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Macrophages play a crucial role in the maintenance and resolution of inflammation and express a num-
ber of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement
receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and
bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activa-
tion. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt
and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited
lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially
blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression
of the pro-inflammatory cytokines TNF-a and IL-6. Collectively, these data indicate that biliverdin
regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism
underlying biliverdin’s anti-inflammatory effects.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Biliverdin (BV), a molecule with tetrapyrrole structure, is
derived from heme catabolism via heme oxygenase (HO) activity
and is rapidly reduced to bilirubin (BR) by biliverdin reductase
(BVR) [1,2]. Both BV and BR are antioxidants [3], though, have been
regarded previously as waste products. Recent findings, however,
have begun to elucidate diverse protective roles for these
molecules [4,5]. Biliverdin shows strong cytoprotective activities
in various in vitro and in vivo models of vascular injury, ische-
mia–reperfusion injury and organ transplantation, demonstrating
its therapeutic potential [6,7]. We recently reported that BV
reduces the expression of toll like receptor-4 (TLR-4) in murine
macrophages via nitric oxide-dependent activation of BVR [8].
TLRs transmit signals to induce pro-inflammatory cytokine
expression via NF-jB [9] and synergize with C5aR (CD88) to
aggravate inflammatory responses to endotoxin [10]. TLR-ligands
are dependent on complement activation and C5aR regulates
TLR-4 signaling, supporting the importance of C5aR in promoting
inflammation [11].

Complement is a major component of innate and adaptive
immunity. Similar to TLRs, complement is also activated by
pathogen associated molecular patterns, including LPS, among
many other mechanisms involved in classical, lectin and alterna-
tive activation pathways [12,13]. Complement activation induces
pathogen opsonization and generation of the anaphylatoxins: C3a
and C5a, which stimulate inflammatory responses by binding to
respective C3aR and C5aR receptors [12]. Excessive inflammation
mediated by complement activation contributes to various dis-
eases, including sepsis, asthma, Alzheimer’s disease and athero-
sclerosis [12–14]. Therefore, it is important to identify molecules
that regulate or attenuate complement-mediated inflammation.
Both BV and BR ameliorate complement-mediated hemolysis by
inhibiting the classical pathway of complement activation at the
C1 step via physically interacting with complement proteins
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[15,16]. However, BV’s effect on the expression of complement
receptors and mechanisms underlying this regulation remains unknown.

The present study thus assessed the effects of BV and the PI3K/
mTOR pathways on C5aR expression in primary and immortalized
macrophages. Data reveal that BV inhibits LPS-dependent C5aR
expression, in part via mTOR signaling.
2. Material and methods

2.1. Cell culture and treatment

RAW 264.7 mouse macrophage cell line was purchased from
ATCC (USA). RAW cells were cultured (<15 passages) in RPMI-
1640 medium supplemented with 10% fetal bovine serum, 100
U/mL penicillin and 100 lg/mL streptomycin (Life Technologies,
Grand Island, NY, USA; complete medium). Cells (1.5 � 105

cells/mL) were seeded on 60 mm Sterilin tissue culture plates or
6 well plates (Thermo Scientific, Logan, UT, USA) in 3 mL of com-
plete medium and incubated at 37 �C (5% CO2) for 24 h prior to
experimentation. Cells were then untreated or challenged with
100 ng/mL of LPS for 24 h in the absence or presence of freshly pre-
pared biliverdin hydrochloride (10 or 50 lM; Frontier Scientific,
Logan UTA, USA) in 0.01% DMSO as previously described [1].
Re595 LPS from Salmonella minnesota (Sigma–Aldrich, St. Louis,
MO, USA) was dissolved in DPBS (Life Technologies) and used at
a final concentration of 100 ng/mL. Rapamycin (Sigma–Aldrich)
was used as selective inhibitor of mTOR [17] and was applied to
sub-sets of cells (10 nM in 0.01% DMSO final concentration) 1 h
prior to LPS or BV treatment. Biliverdin and related tetrapyrroles
are photo sensitive, therefore, all BV containing solutions were
protected from light. Appropriate vehicle control experiments
were also completed.

2.2. Isolation of bone marrow-derived macrophages

7–8 week old C57BL/6 mice were purchased from Jackson
Laboratories (Jackson Laboratories, Bar Harbour, ME, USA). All
animals were held under pathogen free conditions. Prior to com-
pletion, experiments were approved by the Beth Israel Deaconess
Medical Centre (BIDMC) Animal Care and Use Committee. Bone
marrow-derived macrophages (BMDMs) were isolated as previ-
ously described [1]. Macrophages were harvested after 5 days
and were then cultured for 24 h in RPMI medium supplemented
with 10% FBS and 5% Antibiotic–Antimycotic (Life Technologies)
prior to experimentation. Cells were then treated with 50 lM BV
and 100 ng/mL LPS for 24 or 48 h.

