR primers which produced U. parvum serovar amplicons, which were unable to be differentiated 

using the criteria above were excluded from further analysis. Combinations of individual PCR primers 

were also assessed for their ability to differentiate U. parvum serovars 1, 3, 6 and 14.  

 

3.19 Analysis of U. parvum clinical isolates by real-time PCR and HRM  

 

Clinical specimens from several sources were used to assess the efficacy of the designed U. parvum 

real-time PCR and HRM assay. These consisted of 31 U. parvum clinical isolates obtained from the 

chorioamnion of women who delivered LPT or at term (see Chapter Four). Other U. parvum clinical 

isolates were obtained from previous studies, in which endocervical swabs, sperm and washed 

sperm samples were cultured for the presence of Ureaplasma spp. U. parvum isolates (characterised 

previously in (Knox et al. 2003)  were cultured in 10B broth (as per section 3.6.1) and DNA extracted 

(as per section 3.8.1). The remaining clinical isolates used to assess the U. parvum real-time PCR and 

HRM assays were obtained from pure (uncultured) amniotic fluid specimens taken from sheep that 

were injected with U. parvum serovar 6. The presence and amount of U. parvum serovar 6 within 

the amniotic fluid has been previously published (Dando et al. 2012). From these amniotic fluid 

samples, 200 µL of uncultured sample was used for DNA extraction and subsequent PCR. 

DNA from these clinical isolates was standardised to 5 µg/µL and used in optimised real-time PCR 

and HRM assays.  
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Fig 3.1.  Diagram of the mba gene and its surroundings, including areas targeted for primer design. The mba gene consists of an upstream, highly conserved 

region (depicted in green) and a highly variable downstream region that is composed of tandem repeating units (depicted in blue). The mba locus also 

contains two inverted repeat regions, which are proposed sites of DNA inversion events. The upstream conserved regions of the mba gene, including some 

intergenic (non-coding; depicted in dark grey) areas were targeted for primer design. 
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3.20 U. parvum inoculum preparation for the ex vivo model 

 

The ureaplasma strain selected for use in these experiments was isolated from the chorioamnion of 

a woman who delivered late preterm (at 34 weeks of completed gestation; Term = 40 weeks). 

Histological examination of the placenta demonstrated severe chorioamnionitis (Maternal grade 2; 

fetal grade 2; plate positive; using Redline et al. (2003) criteria). This clinical isolate, No. 429 was 

characterised as U. parvum serovar 6 – the ureaplasma serovar most frequently isolated in placentae 

delivered late preterm in our study population (discussed in Chapter Five). 

The ureaplasma inoculum was prepared as previously described (Moss et al. 2008). Briefly, a low 

passage culture of clinical isolate 429 was thawed on ice, serially diluted in 10B broth and incubated 

until exponential growth was achieved. The ureaplasma cultures were then pooled and centrifuged 

at 14 000 x g for 1 hour at 4 °C (Beckman and Coulter, Gladesville NSW). The supernatant was then 

removed and the pellet was carefully resuspended in cold 10B broth (held on ice). The concentrated 

ureaplasmas were vortexed to create an homogenous suspension, before being aliquotted into 

sterile cryogenic vials (all held on ice) and stored immediately at -80 °C until required. One aliquot of 

concentrated ureaplasmas then was thawed and the number of ureaplasma CFU/mL within the 

prepared inoculum was determined as described above (section 3.6.2).  

Sterile 10B broth (1 L) was also centrifuged and concentrated and prepared as above and this 

preparation served as the vehicle control inoculum.  

Prior to use, the prepared ureaplasma and 10B broth inocula were thawed on ice. The ureaplasmas 

were diluted in sterile PBS to achieve an inoculum of 2 x 107 CFU. The prepared 10B broth control 

inoculum was similarly diluted in sterile PBS and both were retained on ice until use.  

 

3.21 UV-inactivation of U. parvum inoculum 

 

An aliquot of the ureaplasma inocula was also exposed to ultraviolet light (UV), in order to kill the 

ureaplasmas (preventing replication of the microorganism), but preserving the surface-exposed 

lipoproteins of the organism.  

The ureaplasma inoculum was aliquotted into 100 µL volumes in a 96-well plate. The plate was 

attached to a retort stand at a distance of 5 – 10 cms from the UV lamp within a class II biohazard 

cabinet. The inoculum was then exposed to constant ultraviolet light for 20 minutes. The loss of 



 

67 
 

viability was then confirmed by subculturing the inoculum into 10B broth. No ureaplasma growth 

was detected (data not shown).   

 

3.22 Optimisation of Ussing chamber model  

 

Prior to performing the ex vivo experiments using human chorioamnion tissues; we first optimised 

the experimental conditions and parameters. We confirmed that the ureaplasmas were able to 

survive and propagate within the cell culture media (M199) when supplemented with urea and 

serum. We also determined an optimal concentration of U. parvum (CFU) to elicit an immune 

response. Finally, the oxygen tension, that best replicated the in vivo placental microenvironment 

and allowed the growth of ureaplasmas, was also optimised.  

 

3.23 Optimisation of U. parvum growth in M199 cell culture media 

 

The growth of U. parvum serovar 6 clinical isolate 429 in M199 media, supplemented with animal 

serum and urea at concentrations reported for term human amniotic fluid, was assessed. This 

growth was compared to the growth of ureaplasmas in 10B broth, the ideal in vitro growth medium 

for these bacteria (Shepard and Lunceford 1976).  

 

3.24 Immune study population and specimen collection 

 

From June 2014 to September 2014, women giving birth at the Royal Brisbane and Women’s 

Hospital (RBWH - Herston; Queensland, Australia) were recruited for this study. Women who 

delivered via Cesarean section (with uncomplicated pregnancies) were enrolled in this study and 

informed written consent was obtained for the collection of placentae following delivery. The work 

was approved by the ethics committees of the RBWH and The University of Queensland (UQ) 

(HREC/12/QRBW/391) and was reviewed by the HREC of QUT and deemed exempt from the need 

for university HREC review. Following delivery, theatre staff placed the placenta into a sterile 

container, which was then transported to the University of Queensland Centre for Clinical Research 

(UQ-CCR; Herston, Queensland). All placentae were de-identified.  
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3.24.1 Placental dissection 

 
Within one hour of delivery, each placenta (Fig 3.2A) was dissected under aseptic conditions. The 

placenta was placed onto a sterile tray where the chorioamnion membranes were carefully cut from 

the edge of the placenta (Fig 3.2 B and C) using sterile scissors. Areas in which the amnion had 

detached from the chorion were excluded. Once the chorioamnion was detached from the placenta 

(Fig. 3.2 D), the membranes were placed into sterile PBS and washed to remove any adherent blood 

clots. The membranes were then spread over a sterile Petri dish and six circular sections of the 

membrane (measuring approx. 6.5 cm diameter) were cut using a sterile membrane cutter (Fig 3.2 

E). The sections were then placed into pre-warmed M199 media (Invitrogen) (Fig. 3.2 F). Remaining 

tissue was then cut to size (measuring approx. 1 x 3 cm2) and placed into a tissue cassette and placed 

in paraformaldehyde for histology and into sterile cryogenic vials and stored at -80 °C.  

 

3.24.2 Ussing chamber preparation  

 

The chorioamnion tissue sections were then sandwiched between two discs of sterile semi-rigid 

mesh and secured within an Ussing chamber (Fig 3.2 G - I). Using sterile syringes, the maternal and 

fetal compartments were slowly filled with pre-warmed M199 media (Invitrogen), supplemented 

with 10% heat-inactivated fetal bovine serum (Sigma-Aldrich) and 100 U/mL penicillin (CSL 

Biosciences; Parkville, Victoria). The maternal membrane perfused media was also supplemented 

with fluorescein isothiocyanate (FITC)-dextran (4000 kDa, final concentration: 10 µM; Sigma-Aldrich) 

to assess membrane integrity/permeability over time. Different M199 media types were used for 

each maternal and fetal compartment (M199 with phenol red for maternal compartments; M199 

without the addition of phenol red for fetal compartments) in order to immediately identify any 

leaks between the compartments within each Ussing chamber.  

 

The entry/exit ports of the Ussing chambers (Fig 3.3) were connected to maternal and fetal media 

reservoirs via sterile silicone tubing (BioRad; Gladesville, New South Wales). This allowed the media 

to exit the maternal or fetal compartment, into the respective media reservoir thereby creating a 

closed loop for each compartment (Fig 3.2). Each compartment of the Ussing chamber held 

approximately 4 mL of media, with the tubing holding approx. 6 mL. Tubing from each ‘maternal’ 

and ‘fetal’ compartment was then connected to a pump (EconoGradient Pump; BioRad) with a set 

flow-rate of 1.5 mL/min and chambers were maintained within an incubator (Memmert INCO Trigas 

incubator; Schwabach, Germany) at 37 °C, 5% CO2 and 8% O2 for 30 hours. The Ussing chambers 
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were allowed to equilibrate within the incubator for 30 minutes prior to the commencement of each 

experiment.  

 

Immediately following the equilibration period, the experiment was started (t = 0 hrs) and media 

was collected from each of the maternal and fetal reservoirs to act as a baseline for all further 

measurements. Immediately following this baseline reading, duplicate chambers were injected with 

each experimental condition (total of 6 Ussing chambers per placenta) and were exposed to:  (i) 2 x 

107 CFU of live U. parvum serovar 6 clinical isolate 429; (ii) 2 x 107 CFU of UV-inactivated U. parvum 

serovar 6 clinical isolate 429; or (iii) 10B media vehicle control.  

 

The maternal and fetal perfusates were sampled via a three-way stopcock (decontaminated at each 

sampling using 70% ethanol) at 2, 4, 8, 20 and 30 hours post-infection; transferred to sterile 

cryogenic vials and stored at – 80 °C for future analysis. 

 

At the completion of the 30 hour experiment, the remaining media was drained from each maternal 

and fetal chamber (and reservoir) and centrifuged at 5000 x g for 20 minutes. The resulting pellet 

was then resuspended in 100 µL of sterile PBS and used for Western blot in order to assess MBA 

variation occurring within the ureaplasma population present within the media.  

 

Chorioamnion tissue from each chamber was also dissected and placed into paraformaldehyde for 

histology and the remainder was placed into sterile cryogenic vials and stored at -80 °C.
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Figure 3.2. Photos illustrating placental tissue dissection (panels A – F) and Ussing chamber assembly (panels G-I) for ex vivo immune response experiments. 

A B C 

D E F 
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Figure 3.3. Ussing chamber design used for ex vivo chorioamnion infection with Ureaplasma spp. Chorioamnion tissue represents a physical barrier 

between the two compartments and both compartments were separately perfused with sterile supplemented M199 media. The experimental 

treatments were then added to the maternal compartment of each Ussing chamber (n = 6)  
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3.25 Analysis of maternal and fetal perfusates 

 

3.25.1 FITC-dextran analysis 

 

Alterations in the integrity or permeability of the chorioamnion tissue were monitored using FITC-

dextran, which was added to the maternal compartment. A measure of the transfer from the 

maternal to fetal compartment was assessed using a fluorescent plate reader (SpectraMax Paradigm 

plate reader, Molecular Devices). 100 µL of each maternal and fetal perfusate was aliquotted into 

the well of a 96-well plates and the levels of FITC-dextran were measured at excitation/emission of 

495/520 nm. FITC-dextran levels in each perfusate were then represented as the percentage transfer 

between the maternal and fetal compartment over the course of each 30 hour time-point 

experiment.  

 

3.25.2 BioPlex Assays for the detection of cytokines in maternal and fetal 

perfusates  

 

Maternal and fetal perfusates from replicate Ussing chambers within each experiment (n = 4 

experiments) were pooled for each of the time points (0 hr, 8hr, 20 hr and 30 hr) and analysed in 

duplicate using the BioPlex Pro Human proinflammatory cytokine immunoassay for interleukin (IL)-2, 

IL4, IL-6, IL-8, IL-10, granulocyte macrophage colony-stimulating factor (GM-CSF), tumour necrosis 

factor (TNF)-α and interferon (IFN)-γ (BioRad; Gladesville, New South Wales), according to the 

manufacturer’s instructions. 

 

 3.25.3 MMP-9 activity and gelatin zymography 

 

Pooled maternal and fetal perfusates from each individual Ussing chamber were also used to 

determine the presence of matrix metalloproteinase (MMP)-9 within each Ussing chamber. 50 µL of 

pooled perfusate was mixed with protein loading dye and loaded into 10% gelatin zymography gels. 

Gels were electrophoresed at 120 V for 1 hour and gels were then incubated in 0.5% Triton X 

solution (renaturing buffer) for 1.5 hours. Gels were then gently washed with water before the 

addition of incubation buffer (50 mM Tris, 10 mM CaCl2, 50 mM NaCl) at 37 °C for 24 – 48 hours. 

After incubation, each gel was then stained with Coomassie blue for 1 hour and then destained with 

dH20 for at least 1 hour before gel images were captured (CanoScan 8600F). MMP activity was 
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represented by a clear band of 92 kDa, with a blue stained background (MMP-9 positive control 

kindly provided by Dr Eliza Whiteside). Controls included an additional gel loaded with samples and 

positive controls treated in the same manner, but with the addition of 10 mM EDTA to the 

incubation buffer. EDTA prevents MMP activity and these gels showed no significant MMP activity 

and the absence of a clear band of 92 kDa following staining.  

 

3.26 Analysis of chorioamnion tissues following ex vivo experiments  

 

Tissue sections stored in paraformaldehyde were processed and embedded in paraffin. Tissue blocks 

were then cut into 5 µm sections, placed onto glass slides, dewaxed and then subsequently stained 

with Haemotoxylin and Eosin (QIMR Berghoefer Medical Research Institute Histology Department). 

Stained sections were viewed using a light microscope (Olympus CX21) and a total of ten 

representative images captured for each chorioamnion tissue from each placental experiment.  

 

As no previous studies have attempted to grade chorioamnion tissues within an ex vivo model, 

grading criteria were specifically devised for this study (Table 3.7) and provided to two impartial 

scientists (blinded to outcome) for pathology grading. Multiple images of chorioamnion tissue from 

each of the three treatment groups from each placental experiment (n = 4) were randomised and 

provided to the scientists, along with the grading criteria. Each image was given a score (1 – 3) and 

the total mean value for each treatment group were then calculated.  
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Table 3.7. Pathology grading and tissue severity guidelines for ex vivo chorioamnion tissues. Tissues were graded (score: 1 - 3) according to key features of 

the chorioamnion. Grading was performed by two independent researchers 

SCORE Example Key features 

 
 

1 

 

 

- No significant pathology 
 

- Intact amnion epithelial layer and connective 
tissue 

- Intact chorion epithelial layer and connective 
tissue 
 

 
 

2 

 

 

- Mild/moderate 
 

- Partial separation between the amnion 
connective tissue and the chorion epithelial layer 
 

 
 
 

3 

 

  

- Severe 
 

- The amnion and chorion layers are detached 
 

- Amnion epithelial is thickened 

Amnion epithelium 

Chorion connective 

Chorion epithelium 

Amnion connective 
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Introduction 
 

Preterm birth (PTB; delivery < 37 weeks) is a major obstetric challenge, accounting for 50% of 

neonatal mortality and up to 70% of the long-term neonatal and infant morbidity (March of Dimes 

2012). Approximately 10% of all births occur preterm and despite improved intervention strategies, 

alarmingly the rates of PTB continue to increase in almost every country (March of Dimes 2012). 

PTBs can be grouped according to the gestational age at the time of delivery: infants who are born 

prior to 28 weeks of pregnancy are considered to be extremely preterm; very preterm infants are 

delivered at less than 32 weeks of completed gestation; while late preterm (LPT) infants are 

delivered between 32 – 36 weeks of gestation (Bick 2012). LPT infants are particularly important, as 

these infants account for 79 - 84% of all PTBs and their incidence has increased by more than 40% in 

the last 25 years (Raju 2006; Goldenberg et al. 2008b; Hamilton et al. 2012; Li et al. 2013). 

Importantly, while it has been determined that these infants are at increased risk of adverse 

sequelae, such as cerebral palsy (Soleimani et al. 2014), learning and visual deficits (Morse et al. 

2009; Soleimani et al. 2014) and increased risk of chronic diseases in adulthood (Sullivan et al. 2012), 

the aetiology of LPT birth is currently unknown.  

 

Infection within the female upper genital tract (UGT) is the most frequent (and potentially 

preventable) cause of PTB (Hillier et al. 1988; Goldenberg et al. 2000b; DiGiulio et al. 2008; DiGiulio 

et al. 2010; DiGiulio 2012). Of those women who experience PTB, up to 40% of have evidence of 

intraamniotic infections (March of Dimes 2012). While there is currently overwhelming evidence 

implicating intraamniotic (UGT) infection with early PTBs (< 32 weeks) (DiGiulio 2012), there is 

significantly less information on the prevalence of infection in later gestations. Researchers have 

stated that “spontaneous births at less than 30 weeks, an association with infection is the rule... 

while late spontaneous preterm births do not usually occur in association with infection” 

(Goldenberg et al. 2002), however, there is little scientific evidence to confirm this and the lack of 

association between birth in the LPT period and intraamniotic infection has not been adequately 

explained. Given this, it is necessary to further investigate the prevalence of infection in later 

gestations (in particular, the LPT and term periods).  

 

Numerous microorganisms have been isolated from the UGT of women who deliver very preterm 

(Figure 4.1) and infections early in gestation are often polymicrobial, making it difficult to determine 

if there is an association between individual microorganisms and adverse outcomes (Hillier et al. 

1988; DiGiulio et al. 2008; Onderdonk et al. 2008; DiGiulio et al. 2010). However, of the 

microorganisms associated with UGT infections, the human Ureaplasma spp. are among those most 
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frequently isolated bacteria from the amniotic fluid (Figure 4.1A) and placentae (Figure 4.1B) of 

women who deliver at less than 32 weeks of gestation. 

 

 

 

Figure 4.1. Prevalence and diversity of microorganisms isolated from (A) amniotic fluid and (B) 

chorioamnion tissue of women experiencing preterm birth (< 32 weeks). Only studies which included 

the classification and total number of positive patient samples (by culture or PCR) have been 

included. Data compiled from (Hillier et al. 1988; Jalava et al. 1996; DiGiulio et al. 2008; Onderdonk 

et al. 2008; Han et al. 2009; DiGiulio et al. 2010; Namba et al. 2010; Marconi et al. 2011)  

 

The presence of infections within the UGT have been widely associated with adverse pregnancy 

outcomes, including spontaneous preterm premature rupture of membranes (pPROM) (Jacobsson et 

al. 2009; DiGiulio et al. 2010), PTB (Hillier et al. 1988; Gibbs et al. 1992; Goldenberg et al. 2002; 

Goncalves et al. 2002) and spontaneous abortion or miscarriage (Naessens et al. 1988). Additionally, 

these infections may also affect the neonate and have been associated with both short- and long-

term adverse outcomes, including respiratory distress syndrome (RDS) (Gomez et al. 1998; Kramer 
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2008) or bronchopulmonary dysplasia (BPD) (Viscardi and Hasday 2009; Sung et al. 2010; Viscardi 

2010), sepsis (Goncalves et al. 2002), meningitis (Garland and Murton 1987) and adverse CNS 

outcomes, such as intraventricular haemorrhage and cerebral palsy (Viscardi et al. 2008; Berger et 

al. 2009; Oskoui et al. 2013). While infection has been associated with adverse pregnancy outcomes, 

it is important to note that not all women with intraamniotic infections will deliver preterm. A study 

by Gerber et al. (2003) identified that the Ureaplasma spp. was present in 29/257 (11.4%) amniotic 

fluid specimens collected at 15 – 17 weeks of gestation. However, only 21% of these women 

developed pPROM and 24% experienced PTB, while >70% of women with diagnosed ureaplasma 

infections delivered at term with no apparent adverse outcomes. Others have reported similar 

findings with up to 20% of women in these studies identified as infected with Ureaplasma spp. 

within the UGT at the time of term delivery (Hillier et al. 1988; Gray et al. 1992). It is currently not 

clear why some women with intraamniotic infections deliver preterm, while others do not; however, 

a consistent finding within the literature is the association between UGT infection and an 

inflammatory response, such as histological chorioamnionitis (Czikk et al. 2011).  

 

Chorioamnionitis is defined as inflammation within the chorioamnion membranes (which surround 

the developing fetus during pregnancy) and is present in up to 70% of pregnancies affected by 

infection (Eschenbach 1993). Diagnosis of chorioamnionitis may be associated with the presence of 

clinical signs or symptoms including: maternal temperature or tachycardia, uterine tenderness and 

pPROM; however, most cases of chorioamnionitis are clinically silent (Czikk et al. 2011; Martinelli et 

al. 2012). In suspected cases of chorioamnionitis, diagnoses can be made by performing culture 

and/or PCR of amniotic fluid (collection of this specimen is an invasive procedure) to identify 

microorganisms (DiGiulio et al. 2010; Romero et al. 2014), or by retrospective histological analysis of 

placentae for inflammation and necrosis (Redline et al. 2003). The prevalence of histological 

chorioamnionitis is inversely correlated with gestational age, with 40 – 70% of placentae from early 

PTBs showing evidence of chorioamnionitis; but chorioamnionitis is detected in only 2 - 4% of term 

placentae (Czikk et al. 2011). However, a study by Gordon et al. (2011) demonstrated an interesting 

bimodal trend in the prevalence of histological chorioamnionitis (Figure 4.2). This study 

retrospectively analysed placentae from 952 pregnancies and demonstrated histological 

chorioamnionitis in 22.6% of all women, with an increased prevalence of chorioamnionitis at ≤ 29 

weeks of gestation (up to 17%), and also later in gestation (≥ 36 weeks, up to 30%; Figure 4.2). While 

histological chorioamnionitis has been correlated with intraamniotic infections, there is some debate 

as to the cause of the host immune response, especially if there are polymicrobial infections. While 

studies have demonstrated an association between Ureaplasma spp. and the development of 
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chorioamnionitis (Hillier et al. 1988; Goldenberg et al. 2008a; Hecht et al. 2008; Kasper et al. 2010; 

Namba et al. 2010), further studies are required to determine if these microorganisms can cause 

chorioamnionitis independently of other microorganisms.  

 

 

Figure 4.2 Prevalence (% of total pregnancies, n = 952) of histological chorioamnionitis (HCA; grey 

shading) and fetal inflammatory response (FR; black shading) at which each infant/placenta is 

delivered. Image adapted from Gordon et al. (2011).  

 

For this current study, we hypothesised that Ureaplasma spp. and other microorganisms would be 

isolated from the chorioamnion of women who delivered LPT or at term, and that the presence of 

these microorganisms may be associated with adverse outcomes, such as histological 

chorioamnionitis. The aims of this study were to (i) identify the prevalence and diversity of 

microorganisms from LPT and term chorioamnion tissue; (ii) to identify if infection was associated 

with adverse pregnancy or neonatal outcomes; and (iii) to identify if particular microorganisms were 

more frequently associated with adverse outcomes.  

 

  



 

80 
 

Materials and methods 

All methods pertaining to this chapter are summarised in Chapter three. Briefly, placentae were 

collected and processed aseptically post-delivery and tissue specimens were snap frozen as per 

Chapter Three, Section 3.2. Placental samples were shipped to QUT on a regular basis for 

microbiological testing. This included culture (Chapter three, section 3.7) of placental swabs and 

chorioamnion tissues to identify any microorganisms present. DNA was extracted from 

chorioamnion tissues and cultured clinical isolates (Chapter Three, section 3.8) and these specimens 

were tested by 16S rRNA (Chapter three, section 3.9) to identify any microbial species present. 16S 

rRNA amplicons were then detected by agarose gel electrophoresis (Chapter three, section 3.10) and 

these amplicons were subsequently purified and then sequenced (Chapter three, section 3.11) to 

identify the genera of the organisms present.  

Statistical analysis 

Data within the chapter are presented as the mean value, plus the standard error of the mean 

(SEM).  

All data within this study were imported and manipulated within the statistical package for social 

sciences (SPSS) software program. Relationships between patient outcomes (maternal demographic 

data, maternal pregnancy outcomes or neonatal outcomes) were analysed against the variables of 

late preterm/term birth; the presence/absence of microorganisms (regardless of the type of 

organisms present); presence/absence of Ureaplasma spp. and the presence/absence of 

microorganisms other than ureaplasmas. Analyses within this chapter included both binary logistic 

regression analysis and analysis of variance (ANOVA) to determine statistical significance between 

cohorts and the types of tests used within this study are noted throughout the chapter.  

Statistical significance was accepted as p < 0.05.  
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Results 

Study population  

A total of 517 women were recruited during this study period. Of those, 477 women and their 535 

offspring were included in the final microbiological study and data for these women and their 

offspring are presented in this chapter.  

 

The majority of women in this study were Caucasian (66.4%) or African American (25.8%), with 26 

women of mixed ethnicity and 8 women of Asian descent (Table 4.1). Of the 535 infants included in 

the study, 421 were singleton births and 114 infants were multiple births (54 sets of twins and two 

sets of triplets). The rate of fetal malformations and other syndromes such as isoimmunisation in 

this study population was very low (13/535; 2.4%). Since the prevalence of these factors was very 

low, these were not considered to be factors which contributed to LPT birth and so these infants 

were included in our analyses.  
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Late preterm vs. term pregnancy characteristics 

Maternal demographic  

There were no significant differences in maternal age, gravida, marital status, ethnicity, level of 

medical insurance (Table 4.1) or mode of delivery between women who delivered LPT or at term 

(Table 4.2). Almost all women included in this study (both cohorts > 97%) attended at least one 

prenatal care visit during their current pregnancy. However, there was a significant difference in the 

mean level of parity of women who delivered at term. These women had a lower parity (mean: 1.7 ± 

0.1) than those women who delivered LPT (mean: 2.1 ± 0.6; Table 4.1).   

Table 4.1. Demographic data of mothers (n = 477) who delivered late preterm and at term  

 Late Preterm (n = 385) Term (n = 92) Significance 

Maternal age in years (mean, range) 27.4 ± 0.3 (15 – 43) 27.7 ± 0.5 (18 – 39) NS1 

Gravida2 2.5 ± 0.1 (1 – 11) 2.2 ± 0.5 (1 – 8) NS 

Parity3 2.1 ± 0.1 (1 – 10) 1.7 ± 0.1 (1 – 6) 0.015 

Marital Status     
- Single 190/385 (49.4%) 32/92 (34.8%) NS 
- Married 191/385 (49.6%) 60/92 (65.2%) NS 
- Unknown 4/385 (1.0%) 0/92 (0.00%) NS 
Ethnicity    
- Caucasian 247/385 (64.2%) 69/92 (75.0%) NS 
- African-American 111/385 (28.8%) 15/92 (16.3%) NS 
- Mixed 19/385 (4.9%) 7/92 (7.6%) NS 
- Asian 7/385 (1.8%) 1/92 (1.1%) NS 
- Undisclosed 1/385 (0.3%) 0/92 (0.0%) NS 
Medical Insurance    
- Private 204/385 (53.0%) 91/92 (66.3%) NS 
- Medicaid 162/385 (42.1%) 24/92 (26.1%) NS 
- Self pay/uninsured 16/385 (4.1%) 4/92 (4.3%) NS 
- Undisclosed 3/385 (0.8%) 3/92 (3.3%) NS 
Evidence of one prenatal care visit 379/385 (98.4%) 90/92 (97.8%) NS 

1NS - Not statistically significant 
2Gravida - number of clinical pregnancies 
3Parity - number of viable offspring resulting from all pregnancies 

Data was analysed by logistic regression analysis and compared the maternal demographic data of 

women whose pregnancies were delivered late preterm to those delivered at term.  
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Adverse pregnancy outcomes 

There were no significant differences in the prevalence of signs/symptoms of infection in women 

who delivered LPT or at term, nor was there any difference in the rate of prior chorioamnionitis 

within these two cohorts. Women who delivered LPT had a higher incidence of hypertension 

(29.6%), compared to those women who delivered at term (7.6%), however this difference was not 

statistically significant. Unsurprisingly, the presence of pregnancy-induced hypertension was 

significantly higher in women who delivered LPT (30.4%), compared to those women who delivered 

at term (4.3%; p = 0.007) (Table 4.2).  

There was also a higher prevalence of cervical incompetence (66.7%) and pPROM (45.4%) in women 

who delivered LPT than for women who delivered at term (0.0% and 0.0%, respectively). Due to the 

nature of logistic regression analysis, it was not possible to derive p-values for these outcomes, due 

to complete separation of data within the LPT and term cohorts. Women who delivered LPT were 

treated with antibiotics significantly more frequently during their labour (62.9%), compared to those 

women who delivered at term (22.8%; p = 0.049). Despite the high number of women who delivered 

LPT, there were no differences in the rate of vaginal or Cesarean section deliveries in these two 

cohorts (Table 4.2).  

Table 4.2. Maternal pregnancy outcomes for mothers who delivered late preterm and at term  

 Late preterm (n = 385) Term (n = 92) Significance 

At least one sign/symptom of infection1 27/385 (7.0%) 7/92 (7.6%) NS2 

Previous history of chorioamnionitis documented 17/385 (4.4%) 3/92 (3.3%) NS 
Hypertension 114/385 (29.6%) 7/92 (7.6%) NS 
Pregnancy induced hypertension 117/385 (30.4%) 4/92 (4.3%) 0.007 
Cervical incompetence 257/385 (66.7%) 0/92 (0.0%) # 
Antibiotics administered during labour3 242/385 (62.9%) 21/92 (22.8%) 0.049 
Preterm premature rupture of membranes (pPROM) 175/385 (45.4%) 0/92 (0.0%) # 
Mode of delivery    
- Vaginal 265/385 (68.8%) 69/92 (75.0%) NS 
- Cesarean 120/385 (31.2%) 23/92 (25.0%) NS 

1Signs and symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal 

tenderness, foul-smelling vaginal discharge, maternal tachycardia (> 120 bpm) or fetal tachycardia (> 

160 bpm) 
2NS - Not statistically significant 
3 While the antibiotic dose and type were not recorded, antibiotics were administered to women 

more than 3 hours prior to delivery. 

# - Logistic regression analysis was unable to derive p-values for these outcomes/conditions due to 

complete separation of data within the two cohorts.  

Data was analysed by logistic regression analysis and compared maternal pregnancy outcomes of 

women who delivered late preterm or at term 
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Fetal characteristics  

The mean gestational age of LPT infants was 34.9 ± 0.1 weeks, compared to 39.4 ± 0.1 for those 

infants delivered at term. There were no differences in the mean Apgar scores of LPT and term 

infants at either 1 or 5 minutes post-delivery.  

There were, however, some interesting differences between these two cohorts. LPT infants had a 

lower birth weight, compared to term-delivered neonates (2535.9 ± 52.4 grams vs. 3489.0 ± 44.3 

grams, respectively; p = 0.001), but there was no difference in the mean placental weight for LPT and 

term pregnancies (422.2 ± 6.3 vs. 469.0 ± 7.9 grams, respectively).  There were no differences in the 

incidence of histological chorioamnionitis in LPT and term cohorts, nor were there any differences in 

the mean maternal and fetal stages of inflammation (Table 4.3). Following delivery, LPT infants 

displayed more signs of respiratory distress during their first 24 hours of life (23.7%), they were 

administered oxygen for prolonged periods (> 6 hours; 12.4%), and were treated with continuous 

positive airway pressure (CPAP) respiratory support more often (13.5%) than those infants who were 

delivered at term (3.3%, 0.0% and 0.0%, respectively) (Table 4.3). LPT infants were also diagnosed 

with respiratory distress syndrome more frequently than those infants delivered at term (12.0% vs. 

0.0%, respectively) (see Table 4.3).  As a consequence of these adverse outcomes, the overall length 

of stay for LPT infants was significantly higher than those infants who were delivered at term (7.1 

days vs. 2.2 days, respectively; p < 0.001; Table 4.3). 
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Table 4.3. A comparison of outcomes for neonates (n = 535) delivered late preterm and at term 

 Late preterm (n = 443) Term (n = 92) Significance 

Gestational age at delivery (mean, range) 34.9 ± 0.1 (32 – 36) 39.4 ± 0.1 (37 – 41) NS1 

Apgar2 score – 1 minute (mean, range) 7.8 ± 0.1 (1 – 10) 8.1 ± 0.2 (2 – 9) NS 

Apgar2 score – 5 minutes (mean, range) 8.8 ± 0.03 (2 – 10) 8.9 ± 0.03 (8 – 10) NS 
Birth weight (mean, range) 2535.9 ± 52.4 (1060 - 4530) 3489.0 ± 44.3 (2680 - 4350) 0.001 
Placental weight (mean, range) 422.2 ± 6.3 469.0 ± 7.9 NS 
Chorioamnionitis in current pregnancy3 69/443 (21.7%) 25/92 (27.2%) NS 

- Maternal stage inflammation 1.4 ± 0.03 (1 – 3) 1.5 ± 0.1 (1 – 3) NS 
- Fetal stage inflammation  2.3 ± 0.04 (1 – 3) 2 ± 0.1 (1 – 3) NS 
Male : Female 225 : 2174 51 : 41 NS 
Continuous positive airway pressure (CPAP) 60/443 (13.5%) 0/92 (0.0%) # 
Features of RDS5 < 24 hours after birth  105/443 (23.7%) 3/92 (3.3%) 0.100 
Required oxygen support for > 6 hrs 55/443 (12.4%) 0/92 (0.0%) # 
Diagnosed RDS5 53/443 (12.0%) 0/92 (0.0%) # 
Length of Stay 7.1 ± 0.3 (1 - 43) 2.2 ± 0.1 (1 - 7) < 0.001 

1NS - Not statistically significant 
2 Apgar – a measure of neonatal health scored at 1 min and 5 minutes post-delivery; measures 

appearance, pulse, reflex, activity and respiration of the newborn. 

3 Chorioamnionitis was determined by US pathologists (blinded to outcome) and was graded for 

severity of inflammation according to (Redline et al. 2003) 
4 The sex of one infant was not disclosed  
5RDS - respiratory distress syndrome 

# Logistic regression analysis was unable to derive p-values for these outcomes/conditions due to 

complete separation of data within the two cohorts. 

Data analysed by logistic regression analysis and compared the outcomes of neonates delivered late 

preterm or at term. 
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Chorioamnion infection 

Chorioamnion infection, as detected by PCR and/or culture of microorganisms from clinical 

specimens, was identified in 10.6% (57/535) placentae (Table 4.4, Supplementary Table 8.1). In some 

placentae, polymicrobial chorioamnion infections were identified; multiple microbial species were 

isolated from 4/57 (7.0%) placentae (Supplementary Table 8.1).  

 

Of the bacteria detected within chorioamnion tissue, the most prevalent were Ureaplasma parvum 

(36/59; 59.0%), Ureaplasma urealyticum (6/61; 9.8%), Streptococcus agalactiae (Group B beta 

haemolytic Streptococcus (GBS); 6/61; 9.8%), Bacteroides fragilis (2/61; 3.3%), Bifidobacterium spp. 

(2/61; 3.3%), Gardnerella vaginalis (1/61; 1.6%), Propionibacterium spp. (1/61; 1.6%) and Escherichia 

coli (1/61; 1.6%) (Table 4.4 and Figure 4.3). No Lactobacillus spp. were identified by culture or PCR 

methods, nor were any fungi or yeasts detected within any chorioamnion tissues sampled. Non-

cultivable bacteria were detected by molecular methods in six (9.8%) placentae.  

 

When comparing the prevalence of infection, there were no significant differences in the presence 

of microorganisms within the chorioamnion of women who delivered LPT or at term (9.9% and 

14.1%, respectively). Since there was no difference in the prevalence of infection between these 

groups, we also compared the microbial load (number of CFU per swab or per gram of tissue) in 

placentae delivered LPT and at term. The microbial load was determined by counting the number of 

colonies isolated on primary isolation media (this was not able to be determined for those 

microorganisms which did not grow on primary isolation media, or those cultured only after 

enrichment within thioglycollate broths). There was no significant difference in the mean microbial 

load within LPT or term placentae (9.73 x 107 CFU vs. 5.85 x 107 CFU, respectively; p = 0.159), nor 

was there any difference in the prevalence of histological chorioamnionitis in LPT or term placentae 

(59.1% and 38.5%, respectively).  

 

Regardless of when placentae were delivered, U. parvum and U. urealyticum were isolated most 

frequently within placentae (71.2%; (Figure 4.3). Ureaplasmas were also detected in higher numbers 

(CFU) than any other microorganism within this study (Table 4.4). 
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Table 4.4. The diversity and prevalence of microorganisms isolated from placentae delivered late preterm (n = 46) and at term (n = 9)  

MICROORGANISMS DETECTED WITHIN PLACENTAE 
 Late preterm (32 – 36 weeks) Term (> 37 weeks) 

Microorganism Frequency1 (%) Bacterial load (mean)2 Frequency1 (%) Bacterial load (mean)2 

Ureaplasma parvum 27 (58.7%) 4.86 x 108 9 (60.0%) 1.16 x 108 
Ureaplasma urealyticum 6 (13.0%) 2.92 x 108 0 (0.0%) -  

Uncultured bacterium 3 (6.5%) - 3 (20.0%) - 
Streptococcus agalactiae (GBS) 3 (6.5%) 1 x 103 3 (20.0%) 1 x 106 

Bacteroides fragilis 2 (4.3%) 1 x 103 0 (0.0%) - 
Bifidobacterium spp. 2 (4.3%) 1 x 103 0 (0.0%) - 
Gardnerella vaginalis 1 (2.2%) 1 x 103 0 (0.0%) - 

Escherichia coli 1 (2.2%) 1 x 103 0 (0.0%) - 
Propionibacterium spp. 1 (2.2%) 1 x 103 0 (0.0%) - 

TOTAL NUMBER OF ORGANISMS ISOLATED 46  15  
FREQUENCY OF INFECTION3 44/443 (9.9%) - 13/92 (14.1%) - 

Infection and chorioamnionitis 26/44 (59.1%) - 5/13 (38.5%) - 
1 Frequency- the total number of microorganisms isolated by standard culture, growth in enrichment broth or by PCR. No other statistically significant 

differences were seen in the incidence of infection 
2 Quantitative analysis was not always possible, as some microorganisms were isolated in enrichment broth or by PCR only. Quantitative analyses shown 

where possible 
3 Some placentae (n = 4) contained polymicrobial infections. This number represents the total number of placentae which were found to have infection, 

regardless of the number of organisms isolated from each placentae  
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Figure 4.3. The diversity and prevalence of microorganisms detected in late preterm (A) and term (B) placentae 
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Association of chorioamnion infection with adverse pregnancy and neonatal 

outcomes  

To determine if there was an association between infection and adverse outcomes, pregnancies 

were grouped based on the presence or absence of chorioamnion infection and the pregnancy 

outcomes and fetal outcomes for these women were compared.  

Maternal demographic data 

There were no statistically significant differences in the maternal demographic data of women 

whose chorioamnion was infected with microorganisms, when compared to those women whose 

chorioamnion had no detectable microorganisms (by culture and/or PCR; Table 4.5).  

 

Table 4.5. Demographic data for women (n = 474) whose pregnancies were complicated by 

chorioamnion infection compared to those who had no chorioamnion infection  

 Chorioamnion infection 
(n = 471) 

No chorioamnion detected 
(n = 4271) 

Significance 

Maternal age (mean, range) 25.0 ± 0.7 (17 – 38) 27.8 ± 0.3 (15 – 43) NS2  
Gravida3 (mean, range) 2.2 ± 0.2 (1 – 5) 2.5 ± 0.1 (1 – 11) NS 
Parity4 (mean, range) 1.9 ± 0.1 (1 – 4) 2.1 ± 0.1 (1 – 10) NS 
Marital Status    
- Single 28/47 (59.6%) 232/427 (54.3%) NS 
- Married 19/47 (40.4%) 190/427 (44.5%) NS 
- Undisclosed 0/47 (0.0%) 5/427 (1.2%) NS 
Health insurance    
- Private 16/47 (34.0%) 247/427 (57.9%) NS 
- Medicaid 25/47 (53.2%) 160/427 (37.5%) NS 
- Self pay/uninsured 3/47 (6.4%) 16/427 (3.7%) NS 
- Undisclosed 3/47 (6.4%) 4/427 (0.9%) NS 
Ethnicity    
- Caucasian 26/47 (55.3%) 289/427 (67.8%) NS 
- African-American 20/47 (42.6%) 104/427 (24.3%) NS 
- Mixed 1/47 (2.1%) 25/427 (5.8%) NS 
- Asian 0/47 (0.0%) 8/427 (1.9%) NS 
- Undisclosed 0/47 (0.0%) 1/427 (0.2%) NS 
Evidence of one prenatal care visit 46/47 (97.9%) 419/427 (98.1%) NS 

1 Some women (n = 3) delivered multiple placentae and one placenta was found to be infected, while 

the other was shown to be uninfected by culture and 16S rRNA PCR. Data from these women with 

contrasting placental microbiology results were excluded from this analysis 
2 NS – Not statistically significant 
3 Gravida - the number of clinical pregnancies 
4 Parity - the total number of viable offspring resulting from all clinical pregnancies 

 



 

90 
 

Adverse pregnancy outcomes 

There were no differences in the prevalence of hypertension or pregnancy-induced hypertension in 

those women (18.9% vs. 17.0%) with or without (26.7% and 26.9%, respectively) chorioamnion 

infection.  

Interestingly, there was no significant difference in the clinical histories or signs/symptoms of 

infection in women with or without chorioamnion infection; however, women in both cohorts were 

treated with antibiotics at approximately the same rate (53.2% and 55.7%, respectively). 

Significantly, those women in whom chorioamnion infection was identified also had a much higher 

incidence of chorioamnionitis in previous pregnancies (10.6%), when compared to women in whom 

no infection was identified (3.5%; p = 0.025) (Table 4.6).  

Women with UGT infection were more likely to deliver vaginally than women in whom no infection 

was identified (89.4% vs. 67.6%; p = 0.012); however, there was no significant difference in the 

prevalence of pPROM or cervical incompetence in women with or without chorioamnion infection 

(Table 4.6).  

Table 4.6. Outcomes for women (n = 474) whose pregnancies were complicated by chorioamnion 

infection compared to outcomes for women who had no chorioamnion infection  

 Chorioamnion 
infection 
(n = 471) 

No chorioamnion 
infection detected 

(n = 4271) 

Significance 

At least one sign/symptom of infection 2 5/47 (10.6%) 29/427 (6.8%) NS3 

Previous history of chorioamnionitis documented 5/47 (10.6%) 15/427 (3.5%) 0.025 
Hypertension 7/47 (18.9%) 114/427 (26.7%) NS 
Pregnancy induced hypertension 8/47 (17.0%) 115/427 (26.9%) NS 
Cervical incompetence 26/47 (55.3%) 230/427 (53.9%) NS 
Antibiotics administered during labour 25/47 (53.2%) 238/427 (55.7%) NS 
Preterm premature rupture of membranes (pPROM) 17/47 (36.2%) 158/427 (37.0%) NS 
Mode of delivery    
- Vaginal 42/47 (89.4%) 290/427 (67.9%) 0.012 
- Cesarean 5/47 (10.6%) 135/427 (31.6%) NS 
- Undisclosed 0/47 (0.0%) 2/427 (0.5%) NS 

1 Some women (n = 3) delivered multiple placentae and one placenta was found to be infected, while 

the other was shown to be uninfected by culture and 16S rRNA PCR. Data from these women with 

contrasting placental microbiology results were excluded from this analysis 
2 Signs and symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal 

tenderness, foul-smelling vaginal discharge, maternal tachycardia (> 120 bpm) or fetal tachycardia (> 

160 bpm)  

3 NS – Not statistically significant 
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Adverse neonatal outcomes 

Neonates were classified into two groups, those whose chorioamnion was found to be infected and 

neonates whose placentae were non-infected. 

 

While there were no differences in the mean maternal or fetal stages of inflammation between 

these cohorts, the presence of histological chorioamnionitis was associated with chorioamnion 

infection (p < 0.001). For these neonates, there were no differences in the gestational age at 

delivery, the Apgar scores at 1 or 5 minutes, the birth weights and the weight of placentae (Table 

4.7). Those infants who were exposed to chorioamnion infections required prolonged oxygen 

support (> 6 hours) more frequently (21.0%) than those infants who were not exposed to 

chorioamnion infection (9.0%; p = 0.009) (Table 4.7). The infants exposed to chorioamnion infection 

were also diagnosed with respiratory distress syndrome  more often (17.5%) than infants who were 

not exposed to chorioamnion infection (9.0%), albeit this was not statistically significant. Despite the 

association between chorioamnion infection and adverse neonatal sequelae, there was no 

significant difference in the mean length of stay post-delivery (Table 4.7). 

Table 4.7. Outcomes for neonates (n = 535 placentae) after pregnancies complicated by 

chorioamnion infection compared to pregnancies without evidence of chorioamnion infection  

 Chorioamnion infection   
(n = 57) 

No chorioamnion infection 
detected (n = 478) 

Significance 

Gestational age at delivery (mean, range) 35.7 ± 0.3 (32 – 41) 35.6 ± 0.1 (32 - 41) NS2 

Apgar score1 – 1 minute (mean, range) 7.6 ± 0.3 (1 – 9) 7.8 ± 0.1 ( 1 - 10) NS 
Apgar score1 – 5 minutes (mean, range) 8.7 ± 0.1 ( 5 – 9) 8.9 ± 0.03 (2 - 10) NS 
Birth weight (mean, range) 2642.4 ± 84.6  

(1380 – 3925) 
2658.0± 29.8  
(1060 - 4530) 

NS 

Placental weight (mean, range) 441.3 ± 16.2 (199 – 710.7) 428.7 ± 5.8  (132 - 1099) NS 
Chorioamnionitis3 in current pregnancy 31/57 (54.4%) 90/478 (18.8%) < 0.001 
- Maternal Stage 1.6 ± 0.1 (1 – 3) 1.2 ± 0.02 (1 – 3) NS 
- Fetal Stage 2.4 ± 0.1 (1 – 3) 2.2 ± 0.04 (1 – 3) NS 
Male : Female 24 : 33 252 : 2254 NS 
Continuous positive airway pressure (CPAP) 12/57 (21.0%) 48/478 (10.0%) NS 
Features of RDS5 < 24 hours after birth  15/57 (26.3%) 93/478 (19.5%) NS 
Required oxygen support for > 6 hrs 12/57 (21.0%) 43/478 (9.00%) 0.009 
Diagnosed RDS5 10/57 (17.5%) 43/478 (9.00%) NS 
Length of Stay 7.0 ± 1.1 (1 – 37) 6.1 ± 0.3 (1 - 43) NS 

1 Apgar - a measure of neonatal health upon delivery and measures of appearance, pulse, reflex, 

activity and respiration. 
2 NS – Not statistically significant 
3 Chorioamnionitis was determined by US pathologists according to (Redline et al. 2003) 
4 The sex of one infant was not disclosed 
5 RDS - respiratory distress syndrome  
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Ureaplasma spp. and other microorganisms and their association with adverse 

pregnancy and neonatal outcomes  

To compare the outcomes of women infected with specific microorganisms, pregnancies with 

chorioamnion infection were further divided into two groups: those in which the placentae were 

infected with Ureaplasma spp., the most prevalent microorganisms detected within the 

chorioamnion, and those with chorioamnion infection caused by other microorganisms. It was not 

possible to further divide those women with ‘other microorganisms’ into individual groups due to 

the small sample sizes of women affected by each individual microorganism isolated.  

