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ABSTRACT 

It is estimated that currently more than 382 million people are living with 

diabetes worldwide. Up to half of the people with diabetes are also affected 

by diabetic neuropathy as the most common complication of diabetes. 

Diabetic peripheral neuropathy (DPN) which begins with symptoms such as 

burning pain, tingling and numbness of the lower extremities, is the main 

factor predisposing diabetic patients to ulceration and subsequently to 

amputation. Other than glycaemic control and pain management, there is no 

effective therapy to prevent the DPN or halt its progression. Proper detection 

and management of DPN can improve quality of life and prevent morbidity 

and mortality of these patients. Limitations of conventional measures of 

neuropathy prompted the search for simple, rapid and non-invasive markers 

for screening, diagnosis and follow-up of DPN. 

While quantification of the corneal subbasal nerve plexus (SNP) using 

corneal confocal microscopy (CCM) has been shown to be a promising 

marker for detection and stratification of DPN in several studies over the past 

decade, no data is available concerning the natural course of changes to this 

nerve plexus in health or diabetes. Furthermore, there is uncertainty as to 

whether age influences the SNP. 

Prior to utilizing the SNP morphometric parameters in the longitudinal context 

to investigate these research gaps, two important studies were conducted 

relating to methodological development. The first experiment provided 

information in respect to employment of an automated algorithm for 

quantification of corneal nerve morphology and the suitability of using this 

technique in diabetic individuals without and with neuropathy compared with 

manual and semi-automated methods. In the second experiment, the 

repeatability of CCM in combination with automated analysis has been 

examined in a cohort of diabetic and healthy individuals, in which corneal 

nerve fibre length was found to be the most repeatable and reliable SNP 

morphometric parameter. Having addressed these two main methodological 

issues, application of corneal confocal microscopy combined with automated 
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image analysis in a cohort of healthy participants without diabetes or 

neuropathy revealed the effect of age on central corneal nerve morphology 

as well as the stability of this nerve plexus over three years using longitudinal 

data. Finally, the natural history of three main SNP structural parameters in a 

cohort of diabetic individuals with and without DPN was assessed and the 

longitudinal relationship between these parameters and established 

measures of neuropathy was determined. Corneal nerve fibre density 

decreased over time in DPN group compared to controls. Moreover, the SNP 

parameters found to be associated with some neuropathy measures. Overall, 

this study demonstrated stability of corneal nerve morphology in the healthy 

state and dynamic small fibre damage at the SNP associated with DPN, thus 

providing justification for ongoing efforts to establish corneal nerve 

morphology as an appropriate adjunct to conventional measures of DPN. 
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CHAPTER 1. INTRODUCTION 

1.1 Foreword 

In this chapter, diabetic peripheral neuropathy (DPN) as one of the most 

common complications of diabetes is briefly introduced. The significance of 

this body of work is then reviewed, followed by the aims and the research 

questions. An outline of the design is presented and the structure of the 

thesis is outlined. This chapter concludes with the candidate’s contribution 

towards this research project and to the LANDMark study. 

1.2 Background 

Diabetes is one of the most common diseases, with an estimate of 382 

million people living with this complex condition worldwide (International 

Diabetes Federation, 2013). This disease can lead to serious complications 

including nephropathy, retinopathy and neuropathy. Diabetes can cause a 

wide variety of nervous system problems among which DPN is one of the 

most important complications (Chin & Rubin, 2010). DPN is the most 

commonly encountered form of neuropathies and imposes significant public 

health burdens. Up to half of patients with diabetes have neuropathy (Boulton 

et al., 2004b) which leads to numbness, tingling, pain or weakness and 

typically begin in lower extremities and may progress proximally. Lack of 

awareness of foot injury may lead to foot ulcers which in advanced stages 

can result in lower limb amputation (Tesfaye, 2007). 

While poor glycaemic control is considered as the main risk factor for 

developing DPN, several studies have shown that other risk factors such as 

duration of diabetes, hypertension, hyperlipidaemia, obesity and smoking are 

involved as well (Tesfaye & Selvarajah, 2012). Studies investigating the 

natural history of neuropathy in diabetes mostly show a gradual worsening of 

DPN over time, despite differences between studies in the tests for 

neuropathy assessment (see section 2.2.1 Natural history of DPN). Although 

various aetiologies have been suggested, the precise pathogenesis 

responsible for loss and damage of nerve fibre underlying clinical DPN 
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remains controversial and may involve direct metabolic compromise and 

microvascular ischemia (Tesfaye & Selvarajah, 2012). 

Other than glycaemic control, there is no effective therapy to prevent DPN 

(Callaghan et al., 2012b); however there are modifiable risk factors that have 

an important role in developing and worsening of DPN (Tesfaye et al., 2005). 

Accurate detection and management of complications can improve quality of 

life and prevent morbidity and mortality of these patients. Furthermore, lack 

of an early biomarker for nerve changes in diabetic neuropathy is one of the 

most important impediments of pharmacologic intervention in clinical 

research (Malik, 2014a; Ziegler & Luff, 2002). 

The development of a simple, non-invasive method for screening, diagnosis 

and follow-up of DPN has been explored because conventional techniques 

for assessment of diabetic neuropathy including nerve and skin biopsy, 

quantitative sensory tests (QST) and nerve conduction studies (NCS) are 

invasive, uncomfortable, expensive, unable to detect small fibre damage and 

repair or require highly specialised medical expertise and equipment 

(Skljarevski & Malik, 2007). Therefore, the establishment of an appropriate 

surrogate marker for DPN which can identify patients at risk and prompt more 

intense intervention including improved glycaemic, blood pressure and lipid 

control is crucial. Furthermore, a sensitive surrogate marker would 

significantly pave the way for development of effective disease-modifying 

therapeutics. As the most innervated tissue in the body (Müller et al., 1997) 

and being directly assessable to inspection using light, the cornea became a 

natural target for this purpose. 

1.3 Significance of the study 

Structural analysis of the corneal subbasal nerve plexus (SNP) using 

confocal microscopy (CCM) has been introduced as useful measure for 

assessing DPN. Several studies have suggested that this potential corneal 

measure can be used to monitor, non-invasively and cost-effectively, the 

progression of DPN and the effects of any clinical/therapeutic interventions 

(Ahmed et al., 2012; Hertz et al., 2011; Malik et al., 2003; Mehra et al., 2007; 
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Midena et al., 2006; Pritchard et al., 2011; Rosenberg et al., 2000; Tavakoli 

et al., 2010b). Hence, by identifying abnormalities in corneal nerve 

morphology, CCM might help clinicians to detect neuropathy more easily, 

and by repeat examination assess the benefits of interventions, such as 

improved glycaemic control and treating conventional vascular risk factors. 

Given the promising role of corneal nerve structure in screening and 

assessment of DPN, in the current literature there is no general agreement in 

regards to the effect of age on the SNP. Additionally, to date, no data exists 

on longitudinal changes in corneal morphology, either in the healthy eye or in 

neurological dysfunction. Moreover, a longitudinal study was required to 

support the cross-sectional studies that demonstrated the capability of CCM 

for detection and evaluation of DPN. 

This study focuses on the temporal changes of the corneal nerve 

microstructure and neuropathy measures in healthy individuals and 

participants with type 1 diabetes. The reason for including this type of 

diabetic participants (and not participants with type 2 diabetes) is that the 

underlying mechanisms in these two main types of diabetes are different and 

the pathogenesis of nerve damages may be differently influenced by 

metabolic factors in type 1 and type 2 diabetic patients (Kasalova et al., 

2006). Furthermore, evidence exists that these patients are prone to develop 

neuropathic changes sooner than type 2 diabetic patients (Kamiya et al., 

2005; Kasalova, et al., 2006). 

1.4 Aims of the study 

To date various methods have been developed and introduced to quantify 

corneal nerve parameters from CCM images. The first purpose of this 

research project was to assess the extent to which a newly developed fully 

automated method of SNP morphometric analysis agrees with two manual 

and semiautomated methods, which was essential particularly for this 

longitudinal study with repeated measurements over time where multiple 

images per participants needed to be analysed. The second aim was to 

explore the age-dependent alterations and the natural history of SNP 

morphology in healthy state. This would provide more information about the 
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dynamic changes of this nerve plexus which has applications not only in 

respect to its utility in assessing DPN, but also in various ocular and systemic 

conditions. The third aim of this study was to investigate longitudinal changes 

in corneal nerve morphology in type 1 diabetic participants with and without 

neuropathy. Additionally, the relationship of this non-invasive corneal 

measure with conventional measures of neuropathy was examined and 

important risk factors associated with small nerve fibre damage has been 

addressed. 

1.5 Research questions 

From the main aims of this study, the following main research questions were 

derived: 

1. How does the fully automated method of SNP analysis agree with 

manual and semiautomated techniques in terms of SNP parameter 

quantification and detection capability in a cohort of healthy controls 

and diabetic individuals with and without neuropathy? 

2. Is SNP influenced by age and what is the behaviour of this nerve 

plexus over time in healthy state? 

3. What is the natural history of SNP in diabetic individuals? Is this 

different in diabetic people with and without neuropathy vs. healthy 

individuals? 

4. Is there any relationship between longitudinal changes in corneal 

nerve structure and conventional measures of neuropathy? 

1.6 Hypotheses 

The following specific hypotheses were tested in this study: 

1. Automated quantification of corneal nerve parameters provides 

comparable neuropathy detection ability to manual and 

semiautomated methods. 

2. CCM is able to detect the age-dependent alterations of SNP 

morphology in healthy individuals. 
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3. Temporal changes of the SNP are different in diabetic participants with 

and without DPN. 

4. Changes in corneal nerve structure relates to traditional measure of 

DPN. 

1.7 Structure of the thesis  

This thesis is presented for the PhD by publication and comprised of a series 

of cross-sectional and longitudinal studies to address the research questions. 

The overall structure of this thesis takes the form of eight chapters, including 

this introductory chapter. In Chapter 2, the literature relevant to the study is 

reviewed. This chapter begins with an introduction to diabetes and DPN, 

followed by a detailed review of corneal nerve morphology as potential 

measure of DPN. The third chapter presents the findings of the comparison 

study of the three quantification methods for SNP morphometric analysis, 

and has been published in the journal Cornea. Chapter 4 examines 

intraobserver repeatability and interobserver reproducibility of the SNP 

parameters quantification and serves as a linkage between chapters 3 and 5. 

The longitudinal nature of the study necessitated conducting interobserver 

and intraobserver repeatability study concerning corneal nerve morphology, 

which is important when measurements are repeated over time to detect real 

changes with some confidence levels, if there is any change. 

Chapter 5 presents the baseline characteristics of the participants in this 

longitudinal study. Data presented here is a part of data used to form a paper 

entitled “Longitudinal assessment of neuropathy in type 1 diabetes using 

novel ophthalmic markers (LANDMark): Study design and baseline 

characteristics” which has been published in the Diabetes Research and 

Clinical Practice journal. Chapter 6 explores the longitudinal assessment of 

corneal nerve structure over time and also highlights the effect of age on 

SNP morphology in healthy individuals. This is essentially basis of a paper 

which was published in the journal Investigative Ophthalmology and Visual 

Science. Chapter 7 examines the natural history of corneal nerve parameters 

in diabetic individuals with and without neuropathy and also explores the 

longitudinal relationship between potential corneal measures and the 
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traditional measures of DPN. This chapter encompasses a paper that has 

been published in the journal Investigative Ophthalmology and Visual 

Science. Finally, the last chapter (Chapter 8) gives a brief summary with a 

reflection on how effectively the research aims have been addressed. 

A list of references cited in this work is presented following Chapter 8 in APA 

style. Appendices included in this thesis are Acknowledgement of Joint 

Authors and Verification of Permissions, Human Ethics Approval Certificate 

and Participant Information and Consent Form. 

1.8 Candidate’s contribution to this research project and to the 
LANDMark study 

The studies included in this PhD thesis are associated with the existing 

database of the LANDMark study (Longitudinal Assessment of Neuropathy in 

Diabetes using novel ophthalmic MARKers) (Pritchard et al., 2014) which is a 

two-site four-year longitudinal observational study. The LANDMark study is a 

broad area of research that employed corneal confocal microscopy (CCM), 

non-contact corneal aesthesiometry, optical coherence tomography and 

visual field perimetry to investigate peripheral nerve morphology and function 

in individuals with type 1 and type 2 diabetes as well as control participants. 

The Brisbane site has completed the four-year longitudinal study in July 

2014; however, the Manchester site still is in progress and is scheduled to 

finish this year. 

This PhD project focused specifically on the utility of CCM for investigating 

longitudinal changes of corneal nerve morphology and comparison with 

conventional tests of neuropathy in healthy controls and type 1 diabetic 

individuals with and without DPN. Participant enrolment of the two study 

groups (controls and type 1 diabetes) began in late 2009 in LANDMark study 

and recruitment continued until November 2011. The candidate joined the 

LANDMark team and commenced his PhD in February 2012. By adhering to 

his defined role and understanding the end goals of the LANDMark project, 

the candidate pursued his specific research aims and actively helped the 
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team to accomplish its goals. As a member of the LANDMark research team, 

the candidate’s contribution involved:  

• Conducting ophthalmic examination for about 250 2-hour participant-visits 

during duration of the PhD candidature from May 2012 to July 2015 

(Table  1-1) 

• Data collection and recording observation on Case Report Forms 

• Data management including exporting and uploading participants’ data to 

the integrated data base 

• Preparation of documentation for health care practitioners (when required) 

and 24-hour follow up phone calls after their visits  

• Providing ophthalmic exit reports for LANDMark participants  

The specific contribution of the candidate in relation to his PhD project: 

• Conducting intra- and interobserver repeatability study of subbasal nerve 

parameters using CCM for 16 and 11 healthy participants and individuals 

with diabetes, respectively 

• Analysing 400 CCM images using each of the three techniques of manual, 

semi-automated and fully-automated (i.e. 1200 images analysed in total) 

• Automated analysis of CCM images for all control and type 1 participants 

from baseline to final visits (approximately 960 case visits) 

• Analysing, plotting and presenting the results related to this PhD project 

 

Table  1-1 Numbers of participant-visits conducted by the candidate 

Year 

(LANDMark visit) 

2012 

(Year 2-3) 

2013 

(Year 3-4) 

2014 

(Year 4) 

Total 

Diabetes 51 74 30 155 

Controls 25 43 26 94 

Total 76 117 56 249 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Foreword 

This chapter provides a detailed overview of diabetic peripheral neuropathy 

(DPN), as one of the most important and prevalent complications of diabetes. 

Then, an overview of corneal anatomy and physiology and in particular 

corneal innervation is presented, followed by the effects of diabetes on the 

cornea. A review of current application of corneal confocal microscopy for in 

vivo assessment of subbasal nerve plexus with particular focus on the utility 

of this technique in relation to the assessment of DPN will be presented, 

subsequently. Finally, a summary of the literature review and the implications 

for this study are presented. 

2.2 Diabetic peripheral neuropathy 

Diabetes is a complex and chronic metabolic disorder characterized by 

hyperglycemia resulting from impaired glucose metabolism of the body. This 

condition occurs due to either deficiency in insulin secretion, insulin 

resistance or both. The most common types of diabetes are type 1 and type 

2 diabetes. Type 1 diabetes is an autoimmune response where destruction of 

the insulin-producing β-cells of the pancreatic islets occurs, while type 2 

diabetes results from both impaired insulin secretion and resistance to insulin 

action (Holt & Hanley, 2011). Type 1 diabetes can present at any age but this 

condition mainly occurs in children and young adults, while type 2 diabetes 

which is the most common form of diabetes, has been regarded a disease of 

middle-aged or elderly people (Meeking, 2011). 

Polyneuropathy or peripheral neuropathy is characterised by nerve 

abnormalities that are predominantly distal and symmetric with beginning in 

the lower extremities, which may gradually ascend (Chin & Rubin, 2010) 

(Figure  2-1). Diabetic distal symmetric polyneuropathy or diabetic peripheral 

neuropathy (DPN) is a chronic, symmetrical length-dependent neuropathic 

syndrome and the most common subtype of neuropathies (Chin & Rubin, 

2010; Dyck et al., 1993; Tesfaye, 2007). 
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Development of nerve loss in DPN usually follows a “stocking and glove” 

distribution. This is because the most distal part of nerves which are furthest 

from the nucleus in the dorsal root ganglion or anterior horn cell are affected 

first, although the pathophysiology underlying this phenomenon is not 

understood (Chin & Rubin, 2010; Ziegler et al., 2014a). 

DPN develops following long term hyperglycaemia, associated metabolic 

disturbances and cardiovascular risk factors (Tesfaye et al., 2010). The 

prevalence of DPN has been reported to be between 7.1% and 54% 

depending on study design, definition of DPN and type of diabetes, with the 

prevalence slightly higher amongst patients with type 2 diabetes (Dyck et al., 

1991; Harris et al., 1993; Tapp et al., 2003; Walters et al., 1992).  

 

 

Figure  2-1 Pattern of nerve damage in diabetic peripheral neuropathy 

In its early stages, symptoms of DPN which appear due to predominantly 

involvement of small nerve fibres of Aδ  and C types, start with burning feet, 

tingling and numb toes while the finding of neurologic examination and nerve 

conduction studies may be normal (Tavee & Zhou, 2009). Clinically, the 

process of DPN deterioration begins with decreased vibration sensation in 

the toes accompanied by a reduction or loss of ankle reflexes and may 

progress to more severe symptoms such as pain and loss of temperature 

and vibration sensation (Chin & Rubin, 2010). In some patients, foot 

ulcerations and even amputation are the late sequelae of DPN. Up to 15% of 

diabetic patients develop foot ulcers (Boulton et al., 2004a). Developing an 
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ulcer is accompanied with an increased risk of wound progression that may 

finally lead to amputation (Clayton Jr & Elasy, 2009). 

Therefore detecting diabetic patients with neuropathy from those without 

neuropathy is crucial. Evidence of reduced incidence of lower limb 

amputation, following a 1-hour education session for “high-risk” patients, plus 

a significantly lower incidence of new foot problems for patients as a result of 

an intensive education program (Barth et al., 1991; Malone et al., 1989) 

support this notion. These studies demonstrated that a simple education 

program significantly reduced the incidence of ulcer or foot and limb 

amputation in diabetic patients with neuropathy. 

2.2.1 Natural history of DPN 

It has been argued that the natural history of DPN has not been well 

understood, mainly due to scarcity of well-conducted prospective studies and 

inadequate knowledge of DPN pathogenesis (Tesfaye, 2007). In a 4-year 

follow-up study of 39 patients with DPN, Boulton et al. (1983) found a 

significant fall in median nerve motor conduction velocities that reflects 

continuing deterioration in nerve function. The Diabetes Control and 

Complications Trial (Leiter et al., 1995) provides valuable information 

regarding the development and progression of neuropathy in type 1 diabetes. 

This study was primarily designed as a therapeutic survey in which two group 

of patients were followed, one treated conventionally (control treatment) and 

another treated intensively. After 6.5 years of follow-up, the prevalence of 

clinical neuropathy increased from 8% at baseline to 22%. They also 

reported a very high (50%) prevalence of abnormal nerve conduction at study 

closeout in this group. Partanen et al. (1995) reported that the prevalence of 

neuropathy increased from 8.3% at baseline to 16.7% after 5 years and 

41.9% after 10 years in their cohort. In a 7-year longitudinal study of almost 

200 patients from the Rochester Diabetic Neuropathy Study cohort using a 

composite score of examinations and tests, Dyck et al. (1997) demonstrated 

that the average diabetic patient in their study worsened by 0.34 points per 

year (slope), whereas patients with diabetic polyneuropathy worsened by 

0.85 points per year. They also suggested that longitudinal assessment of 



12 

12 Literature Review 

diabetic neuropathy would need to be conducted for a period of at least 3 

years to achieve a clinically meaningful effect. 

A 12-year prospective study of DPN by Coppini et al. (2001), using vibration 

perception thresholds (VPT), showed that approximately 20% of diabetic 

patients with a normal age-corrected VPT at baseline developed an abnormal 

VPT over this period. A prospective study from The Epidemiology of Diabetes 

Complications reported that 15% of their type 1 diabetes subjects who were 

free of DPN at the baseline developed DPN during the first 6 years of follow-

up (Forrest et al., 1997). Adler et al. (1997) reported that 20% of their 

participants without neuropathy at baseline developed neuropathy after an 

average period of 2.6 years. Similarly, van de Poll-Franse et al. (2002) in a 4-

year longitudinal assessment of DPN in type 2 diabetes found that 21.3% of 

diabetic patients without DPN at baseline, developed significant neuropathy. 

A prospective follow-up (mean follow-up, 4.7 years) of 231 people with type 2 

diabetes and without DPN at baseline revealed an incidence rate of 6.1 per 

100 person-year (Sands et al., 1997). In the placebo arm of a study, Brown et 

al. (2004) found a significant worsening of DPN using nerve conduction 

studies (NCS) and quantitative sensory tests (QST) over 12 months in a mild 

to moderate affected population. The European Diabetes (EURODIAB) 

Prospective Complication Study (Tesfaye, et al., 2005) assessed risk factors 

for the development of distal symmetric neuropathy in 1172 patients with type 

1 diabetes and reported that over a mean of 7.3 years of follow up, 

approximately one quarter of type 1 diabetic patients developed DPN. 

Although the differences in study design do not allow for precise comparison 

between studies, the above review clearly shows a significant gradual 

worsening of DPN in diabetic patients over time. However, more recent 

studies have documented lower deterioration and more stability of 

neuropathy measures compared to the older reports. The NATHAN 1 trial 

reported that NCS and QST results did not deteriorate in the placebo-treated 

group over 4 years (Ziegler et al., 2011). No significant changes to symptom 

scores, QST and NCS has also been found in a 3-year study of diabetic 

patients (Gibbons et al., 2013). Overall, there seems to be some evidence of 
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lower rates of DPN development and worsening and hence changing the 

natural history of DPN which to some extent may be explained by 

improvements in the patient care and management of diabetes compared to 

previous decades. 

2.2.2 Pathogenesis and risk factors of DPN 

The mechanisms leading to nerve degeneration in diabetic individuals are not 

completely understood and although several theories have been proposed, 

the overall mechanism is probably multifactorial and complex (Chin & Rubin, 

2010). The two main hypotheses are explained in the following sections. 

Metabolic Hypothesis: Development, progression and severity of DPN is 

related to hyperglycaemia. The significant association between glycaemic 

control and DPN has been found in several studies (Dyck et al., 1999; 

Tesfaye et al., 1996). The damaging effect of hyperglycaemia is further 

confirmed by the occurrence of neuropathy associated with impaired glucose 

tolerance (IGT). It has been shown that the neuropathy associated with IGT 

is milder than the neuropathy associated with newly diagnosed diabetes 

(Sumner et al., 2003).  

Despite the strong association between hyperglycaemia and DPN, the exact 

mechanism is not completely clear. One of the proposed mechanisms is 

accumulation of polyols (particularly sorbitol) in nerves. The aldose reductase 

pathway is activated by intracellular hyperglycaemia, resulting in increased 

sorbitol formation. Accumulation of sorbitol and fructose leads to reduced 

nerve myo-inositol, decreased sodium-potassium ATPase activity, alteration 

in protein kinase C subunits and slowed nerve conduction velocities (Chin & 

Rubin, 2010; Clark & Lee, 1995). Whilst the animal model experiments 

revealed consistent association between increased polyol pathway flux and 

decreased nerve conduction velocity, human studies are not consistent and 

most of clinical trials with aldose reductase inhibitors have failed (Li et al., 

2013; Malik & Veves, 2007). 
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Hyperglycaemia also leads to advanced glycation end-products (AGE) 

formation (Clark & Lee, 1995). Formation and accumulation of AGE is 

another important factor for peripheral nerve damage by directly affecting 

structural and functional proteins or indirectly activating receptors for AGEs 

(RAGE) (Wada & Yagihashi, 2005). The formation of AGE can be restricted 

by inhibitors and the interaction of AGE-RAGE may be hindered by 

recombinant RAGE (Malik & Veves, 2007). Animal studies demonstrated that 

development and progression of microvascular complications might be 

preventable by inhibition of AGE production (Tahrani et al., 2010).  

Oxidative stress is known as one of the most important mechanisms in the 

pathogenesis of DPN in animal studies, but to a lesser extent in human 

neuropathy (Malik & Veves, 2007). Both chronic and acute hyperglycaemia 

cause oxidative stress in the peripheral nerve system that can promote the 

development of DPN (Vincent et al., 2004). 

Vascular Hypothesis: It has been hypothesised that microvascular disease 

can result in nerve ischemia. Sural nerve biopsies revealed defects in 

endoneurial vessels and reduced oxygen tension in diabetic patients with 

DPN, compared with diabetic patients without DPN. Tesfaye et al. (1993) 

used sural nerve photography (3 cm of sural nerve is exposed at the ankle 

using an operating microscope) and fluorescein angiography and found 

microvascular abnormalities in epineurial arteries and veins as well as 

arteriosclerosis on the nerve surface and impaired blood flow in subjects with 

chronic DPN. Blood vessel thickening, reduplication of basal lamina and 

occlusion with platelet aggregates are further evidences of vascular 

hypothesis in DPN (Chin & Rubin, 2010). 

A considerable amount of literature has been published on risk factors for 

DPN. DPN increases with both age (from 5% in the 20-29 year age group to 

44.2 % in the 70-79 year age group) and duration of diabetes (Young et al., 

1993). Using multiple regression modelling, Adler et al. (1997) reported that 

age at enrolment (P < 0.0001, OR = 1.05), duration of diabetes (P = 0.003, 

OR = 1.03) and HbA1c (P = 0.03, OR = 1.06) were significant risk factors for 

DPN. A longitudinal study of risk factors for DPN severity showed that age, 
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diabetes duration, HbA1c, height and body mass index (P < 0.05) were the 

most important risk factors during follow up (van de Poll-Franse, et al., 2002). 

Significant correlations have been found between the presence of DPN with 

age (P < 0.05), duration of diabetes (P < 0.001), quality of metabolic control 

(P < 0.001), height (P < 0.01), the presence of background or proliferative 

diabetic retinopathy (P < 0.01), cigarette smoking (P < 0.001), high-density 

lipoprotein cholesterol (P < 0.001) and the presence of cardiovascular 

disease (P < 0.05) (Tesfaye, et al., 1996). Several subsequent studies 

confirmed the aforementioned risk factors as significant risk factors for DPN 

(Booya et al., 2005; Dyck, et al., 1999; Forrest, et al., 1997; Gomez-Viera et 

al., 2001; Manes et al., 2002; Morkrid et al., 2010; Tesfaye, et al., 2005; 

Wiggin et al., 2009; Ziegler et al., 2008). 

In summary, neural structural alterations as a result of diabetes occur 

through several biochemical pathways, comprising interactions between 

glycaemic control, duration of diabetes and other cardiovascular risk factors. 

Although metabolic and vascular factors are the main aetiology for 

developing DPN, recent studies have shown that these mechanisms are 

likely to interact and are involved at all stages of DPN (Cameron et al., 2001; 

Tesfaye & Selvarajah, 2012). 

2.2.3 Social and economic burden of DPN 

DPN significantly reduces the quality of life of patients and also is a 

substantial burden both for society and health insurance (Happich et al., 

2008). Damage to Aδ and unmyelinated C-class nerve fibres is responsible 

for most of the symptoms and signs experienced by diabetic patients with 

peripheral neuropathy, which include: burning or stabbing pain, 

hyperaesthesia, paraesthesia, and loss of pain and temperature sensation 

(Boulton, et al., 2004b; Tavee & Zhou, 2009). Symptoms are usually worse at 

night and often affect patient’s sleep (Tavee & Zhou, 2009). When DPN is 

associated with neuropathic pain, it potentially affects both mental and 

physical components of quality of life (Van Acker et al., 2009). The 

associated sensory (e.g. loss of sensation and numbness) and motor 
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symptoms (e.g. weakness) initially affect the foot and toe and can ascend 

proximally.  