2.3. RNA Extraction and qRT-PCR

Total RNA was isolated from cultured cells using RNeasy� Plus
Mini Kits (Qiagen, Chadstone, VIC, Australia) according to manu-
facturer’s instructions. One microgram of RNA was reverse tran-
scribed into cDNA using a first strand cDNA synthesis kit
(Thermo Scientific). HPRT and GAPDH were used as reference
genes based on their stability of expression determined by geNorm
Table 1
Primer sequences and amplicon sizes of housekeeping (GAPDH and HPRT) and target gen

Gene target Forward sequence

GAPDH TCAACAGCAACTCCCACTCTTCCA
HPRT AGGAGTCCTGTTGATGTTGCCAGT
C5aR TCATCCTGCTCAACATGTACGCCA
TNF-a TCTCATGCACCACCATCAAGGACT
IL-6 ATCCAGTTGCCTTCTTGGGACTGA
analysis as described below. Primers for mouse GAPDH, HPRT,
C5aR, TNF-a, and IL-6 were designed using Primer Quest Software
(Table 1, Sigma–Aldrich). qRT-PCR was performed with Applied
Biosystems Stepone™ and Stepone Plus™ Real-Time PCR Systems
(Life Technologies). Each sample was run in triplicate and cycle
threshold (CT) values were imported into Microsoft Excel for
geNorm analysis.
2.4. qRT-PCR calculation using genorm analysis

qRT-PCR data was normalized by the use of geNorm algorithm
as described by Vandesompele et al. [18]. Briefly, the geNorm
application determines the most stably expressed and thus most
accurate reference genes for the normalization of qRT-PCR data.
The geometric mean of DCT expression for GAPDH and HPRT was
calculated to obtain the normalization factor for each sample.
The expression of each candidate gene for each sample was nor-
malized to the combined reference genes. The DCT (difference
between cycle threshold values) expression was then calculated
for each gene in each sample. The relative expression for each can-
didate gene was calculated by dividing the DCT of target gene for
each sample by the normalization factor of GAPDH and HPRT
within the same sample.
2.5. Sources of antibodies

The following antibodies were used for western blotting analy-
ses where indicated: rabbit anti-phospho-Akt (Ser473), rabbit anti-
Akt, rabbit anti-phospho-S6 Kinase (Ser235/236), anti-rabbit IgG
and anti-mouse IgG (Cell Signaling, Beverly, MA, USA) and mouse
anti-b-actin (Sigma–Aldrich). For flow cytometry experiments,
PE-conjugated anti-mouse CD88 antibody (C5aR) and PE-labeled
anti-rat IgG (Biolegend, San Diego, CA, USA) were used.

2.6. Flow cytometry

After harvesting and washing RAW 264.7 or BMDM cells with
DPBS, cells were stained with anti-mouse CD88 antibody or anti-
rat IgG at 1 lg/106 cells for 30 min at 4 �C. Cells were immediately
analyzed using a FACS Caliber flow cytometer (Becton and
Dickinson, San Jose, CA, USA) using the FL-2 channel. Mean fluores-
cence intensity (MFI) was calculated using CellQuest Pro™
software (Becton and Dickinson).

2.7. Western blot

Cell lysates were prepared in ice-cold RIPA buffer (50 mM
Tris–HCl, [pH 7.4], 50 mM sodium fluoride, 150 mM NaCl, 1%
Nonident P40, 0.5 M EDTA [pH 8.0]) and the protease inhibitor
cocktail Complete Mini (Roche, Indianapolis, IN, USA). Samples
were centrifuged at 14,000g at 4 �C for 20 min and supernatants
were collected. Protein concentrations of supernatants were mea-
sured using a BCA protein assay kit (Thermo Scientific). Forty
micrograms of each protein sample was then electrophoresed on
NuPAGE 4–12% Bis-Tris Gel (Life Technologies) in NuPAGE MES
es (C5aR, TNF-a and IL-6) expressed in RAW 264.7 cells.

Reverse sequence Amplicon size (bp)

ACCCTGTTGCTGTAGCCGTATTCA 115
GGGACGCAGCAACTGACATTTCTA 134
TCTGACACCAGATGGGCTTGAACA 93
ACCACTCTCCCTTTGCAGAACTCA 92
TAAGCCTCCGACTTGTGAAGTGGT 134
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SDS running buffer (Life Technologies) for 90 min at 100 V. The
membranes were blocked with 5% non-fat dry milk in 1� Tris
buffered saline buffer (TBS; Boston Bio Products, Ashland, MA,
USA) for 1 h and then probed with appropriate primary antibodies
(diluted at 1:1000 in 1� TBS with 5% non-fat milk) overnight at
4 �C. Membranes were then washed in 1� TBS buffer and thereaf-
ter membranes were incubated with horseradish peroxidase
(HRP)-conjugated secondary antibodies at a dilution of 1:5000 in
1� TBS with 5% non-fat milk for 1 h at room temperature.
Membranes were visualized using Super Signal West Pico chemilu-
minescent substrate (Thermo Scientific) or Femto Maximum
Sensitivity Substrate (Thermo Scientific), followed by exposure to
autobioradiography film (BioExpress, Kaysville, UT, USA). Precision
Plus Protein™ Kaleidoscope™ protein standard (Bio Rad, Hercules,
CA, USA) was used to confirm the molecular size of target proteins.
2.8. ELISA analysis