 

Maternal demographic data 

Women with chorioamnion infection caused by Ureaplasma spp. had a lower maternal age (24.2 ± 

0.8 yrs) than women infected with other microorganisms (28.2 ± 1.4 yrs) and women who had no 

chorioamnion infection (27.8 ± 0.3 yrs; p = 0.002).  

 

There was no other significant differences in maternal demographic data for women in whom other 

microorganisms were identified, when compared to those women in whom no microorganisms were 

detected (Table 4.8).  



 

93 
 

Table 4.8. Demographic data for women (n = 470) with chorioamnion infection caused by Ureaplasma spp., or other microorganisms compared to 

pregnancies that were not affected by chorioamnion infection  

1 Some women delivered multiple infants/placentae in which one placenta was found to be infected, while the other was not (n = 3); or placentae were 

found to contain both ureaplasmas and other microorganisms (n = 4). As a consequence, data from n = 7 women were excluded from this analysis 
2 NS – Not statistically significant 
3 Gravida - total number of clinical pregnancies 
4 Parity - the total number of viable offspring resulting from all clinical pregnancies 

Data analysed by ANOVA tests to identify differences among each group/cohort above. 

 Ureaplasma spp. detected 
(n = 311) 

Significance Other microorganisms 
detected (n = 121) 

Significance No microorganisms 
detected 
(n = 4271) 

Maternal age (mean, range) 24.2 ± 0.8 (17 - 32) 0.002 28.2 ± 1.4 (21 – 38)  NS2 27.8 ± 0.3 (15 – 43) 
Gravida3 (mean, range) 2.12 ± 0.2 (1 - 5) NS 2.3 ± 0.3 (1 – 4) NS 2.5 ± 0.1 (1 – 11) 
Parity4 (mean, range) 1.7 ± 0.2 (1 - 4) NS 2.3 ± 0.3 (1 – 3) NS  2.1 ± 0.1 (1 – 10) 
Marital Status      
- Single 22/31 (70.9%) NS 9/12 (75.0%) NS 232/427 (54.3%) 
- Married 9/31 (29.0%) NS 3/12 (25.0%) NS 190/427 (44.5%) 
- Undisclosed 0/31 (0.0%) NS 0/12 (0.0%) NS 5/427 (1.2%) 
Health insurance      
- Private 10/31 (32.2%) NS  7/12 (58.3%) NS 247/427 (57.9%) 
- Medicaid 17/31 (54.8%) NS 4/12 (33.3%) NS 160/427 (37.5%) 
- Self pay/uninsured 2/31 (6.5%) NS 0/12 (0.0%) NS 16/427 (3.7%) 
- Undisclosed 2/31 (6.5%) NS 1/12 (8.3%) NS 4/427 (0.9%) 
Ethnicity      
- Caucasian 17/31 (54.8%) NS 8/12 (66.7%) NS 289/427 (67.8%) 
- African-American 13/31 (42.0%) NS 4/12 (33.3%) NS 104/427 (24.3%) 
- Mixed 1/31 (3.2%) NS 0/12 (0.0%) NS 25/427 (5.8%) 
- Asian 0/31 (0.0%) NS 0/12 (0.0%) NS 8/427 (1.9%) 
- Undisclosed 0/31 (0.0%) NS 0/12 (0.0%) NS 1/427 (0.2%) 
Evidence of one prenatal care visit 31/31 (100.0%) NS 12/12 (100.0%) NS 419/427 (98.1%) 
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Adverse pregnancy outcomes 

 
There were no differences in the incidence of adverse pregnancy outcomes between women 

infected with Ureaplasma spp. within the chorioamnion, those infected with other microorganisms 

within the chorioamnion and those women in whom no infection was identified (Table 4.9).  
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Table 4.9. Pregnancy outcomes for women (n = 470) with chorioamnion infection caused by Ureaplasma spp. or other microorganisms, compared to those 

histories of women who were not exposed to chorioamnion infection 

1 Some women delivered multiple infants/placentae in which one placenta was found to be infected, while the other was not (n = 3); or placentae were 

found to contain both ureaplasmas and other microorganisms (n = 4). As a consequence, data from n = 7 women were excluded from this analysis 
2 Signs and symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal tenderness, foul-smelling vaginal discharge, maternal 

tachycardia (> 120 bpm) or fetal tachycardia (> 160 bpm) 
3 NS – not statistically significant 
4 While the antibiotic dose and type were not recorded, antibiotics were administered to women more than 3 hours prior to delivery. 

Data analysed by ANOVA tests to identify differences among each group/cohort above. 

 

 

 

 Ureaplasma spp. detected 
(n = 311) 

Significance Other microorganisms 
detected  
(n = 121) 

Significance No microorganisms detected  
(n = 4271) 

At least one sign/symptom of infection2 3/31 (9.7%) NS3 1/12 (8.3%) NS 29/427 (6.8%) 
Previous history of chorioamnionitis documented 3/31 (9.7%) NS 1/12 (8.3%) NS 15/427 (3.51%) 
Hypertension 2/31 (6.4%) NS 3/12 (25.0%) NS 114/427 (26.7%) 
Pregnancy induced hypertension 3/31 (9.7%) NS 3/12 (25.0%) NS 115/427 (26.7%) 
Cervical incompetence 21/31 (67.7%) NS 6/12 (50.0%) NS 230/427 (53.9%) 
Antibiotics administered during labour4 16/31 (51.6%) NS 8/12 (66.7%) NS 238/427 (55.7%) 

Preterm premature rupture of membranes (pPROM) 12/31 (38.7%) NS 5/12 (41.7%) NS 158/427 (37.0%) 
Mode of delivery      
- Vaginal 27/31 (87.1%) NS 11/12 (91.7%) NS 290/427 (67.9%) 
- Cesarean 4/31 (12.9%) NS 1/12 (8.3%) NS 135/427 (31.6%) 
- Undisclosed 0/31 (0.0%) NS 0/12 (0.0%) NS 2/427 (0.5%) 
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Adverse neonatal outcomes 

The outcomes of neonates born after pregnancies were affected by chorioamnionitis due to 

Ureaplasma spp. and other microorganisms were also compared to neonates delivered from 

pregnancies in which no chorioamnion infection was identified. 

 

The most significant finding of this current study was that chorioamnion infection with Ureaplasma 

spp., but not caused by other microorganisms, was associated with the development of histological 

chorioamnionitis (p < 0.001). While there was no difference in the maternal or fetal stages of 

inflammation between any of these cohorts, pregnancies exposed to Ureaplasma spp. had a higher 

incidence of chorioamnionitis (68.4%) overall. Interestingly, the presence of ureaplasmas within the 

chorioamnion was not always associated with inflammation and 33.3% of placentae demonstrated 

no histological chorioamnionitis. Of the Ureaplasma spp.-infected placentae, 34.2% showed 

evidence of mild chorioamnionitis (maternal grade 1) and 31.6% of placentae demonstrated severe 

histological chorioamnionitis (maternal grade 2 or 3) (Figure 4.4).  

 

Chorioamnion infection with microorganisms other than Ureaplasma spp. was associated with the 

development of RDS (p = 0.016). While there was a higher incidence of sequelae in neonates 

exposed to Ureaplasma spp. chorioamnion infection and also to other organisms, there was no 

difference in the mean length of stay in the neonatal ward for these babies, when compared to the 

stay for babies who were not exposed to chorioamnion infection.  
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Table 4.10. Adverse outcomes for neonates (n= 527) delivered after pregnancies affected by chorioamnionitis caused by Ureaplasma spp. and other 

microorganisms, compared to outcomes for neonates who were not exposed to infection during pregnancy 
 

1 Some placentae (n = 4) were found to have polymicrobial infections and therefore could not be grouped into a single cohort in the above table. These 

placentae were excluded from this analysis 
2 NS – not statistically significant 
3 Apgar - a measure of neonatal health upon delivery and measures of appearance, pulse, reflex, activity and respiration. 
4 Chorioamnionitis was determined by US pathologists according to (Redline et al. 2003) 
5 only one placenta in this group was graded, therefore there was no SEM or range 
6 The sex of one infant was not disclosed 
7 RDS – respiratory distress syndrome 

Data analysed by ANOVA tests to identify differences among each group/cohort above. 

 Ureaplasma spp. detected 
(n = 381) 

Significance Other microorganisms 
detected 
(n = 151) 

Significance No microorganisms detected 
(n = 4781) 

Gestational age at delivery (mean, range) 35.4 ± 0.3 (32 - 40) NS 2 35.9 ± 0.7 (33 - 41) NS 25.6 ± 0.1 (32 - 41) 
Apgar score 3– 1 minute (mean, range) 7.9 ± 0.3 (1 - 9) NS 7.2 ± 0.6 (1 - 9) NS 7.8 ± 0.1 (1 - 10) 
Apgar score 3 – 5 minutes (mean, range) 8.8 ± 0.1 (7 - 9) NS 8.5 ± 0.3 (5 - 9) NS 8.8 ± 0.1 (2 - 10) 
Birth weight (mean, range) 2489.6 ± 88.53 (1380 - 3873) NS 2901.3 ± 180.3 (1865 - 3925) NS 2700.6 ± 51.4 (1060 - 4530) 
Placental weight (mean, range) 445.2 ± 20.5 (260 - 711) NS 432.4 ± 30.2 (199 - 617) NS 428.6 ± 5.8 (132 - 1099) 
Chorioamnionitis 4 in current pregnancy 26/38 (68.4%) < 0.001 4/15 (26.7%) NS 90/478 (18.8%) 
- Maternal stage inflammation 1.6 ± 0.1 (1 - 3) NS 1.5 ± 0.1 (1 - 2) NS 1.2 ± 0.1 (1 - 3) 
- Fetal stage inflammation  2.4 ± 0.1 (1 - 3) NS 35 NS 2.2 ± 0.1 (1 - 3) 
Male : Female 15 : 23 NS 7 : 8 NS 252 : 2256  
Continuous positive airway pressure (CPAP) 8/38 (21.0%) NS 4/15 (26.7%) NS 56/478 (11.7%) 
Features of RDS7 < 24 hours after birth  9/38 (23.7%) NS 4/15 (26.7%) NS 93/478 (19.4%) 
Required oxygen support for > 6 hrs 7/38 (18.4%) NS 4/165 (26.7%) NS 43/478 (9.0%) 
Diagnosed RDS7 6/38 (15.8%) NS 3/15 (20.0%) 0.016 43/478 (9.0%) 
Length of Stay 6.5 ± 1.2 (1 - 37) NS 7.9 ± 2.2 (1 - 24) NS 6.1  0.3 (1 - 43) 
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Figure 4.4. Severity of histological chorioamnionitis in pregnancies affected by chorioamnion 

infection with Ureaplasma spp. (n = 38), other microorganisms (n = 15) and those pregnancies in 

which no chorioamnion infection was identified (n = 478). Some placentae (n = 4) were not included 

in this analysis, due to conflicting microbiology results. Chorioamnionitis was determined by US 

pathologists (blinded to outcome) and graded according to Redline’s criteria (2003) 
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Discussion 

 
UGT infections in pregnant women are a leading aetiology of PTB, with up to 40% of all PTBs 

associated with infection (DiGiulio 2012). While there is a strong body of evidence which identifies 

UGT infections in association with very early PTBs (< 32 weeks), currently no studies have reported 

the prevalence of UGT infection later in gestation, in pregnancies delivered LPT (32 – 36 weeks) and 

at term. In this study, for the first time, we have investigated the prevalence of chorioamnion 

infection in women who delivered LPT or at term and identified that chorioamnion infection was 

present in 10.6% of all pregnancies studied. This supports the proposal by Goldenberg et al. (2011) 

that 10 – 15% of deliveries >32 weeks are associated with infection.  This study confirmed that there 

were no major differences in the prevalence of adverse outcomes or signs/symptoms of infection in 

women with chorioamnionitis caused by Ureaplasma spp. or other microorganisms and women with 

no evidence of infection (Table 4.9). This highlights why it is so difficult to identify and treat women 

with asymptomatic chorioamnionitis during pregnancy.  

 

In this current study we have also identified that a history of chorioamnionitis in previous 

pregnancies (p = 0.025), correlated with histological chorioamnionitis in the current pregnancy (p < 

0.001; Table 4.6) and that neonates exposed to UGT infection during pregnancy required oxygen or 

positive pressure support more frequently after delivery (p = 0.009; Table 4.7). The results of this 

study are similar to the findings of other researchers who focused on very PTBs and demonstrated 

that UGT infection was associated with decreased maternal age (Hillier et al. 1988), the 

development of histological chorioamnionitis (Hillier et al. 1988; Aaltonen et al. 2007; Hecht et al. 

2008; Kasper et al. 2010) and adverse respiratory outcomes for neonates (Abele-Horn et al. 1997b; 

Cultrera et al. 2006; Gwee et al. 2013).  

 

Significantly, this current study demonstrated that chorioamnion infection was associated with a 

history of chorioamnionitis in prior pregnancies, but was not a cause of LPT birth. Previous studies 

have also demonstrated that the most significant indicator of adverse outcomes in a current 

pregnancy is a past history of adverse pregnancy outcomes (Goldenberg et al. 2008b). Similarly, the 

most important predictor of LGT Streptococcus agalactiae (Group B Streptococcus or GBS) carriage 

during pregnancy is a prior history of harbouring this microorganism in the LGT during prior 

pregnancies (Di Renzo et al. 2014) and the most important indicator of delivering preterm in a 

current pregnancy is a prior PTB (Bloom et al. 2001). To the best of our knowledge, this is the first 

study to demonstrate an association between chorioamnion infection in a current pregnancy and a 

past history of chorioamnionitis. Previous studies have identified microorganisms within the 
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endometrium of reproductive-age women (Cassell et al. 1993b) and based on these findings, we 

propose that the female UGT (of both pregnant and non-pregnant women) may be colonised with 

microorganisms for prolonged periods. This may also explain the significant finding we reported for 

the first time, that women experience recurrent infections and adverse pregnancy outcomes, 

including histological chorioamnionitis, over multiple pregnancies.  

 

Of the microorganisms isolated, the human Ureaplasma spp. were the most prevalent 

microorganisms identified within the chorioamnion, accounting for more than 70% of all clinical 

isolates within this study. The other microorganisms isolated within this study included S. agalactiae 

(GBS), Bacteroides spp., Bifidobacterium spp., G. vaginalis, E. coli, Propionibacterium spp. and 

uncultured bacteria. Previously, studies have reported the presence of contaminating 

microorganisms in studies of placentae after very early PTBs, either from environmental sources or 

as a consequence of vaginal delivery (Leitich et al. 2003) and so it is first necessary to determine if 

the microorganisms isolated within our study are consistent with infection/colonisation of the 

chorioamnion. For this study, we defined ‘infection’ as the invasion of microorganisms accompanied 

by a reaction of the host (e.g. inflammation) (Schultz et al. 2003; Edwards and Harding 2004) and 

while many of the microorganisms isolated within our study are often found as normal flora of the 

female LGT (e.g. Ureaplasma spp., S. agalactiae, Bacteroides spp., Bifidobacterium spp., G. vaginalis 

and Propionibacterium spp.) (Anderson et al. 2013), ascending invasive infections are the most 

accepted route of intraamniotic infections (Kim et al. 2009). Therefore, the presence of these 

microorganisms within the chorioamnion is not unexpected and we further demonstrated that the 

presence of these microorganisms was associated with chorioamnionitis, strongly suggesting that 

these microorganisms found within chorioamnion tissue are consistent with infection and not 

contamination. Additionally, many of the microorganisms identified within our study have been 

implicated as a cause of intraamniotic infection in previous studies of very PTBs and have also been 

associated with bacterial vaginosis and a two-fold increase in the likelihood of delivering preterm 

(Nejad and Shafaie 2008). While 70% of the women in this study delivered vaginally, we identified no 

Lactobacillus spp. within any chorioamnion tissue specimens. Lactobacillus spp. have been isolated 

in more than 90% of vaginal specimens and the presence of this microorganism within placental 

tissue is consistent with contamination and not infection. Taken together, these results suggest that 

the aseptic sampling techniques used within our study prevented the contamination of 

chorioamnion tissues and that the microorganisms detected within our study are aetiological agents 

of chorioamnion infection and inflammation.  
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Within this current study, we also sought to determine the microorganisms most commonly 

associated with adverse pregnancy and neonatal outcomes. Women infected with Ureaplasma spp. 

were significantly younger (24.1 ± 07 yrs) than those women infected with other microorganisms 

(26.3 ± 1.3 yrs) or who were uninfected (27.8 ± 0.3 yrs; p = 0.002).  

 

For neonates, the diagnosis of respiratory distress syndrome was correlated with chorioamnion 

infection caused by other microorganisms (p = 0.016) but not with Ureaplasma spp. RDS is an acute 

respiratory condition associated with poor neonatal lung compliance following birth and is 

commonly reported for neonates delivered in the LPT period (Ramachandrappa and Jain 2009). 

Studies have demonstrated poor respiratory outcomes for neonates exposed to infections at < 32 

weeks of gestation (Benstein et al. 2003; Viscardi et al. 2006; Payne et al. 2010; Collins et al. 2013; 

Eun et al. 2013) and it is interesting that in this current study there was no association between 

Ureaplasma spp., the most common isolate in our study, and RDS. However, this is not surprising as 

previous studies in an ovine model have demonstrated that chronic fetal exposure to Ureaplasma 

spp. in utero resulted in improved neonatal lung gas volumes and increased production of 

surfactant, indicating that lung maturation was occurring (Moss et al. 2005; Kramer et al. 2009; Knox 

et al. 2010; Robinson et al. 2013). There are currently no studies which demonstrate similar 

respiratory outcomes in human neonates, and so further studies which test nasopharyngeal 

aspirates to determine if ureaplasmas are present at this site may determine if Ureaplasma spp. 

affect the LPT neonatal lung.  

 

The most significant finding of this current study was that chorioamnion infection with Ureaplasma 

spp., but not other microorganisms, was associated with the development of histological 

chorioamnionitis (p < 0.001). While we saw no significant association between the incidence of 

histological chorioamnionitis and LPT birth or the presence of other microorganisms; we did see a 

significant association between the presence of Ureaplasma spp. within the chorioamnion and 

chorioamnionitis (67.5%; p < 0.001). Previous studies have reported an association between 

infection with ureaplasmas and the development of histological chorioamnionitis (Table 4.11). 

Originally, Shurin et al. (1975) demonstrated that vaginal colonisation with Ureaplasma spp. was 

significantly associated with the development of histological chorioamnionitis during pregnancy, and 

these researchers suggested that it may be possible for these microorganisms to access the UGT at 

the time of pregnancy. Kundsin et al. (1984) identified that 53% of chorioamnion specimens 

contained Ureaplasma spp., and of these, 60% had evidence of histological chorioamnionitis.  
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Table 4.11. Previous of studies which demonstrate an association between Ureaplasma spp. and histological chorioamnionitis. While the prevalence of 

Ureaplasma spp. varies within these studies, the development of histological chorioamnionitis was consistently between 40 – 100% of all pregnancies, 

regardless of the gestational age at delivery 

1 Information not available for all placentae within study. Available data has been shown from each study 

Author Gestational 

age 

Specimen Number  Ureaplasma spp. 

positive1 

Ureaplasma spp. with 

chorioamnionitis1 

Ureaplasma spp. without 

chorioamnionitis1 

Shurin et al. (1975) all births Vaginal cultures 244 54 (22.1%) 32 (59.2%) 22 (40.7%) 

Yoon et al. (2003) ≤ 35 weeks Amniotic fluid 257 23 (9.0%) 15/20 (75%) 5/20 (25%) 

Park et al. (2013) < 34 weeks Amniotic fluid 213 35 (16.4%) 7/16 (43.7%) - 

Berger et al. (2009) < 28 weeks Amniotic fluid or placental tissue 435 32 (7.3%) 11/25 (44.0%)  3/46 (6.5%)  

Goldenberg et al. (2008) 23 – 32 weeks Cord blood 351 43 (12.2%) 33 (76.9%) - 

Viscardi et al. (2008) < 33 weeks Cord blood  313 46 (14.7%) 30 (65.0%) - 

Kundsin et al. (1984) < 37 weeks Placental tissue 156 53 (34.0%) 32 (60.4%) 21 (39.6%) 

Hillier et al. (1988) < 37 weeks Placental tissue 94  32 (34.0%) 19/29 (65.5%) 10/65 (15.4%) 

Van Marter et al. (2002) < 36 weeks Placental tissue 206 58 (28.1%) 51 (87.9%) 7 (12.1%) 

Miralles et al. (2005) < 33 weeks Placental tissue 14 6 (42.8%) 6 (100%) - 

Egawa et al. (2007) < 32 weeks Placental tissue 83 4 (4.8%) 4 (100%) - 

Hecht et al. (2008) < 28 weeks Placental tissue 1292 - 7 (70%) 3 (30%) 

Olomu et al. (2009) < 28 weeks  Placental tissue 866 52 (6%) 33 (65%)                  - 

Namba et al. (2010) ≤ 32 weeks Placental tissue 151 63 (42%) 52 (83.0%) 11 (17.0%) 

Sweeney et al. (current study) > 32 weeks Chorioamnion tissue 535 42 (7.8%) 28/42 (66.6%) 14/42 (33.3%) 
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Since these first reports, other studies have consistently demonstrated that the presence of 

Ureaplasma spp. in amniotic fluid (Yoon et al. 2003a; Berger et al. 2009; Park et al. 2013) and 

chorioamnion tissues (Kundsin et al. 1984; Hillier et al. 1988; Miralles et al. 2005; Egawa et al. 2007; 

Hecht et al. 2008; Berger et al. 2009; Olomu et al. 2009; Namba et al. 2010) correlated with 

histological chorioamnionitis. The prevalence of histological chorioamnionitis within Ureaplasma 

spp. positive placentae varied from 43.7% to 100% (Table 4.11). Similarly, several studies have also 

found that Ureaplasma spp. isolated from cord blood was associated with histological 

chorioamnionitis (Goldenberg et al. 2008a; Viscardi et al. 2008) and the presence of Ureaplasma 

spp. within cord blood may indicate a systemic spread of these organisms into the umbilical cord 

blood supply (Table 4.11). The major limitation of these studies was that they focused on the very 

early PTBs (< 32 weeks), when the majority of infections are often polymicrobial (Hillier et al. 1988; 

Jalava et al. 1996; Hecht et al. 2008; Onderdonk et al. 2008; Marconi et al. 2011). As a result, 

researchers have not been able to confidently claim that these microorganisms are true aetiological 

agents of histological chorioamnionitis. However, in our large study of LPT and term placentae we 

have demonstrated for the first time that infection with Ureaplasma spp. is independently 

associated with the development of histological chorioamnionitis, regardless of gestational age (LPT 

or term).  

 

While the presence of Ureaplasma spp. in this study was associated with the development of 

histological chorioamnionitis, we also assessed if the numbers of ureaplasmas present had an effect 

on the development of histological chorioamnionitis. Interestingly, there was no significant 

difference in the mean CFU of ureaplasmas present within placentae for pregnancies with or without 

histological chorioamnionitis. Within this study, we were only able to sample small sections of the 

placenta (not the entire placenta itself), which may be why we do not see a clear relationship 

between the numbers of microorganisms present and the severity of inflammation, these findings 

may also suggest that there are other factors which influence the development of histological 

chorioamnionitis. These findings are again in contrast to other studies, which have demonstrated a 

correlation between the mean CFU of Ureaplasma spp. and the severity of histological 

chorioamnionitis (Jacobsson et al. 2009; Kasper et al. 2010; Kacerovsky et al. 2011). Further studies 

that investigate the presence and concentration of innate and adaptive immune factors are required 

to determine if there are other host and/or microbe factors which may influence the development 

of chorioamnionitis.  
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UGT infection was demonstrated in ~11% of pregnancies within our current study. However, the 

question remains as to the other likely causes or aetiologies of birth in the LPT period. Some known 

precursors and risk factors (aside from infection) include: spontaneous preterm labour or pPROM, 

cervical incompetence, preeclampsia/eclampsia, placenta previa/accrete, multiple gestation 

pregnancies, intrauterine growth restriction, prior Cesarean section delivery, chorioamnionitis, fetal 

distress and/or adverse maternal outcomes requiring medically indicated preterm deliveries 

(Goldenberg et al. 2008b; Holland et al. 2009). Within our study population, many of these factors 

(which may predispose to PTB) were present. Of the women in our study, only 3.4% had evidence of 

a prior preterm delivery, while 32.9% experienced pPROM and 26.7% underwent Cesarean section 

delivery. Only 2.0% of these Cesarean section deliveries were medically indicated; while for the 

remainder it was not always clear if these deliveries were elective or medically indicated. Cervical 

incompetence was prevalent within our study population and was present in 48.2% of women. 

Preeclampsia and haemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome were 

also present in 16.1% and 1.1% of our study participants. Other important factors, such as fetal 

distress, intrauterine growth restriction, placental abruption and non-reassuring fetal signs were 

present in this study; however their incidence was quite low (3.2%, 4.1%, 2.2% and 1.1%, 

respectively). By contrast, 22.6% of women in our study had evidence of histological 

chorioamnionitis. Multiple gestation pregnancies were also quite common in this study, with 54 sets 

of twins and two sets of triplets all delivered in the LPT period. Given the presence of these factors, 

it is probable that a combination of these various precursors/risk-factors contribute to delivery in 

the LPT period, and as such, the aetiology of LPT birth is likely to be multifactorial. Similarly, Holland 

et al. (2009) investigated those LPT births which were deemed to be unavoidable and those which 

were elective and identified that >80% of all LPT births were unavoidable, due to outcomes similar to 

those mentioned above (preeclampsia, HELLP syndrome, placental abruption, intrauterine growth 

restriction etc.).  

 

To the best of our knowledge, this is the first study to report the prevalence of chorioamnion 

infection in the LPT period and ~11% of LPT and term pregnancies were affected by infection. 

Greater than 70% of all PTBs worldwide occur in the LPT period (Laws et al. 2010; March of Dimes 

2012); therefore, the number of infants potentially exposed to chorioamnion infection in this period 

is far greater (1.3 million per year) than the number of infants delivered at less than 32 weeks of 

gestation (702 000; See table 4.12). These findings highlight that irrespective of gestation, infection 

during pregnancy is an important finding. UGT infection at any stage of pregnancy can have severe 
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adverse outcomes for the mother and for the child and these findings should be a major 

consideration for obstetricians.  

 

Table 4.12. Estimated number of pregnancies affected by intraamniotic infection in both early and 

late preterm gestation 

 Early PTB (< 31 weeks) Late PTB (32 – 36 weeks) 

Prevalence in the preterm population1 15.6% 84.4% 

Total number of pregnancies2 2.3 million 12.7 million 

Rate of UGT infection3 Approx. 30% 10.4% 

Number of births potentially affected by infection4 702 000  1.3 million 

1 Statistics from Li et al 2011  

2 Number of births estimated by multiplying the total number infants delivered preterm (15 million 

annually (Bick 2012) by the total prevalence (percentage) of each population.  

3 Early PTB rate of intraamniotic infection as quoted in (March of Dimes 2012), while LPT birth rate 

has been identified within the present study.  

4 Calculated values based on proportion of intraamniotic infection within each populations. 

 

While this study has greatly extended our understanding of chorioamnion infection in the LPT and 

term period, there are some limitations within this study which must be addressed. More than 50% 

of women in this study were treated with intrapartum antibiotics and the dosage and identity of 

these antibiotics were not recorded within the database. However, we utilised both culture and 

molecular detection and identification techniques and we isolated both cultivable and non-cultivable 

bacteria. The use of antibiotics for prolonged period (> 3 hrs) during labour may have decreased the 

overall numbers of microorganisms isolated from these placentae and therefore the true rate of 

chorioamnion infection in the LPT period may in fact be higher than is reported within this study. 

While we were able to isolate/detect microorganisms, including uncultured bacterium, from these 

placentae, further investigation using more sensitive techniques, such as deep sequencing, may be 

useful in determining the true prevalence of infection in the LPT and term period, in order to fully 

characterise infection throughout gestation.  

 

The major strength of this study is that chorioamnion tissue was the specimen of choice. The use of 

this tissue, coupled with the proven aseptic collection techniques meant that we were able to isolate 

microorganisms from the chorioamnion and that the presence of these microorganisms was directly 

correlated with chorioamnionitis at the same anatomical site. Additionally, the low prevalence of 
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polymicrobial infections within this data set meant that we were able to clearly demonstrate 

differences in the sequelae incurred by women and infants infected with Ureaplasma spp. or other 

microorganisms, which has not always been possible in previous studies focused on PTBs, which 

occur at less than 32 weeks of gestation. Finally, histological chorioamnionitis was graded by United 

States pathologists based on Redline’s criteria (Redline et al. 2003), which is a well-accepted and 

highly published method for grading chorioamnionitis. The presence of chorioamnionitis was 

determined prior to any microbiological testing, thereby reducing any chance of influencing the data 

set. This study also confirmed that LPT infants experience more adverse sequelae than their term-

born counterparts, including respiratory distress syndrome, CPAP ventilation or respiratory support 

in the form of required oxygen support for > 6 hours in the first 24 hours of life.  These findings 

correlate with other studies that are now prevalent within the literature (Adams-Chapman 2006; 

Darnall et al. 2006; Engle and Kominiarek 2008; Colin et al. 2010; Hibbard et al. 2010; Berard et al. 

2012; Boyle and Boyle 2013). 

Conclusion 

 

The presence of chorioamnion infection in LPT and term placentae is an important finding and 

should be a major consideration for obstetricians. This current study demonstrated that 

chorioamnion infection directly correlates with inflammation of the chorioamnion (chorioamnionitis) 

and adverse pregnancy and neonatal outcomes, including neonatal respiratory sequelae. We also 

determined that the presence of current chorioamnion infection correlated with a history of 

chorioamnionitis in prior pregnancies, confirming that this is a risk factor and suggests that these 

organisms may colonise/infect the endometrium for chronic periods. 

 

This is also the first study to determine that Ureaplasma spp. were independently associated with 

the development of histological chorioamnionitis. Interestingly, while the prevalence of histological 

chorioamnionitis was higher in Ureaplasma spp.-affected pregnancies, there was no correlation 

between the number of ureaplasma CFU and the severity of inflammation, suggesting that other 

host and/or microbe interactions may influence the development of histological chorioamnionitis. 

Further studies which focus specifically on the host/microbe interactions and the development of 

histological chorioamnionitis are required to fully elucidate the pathogenesis of Ureaplasma spp. 

infections during pregnancy.  
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Chapter Five:   

 

 

Characterisation of Ureaplasma spp. 

from late preterm and term placentae   
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Introduction 
 

Ureaplasma spp. are prevalent colonisers of the lower genital tract (LGT) and are found in up to 80% 

of females and 50% of males (Cassell et al. 1993b; Volgmann et al. 2005). These organisms are 

considered to be of low virulence; however they are capable of causing serious infections. During 

pregnancy, Ureaplasma spp. can ascend and invade the upper genital tract (UGT) and are associated 

with spontaneous abortion and miscarriage (Robertson et al. 1986; Joste et al. 1994), preterm birth 

(PTB) (Hillier et al. 1988; Gerber et al. 2003; Goldenberg et al. 2008a) and preterm premature 

rupture of membranes (pPROM) (Kacerovsky et al. 2011). Previous studies have also identified 

Ureaplasma spp. as the most prevalent microorganisms isolated from placentae with histological 

chorioamnionitis (Hillier et al. 1988; Eschenbach 1993; Aaltonen et al. 2007; Berger et al. 2009; 

Kasper et al. 2010; Namba et al. 2010; Czikk et al. 2011); in Chapter Four we have demonstrated for 

the first time that Ureaplasma spp. are independently associated with histological chorioamnionitis, 

regardless of gestational age (late preterm or at term). These microorganisms are also capable of 

causing severe neonatal outcomes, including sepsis (Waites et al. 1993), meningitis (Gwee et al. 

2013), bronchopulmonary dysplasia (BPD) (Viscardi et al. 2002; Kasper et al. 2010; Sung et al. 2010) 

and an increased risk of developing of cerebral palsy (Berger et al. 2009).  

 

While up to 42% of women may have in utero infection with Ureaplasma spp. during pregnancy 

(Miralles et al. 2005), the presence of these microorganisms is not always associated with the 

development of histological chorioamnionitis or adverse pregnancy outcomes. In particular, a study 

by Gerber et al. (2003) identified that of the women with intraamniotic infections caused by 

Ureaplasma spp. (n = 29), only 21% developed pPROM, 24% experienced PTB and more than 70% 

went on to deliver at term with no apparent adverse pregnancy outcomes. It is currently unclear 

why only some women experience adverse pregnancy outcomes, but it has been suggested that 

virulent species or serovars of Ureaplasma spp. may be associated with adverse pregnancy 

outcomes. The human Ureaplasma spp. are categorised into two distinct species and 14 serovars: U. 

parvum is comprised of serovars 1, 3, 6 and 14; while U. urealyticum is comprised of serovars 2, 4, 5 

and 7 - 13 (Robertson et al. 2002) and studies have identified some ureaplasma serovars as being 

associated with adverse pregnancy or neonatal outcomes. U. urealyticum serovar 4 has been 

associated with recurrent miscarriages (Naessens et al. 1988), while U. urealyticum serovar 9 was 

found to be the most prevalent ureaplasma serovar isolated from tracheal and gastric aspirates of 

infants (Eun et al. 2013). By contrast, Sung et al. (2011) detected U. parvum serovars 3 and 6 as the 

most prevalent serovars in respiratory secretions of infants, and their presence was associated with 

the development of BPD. Furthermore, U. parvum serovars 3 and 6 have been identified as the most 
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common ureaplasma isolates from the LGT of asymptomatic women (Knox et al. 1997; Knox et al. 

2003); while U. parvum serovar 6 was found to be associated with adverse pregnancy outcomes 

(Knox et al. 1998). Interestingly, U. parvum serovars 3 and 6 were found to be the most prevalent 

ureaplasma serovars within semen samples from infertile men in an Australian population and U. 

parvum serovar 6 was found to be the most adherent to sperm and was not always removed by 

assisted reproductive technology washing procedures (Knox et al. 2003). In an ovine model of 

intraamniotic infection with U. parvum serovars 3 or 6, low passage clinical isolates obtained from 

these infertile men were intraamniotically injected into pregnant ewes and induced chorioamnionitis 

and colonised the fetal lung tissue (Moss et al. 2005; Moss et al. 2008; Collins et al. 2010; Knox et al. 

2010; Dando et al. 2012; Collins et al. 2013; Robinson et al. 2013). In these studies, the presence of 

Ureaplasma spp. was not always associated with histological chorioamnionitis and this is similar to 

what has been reported in human pregnancies affected by ureaplasmas. These results demonstrate 

that different ureaplasma serovars may be more prevalent in geographically distinct study 

populations. Different methods were also used to detect, speciate and serotype these clinical 

isolates. Because of the variability in results of these studies, the question remains as to whether 

virulence/pathogenicity is species- or serovar-specific; or if it is the lack of consistent 

speciating/serotyping methods that has resulted in the variation reported by these studies. By 

designing a simple and effective diagnostic assay, which effectively speciates and serotypes clinical 

isolates, it may be possible to determine if there are 'virulent' species or serovars of Ureaplasma 

spp., or it may be that there are other virulence determinants that play an important role in the 

development of adverse pregnancy and neonatal outcomes.  

 

Culture for Ureaplasma spp. remains the gold-standard method for detection of these 

microorganisms within clinical specimens (DiGiulio 2012). However, this is often time-consuming and 

difficult to perform in clinical and diagnostic laboratories, as these fastidious organisms do not grow 

on standard bacteriological media. Instead specialised transport and culture media is required and 

these are not often available commercially and therefore must be produced 'in house'. To improve 

the detection of Ureaplasma spp., conventional and real-time PCR assays have been developed 

(Knox and Timms 1998; Yi et al. 2005; Xiao et al. 2010); however, not all of these assays are designed 

for high-throughput laboratories, they require highly stringent parameters and they are  time-

consuming. The Ureaplasma spp. are not routinely screened for during pregnancy or in placentae 

after delivery, despite the strong association between Ureaplasma spp. and adverse pregnancy 

outcomes (Australian Government Department of Health and Ageing 2012). By designing and 
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optimising a detection tool which speciates and serotypes the human Ureaplasma spp., it may be 

possible to identify 'virulent' ureaplasma species and/or serovars. 

 

Others have suggested that ‘virulence’ may not be limited to particular Ureaplasma spp., but that 

the maternal immune responses may also be crucial to the development of adverse sequelae. Dando 

et al. (2012) demonstrated that chronic intraamniotic Ureaplasma spp. infections in an ovine model 

resulted in the production of anti-ureaplasma IgG antibodies within the maternal serum in some 

ewes, but not in others. The presence of serum IgG antibodies was correlated with an increased 

expression of interleukin (IL)-1β, IL-6 and IL-8, but decreased expression of TNF-α and IL-10 within 

chorioamnion tissue. Similarly, in humans it has been demonstrated that different immune 

responses were detected, depending on the ethnicity of women (Peltier et al. 2012). Chorioamnion 

tissue derived from Caucasian (n = 6) or African-American (n = 5) women were exposed to 

Ureaplasma spp. Exposure of chorioamnion tissue in vitro to U. parvum resulted in elevated levels of 

TNF-α in the Caucasian-derived tissues; while in African-American-derived tissues, U. parvum was 

associated with low levels of IL-10. Additionally, U. urealyticum infection induced elevated levels of 

IL-10 and IL-1β in Caucasian tissues, but induced no immune response in Africa-American 

chorioamnion tissue (Peltier et al. 2012). These findings suggest that differences in the maternal 

immune response may influence the development and severity of disease and warrant further 

investigation.  

 

It has also been proposed that women may experience different pregnancy outcomes, depending on 

antigenic variation of the pathogen. The multiple banded antigen (MBA) is the major antigen 

recognised by the host immune system in response to ureaplasma infection and is composed of two 

major domains: an upstream conserved region that is similar in all Ureaplasma spp. serovars, and a 

downstream region that is composed of tandem repeating units which contain both cross-reactive 

and serovar-specific epitopes (Zheng et al. 1995; Zheng et al. 1996). Importantly, it is this surface-

exposed region that has been shown to vary in size in vivo (Zheng et al. 1994), and numerous studies 

by our group have demonstrated mba/MBA size variation within a well-established ovine model of 

ureaplasma intraamniotic infection (Knox et al. 2010; Dando et al. 2012; Robinson et al. 2013). In 

particular, a study by Knox et al. (2010) reported variation in the severity of inflammation of sheep 

tissues, including the chorioamnion. After pregnant ewes were intraamniotically injected with the 

same dose of Ureaplasma spp., this study showed that after delivery some sheep had no evidence of 

histological chorioamnionitis, whilst others had moderate or severe inflammation. Interestingly, it 

was identified that the number of mba/MBA size variants expressed by these ureaplasmas was 
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inversely correlated with the severity of inflammation and histological chorioamnionitis. Based on 

these findings, it was hypothesised that MBA size variation may be a mechanism by which 

Ureaplasma spp. modulate the host immune response or evade host immune detection/eradication 

(Knox et al. 2010). Importantly, it is yet to be determined if ureaplasmas isolated from human 

pregnancies are able to vary their surface-exposed MBA and if this has any effect on pregnancy 

outcomes.  

 

For this current study, we hypothesised that the host may not always recognise Ureaplasma spp., 

due to variation of the surface-exposed MBA. We further hypothesised that MBA variation may be 

associated with differences in the host immune response. The aims of this study were to (i) develop 

and optimise a real-time PCR and high resolution melt (HRM) assay to speciate and serotype U. 

parvum clinical isolates and to identify any 'virulent' U. parvum serovars; (ii) to assess the presence 

of MBA/mba variation occurring in clinical isolates; and (iii) to characterise the cytokines, 

chemokines and growth factors within cord blood in response to chorioamnion infection with 

Ureaplasma spp. and other microorganisms. The presence of Ureaplasma species and serovars, the 

degree of MBA/mba variation and the levels of cytokines, chemokines and growth factors were 

correlated with the development of adverse pregnancy and neonatal outcomes. 
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Materials and Methods: 

All methods pertaining to this chapter are summarised in Chapter Three.  

 

Briefly, Ureaplasma spp. clinical isolates that were isolated from late preterm placentae (Chapter 

Four) were stored (see Chapter Three, section 3.4) for use in these experiments. American type 

culture collection (ATCC) strains of U. parvum, U. urealyticum and other microorganisms (detailed in 

Chapter Three, section 3.5) were also used in this chapter.  

 

For real-time PCR and HRM assays, Ureaplasma spp. clinical isolates, ATCC strain ureaplasmas and 

other bacterial isolates were cultured (Chapter Three, sections 3.5 and 3.6.1) and the DNA extracted 

(Chapter Three, section 3.8). DNA template from each clinical isolate, ATCC strain ureaplasmas and 

other microorganisms were tested using designed PCR primers (Chapter Three, sections 3.15 and 

3.16) targeting the mba gene and were validated for their specificity and serotyping abilities 

(Chapter Three, sections 3.17 and 3.18). Once the ability of the real-time PCR assays to speciate and 

serotype U. parvum serovars 1, 3, 6 and 14 was confirmed, ureaplasma clinical isolates were then 

serotyped using these designed assays (Chapter Three, section 3.19). Serotyping results were then 

compared to the results of mba gene sequencing (as per Chapter Three, sections 3.9.2, 3.10, 3.11 

and 3.12). 

 

The presence or absence of mba/MBA size variation of these Ureaplasma spp. clinical isolates was 

also assessed. The proteins of these clinical isolates were extracted (Chapter Three, section 3.6.1) 

and MBA protein size variation was assessed by western blot (Chapter Three, section 3.13). mba 

gene size variation was also assessed following DNA extraction (Chapter Three, section 3.8.1) and 

PCR assays which targeted the downstream repetitive region of the mba gene (Chapter Three, 

section 3.14). 

 

Statistical analysis 

Data are presented as the mean value, plus the standard error of the mean (SEM). Ureaplasma spp. 

spp. and serovars were correlated with pregnancy outcome data (maternal demographic data, 

maternal pregnancy outcomes and neonatal outcomes) to determine if some Ureaplasma spp. and 

serovars were more ‘virulent’ than others. Additionally, the presence/absence of mba/MBA size 

variation was correlated with pregnancy outcome data (as above) and the concentrations of cord 
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blood cytokines, chemokines and growth factors. Data was analysed using analysis of variance 

(ANOVA) tests. Statistical significance was accepted as p < 0.05.  
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Results 

PCR Primers 

Four PCR primer pairs (see Table 5.1) were designed to specifically amplify U. parvum at different 

regions of the mba gene (see Supplementary Figure 8.1). Each of the forward (F) primers was 

optimised with each reverse (R) primer, to produce a total of 16 PCR assays. Six of these primer pairs 

(see Table 5.2) amplified U. parvum serovars without cross-reactivity to the U. urealyticum serovars 

(2, 4, 5, 7 - 13), or to any other microorganisms tested. The primer pairs which demonstrated cross-

reactivity were excluded from further analysis and six successful primer pairs were further 

investigated by real-time PCR.  

Table 5.1. Novel PCR primers targeting areas of the multiple banded antigen (mba) gene, designed 

for use in real-time PCR and high resolution melt assays 

Primer name Primer Sequence Tm % AT content 

UpuF 5’ CTAATAATGTTATTGATAATGCAG 3’ 55 °C 75% 

UpmbaR 5’ GTTTTCAATTTCGTAAACTGC 3’ 55 °C 67% 

UpuF2 5’ TTATAATAAAAAATATCTAATAATG 3’ 56 °C 92% 

UpmbaR2 5’ CCAGCTCCAACTAAGGTAAC 3’  56 °C 50% 

UpuF3 5’ TTATATAATTAAAAGTGCAAGTGC 3’  57 °C 75% 

UpmbaR3 5’ TTGTTCATTAGGTTTTGGTTCACGA 3’ 57 °C 64% 

UpuF4 5’ GTGCTAAATAAAAAGTATTTGC 3’ 57 °C 73% 

UpmbaR4 5’ CCTGAAGTCTTGATTAATCCAC 3’ 57 °C 59% 

 

U. parvum real-time PCR assay optimisation  

Using real-time PCR, each of the six PCR assays (UpuF/UpmbaR, UpuF2/UpmbaR, UpuF2/UpmbaR4, 

UpuF3/UpmbaR4, UpuF4/UpmbaR and UpuF4/UpmbaR4) again demonstrated amplification of only 

U. parvum serovars 1, 3, 6 and 14 and these assays produced a single fluorescent ‘peak’, consistent 

with the production of a single PCR amplicon.  

 

The high resolution melt (HRM) curve data generated for each of the six primer pairs were 

scrutinised and only a single PCR primer pair was able to differentiate the ATCC U. parvum serovars 

1, 3, 6 and 14 according to the differentiation criteria defined in the methods chapter (see Chapter 

Three, Section 3.14). The PCR assay utilising UpuF2 and UpmbaR primers demonstrated specificity 

and no cross-reactivity to any other microorganisms tested (including U. urealyticum; Figure 5.1A). 
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This assay produced a single amplicon as evidenced by the standard melting graph (Figure 5.1B) and 

differentiated U. parvum serovars 1, 3, 6 and 14 by HRM (Figure 5.1C and 5.1D). This real-time PCR 

and HRM assay was selected for further analysis of U. parvum clinical isolates.  

 

Table 5.2.  Comparison of real-time PCR assays for the amplification and differentiation of U. parvum 

serovars. Of the 16 assays optimised, only six were able to successfully amplify U. parvum serovars 

and one assay was also able to differentiate U. parvum serovars 1, 3, 6 and 14 by high resolution 

melt. 