Up to 15% of diabetic patients develop foot ulcers and 80% of amputations 

are preceded by foot ulceration (Boulton, et al., 2004a; Boulton et al., 2005; 

Frykberg et al., 2006). Although development of foot ulcers are multifactorial, 

the main cause is unperceived trauma due to reduced pain sensation 

(Frykberg, et al., 2006). 

A longitudinal study by Abbott et al. in a large population of diabetic patients 

demonstrated that the foot ulceration is more common in diabetic 

neuropathy, with the annual incidence rising from less than 1% in those 

without neuropathy to 7.2% in patients with established DPN (Abbott et al., 

1998). Ramsey et al. (1999) investigated 8905 patients with type 1 and type 

2 diabetes and found a cumulative incidence of 5.8% of developing foot ulcer 

over three years observation and reported that the attributable cost for a 40 

to 65 year-old male with a new ulcer was nearly $28,000 during the two years 

after diagnosis. The risk of foot amputation has been reported to be 23 fold in 

patients with diabetes compared to people without diabetes (Holman et al., 

2012). Strategies that reduce amputation risk by earlier detection may 

potentially save $2 to $3 million of medical costs over three years in the 

United States (Ollendorf et al., 1998). The total annual cost of managing DPN 

in the United States and United Kingdom has been reported to be $16.8 

billion and $1.2 billion, respectively (Gordois et al., 2003). 

It is clear that from a public health perspective, DPN leads to extensive 

reduction of the quality of life and imposes considerable economic burdens; 

therefore, appropriate diagnosis and early detection of DPN can provide 

several benefits for both diabetic patients as well as society. 

2.2.4 Diagnostic tests for DPN 

A broad range of tests are commonly used to screen for, diagnose and to 

monitor the progression of DPN. The majority of these tests assess functional 

loss due to disease; however, direct structural observation of nerve tissue 
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itself is also possible. An outline of the most common methods is presented 

here. 

Signs and symptoms: Neuropathy disability score (NDS) is a quantitative 

measure of neuropathy which includes pain sensation, vibration sensation, 

temperature sensation and Achilles tendon reflex of both feet and is recorded 

from 0 to 10 (Abbott, et al., 1998; Young, et al., 1993). Diabetic neuropathy 

symptom score (DNSS) is a validated and fast measure of neuropathic 

symptoms for clinical practice (Meijer et al., 2002) which includes four 

questions and it is completed by the patient. The total score is recorded from 

0 to 4. Although assessment of signs and symptoms are among the most 

commonly used test for DPN, a recent study (Dyck et al., 2010) has found 

that they are associated with poor diagnostic reproducibility. 

Quantitative sensory tests (QST): QST provide valuable quantitative 

information on sensory function in polyneuropathies, particularly in DPN 

(Perkins & Bril, 2003). They offer a relatively robust mean of defining 

neuropathy severity (Boulton, et al., 2004b) and have shown adequate 

proficiency (Dyck et al., 2014). However, these tests require the cooperation 

and concentration of the examinee and they may also be affected by 

anthropometric variables (Boulton, et al., 2004b; Skljarevski & Malik, 2007) 

which are the main disadvantages of this method. Furthermore, given that 

the QST of thermal and pain sensation has been proposed to assess small 

fibre damage and dysfunction (Arezzo, 1999), a subsequent study has shown 

the lack of relationship between QST and small myelinated or unmyelinated 

fibre  pathology identified using nerve biopsy technique (Malik et al., 2001). 

Nerve conduction studies (NCS): NCS stimulate a nerve at one point along 

its course and measure the signal at another point. Whilst NCS have been 

reported to be reliable and objective tests for assessment of large nerve 

function (Dyck, et al., 1997; Husstedt et al., 1997; Kohara et al., 2000), their 

reproducibility have been shown to be limited (Litchy et al., 2014). Moreover, 

they need trained individuals and studies in subjects with impaired glucose 

tolerance (IGT) and diabetes demonstrated that earliest nerve fibre damage 



18 

18 Literature Review 

occurs in small fibres and NCS may not be sensitive enough to detect early 

functional changes (Malik et al., 2011; Skljarevski & Malik, 2007). 

Nerve and skin biopsy: Nerve biopsy is an invasive and highly specialized 

procedure that allows the direct examination of myelinated and unmyelinated 

nerve fibre damage and repair using light or electron microscopy (Malik, et 

al., 2011). Compared to nerve biopsy, skin biopsy is a less invasive 

technique. Skin biopsy is an accepted means to assess small fibre nerves 

and to allow morphometric analysis of epidermal and dermal nerves (Lauria 

et al., 2009) (Figure  2-2). Intraepidermal nerve fibre density (IENFD) is used 

as a morphometric parameter and is expressed as the number of nerves per 

length of nerve section (nerve/mm). Both techniques are demanding 

procedures requiring expertise and laboratory for processing and quantifying. 

They are also not appropriate tests for longitudinal assessment as biopsies 

need to be taken at different sites for the purpose of re-assessment. 

 

Figure  2-2 Skin biopsy of normal intraepidermal nerve fibre (IENF) (arrow) in 

a healthy control participant (A) and absence of IENFs with only dermal 

nerve fibres (arrow) in a diabetic patient with severe neuropathy (B). Figure 

reprinted with permission from Copyright Clearance Center. Malik, R.A., et al. 

Small fibre neuropathy: role in the diagnosis of diabetic sensorimotor 

polyneuropathy. Diabetes/Metabolism Research and Reviews. 2011. 27(7): 

678-684. 

Filament test: The 10-g monofilament examination is a simple, practical and 

accurate means for DPN screening; however this is not a quantitative test 

and there are some limitations in its specificity for DPN onset (Perkins et al., 

2010). 
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Neuropad®: Neuropad is a relatively new adhesive visual indicator test which 

measures sweat production in the feet. This test has been shown to have 

high sensitivity and negative predictive value but low-moderate specificity 

and positive predictive value for the diagnosis of DPN (Papanas et al., 2013).  

2.2.5 Treatment of DPN 

Several studies have been performed using pharmacologic agents on the 

basis of pathogenetic mechanisms including aldose reductase inhibitors, 

AGE inhibitors, vasodilators and nerve growth factors; however, to date no 

effective therapy has been approved for treatment of peripheral neuropathy 

in diabetes (Li, et al., 2013). In the first instance, glycaemic control and 

considering cardiovascular risk factors are the main focus of management 

(Tesfaye & Selvarajah, 2012). In diabetic patients with painful DPN, 

pharmacological management with antidepressants, anticonvulsants, and 

opioids is recommended, but these drugs are often limited by unfavourable 

side-effects (McGreevy & Williams, 2012). 

While accurate diagnosis and estimation of changes are essential to test 

potential therapies for DPN, lack of a reliable and sensitive clinical marker 

has been one of the most important impediments in clinical trials (Malik, 

2014a; Ziegler & Luff, 2002). As outlined above, the inherent and associated 

shortcomings of the conventional measures of neuropathy indicate that a 

simpler, more practical and sensitive measure of neuropathy, that can be 

used to monitor changes over time, has to be explored. 

In the past decade, corneal nerve morphology at subbasal nerve plexus 

(SNP) has been the centre of attention as a potential marker of DPN. In fact, 

the anatomical location and transparency of the cornea make this tissue 

ideally suited for direct observation of nerve structure pathology using in vivo 

corneal confocal microscopy (CCM). The next section deals with the SNP 

structure as a promising sensitive and reiterative measure of neuropathy in 

more detail. 
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2.3 Morphology of corneal subbasal neve plexus as a potential measure 
of DPN  
2.3.1 Anatomy and physiology of the cornea 

The cornea is a transparent and avascular connective tissue of the front of 

the eye and, in combination with the precorneal tear film, plays an important 

role via providing a proper anterior refractive surface and protects the eye 

against infection and structural damage to the deeper components of the eye 

(DelMonte & Kim, 2011; Farjo et al., 2008). Histologically, the human cornea 

consists of five basic layers, three cellular layers (epithelium, stroma, and 

endothelium) and two acellular interfaces (Bowman and Descemet 

membranes) (Figure  2-3). Corneal thickness is approximately 0.5 mm at the 

centre and this thickness increases gradually to the periphery. 

 

Figure  2-3 Histological cross section of the cornea. Figure reprinted with 

permission from Elsevier. Farjo, A. A., et al. (2008). Corneal Anatomy, 

Physiology and Wound Healing. In M. Yanoff & J. S. Duker (Eds.), 

Ophthalmology. 203-207. 

Epithelium: In addition to its contribution as the main barrier to penetration of 

microorganisms and certain noxious substances, the epithelium-tear film 

provides approximately two third of the total refractive power of the eye. The 

epithelium is 4–6 cell layers thick (40–50 μm), the most superficial corneal 
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cells consist of 2 to 3 layers of polygonal cells, then 2-3 layers of supra-basal 

or wing cells and the basal layer forms a single cell layer (Farjo, et al., 2008). 

Bowman layer: This is not a real membrane but rather a condensed layer of 

collagen. This layer is approximately 15 μm thick, protects the stroma and 

maintains corneal shape (Riordan-Eva, 2002). 

Stroma: The stroma is the thickest layer of the cornea (80% to 85% of total 

corneal thickness). It is composed of densely packed, highly ordered 

collagen fibres (Lamella) (Farjo, et al., 2008). This highly arranged network 

results in corneal transparency and reduced light scattering. Collagen 

molecules are generated by keratocytes which are the main cell type in the 

corneal stroma. 

Descemet’s membrane: A thin acellular layer with approximate 10 μm 

thickness has an amorphous ultra-structural texture and represents the 

basement membrane of the endothelium. 

Endothelium: It is a single layer of flat hexagonal (honeycomb-like) cells with 

a thickness of 4 μm in adulthood. This layer is responsible for maintaining the 

corneal stroma in a relatively deturgescent state (DelMonte & Kim, 2011).  

Dua et al. (2013) reported the discovery of new acellular layer at the most 

posterior lamellae of the stroma with 10 μm thickness; however, there has 

been some debate in the literature concerning the existence of this layer 

(McKee et al., 2014). 

2.3.2 Corneal innervation 

The ex vivo anatomy of the corneal nerves has been studied in detail by light 

and electron microscopy and in combination with immunohistochemical 

techniques (Al-Aqaba et al., 2010; He et al., 2010; Marfurt et al., 2010; Müller 

et al., 2003; Müller, et al., 1997). The human cornea is the most densely 

innervated surface tissue of the body (606 terminals/mm2 in the suprabasal 

layers of the central corneal epithelium) (Marfurt, et al., 2010). Corneal nerve 

fibres are mainly sensory and derived from the nasociliary branch of the 
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ophthalmic division of the trigeminal nerve (Müller, et al., 2003). Corneal 

autonomic nerve fibres consists of sympathetic fibres which are derived from 

the superior cervical ganglion and parasympathetic fibres that originate from 

the ciliary ganglion (Al-Aqaba, et al., 2010). 

In the periphery, bundles of nerves enter the cornea in the middle third of the 

stroma and run forward anteriorly in a radial fashion to the centre. These 

nerves lose their perineurium and myelin within approximately 1 mm of the 

corneal limbus to maintain cornea transparent (Marfurt, et al., 2010; Müller, et 

al., 2003). In the interface between Bowman’s layer and anterior stroma, the 

subepithelial nerve plexus is formed by the stromal nerves. After penetrating 

Bowman’s layer, nerves continue parallel to the corneal surface between 

Bowman’s layer and the basal epithelial cell layer (Müller, et al., 2003) and 

form the subbasal nerve plexus (SNP) which provides innervations to the 

subbasal layer of the epithelium and eventually ends within superficial 

epithelial layers of the cornea (Figure  2-4). The subbasal nerve plexus 

includes a spiral-like assemblage of long, curvilinear subbasal nerve fibres 

which forms a whorl-like arrangement located about 2.5 mm infronasal to the 

corneal apex (Marfurt, et al., 2010). 

 

Figure  2-4 (A) Diagram of human cornea nerves in stroma and subbasal 

plexus. (B) 3-D representation of the corneal subbasal nerve plexus. Figures 

reprinted with permission from Copyright Clearance Center. (A) Müller, L.J., 

et al., Corneal nerves: structure, contents and function. Experimental Eye 

Research, 2003. 76(5): 521-542, and (B) Erie, J.C., et al., The effect of age 

on the corneal subbasal nerve plexus. Cornea, 2005. 24(6): 705-709. 
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Two main types of human corneal nerves are unmyelinated C fibres which 

are small diameter (2-4 µm) beaded nerves and respond to thermal and 

chemical stimuli and Aδ fibres that are large diameter (6 µm ) straight nerves 

and respond primarily to mechanical stimuli (Müller, et al., 1997). Sensation 

of pain in human cornea results from mechanical, thermal and chemical 

stimulation of the cornea (Al-Aqaba, et al., 2010). Although the corneal 

innervation provides sensation, it has a significant role in the integrity of the 

ocular surface. The corneal nerve fibres also have an important influence on 

the corneal trophism (nourishment of the tissue) and contribute to the 

maintenance of a healthy corneal surface (Marfurt, et al., 2010). 

2.3.3 Cornea and diabetes 

Retina and cornea are two main ocular tissues that are profoundly impacted 

from hyperglycemia. Diabetic keratopathy, or the corneal complications of 

diabetes, occurs in up to 70% of diabetic patients (Lutty, 2013). Various 

corneal changes associated with diabetes have been reported, ranging from 

cellular dysfunction to failure to repair the damaged structures and functions. 

Gekka et al. (2004) found impairment in corneal epithelial barrier function in 

diabetic patients and reported that diabetic patients with higher HbA1c levels 

were more disposed to impaired barrier function in the corneal epithelium. 

Lee et al. (2006) studied 200 patients with diabetes and showed that diabetic 

subjects had thicker corneas, lower cell density and hexagonality, and more 

irregular cell size. Similarly Inoue et al. (2002) reported impaired endothelial 

cell structure. 

Increase in central corneal thickness has been reported in several studies 

which has been thought to be due to insufficient endothelial cell function, 

resulting in corneal oedema (Goldich et al., 2009; Lee, et al., 2006; 

McNamara et al., 1998; Rosenberg, et al., 2000); in contrast, some 

investigations demonstrated no difference in central corneal thickness 

between diabetes and control subjects (Hager et al., 2009; Inoue, et al., 

2002; Wiemer et al., 2007). Diabetes has a significant effect on corneal 

hydration control (McNamara, et al., 1998) and can also affect corneal 
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biomedical parameters including increased corneal hysteresis and corneal 

resistance factor (Goldich, et al., 2009; Hager, et al., 2009). 

Corneal nerve structure is altered by diabetes (He & Bazan, 2012; Mocan et 

al., 2006) and may also lead to diabetic keratopathy which is difficult to 

manage clinically (Bikbova et al., 2012). These patients have epithelial 

basement membrane and integrin alterations and impairment of epithelial 

wound healing (Chen et al., 2009; Ljubimov et al., 1998). Due to the 

structural and functional abnormalities in the diabetic cornea, these patients 

are theoretically at a higher risk for development of more complications such 

as recurrent corneal erosions, superficial punctuate keratitis, delayed wound 

healing and re-epithelialization, decreased sensitivity and susceptibility to 

injury and ulceration (Bikbova, et al., 2012; Lutty, 2013; Wiemer, et al., 2007). 

2.3.4 Corneal confocal microscopy  

In vivo corneal confocal microscopy (CCM) is a quick and non-invasive 

technique which enables reiterative microstructural imaging and evaluation of 

the human cornea at high resolution in health and disease. Until recently it 

was largely used as a tool for research laboratories, but now is considered as 

a powerful diagnostic tool for a variety of ocular and neurological conditions.   

The principle of CCM (Figure  2-5) is that a beam of light (e.g. Laser) passes 

through a light source and focused by an objective lens into a small volume 

of a tissue (e.g. cornea) (Guthoff et al., 2009). The objective lens collects a 

mixture of emitted as well as reflected light from the illuminated point and 

projects this mixture to a conjugate spot in an “image” plane where the 

pinhole aperture is positioned. Light mixture is separated by a beam splitter 

and then reflected into the detection apparatus. The pinhole aperture blocks 

light from out-of-focus areas of the specimen and only the light from the focal 

plane passes through the pinhole to the detector where the light signal is 

transformed to electrical signal. Obstruction of the light that is not coming 

from the focal point  results in sharper images (Guthoff, et al., 2009). The 

resultant image is an image with very high resolution but very narrow field of 

view. The small field of view in confocal microscopy imaging is overcome by 
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scanning multiple points or slits to create the image (Inoué, 2006; Jalbert et 

al., 2003). 

 

Figure  2-5 Schematic principle of the corneal confocal microscopy. Figure 

reprinted with permission from Copyright Clearance Center. Guthoff, R.F. et 

al., In vivo confocal microscopy, an inner vision of the cornea - a major 

review. Clinical and Experimental Ophthalmology, 2009. 37(1):100-117. 

There are currently two CCM instruments on the market; the Nidek 

ConfoScan 4 which is a white-light slit scanning (SSCM) instrument, and the 

Heidelberg Retina Tomograph with Rostock Corneal Module which is a laser 

scanning (LSCM) instrument. The LSCM became available in 2004 and is 

able to produce images with higher contrast from different layers of the 

cornea, in particular the SNP. 

2.3.4.1 CCM and assessment of cornea in ocular conditions and diseases 

As a transparent and anteriorly located tissue of the eye, the cornea has 

been studied extensively at cellular level in normal status as well as in 

several ocular diseases using in vivo CCM. Rapid and non-invasive image 

acquisition from different corneal layers and structures helps both clinicians 

and researchers to extract important information in respect to changes 

caused by various ocular conditions and diseases. This technique has been 

used both qualitatively and quantitatively to characterize conditions such as 
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dry eye, ocular allergies and glaucoma (Benítez-del-Castillo et al., 2007; 

Labbé et al., 2012; Villani et al., 2013b; Zhang et al., 2011), corneal ectasia 

and dystrophies  (Efron & Hollingsworth, 2008; Patel et al., 2009a), infectious 

keratitis and corneal ulcers (Hamrah et al., 2012; Labbé et al., 2009), the 

effect of contact lens wear (Zhivov et al., 2007), orthokeratology lens wear 

(Lum et al., 2012) and corneal cross-linking (Kaya et al., 2011), and the 

assessment of nerve regeneration after penetrating keratoplasty and different 

forms of corneal refractive surgery (Darwish et al., 2007a; Darwish et al., 

2007b; Erie et al., 2005b).  

2.3.4.2 Assessment of subbasal nerve plexus in healthy people using CCM 

and the effect of age 

Using electron microscopy, Muller et al. performed a unique qualitative 

morphological analysis of corneal nerve architecture and concluded that 

human corneal nerves degenerate within 13.5 h after death, which results in 

a number of difficulties for accurate structural analysis of human corneal 

nerves (Müller, et al., 1997). In vivo CCM has addressed the problem of 

disappearing subbasal nerve plexus post-mortem. This rich nerve plexus has 

been studied extensively over the past decade. CCM observations are in 

agreement with histological studies (Oliveira-Soto & Efron, 2001); nerve 

fibres perforate Bowman’s layer and eventually form a dense neural plexus 

just beneath the basal epithelial cell layer and appear as bright, well defined 

linear structures connected with anastomoses (Figure  2-6A) and organized in 

a vortex pattern (Figure  2-6B) in the inferior nasal quadrant of the cornea 

(Guthoff, et al., 2009; Patel & McGhee, 2005). 

Several corneal nerve parameters have been used by researchers such as 

nerve fibre length, density, branching and tortousity (Grupcheva et al., 2002; 

Malik, et al., 2003; Oliveira-Soto & Efron, 2001; Patel & McGhee, 2005; 

Rosenberg, et al., 2000). Although there is no universally accepted 

consensus regarding the definition of corneal nerve parameters, the three 

main SNP parameters studied by CCM include corneal nerve fibre density 

(CNFD; the total number of major nerves per mm2), branch density (CNBD; 

the number of branches emanating from major nerves per mm2) and fibre 
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length (CNFL; total length of all nerves and branches in units of mm/mm2) 

(Malik, et al., 2003; Papanas & Ziegler, 2013). However, CNFL appears to be 

the most standardized, generally accepted and frequently reported 

morphometric parameter of the SNP. Findings of several studies for reported 

SNP parameters from the centre of cornea in healthy corneas are presented 

in Table  2-1. 

 

Figure  2-6 Laser-scanning confocal microscopy images of subbasal nerve 

plexus from centre (A) and whorl pattern (B). Each image is 400 x 400 µm. 

As shown in Table  2-1, the reported SNP parameters differ significantly 

among studies. For example, CNFL in healthy corneas have been reported to 

range from 0.6 to 13.5 mm/mm2 for SSCM and from 10.1 to 27.9 mm/mm2 

with LSCM. The disparity is likely to be related to differences in methodology 

such as number and quality of selected images, study participants or 

quantification technique. Another important difference is in the definition of 

the SNP parameters. For instance, some investigators have only quantified 

nerve branches longer than 50 mm when measuring the total length of 

nerves.The differences between SNP parameters reported in studies using 

SSCM and LSCM modalities might be because of contrast, brightness, depth 

of field and instrument sensitivity for detecting subbasal nerve plexus. Whilst 

the images acquired using LSCM have a relatively uniform contrast and 

brightness, images captured using SSCM are brightest along vertical strip 

and become darker laterally, which may potentially affect the visibility of 

nerve fibres at the edge of the image (Patel & McGhee, 2005).  
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Table  2-1 Quantification of subbasal nerve parameters in healthy individuals. Values are presented as mean ± SD, unless 

otherwise stated. 

  Author (Year) N Age (year) Type of 

CCM 

Number of 

images 

Quantification 

technique 

CNFD 

fibres/mm2 

CNBD 

branches/mm2 

CNFL 

mm/mm2 

Grupcheva et al. (2002) 25 

25 

25 ± 5 

70 ± 5 

SSCM 1-3 Automated N/A N/A 632.3 ± 287.6* 

582.4 ± 327.1* 

Malik et al. (2003) 18 58 ± 12 SSCM 3-5 Manual 44.5 ± 14.1 78.9 ± 30.4 13.5 ± 0.3 

Benitez-del-Castillo et al. 

(2007) 

10 

10 

30 ± 6 

65 ± 3 

SSCM Various Manual N/A 61.9 ± 10.9 

43.0 ± 12.1 

10.6 ± 1.4 

8.3 ± 1.2 

Niederer et al. (2007) 85 38 ± 16 LSCM 3 Manual N/A N/A 20.3 ± 6.5 

Quattrini et al. (2007) 15 55 ± 5 SSCM 3-5 Manual 43.2 ± 5.1 27.4 ± 3.3 6.1 ± 1.2 

Erie et al. (2008) 18 38 ± 10 SSCM 2-4 Semi-automated N/A N/A 10.7 ± 5.6 

Niederer et al. (2008) 52 26 ± 7 LSCM 3 Manual N/A N/A 22.4 ± 6.0 

Patel et al. (2009) 31 35 ± 12 LSCM 2 Manual N/A N/A 25.9 ± 7.0 

Patel et al. (2009b) 20 

20 

20 

26 ± 3 

44 ± 5 

61 ± 7 

LSCM 2 Manual N/A N/A 10.6 ± 6.8 

10.1 ± 6.8 

10.6 ± 6.6 

Tavakoli et al. (2010b) 17 55 ± 5 SSCM 3-5 Manual 45.6 ± 4.5 25.4 ± 3.0 11.2 ± 0.9 

Tavakoli et al. (2011b) 18 57 ± 3 SSCM 3-5 Manual 46.0 ± 3.8 35.6 ± 6.7 13.5 ± 0.8 
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  Author (Year) N Age (year) Type of 

CCM 

Number of 

images 

Quantification 

technique 

CNFD 

fibres/mm2 

CNBD 

branches/mm2 

CNFL 

mm/mm2 

Hertz et al. (2011) 20 41 ± 17 LSCM 1 Manual 31.9 ± 9.4 37.2 ± 17.7 16.1 ± 4.1 

Wu et al. (2012) 64 39 ± 18 LSCM 1 Manual 45.0 ± 12.0 37.0 ± 15.0 18.0 ± 4.0 

Hume et al. (2012) 23 40 ± 15 LSCM 6 Manual 30.9 ± 5.8 75.3 ± 19.4 19.9 ± 3.5 

Zhivov et al. (2013) 20 66 ± 13 LSCM 1 Manual N/A 141.9 ± 85.7 20.0 ± 6.7 

Tavakoli et al. (2013) 10 47 ± 3 LSCM 5 Manual 35.8 ± 1.5 100.9 ± 13.1 27.9 ± 1.3 

Petropoulos. (2013b) 19 23± 1 LSCM 5 Manual 38.3 ± 3.9 58.1 ± 23.0 27.6 ± 4.0 

Sivaskandarajah et al. 

(2013) 

64 38 ± 16 LSCM 2 Manual 45.3 ± 12.0 39.7 ± 16.9 18.8 ± 4.5 

Parissi et al. (2013) 106 50 (15-88)† LSCM 4 Automated N/A N/A 18.6 ± 4.8 

Pritchard et al. (2014) 154 46 ± 15 LSCM 3-8 Manual N/A 83.5 ± 45.8 23.2 ± 6.3 

Petropoulos et al. (2014) 55 52 ± 11 LSCM 6 Automated 30.0 ± 6.9 50.4 ± 24.7 21.2 ± 3.5 

CCM, corneal confocal microscopy; SSCM, Slit-scanning confocal microscope; LSCM, Laser-scanning confocal microscope; CNFD, corneal nerve fibre 
density; CNBD, corneal nerve branch density; CNFL, corneal nerve fibre length; N/A, not available. 
 *µm/mm2, † mean (range) 
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The effect of age on the SNP structure: In the current literature, there is no 

good agreement among previous studies concerning the age-dependent 

alteration of subbasal nerve plexus using ex vivo and in vivo techniques. 

While He et al. (2010) in an ex vivo study of 22 donor corneas aged from 19 

to 80 years reported that subbasal nerve fibre density reduced with age, 

Marfurt et al. (2010) using an immunohistochemical staining technique found 

no significant correlation between CNFL and age in corneas of six donors 

aged 19 to 78 years.  

Such a disagreement exists among studies using in vivo CCM as well. 

Grupcheva et al. (Table  2-1) found a significant difference in CNFL between 

the two age groups of healthy corneas (Grupcheva, et al., 2002), whereas a 

study by Erie et al. found no correlation between age and nerve fibre length 

in 65 individuals (aged 15-79 yeas) with healthy cornea (r = 0.21, P = 0.09) 

(Erie et al., 2005a). In a subsequent study, Niederer et al. (2007) reported a 

0.9% per year reduction in subbasal nerve fibre density in their participants 

aged 18-87. In another CCM study of 60 healthy human participants, the 

authors reported no significant difference in mean total nerve density 

between their three age groups (group 1: aged < 35 years, group 2: aged 

35–50 years, and group 3: aged > 50 years) (Patel, et al., 2009b). However, 

in a more recent study of 106 healthy participants, Parissi et al. (2013) 

observed a mean decline in CNFL of 0.25% to 0.30% per year.  

Studies outlined above clearly illustrate the inconsistency in the literature in 

regard to the relationship between age and the SNP morphometric change. 

The design employed in previous studies reporting the effect of age on the 

SNP morphology has been cross-sectional, which does not necessarily mean 

the real age effect, because measurements are taken on subjects with 

different ages and the differences are attributed to the effect of age. The 

discrepancies between studies reporting the possible relationship between 

age and SNP structural parameters warrants conducting a longitudinal study 

in a healthy population by examining the same participants over a period of 

time in order to examine the real effect of age. 
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2.3.5 Utility of corneal nerve morphology for DPN assessment 

In the process of DPN development small nerve fibres, which constitute 70-

90% of peripheral nerves, are the first to be damaged (Malik, et al., 2011). 