The concentrations of cytokines were measured in cell culture
media using commercially available ELISA kits from eBioscience
(Kensington, SA, Australia) for IL-6 and R&D Systems (Gymea,
NSW, Australia) for TNF-a as per manufacturer’s instructions.
2.9. Statistical analysis

All data are reported as mean ± S.E. Statistical analysis was
performed using one-way repeated measures ANOVA (posthoc
Tukey test; Sigmastat, Ver. 11.0). If the data set lacked either
normal distribution or equal variance, data were log10 transformed
to obtain normally distributed data. P < 0.05 was considered
significant.
Fig. 1. Biliverdin inhibits C5aR expression. RAW Mu were treated BV ± LPS for 24 h.
(A) Gene and (B) cell surface expression of C5aR in RAW Mu. (C) Cell surface
expression of C5aR in BMDM Mu treated with BV and LPS for 24 and 48 h. Data are
representatives of three independent experiments. Value represents mean ± S.E.
n = 3/group, ⁄P < 0.05 vs. non LPS control (0.01% DMSO) at 24 h and 48 h and
&P < 0.05 vs. LPS control at 24 and 48 h.
3. Results

3.1. Biliverdin inhibits the expression of C5aR in murine macrophages

qRT-PCR analysis showed that neither 10 or 50 lM BV modified
basal expression of C5aR in RAW 264.7 cells (Fig. S1A and Fig. 1A).
However, the LPS-dependent increase in C5aR gene expression at
24 h was significantly decreased by 50 lM BV (Fig. 1A; P < 0.05).
Treatment with 10 lM BV at the time of LPS stimulation failed to
significantly block C5aR gene expression at 24 h (Fig. S1A), indicat-
ing a concentration-dependent inhibition of LPS induced C5aR
expression by BV.

Next, we tested whether BV inhibited C5aR protein expression.
RAW 264.7 cells were treated with 10 or 50 lM BV ± 100 ng/mL
LPS for 24 h and cell surface expression of C5aR was analyzed.
Biliverdin at 10 lM did not significantly affect LPS-dependent
C5aR gene and cell surface expression (Fig. S1A and B), however,
BV at 50 lM significantly inhibited LPS-induced C5aR expression
(Fig. 1B, P < 0.05). These data are in agreement with other
published reports showing that 50 lM BV is necessary to induce
anti-inflammatory effects [1,8]. Therefore, a concentration of
50 lM was chosen for investigating BV’s effect on cell signaling
and LPS-mediated inflammation. To confirm BV’s effects in primary
macrophages, BMDMs from mice were also incubated with 50 lM
BV and 100 ng/mL LPS for 24 and 48 h. LPS significantly increased
C5aR expression by�40% at 48 h compared to control and BV abro-
gated this effect (Fig. 1C, P < 0.05). In summary, BV consistently
decreased both C5aR gene (24 h) and protein expression
(24–48 h) in primary and immortalized macrophages.

One mechanism by which BV exerts effects in macrophages is
via PI3K/Akt signaling [1]. We, therefore, next tested whether the
inhibitory effect of BV on C5aR expression was PI3K-dependent.
To block PI3K signaling, cells were pre-incubated with LY294002
(LY, 10 lM) for 30 min prior to 50 lM BV or LPS stimulation. To
confirm that LY inhibits downstream targets of PI3K, pAkt
expression was determined in RAW 264.7 cells treated with
50 lM BV or LPS for 30 min. As shown in Fig. S1C and D,
BV/LPS-induced phosphorylation of Akt was blocked by LY. To
assess the effects of LY on C5aR expression, experiments were
performed over 24 h due to strong effects of BV at this time point
(Fig. 1A and B). However, LY blocked the LPS-dependent
induction of C5aR gene and protein (Fig. S1E and F), indicating
PI3K may play an integral role in mediating C5aR expression in
response to LPS. The role of PI3K on BV-mediated changes on
C5aR gene and protein expression in the presence of LPS could thus
not be determined (Fig. S1E and F; P = 0.286 and P = 0.083,
respectively).
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3.2. Biliverdin induces the phosphorylation of Akt and S6 and inhibits
C5aR expression in macrophages in part via mTOR signaling

Having established that BV activates the PI3K-Akt signaling axis
[1], we next evaluated the activation of pAkt and pS6 (downstream
of mTOR) in response to BV in RAW 264.7 macrophages. As shown
in Fig. 2A–D, both 50 lM BV and 100 ng/mL LPS increased Akt and
S6 phosphorylation in a time-dependent manner.