Primer Pairs Amplicon Size Specificity 1 
Cross-reactivity 2 

Serotyping ability 3 

UpuF / UpmbaR 429 bp Yes No No 
UpuF / UpmbaR2 314 bp No Yes - Kp - 
UpuF / UpmbaR3 594 bp No Yes - Uu - 
UpuF / UpmbaR4 631 bp No Yes - Kp - 
UpuF2 / UpmbaR 445 bp Yes No Yes 

UpuF2 / UpmbaR2 330 bp No Yes - Uu - 
UpuF2 / UpmbaR3 610 bp No Yes - Uu - 
UpuF2 / UpmbaR4 647 bp Yes No No 
UpuF3 / UpmbaR 373 bp No Yes - Uu - 

UpuF3 / UpmbaR2 258 bp No Yes - Uu - 
UpuF3 / UpmbaR3 538 bp No Yes - Sa, Kp - 
UpuF3 / UpmbaR4 575 bp Yes No No 
UpuF4 / UpmbaR 353 bp Yes No No 

UpuF4 / UpmbaR2 238 bp No Yes - Uu - 
UpuF4 / UpmbaR3 518 bp No Yes - Uu - 
UpuF4 / UpmbaR4 555 bp Yes No No 

1 Specificity – amplifies U. parvum serovars only. 
2 Cross-reactivity – other species that were amplified when the PCR assay was not specific to U. 

parvum. Uu – U. urealyticum, Kp – Klebsiella pneumoniae, Sa – Streptococcus agalactiae. 
3 Serotyping ability – the ability of each primer pair to amplify only U. parvum serovars 1, 3 6 and 14; 

and to differentiate each of the four serovars by HRM analysis (see Chapter three, section 3.18 for 

serotyping guidelines).  

 

Efficacy of U. parvum real-time PCR and HRM assay for serotyping of clinical 

isolates 

 

Clinical isolates of U. parvum (n = 55) were tested using the real-time PCR and HRM assay (with 

primers UpuF2 and UpmbaR), and of these isolates, 31 (56.4%) were amplified using the optimised 

assay. Ureaplasmas that had been cultured in vitro were detected and serotyped using this assay; 

however, many of the clinical specimens, which were not cultured (original clinical specimen) 

contained low DNA concentrations and were not always detected or typed (HRM plots were 

affected) using this assay.  
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Each cultured clinical isolate produced a single fluorescent ‘peak’ by standard melt, consistent with 

the production of a single amplicon. These fluorescent ‘peaks’ often matched, or were very similar to 

U. parvum serovars 1, 3, 6 and 14 ATCC positive controls and the amplicons produced by these 

clinical isolates were of the correct size, when compared to positive control U. parvum serovars 

(ATCC serovars 1, 3, 6 and 14). 

 

The standard melt analysis and HRM profiles produced by each clinical isolate demonstrated 

similarities to the HRM profiles produced by ATCC U. parvum serovars 1, 3, 6 and 14 (Fig 5.2A). The 

clinical isolates were serotyped and assigned to a serovar based on the results of HRM (Figure 5.2B) 

and difference plots (Figure 5.2C) 

 

For example, clinical specimens 122 and 429 produced HRM profiles that corresponded to U. parvum 

serovar 6 and these clinical isolates were identified as U. parvum serovar 6. Similarly, clinical isolate 

498B produced a HRM profile that was highly similar to U. parvum serovar 1 (Figure 5.2C). The 

serovar identity of 498B was confirmed using the software to be U. parvum serovar 1. When U. 

parvum serovar 1 ATCC strain was designated as the baseline genotype, the HRM curve of clinical 

isolate 498B was plotted within 5 fluorescent units (the cut-off, indicated by the red dotted line) of 

serovar 1 baseline controls and this confirmed that this clinical isolate was U. parvum serovar 1.  

 

Of the 31 clinical isolates which were successfully amplified, 20/31 (64.5%) were serotyped 

successfully using the designed real-time PCR and HRM assay (Supplementary Table 8.2). 

Unfortunately, in some instances clinical isolate HRM curves did not correlate with any of the U. 

parvum positive controls or were outside of the ± 5 fluorescent unit cut-off for successful serotyping 

and so these clinical isolates were unable to be successfully serotyped. It was hypothesised that the 

erroneous results seen may be due to differences (additional SNPs) in the genetic sequences 

amplified and so we selected a small group of clinical isolates for sequencing to confirm this theory. 

However, PCR amplicons generated from the real-time PCR and HRM were not found to contain any 

SNPs within their sequenced amplicons (data not shown).  
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Figure 5.1. Real-time PCR and HRM assays performed on ATCC strains of U. parvum serovars 1, 3, 6 and 14. Real-time PCR amplification (panel A) produced 

strong amplification of U. parvum serovars only, while standard melt analysis (panel B) demonstrated a single fluorescent ‘peak’, consistent with 

amplification of the gene target. Normalised melt curves (panel C) demonstrated differences in the melt profiles of U. parvum serovars 1, 3, 6 and 14, which 

were further differentiated by difference plots (panel D) 
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Figure 5.2. Real-time PCR and HRM assay performed on U. parvum ATCC strains and clinical isolates. PCR amplification (panel A) demonstrated strong 

amplification of U. parvum clinical isolates. Normalised melt curves (panel B) demonstrated similarities to U. parvum clinical isolates which were able to 

successfully serotype 64.5% of clinical isolates tested when difference plots (panel C) were analysed. Representative data is shown 
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Ureaplasma species associated with adverse pregnancy and neonatal outcomes 

 

The pregnancy and neonatal outcomes for participants whose placentae were infected with U. 

parvum and U. urealyticum were compared to determine if the different ureaplasma species were 

associated with adverse outcomes.  

 

Women from whom U. urealyticum (n = 6) was isolated in the chorioamnion had a lower maternal 

age (22.8 ± 2.0 yrs) than those women in whom U. parvum (n = 36; 24.7 ± 0.8 yrs, p = 0.046; Table 

5.3) was identified. Almost all women (> 97%) with ureaplasma infection attended at least one 

prenatal care visit during their pregnancy (Table 5.3). 

 

Women who were infected with U. parvum or U. urealyticum within the chorioamnion had no 

differences in pregnancy outcomes (Table 5.4); however, women infected with U. urealyticum 

reported a higher prevalence of histological chorioamnionitis in previous pregnancies (33.3%), 

compared to women who were infected with U. parvum (5.6%, p = 0.031; Table 5.3). Those women 

who were infected with U. urealyticum also had a higher incidence of pPROM (66.7%), when 

compared to those infected with U. parvum during their current pregnancies (30.6%, p = 0.06; Table 

5.4). 

 

For those babies born to women infected with Ureaplasma spp. during pregnancy, there were no 

differences in the neonatal outcomes for infants infected with U. parvum, compared to those 

infected with U. urealyticum (Chapter Nine, Suppmentary Table 9.3). 

 

  

A B 

C 
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Table 5.3. Maternal demographic data for women whose chorioamnion was infected with U. parvum and U. urealyticum during pregnancy. 

 U. parvum (n = 36) U. urealyticum (n = 6) Significance 

Maternal Age 24.7 ± 0.8 (17 – 32) 22.8 ± 2.0 (19 – 32) 0.046 

Gravida1 1.9 ± 0.2 (1 – 5) 3.2 ± 0.3 (2 – 4) NS2  

Parity3 1.7 ± 0.2 (1 – 4) 2.3 ± 0.4 (1 – 4) NS 

Marital Status    

- Married 12/36 (33.3%) 1/6 (16.7%) NS 

- Single 24/36 (66.7%) 5/6 (83.3%) NS 

Medical Insurance    

- Private 14/36 (38.9%) 1/6 (16.7%) NS 

- Medicaid 16/36 (44.4%) 5/6 (83.3%) NS 

- Self pay/uninsured 4/36 (11.1%) 0/36 (0.0%) NS 

- Unknown 2/36 (5.6%) 0/36 (0.0%) NS 

Ethnicity    

- Caucasian 22/36 (61.1%) 1/6 (16.7%) NS 

- African-American 12/36 (33.3%) 5/6 (83.3%) NS 

- Asian 0/36 (0.0%) 0/6 (0.0%) NS 

- More than one race 2/36 (5.6%) 0/6 (0.0%) NS 

Evidence of prenatal care 35/36 (97.2%) 6/6 (100.0%) NS 
1 Gravida – total number of clinical pregnancies 

2 NS - Not statistically significant 

3 Parity – total number of viable offspring resulting from pregnancies 

Data was analysed by ANOVA 
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Table 5.4. Maternal pregnancy outcomes for women whose chorioamnion was infected with U. parvum and U. urealyticum during pregnancy 

 U. parvum (n = 36) U. urealyticum (n = 6) Significance 

Signs/symptoms of infection1 4/36 (11.1%) 1/6 (16.7%) NS2 

Chorioamnionitis documented previously 2/36 (5.6%) 2/6 (33.3%) 0.031 

Chorioamnionitis in current pregnancy3 22/36 (61.1%) 5/6 (83.3%) NS 

- Maternal Stage 1.5 ± 0.1 (1 – 3) 1.6 ± 0.2 (1 – 2) NS 

- Fetal Stage 2.0 ± 0.2 (1 – 3) 3.0 ± 0.04  NS 

Antibiotics administered < 3hrs prior to delivery 15/36 (41.7%) 4/6 (66.7%) NS 

PTL/cervical incompetence 16/36 (44.4%) 4/6 (66.7%) NS 

preterm premature rupture of membranes (pPROM) 11/36 (30.6%) 4/6 (66.7%) NS  
1 Signs or symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal tenderness,  foul-smelling vaginal discharge, maternal 

tachycardia (> 120 bpm) or fetal tachycardia (> 160 bpm) 

2 NS - Not statistically significant 

3 Chorioamnionitis was determined by US pathologists and graded for the severity of inflammation according to (Redline et al. 2003) 

4 No range or standard error of the mean was available for this data point, only one infant had evidence of amnion involvement  

Data was analysed by ANOVA 
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U. parvum serovars associated with adverse pregnancy and neonatal outcomes 

 

We also compared the pregnancy and neonatal outcomes for women infected with the different U. 

parvum serovars (1, 3, 6; n = 31) (Table 5.5). 

 

Women who were infected within the chorioamnion with U. parvum serovar 3 were younger (21.4 ± 

0.9 yrs) than women in whom U. parvum serovars 1 and 6 were identified (26.4 ± 1.1 yrs and 26.0 ± 

1.2 yrs, respectively; p = 0.024. Table 5.5). Women who were infected with U. parvum serovar 1 

were more likely to be married (p = 0.006), while women infected with U. parvum serovars 3 and 6 

were more frequently unmarried (p = 0.008).There were no other differences in the demographic 

data between these three groups of women, nor were there any differences in the incidence of 

adverse pregnancy or neonatal outcomes (Chapter Nine, Supplementary Tables 8.4 and 8.5).   

A B 
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Table 5.5. A comparison of the demographic data of women infected with U. parvum serovars 1, 3 and 6 (n = 311).  

 Serovar 1 

(n = 10) 

Serovar 3 

(n = 9) 

Serovar 6 

(n = 12) 

Significance 

Maternal Age 26.4 ± 1.1 (20 – 32) 21.4 ± 0.9 (17 – 26) 26.0 ± 1.4 (19 – 32) 0.024 

Gravida2 2.1 ± 0.2 (1 – 4) 1.7 ± 0.4 (1 – 4) 1.9 ± 0.4 (1 – 5) NS3 

Parity4 2 ± 0.2 (1 – 4) 1.4 ± 0.2 (1 – 2) 1.8 ± 0.3 (1 – 4) NS 

Marital Status     

- Married 8/10 (80.0%) 3/9 (33.3%) 1/12 (8.3%) 0.006 

- Single  2/10 (20.0%) 6/9 (66.7%) 11/12 (91.7%)  0.008 

Medical insurance     

- Private 7/10 (70.0%) 2/9 (22.2%) 5/12 (41.7%) NS 

- Medicaid 2/10 (10.0%) 2/9 (22.2%) 7/12 (58.3%) NS 

- Self pay/uninsured 1/10 (10.0%) 3/9 (33.3%) 0/12 (0.0%) NS 

- Unknown  0/10 (0.0%) 0/10 (0.0%) 0/12 (0.0%) NS 

Ethnicity     

- Caucasian 9/10 (90.0%) 7/9 (77.8%) 6/12 (50.0%) NS 

- African-American 1/10 (10.0%) 2/9 (22.2%) 5/12 (41.7%) NS 

- Asian 0/10 (0.0%) 0/9 (0.0%) 0/12 (0.0%) NS 

- More than one race 0/10 (0.0%) 0/9 (0.0%) 1/12 (8.3%) NS 

Evidence of prenatal care 10/10 (100.0%) 9/9 (100.0%) 11/12 (91.7%) NS 
1 Five of the U. parvum clinical isolates were not serotyped by the real-time PCR and HRM assay  

2 Gravida  - total number of clinical pregnancies 

3 NS – not statistically significant 

4 Parity – total number of viable offspring resulting from pregnancies. 

Data was analysed by ANOVA 
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Characterisation of the Ureaplasma spp. multiple banded antigen (mba/MBA) by 

PCR and western blot   

 

Western blot of the MBA 

 

Western blot analyses of the U. parvum serovars 1, 3 and 6 ATCC strains demonstrated MBA protein 

bands of approximately 80 kDa; 90 kDa and 70 kDa, respectively (Figure 5.3). U. urealyticum serovars 

2, 4, 5 7 – 13 produced MBA protein bands of 70 kDa; 80 kDa; 70 kDa; 80 kDa; 100 kDa; 90 kDa; 75 

kDa; 80 kDa; 75 kDa and 70 kDa, respectively (serovars 8 and 10 shown in Figure 5.3). 

  

The MBA proteins expressed by clinical isolates were compared to the ATCC strains and variation in 

the size of MBA proteins ranged from 55 kDa – 100 kDa. The MBA proteins expressed by some 

clinical isolates demonstrated no variation, i.e. these proteins were the same size as the antigens 

expressed by ATCC strain serovars (Serovar 1 isolates: 1A, 1B, 262T, 507; Serovar 3 isolates: 33A, 

33B, 322T, 325; and Serovar 6 isolates: 334A, 334B, 364A; Figure 5.3). For other clinical isolates, 

variation in the size of their MBA proteins was demonstrated. These clinical isolates demonstrated 

either a ‘single MBA variant’, which was considered to be an individual protein band that differed in 

size when compared to the corresponding ATCC strain controls (Serovar 1 isolates: 43, 301, 483T, 

498A, 498B; Serovar 3 isolates: 44A, 44B, 314T, 365, 435; Serovar 6 isolates: 27, 50, 55B, 122, 182, 

310T and 429; Serovar 8 isolate: 8; and Serovar 10 isolate 300); or in some cases, ‘multiple MBA 

variant’ bands were seen, where more than one MBA band was identified by western blot (Serovar 1 

isolates: 290T, 473T; Serovar 6 isolates: 182, 429; Figure 5.3).  

 

For some clinical ureaplasma isolates (258, 297, 351, 438, 480T and 510T), we were unable to 

demonstrate MBA protein expression with any of the 14 serovar-specific antisera tested, and 

therefore we were unable to determine if MBA size variation occurred.  

 

PCR of the mba  

To assess if MBA size variation (as demonstrated in western blots) was also occurring within the 

gene (mba) encoding the MBA protein, we performed PCR assays which amplified the downstream 

repetitive region of the mba for clinical isolates of serovar 1, serovar 3 and serovar 6. Whilst western 

blots were performed on serovar 8 and serovar 10 clinical isolates, it was not possible to amplify the 

downstream region of the mba gene in U. urealyticum isolates due to differences in the gene regions 

targeted by available PCR primers (Figure 5.3).  
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The ATCC strain U. parvum serovars 1, 3 and 6 produced PCR amplicons of approximately 900 bp, 

950 bp and 800 bp, respectively (Figure 5.3). Similar to the results seen in western blots, we 

identified variation in the size of amplicons produced by U. parvum clinical isolates, and these 

amplicons ranged in size from 350 bp to 1200 bp. The variation in size of the PCR amplicons 

produced by U. parvum ATCC strains and the clinical isolates directly correlated with the variation in 

size seen in MBA proteins in western blots. Clinical isolates which demonstrated ‘no mba variation’ 

had amplicons which were the same size as the ATCC strain controls. Furthermore, those clinical 

isolates which demonstrated a ‘single mba variant’ or ‘multiple mba variants’ produced mba 

amplicons, which directly correlated with the size and number of MBA proteins expressed by each 

clinical isolate (Figure 5.3).  

 

U. parvum serovar 6 clinical isolate 480T did not produce an mba amplicon when tested using 

primers that amplified either U. parvum serovars 1 and 6; or U. parvum serovars 3 and 14. Due to 

the absence of a downstream mba amplicon and the absence of an MBA protein by western blot, a 

PCR assay targeting the upstream region of the mba was performed. This assay confirmed the 

presence of the upstream conserved portion of the mba gene.  
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Figure 5.3. Variation of the mba gene and MBA protein was detected by conventional PCR and western blot. Variation was identified by running each 

protein and PCR amplicon sample with both an ATCC strain positive control and a molecular weight marker. Images were then cropped and displayed at 

their correct molecular weight and sorted according to their serovar groupings.  
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mba/MBA variation and its association with adverse pregnancy outcomes 

 

The pregnancy and neonatal outcomes of women from whom Ureaplasma spp. with no mba/MBA 

variation was isolated were compared to the outcomes for pregnancies in which a single mba/MBA 

size variant was isolated, or those in which multiple mba/MBA size variants were isolated.  

 

There were no differences in the maternal demographic data associated with women in which 

mba/MBA variation was identified, when compared to those women in whom no mba/MBA 

variation was identified (Chapter Nine, Supplementary Table 9.6) 

 

However, a major finding of this study was that mba/MBA variation as demonstrated by western 

blot and PCR was associated with the prevalence of histological chorioamnionitis. Placentae from 

which no mba/MBA variation was seen demonstrated a higher incidence of histological 

chorioamnionitis (81.8%), compared to placentae from which ureaplasmas that expressed only a 

single mba/MBA variant were isolated (43.7%, p = 0.023; Table 5.6).  

 

There were no differences in the pregnancy or neonatal characteristics that were associated with 

mba/MBA variation. 
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Table 5.6. Comparison of pregnancy outcomes in pregnancies with Ureaplasma spp. infection and 

mba/MBA variation  

 No mba/MBA 

variants1 

(n = 11) 

Single 

mba/MBA 

variant 

(n = 16) 

Multiple 

mba/MBA 

variants 

(n =4 ) 

Significance 

Signs/symptoms of infection2 2/11 (18.2%) 0/16 (0.0%) 1/4 (25.0%) NS3 

Chorioamnionitis documented previously 0/11 (0.0%) 1/16 (6.2%) 1/4 (25.0%) NS 

Chorioamnionitis in current pregnancy4  9/11 (81.8%) 7/16 (43.7%) 3/4 (75.0%) 0.023 

- Maternal Stage 1.5 ± 0.2 (1 - 3) 1.1 ± 0.1 (1 - 2) 2 ± 0.5 (1 - 3) NS 

- Fetal Stage 2.5 ± 0.3 (1- 3) 2 ± 0.3 (1- 3) 1.5 ± 0.3 (1 - 2) NS 

Antibiotics administered < 3 hours prior to delivery 5/11 (45.4%) 8/16 (50.0%) 1/4 (25.0%) NS 

Cervical incompetence 3/11 (27.3%) 8/16 (50.0%) 2/4 (50.0%) NS 

preterm premature rupture of membranes (pPROM) 3/11 (27.3%) 7/16 (43.7%) 0/4 (0.0%) NS 
1 mba/MBA size variation was determined by conventional PCR and western blot targeting the mba 

gene and its expressed protein (MBA). Data was analysed using ANOVA tests.  
2 Signs and symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal 

tenderness, foul-smelling vaginal discharge, maternal tachycardia (> 120 bpm) or fetal tachycardia (> 

160 bpm) 
3 NS – Not statistically significant 
4 Chorioamnionitis was determined by US pathologists and the severity of inflammation was graded 

according to (Redline et al. 2003).  

 

 

Figure 5.4. There was a trend between the presence of Ureaplasma spp. MBA variation (both single 

and multiple MBA variants) and a reduction in inflammation within the fetal (amnion; shown in dark 

green) portion of the chorioamnion membranes. Data are presented as mean, plus or minus the 

standard error of the mean (SEM). 
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Cytokines, chemokines and growth factors 

 

The presence of cytokines, chemokines and growth factors within cord blood was also tested for any 

correlation with the development of adverse pregnancy and neonatal outcomes. BioPlex assays 

detecting IL-6, IL-8, monocyte chemoattractant protein (MCP)-1 and granulocyte colony-stimulating 

factor (G-CSF) were performed by our collaborators and provided for analysis within this project.  

 

Cord blood sampled from pregnancies with chorioamnion infection, regardless of the aetiology of  

the infection, demonstrated significantly higher concentrations of IL-8 (536.9 pg/mL) and G-CSF 

(403.0 pg/mL), compared to concentrations in pregnancies in which no chorioamnion infection was 

detected (56.6 pg/mL and 231.7 pg/mL, p = 0.03 and p= 0.04, respectively; Figure 5.5). 

 

Figure 5.5. A comparison of the concentrations of cytokines, chemokines and growth factors within 

cord blood obtained from women with and without chorioamnion infection. Data was analysed by 

ANOVA and are presented as the mean, plus or minus the standard error of the mean (SEM). 
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The detection of Ureaplasma spp. within the chorioamnion was associated with higher 

concentrations of G-CSF (p = 0.02) within cord blood, but not with the factors IL-6, IL-8 and MCP-1. 

By contrast, cord blood collected from pregnancies in which the chorioamnion was infected by 

microorganisms (other than Ureaplasma spp.) demonstrated higher levels of IL-8 (p = 0.01, Figure 

5.6).  

 

 

Figure 5.6. Comparison of the concentrations of cytokines, chemokines and growth factors within 

cord blood of pregnancies with chorioamnion infections caused by Ureaplasma spp. or other 

microorganisms; compared to pregnancies in which no infection was detected. Data was analysed by 

ANOVA and are presented as the mean, plus or minus the standard error of the mean (SEM) 
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We also assessed if cord blood cytokines, chemokines and growth factor concentrations correlated 

with the presence or absence of histological chorioamnionitis. In Chapter Four, we demonstrated 

that infection with Ureaplasma spp. (but not other microorganisms) was associated with the 

development of histological chorioamnionitis. Pregnancies which were affected by histological 

chorioamnionitis demonstrated elevated levels of MCP-1 (p = 0.05) and G-CSF (p = 0.008; Figure 5.7).  

 

 

Figure 5.7. Cytokines, chemokines and growth factor concentrations within cord blood from 

pregnancies exposed to histological chorioamnionitis and those which had no evidence of 

chorioamnionitis. Data was analysed by ANOVA and are presented as the mean, plus or minus the 

standard error of the mean (SEM) 

 

 

Due to similarities in cord blood G-CSF levels in Ureaplasma spp.-infected placentae (Figure 5.6) and 

placentae with histological chorioamnionitis (Figure 5.7), we also assessed if mba/MBA variation was 

associated with variation in cord blood cytokine concentrations.  
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Concentrations of IL-8 and G-CSF were elevated in placentae, which were infected with ureaplasmas 

that demonstrated no mba/MBA variation, compared to placentae which were ureaplasma-infected 

but demonstrated a single or multiple mba/MBA variants (p = 0.044, p = 0.008, respectively; Figure 

5.8). By contrast, levels of MCP-1 were elevated in placentae which were infected with Ureaplasma 

spp. which demonstrated mba/MBA variation, when compared to those pregnancies which were 

infected with ureaplasmas but demonstrated no mba/MBA variation.  

 

 

Figure 5.8. Correlations of cytokines, chemokines and growth factors present in cord blood from 

Ureaplasma spp.-infected pregnancies. Concentrations of immune factors differed in pregnancies 

which demonstrated no mba/MBA variation (n = 11) and those which expressed a single (n = 16) or 

multiple (n = 4) mba/MBA variants. Data was analysed by ANOVA and are presented as the mean, 

plus or minus the standard error of the mean (SEM)  
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Discussion 
 

The pathogenic role of Ureaplasma spp. as an aetiological agent of adverse pregnancy outcomes is 

controversial. These microorganisms have been isolated from the amniotic fluid and placentae of 

women experiencing PTB and the development of histological chorioamnionitis (Hillier et al. 1988; 

Aaltonen et al. 2007; Berger et al. 2009; Namba et al. 2010); however, Ureaplasma spp. have also 

been isolated from women who delivered at term with no apparent adverse outcomes (Gray et al. 

1992; Gerber et al. 2003). To investigate the pathogenesis of Ureaplasma spp. within human 

pregnancies, we conducted a prospective study to investigate the prevalence of Ureaplasma spp. 

and serovars in late preterm and term pregnancies and also to characterise the variation of the MBA 

surface-exposed protein. We correlated the presence of ureaplasmas with adverse pregnancy and 

neonatal outcomes, including the development of histological chorioamnionitis. Furthermore, the 

presence of cytokines, chemokines and growth factors within cord blood was also correlated with 

the presence of ureaplasmas.  

 

In this current program of research (Chapter Four), we demonstrated that Ureaplasma spp. were the 

most prevalent bacteria detected within the chorioamnion of women who delivered late preterm 

(LPT) or at term, and were identified in 42/535 (7.8%) of placentae. U. parvum was the most 

prevalent ureaplasma species present, accounting for 85.7% of all ureaplasma isolates. Furthermore, 

we have now identified in this current chapter that U. parvum serovars 1, 3 and 6 were the most 

prevalent ureaplasma serovars within placentae obtained from women who delivered LPT or at 

term. The women who were infected/colonised with U. urealyticum had a higher prevalence of prior 

chorioamnionitis (Table 5.4); but we have demonstrated that regardless of the Ureaplasma spp. or 

serovar isolated within chorioamnion tissue, the presence of ureaplasmas was associated with 

histological chorioamnionitis. Chorioamnionitis was documented in 61.1% of U. parvum-infected 

placentae and 83.3% of U. urealyticum-infected placentae. Similarly, we demonstrated no difference 

in the prevalence of chorioamnionitis in placentae infected with U. parvum serovars 1, 3 or 6 (70.0%, 

55.5% and 58.3%, respectively) and no major differences in adverse pregnancy or neonatal 

outcomes were seen for women infected with these different serovars. These findings are consistent 

with previous studies that have shown Ureaplasma spp. to be associated with chorioamnionitis 

(Hillier et al. 1988; Aaltonen et al. 2007; Egawa et al. 2007; Hecht et al. 2008), but these ureaplasmas 

may also be isolated from placentae with no evidence of chorioamnionitis and the pregnancy may 

continue until term delivery (Gray et al. 1992; Gerber et al. 2003; Perni et al. 2004).  
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One of the most significant findings of this current study was that Ureaplasma spp. isolated from 

placentae of human pregnancies demonstrated differences in their MBA proteins. Of the isolates 

obtained from chorioamnion tissue, some expressed no MBA variants (and their proteins were the 

same size as ATCC strain serovars), while other clinical isolates expressed a single or multiple MBA 

size variants (as evidenced by single or multiple MBA bands which differed in size, when compared 

to ATCC strain serovar controls). This study also demonstrated that regardless of the Ureaplasma 

species or serovar that were present, the lack of mba/MBA variation was associated with a higher 

incidence of histological chorioamnionitis and a more severe inflammatory response within the fetal 

(amnion) membranes (grade 2.5; Table 5.6, Figure 5.4). By contrast, when mba/MBA variation 

occurred (either a single or multiple MBA variants), this was associated with a lower incidence of 

histological chorioamnionitis and a decreased inflammatory response within the fetal (amnion) 

membrane (grade 2.0 and 1.5, respectively; Table 5.6. Figure 5.4). Previous studies have 

demonstrated that the severity of histological chorioamnionitis varied depending on the numbers of 

Ureaplasma spp. present within the amniotic fluid or chorioamnion (Jacobsson et al. 2009; Kasper et 

al. 2010; Kacerovsky et al. 2011). However, in Chapter Four, we did not find an association between 

histological chorioamnionitis and the numbers of ureaplasmas present within the chorioamnion 

(Chapter Four, Table 4.4) but in this current study, we demonstrated that mba/MBA variation was 

associated with the severity of inflammation and histological chorioamnionitis, particularly within 

the fetal membranes.  

 

Antigenic variation is an important mechanism used by pathogenic microorganisms to mediate the 

interactions between bacteria and their environment. Variation of antigens/proteins are thought to 

be an essential strategy for successful invasion, infection and to assist the microorganisms to survive 

in the presence of a host immune response in vivo (Darmon and Leach 2014). Antigenic variation can 

occur either through size variation (as demonstrated in our current study) or by selective "switching 

on/off" of a particular protein (often referred to as phase variation). Antigen variation is not a 

unique trait of Ureaplasma spp. and many different microorganisms possess the ability to vary their 

surface-exposed antigens. It has been shown that other Mycoplasma spp. are able to vary the size of 

their surface-exposed proteins, such as the MgpB and MgpC adhesins of M. genitalium, the Vpma 

protein of M. agalactiae and the Vaa putative adhesin protein of M. hominis (Glew et al. 2000; Glew 

et al. 2002; Chopra-Dewasthaly et al. 2008; Citti et al. 2010). Antigen variation in Ureaplasma spp. 

and other Mycoplasma spp. are regulated by two major mechanisms. The first mechanism involves 

DNA slipped strand mispairing and/or nucleotide insertion/deletion in tandem repeating units (Citti 

et al. 2010). The second mechanism involves phase variation or the selective “switching on/off” and 
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this involves DNA rearrangements mediated by site-specific recombinases (Citti et al. 2010). 

Importantly, both size and phase variation of the Ureaplasma spp. MBA have been demonstrated 

previously (Zheng et al. 1992; Zheng et al. 1994; Zheng et al. 1995; Monecke et al. 2003; Zimmerman 

et al. 2009; Knox et al. 2010; Zimmerman et al. 2011; Dando et al. 2012; Robinson et al. 2013; 

Zimmerman et al. 2013).  

 

Ureaplasma mba/MBA variation has been reported in a sheep model of intraamniotic Ureaplasma 

spp. infection (Knox et al. 2010; Dando et al. 2012; Robinson et al. 2013). Knox et al. (2010) 

demonstrated the first evidence of MBA variation within an ovine sheep model. In this study, the 

same number of Ureaplasma spp. were injected into the amniotic fluid of pregnant ewes, but 

differences in the severity of histological chorioamnionitis was observed. While some ewes 

developed mild/moderate or severe histological chorioamnionitis, in other sheep there was no 

evidence of histological chorioamnionitis, despite the presence of high numbers of Ureaplasma spp. 

within the amniotic fluid. This study also identified an inverse correlation between the number of 

MBA size variants and the severity of histological chorioamnionitis: in sheep amniotic fluid which 

contained five or fewer MBA size variants, severe histological chorioamnionitis was seen in 

placentae; however, sheep amniotic fluid which contained nine or more MBA size variants had mild 

or no evidence of chorioamnionitis. It has also been demonstrated that the degree of MBA size 

variation was reliant on the duration of infection, with no variation seen after 3 days of infection, 

some variation seen after 7 days of infection (Robinson et al. 2013) and numerous size variations 

observed following chronic (69 day) infections of the amniotic fluid (Knox et al. 2010; Dando et al. 

2012; Robinson et al. 2013). Interestingly, Dando et al. (2012) demonstrated that MBA variation was 

not limited to ‘virulent’ or ‘avirulent’ strains of Ureaplasma spp. Strains that were associated with 

severe chorioamnionitis (a ‘virulent’ strain) or the absence of chorioamnionitis (an ‘avirulent’ strain) 

were injected into the amniotic cavity of pregnant ewes. Whilst the size of the MBA varied 

throughout gestation, even within the same animal, this study showed no difference in the 

propensity for the ‘virulent’ and ‘avirulent’ strains of Ureaplasma spp. to vary their surface-exposed 

MBA. In this current PhD study, we have demonstrated the presence of MBA size variants within the 

chorioamnion of women who delivered LPT or at term. This study is also the first to demonstrate 

that there is a relationship between the variation of the Ureaplasma spp. MBA and the severity of 

inflammation within the UGT in human pregnancies. Some ureaplasmas demonstrated multiple MBA 

size variants, which suggests in vivo colonisation/infection of the UGT for 'sufficient time' to 

generate these MBA size variants or the presence of a host selective pressure on the ureaplasmas 

present.  
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Phase variation of the Ureaplasma spp. MBA has also been demonstrated in several studies. 

"Switching on/off" of the MBA has been demonstrated following serial in vitro passaging of 

ureaplasmas with high concentrations of MBA-specific antibodies (Monecke et al. 2003; Dando et al. 

2012). This "switching off" of the MBA was shown to be reversible, as ureaplasmas were again able 

to express the MBA lipoprotein following the removal of these antibodies. Zimmerman et al. (2009) 

further investigated the role of MBA phase variation and identified that a DNA inversion event 

between the MBA and an intergenic region downstream of a hypothetical gene (UU376) may serve 

as the mechanism by which MBA expression could be "switched off". These researchers also 

identified another gene (UU172), which may also serve as an additional DNA inversion site for 

"switching on/off" of the MBA (Zimmerman et al. 2011). This same group also further elucidated a 

putative tyrosine recombinase (XerC), which they proposed as the mediator of "on/off switching" of 

the MBA (Zimmerman et al. 2013) and similar tyrosine recombinases have been shown to mediate 

phase variation in other Mycoplasma spp. (Chopra-Dewasthaly et al. 2008). In our current study, a 

number of clinical isolates did not produce an MBA band by western blot when tested with the 14 

different anti-U. parvum or U. urealyticum serovar-specific antisera. U. urealyticum clinical isolates 

258, 297, 351 and 438 (n = 4) did not demonstrate the presence of an MBA in individual western 

blots probed with each of the ten U. urealyticum antisera. Similarly, a single U. parvum clinical 

isolate 480T did not produce an MBA band by western blot in response the four different U. parvum 

antisera, nor was an mba amplicon produced by PCR assays targeting the downstream repetitive 

region of the mba gene. These results are consistent with phase variation and the "switching off" of 

the MBA antigen and the mba gene. In 4/5 (80.0%) of placentae from which these ureaplasmas were 

isolated, there was evidence of histological chorioamnionitis; however, the maternal grading of 

inflammation was mild (mean 1.2) and only one placentae demonstrated inflammation of the fetal 

(amnion) portion of the chorioamnion membrane. Another possible explanation is that these 

isolates may be significantly different to the known ATCC strains of Ureaplasma spp. and therefore 

cannot be detected by the methods used within this study. Recent molecular subtyping of 

Ureaplasma spp. clinical isolates has shown extensive horizontal gene transfer (Xiao et al. 2011b; 

Paralanov et al. 2012) and this may account for the inability to type these strains (and could be a 

contributing factor as to why we were unable to fully characterise these isolates). Non-typeable 

clinical isolates of Ureaplasma spp. have been reported previously (Knox et al. 1998; Echahidi et al. 

2002; Knox et al. 2003) and so it is not surprising that we were unable to fully characterise all of the 

clinical isolates within our study. Regardless, this is an interesting finding and is potentially the first 

report of phase variation and "switching off" of the MBA in vivo.  
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Significantly higher concentrations of IL-8 and G-CSF were detected within cord blood in association 

with chorioamnion infection, regardless of the aetiology (ureaplasmas or other microorganisms), 

when compared to pregnancies with no infection (Figure 5.5). The presence of other microorganisms 

(not including Ureaplasma spp.) was associated with a higher concentration of IL-8 within cord blood 

(1269.4 pg/mL vs. 60.6 pg/mL for those who were uninfected; p = 0.01; Figure 5.6); while the 

presence of Ureaplasma spp. was associated with a higher concentration of G-CSF (489.3 pg/mL vs. 

230.2 pg/mL than for uninfected placentae; p = 0.023; Figure 5.6). Higher concentrations of G-CSF 

were also present in cord blood when histological chorioamnionitis was present within placentae 

(Figure 5.7). G-CSF is a cytokine that affects the proliferation and differentiation of neutrophil 

progenitors and previous studies have identified elevated levels of G-CSF associated with histological 

chorioamnionitis (Boggess et al. 1997; Hoskins et al. 1997). In Chapter Four, we demonstrated that 

the presence of Ureaplasma spp. was associated with histological chorioamnionitis (p < 0.01). In this 

current chapter, we further demonstrated that the presence of Ureaplasma spp. or the presence of 

histological chorioamnionitis is significantly associated with elevated levels of the cytokine G-CSF. 

This strengthens the finding of an association between ureaplasmas and the development of 

histological chorioamnionitis in utero and indicates that this cytokine may be a biomarker of 

asymptomatic chorioamnionitis during pregnancy.  

 

The concentrations of cytokines, chemokines and growth factors in cord blood were also correlated 

with ureaplasma MBA variation detected within chorioamnion clinical isolates. When no ureaplasma 

mba/MBA variation was detected in clinical isolates (identified within chorioamnion tissue), higher 

concentrations of IL-8 were detected within the cord blood (137.7 pg/mL, p = 0.04), when compared 

to those placentae which were infected with ureaplasmas that demonstrated mba/MBA size 

variation. By contrast, clinical ureaplasma isolates that demonstrated a single or multiple MBA 

variants were associated with lower levels of IL-8 (73.7 pg/mL and 46.8 pg/mL, respectively; p = 

0.044) within cord bloods obtained from ureaplasma-infected placentae. Other studies have also 

shown elevated levels of IL-8 in amniotic fluid of women with chronic histological chorioamnionitis 

(Ogge et al. 2011), in the umbilical cord blood of pregnancies complicated by preterm premature 

rupture of membranes and histological chorioamnionitis (Andrys et al. 2010) and the increased 

transcription of IL-8 within placental tissues in association with prostaglandin synthesis and preterm 

labour (Phillips et al. 2014). IL-8 is an important cytokine involved in the migration of neutrophils and 

granulocytes towards the site of infection (Bickel 1993). Neutrophil infiltration of Ureaplasma spp.-

infected placentae has been demonstrated previously and is associated with the development of 
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inflammation and the development of histological chorioamnionitis in a sheep model of 

intraamniotic ureaplasma infection (Dando et al. 2012). Within cord blood, the reduction of this 

inflammatory mediator would result in a decreased likelihood of the host mounting an immune 

response against these intraamniotic pathogens. The novel finding that G-CSF is elevated in cord 

blood when the placentae are infected with ureaplasmas that do not demonstrate MBA variation 

may be a biomarker of more severe chorioamnionitis and certainly requires further investigation.  

 

An interesting trend in the levels of G-CSF in association with MBA size variation was also observed. 

Despite the low numbers in our study groups, we were able to identify that low levels of G-CSF were 

present in ureaplasma-infected placentae, which also demonstrated size variation of the MBA. These 

placentae demonstrated approximately 40% lower concentrations of G-CSF, when compared to 

placentae which were infected with ureaplasmas that did not demonstrate any MBA size variation. It 

is important to note that while this difference was not statistically significant, it may be due to the 

small cohort sizes available. Again, further studies are required to confirm these findings.  

 

Studies in a rodent model of Ureaplasma spp. urogenital infection have also shown an association 

between adverse sequelae and host immune responses. Reyes et al. (2009) infected Fisher F344 rats 

with U. parvum and sampled bladder tissues at two weeks post-infection. Two major sequelae were 

seen in Ureaplasma-infected rats: moderate sequelae in the form of urinary tract infection (UTI) and 

inflammation and the more severe sequelae of UTI with struvite crystals. The cytokine profiles within 

the bladder tissues obtained from these animals were significantly different. There was no 

significant differences in the microbial load (number of CFU) of Ureaplasma spp. in bladder tissues; 

however, levels of IL-18, MCP-1 and interferon (IFN)-γ were elevated in those animals with moderate 

sequelae (UTI and inflammation). By contrast, animals with severe sequelae (UTI and struvite 

crystals) demonstrated significant decreases in IL-18, MCP-1, IFN-γ, while IL-1α, IL-1β and growth 

related oncogene/keratinocyte chemoattractant (GRO/KC - the rat analogue of human IL-8) were 

significantly elevated. This is similar to the findings of our current study, which demonstrated high 

levels of IL-8 within cord blood when no MBA variation was present; but when these organisms 

varied their surface-exposed MBA, the levels of this cytokine were significantly reduced. The results 

of this study further confirm that the numbers of ureaplasmas within tissue are not a critical factor 

in the development of pathology, however, the host inflammatory response appears to be a key 

determinant of the severity of inflammatory response and the development of adverse sequelae 

(Reyes et al. 2009).  
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A real-time PCR and HRM assay to speciate and serotype U. parvum clinical isolates was also 

designed and optimised. This assay successfully speciated and serotyped 64.5% of U. parvum clinical 

isolates but a further 11 isolates could not be subtyped. A number of conventional and real-time PCR 

assays that detect and subtype U. parvum and U. urealyticum have been published, however, many 

of these assays are time-consuming and laborious (Cao et al. 2007a; Cao et al. 2007b) to perform, 

multiple reactions are required to type the 14 known serovars and these are not all based on the 

same gene. These assays are not easily transferred into clinical and diagnostic laboratories and many 

laboratories still diagnose human infections using culture and PCR designed to detect rather than 

serotype.  

 

Knox et al. (1998) designed conventional PCR assays that serotyped the U. parvum serovars based on 

polymorphisms within a fragment of the mba gene. Conventional PCR assays and sequencing of the 

mba in this study confirmed that the upstream conserved portion of the mba demonstrates serovar-

specific differences in each of the four ATCC U. parvum serovars, however, additional 

SNPs/polymorphisms were also found in some clinical isolates. Kong et al. (2000) designed 

conventional PCR assays that were able to differentiate groups of U. parvum and U. urealyticum 

serovars based on 16S rRNA gene, the 23S rRNA intergenic spacer region, urease gene subunits and 

the mba gene. These assays detected and identified three groups within the U. parvum species: 

serovar 1, serovars 3/14 and serovar 6. The 10 U. urealyticum serovars were also detected and 

differentiated into three groups: (i) serovars 2, 5, 8 and 9; (ii) serovars 4, 10, 12 and 13; and (iii) 

serovars 7 and 11. These reactions were also laborious to complete and required post-PCR analyses 

such as agarose gel electrophoresis, which increased the risk of post-PCR contamination. Real-time 

PCR assays that detect, speciate and subtype the ureaplasmas simultaneously would be the most 

advantageous for use within a clinical laboratory setting. 

 

The major advantage of real-time PCR compared to conventional PCR assays are accessibility, 

sensitivity and cost-effectiveness. The real-time and rapid nature of real-time PCR is also a major 

benefit in clinical and diagnostic laboratories, when time-to-diagnosis is of great importance. Real-

time PCR assays have been developed to speciate and/or serotype the human Ureaplasma spp. 

(Mallard et al. 2005; Yi et al. 2005; Cao et al. 2007a; Cao et al. 2007b). Xiao et al. (2010) created real-

time PCR assays to differentiate U. parvum and U. urealyticum serovars. An initial real-time PCR 

assay differentiated U. parvum and U. urealyticum species, followed by 14 monoplex real-time PCR 

assays that serotyped all 14 serovars belonging to Ureaplasma spp. Each assay was specifically 

optimised for MgCl2 concentration, primer concentration and annealing temperature. Some assays 
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also utilised touch-down protocols in order to gain specificity and used numerous gene targets, 

some of which are hypothetical or have unknown functions and are yet to be fully characterised 

(Glass et al. 2000; Xiao et al. 2010). While these assays were able to serotype numerous clinical 

isolates, the combination of specific assay cycling parameters, coupled with the additional 

'speciating' PCR, followed by the 14 monoplex serotyping real-time PCR assays means that these 

assays are not suited to a high-throughput clinical and diagnostic laboratory. This large number of 

real-time PCR reactions (most of which would be done in duplicate or triplicate) significantly increase 

the cost and time associated with testing and serotyping ureaplasma clinical isolates and is 

predominantly a research tool. 

 

Our research group previously developed a real-time PCR and high resolution melt (HRM) assay that 

was able to amplify and differentiate U. parvum and U. urealyticum species; and that was also able 

to serotype the four U. parvum serovars. HRM is a post-PCR analysis in which the temperature of 

each tube is increased in precise increments to 'melt' the amplicon. By amplifying the upstream 

conserved region of the mba gene, this assay speciated and serotyped 20/31 (64.5%) of clinical 

isolates; however, some clinical isolates had additional SNPs and these organisms were unable to be 

typed successfully (Sweeney et al. (2010) unpublished findings). More recently, Payne et al. (2014) 

designed a real-time PCR and HRM assay very similar to the unpublished work within our research 

group. The assay previously optimised in our group and by Payne et al. (2014) amplified the 

upstream conserved region of the mba gene. However, the major shortcomings of both of these 

assays is that amplification produced two distinct fluorescent 'peaks', consistent with the 

amplification of more than one amplicon. Therefore, these assays required further optimisation.  

 

The real-time PCR and HRM assay designed within the current study is superior to previous real-time 

PCR and HRM assays and this assay specifically amplifies and speciates the four U. parvum serovars 

(Serovar 1, 3, 6 and 14; Figure 5.1). Only a single specific amplicon is produced and we have 

demonstrated the utility of real-time PCR and HRM for the speciation and differentiation of 

ureaplasma clinical isolates. While some isolates were unable to be successfully typed, this is 

consistent with other studies and further supports the proposal that there may be additional 

ureaplasma serovars, or that horizontal gene transfers affects our ability to fully characterise 

Ureaplasma serovars.  

 

The major advantage of this assay is that it targets a ureaplasma-specific gene and polymorphisms 

within this gene are able to distinguish each of the U. parvum serovars, which account for > 90% of 
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all clinical isolates (Knox et al. 1997; Knox et al. 2003; Sung et al. 2010). By selecting a well-

characterised gene, we have been able to create an easy and rapid method for the speciation and 

serotyping of U. parvum clinical isolates. The use of the mba gene is also more likely to reflect the 

antigenic differences in clinical isolates, as it is based on the MBA protein, the antigen which 

represents the basis for the current serotyping scheme (Robertson et al. 2002). Whilst this assay has 

been found to be a fast and easy way to serotype U. parvum clinical isolates, there are some 

limitations of the assay. Firstly, clinical specimens may contain a mixture of serovars and these may 

not be distinguished by this assay and additional assays which target specific serovars (such as those 

developed by Knox et al. 1997) would be required to identify mixtures. Furthermore, it is important 

to have similar initial concentrations of DNA amplicons for the successful serotyping of U. parvum 

clinical isolates. A recent study by Ng et al. (2014) demonstrated that the melting temperatures and 

curves seen by HRM are dependent on DNA starting concentration and that variation in this starting 

concentration of DNA may result in the inability to serotype some isolates. In an attempt to increase 

the sensitivity of this assay, some researchers have added MgCl2 following PCR cycling and prior to 

HRM analysis; this has been shown to reduce the variability of fluorescence and increase the ability 

to successfully 'type' clinical isolates (Ng et al. 2014). Within our study, we standardised the amount 

of DNA template added to each real-time PCR and HRM assay and this is a major strength of our 

study. However, uncultured clinical isolates could not always be serotyped using this real-time PCR 

and HRM assay due to low concentrations of template within the specimen, which affected HRM 

curves. The addition of MgCl2 in different concentrations following PCR cycling did not improve the 

ability of the assay to serotype the clinical isolates. Additionally, an important consideration in the 

use of speciating and serotyping assays for Ureaplasma spp. is that as yet there appears to be no 

intrinsically ‘virulent’ or ‘avirulent’ Ureaplasma species or serovars and we demonstrated no major 

differences in adverse pregnancy or neonatal outcomes amongst the different species (U. parvum or 

U. urealyticum) and prevalent serovars (1, 3 and 6).  

 

Conclusions: 

 

This is the first prospective study to demonstrate MBA variants within the chorioamnion of women 

who delivered LPT or at term. Regardless of the Ureaplasma species or serovar present, when MBA 

variation occurred there was a decreased incidence of histological chorioamnionitis, particularly in 

the amnion (fetal) membranes. This is also the first study to demonstrate differences in cord blood 

cytokines, chemokines and growth factors in association with MBA variation of ureaplasmas. The 

cytokine IL-8 and growth factor G-CSF were significantly higher in Ureaplasma spp.-infected 
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placentae which demonstrated no MBA variation. By contrast, placentae which were infected with 

ureaplasmas which varied their surface-exposed MBA were associated with significantly lower levels 

of IL-8 and G-CSF in the corresponding cord blood. 