Cornea which is the most innervated tissue in the body and mainly consists 

of sensory small nerve fibres (unmyelinated C fibres and Aδ fibres) (Al-

Aqaba, et al., 2010; Müller, et al., 2003) is not an exception. Studies have 

also shown that the mechanisms leading to nerve degeneration at cornea 

such as polyol pathway and formation of advanced glycation end-products 

(Jacot et al., 1998; Kaji et al., 2000; Stitt, 2001) are similar to those involved 

in DPN. 

CCM as a technique for quantitative assessment of the SNP morphology has 

developed during the past decade and has led to an improved understanding 

of nerve damage in diabetes. Using CCM, there is a large number of 

published studies demonstrating deficits of the SNP structural parameters in 

presence of diabetes (De Cilla et al., 2009; Messmer et al., 2010; Midena, et 

al., 2006; Mocan, et al., 2006; Nitoda et al., 2012; Zhivov, et al., 2013; Ziegler 

et al., 2014b). 

The first study of CCM in DPN was reported by Rosenberg et al. (2000). 

These authors described a significant nerve fibre bundle decrease in patients 

with DPN compared to those without DPN (P < 0.05). Since then, CCM has 

increasingly been employed to examine the morphology of SNP in relation to 

DPN. The findings of various cross-sectional studies for pathology of the 

three most important and frequently reported SNP parameters in respect to 

DPN are summarized in Table  2-2. As can be seen from Table  2-2, the SNP 

damage is not only more pronounced in individuals with DPN, it is also 

associated with DPN severity. The SNP parameters also have shown 

moderate to high sensitivity and specificity for diagnosis of DPN. 

The usefulness of CCM in DPN assessment is not limited to its diagnostic 

and stratification ability. It has been shown that this instrument is able to 

detect early corneal nerve repair after simultaneous pancreas and kidney 

transplantation in type 1 diabetes. While there was no significant 
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improvement in neurologic deficit, QST, electrophysiology, IENFD and 

corneal sensitivity, significant improvements occurred in CNFD (P < 0.05), 

CNBD (P < 0.01), and CNFL (P < 0.05) 12 months after successful 

transplantation (Tavakoli, et al., 2013). Another study by Tavakoli et al. 

(2011b) revealed that improvement in risk factors for DPN can result in 

morphological repair of the corneal nerves. In this observational study, after 

24 months follow up, CNFD and CNBD increased significantly with 

improvement in glycaemic control and cardiovascular risk factors associated 

with diabetic neuropathy. They also reported that the improvement in CNFD 

correlated significantly with the improvement in HbA1c (r = -0.51, P = 0.008). 
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Table  2-2 Cross-sectional studies that investigated the diagnostic ability of the corneal subbasal nerve parameters in respect to 

diabetic peripheral neuropathy (DPN) 

Author (year) Type of 
CCM 

N (DM/C) Main Outcomes 

Rosenberg et al. 
(2000) 

TSCM 44 (23/9) A significant decrease in the nerve fibre bundles in patients with severe DPN vs. without DPN 
A significant decrease in the nerve fibre bundles in patients with mild to moderate neuropathy 
vs. without DPN 

Malik et al. (2003) SSCM 36 (18/18) CNFD and CNFL were significantly reduced in moderate and severe neuropathy groups vs. 
controls 
CNBD was significantly reduced in mild, moderate and severe neuropathy groups vs. controls 
CNFD, CNBD and CNFL showed a tendency for greater reduction with increasing DPN severity 

Midena et al. 
(2006) 

SSCM 69 (42/27) A significant decrease in the number of nerve fibres and branching pattern in diabetic patients 
vs. controls with a statistical trend suggesting progression of the corneal neuropathy with DPN 

Quattrini et al. 
(2007)  

SSCM 69 (54/15) Significantly lower CNFD in mild, moderate and severe DPN vs. controls 
Significantly lower CNBD in mild, moderate and severe DPN as well as in diabetic participants 
without neuropathy vs. controls 
Both CNFD and CNBD showed significant reduction with increasing DPN severity 
Significant correlations between CNFD and IENFD (r = 0.39), between CNBD and IENBD (r = 
0.41) and between CNFD and CST (r = - 0.40) 

Tavakoli et al. 
(2010b) 

SSCM 118 (101/17) CNFD, CNBD and CNFL decreased significantly with increasing neuropathy severity 
CNFD, CNBD and CNFL found to be correlated with NDS (r; - 0.48, -0.51 and -0.58, 
respectively) 
CNFD of < 27.8/mm2 showed sensitivity of 82% and specificity of 52% for diagnosis of DPN 

Tavakoli et al. 
(2011a) 

SSCM 154 (128/26) CNFD, CNBD and CNFL significantly decreased with increasing severity of DPN 
CNFD, CNBD and CNFL showed significant correlations with NDS (r; -0.34, -0.31 and -0.43, 
respectively) 

Nitoda et al. (2012) LSCM 43 (25/18) Moderate correlations between CNFD and CNFL with clinical and neurological tests of DPN (r, 
from -0.36 to -0.58) 

Hertz et al. (2011) LSCM 46 (26/20) CNFD, CNBD and CNFL showed significant incremental decrease with increasing DPN severity 
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Author (year) Type of 
CCM 

N (DM/C) Main Outcomes 

Edwards et al. 
(2012b)  

LSCM 292 (231/61) CNBD and CNFL were significantly reduced in diabetic participants with DPN vs. controls 
CNFL was significantly reduced in diabetic participants without DPN vs. controls 
Modest correlations of CNBD and CNFL with NDS, cold and warm sensation thresholds, 
vibration perception threshold and peroneal conduction velocity (r = 0.15 to 0.25) 
CNFL was correlated to HbA1c (r = -0.24) and duration of diabetes (r = -0.20) 

Ahmed et al. 
(2012)  

LSCM 153 (89/64) CNFD, CNBD and CNFL were significantly lower across controls, diabetic participants without 
and with neuropathy 
CNFL (with AUC of 0.88) best discriminated participants with DPN from controls compared with 
CNFD and CNBD 

Zhivov et al. 
(2013) 

LSCM 38 (18*/20) Significantly lower CNFD, CNBD and CNFL in DPN group vs. controls 

Sivaskandarajah et 
al. (2013) 

LSCM 160 (96/64) Significantly lower CNFD, CNBD and CNFL in DPN group vs. controls and diabetic participants 
without DPN 
Modest correlation between CNFD, CNBD and CNFL and cold detection threshold (r; 0.32, 0.37 
and 0.37, respectively) 

Pritchard et al. 
(2014) 

LSCM 408 
(242/154) 

Significantly lower CNFL in diabetic participants with neuropathy vs. without neuropathy group 
and controls 
Significantly lower CNFL in without neuropathy group vs. controls 

Petropoulos et al. 
(2014) 

LSCM 241 (186/55) A significant reduction in manual and automated CNFD, CNBD and CNFL with increasing 
neuropathic severity 
Manually quantified CNFD and automated quantification of CNFL yielded highest AUC and 
sensitivity/specificity to rule out DPN 

CCM, corneal confocal microscopy; DM/C, diabetes/controls; TSCM, tandem-scanning confocal microscope; SSCM, Slit-scanning confocal 
microscope; LSCM, Laser-scanning confocal microscope; CNFD, corneal nerve fibre density; CNBD, corneal nerve branch density; CNFL, 
corneal nerve fibre length; IENFD, intra-epidermal nerve fibre density; CST, cold sensation threshold; NDS, neuropathy disability score; 
AUC; area under curve; DPN, diabetic peripheral neuropathy. 
*diabetic participants with DPN  



 

Literature Review 35 

IENF assessment using skin biopsy is an invasive and objective technique 

for evaluation of small nerve fibre loss and likely presents the gold-standard 

method (England et al., 2009). As an alternative, small nerves in the 

subbasal nerve plexus of the cornea have been proposed to be examined 

directly and more importantly non-invasively by CCM. Quattrini et al. 

quantified small nerve fibre pathological changes using the technique of IENF 

(skin punch biopsy) and CCM in 54 diabetic patients stratified for neuropathy 

and found that whereas both techniques accurately reflect the severity of 

neuropathy, CCM has a superior ability to detect earlier stages of nerve 

pathology compared with IENF (Quattrini, et al., 2007). 

While alteration to several SNP parameters have been reported, compared 

with other parameters, CNFL has been proposed to be the optimal and most 

reliable parameter to detect nerve injury in diabetes, as demonstrated by 

advantages in repeatability, reproducibility and concurrent validity (Ahmed, et 

al., 2012; Efron et al., 2010; Hertz, et al., 2011). Furthermore, CNFL appears 

to be a sufficiently sensitive measure of nerve pathology and reassuringly, 

age and the use of contact lenses do not confound assessment of CNFL for 

the screening of neuropathies such as DPN (Oliveira-Soto & Efron, 2003; 

Wu, et al., 2012). In a more recent study by Petropoulos et al. (2013b), 

CNFD and CNFL were found to be the most repeatable parameters, where 

CNFD was superior to CNFL for intra- and inter-observer repeatability 

measurements. This finding is in contrast to the higher reliability of CNFL as 

reported by Hertz et al. (2011). 

In vivo wide-field assessment of the SNP has revealed that the density and 

distribution of SNP nerves is different in the central and peripheral regions of 

human cornea either in healthy state (Patel & McGhee, 2005) or in diabetic 

patients with and without neuropathy (Edwards et al., 2012a). This is more 

evident when central cornea is compared to the whorl area (Figure  2-6). 

Patel and McGhee (2005) reported significantly higher CNFL in the whorl 

region (25.3 ± 0.6 mm/mm2) compared with the central cornea (21.7 ± 1.4 

mm/mm2). Qualitative assessment of two generated maps has also provided 

some evidence of more pronounced nerve damage in the whorl region of a 
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diabetic patient with neuropathy compared to a diabetic patient without 

neuropathy (Edwards, et al., 2012a).  

Although employing this novel technique of SNP assessment would offer 

valuable insights into identifying alterations of the SNP microstructures 

overtime, the image capturing and montaging are time consuming, labour 

and resource intensive. Because of the convenience and ease of imaging 

from the central cornea, which significantly reduces the chair time – an 

advantage for the current study with large number of participants – this 

region has been selected to be assessed in in the majority of previous 

studies.  

The association between established measures of DPN and corneal nerve 

parameters has also been explored. Tavakoli et al. (2010b) found moderate 

correlations between NDS and the three main SNP parameters (CNFD r = -

0.48, CNBD r = -0.51, and CNFL r = -0.58). Very modest correlations of 

CNBD and CNFL with NDS, cold and warm sensation thresholds, vibration 

perception threshold and peroneal conduction velocity (r = 0.15 to 0.25) were 

also reported in a subsequent study of 231 diabetic individuals with 

predominantly mild or no neuropathy (Edwards, et al., 2012b). Modest 

associations between CNFD, CNBD and CNFL and cold detection threshold 

(r; 0.32, 0.37 and 0.37, respectively) were also reported in a most recent 

study of corneal nerves and conventional small nerve fibre tests in type 1 

diabetic participants (Sivaskandarajah, et al., 2013).  

The review presented in previous sections clearly demonstrates the clinical 

relevance of corneal innervation to development of peripheral neuropathy in 

diabetes. The corneal sensory nerves, which consist of small nerve fibres of 

Aδ and C types, originate from ophthalmic division of the trigeminal nerve. 

These two types of nerve fibres are the earliest that undergo damage in 

DPN. Additionally, animal studies have shown the impairment of corneal 

nerve structure and function in diabetic rats (Davidson et al., 2014; Jacot, et 

al., 1998). Subclinical abnormalities of trigeminal and facial nerve 

involvement in diabetes (Urban et al., 1998) and corneal neuropathic ulcer 
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associated with diabetes (Schultz et al., 1983) are further evidences of 

involvement of the corneal nerve tissue in diabetes.   

As outlined above, given the potential role of corneal nerve structure in 

assessment of DPN, to our knowledge, no study has been conducted 

concerning the natural course of the SNP structure over time in diabetic 

patients. Additionally, despite the fact that several cross-sectional studies 

have shown the existence of relationship between the SNP parameters and 

conventional examination methods of neuropathy, it is not clear how the 

longitudinal changes in the SNP parameters relate to the established 

measures of DPN in diabetic individuals over time. This is important because 

if the SNP morphology is to be considered as an adjunct to those of 

traditional measures, there should be comparable changes to some 

established measures. Otherwise the possibility remains that these measures 

might not be related and therefore can affect the usefulness of the SNP 

morphology as potential measure of DPN.  

2.4 Summary of knowledge gaps and objectives of this research 
program 

The feasibility of assessing SNP morphology via CCM and the promising role 

of this modality as an indicator of corneal nerve damage or repair and the 

potential for assessment of peripheral neuropathies, in particular DPN, has 

led to an increase in the scope of this approach.  

The large and growing body of literature showing a relationship between 

quantitative analysis of SNP parameters and various ocular and systemic 

pathologic conditions highlights the importance of understanding the natural 

morphometric characteristics of the SNP over time. Besides, the uncertainty 

and true extent of age effect on the SNP morphology required a longitudinal 

study examining the same participants over a period of time which enables 

us to explore the true age effect in a healthy population. Therefore, the first 

main question in this study sought to determine the age-dependent 

alterations and longitudinal course of SNP structure in healthy individuals. 
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As reviewed above, several studies have attributed the pronounced corneal 

nerve pathology in diabetes to diabetic peripheral neuropathy. With reference 

to the lack of previous investigation concerning the natural history of corneal 

nerves in diabetes, the second main question explored the natural history of 

the SNP parameters in diabetes individuals without and with neuropathy and 

attempted to fill this research gap. Furthermore, the longitudinal relationship 

between changes in corneal nerve structure and established measures of 

neuropathy in individuals with diabetes was addressed. 

Application of CCM in studies with large numbers of participants where 

multiple images from each participant need to be analysed as well as in 

longitudinal studies such as the present study with repeated measurements 

over time, necessitated employment of a fully automated analytical system to 

overcome shortcomings which are associated with manual and semi-

automated techniques. Thus, the third research question dealt with the 

association, agreement and detection capability of manual, semi-automated 

and fully automated techniques of SNP morphometric quantification. 

Since the main theme of this project was the natural history of SNP structure 

in participants with diabetes and healthy controls with annual repeated 

measurement of the SNP parameter, the fourth research question sought to 

examine the intra- and interobserver repeatability of these parameters in 

control and diabetes participants. Hence, prior to undertaking the 

investigation of the above mentioned first and second research questions, 

two studies were conducted addressing the third and fourth research 

questions which were related to the methodological development. 

Consequently, the orientation of the rest of this thesis will be as following: 

• Chapter 3, where the association, agreement and detection capability 

of the three segmentation techniques of manual, semi-automated and 

fully-automated has been examined. 

• Chapter 4, where the results of an intra- and interobserver study of the 

SNP parameters were presented. 
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• Chapter 5, the general methodology and the baseline characteristics 

of the participants included in this longitudinal study have been 

delineated. 

• Chapter 6, the age-dependent alterations and longitudinal course of 

SNP structure in healthy individuals over three years have been 

addressed. 

• Chapter 7, natural history of SNP morphology in a cohort of diabetic 

individuals without and with neuropathy has been investigated. 

• Chapter 8, a summary of the finding and directions for possible future 

research have been presented. 
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CHAPTER 3. COMPARISON OF MANUAL, SEMI-AUTOMATED AND 
FULLY-AUTOMATED QUANTIFICATION OF THE SUBBASAL NERVE 
PLEXUS 

3.1 Foreword 

In line with the main aim of this PhD project to find out the natural course of 

corneal nerve morphology in a cohort of type 1 diabetic individuals without 

and with neuropathy and control participants, the paper presented in this 

chapter describes an important element of research methodology – 

comparison of a newly developed segmentation algorithm with semi-

automated and manual methods. A fully-automated image analysis system 

which allows objective subbasal nerve quantification is essential for 

eliminating disadvantages that are associated with semi-automated and 

manual approaches. If this technique is to be employed, it must be able to 

detect the differences between groups and also show high association with 

those of manual and semi-automated methods. Once the diagnostic ability 

and the association of fully-automated segmentation are established, further 

evaluations such as intra- and interobserver repeatability study of the nerve 

parameters (next chapter) could be tracked. These are also of high 

importance for this longitudinal project and will be explained in the next 

chapter. The paper that is presented in this chapter has been published in 

the journal Cornea: 

Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA, Efron N. Fully 

automated, semiautomated, and manual morphometric analysis of corneal 

subbasal nerve plexus in individuals with and without diabetes. Cornea 2014; 

33:696-702. 

3.2 Abstract 

Purpose: To determine the association, agreement and detection capability 

of a fully-automated, semi-automated and manual method of corneal nerve 

fibre length (CNFL) quantification of the human corneal sub-basal nerve 

plexus (SNP).  
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Methods: Thirty-three participants with diabetes and 17 healthy controls 

underwent laser scanning corneal confocal microscopy. Eight central images 

of the SNP were selected for each participant and analysed using a manual 

(CCMetrics), semi-automated (NeuronJ) and fully-automated (ACCMetrics) 

software to quantify CNFL. The repeated-measures ANOVA analysis was 

used to examine the differences between the three methods. To explore the 

association and agreement between methods, the correlation coefficients, 

intraclass correlation coefficient (ICC) and Bland-Altman tests were applied.   

Results: For the entire cohort, mean CNFL values quantified by CCMetrics, 

NeuronJ and ACCMetrics were 17.4 ± 4.3, 16.0 ± 3.9 and 16.5 ± 3.6 

mm/mm2, respectively (P < 0.01). CNFL quantified using CCMetrics was 

significantly higher than those obtained by NeuronJ and ACCMetrics (P < 

0.05). The three methods were highly correlated (correlation coefficients from 

0.87 to 0.98, P < 0.01). The ICC values were 0.87 for ACCMetrics vs. 

NeuronJ and 0.86 for ACCMetrics vs. CCMetrics. Bland-Altman plots of the 

CNFL values showed good agreement between the manual, semi-automated 

and fully-automated analysis. A small underestimation of CNFL was 

observed using ACCMetrics with increasing amount of nerve tissue. All three 

methods were able to detect CNFL depletion in diabetic participants (P < 

0.05) and in those with peripheral neuropathy as defined by Toronto criteria 

compared to healthy controls (P < 0.05).  

Conclusion: Automated quantification of CNFL provides comparable 

neuropathy detection ability to manual and semi-automated methods. 

Because of its speed, objectivity and consistency, fully-automated analysis of 

CNFL might be an advantage in studies of diabetic neuropathy.  

3.3 Introduction 

The human cornea is one of the most richly innervated surface tissues in the 

body (Müller, et al., 2003). The corneal sub-basal nerve plexus (SNP) is 

located between Bowman’s layer and the corneal basal epithelium. The SNP 

originates from sub-Bowman’s nerves penetrating Bowman’s layer 

perpendicularly, branching into one or more subbasal nerves which run 
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parallel to the ocular surface (Al-Aqaba, et al., 2010; Marfurt, et al., 2010). At 

this interface, corneal nerves anastomose extensively with each other to form 

a dense and homogenous nerve plexus and eventually terminate within the 

superficial epithelial layers of the cornea (Marfurt, et al., 2010). 

The SNP has been studied extensively in vivo using corneal confocal 

microscopy (CCM). Quantification of this nerve plexus appears to be a 

promising non-invasive and sensitive marker for detection and stratification of 

diabetic peripheral neuropathy (DPN) (Edwards, et al., 2012b; Malik, et al., 

2003; Quattrini, et al., 2007; Tavakoli, et al., 2010b), a prevalent and 

debilitating complication of diabetes (Callaghan et al., 2012a). As such, valid 

and reliable quantification of the structural status of the SNP is crucial to 

optimize detection, monitor progression and assess possible intervention and 

treatment strategies in clinical disorders affecting peripheral nerves, 

especially DPN. 

Numerous morphologic parameters of the SNP have been reported, such as 

nerve fibre beading, length, branching and tortuosity (Grupcheva, et al., 

2002; Malik, et al., 2003; Oliveira-Soto & Efron, 2001). Compared with other 

parameters, corneal nerve fibre length (CNFL) has been suggested to be the 

optimal and most reliable parameter to detect nerve injury in diabetes, as 

demonstrated by advantages in repeatability, reproducibility and concurrent 

validity (Ahmed, et al., 2012; Efron, et al., 2010; Hertz, et al., 2011). CNFL 

appears to be a sufficiently sensitive measure of nerve impairment and 

reassuringly, age and the use of contact lenses do not confound assessment 

of CNFL for the screening of neuropathies such as DPN (Wu, et al., 2012).  

Currently, quantification of SNP parameters from images obtained via in vivo 

CCM is mostly based on manual and semi-automated techniques (Ahmed, et 

al., 2012; Hertz, et al., 2011; Labbé, et al., 2012; Petropoulos, et al., 2013b; 

Wu, et al., 2012). These procedures include manual tracing of nerves and 

then calculation of the nerve fibre parameters with a segmentation algorithm 

method written in Matlab (Dabbah et al., 2009) or Java (Meijering, 2010), 

which are tedious, time-consuming and subjective, require experience and 

are prone to variability between and within observers (Dabbah et al., 2011; 
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Efron, et al., 2010; Petropoulos, et al., 2013b; Scarpa et al., 2008). Fully-

automated analytical techniques have been developed to obviate the 

limitations of manual analysis and to extend the diagnostic value of this 

technique to clinical practice (Dabbah, et al., 2011; Ferreira et al., 2012; 

Holmes et al., 2010; Parissi, et al., 2013; Scarpa, et al., 2008). Furthermore, 

application of CCM in large cohort studies where multiple images from each 

participant need to be analysed - perhaps by team of assessors and 

repeated over time in longitudinal investigations - necessitates development 

of a fully-automated system to overcome these limitations. 

The purpose of this study was to compare two methods of manual and semi-

automated analysis – CCMetrics (Dabbah, et al., 2009) and NeuronJ 

(Meijering, 2010) - with an automated analysis system (ACCMetrics) 

(Dabbah, et al., 2011), for analysing SNP images obtained by in vivo CCM in 

healthy controls and individuals with diabetes. The capability of these 

techniques to detect reduced CNFL in individuals with DPN was also 

investigated. 

3.4 Methods 
3.4.1 Study participants 

Data were accessed from a random subset of 50 participants from a total 

cohort of 314 participants at the Brisbane site of the ongoing LANDMark 

(Longitudinal Assessment of Neuropathy in Diabetes using novel ophthalmic 

Markers) study (Pritchard, et al., 2014). Specifically, in this retrospective, 

cross-sectional study data were acquired from the “year three” examinations 

of these participants, and included 17 healthy controls and 33 individuals with 

diabetes who were stratified into those with (N = 13) and without (N = 20) 

neuropathy. The first 20 and 40 participants’ IDs in the LANDMark database 

were initially selected for controls and diabetic groups, respectively. Then 

participants who did not have the “year three” examination were excluded. 

Exclusion criteria were: a history of ocular surgery, trauma or disease; or 

systemic disease (apart from diabetes), which might have affected the 

cornea. Four participants (2 controls and 2 with diabetes), who were current 
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soft contact lens wearers, were asked to refrain from lens wear on the day of 

their examination. Diabetes was the only known cause of the presence of 

peripheral neuropathy.  

Ethical approval was obtained from the Princess Alexandra and Mater 

Hospital and Queensland University of Technology research ethics 

committees. The study was conducted in accordance with the principles of 

the Declaration of Helsinki. 

3.4.2 Corneal confocal microscopy 

Laser-scanning CCM was conducted using the Heidelberg Retinal 

Tomograph (HRT3) with Rostock Corneal Module (Heidelberg Engineering 

GmbH, Heidelberg, Germany). This device generates 2-dimensional images, 

consisting of 384 X 384 pixels, covering an area of 400 X 400 µm when used 

with a X63 objective lens. The cornea of the dominant-hand side of the 

participant was anesthetized with 1 drop of 0.4% benoxinate hydrochloride 

(oxybuprocaine hydrochloride; Bausch & Lomb, NSW, Australia). Participants 

were instructed to fixate on a near target with the contralateral eye. The CCM 

was advanced forward, and gentle contact was established between the front 

of the applanation cap and the cornea; this procedure was facilitated by a 

side-mounted CCD camera that allowed the examiner to ensure that the 

central region of cornea was being examined. Using the manual focusing and 

section mode, multiple images of the SNP were captured from the central 

cornea of each participant. All captured images were saved digitally, and 

then the first 8 images of the SNP of each participant displaying in-focus 

nerves and not overlapping more than 20% among selected images 

(Vagenas et al., 2012) were chosen for analysis. 

3.4.3 Neuropathy assessment 

All participants underwent detailed assessment of neuropathy including nerve 

electrophysiology (peroneal motor nerve amplitude and conduction velocity), 

neuropathy disability score (NDS) (Young, et al., 1993) and diabetic 

neuropathy symptoms score (DNSS) (Meijer, et al., 2002). The Toronto 
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criteria (Tesfaye, et al., 2010) were used to determine the presence of 

neuropathy; specifically, individuals were considered to have neuropathy if 

they had abnormal nerve conduction (compared with age-matched controls in 

the LANDMark study) and a sign (NDS score ≥ 3 of 10) or symptom (DNSS ≥ 

1 of 4) of neuropathy.  

3.4.4 Morphometric analysis of SNP images 

Eight images were analysed from each of the 50 participants using each of 

the three techniques described below (i.e. 1,200 images analysed in total) by 

one investigator (C.D), who was masked with respect to diabetes/neuropathy 

status of the participants. The average CNFL of eight images was calculated 

to determine the CNFL measure of each participant. 

CCMetrics is a custom-designed manual nerve analysis software package 

developed at the University of Manchester (Manchester, United Kingdom) 

(Dabbah, et al., 2009). All clearly visible nerves were traced with a manual 

drawing module (Figure  3-1). The software converts manual tracings of the 

SNP to measures of corneal nerve fibre length (CNFL), corneal nerve density 

and corneal nerve fibre tortuosity. However, for purpose of this study, only 

the results of CNFL, which is defined as total length of all nerve fibres in the 

CCM image (in units of mm/mm2), were considered.  

NeuronJ is an semi-automated nerve tracing software package (Meijering, 

2010) which is a plug-in module for ImageJ, a free Java-based image 

analysis software. Nerve tracing is initiated by locating the beginning of the 

nerve of interest and the tracing algorithm subsequently computes and 

shows the ‘optimal’ path (Figure  3-1). In some areas with low contrast 

nerves, the program fails to find the correct path. In such a case there is an 

option to switch to manual tracing mode; however, this option was not used 

here. CNFL was calculated by tracing all the nerve fibres and nerve branches 

in the image. This length was then divided by the area of the field-of-view 

provided by the CCM to derive the value of CNFL in units of mm/mm2. 
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ACCMetrics is a fully-automated software package (Dabbah, et al., 2011) 

also developed at the University of Manchester (Manchester, United 

Kingdom), which allows automatic nerve detection (Figure  3-2). The software 

is optimised for 384 X 384 pixels CCM images with the field of view of 400 X 

400 µm. “Multiple image analysis” mode was used to analyse the images of 

the SNP. 

 

 

Figure  3-1 Screen snapshots of manual (CCMetrics) (top) and semi-

automated (NeuronJ) (bottom) methods of corneal nerve quantification 
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Figure  3-2 Fully-automated (ACCMetrics) analysis of corneal subbasal nerve 

parameters  

Time analysis 

The average time taken per frame for manual identification and/or tracing of 

nerves and software analysis was determined with a digital timing device.  

This procedure was conducted for all participants using each technique, all 

performed by the same operator (C.D.). 

Interobserver variability of CNFL quantification 

To determine interobserver variability in quantification of CNFL, one image 

from each of 15 randomly selected participants was selected from our data 

set. Quantification of CNFL was performed on all of these images by a 

second observer using each of the three techniques described above.  
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3.4.5 Statistical analysis 

IBM SPSS (version 21.0) was used to analyse the results. All data are 

presented as the mean ± standard deviation (SD). Normality of the data was 

assessed by Shapiro-Wilk test and appropriate statistical techniques were 

employed. Differences between methods were examined by using repeated-

measures analysis of variance (ANOVA) and Bonferroni correction. The 

Pearson correlation and intraclass correlation coefficients (ICC) were applied 

to explore the relationship between the three methods of CNFL 

quantification. Correlation coefficient was used to test if the measurements 

by a pair of methods are related. ICC, which measures the average 

correlation, was used to assess reliability and consistency between two 

methods.  

Bland-Altman plots (Bland & Altman, 1986) were generated to facilitate an 

appreciation of the extent of between-method differences and the relation 

between these differences and the overall magnitude of CNFL. This 

statistical approach is a robust way for comparing two methods of clinical 

measurements and comprised of a graph of the difference between two 

methods against the average of the two methods as well as calculating 95% 

limits of agreements (Bland & Altman, 1995). We would expect 95% of 

differences between the pair of measurements to lie between upper and 

lower limits of agreement. The independent samples t-test, one-way ANOVA 

and Scheffe’s post-hoc test were also used to establish differences between 

groups. P-values of < 0.05 were considered significant for all statistical tests. 

Interobserver variability of CNFL was determined using the paired-samples t-

test and ICC.  

The sample size determination was undertaken based on previous studies in 

which similar methodology (e.g. stratification, CNFL definition and analysis) 

were used (Ahmed, et al., 2012; Edwards, et al., 2012b). The effect size was 

determined using available CNFL data in different groups. Analysis using 

G*Power 3 software (Faul et al., 2007) showed that a total of 36 participants 

(12 participants per three groups), under the assumption of a type 1 error (α 

level) of 0.05 and 90% power, were required to discriminate the difference 
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among groups. Enrolment continued, until the smallest group (diabetes with 

DPN) contained 13 subjects, resulting in a total of 50 participants. 

3.5 Results 

The clinical characteristics of the 50 participants are shown in Table  3-1. Age 

was not significantly different between diabetic individuals without DPN 

(DPN-ve), with DPN (DPN+ve) and control group (P = 0.56). The DPN-ve 

and DPN-ve groups had significantly higher HbA1c (P < 0.001) and lower total 

cholesterol (P < 0.01) compared to controls. The DPN+ve group found to 

have higher duration of diabetes compared with DPN-ve group.  

For the entire cohort, the mean CNFL quantified by CCMetrics, NeuronJ, and 

ACCMetrics were 17.4 ± 4.3 mm/mm2, 16.0 ± 3.9 mm/mm2, and 16.5 ± 3.6 

mm/mm2, respectively (repeated-measures ANOVA, P < 0.01). The CNFL 

determined using CCMetrics was found to be significantly higher than that 

determined using ACCMetrics and NeuronJ (mean differences 0.9 and 1.4 

mm/mm2, respectively, P < 0.05). Mean CNFL values did not differ between 

those obtained using ACCMetrics versus NeuronJ (mean difference 0.5 

mm/mm2, P = 0.07). 

The three methods were highly correlated (correlation coefficients 0.87–0.97, 

P < 0.01) with the strongest correlation between CCMetrics and NeuronJ (r = 

0.97, P < 0.001). The calculated ICC values were 0.87 (95% confidence 

intervals: 0.77–0.92) for ACCMetrics versus NeuronJ and 0.86 (0.77–0.92) 

for ACCMetrics versus CCMetrics. Table  3-2 summarizes the results of 

comparison between methods in the entire cohort, control, and diabetic 

groups.
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Table  3-1 Clinical demographic results in study participants. Data are mean ± SD unless otherwise indicated 

Characteristics C  

(n = 17) 

DPN-ve 

 (n = 20) 

DPN+ve 

(n = 13) 

P-value Significant Differences from  

pairwise comparisons 

Age (years) 58.8 ± 10.1 61.3 ± 11.2 62.8 ± 8.4 0.56† NS 

HbA1c (%) 5.5 ± 0.3 7.9 ± 0.9 8.0 ± 1.2 < 0.001‡ C vs. DPN-ve and DPN+ve, P < 0.001 

Duration of diabetes 

(years) 

- 18.8 ± 10.2 28.2 ± 16.9 0.004§ DPN-ve vs. DPN+ve, P = 0.004 

Total cholesterol 

(mmol/L) 

5.9 ± 1.2 4.3 ± 1.1 4.3 ± 1.2 < 0.001† C vs. DPN-ve and DPN+ve, P < 0.01 

BMI 26.7 ± 3.7 28.5 ± 5.3 31.4 ± 5.3 0.03† C vs. DPN+ve, P < 0.03 

Systolic blood pressure 

(mmHg) 

117.0 ± 16.5 123.2 ± 13.3 123.1 ± 9.7 0.33† NS 

Diastolic blood pressure 

(mmHg) 

73.7 ± 9.4 73.4 ± 7.4 70.5 ± 5.2 0.47† NS 

†One way ANOVA t-test; ‡Kruskal Wallis test; §Independent samples t-test.  

C, controls; DPN-ve, diabetic individuals without DPN; DPN+ve, diabetic individuals with DPN; NS, no significant difference 
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Table  3-2 Comparison of corneal nerve fibre length (CNFL) as obtained using ACCMetrics (CNFL-ACCMetrics), CCMetrics 
(CNFL-CCMetrics) and NeuronJ (CNFL-NeuronJ) in total cohort (N = 50), controls (N= 17) and diabetic (N = 33) 
participants. 

   CNFL-ACCMetrics CNFL-NeuronJ 

   Total Control 
group 

Diabetic group Total Control group Diabetic group 

C
N

FL
-C

C
M

et
ric

s To
ta

l 

Mean CNFL difference (mm/mm2) 0.88* - - 1.40** - - 

Pearson correlation 0.87** - - 0.97** - - 

ICC 
(95% CI) 

0.86** 
(0.77-0.92) 

- - 0.97** 
(0.94-0.98) 

- - 

C
on

tro
l 

gr
ou

p 

Mean CNFL difference (mm/mm2) - 1.84** - - 1.56** - 

Pearson correlation  - 0.79** - - 0.98** - 

ICC 
(95% CI) 

- 0.77** 
(0.47-0.91) 

- - 0.97** 
(0.92-0.99) 

- 

D
ia

be
tic

 
gr

ou
p 

Mean CNFL difference (mm/mm2) - - 0.39 - - 1.31** 

Pearson correlation - - 0.88** - - 0.96** 

ICC 
(95% CI) 

- - 0.88** 
(0.77-0.94) 

- - 0.96** 
(0.91-0.98) 

C
N

FL
-A

C
C

M
et

ric
s To

ta
l 

Mean CNFL difference (mm/mm2) - - - 0.51 - - 

Pearson correlation - - - 0.87** - - 

ICC 
(95% CI) 

- - - 0.87** 
(0.77-0.92) 

- - 

C
on

tro
l 

gr
ou

p 

Mean CNFL difference (mm/mm2) - - - - -0.28 - 

Pearson correlation - - - - 0.81** - 

ICC 
(95% CI) 

- - - - 0.80** 
(0.54-0.92) 

- 

D
ia

be
tic

  
gr

ou
p 

Mean CNFL difference (mm/mm2) - - - - - 0.92* 

Pearson correlation - - - - - 0.87** 

ICC 
(95% CI) 

- - - - - 0.87** 
(0.75-0.93) 

* P-value < 0.05; ** P-value < 0.01; ICC, intra-class correlation coefficient; CI, confidence interval. 
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Bland–Altman plots comparing the automated technique with the 

semiautomated and manual procedures are shown in Figure  3-3. For the 

comparison of ACCMetrics versus NeuronJ (Figure  3-3A), the downward 

slope of the regression line indicates that, for higher mean CNFL values, a 

lower value was assigned to CNFL as obtained using ACCMetrics (R2 = 0.01, 

P = 0.42). A similar downward trend was observed for the comparison of 

ACCMetrics versus CCMetrics (Figure  3-3B). However, only for the latter 

comparison, there was a weakly significant relationship between the 

difference in the CNFL and mean CNFL (R2 = 0.09, P = 0.03). For the 

comparison of CCMetrics and NeuronJ (Figure  3-3C), the upward slope 

indicates that, for higher mean CNFL values, a higher value was assigned to 

CNFL as obtained by CCMetrics, and there was a modest relationship 

between the difference in the CNFL and mean CNFL (R2 = 0.15, P < 0.01). 

The average time to obtain a value of CNFL per image for each technique in 

this study was 96 ± 25 seconds for CCMetrics, 64 ± 20 seconds for NeuronJ, 

and 13 ± 2 seconds for ACCMetrics (repeated-measures ANOVA, P < 

0.001). All 3 pairwise comparisons were significantly different (Bonferroni, P 

< 0.001). 

Interobserver repeatability of CNFL quantification was assessed for each of 

the three techniques. The mean difference in CNFL between the two 

observers and ICC values were as follows: NeuronJ—0.62 mm/mm2 (paired t 

test, P = 0.16) and 0.95 (P < 0.01); CCMetrics—0.75 mm/mm2 (P = 0.11) and 

0.97 (P < 0.01). CNFL values quantified by ACCMetrics were identical for 

both observers. 

Three methods revealed reduced CNFL in diabetic individuals compared with 

controls (independent t test, P < 0.05). Using the NDS, 4 diabetic participants 

had mild (NDS: 3–5), 3 had moderate (NDS: 6–8), and 1 had severe (NDS: 

8–10) neuropathy. Of the 33 participants with diabetes, 13 (39%) met the 

Toronto criteria for the presence of neuropathy.  

http://ovidsp.tx.ovid.com/sp-3.13.0b/ovidweb.cgi?QS2=#FF1
http://ovidsp.tx.ovid.com/sp-3.13.0b/ovidweb.cgi?QS2=#FF1
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Figure  3-3 Relationship between differences in CNFL vs. mean CNFL for 
ACCMetrics vs. NeuronJ (A), ACCMetrics vs. CCMetrics (B) and CCMetrics 
vs. NeuronJ (C). On each graph, the solid line indicates the linear regression 
and the dashed lines indicate the 95% limits of agreement. C, controls; DPN-
ve, individuals without DPN; DPN+ve, individuals with DPN. 
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Table  3-3 Corneal nerve fibre length (CNFL) values in healthy controls (C) 
and diabetic individuals without (DPN-ve) and with (DPN+ve) neuropathy. 

CNFL  
parameter 

C 

 (n = 17) 

DPN-ve 

(n = 20) 

DPN+ve 

(n = 13) 

P-
value 

Scheffe 

Pairwise comparison 

ACCMetrics 
(mm/mm2) 

18.1 ± 2.7 16.3 ± 3.8 14.8 ± 3.8 0.043 C vs. DPN-ve, P = 0.307 

C vs. DPN+ve, P = 0.045 

DPN-ve vs. DPN+ve, P = 
0.481 

NeuronJ 
(mm/mm2) 

18.3 ± 2.9 15.4 ± 4.1 13.8 ± 3.0 0.002 C vs. DPN-ve, P = 0.046 

C vs. DPN+ve, P = 0.004 

DPN-ve vs. DPN+ve, P = 
0.423 

CCMetrics 
(mm/mm2) 

19.9 ± 3.4 17.0 ± 4.5 14.8 ± 3.1 0.002 C vs. DPN-ve, P = 0.074 

C vs. DPN+ve, P = 0.003 

DPN-ve vs. DPN+ve, P = 
0.281 

Values are presented as mean ± SD 

Table  3-3 summarizes quantified CNFL values pertaining to the three 

methods of morphometric analysis, stratified according to the neuropathy 

status. There was a significant difference between groups for all measures (P 

< 0.05). CNFL values were significantly lower for individuals with neuropathy 

compared with controls for all 3 methods of morphometric analysis (P < 

0.05). CNFL reduction as estimated with NeuronJ was marginally significant 

(P = 0.046) in individuals with diabetes without neuropathy compared with 

controls. 

3.6 Discussion 

The increasing interest in assessing morphological parameters of the SNP in 

relation to peripheral neuropathies highlights the need for a reliable, quick, 

highly repeatable, and reproducible method of analysis, particularly when 

these parameters are to be assessed in longitudinal studies, perhaps by 

multiple operators, or to examine the benefits of possible interventions. To 

overcome shortcomings associated with manual tracing and quantification of 

the SNP parameters, several research groups have developed fully 
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automated nerve fiber analysis software (Dabbah, et al., 2011; Ferreira, et 

al., 2012; Scarpa, et al., 2008; Scarpa et al., 2011). This study assessed the 

reliability of a manual (CCMetrics), semiautomated (NeuronJ), and fully 

automated software (ACCMetrics) analysis system for CNFL quantification in 

a diverse cohort of healthy individuals and participants with diabetes. 

Age was well matched between individuals with diabetes and healthy 

controls (P = 0.31). Lower level of total cholesterol was observed in 

participants with diabetes compared to controls, as 25/33 (75%) participants 

with diabetes were receiving lipid lowering therapy with statins vs. none of 

the 17 controls. CCMetrics, the technique requiring the most observer input, 

yielded higher CNFL values compared with NeuronJ and ACCMetrics. The 

lower CNFL values obtained using ACCMetrics compared with CCMetrics 

was not unexpected, because a human observer is able to detect a higher 

number of nerves (particularly low-contrast nerves) than the automatic 

algorithm used in ACCMetrics. Furthermore, during the development of the 

algorithm for nerve detection, the threshold for detection was deliberately 

increased to minimize the recognition of background artefacts. Indeed, 

underestimation of this SNP parameter by fully automated segmentation 

seems to be consistent with previous studies (Dabbah, et al., 2011; Ferreira, 

et al., 2012; Scarpa, et al., 2008). The difference between CNFL values 

obtained using NeuronJ and ACCMetrics was neither clinically nor 

statistically significant. This may be ascribed to the fact that the “manual 

tracing” mode of NeuronJ was not used in this study and all tracings were 

performed using the “optimal” path detection mode. 

The Bland-Altman plots (Figure  3-3) and ICC values (Table  3-2) confirm 

excellent agreement between both semi-automated and manual methods vs. 

fully-automated segmentation. The three methods were also strongly 

correlated. The correlation between each of the semi-automated and manual 

methods vs. the fully-automated analysis were identical (r = 0.87, P < 0.01), 

but slightly lower than that obtained by Scarpa et al. (Scarpa, et al., 2008) 

and Dabbah et al. (Dabbah, et al., 2011). Scarpa et al. (2008) analysed 90 

images of the SNP from 76 normal and 14 abnormal subjects and reported a 
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correlation coefficient of 0.94. When they applied their automatic procedure 

to an independent source with 80 images from normal participants, the 

correlation coefficient between the automatic and manual method reduced to 

0.89. 

As noted above, an underestimation of CNFL determined using ACCMetrics 

compared to CCMetrics was observed with increasing amount of nerve 

tissue. The difference between the correlation coefficients in our study (r = 

0.87) and those of Dabbah et al. (r = 0.95) in which 68 participants (20 

controls and 48 diabetic participant) were investigated, can be attributed 

partly to the lower number of individuals with moderate and severe 

neuropathy (NDS ≥ 6) in the present study (8%) compared with their study 

(19%).  

In a recent study of 106 healthy individuals, Parissi et al. (2013) reported a 

mean CNFL difference of 0.07 mm/mm2 and a linear association of CNFL 

with slope of 0.91 between NeuronJ and automatic methods. In our study, 

however, the mean CNFL difference was 0.5 mm/mm2 and the linear 

association slope was 0.81. The difference in results may be due to the 

differences between two studies in respect to the population size and 

composition and the number of selected images for each participant (mean 

4.3 images in their study vs. 8 images in our study).  

Perfect interobserver agreement in CNFL quantification when using 

ACCMetrics, is not surprising given that this is a fully-automated technique 

that requires no manual input from the observer. The high interobserver 

repeatability for NeuronJ and CCMetrics reported here is consistent with 

previous studies (Efron, et al., 2010; Hertz, et al., 2011; Petropoulos, et al., 

2013b). Manual, semiautomated, and fully automated methods of CNFL 

quantification were able to differentiate individuals with neuropathy from 

controls. Fully automated nerve analysis was about 7× and 4× faster than 

manual and semiautomated morphometric analysis methods, respectively. 

These findings highlight the advantages of the fully automated versus manual 

and semiautomated methods of CNFL analysis, particularly for large cohort 
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trials and longitudinal studies that require analysis of large numbers of 

images. 

 

Figure  3-4 Examples of subbasal nerve length estimation. The original 400 X 

400 µm image of a participant with diabetes and peripheral neuropathy (A). 

Analysis of the original image is shown for CCMetrics (CNFL = 11.8 

mm/mm2) (B), ACCMetrics (11.64 mm/mm2) (C), and NeuronJ (10.0 

mm/mm2) (D). Cells and artefacts that were erroneously identified as nerve 

fibres are indicated with arrowheads. Low-contrast and faint nerves, which 

could not be identified, are indicated with arrows.  All images are 400 X 

400µm. 

Despite the ease of fully-automated CNFL analysis, both false negative and 

false positive errors were evident upon close visual inspection of the 

processed images. Common nerve tracing errors made by the automatic 
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nerve-tracking algorithm included: (a) failure to detect nerves which are thin, 

out of focus or faint, and (b) erroneous recognition of other structures as 

nerve segments, dendritic cells and other artefacts (Figure  3-4). Although 

these shortcomings can be improved by performing manual post-analysis 

editing of images that have undergone initial automated segmentation, the 

marginal overall advantage of such a process may be offset by the 

introduction of inadvertent operator bias and consequent reduction of 

repeatability (Holmes, et al., 2010; Scarpa, et al., 2008), and significant, 

resource intensive and time-consuming manual input. It should also be noted 

that the underestimation of CNFL when using ACCMetrics, compared with 

CCMetrics, may limit the capacity of this software program to detect changes 

in CNFL in early diabetic neuropathy.  

In conclusion, we have demonstrated that fully automated analysis can 

compute CNFL values, which are in close agreement with systems that use 

manual and semiautomated segmentation. These three techniques are also 

capable of differentiating those with and without DPN. Because of its speed, 

objectivity, and consistency, fully automated analysis of CNFL might be 

advantageous in studies of diabetic neuropathy.  

3.7 Subsequent validity study of fully-automated image analysis 
algorithm 

The findings we presented in this study in relation to the reliability of 

ACCMetrics for CNFL quantification are supported by a recent study by 

Petropoulos et al. (2014) who reported a high correlation between manual 

(CCMetrics) and fully-automated (ACCMetrics) quantification of CNFL (r = 

0.89) in 186 participants with diabetes and 55 controls. Similar to this study, 

they found significantly reduced CNFL in participants with DPN compared 

with controls using both manual and fully-automated techniques while there 

was a slight underestimation of CNFL as obtained using ACCMetrics 

compared to CCMetrics. Although our study did not compare the three 

techniques for other SNP parameters than CNFL, Petropoulos and co-

workers in their recent study also validated automated CNFD and CNBD 

against those obtained manually. 
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CHAPTER 4. INTRA- AND INTEROBSERVER REPEATABILITY OF 
CORNEAL NERVE PARAMETERS 
4.1 Foreword 

Addressing the issues of intra- and interobserver repeatability of the 

measurement procedures are critical in longitudinal studies where the 

differences in the values are to be monitored over time. Therefore, this was 

an essential part of the research methodology to allow application of corneal 

confocal microscopy (CCM) with automated image analysis for this 

longitudinal study. Although previous studies have evaluated repeatability 

and reproducibility of measurement of the SNP parameters in diabetic and 

healthy individuals, they either focused on the image analysis level and/or 

they used manual quantification method (Efron, et al., 2010; Hertz, et al., 

2011; Petropoulos, et al., 2013b). However, this study was designed to 

assess the intra- and interobserver repeatability of the subbasal nerve 

parameters obtained using corneal confocal microscopy (CCM) while images 

were analysed by employing fully-automated quantification method.  

4.2 Abstract 

Purpose: To assess intra- and interobserver repeatability of the SNP 

parameters measurement.  

Methods: For the purpose of interobserver repeatability, sixteen participants 

(six controls and 10 with diabetes) underwent CCM examination twice by the 

same observer. For another group of 11 participants (five controls and six 

with diabetes), a second observer then repeated the CCM examination. Eight 

selected central corneal images were then analysed using a fully-automated 

technique. 

Results: There were no significant differences between mean SNP 

parameters of two sessions for intra- and interobserver assessment. 

Moderate to high intraclass correlation coefficients were found for all three 

SNP parameters (0.81-0.94, P < 0.01). The coefficients of repeatability for 
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intra- and interobserver assessments were: CNFD, 8% and 9.8%; CNBD, 

20.1 % and 22.9% and CNFL 3% and 3.6%, respectively. 

Conclusion: Among the three SNP parameters, CNFL is the most 

repeatable and reliable parameter and gives good observer-independent 

results. Assessment of SNP morphology can be used in this longitudinal 

study to evaluate possible changes over time. 

4.3 Intraobserver test-retest repeatability of the SNP parameters 
4.3.1 Methods  

To assess the consistency of measurement of SNP parameters from one 

time to another, test-retest was conducted by performing the CCM procedure 

followed by automated image analysis for 16 participants on the same day of 

examination and each participant was tested twice, at least 30 minutes apart. 

Participants were enrolled from the ongoing LANDMark study (Pritchard, et 

al., 2014) and informed consents were obtained from all of them. Prior to the 

examination, participants underwent slit-lamp biomicroscopy examination to 

ensure the absence of any corneal compromise. The methodology of CCM 

examination was identical to the methods explained in the previous chapter 

(see section 3.4.2 Corneal confocal microscopy, page 45). 

Evaluation of intraobserver repeatability was assessed by intraclass 

correlation coefficient (ICC), coefficient of repeatability (CoR) and Bland-

Altman method (Bland & Altman, 1986). The CoR was calculated as 1.96 

times the standard deviation of between the two measurements. A two-way 

random effects ICC was used for consistency of individual measurements. A 

CoR ≤ 20% was considered good and 20% to 50%, acceptable. IBM SPSS 

Statistics version 21 was used for all statistical analyses. 

4.3.2 Results  

Characteristics of the participants and the outcomes of SNP parameters are 

presented in Table  4-1. Paired t-test revealed no significant differences 

between test-retest measurements for CNFD, CNBD and CNFL (P = 0.59, P 

= 0.88 and P = 0.94, respectively). The results of ICC, limits of agreement 
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(LoA) and coefficient of repeatability (CoR) are shown in Table  4-2. Among 

the three SNP parameters, CNFL showed the highest ICC and the lowest 

CoR.  

Table  4-1 Characteristics of participants in intraobserver repeatability study. 
Values are mean ± SD or count for categorical variables. 

Parameter  Range 

Age (years) 53 ± 18 17-77 

Sex (Male/Female) 7/9 - 

Group (Control/Diabetes) 6/10 - 

CNFD (no/mm2)  

test 

retest 

 

20.2 ± 7.0 

19.7 ± 5.8 

 

1.6 – 32.8 

8.6 – 30.5 

CNBD (no/mm2)    

test 29.6 ± 18.8 1.0 – 82.8 

retest 29.2 ± 16.6 4.7 – 74.2 

CNFL (mm/mm2)   

test 16.4 ± 3.0  8.5 – 21.0 

retest 16.4 ± 3.2 10.6 – 22.1 

CNFD, corneal nerve fibre density; CNBD, corneal 
nerve branch density; CNFL, corneal nerve fibre length 

Table  4-2 Summary of mean difference, ICC, LoA and CoR for intraobserver 
repeatability study 

 Mean difference 

( test - retest) 

ICC 95% CI LoA CoR 

Lower Upper Lower Upper 

CNFD 

(no/mm2) 

0.56 0.81 0.53 0.93 -7.30 8.40 8% 

CNBD 

(no/mm2) 

0.40 0.84 0.60 0.97 -19.50 20.20 20.1% 

CNFL  

(mm/mm2) 

-0.02 0.90 0.75 0.97 -2.68 2.63 3% 

CNFD, corneal nerve fibre density; CNBD, corneal nerve branch density; CNFL, 
corneal nerve fibre length; ICC, intraclass correlation coefficient; CI, confidence 
interval; LoA, limits of agreement; CoR, coefficient of repeatability 
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Figure  4-1 Bland-Altman plots of the relationship between differences in 
subbasal nerve parameters (A) CNFD, (B) CNBD and (C) CNFL vs. their 
mean for intraobserver test-retest study. On each graph, the solid line (red) 
indicates the linear regression and the dashed lines (blue) indicate the 95% 
limits of agreement. 
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Bland-Altman plots for test-retest difference and the mean of the test-retest 

were generated for CNFD, CNBD and CNFL and are illustrated in Figure  4-1. 

There was no significant relationship between mean CNFD (R2 = 0.11, P = 

0.21), CNBD (R2 = 0.05, P = 0.40) and CNFL (R2 = 0.02, P = 0.59) vs. their 

respective test-retest difference.   

4.4 Interobserver repeatability of the SNP parameters 
4.4.1 Methods  

The same procedure was conducted to examine interobserver repeatability 

for 11 participants, five healthy and six with diabetes. Each participant 

underwent CCM examinations twice by two experienced observers on the 

same day of examination. Eight images per examination were collected by 

the observer and analysed using fully-automated algorithm.  

Assessment of intraobserver repeatability was carried out by estimating ICC 

and CoR. A two-way random effects ICC was used to examine the 

consistency of measurements between two observers. A CoR ≤ 20% was 

considered good and 20% to 50%, acceptable. Bland-Altman plots (Bland & 

Altman, 1986) were also generated to depict the limits of agreement between 

two observers for measurement of the SNP parameters.  

4.4.2 Results  

Characteristics and estimates of SNP parameters of the recruited participants 

for assessment of interobserver repeatability are presented in Table  4-3. The 

mean difference between observer 2 and observer 1 was: -1.70 nerve/mm2 

for CNFD, -4.65 nerve/mm2 for CNBD and -0.72 mm/mm2 for CNFL. 

However, the differences between mean CNFD, CNBD and CNFL measured 

by two observers were not statistically significant (paired t-test, P = 0.29, P = 

0.22 and P = 0.21, respectively).  

A summary of estimated ICC, LoA and CoR are shown in Table  4-4. Similar 

to intraobserver study, CNFL showed the highest ICC and lowest CoR. The 

Bland-Altman plots of agreement between two observers for the SNP 

parameters are shown in Figure  4-2. No significant association was found 
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between mean CNFD (R2 = 0.14, P = 0.25), CNBD (R2 = 0.16, P = 0.21) and 

CNFL (R2 = 0.01, P = 0.91) vs. their respective interobserver difference. 

Table  4-3 Characteristics of the participants in interobserver repeatability 

study. Values are mean ± SD or count for categorical variables. 