 

The ability of Ureaplasma spp. to vary their surface-exposed MBA is consistent with the evasion of 

host immune detection and eradication. Ureaplasma spp. have been isolated from within the 

amniotic sac as early as 15 weeks of gestation (Cassell et al. 1993b; Gerber et al. 2003) and animal 

models have confirmed that ureaplasmas may survive and replicate in the amniotic cavity, even in 

the presence of an immune response, establishing chronic infections in vivo. It is likely that 

prolonged intraamniotic infections with Ureaplasma spp. will result in adverse neonatal outcomes, 

due to the prolonged exposure of the fetus to ureaplasmas in utero. Infection with Ureaplasma spp. 

has been associated with bronchopulmonary dysplasia (BPD), sepsis, meningitis and pneumonia. In 

severe cases, ureaplasmas have also been associated with the development of adverse CNS 

outcomes and cerebral palsy at 1 year of age (Berger et al. 2009).  

 

The findings of this study further suggest that it is unlikely that there are 'virulent' Ureaplasma 

species or serovars; however, the host-microbe interactions (as evidenced by MBA size variation) 

and the host immune response (as evidenced by cord blood cytokines) may determine the severity 

of inflammation and pathology. 
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Introduction   

 

Preterm birth (PTB); delivery < 37 weeks of gestation, accounts for 10% of all births worldwide (Bick 

2012; March of Dimes 2012). Despite an increased awareness and strategies for managing women at 

risk of delivering preterm, the rates of PTB continue to increase in almost every country. With 70% 

of neonatal morbidity and up to 50% of neonatal and infant mortality associated with PTB, there is a 

need to understand how these births occur and, in the long-term, to prevent these births from 

occurring (Goldenberg et al. 2008b). Infection of the female upper genital tract (UGT) is a major 

finding in women, and 40% of women who deliver preterm have evidence of UGT infections 

(Goldenberg et al. 2002; DiGiulio 2012). Of the pathogens associated with PTB, the human 

Ureaplasma species (U. parvum and U. urealyticum) are the bacteria most frequently isolated from 

the UGT of women experiencing PTB, histological chorioamnionitis, funisitis and preterm premature 

rupture of membranes (pPROM) (Hillier et al. 1988; Cassell et al. 1993b; Knox et al. 1997; Novy et al. 

2009; DiGiulio 2012).  

 

It is commonly believed that microorganisms within the female lower genital tract (LGT) may ascend 

and cause UGT infections (Goldenberg et al. 2000b). These microorganisms, often normal flora of 

the LGT, ascend through the cervix to infect/colonise the choriodecidual space and the 

chorioamnion. Within the chorioamnion, microorganisms (including Ureaplasma spp.) are able to 

elicit strong immune responses, including increased expression or production of inflammatory 

mediators such as cytokines, chemokines, growth factors, matrix metalloproteinases and 

prostaglandins (Goldenberg et al. 2002; Goldenberg et al. 2005). The induction of pro-inflammatory 

mediators activate and recruit granulocytes, including neutrophils and monocytes and macrophages 

to the site of infection, amplifying the inflammatory response and it is this inflammation that has 

been attributed to adverse pregnancy outcomes, such as histological chorioamnionitis, funisitis and 

pPROM. The general pathways that may lead to PTB or adverse pregnancy outcomes have been 

described previously (Goldenberg et al. 2002; Behrman 2007; Challis et al. 2009); however, we do 

not yet fully understand the host immune responses that are specifically triggered during infection 

with Ureaplasma spp.  

 

Previous studies have demonstrated that the Ureaplasma spp. multiple banded antigen (MBA) is the 

major pathogen-associated molecular pattern (PAMP) of ureaplasmas and this surface-exposed 

lipoprotein binds/interacts with Toll-like receptors (TLRs) 1, 2 and 6, activating nuclear factor (NF)-kB 

and the production of the proinflammatory cytokines (Shimizu et al. 2008). Immune responses to 
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Ureaplasma spp. UGT infections have been investigated previously using animal models, including 

mice (von Chamier et al. 2012; Allam et al. 2014), sheep (Moss et al. 2005; Knox et al. 2010; Dando 

et al. 2012; Robinson et al. 2013) and non-human primates (Yoder et al. 2003; Viscardi et al. 2006; 

Novy et al. 2009); however, the results of these studies may not always align with human host 

immune responses, as the signalling pathways which lead to PTB in animals are often different to 

those in humans (Mitchell and Taggart 2009). This limits the usefulness of these animal models in 

investigating the role of the host immune response during Ureaplasma spp. infections.  

 

More recently, host immune responses to infection have been studied using human gestational 

tissues. The placenta is a critical research specimen that offers researchers a unique opportunity to 

study the immune responses produced by both the maternal and fetal tissues upon exposure to 

stimuli. Previous studies have utilised chorioamnion tissue explants to study the host immune 

responses to ureaplasma infections. Abrahams et al. (2013) exposed chorioamnion explants to heat-

killed U. parvum and U. urealyticum and demonstrated significant increases in mRNA expression of 

TLR 8 when stimulated with U. parvum but not with U. urealyticum. A study by Aaltonen et al. 

(2007), similarly stimulated human chorioamnion explants with heat-killed Ureaplasma spp. and 

demonstrated significant increases in the production of TNF-α, IL-10 and prostaglandin (PG)-E2. 

Similarly, Menon et al. (2009) measured the cytokine and prostaglandin responses after primary 

chorioamnion tissues were exposed to ureaplasmas inactivated by heat and demonstrated that 

stimulation with ureaplasmas resulted in significant increases in TNF-α and IL-10. Other studies have 

also shown key cytokines to be increased following stimulation with heat-inactivated Ureaplasma 

spp., with levels of IL-1β, TNF-α, IL-8, IL-10 and PGE2 being significantly increased upon exposure to 

these pathogenic microorganisms (Estrada-Gutierrez et al. 2010; Peltier et al. 2012). However, each 

of these studies utilised ureaplasmas that had been heat-killed; which destroyed their viability and 

surface-exposed lipoproteins of these microorganisms. These changes were likely to affect how 

these microorganisms interacted with chorioamnion tissue cells and may also have affected TLR 

signalling; therefore, the immune responses seen within these studies may not truly reflect what 

occurs in vivo. In addition, each of these studies utilised primary chorioamnion explants incubated in 

well-plates, and so the origin of these immune responses could not be determined (i.e. they were 

unable to determine if these cytokines were produced by the maternal or fetal interfaces) and so 

further studies are required to fully elucidate human host immune responses to Ureaplasma spp.  

 

Infection of the chorioamnion may be modelled more accurately using an ex vivo Ussing chamber 

system. Keelan et al. (2009) adapted this Ussing chamber model, which had traditionally been used 
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to study the permeability and secretory functions of the gut epithelia (Heyman et al. 1988; Foitzik et 

al. 1997; Hotz et al. 1998), to study host immune responses with chorioamnion tissues. Intact 

chorioamnion tissue was suspended within an Ussing chamber, creating a barrier and the maternal 

(chorion) and fetal (amnion) surfaces of this tissue were separately perfused with cell culture media, 

to model the in vivo physical and immunological barrier properties of this tissue. The ‘maternal’ 

membrane was exposed to stimuli (Escherichia coli lipopolysaccharide [LPS]) over a 20 hour period 

and aliquots of the perfused cell culture media were collected over time from both compartments. 

Perfused media were subsequently tested for the presence of immune modulators by enzyme-linked 

immunosorbent assays (ELISA). Despite only the maternal membranes being exposed to LPS, 

increased concentrations of macrophage-derived chemokine (MDC), transforming growth factor 

(TGF)-β, TNF-α and PGE2 were detected in both the ‘maternal’ and ‘fetal’ perfusates, which confirms 

that immune responses were elicited separately in both the chorion and amnion cells. This model 

was validated as an accurate model with which to study host immune responses to infections 

(Keelan et al. 2009); however, as yet no studies have utilised live microorganisms using this model.   

 

Using this ex vivo model of chorioamnion infection, we sought to investigate the host-microbe 

interactions upon exposure to a U. parvum serovar 6 clinical isolate. We hypothesised that the 

ureaplasmas would infiltrate the chorioamnion and activate specific immune responses within the 

maternal and fetal membranes. By investigating the immune responses to Ureaplasma spp., this 

study may elucidate how ureaplasmas activate the host immune system and may identify key 

immune modulators that are present during ureaplasmas infections. Furthermore, the results of this 

work may provide additional evidence of biomarkers that could be used in future to identify or 

predict UGT infections with ureaplasmas.  
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Materials and Methods 

 

All methods pertaining to this chapter are documented in Chapter Three. Briefly, four placentae 

were obtained from women delivering at term and who had no complications. The placentae were 

processed within one hour of delivery (Chapter Three, section 3.22). In each of the four experiments, 

chorioamnion tissue was excised from the placenta and washed with sterile phosphate buffered 

saline (PBS). Six membrane discs were cut, and these were each sandwiched between semi-rigid 

mesh and suspended within six Ussing chambers. The 'maternal' and 'fetal' compartments of each 

Ussing chamber were separately perfused with phenol red-containing ('maternal' compartment) or 

phenol red-free ('fetal' compartment) M199 media. Media within the maternal compartment was 

also supplemented with FITC-dextran, as an indicator of membrane permeability or integrity 

throughout each Ussing chamber experiment. After the Ussing chambers had equilibrated, the 

maternal membrane was stimulated with (a) 2 x 107 CFU live U. parvum serovar 6 clinical isolate 429 

inocula (Chapter Three, section 3.20; n = 2 chambers), (b) 2 x 107 CFU UV-inactivated (non-

replicative, but with all surface-antigens intact) U. parvum serovar 6 clinical isolate 429 (n = 2 

chambers); or (c) vehicle control (n = 2 chambers). At 0, 2, 4, 8, 20 and 30 hours, perfused media was 

sampled from each maternal and fetal compartment and snap frozen. At the conclusion of each 

placenta experiment, the remaining media was drained and snap frozen and chorioamnion tissue 

was divided and fixed for histology or snap frozen. A small amount of chorioamnion tissue was also 

homogenised and cultured within 10B broth, in order to detect and characterise live ureaplasmas. 

 

Stored maternal and fetal perfusates were analysed at the conclusion of all experiments for: (i) the 

presence and number of viable ureaplasmas within the maternal and fetal compartments over time; 

(ii) FITC-dextran fluorescent intensity within both maternal and fetal perfusates, as a measure of 

membrane integrity or permeability; (iii) the cytokine, chemokine and growth factor responses 

within maternal and fetal compartments over time; (iv) chorioamnion tissue pathology at the 

conclusion of each 30 hour experiment; and (v) the production of matrix metalloproteinases (MMPs) 

at the conclusion of each tissue experiment.  

 

Statistical analyses 

 

Data are presented as the mean value, plus the standard error of the mean (SEM). Cytokine 

responses in maternal and fetal perfusates and post-infection pathology scores were analysed using 

analysis of variance (ANOVA) and data analysed/plotted using GraphPad Prism.   
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Results 

 

Optimisation of U. parvum growth in M199 cell culture media 

 

The growth of U. parvum serovar 6 clinical isolate 429 in M199 media, supplemented with animal 

serum and urea at concentrations reported for term human amniotic fluid, was assessed. This 

growth was compared to the growth of ureaplasmas in 10B broth, the ideal in vitro growth medium 

for these bacteria (Shepard and Lunceford 1976).  

 

No ureaplasma growth was detected by culture in serum deficient M199 media; however, there 

were differences in the ureaplasma growth rate and the concentration of ureaplasmas after the 

ureaplasmas were incubated in 10B broth and in M199 media supplemented with either fetal calf 

serum or horse serum. Higher concentrations of ureaplasmas were achieved in M199 media 

containing fetal calf serum, when compared to the growth in M199 media supplemented with horse 

serum (Figure 6.1). The highest concentration of ureaplasmas was achieved after growth in 10B 

broth at 20 hours. However, as expected, the concentration of ureaplasmas cultured in 10B broth 

decreased between 20 and 30 hours due to the accumulation of a metabolic by-product (ammonia) 

produced by ureaplasmas, resulting in an alkaline pH shift and the death of the ureaplasmas.  

 

Based on these results, we determined that M199 media supplemented with 10% fetal calf serum 

was the optimal growth media for use in ex vivo experiments, as this tissue culture medium would 

support the growth of ureaplasmas and would also maintain the viability of chorioamnion tissue 

during these experiments. 
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Figure 6.1 U. parvum growth in M199 cell culture media supplemented with fetal calf serum or horse 

serum. Optimal growth of ureaplasmas was achieved in M199 media supplemented with 10% fetal 

calf serum. Experiments were performed in duplicate and are plotted and analysed as the mean ± 

standard error of the mean (SEM). Replicate data from each experiment were remarkably similar 

and error bars were too small to be plotted on log-scale graphs (Raw data shown in Chapter Nine, 

page 224) 

 

Optimisation of HEC-1A cytokine production after exposure to U. parvum  

 

The HEC-1A endometrial cell line was maintained in media supplemented with 10% fetal calf serum 

at 20% O2 and 5% CO2 and exposed to 2 x 104 CFU or 2 x 107 CFU of U. parvum serovar 6 clinical 

isolate 429. The cell culture supernatant was sampled at 0, 8, 20 and 30 hours post-infection to 

assess cytokine production in response to these two different infectious doses of U. parvum.  

 

The pooled supernatants from duplicate experiments were tested by BioPlex assays for IL-2, IL-4, IL-

6, IL-8, IL-10, GM-CSF, IFN-γ and TNF-α. The HEC-1A cells exposed to high (2 x 107 CFU) and low (2 x 

104 CFU) doses of U. parvum serovar 6 clinical isolate 429 demonstrated differences in the 

production of the cytokines IL-8, GM-CSF and IL-10 (Figure 6.2) over time. The highest levels of these 

cytokines were elaborated by HEC-1A cells exposed to high dose U. parvum serovar 6 at 20 and 30 

hours post-infection. Concentrations of IL-8, IL-10 and GM-CSF were significantly upregulated in 

HEC-1A cells exposed to high dose U. parvum (p = 0.01, p = 0.006 and p = 0.025, respectively); while 

elevated levels of IL-8 were also seen in HEC-1A cells exposed to low dose U. parvum clinical isolates 

(p = 0.02; Figure 6.2). Based on these preliminary findings, a high dose inoculum (2 x 107 CFU) of our 

U. parvum clinical isolate was used subsequently for the placental ex vivo experiments.   
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Figure 6.2 High dose (2 x 107 CFU) of U. parvum serovar 6 clinical isolate elicited a strong immune 

response in the HEC-1A endometrial cell line, with elevated levels of IL-8, IL-10 and GM-CSF. Pooled 

culture supernatants from duplicate experiments were analysed by BioPlex assays for cytokines IL-2, 

IL-4, IL-6, IL-8, IL-10, GM-CSF, IFN-γ and TNF-α. Data are presented as the mean value of replicate (n 

= 2) samples that were pooled (to n = 1) for analysis. 

 

p = 0.025 

p = 0.02 

p = 0.01 

p = 0.006 
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Optimisation of U. parvum growth under different oxygen tensions 

 

Experiments to determine the optimal oxygen tension to best replicate the in vivo environment 

within the placenta and also to support the growth of U. parvum serovar 6 were then performed.  

No U. parvum growth was detected when incubated under 3% oxygen. However, similar growth 

patterns were observed when ureaplasmas were grown under 5% and 20% oxygen. The highest 

concentrations of ureaplasmas were achieved when ureaplasmas were grown under 8% oxygen 

(Figure 6.3).  

Based on these findings, it was determined that 8% oxygen would be the ideal oxygen tension for 

the growth of ureaplasmas in the ex vivo Ussing chamber model and this oxygen tension was also 

similar to the oxygen tensions (range = 5 - 8%) achieved within placentae in vivo (Kay 2011). 
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Figure 6.3. Growth of U. parvum under different oxygen tensions. The highest concentration of 

growth was achieved when ureaplasmas were cultured in supplemented M199 media under 8% 

oxygen. Experiments were performed in duplicate and data are presented as the mean, plus or 

minus the standard error of the mean. Replicate data from each experiment was remarkably similar, 

and therefore error bars were too small to be plotted graphs (Raw data shown in Chapter Nine, page 

243). 
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Ex vivo Ussing chamber experimental model results 

 

 Culture of U. parvum from chorioamnion tissues and perfusates 

 

Chorioamnion 

 

When setting up the Ussing chamber experiments, a portion of chorioamnion tissue from each of 

the four placentae were snap frozen for subsequent culture and 16S rRNA PCR. No Ureaplasma spp. 

or other microorganisms were detected within these chorioamnion tissues prior to commencing 

Ussing chamber experiments.  

 

Maternal and fetal perfusates 

 

After the completion of each placental experiment, the perfusates were also tested by culture. No 

viable ureaplasmas were detected within any of the maternal or fetal perfusates from Ussing 

chambers in which chorioamnion membranes were exposed to vehicle controls or to the UV-

inactivated U. parvum. 

 

At the completion of each experiment (t = 30 hours), U. parvum was cultured from each of the 

maternal perfusates (n = 2 for each of the 4 placentae tested) that were initially inoculated with live 

high-dose U. parvum. The numbers of U. parvum (CFU/mL) increased exponentially between 0 – 4 

hours; but the concentration of ureaplasmas did not differ significantly for the remainder of each 30 

hour experiment (Figure 6.4). In these same Ussing chambers, no ureaplasma growth was detected 

in the fetal perfused media that was collected at 0, 2, 4, 8 and 20 hours post-inoculation; however, 

at the final 30 hour time point ureaplasmas were detected within each of the fetal perfusates (n = 2 

for each of the 4 placentae tested (average: 2.53 x 104 CFU). 
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Figure 6.4. The number of U. parvum CFU did not differ significantly between replicate chambers or 

in each of the 4 placental experiments. Live ureaplasmas were subsequently cultured from each of 

the maternal perfusates (collected at 2, 4, 8, 20 and 30 hours). U. parvum was only cultured from the 

fetal perfusates that were collected at 30 hours post-infection (ureaplasmas were inoculated into 

the maternal compartment). Data are presented as the mean, plus or minus the standard error of 

the mean (SEM) 

 

Western blot of U. parvum MBA protein at 30 hours post-infection  

Uncultured perfusates collected from both the maternal and fetal compartments were centrifuged 

and tested by western blot. The initial inoculum (U. parvum serovar 6 isolate 429) was also tested by 

western blot and demonstrated two distinct MBA protein bands. Western blot analysis of uncultured 

maternal and fetal perfusates demonstrated the same MBA protein bands as the initial inoculum, 

with two clear MBA bands present in each compartment (Figure 6.5).  

 

 

              

 

Figure 6.5. Western blot demonstrating the MBA proteins detected in the maternal and fetal (M – 

maternal, F – fetal) compartments at 30 hours post-infection. No MBA antigen variation was 

demonstrated, when compared to the initial inoculum of U. parvum serovar 6 clinical isolate 429. 

Each perfusate was tested (n = 2 for each of the 4 placentae). Representative results are shown for 

each compartment of one Ussing chamber per experiment. 

Compartment        M        F       M        F       M         F        M       F                     429 

Experiment                    1                   2                  3                   4  

100 kDa 
75 kDa 

50 kDa 



 

154 
 

Response of chorioamnion tissue upon stimulation with U. parvum  

 Integrity of chorioamnion tissue within the Ussing chambers  

 

The integrity of chorioamnion tissue within each of the six Ussing chambers was evaluated for the 

duration of each 30 hour placental experiment (n = 4). FITC-dextran was added to each maternal 

compartment at the commencement of the experiments and the accumulation of FITC-dextran 

within the fetal perfusates was assayed as an indicator of membrane integrity (accumulation of FITC-

dextran within the fetal compartment is an indicator of membrane permeability or leakage).  

 

The fetal perfusates collected from Ussing chambers in which the maternal membrane was exposed 

to UV-inactivated U. parvum or vehicle control demonstrated no significant chorioamnion leakage or 

rupture over the course of the 30 hour ex vivo experiments, averaging approximately 1 – 1.5% per 

hour (Figure 6.6). By contrast, the concentration (% of total transfer) of FITC-dextran within fetal 

perfusates increased significantly at 30 hours after the maternal membrane was exposed to live 

ureaplasmas (p = 0.006; Figure 6.6). 
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Figure 6.6. Chorioamnion membrane permeability as measured using FITC-labelled dextran. Transfer 

of FITC-dextran from the maternal compartment to the fetal compartment (presented as percentage 

transfer) during placental experiments (duplicate chambers for n = 4 experiments). Significant 

increases in FITC-dextran transfer were demonstrated at 30 hours post-infection in the Ussing 

chambers in which the maternal side of chorioamnion membranes were exposed to live U. parvum. 

Data are presented as the mean, plus or minus the standard error of the mean (SEM) 
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Histological analysis of chorioamnion tissues 

 

Chorioamnion tissue from each placentae (n = 4) was fixed prior to the start of each placental 

experiment and these tissues were embedded, sectioned and stained with haematoxylin and eosin. 

These chorioamnion tissues demonstrated no significant pathology prior to the commencement of 

each Ussing chamber ex vivo experiment. 

 

Upon the completion of ex vivo experiments, chorioamnion tissues were again fixed, embedded and 

sectioned before staining with haematoxylin and eosin. Chorioamnion membranes that were 

exposed to live U. parvum demonstrated major differences in the overall tissue structure, when 

compared to tissues that were exposed to UV-inactivated U. parvum or vehicle controls. Very few 

studies histologically grade/score chorioamnion tissues for evidence of membrane rupture and so a 

pathology scoring system was developed for this study. Researchers blinded to outcome were given 

randomised images of chorioamnion tissue and the images were scored according to criteria 

described in Chapter Three, section 3.20.  

 

Chorioamnion tissues exposed to vehicle controls or to UV-inactivated U. parvum demonstrated no 

significant differences in the grading of the tissue pathology after each experiment (mean score 1.5 

and 1.75, respectively; Figure 6.7A and C). However, the chorioamnion tissues exposed to live U. 

parvum (duplicate tissues for n = 4 experiments) showed significant detachment/separation of the 

chorion and amnion membranes (mean score: 3; Figure 6.7B) and this was consistent with 

deterioration of the chorioamnion membranes as measured by the transfer of FITC-dextran at 30 

hours post-infection (detailed above).  
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Figure 6.7. Haematoxylin and eosin stained tissue sections exposed to (A) vehicle control, (B) 

live U. parvum and (C) UV-inactivated U. parvum. Following exposure to live ureaplasma (30 

hours), chorioamnion tissues demonstrated detachment/separation of the chorion and 

amnion (black arrow). All images shown at x 100 total magnification 
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Cytokine responses of human chorioamnion tissue exposed to live and UV-

inactivated ureaplasmas 

 

Duplicate perfusates collected from maternal and fetal compartments of Ussing chamber 

experiments stimulated with live or UV-inactivated U. parvum and vehicle controls were tested for 

the presence of IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF IFN-γ and TNF-α using BioPlex assays. This assay 

was chosen based on results of previous human in vitro and in vivo studies and included cytokines, 

chemokines and growth factors which have been reported to be upregulated in response to 

Ureaplasma spp. infections (Aaltonen et al. 2007; Jacobsson et al. 2009; Kacerovsky et al. 2011; 

Kacerovsky et al. 2013). 

 

No significant differences were demonstrated in the concentrations of IL-2, IL-4, IL-6, IL-8, GM-CSF, 

IFN-γ and TNF-α in either the maternal or fetal perfusates that were exposed to live U. parvum, UV-

inactivated U. parvum or vehicle control in supplemented M199 media. However, the 

concentrations of IL-10 were significantly higher within the maternal perfusates after exposure to 

live U. parvum for 20 and 30 hours (20.4 ± 2.8 pg/mL, p = 0.046; Figure 6.8) than the levels achieved 

when membranes were exposed to the vehicle control (7.2 ± 0.2 pg/mL) or UV-inactivated U. 

parvum (4.94 ± 0.9 pg/mL). No significant differences in the concentrations of IL-10 were seen in 

fetal perfusates.  
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Fetal compartment IL-10        

0 1 0 2 0 3 0

0

1 0

2 0

3 0

T i m e  ( h o u r s )

p
g

/
m

L

V e h i c l e  C o n t r o l

L i v e  U r e a p l a s m a

U V - i n a c t i v a t e d  U r e a p l a s m a

 

Figure 6.8. Cytokine responses of duplicate maternal and fetal perfusates from n = 4 placental 

experiments. Concentrations of IL-10 were significantly increased at 20 and 30 hours post-infection 

within the maternal compartment of Ussing chambers when the maternal side of chorioamnion 

membranes were stimulated with live U. parvum. Data are presented as the mean, plus or minus the 

standard error of the mean (SEM) 

 

Gelatin zymography for matrix metalloproteinase (MMP)-9 activity 

 

For each placental experiment, maternal and fetal perfusates (x 2) from each Ussing chamber were 

pooled per condition (vehicle control, live U. parvum or UV-inactivated U. parvum). One sample in 

total per Ussing chamber was assessed by gelatin zymography for MMP-9 activity.  

 

p = 0.046 
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No MMP-9 activity was detected in pooled maternal and fetal perfusates at 0 hours, regardless of 

treatment (Figure 6.9); however, at 30 hours post-infection Ussing chamber perfusates 

demonstrated differences in MMP-9 activity. MMP-9 activity was detected in the perfusates of only 

one Ussing chamber stimulated with vehicle controls at 30 hours post-infection. Ussing chambers 

exposed to live or UV-inactivated U. parvum demonstrated upregulation of MMP-9 activity (Table 

6.1). MMP-9 activity in pooled perfusates from n = 4 placental experiments showed prominent 

gelatinase activity, the presence of clear bands and MMP-9 activity was detected in 6/8 (75.0%) 

perfusates. Perfusates from UV-inactivated U. parvum Ussing chambers showed lesser gelatinase 

activity, less prominent bands and 4/8 (50.0%) zymographs (Figure 6.9).  

 

Table 6.1. MMP-9 activity at 30 hours post-exposure in each Ussing chamber condition for n = 4 

placental experiments. No MMP-9 activity was detected in pooled maternal and fetal perfusates at 0 

hours. MMP-9 activity in pooled maternal and fetal perfusates at 30 hours is expressed as the total 

number of chambers positive for MMP-9 per placental experiment (n = 4).  

Placental experiment Vehicle control Live Ureaplasma spp. UV-inactivated Ureaplasma 

spp. 

1 0/2 1/2 1/2 

2 0/2 1/2 2/2 

3 1/2 2/2 0/2 

4 0/2 2/2 1/2 
 

   

 

 

 

 

 

 

 

                              

 

 

Figure 6.9. Gelatinase activity of matrix metalloproteinase (MMP)-9. While variable responses in 

MMP-9 activity was seen, overall there was a trend to upregulation of MMP-9 activity in perfusates 

exposed to live U. parvum, those exposed to UV-inactivated U. parvum infected chambers at the end 

of each 30 hour experiment. Representative results are shown from n = 4 experiments, alongside a 

92 kDa MMP-9 positive control (kindly provided by Dr Eliza Whiteside).  
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Discussion  

 

The human host immune response is integral for the success of pregnancy and is involved in all 

aspects of gestation, from preparation of the endometrium for implantation to immunotolerance of 

the fetus and initiation of normal term labour (Racicot et al. 2014). Any disruptions to these tightly 

regulated processes may contribute to adverse pregnancy outcomes, such as PTB and pPROM 

(Challis et al. 2009). Currently, the immune mechanisms which lead to PTB and adverse pregnancy 

outcomes are not well understood and this is particularly true for infection with Ureaplasma spp. To 

better understand the immune responses within host tissues during ureaplasma infections, we 

conducted a pilot study using an ex vivo Ussing chamber model to investigate the specific immune 

responses of the chorioamnion membranes (the chorion and the amnion) following stimulation with 

live or UV-inactivated (non-replicative) U. parvum.   

 

The most significant finding of this current study was that concentrations of IL-10 were only elevated 

at 20 and 30 hours post-infection within the maternal compartment after the maternal interface of 

the chorioamnion was stimulated with live U. parvum (Figure 6.8). While we also saw an increase in 

the production of IL-10 within the fetal compartment at 30 hours post-infection, this was not 

significant; suggesting that the responses seen are specific to the tissues that were initially exposed 

to the pathogen. While the production of IL-10 has been identified previously; within fibroblasts, 

resident macrophages and amnion epithelial cells of human chorioamnion tissues (Huleihel et al. 

2003), within cell culture supernatants collected from chorioamnion tissue explants stimulated with 

ureaplasmas (Aaltonen et al. 2007; Menon et al. 2009; Peltier et al. 2012) and also within amniotic 

fluid of women experiencing UGT ureaplasma infections (Kacerovsky et al. 2013); these increases 

were often accompanied by simultaneous increases in pro-inflammatory cytokines, including IL-1β, 

IL-8 and TNF-α. In this pilot study, we tested for the presence of both IL-8 and TNF-α but there were 

no significant increases in the production of these key pro-inflammatory cytokines. Despite this, our 

preliminary data suggests that IL-10 may be an important determinant of the host immune response 

to U. parvum infection and is the first cytokine produced by the chorioamnion. IL-10 is an anti-

inflammatory cytokine that plays a crucial role in the regulation of inflammatory pathologies and 

other research has also demonstrated a role for IL-10 in immunomodulation and 

immunosuppression of inflammatory responses (Moore et al. 2001; Saraiva and O'Garra 2010).  

 

In Figure 6.10, the major potential pathways that may be activated by Ureaplasma spp. infections of 

the UGT are summarised. Within the placenta and chorioamnion, pattern recognition receptors 
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(PRRs) are present on a range of cell types, including the chorioamnion and on the surface of 

macrophages (Hofbauer cells) (Abrahams 2008). These PRRs are able to actively sense and respond 

to pathogens by recognising their pathogen-associated molecular pattern (PAMP), such as the MBA 

lipoprotein of Ureaplasma spp. (Shimizu et al. 2008; Triantafilou et al. 2013), and recognition of the 

MBA by PRRs (e.g. TLRs) (Abrahams 2008) may stimulate different immune responses. Macrophages 

within the chorioamnion are capable of polarisation into M1 or M2 phenotypes, which respond to 

the presence of microorganisms in different ways (Mantovani et al. 2005).  Macrophage polarisation 

to an M1 phenotype results in the production of a TH1 immune response, generation of cytokines 

(e.g. IL-1β, TNF-α and interferon-γ), reactive oxygen species and the capacity to present antigens to 

antigen presenting cells (APCs); while M2 macrophage polarisation results in a TH2 immune 

response, the production of (predominantly immunosuppressive) cytokines (e.g. IL-4 and IL-10), 

generation of nitric oxide, increases in cell apoptosis and antibody-mediated host responses (Brown 

et al. 2014) and both M1 and M2 macrophage phenotypes within the placenta during pregnancy are 

shown to be associated with adverse pregnancy outcomes. For example, some strains of Toxoplasma 

gondii can actively induce M2 macrophage polarisation and minimal inflammatory responses within 

murine placentae, despite high numbers of parasites colonising the placenta. By contrast, other T. 

gondii strains injected into mice at the same dose induced M1 macrophage polarisation and high 

levels of inflammation within the placenta, which led to high intrauterine growth retardation (Liu et 

al. 2013; Kong et al. 2015). While pregnancy is a predominantly TH2 condition, which can further be 

regulated by fluctuation in estrogen levels (Behrman 2007); within our pilot study, we reported 

higher concentrations of IL-10 in chorioamnion tissues exposed to live U. parvum and this was 

consistent with a potential TH2 immune response.  

 

IL-10 has been shown to interact with NF-kB at the transcriptional level, inhibiting the activation of 

NF-kB and subsequently halting the production of pro-inflammatory cytokines by macrophages 

(Janeway 2005). In addition, during each of our four ex vivo chorioamnion experiments, we showed 

no significant increases in the production of the pro-inflammatory cytokines IL-2, IL-4, IL-6, IL-8, IFN-

γ or TNF-α in response to stimulation of primary chorioamnion tissues with live U. parvum. While 

within our experiments, we were unable to determine if M2 macrophage polarisation was occurring 

and if this was the factor which led to high levels of IL-10 within ex vivo chorioamnion tissue; this 

would be the next logical step in extending this work and would provide further novel information in 

the role of the host immune response to Ureaplasma spp.  
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By contrast, some studies have demonstrated that ureaplasma infections may signal the production 

of pro-inflammatory immune responses. Studies which utilise heat-killed Ureaplasma spp. have 

demonstrated the production of pro-inflammatory cytokines IL-1B, IL-8 and TNF-a within a range of 

placental cell types (Aaltonen et al. 2007; Menon et al. 2009; Peltier et al. 2012). Similarly, in vitro 

studies utilising human-derived monocytes obtained from cord blood demonstrated that a 

secondary infectious challenge with Ureaplasma spp. enhanced pro-inflammatory immune 

responses by blocking the expression of the immunosuppressive cytokine, IL-10 (Manimtim et al. 

2001). In Chapter Five, we did demonstrated the infiltration of neutrophils (chorioamnionitis) and 

the production of pro-inflammatory cytokines (IL-8 and G-CSF) within cord blood of placentae 

infected with Ureaplasma spp.; however, the levels of these pro-inflammatory cytokines were 

correlated with MBA size variation. In vivo, when MBA variation occurred, there was a significant 

reduction in pro-inflammatory cytokines within cord blood; despite the presence of large numbers 

of ureaplasmas infecting the chorioamnion. Similarly, C57BL/6 mice infected intraamniotically with 

U. parvum demonstrated lower levels of pro-inflammatory cytokines IL-1α, IL-1β, IL-6 and TNF-α, 

when compared to BALB/c mice infected with the same strain and dose of U. parvum (von Chamier 

et al. 2012). Our findings, along with studies by others suggest that there may be other factors (such 

as genetic background and antigen variation) which may influence the development of disease.  

 

It may be that induction of pro-inflammatory responses are dependent on the numbers of 

Ureaplasma spp. present within the chorioamnion, and/or the duration of infection. The presence of 

estrogen may also influence the immune response, and lower levels of estrogen are present earlier 

in gestation which may account, in part, for why Ureaplasma spp. infections in pregnancies which 

end < 32 weeks have reported predominantly pro-inflammatory immune responses (Li et al. 2000; 

Collins et al. 2010; Kasper et al. 2010; Kacerovsky et al. 2013). Future studies in this area will be 

important to investigate both pro- and anti-inflammatory immune responses, the presence and 

expression of PRRs (including TLRs) and additional immune factors, such as apoptosis and 

macrophage polarisation, which may play a key role in the regulation of host immune responses to 

UGT Ureaplasma spp. infections.  
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Within this pilot study, we also demonstrated that infection with live U. parvum, but not UV-

inactivated U. parvum resulted in chorioamnion tissue damage, including the loss of structure and 

integrity after only 30 hours of exposure. Histological analysis of chorioamnion tissues infected with 

live ureaplasmas demonstrated major structural differences, with the amnion being partially 

detached and a high tissue pathology score (mean: 3). This damage was independently scored by 2 

researchers using criteria developed specifically for these experiments. This same tissue pathology 

was not seen in chorioamnion tissues exposed to UV-inactivated U. parvum or those exposed to the 

vehicle control and this was reflected in lower pathology scores (mean: 1.75 and 1.5, respectively). 

Previous studies have identified significant pathological changes in UGT and fetal tissues infected 

with U. parvum. Intraamniotic infection with ureaplasmas resulted in increases in macrophages and 

neutrophils within chorioamnion tissues and structural changes to the neonatal lung within a 

pregnant sheep model (Moss et al. 2008; Collins et al. 2010; Knox et al. 2010; Dando et al. 2012; 

Robinson et al. 2013). Interestingly, within this sheep model, the severity of chorioamnionitis varied 

between animals, even when the animals received the same ureaplasma inoculum. In this current 

experiment, after just 30 hours of exposure to ureaplasmas, uniform changes and degradation of the 

chorioamnion were observed. Within non-human primates, infection with Ureaplasma spp. resulted 

in histological chorioamnionitis, funisitis and altered fetal lung structure (Yoder et al. 2003; Viscardi 

et al. 2006; Novy et al. 2009). Human pregnancies affected by Ureaplasma spp. have also shown 

changes in pathology, with inflammatory responses within the chorioamnion, cord and altered fetal 

lung function (Hillier et al. 1988; Gerber et al. 2003; Pandey et al. 2007; Schelonka and Waites 2007; 

Hecht et al. 2008; Viscardi 2010; DiGiulio 2012). Taken together, these studies confirm that 

Ureaplasma spp. are a cause of structural and inflammatory changes within maternal and fetal 

tissues of the host. In this pilot study, we identified notable pathology and detachment of the 

amnion membranes, which has not been previously identified within any animal model studies of 

UGT ureaplasma infections in pregnancy. This finding may be consistent with the initial stages of 

chorioamnion membrane rupture, often referred to as pPROM when it occurs in vivo during 

gestation. pPROM is a common cause of PTB, affecting up to 30% of all pregnancies which end 

prematurely (Goldenberg et al. 2008b). Studies have also demonstrated a significant correlation 

between women experiencing pPROM and the presence of UGT infections within these pregnancies 

(Goldenberg et al. 2008b; Kacerovsky et al. 2009; Kacerovsky et al. 2011); however, no studies have 

reported on the histological changes to the chorioamnion membranes involved in pPROM. The novel 

findings generated using this Ussing chamber model suggest that this may be an ideal model with 

which to further investigate not only the development of pPROM in response to ureaplasmas, but 

also investigate chorioamnion exposure to other bacteria commonly associated with adverse 
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pregnancy outcomes. In these current experiments, only the maternal membrane surface was 

challenged with ureaplasmas and additional experiments in which the fetal membrane surface is 

exposed to bacteria would further our understanding of these pathological changes during 

ureaplasma infections.  

 

In this pilot study we assessed the integrity of chorioamnion tissue over time using fluorescently 

(FITC)-labelled dextran and measuring the transfer from the maternal compartment to the fetal 

compartment over time. While all Ussing chambers demonstrated similar FITC-dextran transfer at 0, 

2, 4, 8 and 20 hours, averaging 1 - 1.5%, there was a significant difference in FITC-dextran transfer at 

30 hours but only in the Ussing chambers in which the maternal membranes were stimulated with 

live U. parvum (Figure 6.6). The sharp increase in FITC-dextran transfer seen in these Ussing 

chambers is consistent with live ureaplasmas negatively affecting the integrity of chorioamnion 

tissue and this may precede and be associated with membrane rupture (pPROM). This finding that 

live ureaplasmas can affect the structure and integrity of chorioamnion tissue is novel and also 

requires further investigation. Other studies have investigated membrane integrity in response to 

different stimuli but identified no significant alterations in chorioamnion tissue. Assays utilising 

chorioamnion tissues suspended within a Transwell system demonstrated no alterations in human 

chorioamnion tissue integrity when stimulated with γ-irradiated E. coli over 20 hours; with 99% of 

fluorescently-labelled beads added to the maternal compartment remaining on this side of the 

chorioamnion membranes (Stinson et al. 2014). The size of these spherobeads is not stated within 

this study, and so it is unclear if this result is comparable to the results of FITC-dextran within our 

current study. Keelan et al. (2009) stimulated human chorioamnion tissues with E. coli LPS when the 

tissues were suspended within an Ussing chamber system. In this study, FITC-dextran was added to 

the maternal chamber and transfer of FITC-dextran from the maternal compartment to the fetal 

compartment occurred at a rate of approximately 1% per hour over the course of each 20 hour 

experiment. Within our current study, we reported similar FITC-dextran transfer rates for vehicle 

control and UV-inactivated U. parvum Ussing chambers, when compared to the findings of Keelan et 

al. (2009). This further confirms the validity of the results reported within our study. However, the 

experiments in this current study were conducted for an additional 10 hours. At 30 hours post-

infection, just as was observed by Keelan for LPS, there was minimal transfer of FITC-dextran in UV-

inactivated U. parvum and vehicle control Ussing chambers and no major histological changes were 

observed within the membrane. This further confirms our finding that only live ureaplasmas 

negatively affected the structure and integrity of the chorioamnion tissue. 
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Other studies have identified that infection or exposure to Ureaplasma spp. in utero can affect the 

structure and development of the neonatal lung and gut. Ureaplasma spp. infections are 

demonstrated to cause structural changes in fetal lung, including altered lung structure, premature 

lung maturation, increased neonatal lung pressure-volume curves and fibrosis in fetal sheep or non-

human primates (Yoder et al. 2003; Viscardi et al. 2006; Moss et al. 2008; Robinson et al. 2013). 

Using a pregnant ovine model of intraamniotic Ureaplasma spp. infection, tissues harvested from 

ewes intraamniotically injected with ureaplasmas had significant inflammatory responses within the 

neonatal gut, alterations in the development and structure of the neonatal gut, cellular damage to 

the villus epithelium and perturbations in the formation of cellular tight junctions within the 

neonatal gut (Wolfs et al. 2013). These findings confirm that Ureaplasma spp. can alter the structure 

and integrity of host tissues. The findings reported within this study that infection with live 

Ureaplasma spp. result in altered chorioamnion membrane structure and integrity may be 

consistent with the early stages of bacterial invasion of the UGT.  

 

Perhaps the most interesting finding of this study was that Ureaplasma spp. can penetrate the 

chorioamnion membrane, travelling from the maternal compartment to the fetal compartment by 

the 30 hour time point. While Ureaplasma spp. have been isolated from within the amniotic fluid 

and placentae of women experiencing PTB and pPROM previously (Gerber et al. 2003; Jacobsson et 

al. 2009; Kacerovsky et al. 2009; DiGiulio et al. 2010; DiGiulio 2012), it has not been proven if these 

microorganisms can traverse the chorioamnion membrane. It has been suggested that these 

microorganisms may asymptomatically colonise the female UGT prior to pregnancy (Cassell et al. 

1993b; Cicinelli et al. 2012), or that these microorganisms may be present at the time of conception 

as these microorganisms may adhere to the surface of human sperm and can gain access to the 

female UGT (Knox et al. 2003). However, this current study is the first to demonstrate that ex vivo 

chorioamnion tissue can be penetrated by ureaplasmas and that these microorganisms can pass into 

the fetal compartment. Winram et al. (1998) demonstrated that Streptococcus agalactiae (Group B 

Streptococcus) was able to traverse the chorioamnion membrane in a transwell system; however, in 

that study the integrity of the membranes were not assessed. The finding that microorganisms may 

traverse/invade the chorioamnion membrane may have severe implications for the health and 

wellbeing of the pregnancy and for the neonate. If Ureaplasma spp. are able to pass through the 

chorioamnion membrane and access the UGT during pregnancy, these microorganisms may infect 

the UGT for chronic periods and currently it is not known what effect chronic in utero ureaplasma 

infections may have on the neonate. Previous evidence suggests that in utero infections caused by 

ureaplasmas are associated with respiratory sequelae and an increased incidence of adverse 
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neuromotor outcomes and cerebral palsy (Lyon 2000; Kotecha et al. 2004; Pandey et al. 2007; 

Berger et al. 2009). Combined, these results highlight the need to understand Ureaplasma spp. 

pathogenesis and the effect on pregnancy and fetal outcomes.  

 

The expression of MMP-9 was also upregulated in Ussing chambers in which the maternal side of the 

membranes were exposed to live U. parvum, and in some cases, those exposed to UV-inactivated U. 

parvum. MMP-9 is one of several matrix metalloproteinases whose activation results in the 

degradation of collagen fibres within tissues, such as the chorioamnion (Strauss 2013). Throughout 

pregnancy, MMPs are tightly regulated and there is a fine equilibrium of collagen degradation and 

synthesis to maintain the chorioamnion membrane throughout pregnancy (until labour is triggered) 

(Goldman et al. 2003; Yonemoto et al. 2006). However, during UGT infections, the degradative 

effects of MMPs are increased within the chorioamnion membrane, particularly for MMP-2 and 9 

(Strauss 2013). Within this small pilot study, we identified that MMP-9 activity was significantly 

increased in pooled maternal and fetal perfusates from Ussing chambers stimulated with live U. 

parvum, and some moderate MMP-9 activity was seen in Ussing chambers stimulated with UV-

inactivated Ureaplasma spp. With only one control chamber displaying evidence of moderate MMP-

9 activity after 30 hours, these findings suggest that that ureaplasmas can elicit a response which 

upregulates the production of degradative MMP-9. Previous studies have provided evidence that 

MMPs are upregulated during Ureaplasma spp. infections. In experimental ureaplasma UGT 

infections in Sprague Dawley rats, upregulation of MMP-9 was demonstrated (Peltier et al. 2007). 

Human pregnancies complicated by Ureaplasma spp. have also shown upregulation of MMP-9 

within their amniotic fluid (Kacerovsky et al. 2013); however, there are no previous studies that have 

tested ureaplasma infected and non-infected chorioamnion for the presence and production of 

MMP-9. Taken together, these preliminary results suggest that MMP-9 was upregulated in 

chorioamnion tissue exposed to U. parvum and this may further facilitate the degradation of the 

tissues as evidenced by alterations in FITC-dextran membrane integrity assays.  

 

Within this small pilot study, we did not observe any variation in the expression of the U. parvum 

serovar 6 MBA protein over the 30 hour period of each placental experiment. No MBA size variants, 

in addition to those present within the initial inoculum were observed for the ureaplasmas 

harvested at the end of each experiment. MBA variation has been reported previously in vivo within 

a pregnant ovine model. MBA size variation was seen after 7 days of infection, but not after 3 days 

of intraamniotic infection within pregnant sheep (Robinson et al. 2013). Within our study, we were 

only able to expose Ureaplasma spp. to chorioamnion tissue for 30 hours and so it was unlikely that 
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MBA variation would be produced within this short time period. Other experiments have attempted 

to induce MBA size variation in vitro through the use of anti-MBA antibodies. However, in these 

studies only MBA phase variation (the switching on/off of the MBA lipoprotein) was observed and 

this required high concentrations of anti-ureaplasma antibodies (Monecke et al. 2003; Dando et al. 