Parameter  Range 

Age (years) 51 ± 11 30-65 

Sex (Male/Female) 6/5 - 

Group (Control/Diabetes) 5/6 - 

CNFD (no/mm2)  

observer 1 

observer 2 

 

20.3 ± 10.6 

18.6 ± 8.7 

 

7.0 – 39.8 

4.7 – 32.0 

CNBD (no/mm2)    

observer 1 35.5 ± 32.7 2.3 – 100.8 

observer 2 30.9 ± 28.0 2.8 – 85.9 

CNFL (mm/mm2)   

observer 1 16.9 ± 5.1  9.0 – 26.1 

observer 2 16.2 ± 5.1 9.2 – 24.4 

CNFD, corneal nerve fibre density; CNBD, corneal 
nerve branch density; CNFL, corneal nerve fibre length 

Table  4-4 Summary of mean difference, ICC, LoA and CoR for interobserver 

repeatability study 

 Mean difference 

( observer 2 – 

observer 1) 

ICC 95% CI LoA CoR 

Lower Upper Lower Upper 

CNFD 

(no/ mm2) 

-1.70 0.87 0.58 0.96 -11.54 8.14 9.8% 

CNBD 

(no/ mm2) 

-4.65 0.93 0.75 0.98 -27.60 18.29 22.9% 

CNFL  

(mm/ mm2) 

-0.72 0.94 0.78 0.98 -4.33 2.86 3.6% 

CNFD, corneal nerve fibre density; CNBD, corneal nerve branch density; CNFL, 
corneal nerve fibre length; ICC, intraclass correlation coefficient; CI, confidence 
interval; LoA, limits of agreement; CoR, coefficient of repeatability 
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Figure  4-2 Bland-Altman plots of the relationship between differences in 
subbasal nerve parameters (A) CNFD, (B) CNBD and (C) CNFL vs. their 
mean for interobserver study. On each graph, the solid line (red) indicates 
the linear regression and the dashed lines (blue) indicate the 95% limits of 
agreement. 
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4.5 Discussion 

In this study, the repeatability of SNP parameters within one observer 

(intraobserver) and between two observers (interobserver) was examined. 

Amongst the three evaluated SNP parameters, CNFL achieved the highest 

criteria for intraobserver repeatability with an ICC of 0.90, which 

demonstrates a very good reliability between test and retest, as well as an 

estimated CoR of 3% which also indicates a high repeatability of this 

parameter. CNFD also demonstrated a moderate ICC (0.81) and low CoR 

(8%). Although CNBD also showed a moderate ICC (0.84), the calculated 

CoR was only in the acceptable level. 

Petropoulos et al. (2013b) performed an intraobserver study for a cohort of 

19 healthy individuals on two separate occasions seven days apart. Similar 

to the current study, they found no significant difference between two 

sessions for CNFD, CNBD and CNFL and they reported the highest 

consistency for CNFL and CNFD. However, compared to our study they 

found lower ICC values (CNFD, 0.81 vs. 0.74; CNBD, 0.84 vs. 0.61 and 

CNFL, 0.90 vs. 0.70) and higher CoR (CNFD, 8% vs 17%; CNBD, 20.1% vs. 

64%; and CNFL, 3% vs. 19%). These differences can be attributed to the 

time interval between sessions (30 minutes in our study vs. one week in their 

study), the image selection criteria (e.g. 8 images from the hand dominant 

side vs. 10 images from both eyes) and the analysis method (automated vs. 

manual technique). 

Regarding the interobserver study, although the mean differences of the 

three SNP parameters were larger compared with the test-retest 

intraobserver study; the estimated mean values did not differ between two 

observers. Estimated ICCs were also moderate to high between two 

measurements, indicating good reliability between observers. CNFL and 

CNFD again showed the highest repeatability while CNBD achieved an 

acceptable CoR. Comparable to our findings, Ishibashi et al. (2012) reported 

good interobserver reproducibility for CNFD and CNFL in 14 healthy 

participants using coefficient of variation, while CNBD only received a poor 

reproducibility. 
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Although they performed the reproducibility study by re-examining the 

selected CCM images using manual quantification method, our results are in 

general agreement with the conclusion of Hertz et al. (2011); CNFL has the 

superior reliability compared to the other SNP parameters.  

The mean difference of the SNP parameters in interobserver assessment 

implies that the observer 1 captured images with higher nerve density; 

however these differences, in particular for CNFL and CNFD, are minor to 

consider in clinical practice because they are practically insignificant and 

negligible. Furthermore, they showed good agreement and high ICCs 

between the two observers.  

Variations in measurement of the SNP parameters may occur because CCM 

captures images from an area of 400 X 400µm, therefore difficulties in 

locating such a small are in the central cornea at second measurement may 

result in these small variations. Other sources of variability might be 

attributable to different focusing, participant cooperation and controlling eye 

movements during image acquisition. Our findings suggest that if the CCM 

examinations are conducted in the same centre, similar good results would 

be possible when done by another observer, assuming that the same 

methodology (e.g. image capturing and analysis) is employed. It should be 

noted that if CCM is to eventually be adopted widespread, it is worth 

repeating this study using inexperienced observers. 

In conclusion, these findings indicate that measurement of the SNP 

parameters, in particular CNFL, using CCM and automated image analysis is 

highly repeatable within and between observers, which allows their 

application for longitudinal studies, provided that CCM examinations are 

done using similar methodology.  

Considering the results of the study presented in the previous chapter 

(Chapter 3) and the outcomes of the present study, we chose to employ 

CCM in combination with automated algorithm to test the main hypotheses 

which are presented in next chapters.   
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CHAPTER 5. OVERALL METHODOLOGY AND BASELINE 
CHARACTERISTICS OF THE PARTICIPANTS 

5.1 Foreword 

This chapter describes the overall methodology related to this longitudinal 

research project. Specific methodology related to each experiment has been 

presented in respective chapters. 

5.2 Participants 

As stated in section 1.8 (page 6), this PhD project was associated with the 

ongoing LANDMark study. Participants were enrolled as a part of this study 

(Brisbane site) conducted at Anterior Eye Lab, Queensland University of 

Technology (QUT). Ethical clearances were granted by QUT, Princess 

Alexandra Hospital and Mater Hospital research ethics committees 

(Appendix 1).  

Participants were recruited from the Centre for Diabetes and Endocrinology 

at Princess Alexandra Hospital and Mater Hospitals and the general 

population in Brisbane. Prior to their enrolment, written informed consent was 

obtained from all participants (Appendix 2), consistent with the Declaration of 

Helsinki. In LANDMark study, the following inclusion and exclusion criteria 

were applied at enrolment: 

Inclusion criteria: 

• Aged 14 to 75 years old 

• Signed written informed consent 

• Type 1 or type 2 diabetes, or no diabetes for control group 

• Being willing to participate and comply with the experimental protocol 

Exclusion criteria: 

• History of corneal trauma and surgery 

• History of ocular or systemic disease which may affect the cornea 
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• Concurrent ocular disease, infection or inflammation 

• History of systemic disease (e.g. malignant disease, congestive heart 

failure, major psychosis, certain auto immune diseases) 

• History of neuropathy due to non-diabetic cause 

• Current or active diabetic foot ulcer or infection 

• Participating in any other interventional research trial 

The following exclusion criteria applied to control group 

• Diabetes 

• GADAb positive 

• Presence of neuropathy  

Exclusion criterion specific to this research project: Further to the overall 

LANDMark exclusion criteria, in this study participants with type 2 were 

excluded. Additionally, participants with type 1 diabetes with moderate and 

severe neuropathy (neuropathy disability score [NDS] ≥ 6) were also 

excluded in the longitudinal aspect of this research program. 

Figure  5-1shows the number and procedure of participant enrolment in this 

study. 

 

Figure  5-1 Flow chart diagram of study participants at baseline visit  
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5.3 Definition of neuropathy 

The definition of neuropathy has been derived from the “Toronto criteria” 

(Tesfaye, et al., 2010) that rely on the presence of abnormal 

electrophysiological finding, based on age-matched controls at the site, in 

addition to clinical signs and/or symptoms, which was defined as one or more 

of the followings: (i) neuropathy disability score (NDS) ≥ 3 of 10 (Young, et 

al., 1993) or (ii) diabetic neuropathy symptom score (DNSS) ≥ 1 of 4 (Meijer, 

et al., 2002). This definition has been used throughout this thesis. The cut-off 

values that were applied for abnormal nerve conduction in this study are 

presented in Table  5-1. These cut-offs are based on age-matched control 

individuals at the Brisbane site. 

Table  5-1 Abnormal nerve conduction criteria in this study 

Parameter 
Cut-off 

Age < 54 years Age ≥ 54 years 

Peroneal CV ankle to fibula head*  < 45 m/s < 42 m/s 

Sural CV *  < 40 m/s < 38 m/s 

Tibial CV *# < 43 m/s 

CV, conduction velocity 

a. *Less than 10th percentile for healthy individuals without neuropathy 

b. Nerve conduction is considered abnormal if (either) peroneal or sural CV is 

below age-referenced cut-off values.  

c. #If sural not present, nerve conduction is considered abnormal for Toronto 

neuropathy if tibial CV is below 43 m/s for any age. 

 

5.4 Assessment of neuropathy 

A summary of the methods applied for neuropathy assessment are presented 

below. 

5.4.1 Neuropathy signs and symptoms 

NDS: NDS is a quantitative measure of neuropathy and was carried out using 

2 Neurotips (Owen Mumford Ltd., Oxford, UK) loaded in Neuropens, 128 Hz 
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tuning fork, Metal rods, 2 beakers, hot and cold water and tendon hammer. 

This test included pain sensation, vibration sensation, temperature sensation 

and Achilles tendon reflex of both feet (Figure  5-2) and each abnormal 

response resulted in 1-point increase in score. Sharp and blunt ends of the 

Neurotip were applied on the pulp of the great toes in random order and the 

participant was asked to tell whether they think the painful stimulus occurred 

during sharp or blunt stimulus.  

To examine the vibration sensation, the circular base of the vibrating and 

non-vibrating tuning fork was held against the end of the great toes in turn 

and the participant was instructed to tell whether the vibration occurred 

during time 1 or time 2. To test the temperature sensation, two beakers were 

filled with hot and cold water and one of the metal rods was placed in the hot 

water and the other in the cold water for 30 seconds. The rods were pressed 

in turn against the foot dorsum and the participant was asked to say whether 

the warm sensation occurred during time 1 or time 2.  

All the above procedures were repeated 3 times and the response was 

considered normal if correct responses were ≥ 2/3. Achilles tendon reflex 

was tested with a hammer strike while participant was sitting with legs 

horizontal, and bent so that the knee faced outward from the body. 

Alternatively, the participant was asked to kneel on a chair. Finally, the NDS 

score was recorded from 0 to 10 (Abbott, et al., 1998; Young, et al., 1993). In 

this study, the DPN severity was classified using NDS score and only 

participants with NDS ≤ 5 were included. 

 

Figure  5-2 Pain sensation (A), vibration sensation (B), temperature sensation 

(C) and Achilles tendon reflex (D) 
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DNSS Questionnaire:  This questionnaire (Table  5-2) is a validated and fast 

measure of neuropathic symptom for clinical practice (Meijer, et al., 2002) 

which includes 4 questions and it is completed by the participant. For each 

participant the total score was recorded from 0-4, based on the positive 

answers.  

5.4.2 Quantitative sensory tests (QST) 

Quantitative thermal and vibration assessment were carried out with the 

Medoc TSA-II NeuroSensory Analyzer and the VSA-3000 Vibratory Sensory 

Analyzer (Medoc Advanced Medical Systems, Ramat-Yishai, Israel) for 

threshold determination. Vibration perception was measured on the plantar 

surface of the big toe and thermal (warm and cold) sensation was assessed 

on the dorsal surface of the foot on the hand dominant side.  

Table  5-2 Diabetic neuropathy symptom score questionnaire 

1. Are you suffering of unsteadiness in walking? 

(i.e. need for visual control, increase in the dark, walk like a drunk man, lack of contact 

with floor) 

□ Yes (1) □ No (0) 

2. Do you have a burning, aching pain or tenderness at your legs or feet? 

(i.e. occurring at rest or at night, not related to exercise, exclude claudicatio intermittens) 

□ Yes (1) □ No (0) 

3. Do you have prickling sensations at your legs and feet? 

(i.e. occurring at rest or at night, distal>proximal, stocking glove distribution) 

□ Yes (1) □ No (0) 

4. Do you have places of numbness on your legs or feet? 

(i.e. distal>proximal, stocking glove distribution) 

□ Yes (1) □ No (0) 

Total Score _____/4 

5.4.3 Nerve conduction studies (NCS) 

The Nihon Kohden Neuropack S1 (Nihon Kohden Corporation, Tokyo, 

Japan) was used for nerve conduction studies. The limb temperature was 
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maintained above 31oC. Peroneal motor nerve conduction velocity (ankle to 

fibula head), amplitude (ankle to extensor digitorum brevis) and F wave 

latency were determined on the hand dominant side of the participants.  

5.5 Ophthalmic procedures 

All ophthalmic procedures were conducted following the medical procedures. 

Typically the eye on the hand-dominant side was examined unless otherwise 

indicated. 

5.5.1 Screening procedures 

This procedure began with measurement of visual acuity using Bailey-Lovie 

chart. Slit lamp examination of the cornea and anterior segment was 

performed for presence of any corneal compromise or finding that may affect 

the study results. Intraocular pressure measurement of the test eye was 

performed using iCare tonometer (Tiolat Oy, Helsinki, Finland). 

5.5.2 Corneal confocal microscopy 

The Heidelberg Retina Tomograph 3 (HRT3) in combination with Rostock 

Corneal Module (Heidelberg Engineering, Germany) was utilized to acquire 

multiple images of the corneal subbasal nerve plexus (SNP). This instrument 

is a laser-scanning confocal microscope (LSCM) and has a field of view of 

400 X 400 µm when used with a 63X objective lens.  

A large drop of high-viscous eye gel (GenTealEyes; Novartis, North Ryde, 

NSW, Australia) was placed between the microscope objective and the 

Perspex “TomoCap” that covered the objective. The gel optically couples the 

objective lens to the Perspex cap. The cornea of the dominant-hand side of 

the participant was anaesthetised with one drop of 0.4% benoxinate 

hydrochloride (oxybuprocaine hydrochloride; Bausch & Lomb, NSW, 

Australia). The head of the participant was placed in the head and chin rest, 

and the overall height of the instrument table was adjusted for comfort. The 

participant was instructed to fixate on a near target with the contralateral eye. 

The CCM was advanced forward until the laser beam fell in the centre of the 
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pupil (Figure  5-3). The instrument was slowly moved onto the cornea until 

gentle contact was established between the front of the applanation cap and 

the cornea; this procedure was facilitated by a side-mounted CCD camera 

that displays a magnified, real-time image of the cap.  

Using the manual focusing, the SNP usually appeared at approximately 50-

60 µm. For each participant multiple images from SNP of the central cornea 

were obtained using “section mode” which enables manual acquisition of a 

single image at a time with the aid of a foot pedal. The acquired images were 

saved digitally. 

5.5.3 Image sampling and analysis 

Investigators have used arbitrary numbers of images for analysis of the SNP 

morphology in the majority of previous studies. For the purpose of this 

research program, we followed the established protocol by Vagenas et al. 

(2012). This protocol offers optimized sampling paradigm for the central 

cornea and involves selection of a prescribed number of centrally-located 

images with minimum overlap that enhance the consistency of the procedure. 

Therefore, eight SNP images displaying in focus nerves and not overlapping 

by more than 20% were chosen for each participant at each visit. Selected 

images were then analysed using ACCMetrics (Figure  5-4), which has been 

explained in more detail and also compared with manual and semi-

automated methods in Chapter 3. ACCMetrics as objective and fast method 

of corneal nerve segmentation showed good agreement with manual and 

semi-automated techniques, and its capability to detect depletion of the 

subbasal corneal nerves in individuals with DPN was comparable to those 

techniques.  

The three quantified SNP morphometric parameters acquired using 

ACCMetrics include corneal nerve fibre density (CNFD; the total number of 

major nerves per mm2), branch density (CNBD; the number of branches 

emanating from major nerves per mm2) and fibre length (CNFL; total length 

of all nerves and branches in units of mm/mm2).  
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Figure  5-3 Corneal light reflex at the centre of pupil 

 

Figure  5-4 ACCMetrics analysis of corneal nerve parameters. Original 400 X 

400 µm image of subbasal nerve plexus of a type 1 participant with 

neuropathy (A). Annotation of the same image by automatic analysis with 

CNFD = 12.5 nerve/mm2, CNBD = 25.05 nerve/mm2, and CNFL = 12.5 

mm/mm2 (B). Note that CNFD and CNBD are the number of major nerves 

(red lines) per mm2 and the number of branches emanating from major 

nerves (green dots) per mm2, respectively. CNFL is the total length of all 

nerves and branches (all blue and red lines) and expressed as mm/mm2.  

5.6 General health and metabolic measures 

Information related to history of general health were collected including 

questions of medical history, age, duration of diabetes (self-reported or 

based on health care practitioner reports), and alcohol and tobacco 
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consumption. The following relevant health measures and blood biochemistry 

parameters were obtained at each annual visit: 

Blood pressure: Blood pressure (systolic and diastolic) was measured using 

the WelchAllyn automatic digital sphygmomanometer (WelchAllyn Inc, NY, 

USA).  

Body measurements: Weight and height were measured and body mass 

index (BMI) was calculated. 

HbA1c and lipid profiles: Visits also included an assessment of glycaemic 

control (HbA1c), total cholesterol, low density lipoprotein cholesterol (LDL), 

high density lipoprotein cholesterol (HDL) and triglycerides which were 

assayed by a local certified pathology laboratory (Sullivan Nicolaides 

Pathology, Queensland, Australia). 

5.7 Data management and analysis 

Generated data from each participant were recorded on case report forms 

and then along with data from other sources such as pathology laboratory 

transferred to a central database. The data reported here were obtained from 

the database and all analyses were performed using IBM SPSS version 21. 

5.8 Sequence of tests and main outcome variables  

Medical and neuropathy assessments were often conducted at the beginning 

of the annual visits, followed by ophthalmic procedures. NCS usually were 

performed at the end of study visit. A summary of tests conducted and 

outcome variables recorded for participants at annual visits are shown in 

Table  5-3 

5.9 Length of this longitudinal study 

Lack of a previously conducted longitudinal study in respect to human 

corneal nerve morphology made it difficult to design a study with an 

appropriate length in order to allow clinically and pathologically significant 

changes to be observed. It has been suggested that longitudinal 
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assessments of diabetic neuropathy need to be conducted for a period of at 

least three years to achieve a meaningful and clinically significant change in 

QST results (Dyck, et al., 1997). 

Substantial deterioration of clinical neurological examination has been shown 

in a previous longitudinal study with follow up duration of 2-4 years (van de 

Poll-Franse, et al., 2002). Significant worsening of DPN using NCS and QST 

over 12 months (Brown, et al., 2004) have also been reported. Considering 

these findings and previous studies of the relationship between traditional 

tests of neuropathy and corneal nerve morphology, a 4-year follow up with a 

baseline visit was chosen. 

Table  5-3 Procedures and outcome parameters in this study 

 Procedure Outcome parameter Type of variable 

H
ea

lth
 a

nd
 

m
et

ab
ol

ic
  

Health measures Blood pressure, weight, height and 
body mass index Continuous 

Metabolic 
information 

HbA1c, total cholesterol, low density 
lipoprotein cholesterol, high density 

lipoprotein and triglycerides 

Continuous 

N
eu

ro
pa

th
y 

 m
ea

su
re

s 

 

Quantitative 
sensory tests 

Warm sensation threshold 

Cold sensation threshold 

Vibration threshold 

Continuous 

Continuous 

Continuous 

Diabetic 
neuropathy 
symptoms score  

DNSS Categorical 

Neuropathy 
disability score 

NDS Continuous 

Nerve conduction 
studies 

Peroneal nerve conduction velocity, 
F latency and amplitude 

Continuous 

O
ph

th
al

m
ic

  

Corneal confocal 
microscopy 

Corneal nerve fibre density  

Corneal nerve branch density  

Corneal nerve fibre length 

Continuous 

Continuous 

Continuous 
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5.10 Sample size calculation 

Since the main hypothesis in this current study was the greater progression 

rate of SNP pathology in the neuropathy group compared to the control 

participants, the required sample size was calculated considering this 

hypothesis. The principle outcome measures for this hypothesis relate to 

change in CNFL and CNFD as the most reliable and repeatable parameters 

over a four year period. In the absence of pre-existing longitudinal data, the 

available baseline data of the LANDMark participants (type 1 diabetes and 

controls) were analysed to determine the sample size, because the mean 

and SD of the these parameters pertaining to the three groups of interest 

(control, type1 without and with neuropathy) could be obtained. The G*Power 

3 software (Faul, et al., 2007) was used to calculate the effect size given the 

means and SD of three groups. Our desired power and significant level were 

set at 0.90 and 0.05, respectively and a priori analysis (sample size N is 

computed as a function of power level 1-β, significance level α, and the effect 

size) was applied, which resulted in an effect size of 0.3. Considering the 

required four subsequent visits, a total sample size of 100 was estimated. To 

compensate a 20% drop-out during study period, the total sample size was 

increased to 120 (40 participants in each group). Therefore, recruitment from 

LANDMark continued until the smallest group (diabetes with DPN) contained 

40 participants resulting in a total of 207 participants. 

5.11 Baseline characteristics of the participants included in this study 

This section describes the recruited three groups and reports the baseline 

characteristics of the participants including demography, health and 

metabolic measures, neuropathy assessment and SNP parameters. 

Allocation of individuals to one of the three groups and exclusion of ineligible 

individuals was undertaken by details of which were outlined in previous 

sections (5.2 Participants and 5.3 Definition of neuropathy). 

Normality of the data was examined using the Kolmogorov-Smirnov test and 

the appropriate tests were applied for analysis. Statistical measures including 

analysis of variance (ANOVA) with Scheffe post hoc test, t-test and other 
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nonparametric statistical tests were employed according to the 

characteristics of specific data elements. It should be noted that this section 

only gives an overview of participants at baseline who were stratified to three 

groups – namely  controls, diabetes without DPN (DPN-ve) and  diabetes 

with DPN (DPN+ve) - across a range of measures and more details are 

included in respective chapters (Chapters 6 – 7). 

Table  5-4 shows the clinical characteristics and demographic data of 

participants at baseline based on neuropathy status. The mean age of the 

cohort was 48.4 ± 15.2 and 47% of the cohort were males. Although there 

was no significant difference between the mean age of participants with 

diabetes and controls (47.3 ± 15.4 vs. 51.0 ± 14.7, respectively, P = 0.11), 

DPN+ve group was found significantly older than controls and DPN-ve group. 

No sex difference was found among the three groups. DPN+ve group had 

longer duration of diabetes (29.6 ± 14.8) compared with DPN-ve group (16.3 

± 12.7, P < 0.001). 

In regards to health and metabolic measures, there was no significant 

difference among groups for height, weight, BMI, diastolic blood pressure, 

HDL and triglycerides. As expected, mean HbA1c of DPN-ve (7.9 ± 1.3) and 

DPN+ve (8.2 ± 1.6) groups were higher than controls (5.4 ± 0.3), however, it 

did not differ between DPN-ve and DPN+ve groups. Systolic blood pressure 

was significantly higher in DPN+ve group than DPN-ve group and controls. 

Mean total cholesterol and LDL were lower in both DPN-ve and DPN+ve 

groups compared with controls. 

All the SNP parameters and established measures of neuropathy were 

significantly different between groups (ANOVA, P < 0.05). The results of 

pairwise comparisons between groups are presented in Table  5-4. 
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Table  5-4 Demographics and clinical characteristics of the participants at the baseline. Results are expressed as mean ± 

SD or counts for categorical variable. 

 DPN status at baseline   

Characteristics Controls DPN-ve DPN+ve P-value 

(ANOVA) 

Group difference 

(Scheffe post hoc) 

Demographics 
Age (years) 51.0 ± 14.7 43.9 ± 15.7 56.5 ± 9.6 < 0.001# DPN+ve vs. Controls , DPN-ve† 

DPN-ve vs. controls† 
Sex (male/female) 26/34 49/59 22/17 0.402** - 
Diabetes duration (years) 0 16.3 ± 12.7  29.6 ± 14.8 < 0.001§ DPN+ve vs. DPN-ve§ 

Health and metabolic measures 
Height (cm) 170.4 ± 8.7 170.1 ± 9.8 171.2 ± 8.2 0.832* - 
Weight (kg) 76.1 ± 16.4 76.6 ± 14.7 80.2 ± 14.4 0.361* - 
BMI (kg/m2) 26.1 ± 5.2 26.4 ± 4.3 27.4 ± 4.8 0.405* - 
Systolic BP (mmHg) 116.1 ± 13.6 117.8 ± 13.8 129.4 ± 20.0 < 0.001‡ DPN+ve vs. DPN-ve, Controls§ 
Diastolic BP (mmHg) 72.8 ± 7.0 72.1 ± 7.9 74.2 ± 10.3 0.392* - 
HbA1c (%) 5.4 ± 0.3 7.9 ± 1.3 8.2 ± 1.6 < 0.001‡ Controls vs. DPN-ve, DPN+ve§ 
Total cholesterol (mmol/L) 5.4 ± 1.2 4.7 ± 0.9 4.9 ± 1.1 < 0.001# Controls vs. DPN-ve, DPN+ve† 
HDL (mmol/L) 1.5 ± 0.4 1.5 ± 0.4 1.6 ± 0.4 0.324 - 
LDL (mmol/L) 3.5 ± 1.1 2.7 ± 0.7 2.7 ± 0.9 < 0.001‡ Controls vs. DPN-ve, DPN+ve§ 
Triglycerides (mmol/L) 1.1 ± 0.6 1.0 ± 0.6 1.1 ± 0.6 0.717 - 

Corneal nerve parameters 
CNFD (number/mm2) 22.3 ± 8.0 18.3 ± 7.1 16.3 ± 8.3 < 0.001* Controls vs. DPN-ve, DPN+ve† 
CNBD (number/mm2) 35.1 ± 23.8 24.2 ± 17.4 23.7 ± 20.9 0.003‡ Controls vs. DPN-ve, DPN+ve§ 
CNFL (mm/mm2) 18.1 ± 3.7 16.0 ± 3.8 15.0 ± 4.3 < 0.001* Controls vs. DPN-ve, DPN+ve†  
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 DPN status at baseline   

Characteristics Controls DPN-ve DPN+ve P-value 

(ANOVA) 

Group difference 

(Scheffe post hoc) 

Quantitative Sensory Tests 
Cold sensation threshold (°C) 28.4 ± 2.8 27.4 ± 5.1 23.4 ± 7.2 < 0.001‡ 

 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Warm sensation threshold (°C) 38.0 ± 4.1 37.4 ± 3.8 41.6 ± 3.7 < 0.001‡ 
 

Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Vibration threshold (Hz) 7.0 ± 8.1  8.7 ± 10.3 25.7 ± 22.2 < 0.001‡ 
 

Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Nerve Conduction Studies 
Peroneal F latency (ms)  49.6 ± 5.2 51.5 ± 4.9 55.7 ± 5.0 < 0.001* 

 
Controls vs. DPN+ve†  
DPN-ve. vs DPN+ve† 

Peroneal nerve amplitude (mV) 4.7 ± 2.3 5.2 ± 2.7 2.7 ± 1.8 < 0.001‡ 
 

Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Peroneal nerve conduction 
velocity (m/s) 

49.0 ± 5.5 46.7 ± 5.0 39.6 ± 5.9 < 0.001* 
 

Controls vs. DPN-ve, DPN+ve†  
DPN-ve vs. DPN+ve†  

Neuropathy disability score (0–10) 0.4 ± 0.9 0.6 ± 0.9 2.2 ± 1.5 < 0.001‡ 
 

Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Diabetic neuropathy symptom score 
(0–4) 

0.1 ± 0.3 0.2 ± 0.5 1.1 ± 1.0 < 0.001‡ 
 

Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

DPN-ve, diabetic participant without neuropathy; DPN+ve, diabetic participant with neuropathy 

* One way ANOVA, **Chi-Square, †Scheffe post hoc, ‡Kruskal Wallis, §Mann-Whitney, #Welch ANOVA 
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 5.12 Discussion 

The baseline findings of the enrolled participants were presented in this 

section. Overall, a relatively large cohort of 207 participants enrolled in this 

study, including 147 type 1 individuals without and with neuropathy and 60 

healthy controls, without peripheral neuropathy and/or diabetes. It should be 

noted that baseline characteristics are briefly discussed here and a more in-

depth and specific discussion is presented in respective chapters (Chapters 

6-7). 