2012). Future experiments which utilise monocytes and macrophages (i.e. those that are activated 

by exposure to Ureaplasma spp.) may be used in an attempt to stimulate/produce MBA size 

variation to occur.  

 

As with many studies, there are limitations which should also be addressed. Only four placentae 

were tested in this pilot study, which limits the statistical power of this work. However, in this pilot 

study we have confirmed the utility of the Ussing chamber for use in ex vivo infection studies using 

live microorganisms. This model allows an additional level of complexity which mimics the role of 

the chorioamnion in vivo. Furthermore, for the first time this Ussing chamber model has been 

optimised to achieve physiological oxygen tensions and this is a major strength of this study. 

Previous studies investigating the immune responses to chorioamnion tissue explants have utilised 

standard cell culture incubators and the oxygen tension in this equipment is unlike the 

microenvironment within the placenta. It is not clear what effect these differing oxygen tensions 

have on the immune responses reported within these studies. The novel findings of this pilot study 

warrant further investigation and also raise further questions. The reason for amnion detachment 

following stimulation with live Ureaplasma spp. is currently unknown and it is not clear if apoptosis 

may also play a key role in amnion detachment or altered membrane integrity. Additionally, we 

identified elevated concentrations of MMP-9 and IL-10 in chorioamnion tissues stimulated with live 

ureaplasmas. By identifying specific mediators worthy of further investigation, it may be possible to 

identify the signalling pathways which lead to immune responses and pPROM during Ureaplasma 

spp. infections.  

 

Conclusions: 

 

This is the first study to utilise an Ussing chamber model to investigate the host immune responses 

to live bacteria (U. parvum) and we demonstrated that the presence of ureaplasmas was associated 

with tissue pathology, altered membrane integrity and increases in MMP-9 activity. The preliminary 

data within this study also demonstrated that the anti-inflammatory cytokine IL-10 was elevated 

within the maternal compartment in response to live ureaplasma infection, and this TH2-type 

response may be key to the long-term survival of these pathogens in the female UGT during 
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pregnancy and the establishment of chronic in utero infections. We also demonstrated, for the first 

time, that live ureaplasmas invade and cross the chorioamnion membrane and although this may be 

due to the degradative action of these microorganisms on the chorioamnion membrane, this 

provides a route for exposure of the fetus.   

 

 By further investigating the innate immune response of the chorioamnion (including responses after 

fetal membrane exposure to live ureaplasmas), the expression of TLR receptors, cytokines, 

chemokines, growth factors and other signalling pathways it may be possible to better understand 

the host immune response to ureaplasma infections of the female UGT and how this can be 

controlled for a future better outcome for the fetus.  
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Chapter Seven: 

 

 

 

General Discussion
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Discussion 

 
The human Ureaplasma spp. are the bacteria most frequently isolated from the female lower genital 

tract (LGT; 40 - 80%), male LGT (up to 50%) and the female upper genital tract (UGT) (Volgmann et 

al. 2005). These microorganisms are also among the most prevalent organisms isolated from the 

amniotic fluid (Cassell et al. 1983; Gray et al. 1992; Jalava et al. 1996; Knox et al. 1997; Yoon et al. 

2000; Gerber et al. 2003; Yoon et al. 2003b; Perni et al. 2004; Aaltonen et al. 2007; Berger et al. 

2009; Jacobsson et al. 2009; Kasper et al. 2010) and placentae (Kundsin et al. 1984; Hillier et al. 

1988; Miralles et al. 2005; Egawa et al. 2007; Hecht et al. 2008; Olomu et al. 2009; Namba et al. 

2010) of women who deliver preterm. However, the pathogenic role of Ureaplasma spp. is not 

always clear as these microorganisms may also be isolated from the amniotic cavity of women who 

deliver at term with no evidence of adverse pregnancy outcomes (Gray et al. 1992; Gerber et al. 

2003; Perni et al. 2004). Because there are different clinical presentations and pregnancy outcomes 

associated with female genital tract infection with ureaplasmas, it has been proposed that some 

Ureaplasma spp. or serovars may be more ‘virulent’ than others (Naessens et al. 1988; Sung et al. 

2010; Eun et al. 2013) or that some of these microorganisms may possess virulence factors, such as 

the ability to vary their surface-exposed protein, the multiple banded antigen (MBA), which may 

modulate host-microbe interactions (Monecke et al. 2003; Zimmerman et al. 2009; Knox et al. 2010; 

Zimmerman et al. 2011; Dando et al. 2012; Robinson et al. 2013; Zimmerman et al. 2013). The host 

immune response to ureaplasmas during infection may also influence the development of sequelae, 

such as histological chorioamnionitis or pPROM (Kim et al. 2003; Aaltonen et al. 2007; Goldenberg et 

al. 2008a; Kasper et al. 2010; Oh et al. 2010). Given this, research into the pathogenesis of 

ureaplasma infections and the host-microbe interactions that take place during infection may lead to 

the identification of biomarkers and ultimately therapeutic strategies aimed at reducing the high 

rates of preterm birth (PTB) and sequelae in neonates.  

 

Therefore, the overall hypotheses of this PhD program of research were that: (i) Ureaplasma spp. 

can infiltrate the placenta and chorioamnion during pregnancy; and (ii) Ureaplasma spp. are an 

aetiological agent during gestation and may be associated with adverse pregnancy and neonatal 

outcomes. We further hypothesised that (iii) the host immune system may not always recognise 

ureaplasmas, as these microorganisms possess the ability to vary the size of their surface-exposed 

lipoprotein, the MBA. These hypotheses were investigated in human pregnancies and also within an 

ex vivo chorioamnion tissue model of Ureaplasma spp. infection. The results of this research project 

have confirmed that Ureaplasma spp. are a major aetiological agent of infection in late preterm 

(LPT) and term pregnancies; and that the presence of ureaplasmas within the chorioamnion was 
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independently associated with histological chorioamnionitis. It was also identified that ureaplasma 

clinical isolates obtained from the chorioamnion of human pregnancies demonstrated differences in 

the size of their MBA protein and variation of the size of the surface-exposed MBA was associated 

with a decreased incidence of histological chorioamnionitis. Furthermore, we demonstrated that the 

presence of Ureaplasma spp. infection in human pregnancies was associated with host immune 

responses and elevated levels of the cord blood cytokine granulocyte colony-stimulating factor (G-

CSF); however, when MBA protein variation was present, there was a significant reduction in the 

levels of G-CSF and interleukin (IL)-8 within cord blood, despite high numbers of ureaplasmas being 

present within the chorioamnion. Finally, we utilised an ex vivo Ussing chamber system to model 

host immune responses to Ureaplasma spp. infection of the chorioamnion and demonstrated tissue 

pathology within 30 hours of exposure to ureaplasmas, including altered membrane integrity, 

ureaplasma infiltration within the chorioamnion tissue and the presence of ureaplasmas within the 

fetal membrane reservoir, confirming that ureaplasmas exposed to the maternal membrane surface 

had invaded through the chorioamnion membrane. We also identified increased activity of matrix 

metalloproteinase (MMP)-9 and elevated levels of the anti-inflammatory cytokine IL-10 within 

perfusates that were exposed to live U. parvum infection, consistent with the early stages of 

chorioamnion membrane rupture. Taken together, the data presented in this thesis provide novel 

insight into the complex host-microbe interactions which take place during Ureaplasma spp. 

infections and suggest that immune responses of the host may be a key determinant in the 

development of adverse pregnancy outcomes.  

 

The pathogenic role of Ureaplasma spp. has been strongly debated within the literature and 

ureaplasmas have been traditionally considered to be colonisers of the female lower genital tract 

(LGT) and were of low virulence (Volgmann et al. 2005). Additionally, only some studies identified 

causal links between Ureaplasma spp. infections and the development of adverse pregnancy 

outcomes (Cassell et al. 1983; Hillier et al. 1988; Cultrera et al. 2006; Egawa et al. 2007; DiGiulio 

2012), while other studies identified no significant association between the presence of ureaplasmas 

and adverse sequelae (Gray et al. 1992; Gerber et al. 2003; Perni et al. 2004). However, the data 

presented within this thesis clearly demonstrates that Ureaplasma spp. are an aetiological agent of 

chorioamnion infection in LPT and term pregnancies and the presence of these microorganisms is 

associated with the development of adverse pregnancy outcomes. Within our large study of 535 

placentae, we identified that chorioamnion infection was present in 10.6% of all LPT and term 

pregnancies and that the human Ureaplasma spp. and in particular U. parvum were the most 

prevalent microorganisms identified within this study, accounting for almost 70% of isolates. 
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Significantly, the presence of Ureaplasma spp. within the chorioamnion of LPT and term placentae 

was associated with the development of histological chorioamnionitis, and 68.4% of all placentae 

infected with ureaplasmas demonstrated evidence of chorioamnionitis. While previous studies have 

identified that the human Ureaplasma spp. were the most prevalent microorganisms isolated from 

the UGT of women who deliver prior to 32 weeks of gestation (Hillier et al. 1988; DiGiulio et al. 2008; 

Hecht et al. 2008; DiGiulio et al. 2010; Namba et al. 2010; Marconi et al. 2011), these infections were 

often polymicrobial and so a causal association with adverse pregnancy outcomes could not be 

attributed to a single bacterium. However, the findings of this current study demonstrate for the 

first time, that UGT chorioamnion infections at >32 weeks of gestation are most frequently caused 

by Ureaplasma spp. alone and that the presence of these microorganisms was independently 

associated with histological chorioamnionitis, regardless of gestation. The findings of this study also 

correlate with previous animal model studies, which identify Ureaplasma spp. as a sole pathogen of 

adverse pregnancy outcomes. Mouse model studies have demonstrated that a single intraamniotic 

injection of Ureaplasma spp. into the amniotic sac resulted in placental inflammation and fetal 

inflammatory response syndrome within 72 hours of infection (von Chamier et al. 2012; Allam et al. 

2014). Sheep intraamniotically injected with U. parvum clinical isolates demonstrated histological 

chorioamnionitis and fetal lung pathology following acute (7 day) or chronic (69 day) infections 

(Moss et al. 2005; Knox et al. 2010; Dando et al. 2012; Robinson et al. 2013). Novy et al. (2009) 

utilised a Rhesus macaque model of intraamniotic Ureaplasma spp. infection and demonstrated that 

Ureaplasma spp., as a sole pathogen, caused chorioamnionitis and fetal lung injury. Taken together, 

the data presented within this thesis and the findings of others confirm a strong clinical link between 

chorioamnion infection with Ureaplasma spp. and the development of histological chorioamnionitis.  

 

However, within this current study, not all women with ureaplasma chorioamnion infection 

developed histological chorioamnionitis and not all women with histological chorioamnionitis 

delivered preterm, which suggests that there may be other factors which are involved in the 

development and progression of disease. Therefore, we serotyped ureaplasma clinical isolates to 

determine if there was a ‘virulent’ spp. or serovar of ureaplasmas that was associated more 

frequently with adverse pregnancy outcomes. While we determined that U. parvum was the species 

isolated most frequently (accounting for 85.7% of all ureaplasma isolates within our study) and that 

U. parvum serovars 1, 3 and 6 were the ureaplasma serovars isolated most frequently (accounting 

for 23.8%, 21.4% and 28.6% of all ureaplasma clinical isolates, respectively), we were unable to 

demonstrate any association between particular ureaplasma species or serovars and the 

development of adverse pregnancy or neonatal outcomes. This finding is consistent with previous 
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reports. Zheng et al. (1992) serotyped ureaplasma clinical isolates obtained from neonatal 

cerebrospinal fluid or blood and demonstrated that there were no particular ‘virulent’ Ureaplasma 

serovars that were associated with invasive disease. Similarly, other studies have demonstrated that 

some Ureaplasma spp. and serovars are more prevalent in some patient populations. For example, 

U. parvum serovars 3 and 6 were most frequently isolated from the UGT of women who delivered 

preterm in an American population (Naessens et al. 1988). U. parvum serovars 3 and 6 were among 

the most frequently isolated ureaplasmas from the UGT of women who delivered preterm in 

Australia (Knox et al. 1997) and U. parvum serovar 6 was shown to be the most adherent 

ureaplasma serovar identified within washed semen samples (Knox et al. 2003) within an Australian 

population. Sung et al. (2010) identified that U. parvum serovars 3 and 6 and U. urealyticum serovar 

11 were the most prevalent ureaplasma isolates obtained from nasopharyngeal and endotracheal 

aspirates of American neonates, while Eun et al. (2013) identified that U. urealyticum serovar 9 was 

the most common ureaplasma isolate identified within tracheal and gastric aspirates of Korean 

neonates. Similar to our current study, these researchers reported prevalent Ureaplasma spp. and 

serovars; however, these studies were unable to provide convincing data to support the idea of 

‘virulent’ Ureaplasma spp. or serovars. The difference in prevalent species or serovars reported 

within these studies may simply be due to differences in the serovars endemic within these 

geographical locations. Taken together, the results of this study and others demonstrate that it is 

unlikely that ‘virulent’ ureaplasma species or serovars exist and so there may be other factors that 

are critical in the development of adverse pregnancy outcomes.  

 

Also within this PhD program of study, we investigated the role of antigenic variation in Ureaplasma 

spp. Antigenic variation is hypothesised to enable pathogens to avoid recognition by the host 

immune response and is a common trait among the Mycoplasmataceae family, including 

Mycoplasma hominis, Mycoplasma pulmonis, Mycoplasma agalactiae, Mycoplasma genitalium, 

Mycoplasma penetrans and the human Ureaplasma spp. A seminal study published by Watson et al. 

(1993) investigated the major differences between M. pulmonis isolates obtained from animals with 

severe sequelae (‘virulent’ isolates) and those isolated from animals with little evidence of disease 

(‘avirulent’ isolates) and identified that the only discernible differences in these isolates was the 

variation of their variable antigen (V)-1 surface-exposed lipoprotein. Similarly, the variable protein of 

M. agalactiae (Vpma) antigen has been shown to vary in size in vivo. While researchers determined 

that size variation of the Vpma was not involved in the establishment of infection, it was suggested 

that variation of the Vpma may critically influence the survival of these microorganisms in vivo and 
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may be responsible for invasive/systemic infections of M. agalactiae in ovine mastitis (Chopra-

Dewasthaly et al. 2012).  

 

Antigenic variation has been described previously within the human Ureaplasma spp. In a sheep 

model of infection, different MBA size variants were generated in vivo within amniotic fluid and the 

chorioamnion tissue of pregnant ewes (Knox et al. 2010; Dando et al. 2012; Robinson et al. 2013). 

Additionally, ureaplasma clinical isolates with different MBA size variants have also been isolated 

from humans (Watson et al. 1990; Zheng et al. 1994; Zheng et al. 1995). It has also been shown that 

ureaplasmas can undergo phase variation (on/off “switching”) and this has been demonstrated in 

vitro (Monecke et al. 2003; Zimmerman et al. 2009; Zimmerman et al. 2011; Dando et al. 2012). 

However, there are currently no studies which have investigated ureaplasma MBA size variation in 

clinical isolates from the UGT during human pregnancies. Importantly, the effect of MBA size 

variation on the outcomes of pregnancies is currently unknown.  

 

In this PhD project, using western blot and polymerase chain reaction (PCR) analysis we identified 

that in vivo size variation in both the mba gene and its expressed protein (MBA) was associated with 

a lower incidence of histological chorioamnionitis, despite the presence of high numbers of 

Ureaplasma spp. infecting/colonising chorioamnion tissue. These findings are consistent with 

previous studies which demonstrated that MBA size variants were associated with only mild 

histological chorioamnionitis or the absence of inflammation within the chorioamnion or other fetal 

tissues (Knox et al. 2010; Robinson et al. 2013). The results of these studies suggest that MBA size 

variation plays an integral role in host-microbe interactions. We further investigated the role of MBA 

variation on the host innate immune responses and identified a novel association between the 

presence of MBA variation and concentrations of key cord blood cytokines. When Ureaplasma spp. 

demonstrated either a single or multiple MBA size variant(s), significantly lower concentrations of 

the cytokines G-CSF and IL-8 were present in cord blood. By contrast, placentae infected with 

ureaplasmas that did not alter the size of their MBA (i.e. the size of their MBA was the same as ATCC 

strain serovars) had significantly higher concentrations of both G-CSF and IL-8 detected within cord 

blood. These results strongly support the finding that MBA size variation plays an integral role in 

host-microbe interactions (Shimizu et al. 2008; Triantafilou et al. 2013); further studies into the 

pathogenesis of these microorganisms is warranted. 

 

IL-8 and G-CSF are both inflammatory markers that are often produced by the host during infections. 

The production of these key cytokines triggers the recruitment of neutrophils towards the site of 
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infection. Our finding that both IL-8 and G-CSF concentrations are significantly lower within cord 

blood in association with ureaplasma infections which display MBA size variants is of great 

importance as this may be a mechanism by which ureaplasmas avoid eradication by the host 

immune system. Shimizu et al. (2008) demonstrated that the Ureaplasma spp. MBA is the 

immunodominant antigen recognised by the host and is capable of activating nuclear factor (NF)-kB 

via Toll-like receptors (TLRs) 1, 2 and 6. Alterations of the MBA protein may in turn affect TLR 

binding, activation and subsequent signalling of inflammatory pathways and this may result in 

reduction in the levels of G-CSF and IL-8, despite the presence of ureaplasmas within the 

chorioamnion. 

 

This may also mean that there is a reduced likelihood of ureaplasma infections being eradicated by 

the host and chronic infections may develop. MBA size variation is also predicted to affect the 

adaptive immune response, as each MBA size variant is consistent with a single B-cell epitope. The 

ability of these microorganisms may also be associated with the concept of 'original antigenic sin'. 

Antigenic sin refers to the ability of the host to preferentially utilise immunological memory based 

on a previous infection with the same microorganism (Stromberg and Carlson 2013). When a 

secondary infection occurs, there may be slightly different antigens encountered by the host (e.g. 

Ureaplasma spp. MBA size or phase variation); however, the host preferentially utilises 

immunological memory to produce high-affinity memory B-cells in order to produce antibodies 

against the original antigens encountered during the original infection. The production of large 

numbers of memory B-cells also inhibits the activation of naïve B-cells, which would be able to 

mount an effective immune response against the current infection which displays slightly different 

surface antigens. This preference then leaves the host 'trapped' and often unable to respond to the 

different surface antigens produced by Ureaplasma spp., thereby enabling prolonged infections to 

ensue. This is supported by the findings of Dando et al. (2012) who demonstrated that maternal 

serum of sheep exposed to intraamniotic U. parvum for 69 days demonstrated serum reactivity to 

MBA proteins, which were different in size to the MBA antigens expressed by ureaplasmas within 

amniotic fluid of the same ewe and this supports the idea that infections with ureaplasmas are often 

chronic.  

 

During these chronic infections, the fetus is also exposed to Ureaplasma spp. in utero and the 

inability of the host immune response to neutralise these infections may lead to serious infant 

morbidity, including bronchopulmonary dysplasia, sepsis, meningitis, and in severe cases, cerebral 

palsy (Cassell et al. 1993b; Abele-Horn et al. 1997a; Katz et al. 2005; Berger et al. 2009). Given this, 
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the identification of UGT ureaplasma infections during pregnancy is of great importance; however, 

these microorganisms are currently not screened for during pregnancy and there is no available 

assay that can easily detect, speciate or serotype ureaplasmas.  

 

During this PhD, a real-time PCR and HRM assay for the simultaneous identification, speciation and 

serotyping of U. parvum clinical isolates was developed and validated. Given that U. parvum are the 

most prevalent Ureaplasma spp. (accounting for up to ~95% of all clinical isolates (Knox et al. 1997; 

Knox et al. 2003; De Francesco et al. 2009; Sung et al. 2010)), we sought to develop an improved 

assay to detect and characterise these microorganisms. The current "gold-standard" method for the 

detection of Ureaplasma spp. in clinical specimens is culture, which is often time-consuming, 

laborious and ureaplasma broth culture media is not available commercially, so media must be made 

"in house", all of which greatly increases the cost and time taken to diagnose these infections. The 

assay developed for this research project targets the multiple banded antigen gene (mba), which 

encodes the major surface-exposed, immunodominant antigen of Ureaplasma spp. This gene is 

present in all 14 ureaplasma serovars and the upstream portion of this gene has a relatively high A+T 

content and is conserved (Glass et al. 2000), making it an ideal candidate for the identification and 

serotyping of U. parvum. The presence of numerous single nucleotide polymorphisms (SNPs) within 

the upstream region of this gene in all U. parvum serovars allowed us to utilise fragments of the mba 

gene for the simultaneous identification, speciation and serotyping of the four U. parvum serovars in 

a single closed-tube assay. This novel assay successfully speciated and serotyped 64.5% of all clinical 

isolates tested; however, a further 11 isolates were unable to be typed using this assay. Those 

isolates which were successfully typed using this assay demonstrated high resolution melt curves 

that were very similar to those of the American Type Culture Collection (ATCC) strain serovars, so 

with additional improvements, this assay has the potential to be incorporated into routine clinical 

and diagnostic laboratory testing for Ureaplasma spp. and this is a major contribution to this field of 

research. However, the problem largely remains that Ureaplasma spp. infections are predominantly 

clinically asymptomatic (Gerber et al. 2003; Zdrodowska-Stefanow et al. 2006) and in our study, we 

identified no clinical signs or symptoms that were associated with UGT infections. Additionally, LGT 

colonisation with ureaplasmas is not predictive of UGT infections with Ureaplasma spp. or the 

development of adverse pregnancy outcomes (Cassell et al. 1993b; Eschenbach 1993; Knox et al. 

1997) and identifying women with UGT ureaplamsa infections during pregnancy is extremely 

difficult.  
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Because of these difficulties in identifying women with UGT infection, many studies have sought to 

identify biomarkers for the prediction of UGT infections, PTB and other adverse pregnancy 

outcomes. Biomarkers are a valuable clinical tool for the identification of women at-risk of PTB who 

are clinically asymptomatic. Early detection of risk factors or signs and symptoms of infection may 

potentially inform treatment options and lead to a reduction in the high rates of PTB. Indicators of 

PTB (biomarkers) may include maternal pregnancy history and demographic characteristics, patient 

presentation during routine examination or the measurement of substances within bodily fluids. The 

preterm prediction studies are a series of publications, which attempt to identify a range of 

biomarkers to assist in the identification of women at-risk of delivering preterm. These studies 

identified a wide range of maternal risk factors, behavioural characteristics and bodily fluid markers 

which were predictive of PTB and other adverse pregnancy outcomes. These included maternal 

stress, cervical length, bacterial vaginosis or genital infection with C. trachomatis at < 24 weeks of 

gestation as well as other biomarkers such as elevated levels of cervical IL-6 or fetal ferritin and 

vaginal fetal fibronectin. These factors were all correlated with spontaneous PTB and pPROM 

(Andrews et al. 2000; Goepfert et al. 2000; Meis et al. 2000; Mercer et al. 2000; Goepfert et al. 2001; 

Newman et al. 2001; Moawad et al. 2002; Ramsey et al. 2002; Goldenberg et al. 2005; Hendler et al. 

2005; Newman et al. 2008).  

 

The data presented within this thesis has further identified a history risk factor and two potential 

biomarkers that were associated with UGT infection during pregnancy. In this large study, we 

identified for the first time women with UGT infections within the current pregnancy (reported in 

Chapter 4) had a history of chorioamnionitis in a prior pregnancy. This further suggests that the 

microorganisms causing infection in this current pregnancy may be the cause of chorioamnionitis 

within a prior pregnancy. While previous studies have identified that the best indicator of PTB within 

a current pregnancy is a history of prior PTBs in other gestations (Mercer et al. 1999); to the best of 

our knowledge, this is the first study to identify that a prior history of chorioamnionitis may be used 

as a marker to predict the likelihood of UGT infections within a current pregnancy. This finding 

appears to be regardless of gestational age, as women within our study with chorioamnionitis 

delivered LPT or at term (> 36 weeks of gestation). These findings are a major contribution to this 

field of research and should be of great importance to clinicians and aid in the identification of 'at-

risk' women during pregnancy. 

 

In addition, we identified two cord blood cytokines that were elevated in pregnancy in association 

with UGT infection and histological chorioamnionitis. Concentrations of both IL-8 and G-CSF were 
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shown to be increased in pregnancies complicated by infection; while levels of G-CSF were elevated 

within the cord blood of pregnancies affected by histological chorioamnionitis. Our findings are in 

agreement with previous studies which have shown that concentrations of IL-8 were significantly 

increased in pregnancies complicated by UGT infection (including infection with Ureaplasma spp.) 

(Marconi et al. 2011). Amniotic fluid G-CSF was found to be elevated within the amniotic fluid of 

pregnancies complicated by intraamniotic infection (Calhoun et al. 2001) or histological 

chorioamnionitis (Raynor et al. 1995; Hoskins et al. 1997). More recently, Payne et al. (2014)  sought 

to identify amniotic fluid biomarkers specific for Ureaplasma spp. infections. Amniotic fluid samples 

obtained at the time of amniocentesis (15 – 20 weeks of gestation) were collected from 480 Chinese 

and 492 Australian women and analysed for the presence of inflammatory markers (IL-1β, IL-6, IL-10, 

TNF-α and MCP-1). Ureaplasma spp. were identified in only two (0.2%) women within this study and 

there were no significant correlations between the infection with ureaplasmas and elevated levels of 

amniotic fluid cytokines. While this study did not test for the presence of IL-8 and G-CSF (markers 

which we have identified as elevated during UGT infections), the presence of Ureaplasma spp. 

within this study was also extremely low, suggesting that the PCR assays used for identification of 

these microorganisms did not identify low-level ureaplasma infection. These findings also suggest 

that amniotic fluid is not the most appropriate specimen for identifying biomarkers of UGT infection.  

 

Amniotic fluid is collected by an invasive procedure (amniocentesis) that is most frequently during 

pregnancies when there is an increased risk of neonatal genetic abnormalities. Amniocentesis can 

only be performed by clinicians and this procedure is associated with an increased risk of 

miscarriage, with approximately 1/200 women experiencing miscarriages after undergoing this 

procedure (Tabor and Alfirevic 2010). Given the increased risks and specialised training required, it is 

unlikely that pregnant women would routinely undergo amniocentesis to obtain amniotic fluid for 

biomarker analysis. Therefore, it is likely that non-invasive methods of screening would be more 

acceptable to pregnant women and so specimens such as serum or vaginal fluids are likely to be a 

superior specimen of choice. Additionally, women routinely undergo blood tests and most women 

will often undergo vaginal screening (specifically for S. agalactiae or GBS) throughout pregnancy and 

so testing for additional factors during these tests would likely be deemed acceptable by most 

pregnant women (Goldenberg et al. 2005). Currently, we are still yet to identify the most 

appropriate biomarker(s) for identification of UGT infections within these specimens. 

 

Previous studies  reported that maternal serum levels of IL-8 were elevated in women experiencing 

PTB with UGT infections (Bogavac and Brkic 2009). Additionally, maternal serum levels of G-CSF were 
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shown to be significantly increased in pregnancies complicated by histological chorioamnionitis 

(Boggess et al. 1997), pPROM (Murtha et al. 2007) and spontaneous PTB (< 28 weeks of gestation) 

(Goldenberg et al. 2000a). In our current study, we identified elevated levels of IL-8 and G-CSF within 

cord blood but unfortunately we were unable to test maternal serum for this marker. Cord blood is a 

derivative of maternal blood (maternal blood is passed through and filtered by the placenta) (Meyer 

et al. 1978) and it would be worthwhile to test for these key cytokines as they may also be increased 

within the maternal circulation.  

 

G-CSF is often found in extremely low levels in maternal circulation, unless infection or inflammation 

is present; making this a particularly attractive candidate for a pregnancy biomarker. Goldenberg et 

al. (2000) previously investigated the utility of G-CSF as a serum biomarker and identified that it was 

very useful in the prediction of PTB at < 32 weeks of gestation. However, our study has provided 

novel evidence that G-CSF may also be a useful biomarker at > 32 weeks of gestation for the 

prediction of Ureaplasma spp. infection and histological chorioamnionitis. Gravett et al. (2007) also 

investigated proteomic markers of UGT infection with Ureaplasma spp. in a non-human primate 

model and identified 205 unique proteins produced in amniotic fluid and cervicovaginal fluid of 

Rhesus monkeys following intraamniotic infection with Ureaplasma spp. Additionally, 27 other 

proteins were found to be differentially expressed (up- or down-regulated) within these fluids 

following infection with ureaplasmas and so with further investigation; it may be possible to identify 

a panel of biomarkers which can be used for the prediction or identification of women with UGT 

infections and/or histological chorioamnionitis. 

 

Within this PhD program of study, we also provided preliminary evidence which suggests that 

Ureaplasma spp. can infiltrate the placenta and chorioamnion. Using an ex vivo chorioamnion tissue 

model, we exposed the maternal surface of the membranes to live U. parvum (replicating) or UV-

inactivated (non-replicative, but still with their major surface-exposed antigens intact) U. parvum in 

order to study the host immune responses to these microorganisms. The numbers of U. parvum CFU 

within the Ussing chambers did not differ significantly over time; however, we did see differences in 

the immune responses to these pathogens. In this pilot study, we identified that concentrations of 

IL-10 were significantly increased in Ussing chambers in which the maternal membrane was 

stimulated with live U. parvum. It was interesting that we identified increased concentrations of IL-

10, and anti-inflammatory cytokine, within maternal perfusates but not in fetal perfusates in 

response to live U. parvum. Increased production of IL-10 can result in an immunosuppressive 

response on the chorioamnion tissues, ‘dampening’ or reducing the effects of any pro-inflammatory 
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immune responses. This finding is supported by the findings of Chapters Four and Five within this 

thesis; which showed that not all women whose chorioamnion was infected with Ureaplasma spp. 

demonstrate an inflammatory immune response (and some women with high numbers of 

ureaplasmas within their chorioamnion had little or no evidence of chorioamnionitis) and also that 

variation of the Ureaplasma spp. MBA may be associated with modulation of the host immune 

response. Significantly lower levels of cord blood pro-inflammatory cytokines IL-8 and G-CSF were 

detected in cord blood when placentae were infected with ureaplasmas that displayed variation of 

their surface-exposed MBA. The signalling of an immunosuppressive immune response in response 

to ureaplasma infections is interesting, and supports the hypothesis that these organisms may cause 

chronic, asymptomatic in utero infections for prolonged periods and the increase in 

immunosuppressive cytokines (IL-10) and the reduction of immunostimulatory cytokines (IL-8 and G-

CSF) may allow for the establishment of chronic UGT infections with ureaplasmas.  

 

Within this pilot study, we were also able to demonstrate that stimulation of the chorioamnion 

membranes with live U. parvum resulted in the significant loss of chorioamnion tissue integrity and 

the invasion of U. parvum through the chorioamnion membranes to the fetal compartment by 30 

hours of infection. This finding is novel, as no previous studies have investigated whether 

Ureaplasma spp. are able to cross the chorioamnion membrane; despite ascending invasive 

infections being the most commonly accepted origin/route of UGT infection. At the conclusion of 

these experiments, approximately 2 x 104 CFU of Ureaplamsa spp. was detected within the fetal 

compartment of all Ussing chambers that were stimulated with live ureaplasmas; and while it is 

currently not clear if these microorganisms were present simply due to membrane degradation, this 

is still a unique finding that warrants further investigation. A previous study has identified that S. 

agalactiae (Group B Streptococcus or GBS) was able to penetrate the chorioamnion membrane 

within a similar ex vivo model (using Trans-well assay plates) (Winram et al. 1998) and this supports 

the hypothesis that ureaplasmas and other microorganisms can infiltrate the placenta and 

chorioamnion during pregnancy. These findings have serious implications for the health and 

wellbeing of mothers and neonates. If Ureaplasma spp. are able to degrade the chorioamnion 

membrane in vivo, this may allow ureaplasmas and other microorganisms to cross the chorioamnion 

and infect the fetus and amniotic cavity. Previous studies of very early PTBs have shown that 

Ureaplasma spp. are commonly isolated in the presence of other microorganisms, including 

Fusobacterium spp., Streptococcus spp., Mycoplasma spp. and Bacteroides spp. (DiGiulio et al. 2010). 

The ability of these microorganisms to pass into the amniotic cavity at the time of pregnancy are 

associated with adverse pregnancy outcomes.  
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Furthermore, prolonged exposure to Ureaplasma spp. in utero has been associated with altered lung 

structure and altered gut structure in sheep (Collins et al. 2010; Robinson et al. 2013; Wolfs et al. 

2013); while in humans, exposure to ureaplasmas has been correlated with adverse neurological 

disorders, cerebral palsy and adverse respiratory outcomes (Viscardi et al. 2002; Berger et al. 2009; 

Payne et al. 2010).  

  

Additionally, our study identified significant increases in the presence and activity of MMP-9 

following exposure to U. parvum. This is perhaps not surprising, as MMP-9 has been shown 

previously to play a key role in maintenance in chorioamnion tissue. MMPs regulate the degradation 

and renewal of extracellular matrix proteins within the chorioamnion and any disturbance to this 

balance may result in chorioamnion degradation and membrane rupture. MMP-9 has been shown to 

be elevated in pregnancies that end prematurely (Tency et al. 2012) and combined, these findings 

further demonstrate that ureaplasmas have a negative effect on chorioamnion tissues in an ex vivo 

model.  

 

Numerous studies have identified associations between UGT infection with Ureaplasma spp. and the 

development of pPROM. A review by DiGiulio et al. (2012) identified that the human Ureaplasma 

spp. are the bacteria isolated most frequently from the amniotic fluid of women experiencing 

pPROM; however, many of the studies reported in this review article identified multiple 

microorganisms within the amniotic fluid. The presence of multiple microorganisms often makes it 

more difficult to identify the true causative agent of pPROM; but in this pilot study, we have 

demonstrated for the first time that infection of the chorioamnion with Ureaplasma spp. causes 

alterations that are consistent with the early stages of pPROM.  

 

Conclusions 
 

The data presented within this thesis has provided novel information on the role of Ureaplasma spp. 

infections within human pregnancies. Our findings have shown that the host immune responses 

during Ureaplasma spp. infections are complex, with both immunostimulatory and 

immunosuppressive pathways activated following infection with Ureaplasma spp. This is further 

complicated by the fact that these microorganisms can vary their surface-exposed lipoprotein, the 

MBA; and in this thesis we provided the first evidence that Ureaplasma spp. clinical isolates obtained 

from the chorioamnion of human pregnancies demonstrate differences in the size of their MBA.  
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We also identified that variation of the ureaplasma MBA was associated with a lower incidence of 

histological chorioamnionitis and lower levels of cord blood cytokines IL-8 and G-CSF; suggesting that 

this protein may be involved in host-microbe interactions and modulation of the host immune 

response. While we were unable to show that MBA variation prevented the recognition of these 

pathogens in utero, the constant varying of this major immunodominant antigen may aid in 

preventing the eradication of Ureaplasma spp. and assist in the establishment of chronic in utero 

infections.  

 

Also of importance, we have demonstrated that live Ureaplasma spp. infections can negatively affect 

chorioamnion tissue and are able to infiltrate and cross the chorioamnion membrane in an ex vivo 

Ussing chamber model of ureaplasma infection. Within this small pilot study, we provided the first 

evidence that live ureaplasmas can alter the integrity and structure of the chorioamnion membrane, 

and also elicit immune responses in the form of increased MMP-9 and IL-10 production.  

 

Given the new and novel information presented within this thesis, a potential model of UGT 

infection with Ureaplasma spp. based on these new findings has been proposed (Figure 7.1). 

Ureaplasmas may ascend from the LGT, through the cervix and reach the choriodecidual space, 

where they may then infiltrate the placenta and cross the chorioamnion membranes. Once inside 

the amniotic cavity, the host can recognise and mount an immune response to eradicate the 

ureaplasmas. However, ureaplasmas can vary the size of their immunodominant antigen, the MBA, 

and the Ureaplasma spp. are not eradicated. MBA size variation leads to a reduced inflammatory 

response within the placenta and amniotic cavity, resulting in mild or no histological 

chorioamnionitis and subclinical (asymptomatic), chronic ureaplasma infections may be established. 

Due to the reduced inflammatory responses, PTB is not triggered and chronic infections continue; 

until normal term delivery. Prolonged exposure to Ureaplasma spp. in utero may result in an 

increased risk of neonatal and childhood diseases, due to the constant exposure of the fetus to these 

microorganisms even in the absence of histological chorioamnionitis. In cases where Ureaplasma 

spp. do not vary their surface-exposed MBA, strong pro-inflammatory responses may be seen and 

these microorganisms may be eradicated, thus ‘healing’ the UGT infection and leaving evidence of 

prior infection in the form of histological chorioamnionitis. However, in most cases, ureaplasmas 

may not be eradicated and these strong pro-inflammatory responses (such as increased IL-8 and G-

CSF) result in recruitment of inflammatory cells, production of MMPs and other immune factors 

which weaken the chorioamnion membrane. This membrane weakening may result in pPROM and 

subsequent PTB. Those infants who are exposed to these severe pro-inflammatory responses are at 
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greater risk of developing severe sequelae, such as respiratory distress syndrome (RDS) or 

neurological sequelae, such as cerebral palsy.  
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Figure 7.1. Proposed model of UGT infections with Ureaplasma spp. 
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The Ureaplasma spp. are important pathogens of the female UGT during pregnancy and are 

associated with severe adverse pregnancy outcomes. While the results generated from this PhD 

project suggest that there are no ‘virulent’ Ureaplasma spp. or serovars, they do strongly suggest 

that host-microbe interactions play a crucial role in the development of pregnancy sequelae. The 

ability of ureaplasmas to vary their surface-exposed MBA also appears to contribute to the ability of 

these microorganisms to avoid eradication by the host immune system, facilitating chronic 

infections. As the host immune response alone is often unable to eliminate these pathogens, more 

effective treatment options or therapeutic strategies are required in order to eradicate these 

pathogens from the UGT, or to prevent in utero infections from occurring.  

 

Future Directions 

 

Based on the findings of this PhD project, we propose that Ureaplasma spp. are an underestimated 

pathogen during pregnancy and their role in adverse outcomes requires further investigation. The 

initiation of screening and identification of women at-risk of developing UGT infections with 

ureaplasmas is of great clinical importance. Additional studies which focus on the identification of 

clinical risk factors and other maternal serum biomarkers or improved  detection techniques (such as 

the real-time PCR and HRM assay developed within this PhD project) appear to be the most 

appropriate strategies for identifying these microorganisms during gestation. Collaborative studies, 

undertaken by researchers and clinicians are required to trial antimicrobial treatments or 

therapeutic strategies in order to improve pregnancy outcomes for women infected with 

Ureaplasma spp. in utero.  

 

Furthermore, the role of the MBA should be further investigated in order to determine the 

mechanisms by which variation of the surface-exposed lipoprotein modulates chronic UGT infections 

and the host immune system. Because mba/MBA variation has been shown to be associated with a 

reduction of inflammation, studies which investigate the outcomes of infants exposed to these 

organisms in utero are warranted to determine if the presence of these microorganisms in the 

absence of inflammation are associated with any immediate adverse neonatal outcomes and also 

with long-term outcomes of infants exposed to ureaplasmas. Additionally, further studies which 

investigate other host immune factors, such as TLR activation and signalling may improve our 

knowledge and understanding of host immune responses to these pathogens during such an 

immunologically unique period, where the host immune response is predominantly TH2-mediated. 

Further studies should include the investigation of macrophage polarisation (M1/M2 phenotypes) on 

the host immune response to Ureaplasma spp. infections in order to determine if a TH2-mediated 



 

188 
 

response to ureaplasmas may in fact prolong infection, due to the initiation of an immediate TH2 

response which may not eradicate the pathogen. Additionally, it would also be of great interest to 

determine if ureaplasmas are able to stimulate the polarisation of macrophages by exposing 

unpolarised macrophages to ureaplasmas and determining the responses generated, to better 

understand if macrophages play an important role in the host immune responses during pregnancy.    

 

As the ureaplasma MBA is known to be the major immunodominant antigen recognised by the host 

immune system, an MBA vaccine may be developed. However, problems such as the size and phase 

variation of this protein inherently diminish the efficacy of this approach. Furthermore, it has been 

shown that the presence of Ureaplasma spp. antibodies present within maternal serum may also be 

associated with adverse pregnancy outcomes, such as spontaneous abortions (Naessens et al. 1988) 

and so therefore an ureaplasma vaccine should be carefully considered. While there are currently no 

ureaplasma-specific vaccines which have been trialled, issues in the feasibility of these lie in the fact 

that these microorganisms are also commensals of the female LGT, and the eradication of these 

organisms at this site may result in significant alterations of female vaginal microflora, which could 

have serious consequences. 

Because there is such an interesting association between the presence of circulating maternal 

ureaplasma-specific antibodies and an association with adverse pregnancy outcomes; the concept of 

immune ‘tolerance’ should be investigated. Exposure to Ureaplasma spp. at a young age (e.g. infants 

exposed to Ureaplasma spp. at the time of birth) may develop an immune ‘tolerance’ to these 

microorganisms and this may potentially reduce their host immune response to ureaplasma 

infections later in life. Long-term animal studies which investigate immune tolerance to 

ureaplasmas, the presence of maternal ureaplasma antibodies and the outcome of pregnancies of 

these same subjects may further elucidate the role of the host immune response to ureaplasmas.  

Overall, it is likely that the best way forward in the identification, treatment and eradication of 

ureaplasmas involve the immediate improvement of the detection of these organisms or of 

biomarkers of infection during gestation and improvement in the management and treatment of 

these women. By further investigating the host immune response to ureaplasmas, it may also be 

possible to identify targeted therapies for the eradication of these Ureaplasma spp. from the UGT 

during pregnancy.   

 



 

189 
 

 

 

 

 

 

Chapter Eight: 

 

 

 

Literature Cited 

  



 

190 
 

Aaltonen, R., J. Heikkinen, T. Vahlberg, J. S. Jensen and A. Alanen (2007). "Local inflammatory 
response in choriodecidua induced by Ureaplasma urealyticum." BJOG 114(11): 1432-1435. 
Abel, K. M., C. Dalman, A. C. Svensson, E. Susser, H. Dal, S. Idring, R. T. Webb, D. Rai and C. 
Magnusson (2013). "Deviance in fetal growth and risk of autism spectrum disorder." American 
Journal of Psychiatry 170(4): 391-398. 
Abele-Horn, M., J. Peters, O. Genzel-Boroviczeny, C. Wolff, A. Zimmermann and W. Gottschling 
(1997a). "Vaginal Ureaplasma urealyticum colonization: influence on pregnancy outcome and 
neonatal morbidity." Infection 25(5): 286-291. 
Abele-Horn, M., M. Scholz, C. Wolff and M. Kolben (2000). "High-density vaginal Ureaplasma 
urealyticum colonization as a risk factor for chorioamnionitis and preterm delivery." Acta Obstetricia 
et Gynecologica Scandinavica 79(11): 973-978. 
Abele-Horn, M., C. Wolff, P. Dressel, F. Pfaff and A. Zimmermann (1997b). "Association of 
Ureaplasma urealyticum biovars with clinical outcome for neonates, obstetric patients, and 
gynecological patients with pelvic inflammatory disease." Journal of Clinical Microbiology 35(5): 
1199-1202. 
Abrahams, V. M. (2005). "Toll-Like Receptors in the Cycling Female Reproductive Tract and During 
Pregnancy." Toll-Like Receptors in the Cycling Female Reproductive Tract and During Pregnancy 1. 
Abrahams, V. M. (2008). "Pattern recognition at the maternal-fetal interface." Immunology 
Investigations 37(5): 427-447. 
Abrahams, V. M., P. Bole-Aldo, Y. M. Kim, S. L. Straszewski-Chavez, T. Chaiworapongsa, R. Romero 
and G. Mor (2004). "Divergent trophoblast responses to bacterial products mediated by TLRs." 
Journal of Immunology 173(7): 4286-4296. 
Abrahams, V. M., J. A. Potter, G. Bhat, M. R. Peltier, G. Saade and R. Menon (2013). "Bacterial 
modulation of human fetal membrane Toll-like receptor expression." American Journal of 
Reproductive Immunology 69(1): 33-40. 
Abrahams, V. M., I. Visintin, P. B. Aldo, S. Guller, R. Romero and G. Mor (2005). "A role for TLRs in the 
regulation of immune cell migration by first trimester trophoblast cells." Journal of Immunology 
175(12): 8096-8104. 
Acosta, E. P., P. L. Grigsby, K. B. Larson, A. M. James, M. C. Long, L. B. Duffy, K. B. Waites and M. J. 
Novy (2014). "Transplacental transfer of Azithromycin and its use for eradicating intra-amniotic 
ureaplasma infection in a primate model." Journal of Infectious Disease 209(6): 898-904. 
Adamkin, D. H. (2011). "Postnatal glucose homeostasis in late-preterm and term infants." Pediatrics 
127(3): 575-579. 
Adams-Chapman, I. (2006). "Neurodevelopmental outcome of the late preterm infant." Clinics in 
Perinatology 33(4): 947-964; abstract xi. 
Allam, A. B., S. Alvarez, M. B. Brown and L. Reyes (2011). "Ureaplasma parvum infection alters 
filamin A dynamics in host cells." BMC Infectious Diseases 11: 101. 
Allam, A. B., M. von Chamier, M. B. Brown and L. Reyes (2014). "Immune Profiling of BALB/C and 
C57BL/6 Mice Reveals a Correlation Between Ureaplasma parvum-Induced Fetal Inflammatory 
Response Syndrome-Like Pathology and Increased Placental Expression of TLR2 and CD14." 
American Journal of Reproductive Immunology 71(3): 241-251. 
Anderson, B. L., H. Mendez-Figueroa, J. D. Dahlke, C. Raker, S. L. Hillier and S. Cu-Uvin (2013). 
"Pregnancy-induced changes in immune protection of the genital tract: defining normal." American 
Journal of Obstetrics and Gynecology 208(4): 321 e321-329. 
Andrews, W. W., R. L. Goldenberg, B. Mercer, J. Iams, P. Meis, A. Moawad, A. Das, J. P. Vandorsten, 
S. N. Caritis, G. Thurnau, M. Miodovnik, J. Roberts and D. McNellis (2000). "The Preterm Prediction 
Study: association of second-trimester genitourinary chlamydia infection with subsequent 
spontaneous preterm birth." American Journal of Obstetrics and Gynecology 183(3): 662-668. 
Andrys, C., M. Drahosova, H. Hornychova, V. Tambor, I. Musilova, J. Tosner, E. Flidrova and M. 
Kacerovsky (2010). "Umbilical cord blood concentrations of IL-6, IL-8, and MMP-8 in pregnancy 



 

191 
 

complicated by preterm premature rupture of the membranes and histological chorioamnionitis." 
Neuroendocrinology Letters 31(6): 857-863. 
Australian Government Department of Health and Ageing, C. (2012). "Australian Health Ministers’ 
Advisory Council 2012, Clinical Practice Guidelines: Antenatal Care – Module 1. 
http://www.health.gov.au/antenatal." 
Bai, G., F. Fu, Y. Tang and Y. Wang (2013). "Effect of hepatitis B virus infection on apoptosis of a 
human choriocarcinoma cell line in vitro." Journal of Obstetrics and Gynaecology Research 39(6): 
1200-1211. 
Baron, I. S., B. A. Weiss, R. Baker, A. Khoury, I. Remsburg, J. W. Thermolice, F. R. Litman and M. D. 
Ahronovich (2013). "Subtle Adverse Effects of Late Preterm Birth: A Cautionary Note." 
Neuropsychology. 
Beeton, M. L., M. R. Daha, T. El-Shanawany, S. R. Jolles, S. Kotecha and O. B. Spiller (2012). "Serum 
killing of Ureaplasma parvum shows serovar-determined susceptibility for normal individuals and 
common variable immuno-deficiency patients." Immunobiology 217(2): 187-194. 
Behrman, R. B., AS (2007). Preterm Birth: Causes, Consequences and Prevention. Washington (DC), 
National Academies Press. 
Benn, C. S., P. Thorsen, J. S. Jensen, B. B. Kjaer, H. Bisgaard, M. Andersen, K. Rostgaard, B. Bjorksten 
and M. Melbye (2002). "Maternal vaginal microflora during pregnancy and the risk of asthma 
hospitalization and use of antiasthma medication in early childhood." Journal of Allergy and Clinical 
Immunology 110(1): 72-77. 
Benstein, B. D., D. T. Crouse, D. R. Shanklin and D. D. Ourth (2003). "Ureaplasma in lung. 2. 
Association with bronchopulmonary dysplasia in premature newborns." Experimental and Molecular 
Pathology 75(2): 171-177. 
Benyshek, D. C. and J. T. Watson (2006). "Exploring the thrifty genotype's food-shortage 
assumptions: a cross-cultural comparison of ethnographic accounts of food security among foraging 
and agricultural societies." American Journal of Physical Anthropology 131(1): 120-126. 
Berard, A., M. Le Tiec and M. A. De Vera (2012). "Study of the costs and morbidities of late-preterm 
birth." Archives of Disease in Childhood. Fetal and Neonatal Edition 97(5): F329-334. 
Berger, A., A. Witt, N. Haiden, A. Kaider, K. Klebermasz, R. Fuiko, M. Langgartner and A. Pollak 
(2009). "Intrauterine infection with Ureaplasma species is associated with adverse neuromotor 
outcome at 1 and 2 years adjusted age in preterm infants." Journal of Perinatal Medicine 37(1): 72-
78. 
Bergey, D. H., J. G. Holt and (Editors) (1994). The Mycoplasmas (or Mollicutes): Cell wall-less 
Bacteria. In Bergey's manual of determinative bacteriology. Baltimore, MD, Williams & Wilkins: 705 - 
707. 
Bhugra, B. and K. Dybvig (1992). "High-frequency rearrangements in the chromosome of 
Mycoplasma pulmonis correlate with phenotypic switching." Molecular Microbiology 6(9): 1149-
1154. 
Bhugra, B., L. L. Voelker, N. Zou, H. Yu and K. Dybvig (1995). "Mechanism of antigenic variation in 
Mycoplasma pulmonis: interwoven, site-specific DNA inversions." Molecular Microbiology 18(4): 
703-714. 
Bick, D. (2012). "Born too soon: The global issue of preterm birth." Midwifery 28(4): 341-342. 
Bickel, M. (1993). "The role of interleukin-8 in inflammation and mechanisms of regulation." Journal 
of Periodontology 64(5 Suppl): 456-460. 
Biran, V., A. M. Dumitrescu, C. Doit, A. Gaudin, C. Bebear, H. Boutignon, E. Bingen, O. Baud, S. 
Bonacorsi and Y. Aujard (2010). "Ureaplasma parvum meningitis in a full-term newborn." Pediatric 
Infectious Diseases Journal 29(12): 1154. 
Bloom, S. L., N. P. Yost, D. D. McIntire and K. J. Leveno (2001). "Recurrence of preterm birth in 
singleton and twin pregnancies." Obstetrics and Gynecology 98(3): 379-385. 
Bogavac, M. A. and S. Brkic (2009). "Serum proinflammatory cytokine - interleukin-8 as possible 
infection site marker in preterm deliveries." Journal of Perinatal Medicine 37(6): 707-708. 