The cohort was sex-balanced (47% males) and age was well-matched 

between diabetes and control groups. DPN+ve group was found to be older 

than DPN-ve and control groups. DPN+ve group also had higher HbA1c, 

longer duration of diabetes and higher systolic BP compared with those 

without DPN. These factors are among the most important risk factors for 

development and progression of neuropathy in patients with diabetes (see 

section 2.2.2 Pathogenesis and risk factors of DPN). While total cholesterol 

and LDL level were not different between DPN+ve and DPN-ve groups, lower 

level of these parameters were observed in comparison with controls. This 

can be attributed to the fact that 35% of diabetic participants were receiving 

lipid-lowering medications at baseline visit. 

Using Toronto criteria and NDS, of 147 diabetic participants, 39 had mild 

DPN at baseline visit. The proportion of DPN+ve group to the diabetic group 

(27%) was suitable for assessing the natural history of SNP morphology in 

this group and to compare with DPN-ve and control groups. QST, NCS, NDS 

and DNSS were able to differentiate DPN+ve group from controls and DPN-

ve group. These findings were not surprising, because symptoms, signs and 

NCS constitute the basis on which diabetic neuropathy was diagnosed in this 

study.  The baseline findings showed that corneal nerve parameters obtained 

from CCM were able to differentiate type 1 diabetic participants without and 

with mild neuropathy from controls. These outcomes are in agreement with 

previous studies that examined the SNP morphology in relation to DPN 
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(Table  2-1) and confirm depletion of the SNP structural parameters in 

presence of DPN. 

We employed an up-to-date definition for DPN which consists of NCS and 

signs and/or symptoms of neuropathy. Furthermore, a battery of established 

measures (symptoms, deficits, QST and NCS) were measured which would 

enable us to compare SNP structural parameters against them in terms of 

longitudinal changes over time. Given the lack of data in the literature 

regarding the natural history of corneal nerve morphology, this longitudinal 

study will provide insights to the usefulness of SNP morphology as a 

potential measure of neuropathy.     

In conclusion, the data acquired at baseline indicate that the study has 

recruited an appropriate cohort to address the main objectives. For example 

the baseline glycaemic control (HbA1c 8.1%) and total cholesterol (4.7 

mmol/l) in the diabetic cohort of this study are comparable with previous 

longitudinal diabetic studies (Epidemiology of Diabetes Interventions and 

Complications (EDIC) Research Group, 1999; Lorbeer et al., 2011). 

Additionally, employment of CCM in combination with automated analysis 

provides an accurate and reliable method to estimate small nerve fibre 

damage at SNP level in diabetic individuals without and with neuropathy. 

5.13 Directions for subsequent experiments 

Application of CCM in combination with a fully-automated algorithm was 

found to be advantageous in reducing dependence of labour-intensive 

methods, while providing comparable results to manual and semi-automated 

techniques. We also found that this technique was repeatable within and 

between observers. Having addressed these important methodological 

aspects, the experiments presented in next chapters (Chapter 6-7) were 

conducted to address the main objective of this project. 
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CHAPTER 6. AGE EFFECT AND LONGITUDINAL ASSESSMENT OF 
SUBBASAL NERVE STRUCTURE IN HEALTHY STATE 

6.1 Foreword 

Using a longitudinal approach, the effect of age on three main subbasal 

nerve structural parameters obtained using corneal confocal microscopy was 

investigated in this study. These morphometric parameters include corneal 

nerve fibre density (CNFD), branch density (CNBD) and fibre length (CNFL). 

Furthermore, the longitudinal behaviour of these parameters over three years 

were also examined by fitting linear mixed models which are robust statistical 

methods for repeated measures analysis. This chapter, which addressed the 

second research question as defined in section 1.5 of Chapter 1, essentially 

forms the basis of a paper published in Investigative Ophthalmology and 

Vision Science journal as follows: 

Dehghani C, Pritchard N, Edwards K, Vagenas D, Russel AW, Malik AR and 

Efron N. Morphometric stability of the corneal subbasal nerve plexus in 

healthy individuals: a 3-year longitudinal study using corneal confocal 

microscopy. Invest Ophthalmology and Vision Science 2014; 55:3195-3199. 

6.2 Abstract 

Purpose: To examine the age-dependent alterations and the longitudinal 

course of subbasal nerve plexus (SNP) morphology in healthy individuals. 

Methods: Laser-scanning corneal confocal microscopy, ocular screening, 

and health and metabolic assessment were performed on 60 healthy 

participants at baseline and at 12-month intervals for 3 years. At each annual 

visit, eight central corneal images of the SNP were selected and analysed 

using a fully-automated analysis system to quantify CNFD, CNBD and CNFL. 

Linear mixed model approaches were fitted to examine the relationship 

between age and these parameters, and their longitudinal changes over 

three years. 
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Results: At baseline, mean age was 51.0 ± 14.7 years. The cohort was sex-

balanced (P = 0.30). Age (P = 0.27), CNFD (P = 0.48), CNBD (P = 0.95) and 

CNFL (P = 0.98) did not differ between sexes. A total of 52 participants 

completed the 36-month visit and 49 participants completed all visits. No 

significant effect of age was found for CNFD (F [1, 87] = 0.72, P = 0.40) and 

CNBD (F [1, 42] = 0.53, P = 0.47). However, age had a significant effect on 

CNFL (F [1, 33] = 4.77, P = 0.04) with a linear decrease of 0.05 mm/mm2 per 

one year increase in age. None of the three parameters showed significant 

changes over the 36-month period (CNFD, F [1, 168] = 2.32, P = 0.13; CNBD, F 

[1, 30] = 2.05, P = 0.16 and CNFL, F [1, 3] = 0.38, P = 0.58). 

Conclusions: Corneal nerve parameters showed a stable course over a 36-

month period in healthy individuals, although there was a slight linear 

reduction in CNFL with age. The findings of this study have implications for 

understanding the time-course of the effect of pathology and surgical or 

therapeutic interventions on the morphology of the SNP and serves to 

confirm the suitability of corneal nerve structure as a screening/monitoring 

marker for peripheral neuropathies. 

6.3 Introduction 

In vivo corneal confocal microscopy (CCM) is a rapid, non-invasive and 

reiterative technique which enables microstructural evaluation of the human 

cornea at high resolution. The anatomical location and transparency of the 

cornea make this tissue structure ideally suited for confocal microscopic 

assessment (Lagali et al., 2013). Image acquisition using CCM from different 

corneal layers and structures helps both clinicians and researchers to extract 

important information in respect to alterations induced by various ocular and 

systemic conditions. 

The subbasal nerve plexus (SNP), which is a dense array of nerves located 

between the corneal basal epithelium and Bowman’s layer, is the main 

corneal nerve structure studied in vivo using CCM as a result of distinct 

morphologic attributes such as length of the nerve bundles and their parallel 

arrangement in relation to the ocular surface. Structural analysis of the SNP 
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has been used to evaluate ocular conditions such as dry eye, ocular allergy 

and glaucoma (Benítez-del-Castillo, et al., 2007; Labbé, et al., 2012; Villani, 

et al., 2013b; Zhang, et al., 2011), corneal ectasia and dystrophies (Efron & 

Hollingsworth, 2008; Patel, et al., 2009a), the effect of contact lens wear 

(Efron et al., 2002; Hollingsworth & Efron, 2004) and assessment of nerve 

regeneration after penetrating keratoplasty (Darwish, et al., 2007a), and 

different forms of refractive surgery (Darwish, et al., 2007b; Erie, et al., 

2005b). The CCM has also been deployed to assess small nerve fibre 

pathology induced by several systemic conditions including diabetes 

(Edwards, et al., 2012b; Tavakoli, et al., 2010b), Fabry disease (Tavakoli et 

al., 2009), idiopathic neuropathy (Tavakoli et al., 2010a) and chemotherapy 

(Ferrari et al., 2013). 

Given the utility of SNP evaluation in screening, detection and monitoring of a 

wide range of systemic and corneal neuropathies, it is important to 

understand how aging might affect this nerve plexus. However, there is 

inconsistency in the literature with respect to the relationship between age 

and neural morphometric change in the SNP using ex vivo and in vivo 

techniques. While a number of studies have reported no significant change in 

the subbasal nerve morphology with age (Erie, et al., 2005a; Marfurt, et al., 

2010; Patel, et al., 2009b), others have reported a decrease in nerve density 

with age (He, et al., 2010; Niederer, et al., 2007; Parissi, et al., 2013) and 

there is also uncertainty as to the age at which SNP structural loss become 

significant. Furthermore, to our knowledge no data are available concerning 

the dynamic morphologic changes of corneal nerves in health or disease 

over time. 

The two primary objectives of this study were to investigate: (1) the 

relationship between age and the three main morphometric parameters of the 

SNP obtained from CCM (CNFD, CNBD and CNFL); and (2) longitudinal 

changes of these measures over three years in healthy human corneas.  
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6.4 Methods 
6.4.1 Study participants 

Following approval from the research ethics committee of Queensland 

University of Technology (Queensland, Australia) and obtaining written 

informed consent, 60 healthy participants were enrolled. Participants were 

recruited from the community in Brisbane, Australia, as a part of 4-year 

LANDMark study (Pritchard, et al., 2014). Exclusion criteria were: history of 

corneal surgery, trauma or disease, glaucoma, evidence of corneal 

compromise, ocular and systemic diseases (e.g. diabetes) that might have 

adversely affected the cornea and history of neuropathy. These criteria were 

reassessed at each annual visit. 

All participants underwent assessment of visual acuity, slit lamp 

biomicroscopy and tonometry and all corneas were confirmed to be within 

clinical norms. Four participants were current soft contact lens wearers and 

were asked to refrain from contact lens wear on the day of examinations. 

Contact lens wearers were not excluded from the present study, because 

previous investigations of the impact of contact lens wear on morphologic 

changes in subbasal nerves using CCM have failed to demonstrate any 

impact (Oliveira-Soto & Efron, 2003; Patel et al., 2002; Wu, et al., 2012). All 

participants were observed at baseline and the examinations continued at 

12-month intervals over three years for a total of four visits. The study was 

conducted in accordance with the tenets of the Declaration of Helsinki. 

6.4.2 Corneal confocal microscopy and image analysis 

At each visit, all participants underwent corneal confocal microscopy 

examination approximately at corneal apex using the Heidelberg Retina 

Tomograph 3 with Rostock Corneal Module (Heidelberg Engineering GmbH, 

Dossenheim, Germany). One eye (on the side of hand dominance) was 

selected and anaesthetized with a drop of 0.4% benoxinate hydrochloride 

(oxybuprocaine hydrochloride; Bausch & Lomb, NSW, Australia).  
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Eight central corneal images per participants, displaying in-focus nerves and 

not overlapping more than 20% (Vagenas, et al., 2012), were selected by 

inspection and analysed using a fully-automated analytical system (Dabbah, 

et al., 2011) to quantify CNFD (the total number of major nerves per mm2), 

CNBD (the number of branches emanating from major nerves per mm2) and 

CNFL (total length of all nerves and branches in units of mm/mm2). 

6.4.3 Blood biochemistry and health parameters 

At each visit, blood biochemistry measures (HbA1c and lipid profile) were 

assayed by a local certified pathology laboratory, and clinical measures 

(height, weight and blood pressure) were assessed by a research nurse. 

6.4.4 Statistical analysis 

Statistical analysis of the data was performed using SPSS (version 21). 

Normal distribution of the data was determined with the Kolmogorov-Smirnov 

test. Quantitative variables are expressed by the mean ± standard deviation 

(SD) unless otherwise indicated. For the analysis of the categorical variables, 

the χ2 test was applied. The independent samples t-test was used to 

compare age, CNFD, CNBD and CNFL between sexes. Bivariate correlation 

was used, as appropriate, for assessment of association of the SNP 

parameters with alcohol consumption and absolute changes in those 

parameters with HbA1c. One-way and Welch ANOVA were used to compare 

the SNP parameters among age groups at baseline visit. Differences in 

characteristics from baseline to year-3 visit were assessed using paired 

sample t-test (for normally distributed data) and nonparametric Wilcoxon test 

(for not-normally distributed data).  

To analyse longitudinal data using the linear mixed model (LMM) procedure 

in the SPSS statistical software, the horizontal data format were converted to 

vertical structure; thus, there were four rows per participant corresponding to 

the four measurements collected over time on each participant. The 

relationship between age and the SNP parameters and the changes of these 

parameters over 3-year period were examined by fitting two linear mixed 
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models with restricted maximum likelihood estimation. The first model 

(LMM1) contained the SNP parameters, age at each annual visit and sex. 

The SNP parameters were individually inserted as dependent variable. Age 

(time-varying predictor variable) and sex (time-invariant variable) were 

specified as covariate and factor, respectively. Age, sex and the sex*age 

interaction were specified as fixed effects and Type III method of sums of 

squares was used.  

The assessment of linear change of the SNP parameters over time (36 

months) was carried out by fitting the second model (LMM2) in which these 

parameters were specified as dependent variable and time which was a 

variable capturing the order of observation, was defined as repeated variable. 

CNFL and sex were considered as dependent variable and factor, 

respectively. Time and age at enrolment were assigned as covariates.   

6.5 Results 

The demographic and clinical data of participants at baseline and 36-month 

visits are given in Table  6-1. A total of 60 participants completed the baseline 

visit and 52 completed the 36-month visit. Five participants discontinued 

during the study period due to poor health (n = 2), to loss to follow up (n = 2) 

and personal decision (n = 1). Two participants also missed the year-3 visit. 

The baseline cohort included 26 males and 34 females (χ2 = 1.07, P = 0.30). 

Mean age was 51.0 ± 14.7 years. Age (males: 53.4 ± 13.8 years, females: 

49.2 ± 15.3 years, P = 0.27), CNFD (males: 23.1 ± 7.9 no/mm2, females: 21.6 

± 8.2 no/mm2, P = 0.48), CNBD (males: 35.4 ± 26.6 no/mm2, females: 35.0 ± 

21.8 no/mm2, P = 0.95) and CNFL (males: 18.1 ± 3.5 mm/mm2, females: 18.1 

± 3.9 mm/mm2, P = 0.98) did not differ between sexes.  

Four participants (7%) reported to be current smokers with an average 19 

cigarettes per day. CNFD, CNBD and CNFL were not significantly different 

between current smokers and non-smokers (P = 0.61, P = 0.27 and P = 0.20, 

respectively). Forty-nine participants (82%) reported current alcohol use with 

an average 5 units/week. No significant correlation was found between 

alcohol consumption (units/week) and the SNP parameters at baseline visit 
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(CNFD, rs = 0.08, P = 0.57; CNBD, rs = 0.04, P = 0.75 and CNFL, rs = -0.03, P 

= 0.85). Nine participants were taking antidepressant medications during 

study period. No association was observed between using antidepressant 

drugs and mean SNP parameters at annual visits (independent samples t-

test, P > 0.50). 

Participants were divided into three age groups:  group 1 aged < 45 years (n 

= 19), group 2 aged 45 - 59 years (n = 24) and group 3 aged ≥ 60 years (n = 

17, Table  6-2). There was not a significant effect of age groups on CNFD 

(one-way ANOVA, P = 0.86), CNBD (one-way ANOVA, P = 0.65) and CNFL 

(Welch ANOVA, P = 0.60). 

Table  6-1 Clinical demographic, metabolic and ocular screening measures of 

study participants at baseline and 36-month visits. 

Parameter Baseline 36 months P-value  

(paired t-test) 

Age (years) 51.0 ± 14.7 - - 

Sex (male/female) 26/34 24/28 - 

HbA1c (%) 5.4 ± 0.3 5.3 ± 0.4 <0.01 

Total cholesterol (mmol/L) 5.5 ± 1.2 5.5 ± 1.2 0.84 

HDL (mmol/L) 1.5 ± 0.4 1.5 ± 0.4 0.16 

LDL (mmol/L) 3.5 ± 1.1 3.4 ± 1.0 0.12 

Triglycerides (mmol/L) 1.1 ± 0.6 1.1 ± 0.5 0.26 

Systolic blood pressure (mmHg)  116.1 ± 13.6 116.1 ± 14.0 0.95 

Diastolic blood pressure (mmHg) 72.8 ± 7.0 72.3 ± 8.4 0.50 

Height (cm) 170.3 ± 8.6 170.2 ± 8.8 0.70 

Weight (kg) 76.3 ± 15.3 75.8 ± 13.8 0.49 

BMI (kg/m2) 26.1 ± 5.2 26.2 ± 4.8 0.68 

Visual acuity (LogMAR) 0.04 ± 0.08 0.03 ± 0.08 0.17* 

Intra-ocular pressure (mmHg) 13.2 ± 2.8 13.2 ± 3.1 0.98 

Values shown are mean ± SD, or counts for categorical variables. 

*Wilcoxon test 
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Table  6-2 Age and SNP parameters at baseline in three age groups. 

Age groups N CNFD, 

no/mm2 

(mean ± 

SD)* 

CNBD, 

no/mm2 

(mean ± 

SD)† 

CNFL, 

mm/mm2 

(mean ± SD)‡ 

Age, years,  

(mean ± SD)§ 

Group 1: <45 

years 

19 23.1 ± 6.5 33.3 ± 16.3 18.7 ± 2.4 33.4 ± 8.7 

Group 2: 45-

59 years 

24 21.8 ± 7.9 33.3 ± 22.0 18.0 ± 3.4 53.3 ± 4.5 

Group 3: ≥ 60 

years 

27 22.0 ± 10.0 39.7 ± 32.6 17.6 ± 5.1 67.5 ± 3.6 

Total group 60 22.3 ± 8.0 35.1 ± 23.8 18.1 ± 3.7 51.9 ± 14.7 

*, † No significant difference among groups (one-way ANOVA, P = 0.86 and P = 

0.65, respectively) 
‡ No significant difference among groups (Welch ANOVA, P = 0.64)  
§ Significant difference among groups (Welch ANOVA, P < 0.001) 

CNFD, corneal nerve fibre density;  CNBD, corneal nerve branch density; CNFL, 

corneal nerve fibre length  

 

Apart from a clinically insignificant decline in HbA1c (0.1 %, P < 0.01), over 36 

months, there were no significant changes to health, metabolic or ocular 

screening measures (Table  6-1). There also was no significant correlation 

between absolute changes in SNP parameters and HbA1c from baseline to 

the 36-month visit (Pearson, CNFD, r = -0.10, P = 0.50; CNBD, r = -0.09, P = 

0.54 and CNFL, r = 0.05, P = 0.75).  

The LMM1 was deployed to determine the association of age and SNP 

parameters. Using backward elimination procedure, fixed effects of sex*age 

interaction and sex were sequentially removed because their effects were not 

statistically significant. While no significant effect of age was found for CNFD 

(F [1, 87] = 0.72, P = 0.40) and CNBD (F [1, 42] = 0.53, P = 0.47), the Type III 

tests of fixed effects revealed that there was a significant influence of age on 

CNFL (F [1, 33] = 4.77, P = 0.04). Estimates of fixed effects and covariance 

parameters for CNFL are presented in Table  6-3.  
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Table  6-3 Estimates of fixed effects and covariance parameters from linear 

mixed model 1 in which the relationship of age and corneal nerve fibre length 

was statistically significant. 

Parameter Estimate Std. Error P-value 95% CI 

Estimates of fixed effects* 

Intercept 20.89 0.89 < 0.00 19.00 - 22.81 

Age -0.05 0.02 0.04 -0.09 - -0.01 

Estimates of covariance parameters* 

Residual 3.91 0.44 <0.001 3.15 – 4.87 

Intercept + age  

 
UN(1,1) 

UN(2,1) 

UN(2,2) 

9.88 

-0.33 

0.01 

5.65 

0.17 

0.005 

0.08 

0.05 

0.02 

3.15 – 30.37 

-0.65 - 0.00 

0.01 - 0.03 

CI: confidence interval; UN: unstructured variance-covariance matrix for random 

effects 

* Dependent variable: corneal nerve fibre length 

 

The natural history of the three SNP parameters over the 36-month 

observation period is depicted graphically in Figure  6-1. The LMM2 revealed 

that the linear effect of time, sex, age at enrolment and time*sex interaction 

were not statistically significant for any of the three SNP parameters 

(Table  6-4). To eliminate further the potential confounding neurogenesis 

effect of antidepressant drugs (Castrén & Hen, 2013) on the analysis of data 

relating to the longitudinal course of CNFL in healthy participants, LMM2 was 

repeated excluding participants who were receiving antidepressant therapy 

during study period. The results were similar to the total cohort with no 

significant effect of time for the three SNP parameters (CNFD, P = 0.23; 

CNBD, P = 0.15 and CNFL, P = 0.57). 
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Figure  6-1 Quantification of corneal nerve fibre density and branch density 

(A) and corneal nerve fibre length (B) in healthy participants over 36 months. 

The three SNP parameters quantified in this study did not change over three 

years follow up (linear mixed model analysis, CNFD, P = 0.13; CNBD, P = 

0.16 and CNFL, P = 0.58). Error bars represent mean ± SD. 
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Table  6-4 Estimates of fixed effects for the linear relationship of time and 

subbasal nerve parameters in linear mixed model 2.  

Dependent variable: corneal nerve fibre density 

Parameter Estimate Std. Error P-value 95% CI 

Intercept 23.37 2.7 < 0.00 17.98 - 28.75 

Time 0.19 0.47 0.69 -0.73 - 1.11 

Age at enrolment -0.02 0.05 0.49 -4.18 – 2.03 

Sex     

Male*time 0.71 0.72 0.32 -0.70 – 2.12 

Female*time 0† 0 - - 

Dependent variable: corneal nerve branch density 

Intercept 25.20 9.00 < 0.01 7.34 – 43.05 

Time 2.12 1.53 0.18 -1.00 – 5.24 

Age at enrolment 0.24 0.17 0.16 -0.10 – 0.57 

Sex     

Male*time -0.91 2.32 0.70 -5.7 – 3.84 

Female*time 0† 0 - - 

Dependent variable: corneal nerve fibre length 

Intercept 19.26 1.35 < 0.00 16.56 – 21.96 

Time 0.01 0.22 0.98 -0.68 - 0.67 

Age at enrolment -0.01 0.03 0.63 -0.06 – 0.04 

Sex     

Male*time 0.22 0.34 0.56 -0.81 – 1.25 

Female*time 0† 0 - - 

†This parameter is set at zero because it is the reference level of sex. 

6.6 Discussion 

The feasibility of assessing corneal nerve morphology via CCM and the 

promising role of these structural parameters as an indicator of corneal nerve 

recovery following surgical and pharmacological intervention, and the 

potential for screening for peripheral neuropathies, has led to an increase in 

the scope of this approach. An increasing number of studies showing a 

relationship between quantitative analysis of the SNP parameters and 

various ocular and systemic pathologic conditions or surgical-induced 
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changes, highlights the importance of understanding the natural 

morphometric characteristics of the SNP over time.  

In this longitudinal prospective study, participants were followed over 36 

months with repeated monitoring of ocular, health and the SNP measures. At 

baseline, our cohort was sex balanced (45% male) and age was not 

significantly different between sexes. The sex of participants was also shown 

to have no influence on the SNP parameters. While the variability from the 

mean of SNP parameters increased with age (Table  6-2), mean CNFD, 

CNBD and CNFL between the groups was not significantly different. This 

finding is consistent with those of Patel et al. (2009b) who found no 

significant differences in mean CNFL between three age groups in a cohort 

of 60 healthy participants. On the other hand, Grupcheva et al. (2002) 

reported a significant difference in mean CNFL between two age groups (25 

± 5 years vs. 70 ± 5 years) of 50 participants.  

Using laser-scanning CCM (LSCM), a great diversity has been reported in 

quantification of the SNP parameters in healthy individuals (Table  2-1). The 

mean central corneal nerve fibre length in the current study was 18.0 ± 3.6 

mm/mm2 which is similar to that reported by Wu et al. (2012) (18.0 ± 4.0 

mm/mm2), but slightly lower than the findings of Niederer et al. (2007) (20.3 ± 

6.5 mm/mm2) and Parissi et al. (2013) (18.6 ± 4.8 mm/mm2). Differences in 

methodologies including number of participants, selected images, age range 

and method of image analysis may account for differing results.  

A strength of the present study was consistency in respect to the location of 

corneal assessment (central), which was facilitated by an optimized sampling 

paradigm for the central region of the cornea that involved selection of a 

prescribed number of centrally-located images with minimum overlap 

(Vagenas, et al., 2012). As well, employment of an objective, fully-automated 

analysis system for image analysis facilitated reliable and objective 

quantification of the SNP parameters, which was important for ascertaining 

the natural course of these CCM measures. It has been demonstrated that 

fully-automated analysis of SNP parameters obtained from laser-scanning 

CCM images agrees very well with semi-automated and manual analysis 
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(Dabbah, et al., 2011; Dehghani et al., 2014; Petropoulos, et al., 2014) and 

yields results with a high level of reproducibility. 

In the current literature, there is some discrepancy among studies as to 

whether corneal nerve structure changes with age. While subbasal nerve 

fibre density has been reported to reduce with age in an ex vivo study in 22 

donor corneas aged from 19 to 80 years (He, et al., 2010), Marfurt et al. 

(2010) using an immunohistochemical staining technique, found no 

significant correlation between CNFL and age in corneas of six donors aged 

19 - 78 years. Such a disagreement exists among studies using in vivo CCM 

as well (Erie, et al., 2005a; Niederer, et al., 2007; Parissi, et al., 2013; Patel, 

et al., 2009b).  

The majority of studies reporting the relationship between age and corneal 

nerve parameters have concentrated on the total length of nerve fibres in unit 

of area of corneal images which is similar to the definition of CNFL adopted 

in this study. Hence, it is difficult to make a direct comparison of our findings 

in terms of CNFD and CNBD with previous reports in which these measures 

have not been included. Furthermore, the usual design employed in previous 

studies reporting the effect of age on corneal nerve morphology has been 

cross-sectional, in which measurements are made on participants of various 

ages and the detected differences are attributed to the effect of age. 

However, such results do not necessarily reflect real age changes. A 

longitudinal design with serial measurements in the same individuals over 

time allows true age changes for individuals to be determined. The findings of 

the current study (LMM1, Table  6-3) showed that while CNFD and CNBD 

were not affected by age, there was a significant linear decrease in the CNFL 

with age. The mean estimated initial status (at birth) and the linear change 

rate (per year) of CNFL for the total group were 20.90 mm/mm2 and -0.05 

mm/mm2, respectively. This suggested that 1 mm/mm2 reduction in central 

corneal nerve morphology would require 20 years to take place in normal 

participants. The cross-sectional studies of Niederer et al. (2007) and Parissi 

et al. (2013) reported  a gradual decline in CNFL with age at a rate of 0.9% 
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and 0.30% per year, respectively, which exceeds the finding our longitudinal 

study reported here (0.05 mm/mm2 per year).  

Although marginally non-significant at α < 0.05, the estimated covariance of 

the two random effects in the LMM1; that is, intercept and age (β = -0.30, P = 

0.05) was negative (Table  6-3), which suggested individuals with high CNFL 

had a slower linear decrease, whereas individuals with low CNFL had a 

faster decrease, with age. There is also evidence of significant variance in 

these random effects (β = 0.01, P = 0.02), indicating variation among 

individuals in the rate of change of CNFL.  