 

192 
 

Boggess, K. A., P. C. Greig, A. P. Murtha, C. E. Jimmerson and W. N. Herbert (1997). "Maternal serum 
granulocyte-colony stimulating factor in preterm birth with subclinical chorioamnionitis." Journal of 
Reproductive Immunology 33(1): 45-52. 
Boyle, J. D. and E. M. Boyle (2013). "Born just a few weeks early: does it matter?" Archives of Disease 
in Childhood. Fetal and Neonatal Edition 98(1): F85-88. 
Breugelmans, M., E. Vancutsem, A. Naessens, M. Laubach and W. Foulon (2010). "Association of 
abnormal vaginal flora and Ureaplasma species as risk factors for preterm birth: a cohort study." 
Acta Obstetricia et Gynecologica Scandinavica 89(2): 256-260. 
Brown, M. B., M. von Chamier, A. B. Allam and L. Reyes (2014). "M1/M2 macrophage polarity in 
normal and complicated pregnancy." Fronteirs in Immunology 5: 606. 
Brumbaugh, J. E., A. S. Hodel and K. M. Thomas (2013). "The Impact of Late Preterm Birth on 
Executive Function at Preschool Age." American Journal of Perinatology. 
Calhoun, D. A., N. Chegini, B. M. Polliotti, J. A. Gersting, R. K. Miller and R. D. Christensen (2001). 
"Granulocyte colony-stimulating factor in preterm and term pregnancy, parturition, and intra-
amniotic infection." Obstetrics and Gynecology 97(2): 229-234. 
Cao, X., Z. Jiang, Y. Wang, R. Gong and C. Zhang (2007a). "Two multiplex real-time TaqMan 
polymerase chain reaction systems for simultaneous detecting and serotyping of Ureaplasma 
parvum." Diagnostic Microbiology and Infectious Disease 59(1): 109-111. 
Cao, X., Y. Wang, X. Hu, H. Qing and H. Wang (2007b). "Real-time TaqMan polymerase chain reaction 
assays for quantitative detection and differentiation of Ureaplasma urealyticum and Ureaplasma 
parvum." Diagnostic Microbiology and Infectious Disease 57(4): 373-378. 
Casari, E., A. Ferrario, E. Morenghi and A. Montanelli (2010). "Gardnerella, Trichomonas vaginalis, 
Candida, Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum in the genital 
discharge of symptomatic fertile and asymptomatic infertile women." New Microbiology 33(1): 69-
76. 
Cassell, G. H., W. W. Andrews, J. C. Hauth and G. Cutter (1993a). "Isolation of microorganisms from 
the chorioamnion is twice that from amniotic fluid at cesarean delivery in women with intact 
membranes." American Journal of Obstetrics and Gynecology 168: 424. 
Cassell, G. H., D. T. Crouse, K. B. Waites, P. T. Rudd and J. K. Davis (1988). "Does Ureaplasma 
urealyticum cause respiratory disease in newborns?" Pediatric Infectious Diseases Journal 7(8): 535-
541. 
Cassell, G. H., R. O. Davis, K. B. Waites, M. B. Brown, P. A. Marriott, S. Stagno and J. K. Davis (1983). 
"Isolation of Mycoplasma hominis and Ureaplasma urealyticum from amniotic fluid at 16-20 weeks 
of gestation: potential effect on outcome of pregnancy." Sexually Transmitted Diseases 10(4 Suppl): 
294-302. 
Cassell, G. H., K. B. Waites, H. L. Watson, D. T. Crouse and R. Harasawa (1993b). "Ureaplasma 
urealyticum intrauterine infection: role in prematurity and disease in newborns." Clinical 
Microbiology Reviews 6(1): 69-87. 
Castro-Alcaraz, S., E. M. Greenberg, D. A. Bateman and J. A. Regan (2002). "Patterns of colonization 
with Ureaplasma urealyticum during neonatal intensive care unit hospitalizations of very low birth 
weight infants and the development of chronic lung disease." Pediatrics 110(4): e45. 
Castro, A. S., C. M. Alves, M. B. Angeloni, A. O. Gomes, B. F. Barbosa, P. S. Franco, D. A. Silva, O. A. 
Martins-Filho, J. R. Mineo, T. W. Mineo and E. A. Ferro (2013). "Trophoblast cells are able to regulate 
monocyte activity to control Toxoplasma gondii infection." Placenta 34(3): 240-247. 
Challis, J. R., C. J. Lockwood, L. Myatt, J. E. Norman, J. F. Strauss, 3rd and F. Petraglia (2009). 
"Inflammation and pregnancy." Reproductive Science 16(2): 206-215. 
Chopra-Dewasthaly, R., M. Baumgartner, E. Gamper, C. Innerebner, M. Zimmermann, F. Schilcher, A. 
Tichy, P. Winter, W. Jechlinger, R. Rosengarten and J. Spergser (2012). "Role of Vpma phase variation 
in Mycoplasma agalactiae pathogenesis." FEMS Immunology and Medical Microbiology 66(3): 307-
322. 



 

193 
 

Chopra-Dewasthaly, R., C. Citti, M. D. Glew, M. Zimmermann, R. Rosengarten and W. Jechlinger 
(2008). "Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-
frequency Vpma antigenic variation." Molecular Microbiology 67(6): 1196-1210. 
Christiansen, C. B., FT;  Freundt, EA (1981). "Hybridization experiments with deoxyribonucleic acid 
from Ureaplasma urealyticum serovars I to VIII." International Journal of Systematic Bacteriology 31: 
259-262. 
Cicinelli, E., A. Ballini, M. Marinaccio, A. Poliseno, M. F. Coscia, R. Monno and D. De Vito (2012). 
"Microbiological findings in endometrial specimen: our experience." Archives of Gynecology and 
Obstetrics 285(5): 1325-1329. 
Citti, C., L. X. Nouvel and E. Baranowski (2010). "Phase and antigenic variation in mycoplasmas." 
Future Microbiology 5(7): 1073-1085. 
Colin, A. A., C. McEvoy and R. G. Castile (2010). "Respiratory morbidity and lung function in preterm 
infants of 32 to 36 weeks' gestational age." Pediatrics 126(1): 115-128. 
Collins, J. J., S. G. Kallapur, C. L. Knox, M. W. Kemp, E. Kuypers, L. J. Zimmermann, J. P. Newnham, A. 
H. Jobe and B. W. Kramer (2013). "Repeated intrauterine exposures to inflammatory stimuli 
attenuated transforming growth factor-beta signaling in the ovine fetal lung." Neonatology 104(1): 
49-55. 
Collins, J. J., S. G. Kallapur, C. L. Knox, I. Nitsos, G. R. Polglase, J. J. Pillow, E. Kuypers, J. P. Newnham, 
A. H. Jobe and B. W. Kramer (2010). "Inflammation in fetal sheep from intra-amniotic injection of 
Ureaplasma parvum." American Journal of Physiology -  Lung Cellular and Molecular Physiology 
299(6): L852-860. 
Cultrera, R., S. Seraceni, R. Germani and C. Contini (2006). "Molecular evidence of Ureaplasma 
urealyticum and Ureaplasma parvum colonization in preterm infants during respiratory distress 
syndrome." BMC Infectious Diseases 6: 166. 
Cunningham, C. K., C. A. Bonville, J. H. Hagen, J. L. Belkowitz, R. M. Kawatu, A. M. Higgins and L. B. 
Weiner (1996). "Immunoblot analysis of anti-Ureaplasma urealyticum antibody in pregnant women 
and newborn infants." Clinical and Diagnostic Laboratory Immunology 3(5): 487-492. 
Czikk, M. J., F. P. McCarthy and K. E. Murphy (2011). "Chorioamnionitis: from pathogenesis to 
treatment." Clinical Microbiology and Infection 17(9): 1304-1311. 
Dammann, O., E. N. Allred, D. R. Genest, R. B. Kundsin and A. Leviton (2003). "Antenatal mycoplasma 
infection, the fetal inflammatory response and cerebral white matter damage in very-low-
birthweight infants." Paediatric and Perinatal Epidemiologyl 17(1): 49-57. 
Dando, S. J., I. Nitsos, S. G. Kallapur, J. P. Newnham, G. R. Polglase, J. J. Pillow, A. H. Jobe, P. Timms 
and C. L. Knox (2012). "The role of the multiple banded antigen of Ureaplasma parvum in intra-
amniotic infection: major virulence factor or decoy?" PLoS One 7(1): e29856. 
Dando, S. J., I. Nitsos, J. P. Newnham, A. H. Jobe, T. J. Moss and C. L. Knox (2010). "Maternal 
administration of erythromycin fails to eradicate intrauterine ureaplasma infection in an ovine 
model." Biology of Reproduction 83(4): 616-622. 
Dando, S. J., I. Nitsos, G. R. Polglase, J. P. Newnham, A. H. Jobe and C. L. Knox (2014). "Ureaplasma 
parvum Undergoes Selection In Utero Resulting in Genetically Diverse Isolates Colonizing the 
Chorioamnion of Fetal Sheep." Biology of Reproduction 90(2): 27. 
Darmon, E. and D. R. Leach (2014). "Bacterial genome instability." Microbiology and Molecular 
Biology Reviews 78(1): 1-39. 
Darnall, R. A., R. L. Ariagno and H. C. Kinney (2006). "The late preterm infant and the control of 
breathing, sleep, and brainstem development: a review." Clinics in Perinatology 33(4): 883-914; 
abstract x. 
David, F. J., H. C. Tran, N. Serpente, B. Autran, C. Vaquero, V. Djian, E. Menu, F. Barre-Sinoussi and G. 
Chaouat (1995). "HIV infection of choriocarcinoma cell lines derived from human placenta: the role 
of membrane CD4 and Fc-Rs into HIV entry." Virology 208(2): 784-788. 
De Francesco, M. A., R. Negrini, G. Pinsi, L. Peroni and N. Manca (2009). "Detection of Ureaplasma 
biovars and polymerase chain reaction-based subtyping of Ureaplasma parvum in women with or 



 

194 
 

without symptoms of genital infections." European journal of clinical microbiology and infectious 
diseases 28(6): 641-646. 
De Silva, N. S. and P. A. Quinn (1986). "Endogenous activity of phospholipases A and C in Ureaplasma 
urealyticum." Journal of Clinical Microbiology 23(2): 354-359. 
DeSilva, N. S. and P. A. Quinn (1999). "Characterization of phospholipase A1, A2, C activity in 
Ureaplasma urealyticum membranes." Molecular and Cellular Biochemistry 201(1-2): 159-167. 
Di Renzo, G. C., P. Melin, A. Berardi, M. Blennow, X. Carbonell-Estrany, G. P. Donzelli, S. Hakansson, 
M. Hod, R. Hughes, M. Kurtzer, C. Poyart, E. Shinwell, B. Stray-Pedersen, M. Wielgos and N. El Helali 
(2014). "Intrapartum GBS screening and antibiotic prophylaxis: a European consensus conference." 
Journal of Maternal-Fetal and Neonatal Medicine: 1-17. 
Dickinson, H., T. Griffiths, D. W. Walker and G. Jenkin (2008). "Application of clinical indices of fetal 
growth and wellbeing to a novel laboratory species, the spiny mouse." Reproductive Biology 8(3): 
229-243. 
DiGiulio, D. B. (2012). "Diversity of microbes in amniotic fluid." Seminars in Fetal and Neonatal 
Medicine 17(1): 2-11. 
DiGiulio, D. B., R. Romero, H. P. Amogan, J. P. Kusanovic, E. M. Bik, F. Gotsch, C. J. Kim, O. Erez, S. 
Edwin and D. A. Relman (2008). "Microbial prevalence, diversity and abundance in amniotic fluid 
during preterm labor: a molecular and culture-based investigation." PLoS One 3(8): e3056. 
DiGiulio, D. B., R. Romero, J. P. Kusanovic, R. Gomez, C. J. Kim, K. S. Seok, F. Gotsch, S. Mazaki-Tovi, E. 
Vaisbuch, K. Sanders, E. M. Bik, T. Chaiworapongsa, E. Oyarzun and D. A. Relman (2010). "Prevalence 
and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy 
outcome in women with preterm pre-labor rupture of membranes." American Journal of 
Reproductive Immunology 64(1): 38-57. 
Dinsmoor, M. J., R. S. Ramamurthy, G. H. Cassell and R. S. Gibbs (1989). "Neonatal serologic response 
at term to the genital mycoplasmas." The Pediatric Infectious Disease Journal 8(8): 487-491. 
Donders, G. G., K. Van Calsteren, G. Bellen, R. Reybrouck, T. Van den Bosch, I. Riphagen and S. Van 
Lierde (2009). "Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and 
aerobic vaginitis during the first trimester of pregnancy." BJOG 116(10): 1315-1324. 
Dowling, J. N., A. K. Saha and R. H. Glew (1992). "Virulence factors of the family Legionellaceae." 
Microbiology Reviews 56(1): 32-60. 
Doyle, L. W., R. Chavasse, G. W. Ford, A. Olinsky, N. M. Davis and C. Callanan (1999). "Changes in 
lung function between age 8 and 14 years in children with birth weight of less than 1,501 g." 
Pediatric Pulmonology 27(3): 185-190. 
Dunkelberger, J. R. and W. C. Song (2010). "Complement and its role in innate and adaptive immune 
responses." Cell Ressearch 20(1): 34-50. 
Echahidi, F., K. van Geel, S. Lauwers and A. Naessens (2002). "Comparison of two methods for 
serotyping Ureaplasma urealyticum clinical isolates." Journal of Microbiological Methods 49(2): 157-
161. 
Edwards, R. and K. G. Harding (2004). "Bacteria and wound healing." Current Opinion in Infectious 
Diseases 17(2): 91-96. 
Egawa, T., I. Morioka, T. Morisawa, N. Yokoyama, H. Nakao, M. Ohashi and M. Matsuo (2007). 
"Ureaplasma urealyticum and Mycoplasma hominis presence in umbilical cord is associated with 
pathogenesis of funisitis." Kobe Journal of Medical Sciences 53(5): 241-249. 
Enders, A. C. and A. M. Carter (2004). "What can comparative studies of placental structure tell us?--
A review." Placenta 25 Suppl A: S3-9. 
Engle, W. A. and M. A. Kominiarek (2008). "Late preterm infants, early term infants, and timing of 
elective deliveries." Clinics in Perinatology 35(2): 325-341, vi. 
Eschenbach, D. A. (1993). "Ureaplasma urealyticum and premature birth." Clinical Infectious Disease 
17 Suppl 1: S100-106. 
Escobar, G. J., R. H. Clark and J. D. Greene (2006a). "Short-term outcomes of infants born at 35 and 
36 weeks gestation: we need to ask more questions." Seminars in Perinatology 30(1): 28-33. 



 

195 
 

Escobar, G. J., J. D. Greene, P. Hulac, E. Kincannon, K. Bischoff, M. N. Gardner, M. A. Armstrong and 
E. K. France (2005). "Rehospitalisation after birth hospitalisation: patterns among infants of all 
gestations." Archives of Disease in Childhood 90(2): 125-131. 
Escobar, G. J., M. C. McCormick, J. A. Zupancic, K. Coleman-Phox, M. A. Armstrong, J. D. Greene, E. C. 
Eichenwald and D. K. Richardson (2006b). "Unstudied infants: outcomes of moderately premature 
infants in the neonatal intensive care unit." Archives of Disease in Childhood. Fetal and Neonatal 
Edition 91(4): F238-244. 
Escobar, G. J., A. Ragins, S. X. Li, L. Prager, A. S. Masaquel and P. Kipnis (2010). "Recurrent wheezing 
in the third year of life among children born at 32 weeks' gestation or later: relationship to 
laboratory-confirmed, medically attended infection with respiratory syncytial virus during the first 
year of life." Archives of Pediatrics and Adolescent Medicine 164(10): 915-922. 
Estrada-Gutierrez, G., N. Gomez-Lopez, V. Zaga-Clavellina, S. Giono-Cerezo, A. Espejel-Nunez, M. A. 
Gonzalez-Jimenez, S. Espino y Sosa, D. M. Olson and F. Vadillo-Ortega (2010). "Interaction between 
pathogenic bacteria and intrauterine leukocytes triggers alternative molecular signaling cascades 
leading to labor in women." Infection and Immunity 78(11): 4792-4799. 
Eun, H. S., S. M. Lee, M. S. Park, K. I. Park, R. Namgung and C. Lee (2013). "Serological investigation 
of Ureaplasma urealyticum in Korean preterm infants." Korean Journal of Pediatrics 56(11): 477-481. 
Fidel, P. L., Jr., R. Romero, N. Wolf, J. Cutright, M. Ramirez, H. Araneda and D. B. Cotton (1994). 
"Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice." American 
Journal of Obstetrics and Gynecology 170(5 Pt 1): 1467-1475. 
Fleiss, B., H. C. Parkington, H. A. Coleman, H. Dickinson, T. Yawno, M. Castillo-Melendez, J. J. Hirst 
and D. W. Walker (2012). "Effect of maternal administration of allopregnanolone before birth 
asphyxia on neonatal hippocampal function in the spiny mouse." Brain Research 1433: 9-19. 
Foitzik, T., M. Stufler, H. G. Hotz, J. Klinnert, J. Wagner, A. L. Warshaw, J. D. Schulzke, M. Fromm and 
H. J. Buhr (1997). "Glutamine stabilizes intestinal permeability and reduces pancreatic infection in 
acute experimental pancreatitis." Journal of Gastrointestinal Surgery 1(1): 40-46; discussion 46-47. 
Ford, D. K. M., J (1967). "Influence of urea on the growth of T-strain mycoplasma." Journal of 
Bacteriology(93): 1509-1512. 
Fraczek, M., A. Szumala-Kakol, P. Jedrzejczak, M. Kamieniczna and M. Kurpisz (2007). "Bacteria 
trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen 
inflammation." Fertility and Sterility 88(4 Suppl): 1076-1085. 
Garland, S. M. and L. J. Murton (1987). "Neonatal meningitis caused by Ureaplasma urealyticum." 
Pediatric Infectious Disease Journal 6(9): 868-870. 
Gerber, S., Y. Vial, P. Hohlfeld and S. S. Witkin (2003). "Detection of Ureaplasma urealyticum in 
second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm 
labor and delivery." Journal of Infectious Disease 187(3): 518-521. 
Gibbs, R. S., R. Romero, S. L. Hillier, D. A. Eschenbach and R. L. Sweet (1992). "A review of premature 
birth and subclinical infection." American Journal of Obstetrics and Gynecology 166(5): 1515-1528. 
Gilbert, W. M., T. S. Nesbitt and B. Danielsen (2003). "The cost of prematurity: quantification by 
gestational age and birth weight." Obstetrics and Gynecology 102(3): 488-492. 
Glass, J. I., E. J. Lefkowitz, J. S. Glass, C. R. Heiner, E. Y. Chen and G. H. Cassell (2000). "The complete 
sequence of the mucosal pathogen Ureaplasma urealyticum." Nature 407(6805): 757-762. 
Glew, M. D., M. Marenda, R. Rosengarten and C. Citti (2002). "Surface diversity in Mycoplasma 
agalactiae is driven by site-specific DNA inversions within the vpma multigene locus." Journal of 
Bacteriology 184(21): 5987-5998. 
Glew, M. D., L. Papazisi, F. Poumarat, D. Bergonier, R. Rosengarten and C. Citti (2000). 
"Characterization of a multigene family undergoing high-frequency DNA rearrangements and coding 
for abundant variable surface proteins in Mycoplasma agalactiae." Infection and Immunity 68(8): 
4539-4548. 
Goepfert, A. R., R. L. Goldenberg, W. W. Andrews, J. C. Hauth, B. Mercer, J. Iams, P. Meis, A. 
Moawad, E. Thom, J. P. VanDorsten, S. N. Caritis, G. Thurnau, M. Miodovnik, M. Dombrowski, J. 



 

196 
 

Roberts and D. McNellis (2001). "The Preterm Prediction Study: association between cervical 
interleukin 6 concentration and spontaneous preterm birth. National Institute of Child Health and 
Human Development Maternal-Fetal Medicine Units Network." American Journal of Obstetrics and 
Gynecology 184(3): 483-488. 
Goepfert, A. R., R. L. Goldenberg, B. Mercer, J. Iams, P. Meis, A. Moawad, E. Thom, J. P. VanDorsten, 
S. N. Caritis, G. Thurnau, M. Miodovnik, M. Dombrowski, J. M. Roberts and D. McNellis (2000). "The 
preterm prediction study: quantitative fetal fibronectin values and the prediction of spontaneous 
preterm birth. The National Institute of Child Health and Human Development Maternal-Fetal 
Medicine Units Network." American Journal of Obstetrics and Gynecology 183(6): 1480-1483. 
Goldenberg, R. L., W. W. Andrews, A. R. Goepfert, O. Faye-Petersen, S. P. Cliver, W. A. Carlo and J. C. 
Hauth (2008a). "The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum 
and Mycoplasma hominis cultures in very preterm newborn infants." American Journal of Obstetrics 
and Gynecology 198(1): 43 e41-45. 
Goldenberg, R. L., W. W. Andrews and J. C. Hauth (2002). "Choriodecidual infection and preterm 
birth." Nutrition Reviews 60(5 Pt 2): S19-25. 
Goldenberg, R. L., W. W. Andrews, B. M. Mercer, A. H. Moawad, P. J. Meis, J. D. Iams, A. Das, S. N. 
Caritis, J. M. Roberts, M. Miodovnik, K. Menard, G. Thurnau, M. P. Dombrowski and D. McNellis 
(2000a). "The preterm prediction study: granulocyte colony-stimulating factor and spontaneous 
preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine 
Units Network." American Journal of Obstetrics and Gynecology 182(3): 625-630. 
Goldenberg, R. L., J. F. Culhane, J. D. Iams and R. Romero (2008b). "Epidemiology and causes of 
preterm birth." Lancet 371(9606): 75-84. 
Goldenberg, R. L., A. R. Goepfert and P. S. Ramsey (2005). "Biochemical markers for the prediction of 
preterm birth." American Journal of Obstetrics and Gynecology 192(5 Suppl): S36-46. 
Goldenberg, R. L., J. C. Hauth and W. W. Andrews (2000b). "Intrauterine infection and preterm 
delivery." New England Journal of Medicine 342(20): 1500-1507. 
Goldman, S., A. Weiss, V. Eyali and E. Shalev (2003). "Differential activity of the gelatinases (matrix 
metalloproteinases 2 and 9) in the fetal membranes and decidua, associated with labour." Molecular 
Human Reproduction 9(6): 367-373. 
Gomez, R., R. Romero, F. Ghezzi, B. H. Yoon, M. Mazor and S. M. Berry (1998). "The fetal 
inflammatory response syndrome." American Journal of Obstetrics and Gynecology 179(1): 194-202. 
Goncalves, L. F., T. Chaiworapongsa and R. Romero (2002). "Intrauterine infection and prematurity." 
Mental Retardation and Developmental Disabilities Research Reviews 8(1): 3-13. 
Gordon, A., M. Lahra, C. Raynes-Greenow and H. Jeffery (2011). "Histological chorioamnionitis is 
increased at extremes of gestation in stillbirth: a population-based study." Infectious Diseases in 
Obstetrics and Gynecology 2011: 456728. 
Gorga, D., F. M. Stern, G. Ross and W. Nagler (1988). "Neuromotor development of preterm and full-
term infants." Early Human Development 18(2-3): 137-149. 
Gortner, L., B. Misselwitz, D. Milligan, J. Zeitlin, L. Kollee, K. Boerch, R. Agostino, P. Van Reempts, J. L. 
Chabernaud, G. Breart, E. Papiernik, P. H. Jarreau, M. Carrapato, J. Gadzinowski and E. Draper 
(2011). "Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the 
MOSAIC cohort." Neonatology 99(2): 112-117. 
Goyal, N. K., A. G. Fiks and S. A. Lorch (2011). "Association of late-preterm birth with asthma in 
young children: practice-based study." Pediatrics 128(4): e830-838. 
Gravett, M. G., A. Thomas, K. A. Schneider, A. P. Reddy, S. Dasari, T. Jacob, X. Lu, M. Rodland, L. 
Pereira, D. W. Sadowsky, C. T. Roberts, Jr., M. J. Novy and S. R. Nagalla (2007). "Proteomic analysis of 
cervical-vaginal fluid: identification of novel biomarkers for detection of intra-amniotic infection." 
Journal of Proteome Research 6(1): 89-96. 
Gray, D. J., H. B. Robinson, J. Malone and R. B. Thomson, Jr. (1992). "Adverse outcome in pregnancy 
following amniotic fluid isolation of Ureaplasma urealyticum." Prenatal Diagnosis 12(2): 111-117. 



 

197 
 

Greenough, A. (2012). "Long term respiratory outcomes of very premature birth (<32 weeks)." 
Seminars in Fetal and Neonatal Medicine 17(2): 73-76. 
Gunay, F., H. Alpay, I. Gokce and H. Bilgen (2013). "Is late-preterm birth a risk factor for hypertension 
in childhood?" European Journal of Pediatrics. 
Gwee, A., M. Chinnappan, M. Starr, N. Curtis, A. Pellicano and P. Bryant (2013). "Ureaplasma 
meningitis and subdural collections in a neonate." Pediatric Infectious Diseases Journal 32(9): 1043-
1044. 
Hack, M., H. G. Taylor, D. Drotar, M. Schluchter, L. Cartar, L. Andreias, D. Wilson-Costello and N. Klein 
(2005). "Chronic conditions, functional limitations, and special health care needs of school-aged 
children born with extremely low-birth-weight in the 1990s." Journal of the American Medical 
Association 294(3): 318-325. 
Hahn, H. S., K. H. Lee, Y. J. Koo, S. G. Kim, J. E. Rhee, M. Y. Kim, S. J. Hwang, J. H. Lee, I. H. Lee, K. T. 
Lim, J. U. Shim and T. J. Kim (2014). "Distribution and perinatal transmission of bacterial vaginal 
infections in pregnant women without vaginal symptoms." Scandinavian Journal of Infectious 
Diseases. 
Hales, C. N. and D. J. Barker (1992). "Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty 
phenotype hypothesis." Diabetologia 35(7): 595-601. 
Hales, C. N. and D. J. Barker (2001). "The thrifty phenotype hypothesis." British Medical Bulletin 60: 
5-20. 
Hallman, M., T. A. Merritt, T. Akino and K. Bry (1991). "Surfactant protein A, phosphatidylcholine, 
and surfactant inhibitors in epithelial lining fluid. Correlation with surface activity, severity of 
respiratory distress syndrome, and outcome in small premature infants." The American review of 
respiratory disease 144(6): 1376-1384. 
Hamilton, B. E., J. A. Martin and S. J. Ventura (2012) "Births: Preliminary Data for 2011." National 
Vital Statistics Reports Volume 61, Number 05. 20 pp. (PHS) 2013-1120. 
Han, Y. W., T. Shen, P. Chung, I. A. Buhimschi and C. S. Buhimschi (2009). "Uncultivated bacteria as 
etiologic agents of intra-amniotic inflammation leading to preterm birth." Journal of Clinical 
Microbiology 47(1): 38-47. 
Hansen, L. K., N. Becher, S. Bastholm, J. Glavind, M. Ramsing, C. J. Kim, R. Romero, J. S. Jensen and N. 
Uldbjerg (2014). "The cervical mucus plug inhibits, but does not block, the passage of ascending 
bacteria from the vagina during pregnancy." Acta obstetricia et gynecologica Scandinavica 93(1): 
102-108. 
Harijan, P. and E. M. Boyle (2012). "Health outcomes in infancy and childhood of moderate and late 
preterm infants." Seminars in Fetal and Neonatal Medicine 17(3): 159-162. 
Hecht, J. L., A. Onderdonk, M. Delaney, E. N. Allred, H. J. Kliman, E. Zambrano, S. M. Pflueger, C. A. 
Livasy, I. Bhan and A. Leviton (2008). "Characterization of chorioamnionitis in 2nd-trimester C-
section placentas and correlation with microorganism recovery from subamniotic tissues." Pediatric 
and Developmental Pathology 11(1): 15-22. 
Heikkinen, T., K. Laine, P. J. Neuvonen and U. Ekblad (2000). "The transplacental transfer of the 
macrolide antibiotics erythromycin, roxithromycin and azithromycin." BJOG 107(6): 770-775. 
Hendler, I., R. L. Goldenberg, B. M. Mercer, J. D. Iams, P. J. Meis, A. H. Moawad, C. A. MacPherson, S. 
N. Caritis, M. Miodovnik, K. M. Menard, G. R. Thurnau and Y. Sorokin (2005). "The Preterm 
Prediction Study: association between maternal body mass index and spontaneous and indicated 
preterm birth." American Journal of Obstetrics and Gynecology 192(3): 882-886. 
Heyman, M., E. Grasset, R. Ducroc and J. F. Desjeux (1988). "Antigen absorption by the jejunal 
epithelium of children with cow's milk allergy." Pediatric Research 24(2): 197-202. 
Hibbard, J. U., I. Wilkins, L. Sun, K. Gregory, S. Haberman, M. Hoffman, M. A. Kominiarek, U. Reddy, J. 
Bailit, D. W. Branch, R. Burkman, V. H. Gonzalez Quintero, C. G. Hatjis, H. Landy, M. Ramirez, P. 
VanVeldhuisen, J. Troendle and J. Zhang (2010). "Respiratory morbidity in late preterm births." 
Journal of the American Medical Association 304(4): 419-425. 



 

198 
 

Hilder, L., Z. Zhichao, M. Parker, S. Jahan and G. Chambers (2014) "Australia's mothers and babies 
2012. Perinatal statistics series no. 30. ." Cat. no. PER 69. 
Hillier, S. L., J. Martius, M. Krohn, N. Kiviat, K. K. Holmes and D. A. Eschenbach (1988). "A case-
control study of chorioamnionic infection and histologic chorioamnionitis in prematurity." New 
England Journal of Medicine 319(15): 972-978. 
Holland, M. G., J. S. Refuerzo, S. M. Ramin, G. R. Saade and S. C. Blackwell (2009). "Late preterm 
birth: how often is it avoidable?" American Journal of Obstetrics and Gynecology 201(4): 404 e401-
404. 
Holst, R. M., I. Mattsby-Baltzer, U. B. Wennerholm, H. Hagberg and B. Jacobsson (2005). "Interleukin-
6 and interleukin-8 in cervical fluid in a population of Swedish women in preterm labor: relationship 
to microbial invasion of the amniotic fluid, intra-amniotic inflammation, and preterm delivery." Acta 
obstetricia et gynecologica Scandinavica 84(6): 551-557. 
Horowitz, S., M. Mazor, J. Horowitz, A. Porath and M. Glezerman (1995). "Antibodies to Ureaplasma 
urealyticum in women with intraamniotic infection and adverse pregnancy outcome." Acta 
obstetricia et gynecologica Scandinavica 74(2): 132-136. 
Hoskins, I. A., F. Schatz, P. Zandieh and C. Lee (1997). "Amniotic fluid granulocyte colony stimulating 
factor levels in chorioamnionitis do not predict neonatal sepsis." American Journal of Reproductive 
Immunology 38(4): 307-308. 
Hotz, H. G., T. Foitzik, J. Rohweder, J. D. Schulzke, M. Fromm, N. S. Runkel and H. J. Buhr (1998). 
"Intestinal microcirculation and gut permeability in acute pancreatitis: early changes and therapeutic 
implications." Journal of Gastrointestinal Surgery 2(6): 518-525. 
Huddy, C. L., A. Johnson and P. L. Hope (2001). "Educational and behavioural problems in babies of 
32-35 weeks gestation." Archives of Disease in Childhood. Fetal and Neonatal Edition 85(1): F23-28. 
Huleihel, M., A. Alaa, S. Olga, M. E, S. Levy, M. Katz, L. Myatt and H. Gershon (2003). "Perfusion of 
human term placentas with lipopolysaccharide did not affect the capacity of the fetal and maternal 
tissues to produce interleukin-10." European Cytokine Network 14(4): 229-233. 
Hunjak, B., I. Sabol, G. Vojnovic, I. Fistonic, A. B. Erceg, Z. Persic and M. Grce (2013). "Ureaplasma 
urealyticum and Ureaplasma parvum in women of reproductive age." Archives of Gynecology and 
Obstetrics. 
Hutton, L. C., M. Abbass, H. Dickinson, Z. Ireland and D. W. Walker (2009). "Neuroprotective 
properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus)." 
Developmental Neuroscience 31(5): 437-451. 
Idriss, W. M., W. C. Patton and M. L. Taymor (1978). "On the etiologic role of Ureaplasma 
urealyticum (T-mycoplasma) infection in infertility." Fertility Sterility 30(3): 293-296. 
Ireland, Z., M. Castillo-Melendez, H. Dickinson, R. Snow and D. W. Walker (2011). "A maternal diet 
supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from 
birth hypoxia." Neuroscience 194: 372-379. 
Istivan, T. S. and P. J. Coloe (2006). "Phospholipase A in Gram-negative bacteria and its role in 
pathogenesis." Microbiology 152(Pt 5): 1263-1274. 
Jacobsson, B., R. Aaltonen, K. Rantakokko-Jalava, N. H. Morken and A. Alanen (2009). "Quantification 
of Ureaplasma urealyticum DNA in the amniotic fluid from patients in PTL and pPROM and its 
relation to inflammatory cytokine levels." Acta Obstetricia et Gynecologica Scandinavica 88(1): 63-
70. 
Jalava, J., M. L. Mantymaa, U. Ekblad, P. Toivanen, M. Skurnik, O. Lassila and A. Alanen (1996). 
"Bacterial 16S rDNA polymerase chain reaction in the detection of intra-amniotic infection." British 
Journal of Obstetrics and Gynaecology 103(7): 664-669. 
Janeway, C. T., P; Walport, M; Shlomchik, M (2005). Immunobiology: the immune system in health 
and disease. New York, Garland Science Publishing. 
Jobe, A. H. and E. Bancalari (2001). "Bronchopulmonary dysplasia." American journal of respiratory 
and critical care medicine 163(7): 1723-1729. 



 

199 
 

Jones, G., T. Clark and S. Bewley (1998). "The weak cervix: failing to keep the baby in or infection 
out?" British Journal of Obstetrics and Gynaecology 105(11): 1214-1215. 
Joste, N. E., R. B. Kundsin and D. R. Genest (1994). "Histology and Ureaplasma urealyticum culture in 
63 cases of first trimester abortion." American Journal of Clinical Pathology 102(6): 729-732. 
Kacerovsky, M., P. Celec, B. Vlkova, K. Skogstrand, D. M. Hougaard, T. Cobo and B. Jacobsson (2013). 
"Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and 
other bacteria." PLoS One 8(3): e60399. 
Kacerovsky, M., M. Pavlovsky and J. Tosner (2009). "Preterm premature rupture of the membranes 
and genital mycoplasmas." Acta Medica (Hradec Kralove) 52(3): 117-120. 
Kacerovsky, M., L. Pliskova, R. Bolehovska, I. Musilova, H. Hornychova, V. Tambor and B. Jacobsson 
(2011). "The microbial load with genital mycoplasmas correlates with the degree of histologic 
chorioamnionitis in preterm PROM." American Journal of Obstetrics and Gynecology 205(3): 213 
e211-217. 
Kallapur, S. G., B. W. Kramer and A. H. Jobe (2013). "Ureaplasma and BPD." Semin Perinatol 37(2): 
94-101. 
Kasper, D. C., T. P. Mechtler, G. H. Reischer, A. Witt, M. Langgartner, A. Pollak, K. R. Herkner and A. 
Berger (2010). "The bacterial load of Ureaplasma parvum in amniotic fluid is correlated with an 
increased intrauterine inflammatory response." Diagnostic Microbiology and Infectious Disease 
67(2): 117-121. 
Katz, B., P. Patel, L. Duffy, R. L. Schelonka, R. A. Dimmitt and K. B. Waites (2005). "Characterization of 
ureaplasmas isolated from preterm infants with and without bronchopulmonary dysplasia." Journal 
of Clinical Microbiology 43(9): 4852-4854. 
Kay, H. K., DM; Wang Y (2011). The Placenta: From Development to Disease, Wiley. 
Keck, C., C. Gerber-Schafer, A. Clad, C. Wilhelm and M. Breckwoldt (1998). "Seminal tract infections: 
impact on male fertility and treatment options." Human Reproduction Update 4(6): 891-903. 
Keelan, J. A., S. Khan, F. Yosaatmadja and M. D. Mitchell (2009). "Prevention of inflammatory 
activation of human gestational membranes in an ex vivo model using a pharmacological NF-kB 
inhibitor." Journal of Immunology 183(8): 5270-5278. 
Kemp, M. W., Y. Miura, M. S. Payne, M. R. Watts, S. Megharaj, A. H. Jobe, S. G. Kallapur, M. Saito, O. 
B. Spiller, J. A. Keelan and J. P. Newnham (2014). "Repeated maternal intramuscular or intraamniotic 
erythromycin incompletely resolves intrauterine Ureaplasma parvum infection in a sheep model of 
pregnancy." American Journal of Obstetrics and Gynecology. 
Kemp, M. W., M. Saito, J. P. Newnham, I. Nitsos, K. Okamura and S. G. Kallapur (2010). "Preterm 
birth, infection, and inflammation advances from the study of animal models." Reproductive Science 
17(7): 619-628. 
Kenyon, S., K. Pike, D. R. Jones, P. Brocklehurst, N. Marlow, A. Salt and D. J. Taylor (2008). "Childhood 
outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-
year follow-up of the ORACLE II trial." Lancet 372(9646): 1319-1327. 
Kenyon, S. L., D. J. Taylor and W. Tarnow-Mordi (2001a). "Broad-spectrum antibiotics for preterm, 
prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group." 
Lancet 357(9261): 979-988. 
Kenyon, S. L., D. J. Taylor and W. Tarnow-Mordi (2001b). "Broad-spectrum antibiotics for 
spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group." Lancet 
357(9261): 989-994. 
Kilian, M., M. B. Brown, T. A. Brown, E. A. Freundt and G. H. Cassell (1984). "Immunoglobulin A1 
protease activity in strains of Ureaplasma urealyticum." Acta Pathologica et Microbiologica 
Scandinavica 92(1): 61-64. 
Kilian, M. and E. A. Freundt (1984). "Exclusive occurrence of an extracellular protease capable of 
cleaving the hinge region of human immunoglobulin A1 in strains of Ureaplasma urealyticum." Israel 
Journal of Medical Sciences 20(10): 938-941. 