However, it is not clear why age did not have any significant effect on CNFD 

and CNBD which are the metrics of the major nerves and the branches 

emanating from them. Figure  5-4 illustrates how the three SNP parameters 

are quantified from CCM images. Considering the definitions of the SNP 

parameters and these outcomes, it can be speculated that the age-

dependent alterations of the SNP mainly occur at short interconnecting links 

which appear to be not connected to any major nerves or branches in CCM 

images. The orientation of these fine, low contrast nerve fibres such as their 

non-parallel arrangement in relation to the ocular surface as well as the 

limited resolution of the current CCMs may restrict their visibility. 

Apart from HbA1c with a minor (0.1 %) but statistically significant difference, 

the average of all clinical metabolic and ocular screening measures remained 

stable from baseline to 36-month visit. The LMM2 (Table  6-4) showed that in 

this 3-year longitudinal study, the SNP parameters appeared to be stable as 

a function of time. The relationship of time with the change of three SNP 

parameters did not vary depending on sex, yielding a similar longitudinal 

pattern over three years for males and females. It is also worth noting that, 

while neuronal plasticity and regeneration can be influenced by 

antidepressant treatment (Baudry et al., 2011; Castrén & Hen, 2013), when 

our analysis was restricted to participants who were not receiving these 

medications, our results closely resembled those from the total cohort. 
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To our knowledge, no previous study has reported a longitudinal analysis of 

corneal nerve morphology in healthy individuals. The results presented here 

demonstrate, for the first time to our knowledge, stability of human corneal 

nerve morphology as assessed by LSCM over a 3-year period. These 

findings are important in demonstrating a significant, albeit weak, association 

between CNFL and age and the 3-year morphometric stability of the SNP 

structure in healthy individuals. These data provided in vivo evidence for 

stability of these structural parameters in healthy individuals and added a 

longitudinal perspective to consider alongside the results of cross-sectional 

studies demonstrating the dependence of CNFL parameter with age. The 

outcomes of this study may improve the ability of clinicians and researchers 

to understand the time-course of central corneal reinnervation following 

interventions such as keratorefractive surgeries and pharmacological 

treatment, and will assist in the interpretation of longitudinal studies using 

corneal nerve morphology as a screening/monitoring marker for peripheral 

neuropathies. 

Although we found stability of the corneal nerve structure over a 36-month 

follow up period, this finding might not apply to the SNP changes over longer 

time periods. Furthermore, these findings are limited to nerve changes in the 

central cornea, and may not be applicable to other more peripheral regions of 

the human SNP. More recently, in vivo wide-field maps of the human SNP 

have been generated successfully (Edwards, et al., 2012a; Patel & McGhee, 

2005) which might be useful to provide insights into changes in the entire 

SNP, if this procedure were to be deployed in longitudinal studies.  

In conclusion, the current longitudinal in vivo CCM study confirms a slight 

reduction in CNFL as a function of age while there was no significant 

dynamic morphologic change in SNP morphology over 36 months.  The data 

of this longitudinal study constitute a better understanding of SNP in living 

human cornea in a healthy state, which has implications in investigating the 

effect of corneal surgery, known transient or chronic alterations as a cause of 

or secondary to, local disease, or peripheral neuropathies, using corneal 

nerve structure as a non-invasive biomarker. 
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CHAPTER 7. NATURAL COURSE OF SUBBASAL NERVE STRUCTURE 
IN TYPE 1 DIABETES WITHOUT AND WITH MILD NEUROPATHY 

7.1 Foreword 

This chapter examined the natural course of subbasal nerve structural 

parameters in diabetic participants without and with mild neuropathy over 

four years and compared the trajectories to non-diabetic/non-neuropathic 

controls. Additionally, the longitudinal association between established 

measures of neuropathy with corneal nerve parameters was also assessed. 

In fact, this chapter addressed two main research questions defined in 

section 1.5 Research questions of Chapter 1. This chapter presents a study 

published by the Investigative Ophthalmology and Vision Science journal. 

Dehghani C, Pritchard N, Edwards K, Vagenas D, Russel AW, Malik AR and 

Efron N. Natural History of Corneal Nerve Morphology in Mild Neuropathy 

Associated with Type 1 Diabetes: Development of a Potential Measure of 

Diabetic Peripheral Neuropathy. Investigative Ophthalmology and Vision 

Science, 2014;55:7982–7990.  

7.2 Abstract 

Purpose: To investigate longitudinal changes of subbasal nerve plexus 

(SNP) morphology and its relationship with conventional measures of 

neuropathy in individuals with diabetes.  

Methods: A cohort of 147 individuals with type 1 diabetes and 60 age-

balanced controls underwent detailed assessment of clinical and metabolic 

factors, neurologic deficits, quantitative sensory testing, nerve conduction 

studies and corneal confocal microscopy at baseline and four subsequent 

annual visits. The SNP parameters included corneal nerve fibre density 

(CNFD), branch density (CNBD) and fibre length (CNFL) and were quantified 

using a fully-automated algorithm. Linear mixed models were fitted to 

examine the changes in corneal nerve parameters over time. 



104 

104 Natural Course of Subbasal Nerve Structure in Type 1 Diabetes Without and With Mild Neuropathy 

Results: At baseline, 27% of the participants had mild diabetic neuropathy. 

All SNP parameters were significantly lower in the neuropathy group 

compared to controls (P<0.05). Overall, 89% of participants examined at 

baseline also completed the final visit. There was no clinically significant 

change to health and metabolic parameters and neuropathy measures from 

baseline to the final visit. Linear mixed model revealed a significant linear 

decline of CNFD (annual change rate, -0.9 nerve/mm2, P = 0.01) in the 

neuropathy group compared to controls, which was associated with age (β = 

-0.06, P = 0.04) and duration of diabetes (β = -0.08, P = 0.03). In the 

neuropathy group, absolute changes of CNBD and CNFL showed moderate 

correlations with peroneal conduction velocity and cold sensation threshold, 

respectively (r, 0.38 and 0.40, respectively, P < 0.05). Among the important 

risk factors for corneal neuropathy, CNFD was found to have the highest 

association with HbA1c (β = -0.58, P = 0.03).  

Conclusion: This study demonstrates dynamic small fibre damage at the 

SNP, thus providing justification for our ongoing efforts to establish corneal 

nerve morphology as an appropriate adjunct to conventional measures of 

DPN. 

7.3 Introduction 

Diabetic neuropathy is a substantial and burdensome complication of 

diabetes, affecting up to 50% of these individuals (Dyck, et al., 1993). 

Diabetic peripheral neuropathy (DPN), which is the most common form of 

neuropathy, manifests as a distal, symmetric polyneuropathy that begins in 

the lower extremities and may progress proximally (Chin & Rubin, 2010). 

DPN leads to morbidity in diabetic patients in the form of painful neuropathy 

and foot ulceration with consequent lower limb amputation (Frykberg, et al., 

2006). It accounts for reduced quality of life and imposes a significant 

economic burden that affects both individuals and society (Happich, et al., 

2008; Van Acker, et al., 2009). 

Several established tests are commonly used for screening, detection and 

assessment of DPN and to monitor its progression. The majority of these 
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tests examine neuronal function; however, direct observation of nerve 

structure is also possible. Neurologic symptoms and signs, quantitative 

sensory tests (QST) and nerve conduction studies (NCS) are the most 

commonly used tests for DPN (Dyck, et al., 2010). Indeed symptoms, 

neurological deficits and NCS constitute the basis on which diabetic 

neuropathy is diagnosed. QST provide quantitative measures of sensation; 

however, these tests require cooperation and concentration of the examinee 

and they may also be affected by anthropometric variables (Boulton, et al., 

2004b). Whilst recent studies have shown that the proficiency of QST 

assessment is adequate (Dyck, et al., 2014), the reproducibility of symptoms 

and signs (Dyck, et al., 2010) and NCS (Litchy, et al., 2014), has been shown 

to be limited. Furthermore, studies in patients with impaired glucose 

tolerance (IGT) (Asghar et al., 2014) and recently diagnosed type 2 diabetes 

(Ziegler, et al., 2014b) show a marked small fibre neuropathy accompanying 

large fibre dysfunction.  

Quantification of nerve pathology is possible through direct morphometric 

examinations of nerves including sural nerve biopsy (Malik et al., 2005) and 

skin biopsy (Lauria, et al., 2009). However, these techniques are invasive, 

require expertise for quantification and cannot be repeated from the same 

site for longitudinal studies. Accurate detection and estimation of progression 

are needed, especially to test putative treatments, which may alleviate the 

condition, and/or prevent or delay the development of sequelae. As reviewed 

in more detail elsewhere (Li, et al., 2013; Varkonyi et al., 2013), based on the 

pathogenesis of DPN, several potential therapeutic approaches have been 

developed targeting these mechanisms; however, apart from glucose control 

and pain management, currently there is no approved treatment for DPN 

(Callaghan, et al., 2012a; Li, et al., 2013).  

Lack of a sensitive, accurate and reliable clinical endpoint has been one of 

the obstacles in mounting treatment trials for DPN (Malik, 2014a). Growing 

evidence supports a prominent association between corneal subbasal nerve 

plexus (SNP) morphology measured with corneal confocal microscopy 

(CCM) and DPN. CCM as a quick, non-invasive and reiterative technique has 
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a demonstrated capacity to detect early small nerve fibre damage in diabetic 

patients (Quattrini, et al., 2007), and diagnose (Ahmed, et al., 2012; 

Edwards, et al., 2012b; Malik, et al., 2003) and classify severity of DPN 

(Petropoulos et al., 2013a; Tavakoli, et al., 2010b). Conventional measures 

of neuropathy and corneal nerve parameters are also related (Edwards, et 

al., 2012b; Sivaskandarajah, et al., 2013; Tavakoli, et al., 2010b). 

Furthermore, the demonstration of early corneal nerve regeneration following 

simultaneous pancreas and kidney transplantation (Tavakoli, et al., 2013) 

and optimised glycaemic and lipid control in an observational study (Tavakoli, 

et al., 2011b) suggests that CCM may well fulfil some of the criteria for a 

surrogate end point for diabetic neuropathy. 

To our knowledge, no study has been conducted to date concerning the 

natural course of the SNP structure over time in diabetic patients. Therefore 

in this study, we sought to investigate the natural history of the SNP 

morphology in type 1 diabetic individuals without and with mild neuropathy. 

Furthermore, the longitudinal relationship between changes in corneal nerve 

structure and established measures of neuropathy in individuals with 

diabetes was also addressed. 

7.4 Methods 
7.4.1 Study design and participants 

This prospective, observational, longitudinal study was conducted following 

approval from Queensland University of Technology, Princess Alexandra 

Hospital, and Mater Hospital research ethics committees as a part of the 

LANDMark study (Pritchard, et al., 2014) in Brisbane, Australia. Prior to their 

enrolment, written informed consent was obtained from all participants and 

the research adhered to the tenets of the Declaration of Helsinki. Based upon 

the inclusion/exclusion criteria, 147 type 1 diabetic participants were recruited 

from Diabetes and Endocrinology Research Centre at Princess Alexandra 

and Mater hospitals and the general population in Brisbane. Sixty healthy 

participants, without peripheral neuropathy and/or diabetes were also 

recruited as controls. All participants were assessed at baseline and 

assessments continued for four annual subsequent visits (five time-points in 
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total and approximately 960 case visits). Participants were excluded in this 

study for any of the following: history of ocular trauma or surgery, ocular 

disease or systemic disease with potential corneal effect, and systemic 

disease (other than diabetes). Diabetic participants had no other known 

cause of neuropathy except from diabetes. Other causes of neuropathy were 

excluded. Diabetic participants with moderate and severe neuropathy were 

also excluded. All participants underwent neurologic and medical evaluation 

as well as ocular screening (visual acuity, slit lamp examination and 

intraocular pressure) and CCM, which were repeated annually.  

For the definition of DPN, we followed accepted criteria (Tesfaye, et al., 

2010) that rely on the presence of abnormal electrophysiological finding, 

based on age-matched controls at the site, in addition to clinical signs and/or 

symptoms, which was defined as one or more of the followings: (i) 

neuropathy disability score (NDS) ≥ 3 of 10 (Young, et al., 1993), or (ii) 

diabetic neuropathy symptom score (DNSS) ≥ 1 of 4 (Meijer, et al., 2002). 

The methods used during this study to assess neuropathy and health and 

metabolic factors have been presented in detail in Chapter 5 and will be 

described only briefly here. 

7.4.2 Assessment of neuropathy 

Neuropathy signs and symptoms: The neuropathy disability score (NDS), 

which is a scale of 0 to 10, was employed to assess neurological deficits. 

This measure included assessment of vibration, pin prick and temperature 

perception as well as presence or absence of ankle reflexes to both lower 

limbs. Diabetic neuropathy symptom score (DNSS), a scale of 0 to 4, was 

used to assess symptoms of neuropathy. 

Quantitative sensory tests (QST): QST comprised of vibration perception, 

measured on the plantar surface of the big toe, and thermal (warm and cold) 

sensation which was assessed at the dorsal surface of the foot on the hand-

dominant side. 
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Nerve conduction studies (NCS): Peroneal motor nerve conduction velocity 

(ankle to fibula head), amplitude (ankle to extensor digitorum brevis) and F 

wave latency were determined on the hand-dominant side of the participants. 

7.4.3 General health and metabolic assessment 

At each visit, all participants underwent assessment of height, weight, body 

mass index (BMI), blood pressure (BP), HbA1c and lipid profile.  

7.4.4 Corneal confocal microscopy and image analysis 

CCM was carried out using Rostock Cornea Module in combination with a 

HRT 3 confocal microscope (Heidelberg Engineering, Heidelberg, Germany). 

Eight images of the SNP, showing in focus nerves and not overlapping more 

than 20% (Vagenas, et al., 2012), were acquired from the centre of cornea 

on the hand-dominant side using manual focusing and section mode. 

Automatic segmentation and quantification of the SNP parameters including 

nerve fibre density (CNFD), branch density (CNBD) and length (CNFL) was 

performed using ACCMetrics (Dabbah, et al., 2011), which is a fully 

automated analytical system. The SNP parameters for each participant were 

the average value obtained from the eight captured images and expressed in 

the unit of number/mm2 for CNFD and CNBD, and mm/mm2 for CNFL. 

7.4.5 Intra- and inter observer repeatability of the SNP parameters 

The findings of intra- and interobserver study of the SNP parameters have 

been explained in detail in Chapter 4. Overall, CNFL and CNFD achieved the 

highest values for repeatability and reproducibility, whereas CNBD showed 

an acceptable consistency within- and between observers.  

7.4.6 Statistical analysis 

Normality of the data was examined using Kolmogorov-Smirnov test and the 

appropriate test was applied for analysis. Data are presented as mean ± 

standard deviation (SD) or median and interquartile range (IQR). Four sets of 

analyses were conducted. First, the demographic and clinical characteristics 
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variables were compared between control and diabetic groups as well as 

between baseline and final visit.  Second, using Toronto criteria, participants 

with diabetes were stratified as without DPN (DPN-ve) and with DPN 

(DPN+ve). Corneal nerve parameters and established neuropathy measures 

were compared between control, DPN-ve and DPN+ve. For the purpose of 

the two aforementioned analyses, parametric data were analysed using the 

independent samples t-test, paired t-test, one-way ANOVA and Scheffe post 

hoc test (pairwise comparison). Nonparametric data were analysed using the 

χ2 test, Kruskal-Wallis test and Mann-Whitney U test. 

Third, a linear mixed model was employed to examine changes over time in 

the SNP parameters and whether the changes were different in DPN-ve and 

DPN+ve compared with controls. In building a model for the data in SPSS, 

the following procedure was implemented. The wide format of the data was 

restructured to long format. The baseline values of time were set at 0, and 

the number of years from baseline was calculated for each time point of data 

collection.  

Since change in the SNP parameters (i.e. CNFD, CNBD and CNFL) over 

time was one of the main parameters of interest in the current study, they 

were individually considered as response variables and time was added to 

the model to test the linear effect of time on the response variables. The first 

model contained CNFD as the response variable, group (i.e. controls, DPN-

ve and DPN+ve), time and time*group interaction as primary fixed effects of 

interest and Type III sum of squares was selected. Group was included as a 

time-invariant predictor variable to explore any group differences over time.  

The association between the initial CNFD parameter and the change of this 

parameter was estimated by calculating the covariance matrix. Here, the 

‘variance components’ option was chosen and also the restricted maximum 

likelihood estimates for parameters was used. The process of the 

aforementioned model was repeated for CNBD and CNFL. Depending on 

whether the time*group interaction was statistically significant or not, a 

second set of fixed effects – namely sex, age at enrolment, duration of 

diabetes, HbA1c, lipid profile, blood pressure, BMI, alcohol and tobacco 
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consumption – were included and their effects were examined. A stepwise 

elimination of the variables with non-statistically significant P-values was also 

applied. 

The relation between risk factors and the changes of SNP parameters in 

diabetic individuals, regardless of their neuropathy status, was analysed with 

the latter model where all relevant risk factors were included. Control 

participants were excluded and group, as factor, was also removed from the 

model. 

Finally, to explore the relationship between changes in corneal nerve 

parameters and functional measures of neuropathy, absolute change in all 

parameters was calculated (∆parameter = parameter value at final visit – 

parameter value at baseline). Bivariate correlations between absolute change 

of corneal nerve parameters and neuropathy measures were estimated using 

Pearson r and Spearman's rho correlation coefficients, where appropriate.  

IBM SPSS 21 was used for all statistical tests and a two-tailed α=0.05 level 

of significance was considered for all analyses. 

7.5 Results 

Table  7-1 shows the clinical characteristics and demographic data of 

participants with diabetes and controls at baseline and final visit. 

Approximately 95% of the entering participants were Caucasians of 

European decent. There was no significant difference between the mean age 

of participants with diabetes and controls (P = 0.11). There were no 

statistically significant differences between diabetes and control groups with 

respect to high density lipoprotein (HDL), triglycerides, diastolic BP, BMI and 

number of cigarettes smoked per day (P > 0.25). Compared to controls, 

individuals with diabetes had a higher HbA1c (P < 0.001) and systolic BP (P = 

0.03) and lower total cholesterol (P < 0.001), LDL (P < 0.001) and alcohol 

consumption (P = 0.001). 
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Figure  7-1 Flow chart diagram of study participants at baseline and follow-up visits  
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Figure  7-1 is a flow chart of study progress and shows the number of 

participants that enrolled, attended and discontinued at baseline and 

subsequent visits. Overall, 23 participants discontinued during study period. 

The number of participants attending annual visits is also depicted 

graphically in Figure  7-2. Altogether, 184 participants (89% of the baseline 

participants) completed the final visit. Personal decision was the main reason 

for withdrawal (13 participants) followed by poor health (6 participants). Four 

participants were also lost to follow up during the study period. The median 

follow up duration was 3.7 years (range, 3.4 – 4.3) for the cohort. 

As can be seen from Table  7-1, at final visit HbA1c showed a clinically 

insignificant decrease in controls (mean difference 0.2%, P < 0.001), while it 

remained the same in participants with diabetes (P = 0.65). Lipid profile, 

blood pressure, height and alcohol consumption did not differ at final visit 

compared to baseline visit for both diabetes and control groups (P > 0.05).  

Whilst BMI showed a statistically significant increase at the final visit in 

participants with diabetes (P = 0.02), there was no change in controls (P = 

0.42). Both control and diabetic participants reported less smoking (number 

of cigarette/day) at the final visit compared to baseline (P = 0.001).  

 

Figure  7-2 Distribution and number of participants examined at various time 

points. DPN-ve, diabetic participant without neuropathy; DPN+ve, diabetic 

participant with neuropathy.  
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Table  7-1 Demographic and clinical characteristics of the participants at baseline and final visit. Results are expressed as 

mean ± SD or counts for categorical variable. 

 Baseline Year 4 follow up P-value 

Parameter Control (A) Diabetes (B) Control (C) Diabetes (D) A vs. B A vs. C B vs D 

n (male/female) 60 (26/34) 147 (71/76) 51 (22/29) 133 (67/66) 0.52* 0.98* 0.73* 

Age (years) 51.0 ± 14.7 47.3 ± 15.4 57.0 ± 13.7 52.0 ± 15.3 0.11† - - 

Duration of diabetes (years) 0 19.8 ± 14.5 0 24.0 ± 14.8 - - - 

HbA1c (%) 5.4 ± 0.3 8.1 ± 1.4 5.2 ± 0.5 8.0 ± 1.5 < 0.001‡ < 0.001§ 0.65# 

Total Cholesterol (mmol/L) 5.4 ± 1.2 4.7 ± 0.9 5.5 ± 1.1 4.6 ± 0.9 < 0.001† 0.83§ 0.23§ 

HDL (mmol/L) 1.5 ± 0.4 1.6 ± 0.4 1.4 ± 0.3 1.5 ± 0.4 0.26‡ 0.06§ 0.78# 

LDL (mmol/L) 3.5 ± 1.1 2.7 ± 0.8 3.5 ± 1.1 2.5 ± 0.7 < 0.001† 0.96§ 0.07§ 

Triglycerides (mmol/L) 1.1 ± 0.6 1.1 ± 0.6 1.2 ± 0.5 1.1 ± 0.8 0.43‡ 0.27§ 0.40# 

Systolic BP (mmHg) 116.1 ± 13.6 121.0 ± 16.5 117.1 ± 13.7 118.8 ± 12.1 0.03§ 0.88§ 0.12§ 

Diastolic BP (mmHg)  72.8 ± 7.0 72.7 ± 8.6 71.7 ± 8.2 71.2 ± 7.0 0.89† 0.27§ 0.13§ 

BMI (kg/m2) 26.1 ± 5.2 26.5 ± 4.4 26.8 ± 4.9 26.9 ± 4.7 0.46† 0.42§ 0.02§ 

Alcohol (units/week) 5.0 ± 5.7 1.9 ± 1.8 5.2 ± 6.1 1.8 ± 1.8 0.001‡ 0.78# 0.20# 

Cigarettes (number/day) 6.7 ± 11.5 5.1 ± 8.0 1.3 ± 5.2 1.3 ± 5.6 0.74‡ < 0.001# < 0.001# 

*Chi square test, †Independent samples test, ‡ Mann-Whitney test, § paired samples t test, #Wilcoxon test 
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Comparison of the mean or median change from baseline to final visit in 

neuropathy measures of individuals with diabetes showed that there were no 

significant changes in DNSS [median 0 (0 – 0) vs. 0 (0 – 0), P = 0.56], cold 

sensation threshold [median 28.5 (24.8 – 28.5) vs. 28.5 (26.0 - 28.5) °C, P = 

0.85], vibration threshold [median 6.8 (2.5 – 6.8) vs. 6.6 (2.9 – 6.6) Hz, P = 

0.42] and peroneal F wave latency [mean 52.0 ± 5.1 vs. 52.2 ± 7.7 ms, P = 

0.85]. NDS [median 1.0 (0.0 – 1.0) vs. 0.0 (0.0 – 0.0), P < 0.01], warm 

sensation threshold [median 37.6 (34.9 – 37.6) vs. 36.6 (34.8 - 36.6) °C, P < 

0.01] and peroneal amplitude [mean 4.6 ± 2.6 vs. 5.0 ± 2.5 mV, P = 0.03] 

showed slight but significant improvements, whilst peroneal nerve conduction 

velocity [mean 45.3 ± 6.0 vs. 44.4 ± 5.8 m/s, P = 0.03] was the only measure 

that declined significantly from baseline to final visit.   

Using Toronto criteria, in 147 individuals with type 1 diabetes, 39 (27%) were 

diagnosed with DPN at baseline. Table  7-2 delineates the outcomes of the 

SNP parameters and neuropathy assessment by DPN status. SNP 

parameters were significantly reduced in DPN-ve and DPN+ve groups 

compared to controls (P < 0.01).  

All established neuropathy measures were significantly different between 

groups. QST, peroneal F wave latency and peroneal amplitude displayed 

greater deficits in DPN+ve group compared to DPN-ve and control groups (P 

< 0.05). Peroneal nerve conduction velocity was significantly lower in both 

DPN-ve and DPN+ve groups compared to controls and there also was a 

significant difference between DPN-ve and DPN+ve groups (P < 0.05). NDS 

and DNSS were significantly higher in DPN+ve group compared to control 

and DPN-ve groups (P < 0.001). 

Figure  7-3 illustrates the 4-year time course for the SNP parameters in the 

cohort by neuropathy status. The results of the three created basic linear 

mixed model (LMM) analyses for CNFD, CNBD and CNFL can be found in 

Table  7-3. The Type III tests of fixed effects shows overall test of significance 

for the predictors included in the three basic models (LMM 1-3).  
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There was a significant effect of group for all three models; however the 

effect of time was not significant in any of them. The Type III F test for the 

interaction between group and time was only significant in LMM1; therefore 

no more models were fitted for CNBD and CNFL as response variables.  

A second subset of fixed effects was included in LMM1. Upon sequential 

removal of non-statistically significant fixed effects and considering the lower 

resultant Akaike’s information criteria (AIC) for comparing alternative models 

(Shek & Ma, 2011), a final model (LMM4) contained the fixed effects of 

group, time, age, duration of diabetes, HbA1c and the group*time interaction 

was fitted. Parameter estimates and corresponding standard errors, P-values 

and 95% confidence intervals are given in Table  7-4.  

Group and time did not show a significant effect, while the effects of age at 

enrolment (β = -0.06, P = 0.04) and duration of diabetes (β = -0.08, P = 0.03) 

were significant. LMM4 also showed a differential effect of time on the 

trajectory of CNFD with the slope decreasing by 0.91 nerve/mm2 for DPN+ve 

individuals compared to controls (the reference level of the group). 

The examination of significant risk factors for corneal neuropathy in diabetic 

individuals, irrespective of the baseline neuropathy status, showed that 

CNFD was associated with HbA1c (β = -0.58, P = 0.03) and duration of 

diabetes (β = -0.08, P = 0.03). CNBD was found to be affected by the 

duration of diabetes (β = -0.21, P = 0.01) and smoking (β = -0.25, P = 0.04). 

No statistically significant association was found between CNFL and the 

included risk factors.     
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Table  7-2 Baseline comparison of corneal nerve parameters and neuropathy 
measures of the study participants according to presence and absence of 
neuropathy defined by Toronto criteria. Outcomes are mean ± SD. 

 DPN status at baseline  

Characteristics Controls 
n = 60 

DPN-ve 
n =108 

DPN+ve 
n =39 

P 
Group difference 

Corneal nerve parameters 

CNFD 
(number/mm2) 

22.3 ± 8.0 18.3 ± 7.1 16.3 ± 8.3 < 0.001* 
Controls vs. DPN-ve, 

DPN+ve† 
CNBD 

(number/mm2) 
35.1 ± 23.8 24.2 ± 17.4 23.7 ± 20.9 0.003‡ 

Controls vs. DPN-ve, 
DPN+ve§ 

CNFL 
(mm/mm2) 

18.1 ± 3.7 16.0 ± 3.8 15.0 ± 4.3 < 0.001* 
Controls vs. DPN-ve, 

DPN+ve†  
Quantitative Sensory Tests 

Cold sensation 
threshold (°C) 

28.4 ± 2.8 27.4 ± 5.1 23.4 ± 7.2 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Warm 
sensation 
threshold (°C) 

38.0 ± 4.1 37.4 ± 3.8 41.6 ± 3.7 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Vibration 
threshold (Hz) 

7.0 ± 8.1  8.7 ± 10.3 25.7 ± 22.2 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Nerve Conduction Studies 

Peroneal F 
latency (ms)  

49.6 ± 5.2 51.5 ± 4.9 55.7 ± 5.0 < 0.001* 
Controls vs. DPN+ve†  
DPN-ve. vs DPN+ve† 

Peroneal nerve 
amplitude (mV) 

4.7 ± 2.3 5.2 ± 2.7 2.7 ± 1.8 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Peroneal nerve 
conduction 
velocity (m/s) 

49.0 ± 5.5 46.7 ± 5.0 39.6 ± 5.9 < 0.001* 
Controls vs. DPN-ve, 

DPN+ve†  
DPN-ve vs. DPN+ve†  

Neuropathy 
disability score 
(0–10) 

0.4 ± 0.9 0.6 ± 0.9 2.2 ± 1.5 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

Diabetic 
neuropathy 
symptom score 
(0–4) 

0.1 ± 0.3 0.2 ± 0.5 1.1 ± 1.0 < 0.001‡ 
Controls vs. DPN+ve§ 
DPN-ve vs. DPN+ve§ 

DPN-ve, diabetic participant without neuropathy; DPN+ve, diabetic participant with 
neuropathy 
*One way ANOVA test, †Scheffe post hoc test, ‡Kruskal Wallis test, §Mann-Whitney test 
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Figure  7-3 Longitudinal course of corneal nerve fibre density (A), branch 
density (B) and fibre length (C) over time. On each graph, the solid (green) 
line represents control participants, the dashed line (blue) represents diabetic 
participant without neuropathy and the dotted line (red) represents diabetic 
participant with neuropathy. Error bars indicate mean ± SEM. 
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Table  7-3 Results of Type III tests of fixed effects from the three initial linear 

mixed models analysis. Dependent variables were CNFD in linear mixed 

model 1 (LMM1), CNBD in LMM2, and CNFL in LMM3. 

 LMM1 LMM2 LMM3 
 F P F P F P 

Intercept 1420.0 < 0.001 423.2 < 0.001 4254.4 < 0.001 
Group 8.2 < 0.001 7.4 0.001 10.9 < 0.001 
Time (years) 0.03 0.87 1.8 0.18 0.5 0.49 
Group*Time 4.0 0.02 1.4 0.24 1.6 0.20 
 

Table  7-4 Maximum likelihood of the fixed effect parameters for linear mixed 

model 4 with CNFD as the continuous response variable. 

Parameter Estimate (95% CI) Std. Error P-value 

Intercept 27.57 (23.01-32.12) 2.32 0.00 
Time 0.35 (-0.10-0.80) 0.23 0.13 
Group 

DPN+ve -1.36 (-5.17-2.45) 1.94 0.48 
DPN-ve -1.33 (-4.18-1.52) 1.45 0.36 
Controls 0* 0  

Age at enrolment -0.06 (-0.12-0.00) 0.03 0.04 
Duration of 
Diabetes 

-0.08 (-0.16 to -0.01) 0.04 0.03 

HbA1C -0.41 (-0.89-0.08) 0.25 0.10 
Group*Time 

DPN+ve * Time -0.91 (-1.63 to -0.20) 0.37 0.01 
DPN-ve * Time -0.26 (-0.82-0.31) 0.30 0.37 
Controls * Time 0* 0  

* This parameter is set to zero because it is the reference level of the 
group. 

 

Since peroneal nerve conduction velocity was the only measure that showed 

a significant worsening in the diabetes group, we sought to compare the 

trajectories of this parameter between groups utilizing an additional mixed 

model (LMM5). The above-mentioned basic model was repeated with 

peroneal nerve conduction velocity as the response variable. There was a 

significant effect of time (P < 0.01) and group (P < 0.01), but the group*time 
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interaction was not significant (P = 0.92), indicating that the observed time 

effect was not different between groups (Figure  7-4). 

 

Figure  7-4 Natural course of peroneal nerve conduction velocity of the 

participants in this study. The solid line (green) represents control 

participants, the dashed line (blue) represents diabetic participant without 

neuropathy and the dotted line (red) represents diabetic participant with 

neuropathy. Error bars indicate mean ± SEM.  

In the diabetic group, bivariate correlation revealed a modest association 

between absolute changes of CNBD and peroneal nerve conduction velocity 

(Pearson r = 0.23, P = 0.02) (Table  7-5, A). In the DPN+ve group, there was 

a significant correlation between CNBD and peroneal nerve conduction 

velocity (Pearson r = 0.38, P = 0.05). Absolute change in CNFL was also 

positively correlated with the cold sensation threshold (Pearson r = 0.40, P = 

0.03) (Table  7-5, B). 
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Table  7-5 Correlation coefficients and estimated P-values among absolute changes (∆) of corneal nerve parameters and 
established measures of neuropathy in (A) diabetic participants and (B) diabetic participants with DPN. Shaded areas indicate 
significant correlations (P < 0.05). 

A: Diabetic participants (with and without DPN) 
  ∆ NDS ∆ DNSS ∆ CST ∆ WST ∆ VT ∆ PNL ∆ PNAm ∆ PCV 
∆ CNFD Correlation coefficient -0.02 0.01 0.00 0.12 0.09 -0.14 -0.10 0.13 
 P-value 0.81 0.93 1.00 0.18 0.34 0.21 0.27 0.16 
∆ CNBD Correlation coefficient -0.01 -0.03 0.17 0.10 0.03 -0.07 -0.01 0.23* 
 P-value 0.96 0.73 0.06 0.28 0.74 0.55 0.94 0.02 
∆ CNFL Correlation coefficient 0.01 -0.06 0.06 0.08 -0.02 0.01 -0.07 0.15 
 P-value 0.97 0.53 0.50 0.37 0.85 0.93 0.46 0.12 

B: Diabetic participants with DPN 
∆ CNFD Correlation coefficient -0.08 -0.04 0.08 -0.08 0.21 -0.14 -0.10 0.24 
 P-value 0.67 0.84 0.67 0.67 0.26 0.58 0.63 0.24 
∆ CNBD Correlation coefficient -0.24 -0.13 0.33 -0.14 -0.03 -0.44 0.37 0.38* 
 P-value 0.17 0.46 0.054 0.42 0.86 0.08 0.06 0.048 
∆ CNFL Correlation coefficient -0.28 -0.23 0.40* -0.18 -0.27 -0.29 0.36 0.24 
 P-value 0.11 0.18 0.03 0.30 0.15 0.26 0.06 0.23 
CNFD, corneal nerve fibre density; CNBD, corneal nerve branch density; CNFL, corneal nerve fibre length; NDS, neuropathy 
disability score; DNSS, diabetic neuropathy symptom score; CST, cold sensation threshold; WST, warm sensation threshold; 
VT, vibration threshold; PNL, peroneal nerve latency; PNAm, Peroneal nerve amplitude; PCV, peroneal nerve conduction 
velocity. 
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7.6 Discussion 

In vivo assessment of the SNP morphology using CCM has emerged as a 

valuable clinical modality to improve our understanding of the relationship 

between this rich nerve plexus and various ocular and systemic conditions 

and diseases. As reviewed in more detail elsewhere (Villani et al., 2013a; 

Villani, et al., 2013b), morphometric evaluation of the SNP has been used to 

diagnose, assess and follow up ocular surface conditions including ocular 

allergy, dry eye, infectious keratitis, and glaucoma and after keratorefractive 

surgery and contact lens wear. Currently, considerable evidence exists that 

advocates the utility of CCM for assessment of small nerve fibre pathology 

induced by systemic and neurological conditions, in particular DPN. This 

study examined the longitudinal aspect of the utility of CCM to serve as an 

acceptable measure of DPN in clinical research and practice.  

We report data from a cohort of individuals with type 1 diabetes (n = 147) and 

healthy controls (n = 60) collected from baseline to a median duration of 3.7 

years. Although we demonstrated the stability of corneal nerve morphology in 

a 3-year longitudinal study in healthy individuals (Chapter 6), to our 

knowledge no previous study has examined the dynamic natural course of 

SNP microstructures in relation to DPN. With reference to the lack of 

previous investigation concerning the natural history of corneal nerves in 

diabetes, the present study is a positive response and attempts to fill this 

research gap. 

At the baseline visit, age was matched between participants with diabetes 

and controls. Diabetic participants showed moderate glycaemic control and 

excellent control of cardiovascular risk factors including the BP and lipid 

profile in accordance with the current treatment guidelines (American 

Diabetes Association, 2014). The lower level of total cholesterol and LDL 

cholesterol in our diabetic patients as compared to controls is attributed to 

the fact that 35% were receiving lipid-lowering medications. 

Comparison of the clinical parameters at baseline and final visit showed that 

there were no substantive and clinically significant changes to health, 
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metabolic and anthropometric measurements, indicating stable glucose 

control and desirable maintenance of cardiovascular risk factors. Although 

the Hawthorne effect (McCambridge et al., 2014) may have been involved, 

the finding of lower alcohol consumption in the diabetic patients at baseline 

which is maintained at follow up reflects good diabetes education. In addition, 

the significant reduction in tobacco consumption over time in both diabetic 

patients and control subjects presumably reflects overall population level 

education to stop smoking.  

Except for peroneal nerve conduction velocity, with a statistically significant 

but clinically trivial decline (-0.9 m/s, P = 0.03), the remaining established 

neuropathy measures remained unchanged or improved slightly from 

baseline to the final visit. However, LMM5 showed that changes in peroneal 

nerve conduction velocity in DPN+ve and DPN-ve patients did not differ 

significantly from controls, indicating a similar effect of time for groups 

(Figure  7-4). The low rate of change over time in these measures can 

possibly be attributed to (a) the maintenance of a healthy lifestyle and 

compliance with medical advice among our diabetic cohort; (b) the inclusion 

of participants with only mild neuropathy; and (c) the relatively short duration 

of study. Negligible worsening or no progression of the traditional measures 

of DPN has also been observed in the placebo arm of a recent interventional 

study (Ziegler, et al., 2011) of 227 patients with predominantly type 2 

diabetes, but with substantially worse glycaemic control at baseline (8.8 + 

1.9%) and a reduction of 0.67 + 1.41% over 4 years. Our findings are further 

supported by a 3 year longitudinal study of 62 subjects with predominantly 

type 2 diabetes and good glycaemic control (HbA1c 7.23 + 1.03%), which 

interestingly demonstrated stability in a range of neurological examinations, 

symptom scores, autonomic testing, QST and nerve conduction studies with 

worsening only in the sural nerve amplitude and the axon-reflex vasodilation 

test, a measure of small fibre neuropathy (Gibbons, et al., 2013). 

All three SNP parameters were significantly reduced in diabetic participants 

without and with neuropathy at the baseline visit. This finding is consistent 

with other studies, which also show a depletion of SNP tissue in diabetic 
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patients without and with DPN, reflecting early subclinical small fibre damage 

(Ahmed, et al., 2012; Petropoulos, et al., 2013a; Petropoulos, et al., 2014; 

Tavakoli, et al., 2010b). Based on the reported association of SNP 

parameters and DPN severity (Petropoulos, et al., 2013a; Tavakoli, et al., 

2010b), we hypothesised that participants with diabetes and DPN would 

demonstrate quicker deterioration of SNP tissue than those without DPN. In 

order to examine this hypothesis, we built several linear mixed models. Such 

models afford robust methods of analysing longitudinal data with repeated 

measurements, in particular when the data is incomplete or unbalanced due 

to missing data, dropouts or differences in observation time points (Shek & 

Ma, 2011). 

According to the three basic mixed models developed here (Table  7-3) and 

regardless of group, there was no significant effect of time for any of the 

three SNP parameters. A group*time interaction term was not significant for 

CNBD or CNFL (P = 0.24 and P = 0.20), indicating that the presence or 

absence of DPN at baseline did not appear to impact CNBD and CNFL 

changes over time. Mean CNBD (23.7 ± 20.9 vs. 22.7 ± 16.9, no/mm2) and 

CNFL (15.0 ± 4.3 vs. 14.4 ± 4.1 mm/mm2) declined slightly over 4 years in 

the neuropathy group, but to an extent that is neither clinically nor statistically 

significant.  

However, the Type III F test for the interaction between time and group was 

statistically significant for CNFD (P = 0.02), suggesting that the relationship 

of time with CNFD change varies depending on the group. LMM4 (Table  7-4) 

demonstrated that whilst CNFD trajectories were not statistically different 

between DPN-ve and controls, the mean CNFD decreased significantly in the 

DPN+ve group during follow up, with a loss of approximately 1 nerve/mm2 

per year. This observed CNFD change was best predicted by participant age 

and duration of diabetes (both P < 0.05). One may anticipate that such a 

change would be influenced by glycaemic control, however, HbA1c did not 

reach statistical significance (P = 0.10) in LMM4, where CNFD was 

considered as a dependent variable, possibly because of the relative stability 

of this factor during the study period. Although the outcome of CNFD decline 
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indicates dynamic structural small nerve fibre damage at the SNP, the 

relevance of CNFD change in the neuropathy group and the relative stability 

of CNBD and CNFL are not clear. Disparate changes to these three corneal 

nerve parameters have also been reported in diabetic individuals after 

improvement in risk factors for DPN (Tavakoli, et al., 2011b) and after 

simultaneous pancreas and kidney transplantation (Mehra, et al., 2007), 

suggesting a complex, dynamic and perhaps non-linear relationship between 

these parameters. 

The baseline cross-sectional findings in the present study (Table  7-2) 

confirmed that all the three parameters were reduced in the neuropathy 

group compared to controls. The parameter that underwent the most marked 

reduction over time was CNFD. This suggests that branch damage (thinner 

branches emanating from major nerves) might represent the primary 

pathological change in DPN, whereas CNFD (a parameter related to the 

major nerve trunks) deterioration occurs later. The reduction in CNFD along 

with a non-significant decline of the other two parameters may also suggest 

degeneration of major nerve trunks with concomitant regeneration reflected 

by an increase in the CNBD and CNFL. Therefore, it is conceivable that loss 

and indeed repair of different SNP parameters may occur at different stages 

of the disease.  

Limited studies are available documenting the link between corneal small 

nerve fiber change and risk factors of DPN (Edwards, et al., 2012b; Ishibashi, 

et al., 2012; Tavakoli, et al., 2011b). In the present study, when the data were 

restricted to include only diabetic individuals and upon removal of the effect 

of group in the linear mixed models, we found that every one-unit increase of 

HbA1c was associated with a decrease of approximately 0.6 nerve/mm2 in 

CNFD. There also was a negative effect of diabetes duration on CNFD and 

CNBD. Each 10-year increase of diabetes duration at baseline resulted in 0.8 

and 2.0 nerve/mm2 decline of central corneal CNFD and CNBD, respectively. 

CNBD was also significantly affected by smoking. Increasing one cigarette 

per day had a negative effect of 0.25 nerve/mm2.  
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These results demonstrate the link between risk factors of DPN and 

morphologic parameters of corneal nerves. We have no clear explanation 

why HbA1c has an effect on CNFD, but not CNBD and CNFL.  Nevertheless, 

this finding is consistent with the study of Tavakoli et al. (2011b) who 

reported a significant correlation between changes in HbA1c and CNFD (r = -

0.52, P < 0.01) but not for CNBD and CNFL. In a study of 38 type 1 diabetic 

patients with and without neuropathy, Ishibashi et al. (2012) reported time-

dependent effects of HbA1c on SNP parameters. While nerve beading 

frequency was positively correlated to the mean HbA1c levels at time of, or up 

to three months prior to CCM examination, no significant association was 

found between CNFD and CNFL with HbA1c up to 6 years before CCM 

examination. 

These findings emphasise the importance of including different SNP 

parameters in future studies where these parameters are to be used as 

measures of small nerve fibre damage and in particular repair. Additionally, in 

this study, only the central cornea has been investigated. Recent studies 

have revealed that loss of corneal neve structure in the SNP mainly occurred 

at the inferior whorl, which is slightly more distal than the central cornea and 

may therefore be expected to show more marked pathology (Davidson, et al., 

2014; Edwards, et al., 2012a). Further longitudinal work assessing the 

inferior whorl as opposed to the central cornea may provide additional 

insights and ability to discriminate change in relation to DPN. 

In previous cross-sectional studies, SNP parameters have been shown to 

correlate with functional and structural measures of neuropathy (Quattrini, et 

al., 2007; Sivaskandarajah, et al., 2013; Tavakoli, et al., 2010b). Quattrini et 

al. (2007) reported a significant correlation between CNFD versus NDS (r = -

0.30, P = 0.03) and cold sensation threshold (r = -0.40, P < 0.01). In a 

subsequent study, moderate correlations were found between NDS and 

corneal nerve parameters (r; -0.48 to -0.58; P < 0.001) (Tavakoli, et al., 

2010b). In a recent study by Sivaskandarajah et al. (2013), CNFD, CNBD 

and CNFL were related to cold sensation threshold (r;  0.32 to 0.37; P ≤ 

0.01). In this longitudinal study, we examined the relationship of change in 
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corneal nerve parameter with conventional measures of neuropathy by 

calculating the absolute change from baseline to final visit for participants 

with diabetes. We found a modest correlation between CNBD and peroneal 

conduction velocity (Pearson r = 0.23, P = 0.02). When the data were 

restricted to the DPN+ve group, this correlation increased to 0.38. 

Furthermore, CNFL also correlated to cold sensation threshold (r = 0.40, P = 

0.03), which indicates that SNP parameters do change in a fashion 

comparable with some traditional measures of neuropathy. 

The key strengths of this study are its longitudinal nature, inclusion of a range 

of traditional neuropathy measures (small and large nerve fibre dysfunction) 

in a relatively large number of type 1 diabetic participants, the consistency 

and strict adherence to technical and methodological procedures such as 

capturing and selection criteria of the SNP images, and employing a fully-

automated image analysis algorithm, which is essential to eliminate 

shortcoming associated with manual and semi-automated analysis. Thus, we 

used a fully automated image analysis algorithm which has been validated 

and compared against the manual and semi-automated analysis (Dabbah, et 

al., 2011; Dehghani, et al., 2014; Petropoulos, et al., 2014) in individuals with 

diabetes. 

In this study, a multimodal approach (the Toronto criteria) has been used for 

the case definition of DPN and comprises nerve electrophysiology and 

clinical signs and/or symptoms of neuropathy. Given the availability of 

different definitions for DPN, one may argue whether using the Toronto 

criteria is the appropriate approach for the utility of corneal neve morphology 

in diabetes. It is known from previous studies that due to high variability and 

poor reproducibility of signs and symptoms of neuropathy, their application in 

clinical research is limited if they are to be used alone (Malik, 2014b). Hence, 

the published consensus definitions for clinical research of DPN such as the 

San Antonio criteria (American Diabetes Association & American Academy of 

Neurology, 1988), the American Academy of Neurology, American 

Association of Electrodiagnostic Medicine and American Academy of 

Physical Medicine and Rehabilitation guidelines (England et al., 2005) and 
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the Toronto Diabetic Neuropathy Expert Group (Tesfaye, et al., 2010) 

recommended inclusion of signs and/or symptoms of neuropathy and nerve 

conduction studies. 

The notion of including nerve electrophysiology for case definition of DPN in 

relation to the utility of CCM has been confirmed by Halperm et al. (2013). 

They studied the effect of different definitions of DPN on the validity of 

corneal nerve structure (CNFL) in type 1 diabetic participants and found that 

definitions that included electrophysiology had a better performance while 

including clinical criteria alone resulted in a substantially lower performance 

of detection capability of corneal nerve morphology. 

A limitation of this study is that a majority of type 1 participants were enrolled 

from specialized clinics, where the glycaemic and cardiovascular factors 

were optimally controlled, which may not represent the typical population with 

type 1 diabetes. Additionally, four years of study might be insufficient to 

discern changes over time, particularly in the case of patients with mild 

neuropathy or the limited number of apparently motivated participants with 

well-controlled diabetes available in the neuropathy group.  

In conclusion, the findings presented herein provide evidence that CCM has 

the potential to track the structural alterations of the small nerve fibres in 

DPN. Furthermore, these findings support the notion that quantification of the 

SNP morphology has a substantial potential to be employed as an 

appropriate adjunct measure to conventional measures of DPN.  
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CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

In this chapter the main findings and novel contributions of the research 

study presented throughout this thesis are summarized. Recommendations 

for further research in this field are also highlighted for possible future 

studies. 

8.1 Summary of the research project  

In cross-sectional studies, morphology of corneal subbasal nerve plexus 

(SNP) has been suggested as a potential marker for diabetic peripheral 

neuropathy (DPN), which is a debilitating and prevalent complication of 

diabetes and currently has no effective therapy. This research project sought 

to examine the longitudinal aspects of the suitability of the SNP structure in 

the context of DPN.  

Application of CCM in this longitudinal study required employment of a fully-

automated quantification system of SNP parameters to reduce or eliminate 

the limitations that are associated with manual and semi-automated 

techniques. The objective of the first experiment presented in Chapter 3 was 

to compare a fully-automated technique (ACCMetrics) (Dabbah, et al., 2011) 

with manual (CCMetrics) (Dabbah, et al., 2009) and semi-automated 

(NeuronJ) (Meijering, 2010) methods regarding agreement, association and 

detection capability in a cohort of healthy participants and diabetic individuals 

without and with DPN using Bland-Altman method (Bland & Altman, 1986) 

and intraclass correlation coefficients (ICC). An important finding of this study 

was that the fully-automated technique could compute CNFL values which 

were in close agreement with manual and semi-automated methods. 

Furthermore, the three techniques examined in this study were able to 

diagnose diabetic participants with DPN from controls.  Therefore, due to its 

speed, objectivity, and consistency, the fully-automated algorithm was 

chosen for analysis of CCM images in this longitudinal project.  

While addressing the issues of repeatability - within and between observers - 

is an essential element of any scientific research, this is of more importance 



 129 

Summary, Conclusions and Recommendations 129 

when longitudinal studies with repeated measurements are conducted in 

order to track changes over time. The purpose of the second experiment 

presented in Chapter 4 was to examine the intra- and interobserver 

repeatability of three main SNP parameters namely – CNFD, CNBD and 

CNFL using statistical procedures including Bland-Altman method, ICC and 

coefficient of repeatability. The findings of this study showed that CNFL was 

the most repeatable and reliable parameters followed by CNFD, whereas 

CNBD achieved only an acceptable level of repeatability. 

Given the cross-sectional reports of the utility of the SNP structure as a 

potential novel marker of DPN, there was uncertainty as to whether age 

influences this rich nerve plexus. To appreciate the real age effect and also 

to examine the time course of SNP morphology in healthy individuals, the 

experiment presented in Chapter 6 was conducted. An established image 

sampling protocol (Vagenas, et al., 2012) was implemented and all images 

were analysed by fully-automated algorithm to quantify CNFL. To assess the 

relationship between age and CNFL and the time-course of CNFL over three 

years, two linear mixed models were fitted using SPSS statistical software. 

Although the SNP morphometric parameters showed a stable course over a 

3-year period in healthy individuals, there was a slight linear reduction in 

CNFL with age (linear decrease of 0.05 mm/mm2 per one year increase in 

age). This finding clearly confirmed the age effect on SNP morphology, but 

not to an extent reported by some cross-sectional studies. Indeed CNFL, 

which is perhaps the most important structural parameter, only declined by 

0.23% per year and it would take 20 years for a clinically insignificant decline 

of 1 mm/mm2 to be observed in CNFL. This is an important attribute for 

corneal nerve structure if it is to be considered as measure of DPN. 

In the last experiment, presented in Chapter 7, the longitudinal application of 

CCM in combination with automated image analysis was moved towards in 

the context of DPN assessment. The purpose of this study was to assess the 

natural history of SNP structural parameters in diabetic participants without 

and with mild neuropathy over four years and to compare their trajectories to 

non-diabetic/non-neuropathic controls. Additionally, the longitudinal 
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relationship between established measures of neuropathy with SNP 

parameters was also studied. While there was no clinically significant change 

to health and metabolic parameters and neuropathy measures in diabetic 

participants during study period, there was an evidence of dynamic small 

fibre damage at the SNP in the neuropathy group which was revealed by a 

significant linear decline of CNFD (decrease rate of approximately 1 

nerve/mm2 per year). The observed decline was associated with age and 

duration of diabetes of the participants. The findings also demonstrated that 

the SNP parameters did change in a fashion comparable with some 

traditional measures.   

The findings of the studies presented in chapters 6-7 demonstrated that there 

was a difference between age-related and DPN-related changes in corneal 

nerve morphology. CNFL was the only SNP structural parameter influenced 

by age while CNFD and CNBD were not affected in healthy individuals. On 

the other hand, CNFD was the parameter that underwent the most marked 

decline over time in DPN+ve group. The former implies that age-dependent 

alterations of the SNP mainly occur at short interconnecting links while the 

latter indicates that major nerves are the primary target in the process of 

DPN. Hence, it is plausible to assume that there is a distinct difference 

between physiological and pathophysiological features of nerve damage 

associated with normal aging process versus diabetic neuropathy in the SNP. 

Once again, those findings highlight the importance of including the three key 

SNP parameters in CCM investigations.  

8.2 Contribution to new knowledge 

The works embodied in this thesis, which comprised of three publications and 

two linking chapters add to the current knowledge regarding application of in 

vivo corneal confocal microscopy and the appropriateness of the SNP 

morphology as potential measure of DPN. The major contributions of this 

project include:  
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• confirming the suitability of CCM combined with a fully-automated 

algorithm in terms of quantification of structural parameters, detection 

capacity and the repeatability of procedure at operator level; 

• establishing the true age effect on corneal nerve morphology and the 

stability of this nerve plexus in healthy state, which not only confirmed the 

suitability of corneal nerve morphology as a potential measure for DPN, it 

has implication in respect to appreciation of the effect of pathology and 

surgical or treatment modalities on the morphology of the SNP, and 

• providing evidence that CCM has the potential to track the structural 

alterations of the small nerve fibres in DPN, which has a major contribution 

to support the notion that quantification of the SNP morphology has a 

substantial potential to be employed as an appropriate adjunct measure to 

conventional measures of DPN.    

8.2 Recommendations for future research 

The work presented in this thesis is the first study that has employed CCM in 

a natural history study of SNP microstructures in relation to DPN. Although 

this project, in general, provides additional evidence with respect to the 

suitability and capacity of CCM as a small fibre structural measure of DPN, 

more research is required to establish this technique as a marker of DPN and 

to emerge as a clinical tool. This section provides some recommendations on 

how the outcomes of this study may enhance future research. 

Accurate and reliable automated segmentation of the images obtained from 

CCM is still in the early stages and needs more attention. For example, while 

the fully-automated image analysis software reported here has been 

validated for the quantification of SNP parameters, the underestimation of 

morphometric measures compared to manual method may limit the efficacy 

of this technique to detect early changes in respect to DPN. Therefore, future 

efforts should concentrate on eliminating or alleviating such shortcomings.   

These longitudinal outcomes that have been reported here are limited to 

nerve changes in the central cornea and may not be applicable to other more 

peripheral regions of the human SNP. Recent studies have shown that loss 
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of corneal neve structure in the SNP mainly occurred at the inferior whorl 

(Davidson, et al., 2014; Edwards, et al., 2012a) which may enhance the utility 

of CCM in relation to DPN. This area is located 1 to 2 mm inferior to the 

corneal apex and is slightly more distal than the central cornea. Therefore 

this region may be an appropriate region for future longitudinal studies to 

investigate more marked pathology and early nerve damage or repair.  

The low rate of change in established measures of neuropathy over time, as 

experienced in this study, may be avoided by selecting diabetic patients with 

varying degrees of neuropathy severity and recruiting them in a fashion 

which best presents the typical population with diabetes. Additionally, 

considering the availability of the proper diabetic care, longer study duration 

is required to discern changes over time.  

Nevertheless, it is hoped that the present work will serve as a basis for 

developing further efforts to employ CCM as a surrogate endpoint for DPN, 

perhaps to extend the utility of this technique to clinical trials and to find an 

effective treatment for DPN which is the main factor predisposing diabetic 

patients to ulceration and subsequently to amputation. Therefore, due to the 

practicalities of CCM, it is time to move forward and employ this valuable 

alternative to conventional measures of small nerve fibres in clinical trials of 

DPN to assess the therapeutic efficacy of new drugs or treatments. 
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