 

200 
 

Kim, M., G. Kim, R. Romero, S. S. Shim, E. C. Kim and B. H. Yoon (2003). "Biovar diversity of 
Ureaplasma urealyticum in amniotic fluid: distribution, intrauterine inflammatory response and 
pregnancy outcomes." Journal of Perinatal Medicine 31(2): 146-152. 
Kim, M. J., R. Romero, M. T. Gervasi, J. S. Kim, W. Yoo, D. C. Lee, P. Mittal, O. Erez, J. P. Kusanovic, S. 
S. Hassan and C. J. Kim (2009). "Widespread microbial invasion of the chorioamniotic membranes is 
a consequence and not a cause of intra-amniotic infection." Laboratory Investigation 89(8): 924-936. 
King, A. E., R. W. Kelly, J. M. Sallenave, A. D. Bocking and J. R. Challis (2007). "Innate immune 
defences in the human uterus during pregnancy." Placenta 28(11-12): 1099-1106. 
Knox, C. L., J. A. Allan, J. M. Allan, W. R. Edirisinghe, D. Stenzel, F. A. Lawrence, D. M. Purdie and P. 
Timms (2003). "Ureaplasma parvum and Ureaplasma urealyticum are detected in semen after 
washing before assisted reproductive technology procedures." Fertility and Sterility 80(4): 921-929. 
Knox, C. L., D. G. Cave, D. J. Farrell, H. T. Eastment and P. Timms (1997). "The role of Ureaplasma 
urealyticum in adverse pregnancy outcome." Australia New Zealand Journal of Obstetrics and 
Gynaecology 37(1): 45-51. 
Knox, C. L., S. J. Dando, I. Nitsos, S. G. Kallapur, A. H. Jobe, D. Payton, T. J. Moss and J. P. Newnham 
(2010). "The severity of chorioamnionitis in pregnant sheep is associated with in vivo variation of the 
surface-exposed multiple-banded antigen/gene of Ureaplasma parvum." Biology of Reproduction 
83(3): 415-426. 
Knox, C. L., P. Giffard and P. Timms (1998). "The phylogeny of Ureaplasma urealyticum based on the 
mba gene fragment." International Journal of Systematic and Evolutionary Bacteriology 48 Pt 4: 
1323-1331. 
Knox, C. L. and P. Timms (1998). "Comparison of PCR, nested PCR, and random amplified 
polymorphic DNA PCR for detection and typing of Ureaplasma urealyticum in specimens from 
pregnant women." Journal of Clinical Microbiology 36(10): 3032-3039. 
Koga, K. and G. Mor (2010). "Toll-like receptors at the maternal-fetal interface in normal pregnancy 
and pregnancy disorders." American Journal of Reproductive Immunology 63(6): 587-600. 
Kohn, F. M., I. Erdmann, T. Oeda, K. F. el Mulla, H. G. Schiefer and W. B. Schill (1998). "Influence of 
urogenital infections on sperm functions." Andrologia 30 Suppl 1: 73-80. 
Kong, F., Z. Ma, G. James, S. Gordon and G. L. Gilbert (2000). "Molecular genotyping of human 
Ureaplasma species based on multiple-banded antigen (MBA) gene sequences." International 
Journal of Systematic and Evolutionary Microbiology 50 Pt 5: 1921-1929. 
Kotecha, S., R. Hodge, J. A. Schaber, R. Miralles, M. Silverman and W. D. Grant (2004). "Pulmonary 
Ureaplasma urealyticum is associated with the development of acute lung inflammation and chronic 
lung disease in preterm infants." Pediatric Research 55(1): 61-68. 
Kramer, B. W. (2008). "Antenatal inflammation and lung injury: prenatal origin of neonatal disease." 
Journal of Perinatology 28 Suppl 1: S21-27. 
Kramer, B. W., S. Kallapur, J. Newnham and A. H. Jobe (2009). "Prenatal inflammation and lung 
development." Seminars in Fetal Neonatal Medicine 14(1): 2-7. 
Krieg, N. R., Ludwig, W., Whitman, W., Hedlund, B.P., Paster, B.J., Staley, J.T., Ward, N., Brown, D., 
Parte, A. (2012). Bergey's Manual of Systematic Bacteriology, Springer. 
Kumazaki, K., M. Nakayama, I. Yanagihara, N. Suehara and Y. Wada (2004). "Immunohistochemical 
distribution of Toll-like receptor 4 in term and preterm human placentas from normal and 
complicated pregnancy including chorioamnionitis." Human pathology 35(1): 47-54. 
Kundsin, R. B., R. D. DeLollis and S. A. Poulin (1996). "Ureaplasma urealyticum in Young Children 
With Acute Respiratory Symptoms." Infectious Diseases In Clinical Practice 5(9). 
Kundsin, R. B., S. G. Driscoll, R. R. Monson, C. Yeh, S. A. Biano and W. D. Cochran (1984). "Association 
of Ureaplasma urealyticum in the placenta with perinatal morbidity and mortality." New England 
Journal of Medicine 310(15): 941-945. 
Kwak, D. W., H. S. Hwang, J. Y. Kwon, Y. W. Park and Y. H. Kim (2014). "Co-infection with vaginal 
Ureaplasma urealyticum and Mycoplasma hominis increases adverse pregnancy outcomes in 



 

201 
 

patients with preterm labor or preterm premature rupture of membranes." Journal of Maternal 
Fetal and Neonatal Medicine 27(4): 333-337. 
Lamont, R. F. and A. N. Jaggat (2007). "Emerging drug therapies for preventing spontaneous preterm 
labor and preterm birth." Expert Opinion on Investigational Drugs 16(3): 337-345. 
Lancaster, P., J. Huang and E. Pedisich (1994) "Australia's mothers and babies 1991." Cat. no. AIHW 
240; 75pp. 
Laptook, A. and G. L. Jackson (2006). "Cold stress and hypoglycemia in the late preterm ("near-
term") infant: impact on nursery of admission." Seminars in Perinatology 30(1): 24-27. 
Laws, P. J., Z. Li and E. A. Sullivan (2010). Australia's Mothers and Babies 2008. Perinatal Statistics 
Series No. 24. AIHW. Canberra. 
Lee, G. Y. and G. E. Kenny (1987). "Humoral immune response to polypeptides of Ureaplasma 
urealyticum in women with postpartum fever." Journal of Clinical Microbiology 25(10): 1841-1844. 
Lee, S. E., R. Romero, E. C. Kim and B. H. Yoon (2009). "A high Nugent score but not a positive culture 
for genital mycoplasmas is a risk factor for spontaneous preterm birth." Journal of Maternal-Fetal 
and Neonatal Medicine 22(3): 212-217. 
Leitich, H., B. Bodner-Adler, M. Brunbauer, A. Kaider, C. Egarter and P. Husslein (2003). "Bacterial 
vaginosis as a risk factor for preterm delivery: a meta-analysis." American Journal of Obstetrics and 
Gynecology 189(1): 139-147. 
Li, Y. H., A. Brauner, B. Jonsson, I. van der Ploeg, O. Soder, M. Holst, J. S. Jensen, H. Lagercrantz and 
K. Tullus (2000). "Ureaplasma urealyticum-induced production of proinflammatory cytokines by 
macrophages." Pediatric Research 48(1): 114-119. 
Li, Z., L. McNally, L. Hilder and E. Sullivan (2011) "Australia’s mothers and babies 2009. Perinatal 
statistics series no. 25." Cat. no. PER 52. 
Li, Z., R. Zeki, L. Hilder and E. Sullivan (2013) "Australia's mothers and babies 2011. Perinatal statistics 
series no. 28." Cat. no. PER 59. 
Liepmann, M. F., P. Wattre, A. Dewilde, G. Papierok and M. Delecour (1988). "Detection of 
antibodies to Ureaplasma urealyticum in pregnant women by enzyme-linked immunosorbent assay 
using membrane antigen and investigation of the significance of the antibodies." Journal of Clinical 
Microbiology 26(10): 2157-2160. 
Liu, J., Q. Wang, X. Ji, S. Guo, Y. Dai, Z. Zhang, L. Jia, Y. Shi, S. Tai and Y. Lee (2014). "Prevalence of 
Ureaplasma urealyticum, Mycoplasma hominis, Chlamydia trachomatis Infections, and Semen 
Quality in Infertile and Fertile Men in China." Urology. 
Loftin, R. W., M. Habli, C. C. Snyder, C. M. Cormier, D. F. Lewis and E. A. Defranco (2010). "Late 
preterm birth." Reviews in Obstetrics and Gynecology 3(1): 10-19. 
Lucisano, A., G. Morandotti, R. Marana, F. Leone, G. Branca, S. Dell'Acqua and A. Sanna (1992). 
"Chlamydial genital infections and laparoscopic findings in infertile women." European Journal of 
Epidemiology 8(5): 645-649. 
Lyon, A. (2000). "Chronic lung disease of prematurity. The role of intra-uterine infection." European 
Journal of Pediatrics 159(11): 798-802. 
Mallard, K., K. Schopfer and T. Bodmer (2005). "Development of real-time PCR for the differential 
detection and quantification of Ureaplasma urealyticum and Ureaplasma parvum." Journal of 
Microbiology Methods 60(1): 13-19. 
Mally, P. V., S. Bailey and K. D. Hendricks-Munoz (2010). "Clinical issues in the management of late 
preterm infants." Current Problems in Pediatric and Adolescent Health Care 40(9): 218-233. 
Manimtim, W. M., J. D. Hasday, L. Hester, K. D. Fairchild, J. C. Lovchik and R. M. Viscardi (2001). 
"Ureaplasma urealyticum modulates endotoxin-induced cytokine release by human monocytes 
derived from preterm and term newborns and adults." Infection and Immunity 69(6): 3906-3915. 
Mantovani, A., A. Sica and M. Locati (2005). "Macrophage polarization comes of age." Immunity 
23(4): 344-346. 
March of Dimes, P., Save the Children, WHO (2012). Born Too Soon: The Global Action Report on 
Preterm Birth. M. K. CP Howson, JE Lawn., World Health Organization. Geneva. 



 

202 
 

Marconi, C., B. R. de Andrade Ramos, J. C. Peracoli, G. G. Donders and M. G. da Silva (2011). 
"Amniotic Fluid Interleukin-1 Beta and Interleukin-6, but not Interleukin-8 Correlate with Microbial 
Invasion of the Amniotic Cavity in Preterm Labor." American Journal of Reproductive Immunology. 
Martinelli, P., L. Sarno, G. M. Maruotti and R. Paludetto (2012). "Chorioamnionitis and prematurity: a 
critical review." The Journal of Maternal-Fetal & Neonatal Medicine 25 Suppl 4: 29-31. 
McCormack, W. M., B. Rosner, S. Alpert, J. R. Evrard, V. A. Crockett and S. H. Zinner (1986). "Vaginal 
colonization with Mycoplasma hominis and Ureaplasma urealyticum." Sexually Transmitted Diseases 
13(2): 67-70. 
McEvoy, C., S. Venigalla, D. Schilling, N. Clay, P. Spitale and T. Nguyen (2013). "Respiratory function 
in healthy late preterm infants delivered at 33-36 weeks of gestation." Journal of Pediatrics 162(3): 
464-469. 
Meis, P. J., R. L. Goldenberg, B. M. Mercer, J. D. Iams, A. H. Moawad, M. Miodovnik, M. K. Menard, S. 
N. Caritis, G. R. Thurnau, M. P. Dombrowski, A. Das, J. M. Roberts and D. McNellis (2000). "Preterm 
prediction study: is socioeconomic status a risk factor for bacterial vaginosis in Black or in White 
women?" American Journal of Perinatology 17(1): 41-45. 
Menon, R., M. R. Peltier, J. Eckardt and S. J. Fortunato (2009). "Diversity in cytokine response to 
bacteria associated with preterm birth by fetal membranes." American Journal of Obstetrics and 
Gynecology 201(3): 306 e301-306. 
Mercer, B. M., R. L. Goldenberg, P. J. Meis, A. H. Moawad, C. Shellhaas, A. Das, M. K. Menard, S. N. 
Caritis, G. R. Thurnau, M. P. Dombrowski, M. Miodovnik, J. M. Roberts and D. McNellis (2000). "The 
Preterm Prediction Study: prediction of preterm premature rupture of membranes through clinical 
findings and ancillary testing. The National Institute of Child Health and Human Development 
Maternal-Fetal Medicine Units Network." American Journal of Obstetrics and Gynecology 183(3): 
738-745. 
Mercer, B. M., R. L. Goldenberg, A. H. Moawad, P. J. Meis, J. D. Iams, A. F. Das, S. N. Caritis, M. 
Miodovnik, M. K. Menard, G. R. Thurnau, M. P. Dombrowski, J. M. Roberts and D. McNellis (1999). 
"The preterm prediction study: effect of gestational age and cause of preterm birth on subsequent 
obstetric outcome. National Institute of Child Health and Human Development Maternal-Fetal 
Medicine Units Network." American Journal of Obstetrics and Gynecology 181(5 Pt 1): 1216-1221. 
Meyer, W. W., H. J. Rumpelt, A. C. Yao and J. Lind (1978). "Structure and closure mechanism of the 
human umbilical artery." Eur J Pediatr 128(4): 247-259. 
Miralles, R., R. Hodge, P. C. McParland, D. J. Field, S. C. Bell, D. J. Taylor, W. D. Grant and S. Kotecha 
(2005). "Relationship between antenatal inflammation and antenatal infection identified by 
detection of microbial genes by polymerase chain reaction." Pediatric Research 57(4): 570-577. 
Mitchell, B. F. and M. J. Taggart (2009). "Are animal models relevant to key aspects of human 
parturition?" American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 
297(3): R525-545. 
Mitsunari, M., S. Yoshida, T. Shoji, S. Tsukihara, T. Iwabe, T. Harada and N. Terakawa (2006). 
"Macrophage-activating lipopeptide-2 induces cyclooxygenase-2 and prostaglandin E(2) via toll-like 
receptor 2 in human placental trophoblast cells." Journal of Reproductive Immunology 72(1-2): 46-
59. 
Moawad, A. H., R. L. Goldenberg, B. Mercer, P. J. Meis, J. D. Iams, A. Das, S. N. Caritis, M. Miodovnik, 
M. K. Menard, G. R. Thurnau, M. Dombrowski and J. M. Roberts (2002). "The Preterm Prediction 
Study: the value of serum alkaline phosphatase, alpha-fetoprotein, plasma corticotropin-releasing 
hormone, and other serum markers for the prediction of spontaneous preterm birth." American 
Journal of Obstetrics and Gynecology 186(5): 990-996. 
Mobley, H. L., M. D. Island and R. P. Hausinger (1995). "Molecular biology of microbial ureases." 
Microbiology Reviews 59(3): 451-480. 
Monecke, S., J. H. Helbig and E. Jacobs (2003). "Phase variation of the multiple banded protein in 
Ureaplasma urealyticum and Ureaplasma parvum." International Journal of Medical Microbiology 
293(2-3): 203-211. 



 

203 
 

Moore, K. W., R. de Waal Malefyt, R. L. Coffman and A. O'Garra (2001). "Interleukin-10 and the 
interleukin-10 receptor." Annual Reviews of Immunology 19: 683-765. 
Mor, G. and I. Cardenas (2010). "The immune system in pregnancy: a unique complexity." American 
Journal of Reproductive Immunology 63(6): 425-433. 
Mor, G., I. Cardenas, V. Abrahams and S. Guller (2011). "Inflammation and pregnancy: the role of the 
immune system at the implantation site." Annals of the New York Academy of Sciences 1221: 80-87. 
Morse, S. B., H. Zheng, Y. Tang and J. Roth (2009). "Early school-age outcomes of late preterm 
infants." Pediatrics 123(4): e622-629. 
Moss, T. J., C. L. Knox, S. G. Kallapur, I. Nitsos, C. Theodoropoulos, J. P. Newnham, M. Ikegami and A. 
H. Jobe (2008). "Experimental amniotic fluid infection in sheep: effects of Ureaplasma parvum 
serovars 3 and 6 on preterm or term fetal sheep." American Journal of Obstetrics and Gynecology 
198(1): 122 e121-128. 
Moss, T. J., I. Nitsos, M. Ikegami, A. H. Jobe and J. P. Newnham (2005). "Experimental intrauterine 
Ureaplasma infection in sheep." American Journal of Obstetrics and Gynecology 192(4): 1179-1186. 
Moss, T. J., I. Nitsos, C. L. Knox, G. R. Polglase, S. G. Kallapur, M. Ikegami, A. H. Jobe and J. P. 
Newnham (2009). "Ureaplasma colonization of amniotic fluid and efficacy of antenatal 
corticosteroids for preterm lung maturation in sheep." American Journal of Obstetrics and 
Gynecology 200(1): 96 e91-96. 
Moster, D., R. T. Lie and T. Markestad (2008). "Long-term medical and social consequences of 
preterm birth." The New England Journal of Medicine 359(3): 262-273. 
Murtha, A. P., T. Sinclair, E. R. Hauser, G. K. Swamy, W. N. Herbert and R. P. Heine (2007). "Maternal 
serum cytokines in preterm premature rupture of membranes." Obstetrics and Gynecology 109(1): 
121-127. 
Naessens, A., W. Foulon, J. Breynaert and S. Lauwers (1988). "Serotypes of Ureaplasma urealyticum 
isolated from normal pregnant women and patients with pregnancy complications." Journal of 
Clinical Microbiology 26(2): 319-322. 
Naessens, A., W. Foulon, H. Cammu, A. Goossens and S. Lauwers (1987). "Epidemiology and 
pathogenesis of Ureaplasma urealyticum in spontaneous abortion and early preterm labor." Acta 
obstetricia et gynecologica Scandinavica 66(6): 513-516. 
Nakashima, K., K. Shigehara, S. Kawaguchi, A. Wakatsuki, Y. Kobori, K. Nakashima, Y. Ishii, M. 
Shimamura, T. Sasagawa, Y. Kitagawa, A. Mizokami and M. Namiki (2014). "Prevalence of human 
papillomavirus infection in the oropharynx and urine among sexually active men: a comparative 
study of infection by papillomavirus and other organisms, including Neisseria gonorrhoeae, 
Chlamydia trachomatis, Mycoplasma spp., and Ureaplasma spp." BMC Infectious Diseases 14: 43. 
Namba, F., T. Hasegawa, M. Nakayama, T. Hamanaka, T. Yamashita, K. Nakahira, A. Kimoto, M. 
Nozaki, M. Nishihara, K. Mimura, M. Yamada, H. Kitajima, N. Suehara and I. Yanagihara (2010). 
"Placental features of chorioamnionitis colonized with Ureaplasma species in preterm delivery." 
Pediatric Research 67(2): 166-172. 
Nejad, V. M. and S. Shafaie (2008). "The association of bacterial vaginosis and preterm labor." 
Journal of Pakistan Medical Association 58(3): 104-106. 
Nelson, A., N. Press, C. T. Bautista, J. Arevalo, C. Quiroz, M. Calderon, K. Campos, A. Bryant, J. Shantz-
Dunn, N. Dahodwala, M. Vera, A. Vivar, M. Saito and R. H. Gilman (2007). "Prevalence of sexually 
transmitted infections and high-risk sexual behaviors in heterosexual couples attending sexually 
transmitted disease clinics in Peru." Sexually Transmitted Diseases 34(6): 344-361. 
Newman, R. B., R. L. Goldenberg, J. D. Iams, P. J. Meis, B. M. Mercer, A. H. Moawad, E. Thom, M. 
Miodovnik, S. N. Caritis and M. Dombrowski (2008). "Preterm prediction study: comparison of the 
cervical score and Bishop score for prediction of spontaneous preterm delivery." Obstetrics and 
Gynecology 112(3): 508-515. 
Newman, R. B., R. L. Goldenberg, A. H. Moawad, J. D. Iams, P. J. Meis, A. Das, M. Miodovnik, S. N. 
Caritis, G. R. Thurnau, M. P. Dombrowski and J. Roberts (2001). "Occupational fatigue and preterm 
premature rupture of membranes. National Institute of Child Health and Human Development 



 

204 
 

Maternal-Fetal Medicine, Units Network." American Journal of Obstetrics and Gynecology 184(3): 
438-446. 
Ng, J. W., D. C. Holt, P. Andersson and P. M. Giffard (2014). "DNA concentration can specify DNA 
melting point in a high-resolution melting analysis master mix." Clinical Chemistry 60(2): 414-416. 
Normann, E., T. Lacaze-Masmonteil, F. Eaton, L. Schwendimann, P. Gressens and B. Thebaud (2009). 
"A novel mouse model of Ureaplasma-induced perinatal inflammation: effects on lung and brain 
injury." Pediatric Research 65(4): 430-436. 
Novy, M. J., L. Duffy, M. K. Axthelm, D. W. Sadowsky, S. S. Witkin, M. G. Gravett, G. H. Cassell and K. 
B. Waites (2009). "Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause 
chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques." Reproductive Science 
16(1): 56-70. 
Nunez-Calonge, R., P. Caballero, C. Redondo, F. Baquero, M. Martinez-Ferrer and M. A. Meseguer 
(1998). "Ureaplasma urealyticum reduces motility and induces membrane alterations in human 
spermatozoa." Human Reproduction 13(1O): 2756-2761. 
Nygren, B., J. Hoborn and P. Wahlen (1966). "Phospholipase A-production in Staphylococcus aureus." 
Acta pathologica et microbiologica Scandinavica 68(3): 429-433. 
O'Connell, B. A., K. M. Moritz, C. T. Roberts, D. W. Walker and H. Dickinson (2011). "The placental 
response to excess maternal glucocorticoid exposure differs between the male and female 
conceptus in spiny mice." Biology of Reproduction 85(5): 1040-1047. 
Ogge, G., R. Romero, D. C. Lee, F. Gotsch, N. G. Than, J. Lee, T. Chaiworapongsa, Z. Dong, P. Mittal, S. 
S. Hassan and C. J. Kim (2011). "Chronic chorioamnionitis displays distinct alterations of the amniotic 
fluid proteome." Journal of Pathology 223(4): 553-565. 
Oh, K. J., K. A. Lee, Y. K. Sohn, C. W. Park, J. S. Hong, R. Romero and B. H. Yoon (2010). "Intraamniotic 
infection with genital mycoplasmas exhibits a more intense inflammatory response than 
intraamniotic infection with other microorganisms in patients with preterm premature rupture of 
membranes." American Journal of Obstetics and Gynecology 203(3): 211 e211-218. 
Olomu, I. N., J. L. Hecht, A. O. Onderdonk, E. N. Allred and A. Leviton (2009). "Perinatal correlates of 
Ureaplasma urealyticum in placenta parenchyma of singleton pregnancies that end before 28 weeks 
of gestation." Pediatrics 123(5): 1329-1336. 
Onderdonk, A. B., M. L. Delaney, A. M. DuBois, E. N. Allred and A. Leviton (2008). "Detection of 
bacteria in placental tissues obtained from extremely low gestational age neonates." American 
Journal of Obstetrics and Gynecology 198(1): 110 e111-117. 
Oskoui, M., F. Coutinho, J. Dykeman, N. Jette and T. Pringsheim (2013). "An update on the 
prevalence of cerebral palsy: a systematic review and meta-analysis." Developmental Medicine and 
Child Neurology 55(6): 509-519. 
Padmini, E., V. Uthra and S. Lavanya (2011). "HSP70 overexpression in response to Ureaplasma 
urealyticum-mediated oxidative stress in preeclamptic placenta." Hypertension in Pregnancy 30(2): 
133-143. 
Pandey, A., B. Dhawan, V. Gupta, R. Chaudhry and A. K. Deorari (2007). "Clinical significance of 
airways colonization with Ureaplasma urealyticum in premature (<34 wk) neonates." Indian Journal 
of Medical Research 125(5): 679-684. 
Paralanov, V., J. Lu, L. B. Duffy, D. M. Crabb, S. Shrivastava, B. A. Methe, J. Inman, S. Yooseph, L. Xiao, 
G. H. Cassell, K. B. Waites and J. I. Glass (2012). "Comparative genome analysis of 19 Ureaplasma 
urealyticum and Ureaplasma parvum strains." BMC Microbiology 12: 88. 
Park, C. W., B. H. Yoon, J. S. Park and J. K. Jun (2013). "A fetal and an intra-amniotic inflammatory 
response is more severe in preterm labor than in preterm PROM in the context of funisitis: 
unexpected observation in human gestations." PLoS One 8(5): e62521. 
Patel, M. A. and P. Nyirjesy (2010). "Role of Mycoplasma and Ureaplasma species in female lower 
genital tract infections." Current Infectious Disease Reports 12(6): 417-422. 



 

205 
 

Pawelec, M., B. Palczynski, J. Krzemieniewska, M. Karmowski, J. Korys, K. Latkowski and A. 
Karmowski (2013). "Initiation of preterm labor." Advances in Clinical and Experimental Medicine 
22(2): 283-288. 
Payne, M. S., Z. Feng, S. Li, D. A. Doherty, B. Xu, J. Li, L. Liu, J. A. Keelan, Y. H. Zhou, J. E. Dickinson, Y. 
Hu and J. P. Newnham (2014a). "Second trimester amniotic fluid cytokine concentrations, 
Ureaplasma sp. colonisation status and sexual activity as predictors of preterm birth in Chinese and 
Australian women." BMC Pregnancy Childbirth 14: 340. 
Payne, M. S., K. C. Goss, G. J. Connett, T. Kollamparambil, J. P. Legg, R. Thwaites, M. Ashton, V. 
Puddy, J. L. Peacock and K. D. Bruce (2010). "Molecular microbiological characterization of preterm 
neonates at risk of bronchopulmonary dysplasia." Pediatric Research 67(4): 412-418. 
Payne, M. S., T. Tabone, M. W. Kemp, J. A. Keelan, O. B. Spiller and J. P. Newnham (2014b). "High-
resolution melt PCR analysis for genotyping of Ureaplasma parvum isolates directly from clinical 
samples." Journal of Clinical Microbiology 52(2): 599-606. 
Peltier, M. R., C. O. Drobek, G. Bhat, G. Saade, S. J. Fortunato and R. Menon (2012). "Amniotic fluid 
and maternal race influence responsiveness of fetal membranes to bacteria." Journal of 
Reproductive Immunology 96(1-2): 68-78. 
Peltier, M. R., A. J. Freeman, H. H. Mu and B. C. Cole (2007). "Characterization of the macrophage-
stimulating activity from Ureaplasma urealyticum." American Journal of Reproductive Immunology 
57(3): 186-192. 
Perni, S. C., S. Vardhana, I. Korneeva, S. L. Tuttle, L. R. Paraskevas, S. T. Chasen, R. B. Kalish and S. S. 
Witkin (2004). "Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: 
association with amniotic fluid cytokine levels and pregnancy outcome." American Journal of 
Obstetrics and Gynecology 191(4): 1382-1386. 
Petrini, J. R., T. Dias, M. C. McCormick, M. L. Massolo, N. S. Green and G. J. Escobar (2009). 
"Increased risk of adverse neurological development for late preterm infants." Journal of Pediatrics 
154(2): 169-176. 
Pettersson, B., K. E. Johansson and M. Uhlen (1994). "Sequence analysis of 16S rRNA from 
mycoplasmas by direct solid-phase DNA sequencing." Applied and Environmental Microbiology 
60(7): 2456-2461. 
Phillips, D. M. and X. Tan (1992). "HIV-1 infection of the trophoblast cell line BeWo: a study of virus 
uptake." AIDS Research and Human Retroviruses 8(9): 1683-1691. 
Phillips, R. J., M. A. Fortier and A. Lopez Bernal (2014). "Prostaglandin pathway gene expression in 
human placenta, amnion and choriodecidua is differentially affected by preterm and term labour 
and by uterine inflammation." BMC Pregnancy Childbirth 14: 241. 
Polglase, G. R., R. G. Dalton, I. Nitsos, C. L. Knox, J. J. Pillow, A. H. Jobe, T. J. Moss, J. P. Newnham and 
S. G. Kallapur (2010). "Pulmonary vascular and alveolar development in preterm lambs chronically 
colonized with Ureaplasma parvum." American Journal of Physiology - Lung Cellular and Molecular 
Physiology 299(2): L232-241. 
Pollack, M. (1984). "The virulence of Pseudomonas aeruginosa." Reviews of infectious diseases 6 
Suppl 3: S617-626. 
Puntener, U., S. G. Booth, V. H. Perry and J. L. Teeling (2012). "Long-term impact of systemic 
bacterial infection on the cerebral vasculature and microglia." Journal of Neuroinflammation 9: 146. 
Purcell, R. H., Taylor-Robinson, D., Wong, D., Chanock, R. M. (1966). "Color test for the measurement 
of antibody to T-strain mycoplasmas." Journal of Bacteriology(92): 6-12. 
Quinn, P. A. (1986). "Evidence of an immune response to Ureaplasma urealyticum in perinatal 
morbidity and mortality." Pediatric Infectious Diseases Journal 5(6 Suppl): S282-287. 
Quinn, P. A., S. Rubin, D. M. Nocilla, S. E. Read and M. Chipman (1983). "Serological evidence of 
Ureaplasma urealyticum infection in neonatal respiratory disease." The Yale journal of biology and 
medicine 56(5-6): 565-572. 
Quinn, T. A., U. Ratnayake, H. Dickinson, T. H. Nguyen, M. McIntosh, M. Castillo-Melendez, A. J. 
Conley and D. W. Walker (2013). "Ontogeny of the adrenal gland in the spiny mouse, with particular 



 

206 
 

reference to production of the steroids cortisol and dehydroepiandrosterone." Endocrinology 154(3): 
1190-1201. 
Racicot, K., J. Y. Kwon, P. Aldo, M. Silasi and G. Mor (2014). "Understanding the complexity of the 
immune system during pregnancy." American Journal of Reproductive Immunology 72(2): 107-116. 
Raisanen, S., M. Gissler, J. Saari, M. Kramer and S. Heinonen (2013). "Contribution of risk factors to 
extremely, very and moderately preterm births - register-based analysis of 1,390,742 singleton 
births." PLoS One 8(4): e60660. 
Raju, T. N. (2006). "The problem of late-preterm (near-term) births: a workshop summary." Pediatric 
Research 60(6): 775-776. 
Ramachandrappa, A. and L. Jain (2009). "Health issues of the late preterm infant." Pediatric Clinics of 
North America 56(3): 565-577. 
Ramsey, P. S., T. Tamura, R. L. Goldenberg, B. M. Mercer, J. D. Iams, P. J. Meis, A. H. Moawad, A. Das, 
J. P. Van Dorsten, S. N. Caritis, G. Thurnau, M. P. Dombrowski and M. Miodovnik (2002). "The 
preterm prediction study: elevated cervical ferritin levels at 22 to 24 weeks of gestation are 
associated with spontaneous preterm delivery in asymptomatic women." American Journal of 
Obstetrics and Gynecology 186(3): 458-463. 
Raynor, B. D., P. Clark and P. Duff (1995). "Granulocyte colony-stimulating factor in amniotic fluid." 
Infectious Diseases in Obstetrics and Gynecology 3(4): 140-144. 
Redelinghuys, M. J., M. M. Ehlers, A. W. Dreyer, H. A. Lombaard and M. M. Kock (2014). 
"Antimicrobial susceptibility patterns of Ureaplasma species and Mycoplasma hominis in pregnant 
women." BMC Infectious Diseases 14(1): 171. 
Redline, R. W., O. Faye-Petersen, D. Heller, F. Qureshi, V. Savell and C. Vogler (2003). "Amniotic 
infection syndrome: nosology and reproducibility of placental reaction patterns." Pediatric and 
Developmental Pathology 6(5): 435-448. 
Reyes, L., M. Reinhard and M. B. Brown (2009). "Different inflammatory responses are associated 
with Ureaplasma parvum-induced UTI and urolith formation." BMC Infectious Diseases 9: 9. 
Robertson, J. A., L. H. Honore and G. W. Stemke (1986). "Serotypes of Ureaplasma urealyticum in 
spontaneous abortion." Pediatric Infectious Diseases 5(6 Suppl): S270-272. 
Robertson, J. A. and G. W. Stemke (1982). "Expanded serotyping scheme for Ureaplasma 
urealyticum strains isolated from humans." Journal of Clinical Microbiology 15(5): 873-878. 
Robertson, J. A., G. W. Stemke, J. W. Davis, Jr., R. Harasawa, D. Thirkell, F. Kong, M. C. Shepard and 
D. K. Ford (2002). "Proposal of Ureaplasma parvum sp. nov. and emended description of Ureaplasma 
urealyticum (Shepard et al. 1974) Robertson et al. 2001." International Journal of Systematic and 
Evolutionary Bacteriology 52(Pt 2): 587-597. 
Robertson, J. A., M. E. Stemler and G. W. Stemke (1984). "Immunoglobulin A protease activity of 
Ureaplasma urealyticum." Journal of Clinical Microbiology 19(2): 255-258. 
Robinson, J. W., S. J. Dando, I. Nitsos, J. Newnham, G. R. Polglase, S. G. Kallapur, J. J. Pillow, B. W. 
Kramer, A. H. Jobe, D. Payton and C. L. Knox (2013). "Ureaplasma parvum serovar 3 multiple banded 
antigen size variation after chronic intra-amniotic infection/colonization." PLoS One 8(4): e62746. 
Rocha, E. P. and A. Blanchard (2002). "Genomic repeats, genome plasticity and the dynamics of 
Mycoplasma evolution." Nucleic Acids Research 30(9): 2031-2042. 
Romero, R., J. Miranda, T. Chaiworapongsa, P. Chaemsaithong, F. Gotsch, Z. Dong, A. I. Ahmed, B. H. 
Yoon, S. S. Hassan, C. J. Kim, S. J. Korzeniewski and L. Yeo (2014). "A novel molecular microbiologic 
technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic 
infection in preterm labor with intact membranes." American Journal of Reproductive Immunology 
71(4): 330-358. 
Rouquette, C. and P. Berche (1996). "The pathogenesis of infection by Listeria monocytogenes." 
Microbiologia 12(2): 245-258. 
Ruzman, N., M. Miskulin, S. Rudan and Z. Bosnjak (2013). "The prevalence and the risk factors of the 
cervical colonization by the genital mycoplasmas among pregnant women from Eastern Croatia." 
Collegium antropologicum 37(1): 135-140. 



 

207 
 

Sanchez, P. J. and J. A. Regan (1988). "Ureaplasma urealyticum colonization and chronic lung disease 
in low birth weight infants." Pediatric Infectious Disease Journal 7(8): 542-546. 
Saraiva, M. and A. O'Garra (2010). "The regulation of IL-10 production by immune cells." Nature 
Reviews Immunology 10(3): 170-181. 
Schelonka, R. L. and K. B. Waites (2007). "Ureaplasma infection and neonatal lung disease." Seminars 
in Perinatology 31(1): 2-9. 
Schmiel, D. H. and V. L. Miller (1999). "Bacterial phospholipases and pathogenesis." Microbes and 
Infection 1(13): 1103-1112. 
Schultz, G. S., R. G. Sibbald, V. Falanga, E. A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M. C. 
Stacey, L. Teot and W. Vanscheidt (2003). "Wound bed preparation: a systematic approach to wound 
management." Wound Repair and Regeneration 11 Suppl 1: S1-28. 
Shaw, J. H. and S. Falkow (1988). "Model for invasion of human tissue culture cells by Neisseria 
gonorrhoeae." Infection and Immunity 56(6): 1625-1632. 
Shepard, M. C. (1954). "The recovery of pleuropneumonia-like organisms from Negro men with and 
without nongonococcal urethritis." American Journal of Syphilis Gonorrhea and Venereal Diseases 
38(2): 113-124. 
Shepard, M. C. (1966). "Human mycoplasma infections." Health Laboratory Sciences(3): 163-169. 
Shepard, M. C. and C. D. Lunceford (1976). "Differential agar medium (A7) for identification of 
Ureaplasma urealyticum (human T mycoplasmas) in primary cultures of clinical material." Journal of 
Clinical Microbiology 3(6): 613-625. 
Shepard, M. C. L., C. D. (1967). "Occurrence of urease in T strains of Mycoplasma." Journal of 
Bacteriology(93): 1513-1520. 
Shepard, M. L., CD; Ford, DK; Purcell, RH; Taylor-Robinson, D; Razin, S; Black, FT (1974). "Ureaplasma 
urealyticum gen. nov., sp. nov.: Proposed Nomenclature for the Human T (T-Strain) Mycoplasmas." 
International Journal of Systematic Bacteriology 24(2): 160-171. 
Shi, J., Z. Yang, M. Wang, G. Cheng, D. Li, Y. Wang, Y. Zhou, X. Liu and C. Xu (2007). "Screening of an 
antigen target for immunocontraceptives from cross-reactive antigens between human sperm and 
Ureaplasma urealyticum." Infection and Immunity 75(4): 2004-2011. 
Shimada, Y., S. Ito, K. Mizutani, T. Sugawara, K. Seike, T. Tsuchiya, S. Yokoi, M. Nakano, M. Yasuda 
and T. Deguchi (2014). "Bacterial loads of Ureaplasma urealyticum contribute to development of 
urethritis in men." International Journal of STD and AIDS 25(4): 294-298. 
Shimizu, T., Y. Kida and K. Kuwano (2008). "Ureaplasma parvum lipoproteins, including MB antigen, 
activate NF-{kappa}B through TLR1, TLR2 and TLR6." Microbiology 154(Pt 5): 1318-1325. 
Shurin, P. A., S. Alpert, B. A. Bernard Rosner, S. G. Driscoll and Y. H. Lee (1975). "Chorioamnionitis 
and colonization of the newborn infant with genital mycoplasmas." New England Journal of Medicine 
293(1): 5-8. 
Simmons, L. E., C. E. Rubens, G. L. Darmstadt and M. G. Gravett (2010). "Preventing preterm birth 
and neonatal mortality: exploring the epidemiology, causes, and interventions." Seminars in 
Perinatology 34(6): 408-415. 
Skerk, V., S. Schonwald, I. Krhen, L. Markovinovic, A. Beus, N. S. Kuzmanovic, V. Kruzic and A. Vince 
(2002). "Aetiology of chronic prostatitis." International Journal of Antimicrobial Agents 19(6): 471-
474. 
Smith, D. G., W. C. Russell, W. J. Ingledew and D. Thirkell (1993). "Hydrolysis of urea by Ureaplasma 
urealyticum generates a transmembrane potential with resultant ATP synthesis." Journal of 
Bacteriology 175(11): 3253-3258. 
Smith, D. G., W. C. Russell and D. Thirkell (1994). "Adherence of Ureaplasma urealyticum to human 
epithelial cells." Microbiology 140 ( Pt 10): 2893-2898. 
Snyder, C. C., K. B. Wolfe, T. Gisslen, C. L. Knox, M. W. Kemp, B. W. Kramer, J. P. Newnham, A. H. 
Jobe and S. G. Kallapur (2013). "Modulation of lipopolysaccharide-induced chorioamnionitis by 
Ureaplasma parvum in sheep." American Journal of Obstetrics and Gynecology 208(5): 399 e391-
398. 



 

208 
 

Soleimani, F., F. Zaheri and F. Abdi (2014). "Long-term neurodevelopmental outcomes after preterm 
birth." Iranian Red Crescent Medical Journal 16(6): e17965. 
Song, J., T. Rutherford, F. Naftolin, S. Brown and G. Mor (2002). "Hormonal regulation of apoptosis 
and the Fas and Fas ligand system in human endometrial cells." Molecular Human Reproduction 8(5): 
447-455. 
Spooner, R. K., W. C. Russell and D. Thirkell (1992). "Characterization of the immunoglobulin A 
protease of Ureaplasma urealyticum." Infection and Immunity 60(6): 2544-2546. 
Stahelin-Massik, J., F. Levy, P. Friderich and U. B. Schaad (1994). "Meningitis caused by Ureaplasma 
urealyticum in a full term neonate." Pediatric Infectious Disease Journal 13(5): 419-421. 
Stephens, A. (2008). The development of rapid genotyping methods for methicillin-resistant 
Staphylococcus aureus. 
Stinson, L. F., D. J. Ireland, M. W. Kemp, M. S. Payne, S. J. Stock, J. P. Newnham and J. A. Keelan 
(2014). "Effects of cytokine-suppressive anti-inflammatory drugs on inflammatory activation in ex 
vivo human and ovine fetal membranes." Reproduction 147(3): 313-320. 
Strauss, J. F., 3rd (2013). "Extracellular matrix dynamics and fetal membrane rupture." Reproductive 
Science 20(2): 140-153. 
Stromberg, S. P. and J. M. Carlson (2013). "Diversity of T-cell responses." Physical Biology 10(2): 
025002. 
Sullivan, M. C., M. E. Msall and R. J. Miller (2012). "17-year outcome of preterm infants with diverse 
neonatal morbidities: Part 1--Impact on physical, neurological, and psychological health status." 
Journal for Specialists in Pediatric Nursing 17(3): 226-241. 
Sung, T. J. (2010). "Ureaplasma infections in pre-term infants: Recent information regarding the role 
of Ureaplasma species as neonatal pathogens." Korean Journal of Pediatrics 53(12): 989-993. 
Sung, T. J., L. Xiao, L. Duffy, K. B. Waites, K. L. Chesko and R. M. Viscardi (2010). "Frequency of 
Ureaplasma Serovars in Respiratory Secretions of Preterm Infants at Risk for Bronchopulmonary 
Dysplasia." The Pediatric Infectious Disease Journal. 
Tabor, A. and Z. Alfirevic (2010). "Update on procedure-related risks for prenatal diagnosis 
techniques." Fetal Diagnosis and Therapy 27(1): 1-7. 
Takebe, S., A. Numata and K. Kobashi (1984). "Stone formation by Ureaplasma urealyticum in human 
urine and its prevention by urease inhibitors." Journal of Clinical Microbiology 20(5): 869-873. 
Tan, K. H., X. X. Zeng, P. Sasajala, A. Yeo and G. Udolph (2011). "Fetomaternal microchimerism: Some 
answers and many new questions." Chimerism 2(1): 16-18. 
Tency, I., H. Verstraelen, I. Kroes, G. Holtappels, B. Verhasselt, M. Vaneechoutte, R. Verhelst and M. 
Temmerman (2012). "Imbalances between matrix metalloproteinases (MMPs) and tissue inhibitor of 
metalloproteinases (TIMPs) in maternal serum during preterm labor." PLoS One 7(11): e49042. 
Teng, L. J., X. Zheng, J. I. Glass, H. L. Watson, J. Tsai and G. H. Cassell (1994). "Ureaplasma 
urealyticum biovar specificity and diversity are encoded in multiple-banded antigen gene." Journal of 
Clinical Microbiology 32(6): 1464-1469. 
Ternhag, A., A. Torner, A. Svensson, K. Ekdahl and J. Giesecke (2008). "Short- and long-term effects 
of bacterial gastrointestinal infections." Emerging Infectious Diseases 14(1): 143-148. 
Tibaldi, C., N. Cappello, M. A. Latino, G. Masuelli, S. Marini and C. Benedetto (2009). "Vaginal and 
endocervical microorganisms in symptomatic and asymptomatic non-pregnant females: risk factors 
and rates of occurrence." Clinical Microbiology Infections 15(7): 670-679. 
Tissier, H. (1900). Recherches sur la flore intestinale des nourrissons (ѐtat normal et pathologique). 
Paris, G. Carre and C. Naud. 
Triantafilou, M., B. De Glanville, A. F. Aboklaish, O. B. Spiller, S. Kotecha and K. Triantafilou (2013). 
"Synergic activation of toll-like receptor (TLR) 2/6 and 9 in response to Ureaplasma parvum & 
urealyticum in human amniotic epithelial cells." PLoS One 8(4): e61199. 
Underwood, M. A., B. Danielsen and W. M. Gilbert (2007). "Cost, causes and rates of 
rehospitalization of preterm infants." Journal of Perinatology 27(10): 614-619. 



 

209 
 

Vasudevan, D. M. S., S (2011). Textbook of Biochemistry for Medical Students. Jitendar P Vij, Jaypee 
Brothers Medical Publishes Ltd. 
Viniker, D. A. (1999). "Hypothesis on the role of sub-clinical bacteria of the endometrium (bacteria 
endometrialis) in gynaecological and obstetric enigmas." Human Reproduction Update 5(4): 373-385. 
Viscardi, R. M. (2010). "Ureaplasma species: role in diseases of prematurity." Clinics in Perinatology 
37(2): 393-409. 
Viscardi, R. M., S. P. Atamas, I. G. Luzina, J. D. Hasday, J. R. He, P. J. Sime, J. J. Coalson and B. A. Yoder 
(2006). "Antenatal Ureaplasma urealyticum respiratory tract infection stimulates proinflammatory, 
profibrotic responses in the preterm baboon lung." Pediatric Research 60(2): 141-146. 
Viscardi, R. M. and J. D. Hasday (2009). "Role of Ureaplasma species in neonatal chronic lung 
disease: epidemiologic and experimental evidence." Pediatric Research 65(5 Pt 2): 84R-90R. 
Viscardi, R. M., N. Hashmi, G. W. Gross, C. C. Sun, A. Rodriguez and K. D. Fairchild (2008). "Incidence 
of invasive ureaplasma in VLBW infants: relationship to severe intraventricular hemorrhage." Journal 
of Perinatology 28(11): 759-765. 
Viscardi, R. M., W. M. Manimtim, C. C. Sun, L. Duffy and G. H. Cassell (2002). "Lung pathology in 
premature infants with Ureaplasma urealyticum infection." Pediatric and Developmental Pathology 
5(2): 141-150. 
Volgmann, T., R. Ohlinger and B. Panzig (2005). "Ureaplasma urealyticum-harmless commensal or 
underestimated enemy of human reproduction? A review." Archives Gynecology Obstetrics 273(3): 
133-139. 
von Chamier, M., A. Allam, M. B. Brown, M. K. Reinhard and L. Reyes (2012). "Host genetic 
background impacts disease outcome during intrauterine infection with Ureaplasma parvum." PLoS 
One 7(8): e44047. 
Waites, K. B., D. T. Crouse and G. H. Cassell (1993). "Systemic neonatal infection due to Ureaplasma 
urealyticum." Clinical Infectious Diseases 17 Suppl 1: S131-135. 
Waites, K. B., D. T. Crouse, J. B. Philips, 3rd, K. C. Canupp and G. H. Cassell (1989). "Ureaplasmal 
pneumonia and sepsis associated with persistent pulmonary hypertension of the newborn." 
Pediatrics 83(1): 79-85. 
Waites, K. B., R. L. Schelonka, L. Xiao, P. L. Grigsby and M. J. Novy (2009). "Congenital and 
opportunistic infections: Ureaplasma species and Mycoplasma hominis." Seminars in Fetal and 
Neonatal Medicine 14(4): 190-199. 
Wang, E. E., H. Frayha, J. Watts, O. Hammerberg, M. A. Chernesky, J. B. Mahony and G. H. Cassell 
(1988). "Role of Ureaplasma urealyticum and other pathogens in the development of chronic lung 
disease of prematurity." Pediatric Infectious Disease Journal 7(8): 547-551. 
Wang, M. L., D. J. Dorer, M. P. Fleming and E. A. Catlin (2004). "Clinical outcomes of near-term 
infants." Pediatrics 114(2): 372-376. 
Wang, Y., L. Kang, Y. Hou, X. Wu, J. Chen and X. Han (2005). "Microelements in seminal plasma of 
infertile men infected with Ureaplasma urealyticum." Biological Trace Element Research 

 105(1-3): 11-18. 
Wang, Y., C. L. Liang, J. Q. Wu, C. Xu, S. X. Qin and E. S. Gao (2006). "Do Ureaplasma urealyticum 
infections in the genital tract affect semen quality?" Asian Journal of Andrology 8(5): 562-568. 
Wang, Y., Z. W. Wu, L. F. Zhang, X. K. Wu, L. Yi and X. D. Han (2010). "Effects of Ureaplasma 
urealyticum infection on the male reproductive system in experimental rats." Andrologia 42(5): 297-
301. 
Watson, H. L., D. K. Blalock and G. H. Cassell (1990). "Variable antigens of Ureaplasma urealyticum 
containing both serovar-specific and serovar-cross-reactive epitopes." Infection and Immunity 
58(11): 3679-3688. 
Watson, H. L., X. Zheng and G. H. Cassell (1993). "Structural variations and phenotypic switching of 
mycoplasmal antigens." Clinical Infectious Diseases 17 Suppl 1: S183-186. 
Williams, L. E. and J. J. Wernegreen (2010). "Unprecedented loss of ammonia assimilation capability 
in a urease-encoding bacterial mutualist." BMC Genomics 11: 687. 



 

210 
 

Wilson, M. (2005). Microbial Inhabitants of Humans: Their ecology and role in health and disease, 
Cambridge University Press, Caimbridge 

 
Winram, S. B., M. Jonas, E. Chi and C. E. Rubens (1998). "Characterization of group B streptococcal 
invasion of human chorion and amnion epithelial cells In vitro." Infection and Immunity 66(10): 4932-
4941. 
Witt, A., A. Berger, C. J. Gruber, L. Petricevic, P. Apfalter and P. Husslein (2005). "IL-8 concentrations 
in maternal serum, amniotic fluid and cord blood in relation to different pathogens within the 
amniotic cavity." Journal of Perinatal Medicine 33(1): 22-26. 
Woese, C. R., J. Maniloff and L. B. Zablen (1980). "Phylogenetic analysis of the mycoplasmas." 
Proceedings of the National Academy of Sciences USA 77(1): 494-498. 
Wolf, M., T. Muller, T. Dandekar and J. D. Pollack (2004). "Phylogeny of Firmicutes with special 
reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid 
sequence data." International Journal of Systematic and Evolutionary Microbiology 54(Pt 3): 871-
875. 
Wolfs, T. G., S. G. Kallapur, C. L. Knox, G. Thuijls, I. Nitsos, G. R. Polglase, J. J. Collins, E. Kroon, J. 
Spierings, N. F. Shroyer, J. P. Newnham, A. H. Jobe and B. W. Kramer (2013). "Antenatal ureaplasma 
infection impairs development of the fetal ovine gut in an IL-1-dependent manner." Mucosal 
Immunology 6(3): 547-556. 
Xiao, L., D. M. Crabb, Y. Dai, Y. Chen, K. B. Waites and T. P. Atkinson (2014). "Suppression of 
Antimicrobial Peptide Expression by Ureaplasma species." Infection and Immunity. 
Xiao, L., D. M. Crabb, L. B. Duffy, V. Paralanov, J. I. Glass, D. L. Hamilos and K. B. Waites (2011a). 
"Mutations in ribosomal proteins and ribosomal RNA confer macrolide resistance in human 
Ureaplasma spp." International Journal of Antimicrobial Agents 37(4): 377-379. 
Xiao, L., J. I. Glass, V. Paralanov, S. Yooseph, G. H. Cassell, L. B. Duffy and K. B. Waites (2010). 
"Detection and characterization of human Ureaplasma species and serovars by real-time PCR." 
Journal of Clinical Microbiology 48(8): 2715-2723. 
Xiao, L., V. Paralanov, J. I. Glass, L. B. Duffy, J. A. Robertson, G. H. Cassell, Y. Chen and K. B. Waites 
(2011b). "Extensive horizontal gene transfer in ureaplasmas from humans questions the utility of 
serotyping for diagnostic purposes." Journal of Clinical Microbiology 49(8): 2818-2826. 
Yada, Y., Y. Honma, Y. Koike, N. Takahashi and M. Y. Momoi (2010). "Association of development of 
chronic lung disease of newborns with neonatal colonization of Ureaplasma and cord blood 
interleukin-8 level." Pediatrics International 52(5): 718-722. 
Yi, J., B. H. Yoon and E. C. Kim (2005). "Detection and biovar discrimination of Ureaplasma 
urealyticum by real-time PCR." Molecular and Cellular Probes 19(4): 255-260. 
Yoder, B. A., J. J. Coalson, V. T. Winter, T. Siler-Khodr, L. B. Duffy and G. H. Cassell (2003). "Effects of 
antenatal colonization with Ureaplasma urealyticum on pulmonary disease in the immature 
baboon." Pediatric Research 54(6): 797-807. 
Yonemoto, H., C. B. Young, J. T. Ross, L. L. Guilbert, R. J. Fairclough and D. M. Olson (2006). "Changes 
in matrix metalloproteinase (MMP)-2 and MMP-9 in the fetal amnion and chorion during gestation 
and at term and preterm labor." Placenta 27(6-7): 669-677. 
Yoon, B. H., J. K. Jun, R. Romero, K. H. Park, R. Gomez, J. H. Choi and I. O. Kim (1997). "Amniotic fluid 
inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal 
brain white matter lesions, and cerebral palsy." American Journal of Obstetrics and Gynecology 
177(1): 19-26. 
Yoon, B. H., R. Romero, M. Kim, E. C. Kim, T. Kim, J. S. Park and J. K. Jun (2000). "Clinical implications 
of detection of Ureaplasma urealyticum in the amniotic cavity with the polymerase chain reaction." 
American Journal of Obstetrics and Gynecology 183(5): 1130-1137. 
Yoon, B. H., R. Romero, J. H. Lim, S. S. Shim, J. S. Hong, J. Y. Shim and J. K. Jun (2003a). "The clinical 
significance of detecting Ureaplasma urealyticum by the polymerase chain reaction in the amniotic 



 

211 
 

fluid of patients with preterm labor." American Journal of Obstetrics and Gynecology 189(4): 919-
924. 
Yoon, B. H., R. Romero, J. Moon, T. Chaiworapongsa, J. Espinoza, Y. M. Kim, S. Edwin, J. C. Kim, N. 
Camacho, E. Bujold and R. Gomez (2003b). "Differences in the fetal interleukin-6 response to 
microbial invasion of the amniotic cavity between term and preterm gestation." Journal of Maternal 
Fetal and Neonatal Medicine 13(1): 32-38. 
Yoshida, T., H. Ishiko, M. Yasuda, Y. Takahashi, Y. Nomura, Y. Kubota, M. Tamaki, S. Maeda and T. 
Deguchi (2005). "Polymerase chain reaction-based subtyping of Ureaplasma parvum and 
Ureaplasma urealyticum in first-pass urine samples from men with or without urethritis." Sexually 
Transmitted Diseases 32(7): 454-457. 
Zdrodowska-Stefanow, B., W. M. Klosowska, I. Ostaszewska-Puchalska, V. Bulhak-Koziol and B. 
Kotowicz (2006). "Mycoplasma hominis and Ureaplasma urealyticum infections in male urethritis 
and its complications." Advances in Medical Sciences 51: 254-257. 
Zeighami, H., S. N. Peerayeh, R. S. Yazdi and R. Sorouri (2009). "Prevalence of Ureaplasma 
urealyticum and Ureaplasma parvum in semen of infertile and healthy men." International Journal of 
STD and AIDS 20(6): 387-390. 
Zervomanolakis, I., H. W. Ott, D. Hadziomerovic, V. Mattle, B. E. Seeber, I. Virgolini, D. Heute, S. 
Kissler, G. Leyendecker and L. Wildt (2007). "Physiology of upward transport in the human female 
genital tract." Annals of the New York Academy of Sciences 1101: 1-20. 
Zheng, X., K. Lau, M. Frazier, G. H. Cassell and H. L. Watson (1996). "Epitope mapping of the variable 
repetitive region with the MB antigen of Ureaplasma urealyticum." Clinical and Diagnostic 
Laboratory Immunology 3(6): 774-778. 
Zheng, X., L. J. Teng, J. I. Glass, A. Blanchard, Z. Cao, M. C. Kempf, H. L. Watson and G. H. Cassell 
(1994). "Size variation of a major serotype-specific antigen of Ureaplasma urealyticum." Annals of 
the New York Academy of Sciences 730: 299-301. 
Zheng, X., L. J. Teng, H. L. Watson, J. I. Glass, A. Blanchard and G. H. Cassell (1995). "Small repeating 
units within the Ureaplasma urealyticum MB antigen gene encode serovar specificity and are 
associated with antigen size variation." Infection and Immunity 63(3): 891-898. 
Zheng, X., H. L. Watson, K. B. Waites and G. H. Cassell (1992). "Serotype diversity and antigen 
variation among invasive isolates of Ureaplasma urealyticum from neonates." Infection and 
Immunity 60(8): 3472-3474. 
Zimmerman, C. U., R. Rosengarten and J. Spergser (2011). "Ureaplasma antigenic variation beyond 
MBA phase variation: DNA inversions generating chimeric structures and switching in expression of 
the MBA N-terminal paralogue UU172." Molecular Microbiology 79(3): 663-676. 
Zimmerman, C. U., R. Rosengarten and J. Spergser (2013). "Interaction of the putative tyrosine 
recombinases RipX (UU145), XerC (UU222), and CodV (UU529) of Ureaplasma parvum serovar 3 with 
specific DNA." FEMS Microbiology Letters 340(1): 55-64. 
Zimmerman, C. U., T. Stiedl, R. Rosengarten and J. Spergser (2009). "Alternate phase variation in 
expression of two major surface membrane proteins (MBA and UU376) of Ureaplasma parvum 
serovar 3." FEMS Microbiology Letters 292(2): 187-193. 

 

 

 

 



 

212 
 

 

 

 

 

 

 

Chapter Nine: 

 

 

 

Supplementary Figures and Table 

  



 

213 
 

Supplementary Table 9.1. Comparison of culture- and PCR-positive placental specimens. Culture 

data was obtained from cultivation of organisms from swabs and chorioamnion tissue. PCR data was 

obtained from DNA extracted from chorioamnion tissues.  

Patient 
Number 

Ureaplasma spp.  Other microorganisms 

 Culture PCR Identity Culture PCR Identity 
1A Positive Positive U. parvum Negative Negative - 
1B Positive Positive U. parvum Negative Negative - 
8 Positive Positive U. urealyticum Negative Negative - 

13A Negative Negative - Positive Positive  Bifidobacterium spp. 
13B Negative Negative - Positive Positive Bifidobacterium spp. 
27 Positive Positive U. parvum Negative Negative - 

33A Positive Positive U. parvum Negative Negative - 
33B Positive Positive U. parvum  Negative Negative - 
43 Positive Positive U. parvum Negative Positive Uncultured bacterium 

44A Positive Positive U. parvum Negative Negative - 
44B Positive Positive U. parvum Negative Negative - 
46 Negative Negative  Positive Positive Gardnerella vaginalis 
50 Positive Positive U. parvum Negative Negative - 

55B Positive Positive U. parvum Negative Negative - 
79 Negative Negative - Positive Positive Propionibacterium spp. 

122 Positive Positive U. parvum Negative Negative - 
175 Negative Positive U. parvum Negative Negative - 
176 Negative Positive U. parvum Negative Negative - 
182 Positive Positive U. parvum Negative Negative - 

205T Negative Negative - Positive Positive Streptococcus agalactiae  
206T Negative Negative - Positive Positive Streptococcus agalactiae  
242A Negative Negative - Positive Positive Bacteroides fragilis 
242B Negative Negative - Positive Positive Bacteroides fragilis 
251 Negative Positive U. parvum Negative Negative - 
258 Positive Positive U. urealyticum Negative Negative - 

262T Positive Positive U. parvum Negative Negative - 
290T Positive Positive U. parvum Negative Negative - 
297 Positive Positive U. urealyticum Negative Negative - 
300 Positive Positive U. urealyticum Negative Negative - 
301 Positive Positive U. parvum Negative Negative - 
310 Positive Positive U. parvum Negative Negative - 

314T Positive Positive U. parvum Positive Positive Uncultured bacterium 
317 Negative Negative - Positive Positive Streptococcus agalactiae  

320T Negative Negative - Positive Positive Uncultured bacterium 

322T Positive Positive U. parvum Negative Negative - 
325 Positive Positive U. parvum Negative Negative - 

334A Positive Positive U. parvum Negative Negative - 
334B Positive Positive U. parvum Negative Negative - 
337 Negative Negative - Positive Positive E. coli 

340T Negative Negative - Negative Positive Uncultured bacterium 
351 Positive Positive U. urealyticum Negative Negative - 

364A Positive Positive U. parvum Negative Negative - 
365 Positive Positive U. parvum Negative Negative - 
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368T Positive Positive U. parvum Negative Positive Uncultured bacterium 
374B Negative Negative - Negative Positive Uncultured bacterium 
375 Negative Negative - Negative Positive Uncultured bacterium 
429 Positive Positive U. parvum Negative Negative - 
435 Positive Positive U. parvum Negative Negative - 
437 Negative Negative - Positive Positive Streptococcus agalactiae 
438 Positive Positive U. urealyticum Negative Negative - 

473T Positive Positive U. parvum Positive Positive Streptococcus agalactiae  
480T Positive Positive U. parvum Negative Negative - 
483T Positive Positive U. parvum Negative Negative - 
498A Positive Positive U. parvum Negative Negative - 
498B Positive Positive U. parvum Negative Negative - 
507 Positive Positive U. parvum Negative Negative - 

510T Positive Positive U. parvum Negative Negative - 
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U._parvum_Serovar_6_ATCC_27818            AATAATAAAACTTATTAAAAATAATAT---------AGATATATAATTA---AATTTTTA 

U._parvum_Serovar_1_ATCC_27813            --------------TTAAAAATAATAT---------AGATATATAATTA---AATTTTTA 

U._parvum_Serovar_14_ATCC_33697           --------------------ATAATAT---------AGATATATAATTA---AATTTTTA 

U._parvum_Serovar_3_ATCC_27815_           --------------------ATAATAT---------AGATATATAATTA---AATTTTTA 

U._parvum_Serovar_3_ATCC_700970_          AATAATAAAACTTATTAAAAATAATAT---------AGATATATAATTA---AATTTTTA 

U._urealyticum_Serovar_4_ATCC_27816       ------------TAGTGTAAAAATAGGAACAAAAAAAATTATAAAATTAAAAACTTTTGA 

U._urealyticum_Serovar_10_ATCC_33699      ----------CTTAGTGTAAAAATAGGAACAAAAAAAATTATAAAATTAAAAACTTTTGA 

U._urealyticum_Serovar_5_ATCC_27817       ------------------------------------------------------------ 

U._urealyticum_Serovar_11_ATCC_33695      --------AACTTAGTGTAAAAATAGGAACAAAA-AAATTATAAAATTAAAAACTTTTGA 

U._urealyticum_Serovar_9_ATCC_33175       AATAATAAAACTTAGTGTAAAAATAGGAACAAAA--AATTATAAAATTAAAAATTTTTGA 

U._urealyticum_Serovar_12_ATCC_33696      ------------------AAAAATAGGAACAAAAAAAATTATAAAATTAAAAACTTTTGA 

U._urealyticum_Serovar_13_ATCC_33698      ------------------------------------------------------------ 

U._urealyticum_Serovar_2_ATCC_27814       ----ATAAAACTTAGTGTAAAAATAGGAACAAA-AA-ATTATAAAATTAAAAATTTTTGA 

U._urealyticum_Serovar_7_ATCC_27819       ------AAAACTTAGTGTAAAAATAGGAACAAA-AAAATTATAAAATTAAAAACTTTTGA 

U._urealyticum_Serovar_8_ATCC_27618       ------------------------------------------------------------ 

 

         UpuF2         UpuF 

U._parvum_Serovar_6_ATCC_27818            ATCATAATTT--------------ATAATAAAAAATATCTAATAATGTTATTGA----TA 

U._parvum_Serovar_1_ATCC_27813            ATCATAATTT--------------ATAATAAAAAATATCTAATAATGTTATTGA----TA 

U._parvum_Serovar_14_ATCC_33697           ATCATAATTT--------------ATAATAAAAAATATCTAATAATGTTATTGA----TA 

U._parvum_Serovar_3_ATCC_27815_           ATCATAATTT--------------ATAATAAAAAATATCTAATAATGTTATCGA----TA 

U._parvum_Serovar_3_ATCC_700970_          ATCATAATTT--------------ATAATAAAAAATATCTAATAATGTTATCGA----TA 

U._urealyticum_Serovar_4_ATCC_27816       ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_10_ATCC_33699      ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_5_ATCC_27817       -------------------------------TTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_11_ATCC_33695      ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_9_ATCC_33175       ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_12_ATCC_33696      ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_13_ATCC_33698      ------------------------------------------------------------ 

U._urealyticum_Serovar_2_ATCC_27814       ATTGTAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_7_ATCC_27819       ATTATAAATTCAAAATAAACATTAATTTTTATTAACAACTTTATTTTTAATTAAAAATTT 

U._urealyticum_Serovar_8_ATCC_27618       ---------------------------TTTATTAACAACTTTATTTTTAATTAAAAATTT 

                                                                                                    

             UpuF3 
U._parvum_Serovar_6_ATCC_27818            ATGCAGAAAAAT-------AAAAAAAATAAAAAAAATAGCAAAAATTATATAATTAAAAG 

U._parvum_Serovar_1_ATCC_27813            ATGCAGAAAAAT-------AAAAAA-A-TAAAAAAACAGCAAAAATTATATAATTAAAAG 

U._parvum_Serovar_14_ATCC_33697           ATACAGAAAAAT-------AAAAAA-ATAAAAAAAATAGCAAAAATTATATAATTAAAAG 

U._parvum_Serovar_3_ATCC_27815_           ATGCAGAAAAAT-------AAAAAA-ATAAAAAAAATAGTAAAAATTATATAATTAAAAG 

U._parvum_Serovar_3_ATCC_700970_          ATGCAGAAAAAT-------AAAAAA-ATAAAAAAAATAGTAAAAATTATATAATTAAAAG 

U._urealyticum_Serovar_4_ATCC_27816       CTTCAAAAAAACACATAAAAAA---AAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_10_ATCC_33699      CTTCAAAAAAACACATAAA---AAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_5_ATCC_27817       CTTCAAAAA-ACACATTAAAAAAAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_11_ATCC_33695      CTTCAAAAA-ACACATAAAAAAAAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_9_ATCC_33175       CTTCAAAAA-ACACATTAAAAAA-AAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_12_ATCC_33696      CTTCAAAAAAACACATA----AAAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_13_ATCC_33698      ------------------------------------------------------------ 

U._urealyticum_Serovar_2_ATCC_27814       CTTCAAAA--ACACATTAAAAAAAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_7_ATCC_27819       CTTCAAAAA-ACACATA--AAAAAAA-AAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

U._urealyticum_Serovar_8_ATCC_27618       CTTCAAAAA-ACACATT--AAAAAAAAAAAAAAAACTAATAAAAATTATAAA-ATTAAAT 

                                                                                                       

        UpuF4         

U._parvum_Serovar_6_ATCC_27818            TGCAAGTGCTAAATAAAAAGTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAAATT 

U._parvum_Serovar_1_ATCC_27813            TGCAAGTGCTAAATAAAAAGTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAAATT 

U._parvum_Serovar_14_ATCC_33697           TGCAAGTGCTAAATAAAAAGTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAAATT 

U._parvum_Serovar_3_ATCC_27815_           TGCAAGTGCTAAATAAAAAGTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAAATT 

U._parvum_Serovar_3_ATCC_700970_          TGCAAGTGCTAAATAAAAAGTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAAATT 

U._urealyticum_Serovar_4_ATCC_27816       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_10_ATCC_33699      TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_5_ATCC_27817       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_11_ATCC_33695      TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_9_ATCC_33175       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_12_ATCC_33696      TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_13_ATCC_33698      -------------------GTATTTGCAATCTTTATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_2_ATCC_27814       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_7_ATCC_27819       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

U._urealyticum_Serovar_8_ATCC_27618       TGCAAGTGTTAAGCGAAAGACATTTGCAATCTTCATATGTTTTCGTTAAAATTAAAA--- 

                                                             . ************ ***********************    

 

U._parvum_Serovar_6_ATCC_27818            AATTACTATA-AAAATTATGTAAGAT--TAATAAATCTTAGTGTTCATATTTTTTACTAG 

U._parvum_Serovar_1_ATCC_27813            AATTACTGTA-GAAATTATGTAAGAT--TGCTAAATCTTAGTGTTCATATTTTTTACACA 

U._parvum_Serovar_14_ATCC_33697           AATTACTGTA-GAAATTATGTAAGAT--TAATAAATCTTAGTGTTCATATTTTTTACATA 

U._parvum_Serovar_3_ATCC_27815_           AATTACTGTA-GAAATTATGTAAGAT--TACCAAATCTTAGTGTTCATATTTTTTACATA 

U._parvum_Serovar_3_ATCC_700970_          AATTACTGTA-GAAATTATGTAAGAT--TACCAAATCTTAGTGTTCATATTTTTTACATA 

U._urealyticum_Serovar_4_ATCC_27816       --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTGTTATCTATACA 

U._urealyticum_Serovar_10_ATCC_33699      --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTGTTATCTATACA 

U._urealyticum_Serovar_5_ATCC_27817       --TTCCTATTAAAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

U._urealyticum_Serovar_11_ATCC_33695      --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

U._urealyticum_Serovar_9_ATCC_33175       --TTCCTATTAAAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

U._urealyticum_Serovar_12_ATCC_33696      --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTGTTATCTATACA 

U._urealyticum_Serovar_13_ATCC_33698      --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTGTTATCTATACA 

U._urealyticum_Serovar_2_ATCC_27814       --TTCCTATTAAAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

U._urealyticum_Serovar_7_ATCC_27819       --TTCCTATA-AAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

U._urealyticum_Serovar_8_ATCC_27618       --TTCCTATTAAAAACAACATGAGATTAAACAAAATCTTAATGTTGTTATTATCTATACA 

                                            **.**.*: .*** :* .*.****  :.. ********.**** :*.**:* ** : . 
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U._parvum_Serovar_6_ATCC_27818            TATTAAATTAAA--------------------------------AACA------------ 

U._parvum_Serovar_1_ATCC_27813            TATT-AAATAAA--------------------------------GACA------------ 

U._parvum_Serovar_14_ATCC_33697           TATT-AAATAAA--------------------------------AACA------------ 

U._parvum_Serovar_3_ATCC_27815_           TATT-AAATAAA--------------------------------AACA------------ 

U._parvum_Serovar_3_ATCC_700970_          TATT-AAATAAA--------------------------------AACA------------ 

U._urealyticum_Serovar_4_ATCC_27816       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_10_ATCC_33699      TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_5_ATCC_27817       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_11_ATCC_33695      TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_9_ATCC_33175       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_12_ATCC_33696      TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_13_ATCC_33698      TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_2_ATCC_27814       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_7_ATCC_27819       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

U._urealyticum_Serovar_8_ATCC_27618       TTCTAAAGAAAAATATATTTGCAAAACTATAAATAGACACAAAAAACAATAGAATAATAA 

                                          *: * ** :***                                .***             

 

          Start mba 

U._parvum_Serovar_6_ATCC_27818            -ATAAAATGACATATTTTTTATATTAGGAGAAC--CATAAATGAAATTATTAAAAAATAA 

U._parvum_Serovar_1_ATCC_27813            -ATAAAATGACATATTTTTTATATTAGGAGAAT--CATAAATGAAATTATTAAAAAATAA 

U._parvum_Serovar_14_ATCC_33697           -ATAAAATGACATATTTTTTATATTAGGAGAAT--CATAAATGAAATTATTAAAAAATAA 

U._parvum_Serovar_3_ATCC_27815_           -ATAAAATGACATATTTTTTATATTAGGAGAAT--CATAAATGAAATTATTAAAAAATAA 

U._parvum_Serovar_3_ATCC_700970_          -ATAAAATGACATATTTTTTATATTAGGAGAAT--CATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_4_ATCC_27816       AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_10_ATCC_33699      AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_5_ATCC_27817       AACTAAATTTCATATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_11_ATCC_33695      AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_9_ATCC_33175       AACTAAATTTCATATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_12_ATCC_33696      AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_13_ATCC_33698      AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_2_ATCC_27814       AACTAAATTTCATATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_7_ATCC_27819       AACTAAATTTCGTATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

U._urealyticum_Serovar_8_ATCC_27618       AACTAAATTTCATATTTAGTTTATTAGGAGATCGTTATAAATGAAATTATTAAAAAATAA 

                                           * :**** :*.*****: *:**********:    ************************ 

 

               UpmbaR2            

U._parvum_Serovar_6_ATCC_27818            AAAATTCTGAGCTATGACATTAGGAGTTACCTTAGTTGGAGCTGGAATAGTTGCTATAGC 

U._parvum_Serovar_1_ATCC_27813            AAAATTCTGAGCTATGACATTAGGAGTTACCTTAGTTGGAGCTGGAATAGTTGCTATAGC 

U._parvum_Serovar_14_ATCC_33697           AAAATTCTTAGCTATGACATTAGGTGTTACCTTAGTTGGAGCTGGAATAGTTGCTATAGC 

U._parvum_Serovar_3_ATCC_27815_           AAAATTCTGAGCTATGACATTAGGTGTTACCTTAGTTGGAGCTGGAATAGTTGCTATAGC 

U._parvum_Serovar_3_ATCC_700970_          AAAATTCTGAGCTATGACATTAGGTGTTACCTTAGTTGGAGCTGGAATAGTTGCTATAGC 

U._urealyticum_Serovar_4_ATCC_27816       GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_10_ATCC_33699      GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_5_ATCC_27817       GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_11_ATCC_33695      GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_9_ATCC_33175       GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_12_ATCC_33696      GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_13_ATCC_33698      GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_2_ATCC_27814       GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

U._urealyticum_Serovar_7_ATCC_27819       GAAATTTTGAGCAATTACACTAGGGGTAACTTTAGTGGGAGCAGGGGTAGTTGCTGTGGC 

                                          .***** * ***:** *** **** **:** ***** *****:**..********.*.** 

 
U._parvum_Serovar_6_ATCC_27818            GGCTTCATGTTCTAATTCAACTGTTAAATCTAAGTTAAGTAGCCAATTTGTTAAATCAAC 

U._parvum_Serovar_1_ATCC_27813            AGCTTCATGTTCTAATTCAACCGTTAAATCTAAATTAAGTAACCAATTTGCTAAATCAAC 

U._parvum_Serovar_14_ATCC_33697           AGCTTCATGTTCTAATTCAACTGTTAAATCTAAGTTAAGTAACCAATTTGCTAAATCAAC 

U._parvum_Serovar_3_ATCC_27815_           AGCTTCATGTTCTAATTCAACTGTTAAATCTAAGTTAAGTAACCAATTTGCTAAATCAAC 

U._parvum_Serovar_3_ATCC_700970_          AGCTTCATGTTCTAATTCAACTGTTAAATCTAAGTTAAGTAACCAATTTGCTAAATCAAC 

U._urealyticum_Serovar_4_ATCC_27816       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_10_ATCC_33699      AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_5_ATCC_27817       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_11_ATCC_33695      AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_9_ATCC_33175       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_12_ATCC_33696      AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_13_ATCC_33698      AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_2_ATCC_27814       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_7_ATCC_27819       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

U._urealyticum_Serovar_8_ATCC_27618       AGCTTCATGTTCTAGCTCAAATGTTAAATCTAAATTAAGTAGTCAACTTGTTAAATCAAA 

                                          .*************. ****. ***********.*******. *** *** ********.    

 

           UpmbaR 

U._parvum_Serovar_6_ATCC_27818            AGATGATAAAAGTTTTTATGCAGTTTACGAAATTGAAAACTTTAAAGATCTAAGTGATAA 

U._parvum_Serovar_1_ATCC_27813            AGACGATAAAAGTTTTTATGCGGTTTACGAAATTGAAAACTTTAAAGATCTAAGTGATAA 

U._parvum_Serovar_14_ATCC_33697           AGACGGTAAAAGTTTTTATGCGGTTTACGAAATTGAAAACTTTAAAGATCTAAGTAATGA 

U._parvum_Serovar_3_ATCC_27815_           AGACGGTAAAAGTTTTTATGCGGTTTACGAAATTGAAAACTTTAAAGATCTAAGTAATGA 

U._parvum_Serovar_3_ATCC_700970_          AGACGGTAAAAGTTTTTATGCGGTTTACGAAATTGAAAACTTTAAAGATCTAAGTAATGA 

U._urealyticum_Serovar_4_ATCC_27816       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAAATGAAAA 

U._urealyticum_Serovar_10_ATCC_33699      AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAAATGAAAA 

U._urealyticum_Serovar_5_ATCC_27817       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

U._urealyticum_Serovar_11_ATCC_33695      AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

U._urealyticum_Serovar_9_ATCC_33175       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

U._urealyticum_Serovar_12_ATCC_33696      AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAAATGAAAA 

U._urealyticum_Serovar_13_ATCC_33698      AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAAATGAAAA 

U._urealyticum_Serovar_2_ATCC_27814       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

U._urealyticum_Serovar_7_ATCC_27819       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

U._urealyticum_Serovar_8_ATCC_27618       AGACGAAAAGAGCTTTTACGCTGTTTACGACATTGAAAATTTCGATGATTTAACTGAAAA 

                                          *** *.:**.** ***** ** ********.******** ** .*:*** *** *.*:.* 
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U._parvum_Serovar_6_ATCC_27818            TGATAAAAAATCATTAAATGACATTGAATTTAATGCTGCACTTACATCAGTTGAAAACAA 

U._parvum_Serovar_1_ATCC_27813            TGATAAAAAATCATTAAATGACATTGAATTTAATGCTGCACTTACATCAGTTGAAAACAA 

U._parvum_Serovar_14_ATCC_33697           TGATAAAAAATCATTAAGTAACATTGAATTTAATGCTGCACTTACATCAGCTGAAAACAA 

U._parvum_Serovar_3_ATCC_27815_           TGATAAAAAATCATTAAGTAACATTGAATTTAATGCTGCACTTACATCAGCTGAAAACAA 

U._parvum_Serovar_3_ATCC_700970_          TGATAAAAAATCATTAAGTAACATTGAATTTAATGCTGCACTTACATCAGCTGAAAACAA 

U._urealyticum_Serovar_4_ATCC_27816       TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_10_ATCC_33699      TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_5_ATCC_27817       TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_11_ATCC_33695      TGATAAAAAAGCATTAAATGAAACTGAATTCAATGTTGCAATTACATCAGTTGAAAATAA 

U._urealyticum_Serovar_9_ATCC_33175       TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_12_ATCC_33696      TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_13_ATCC_33698      TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_2_ATCC_27814       TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

U._urealyticum_Serovar_7_ATCC_27819       TGATAAAAAAGCATTAAATGAAACTGAATTCAATGTTGCAATTACATCAGTTGAAAATAA 

U._urealyticum_Serovar_8_ATCC_27618       TGATAAAAAAGCATTAAACGAAGCTGAATTCAATGTTGCAATTACATCAGCTGAAAATAA 

                                          ********** ******. .*.. ****** **** ****.********* ****** ** 

 

 

U._parvum_Serovar_6_ATCC_27818            AACAGAAAATCTAGTTACAAAAGGTCATTTGGTTGGTGAAAAAATTTACGTTAAATTACC 

U._parvum_Serovar_1_ATCC_27813            AACAGAAAATCTAGTTACAAAAGGTCATTTGGTTGGTGAAAAAATTTACGTTAAATTACC 

U._parvum_Serovar_14_ATCC_33697           AACAGAAAGTACACTTGAAAAAGGTCATTTAGTTGGTGAAAAAATTTACGTTAAATTACC 

U._parvum_Serovar_3_ATCC_27815_           AACAGAAAGTACACTTGAAAAAGGTCATTTAGTTGGTGAAAAAATTTACGTTAAATTACC 

U._parvum_Serovar_3_ATCC_700970_          AACAGAAAGTACACTTGAAAAAGGTCATTTAGTTGGTGAAAAAATTTACGTTAAATTACC 

U._urealyticum_Serovar_4_ATCC_27816       AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_10_ATCC_33699      AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_5_ATCC_27817       AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_11_ATCC_33695      AACAGAAAACGCAACTATAAAAGGTCACTTACTTAACAAGAAAATCTACGTTAAATTACC 

U._urealyticum_Serovar_9_ATCC_33175       AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_12_ATCC_33696      AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_13_ATCC_33698      AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_2_ATCC_27814       AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

U._urealyticum_Serovar_7_ATCC_27819       AACAGAAAACGCAACTATAAAAGGTCACTTACTTAACAAGAAAATCTACGTTAAATTACC 

U._urealyticum_Serovar_8_ATCC_27618       AACAGAAAACGCAACAACAAAAGGTCACTTACTTAACAAAAAAATCTATGTTAAATTACC 

                                          ********.   *  :. ********* **. **.. .*.***** ** *********** 

 

              UpmbaR3         UpmbaR4 

U._parvum_Serovar_6_ATCC_27818            TCGTGAACCAAAACCTAATGAACAATTAACTATTATTAATAAAAGTGGATTAATCAAGAC 

U._parvum_Serovar_1_ATCC_27813            TCGTGAACCAAAACCTAATGAACAATTAACTATTATTAATAAAAGTGGATTAATCAAGAC 

U._parvum_Serovar_14_ATCC_33697           TCGTGAACCAAAACCTAATGAACAATTAACTATTATTAGTAAAAGTGGATTAATCAAGAC 

U._parvum_Serovar_3_ATCC_27815_           TCGTGAACCAAAACCTAATGAACAATTAACTATTATTAGTAAAAGTGGATTAATCAAGAC 

U._parvum_Serovar_3_ATCC_700970_          TCGTGAACCAAAACCTAATGAACAATTAACTATTATTAGTAAAAGTGGATTAATCAAGAC 

U._urealyticum_Serovar_4_ATCC_27816       ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_10_ATCC_33699      ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_5_ATCC_27817       ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_11_ATCC_33695      ACGTGAACCAAAAGCTAAAGAGCAATTAACTATTATTAATAAAGGTGGATTACTAAAAAC 

U._urealyticum_Serovar_9_ATCC_33175       ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_12_ATCC_33696      ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_13_ATCC_33698      ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_2_ATCC_27814       ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

U._urealyticum_Serovar_7_ATCC_27819       ACGTGAACCAAAAGCTAAAGAGCAATTAACTATTATTAATAAAGGTGGATTACTAAAAAC 

U._urealyticum_Serovar_8_ATCC_27618       ACGTGAACCAAAAGCTAAAGAACAATTAACTATTATTAATAAAGGTGGCTTACTAAAAAC 

                                          :************ ****:**.****************.****.****.***.*.**.** 

 

           Inverted Repeat 

U._parvum_Serovar_6_ATCC_27818            TTCAGGTTTGTTAATACCTAATAATTTGAATTATCAAACAGAAAAAGTGAACTTTGAAAC 

U._parvum_Serovar_1_ATCC_27813            TTCAGGTTTGTTAATACCTGATAATTTGAATTATCAAACAGAAAAAGTGAACTTTGAAAC 

U._parvum_Serovar_14_ATCC_33697           TTCAGGTTTGTTAATATCTGATAATTTGAATTATCAAACAGAAAAAGTGAACTTTGAAAC 

U._parvum_Serovar_3_ATCC_27815_           TTCAGGTTTGTTAATATCTGATAATTTGAATTATCAAACAGAAAAAGTGAACTTTGAAAC 

U._parvum_Serovar_3_ATCC_700970_          TTCAGGTTTGTTAATATCTGATAATTTGAATTATCAAACAGAAAAAGTGAACTTTGAAAC 

U._urealyticum_Serovar_4_ATCC_27816       TGCATCTTTAGTATTACCTGATAATTTGAATTATCAAACAGAAAAAGTGGAGTTCGA-AA 

U._urealyticum_Serovar_10_ATCC_33699      TGCATCTTTAGTATTACCTGATAATTTGAATTATCAAACAGAAAATATAGGTTTTGA-AA 

U._urealyticum_Serovar_5_ATCC_27817       TGCATCTTTAGTATTACCTGATAATTTTAATTATCAAACAGAAAATATAGGTTTTGA-AA 

U._urealyticum_Serovar_11_ATCC_33695      TGCATCTCTAGCATTACCTGATAATTTGAATTATCAAACAGAAAAAGTAGACTTTAAAAG 

U._urealyticum_Serovar_9_ATCC_33175       TGCATCTTTAGTATTACCTGATAATTTTAATTATCAAACAGAAAAAGTAGACTTTGAAAA 

U._urealyticum_Serovar_12_ATCC_33696      TGCATCTTTAGTATTACCTGATAATTTGAATTATCAAACAGAAAAAGTGGACTTTGAAAA 

U._urealyticum_Serovar_13_ATCC_33698      TGCATCTTTAGTATTACCTGATAATTTGAATTATCAAACAGAAAAAGTGGAGTTCGA-AA 

U._urealyticum_Serovar_2_ATCC_27814       TGCATCTTTAGTATTACCTGATAATTTTAATTATCAAACAGAAAAAGTGGACTTTGGAAA 

U._urealyticum_Serovar_7_ATCC_27819       TGCATCTCTAGCATTACCTGATAATTTGAATTATCAAACAGAAAAAGTGGACTTTGGAAA 

U._urealyticum_Serovar_8_ATCC_27618       TGCATCTTTAGTATTACCTGATAATTTTAATTATCAAACAGAAAAAGTGGAGTTTGAAAA 

                                          * **  * *.  *:** **.******* *****************:.*... ** .. *  

 

Figure 9.1. U. parvum serovars 1, 3, 6 and 14 gene alignment of intergenic upstream region of the 

mba and the upstream conserved portion of the mba. Gene alignments were performed using 

Geneious software and Clustal Omega. Designed primers are shown in shaded boxes and individual 

single nucleotide polymorphisms (SNPs) are highlighted in each of the U. parvum serovars. 
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Supplementary Table 9.2. Summary of serotyping based on the designed real-time PCR and HRM 
assay. Real-time PCR serotyping was confirmed by comparing U. parvum clinical isolates to ATCC 

strain serovars of U. parvum. Specimens had also been previously serotyped using sequencing 
and/or western blot using serovar-specific antisera. A total of 64.5% of clinical isolates were able to 

be successfully typed using the current real-time PCR and HRM assay.  

Patient 
Sample 
Number 

Previous 
serovar 

identified 

DNA successfully 
amplified? 

Serovar identified by 
novel real-time PCR 

and HRM assay 

Correct identity 
confirmed by real-time 
PCR and HRM assay? 

1A 1 Yes 1 Yes 
1B 1 Yes 1 Yes 
27 6 Yes 6 Yes 

33A 3 Yes 3 Yes 
33B 3 Yes 3 Yes 
43 1 Yes 6 No 

44A 3 Yes 3 Yes 
44B 3 Yes 3 Yes 
50 6 Yes   

55B 6 Yes 6 Yes 
182 6 Yes 6 Yes 

262T 1 Yes 6 No 
290T 1 Yes 1 Yes 
301 1 Yes 6 No 
310 6 Yes 1 No 

314T 3 Yes 14 No 
322T 3 Yes 3 Yes 
325 3 Yes 3 Yes 

334A 6 Yes 6 Yes 
334B 6 Yes 1 No 
364A 6 Yes 1 No 
365 3 Yes 1 No 
429 6 Yes 6 Yes 
435 3 Yes 3 Yes 

473T 1 Yes 1 Yes 
480T 6 Yes Did not serotype No 
483T 1 Yes 1 Yes 
498A 1 Yes 1 Yes 
498B 1 Yes 1 Yes 
507 1 No - - 
510 6 No 3 No 

912p 3 Late amplification - - 
46e 6 No - - 
402s 6 Late amplification - - 
231e 3 Late amplification - - 
291s 6 Late amplification - - 
84e 6 No - - 
33e 1 &3 Yes 6 No 

1040e2 1 Late amplification - - 
163w 6 No - - 
924e 1 Late amplification - - 
1043 6 No - - 

928e2 3 Late amplification - - 



 

219 
 

1020e2 1 Late amplification - - 
405e 1 No - - 

196e1 3 Late amplification - - 
268so 6 No - - 
405eo 1 Late amplification - - 
226so 3 Late amplification - - 

1630eo 3 Yes 3 Yes 
7.004 85 d 6 Late amplification - - 
7.005 99d 6 Late amplification - - 
7.002 99d 6 Late amplification - - 
7.042 85 d 6 Late amplification - - 
7.085 85 d 6 Late amplification - - 
7.113 99d 6 Late amplification - - 

TOTAL - 31/55 (56.4%) - 20/31 (64.5%) 
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Supplementary Table 9.3. Comparison of neonatal outcomes of infants exposed to Ureaplasma parvum and Ureaplasma urealyticum 

 U. parvum (n = 36) U. urealyticum (n = 6) Significance 

Gestational age 35.9 ± 0.4 (32 – 41) 34.7 ± 0.6 (32 – 36) NS1 

Apgar2 - 1 minute 7.9 ± 0.3 (1 – 9) 7.8 ± 0.6 (5 – 9) NS 

Apgar - 5 minutes 8.8 ± 0.1 (8 – 9) 8.7 ± 0.2 (8 – 9) NS 

Birth weight 2550.0 ± 102.5 (1380 – 3873) 2674.2 ± 148.2 (2290 – 3330) NS 

Placental weight 456.0 ± 22.9 (260 – 710) 400.4 ± 14.3 (374 – 461) NS 

Continuous positive airway pressure (CPAP) 8/36 (22.2%) 2/6 (33.3%) NS 

Demonstrated features of RDS 8/36 (22.2%) 3/6 (50.0%) NS 

Required oxygen or positive pressure support > 6 hrs 5/36 (13.9%) 3/6 (50.0%) NS 

Diagnosed RDS3 5/36 (13.9%) 2/6 (33.3%) NS 

Length of stay 6.0 ± 1.2 (1 – 28) 5.5 ± 1.7 (2 – 13) NS 
1 NS - not statistically significant 
2 Apgar – a measure of neonatal health scored at 1 min and 5 minutes post-delivery; measures appearance, pulse, reflex, activity and respiration of the 

newborn. 
3 RDS - respiratory distress syndrome.
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Supplementary Table 9.4. Comparison of pregnancy outcomes of women who were infected with U. parvum serovars 1, 3 or 6 

 Serovar 1 

(n = 10) 

Serovar 3 

(n = 9) 

Serovar 6 

(n = 12) 

Significance 

Signs/symptoms of infection1 2/10 (20.0%) 1/9 (11.1%) 0/12 (0.0%) NS2 

Chorioamnionitis3 documented previously 1/10 (10.0%) 0/9 (0.0%) 0/12 (0.0%) NS 

Chorioamnionitis in current pregnancy 7/10 (70.0%) 5/9 (55.5%) 7/12 (58.3%) NS 

- Maternal Stage 1.6 ± 0.2 (1 – 2) 1.2 ± 0.1 (1 – 2) 1.6 ± 0.3 (1 – 3) NS 

- Fetal Stage 2.5 ± 0.2 (2 – 3) 2.0 ± 0.3 (1 – 3) 1.7 ± 0.3 (1 – 3) NS 

Antibiotics administered < 3hrs prior to delivery 5/10 (50.0%) 3/9 (33.3%) 5/12 (41.7%) NS 

Cervical incompetence 4/10 (40.0%) 4/9 (44.4%) 5/12 (41.7%) NS 

Preterm premature rupture of membranes (pPROM) 3/10 (30.0%) 3/9 (33.3%) 3/12 (25.0%) NS 
1 Signs and symptoms of infection included: maternal temperature > 38 °C, uterine or abdominal tenderness, foul-smelling vaginal discharge, maternal 

tachycardia (> 120 bpm) or fetal tachycardia (> 160 bpm) 
2 NS - not statistically significant 

3 Chorioamnionitis was determined by US pathologists (blinded to outcome) according to (Redline et al. 2003)
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Supplementary Table 9.5. Comparison of fetal outcomes of those infants exposed to U. parvum serovars 1, 3 or 6 in utero.  

 Serovar 1 

(n = 10) 

Serovar 3 

(n = 9) 

Serovar 6 

(n = 12) 

Significance 

Gestational age 36.3 ± 0.9 (33 - 41) 35.9 ± 0.7 (33 - 39) 35.2 ± 0.7 (32-40) NS1 

Apgar2 - 1 minute 8.1 0.7 (2 - 9) 7.5 ± 0.7 ( 3 - 9) 7.7 ± 0.7 (1 - 9) NS 

Apgar - 5 minutes 8.9 ± 0.1 (8 - 8) 8.7 ± 0.2 (8 - 9) 8.9 ± 0.1 (8 - 9) NS 

Birth weight 2643.9 ± 182.6 (1975 - 3873) 2650.7 ± 219.5 (1525 - 3855) 2370.8 ± 186.6 (1380 - 3825) NS 

Placental weight 541.9 ± 39.5 (270 - 635) 482.4 ± 48.5 (279 - 710) 395.8 ± 31.7 (260 - 655) NS 

Demonstrated features of RDS3 3/10 (30.0%) 2/9 (22.2%) 3/12 (25%) NS 

Required oxygen or positive pressure support > 6 hrs 1/10 (10.0%) 2/9 (22.2%) 2/12 (16.7%) NS 

Respiratory distress syndrome (RDS) 1/10 (10.0%) 2/9 (22.2%) 2/12 (16.7%) NS 

Length of stay 7.6 ± 2.7 (1 - 28) 5.0 ± 2.1 (1 - 16) 6.9 ± 1.8 (2 - 17) NS 
1 NS - not statistically significant 
2 Apgar – a measure of neonatal health scored at 1 min and 5 minutes post-delivery; measures appearance, pulse, reflex, activity and respiration of the 

newborn. 
3 RDS - respiratory distress syndrome
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Supplementary Table 9.6. Comparison of maternal demographic data from pregnancies exposed to Ureaplasma spp. which demonstrated no mba/MBA 

size variation, and those pregnancies which were exposed to ureaplasmas that varied the size of their mba/MBA 

 No mba/MBA variants 
(n = 11) 

Single mba/MBA variant 
(n = 16) 

Multiple mba/MBA variants 
(n =4 ) 

Significance 

Maternal age 25.5 ± 1.2 (20 - 32) 23.9 ± 1.3 (17 - 32) 24.0 ± 2.3 (19 - 28) NS1 

Gravida2 1.9 ± 0.4 (1 - 4) 1.6 ± 0.2 (1 - 4) 3.2 ± 0.8 (1 - 5) NS 
Parity3 2.1 ± 0.3 (1 - 4) 1.4 ± 0.2 (1 - 2) 2.2 ± 0.7 (1 - 4) NS 
Marital status     

- Married 6/11 (54.5%) 5/16 (31.2%) 1/4 (25.0%) NS 
- Single 5/11 (45.5%) 11/16 (68.8%) 3/4 (75.0%) NS 

Medical Insurance     
- Private 7/11 (63.6%) 4/16 (25.0%) 2/4 (50.0%) NS 
- Medicaid 3/11 (27.3%) 8/16 (50.0%) 2/4(50.0%) NS 
- Self pay/uninsured 0/11 (0.0%) 4/16 (25.0%) 0/4 (0.0%) NS 
- Unknown 1/11 (9.1%) 0/16 (0.0%) 0/16 (0.0%) NS 

Evidence of prenatal care 10/11 (90.9%) 16/16 (100.0%) 4/4 (100.0%) NS 
1 NS - not statistically significant 

2 Gravida - number of clinical pregnancies 

3 Parity - number of viable offspring resulting from all pregnancies 



 

224 
 

Supplementary Table 9.7. Raw data and standard error of the mean (SEM) relating to figure 6.1 – Ureaplasma spp. growth in M199 media. As replicate data 

were remarkably similar for this graph, error bars were not generated using statistical software. 

 

Time M199 Media + 10% Fetal 
Calf Serum 

SEM M199 media + 10% Horse 
Serum 

SEM 10B broth SEM 

4 1 x 101 1.2 x 101 ± 1.0 1.1 x 101 1.3 x 101 ± 1 1 x 101 1 x 101 ± 0 
8 2.5 x 101 2 x 101 ± 2.5 2.1 x 101 2.3 x 101 ± 1 4.8 x 102 4.1 x 102 ± 2.5 

20 5 x 103 5 x 103 ± 0.0 3.1 x 101 3.2 x 101 ± 0.5 7.9 x106 8 x 106 ± 1 
30 6 x 103 5.7 x 103 ± 150 3.2 x 101 3.3 x 101 ± 0.5 5.9 x 103 6 x 103 ± 1 
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Supplementary Table 9.8. Raw data and standard error of the mean (SEM) relating to figure 6.3 – Ureaplasma spp. growth under different oxygen 

tensions. As replicate data were remarkably similar for this graph, error bars were not generated using statistical software. 

Time 5% O2 SEM 8% O2 SEM 20% O2 SEM 

0 1 x 101  1.1 x 101  ± 0.5 1 x 101  1.5 x 101  ± 2.5 1 x 101  1.1 x 101  ± 0.5 
4 1.1 x 101  1.2 x 101  ± 0.5  1 x 102  1.5 x 102  ± 42.5 1.2 x 102  1.5 x 102  ± 10 
8 1.2 x 101  1.4 x 101  ± 1 1.5 x 103  2 x 103  ± 250.0 1.3 x 103 1.3 x 103  ± 0 

12 1.3 x 102  1.5 x 102  ± 10 DNA1 DNA1 N/A2 1.5 x 103  1.7 x 103  ± 100 
24 1.5 x 102  1.8 x 102  ± 15 2 x 104  2 x 104  ± 0 1.9 x 103  2 x 103  ± 850 

 

1 Data was not available for this sample at this time point 

2 Not applicable – no data was available, so therefore no standard error of the mean was able to be calculated 