Next, we sought to determine whether inhibition of the mTOR
pathway with rapamycin would modulate the effects of BV on
C5aR expression. RAW 264.7 cells were incubated with 10 nM rap-
amycin for 1 h prior to treatment with 50 lM BV or LPS. As shown
in Fig. 3A, phosphorylation of S6 in response to BV and LPS was
blocked in the presence of rapamycin. Furthermore, rapamycin
treatment increased the basal expression of C5aR (Fig. 3B), indicat-
ing the possibility that S6 negatively regulates C5aR expression.
LPS significantly increased C5aR expression and this effect was
not dependent on mTOR signaling (Fig. 3B). However, BV decreased
LPS-induced C5aR expression in a rapamycin-dependent manner
(Fig. 3B), implicating mTOR signaling in BV’s inhibitory effect. In
summary, BV stimulates signaling downstream of PI3K and mTOR.
Although some similarities in LPS and BV signaling exist, blocking
Fig. 2. Biliverdin enhances phosphorylation of Akt and S6. RAW 264.7 Mu were treated w
and pS6 (C and D) were analyzed. Blots are representative of at least two independent e

Fig. 3. Biliverdin modulates C5aR expression in part via mTOR signaling. RAW 264.7 Mu
15 min or 24 h for pS6 and C5aR expression, respectively. (A) Protein expression of pS6 an
of three independent experiments. Value represents mean ± S.E. n = 3/group, #P < 0.05 vs
(0.01% DMSO), &P < 0.05 vs. no rapamycin and LPS control and &#P < 0.05 vs. no rapamy
mTOR signaling attenuates BV’s inhibitory effect on C5aR gene
expression.

3.3. Biliverdin suppresses the release and expression of complement-
associated pro-inflammatory cytokines

We next evaluated the effects of BV on the expression of the
pro-inflammatory cytokines (TNF-a and IL-6) in RAW 264.7 macro-
phages. LPS significantly increased TNF-a and IL-6 mRNA expres-
sion (�6- and �200-fold, respectively) at 24 h, and these
responses were significantly inhibited by BV (Fig. 4A and B,
P < 0.05).

ELISA analysis of both cytokines showed that LPS significantly
increased TNF-a and IL-6 concentrations in cell culture superna-
tants at 24 h (P < 0.05), while, BV only reduced IL-6 levels in
response to LPS (Fig. 4D, P < 0.05).

4. Discussion

The present study provides novel insights into the anti-inflam-
matory effects of BV, demonstrating that BV consistently decreases
LPS-mediated C5aR gene and protein expression in RAW 264.7
ith BV and LPS for different time points and protein expression of pAkt, Akt (A and B)
xperiments.

were pre-incubated with rapamycin for 1 h and thereafter treated with BV or LPS for
d (B) cell surface expression of C5aR in RAW 264.7 cells. The data are representative

. no rapamycin control (0.01% DMSO), ⁄P < 0.05 vs. no rapamycin and no LPS control
cin BV + LPS group.
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cells and BMDMs. This inhibitory effect of BV was partially
mediated via the mTOR pathway and was accompanied by
decreased expression of complement associated pro-inflammatory
cytokines.

PI3K/Akt negatively regulates LPS signaling and inhibition of the
PI3K pathway augments LPS-induced responses, including the
activation of NF-jB and TNF gene expression [19]. A novel and
unexpected finding of this report is that pharmacological inhibition
of PI3K with LY attenuated LPS-induced increases in C5aR expres-
sion, suggesting that PI3K signaling may be necessary for C5aR
expression. Two studies show that inhibition of PI3K with LY
inhibits C5a induced chemotactic migration of macrophages
[20,21], which may be related to inhibition of C5aR expression as
reported here. However, LY’s inhibitory effects exist beyond PI3K
signaling [22]. Therefore, it is also possible that LY blocked C5aR
expression via a PI3K-independent mechanism. Since LY’s effects
are rather non-specific, we chose a more specific downstream
inhibitor of PI3K signaling [17,23], rapamycin, to determine
whether BV’s effect on C5aR was PI3K/mTOR dependent.

Rapamycin pre-treatment blocked BV and LPS-mediated
phosphorylation of S6 (a downstream signaling molecule of mTOR,
which plays an important role in protein synthesis) [23]. However,
inhibition of mTOR signaling did not influence LPS-induced C5aR
expression, indicating that LPS likely regulates C5aR through a
different signaling pathway, such as NF-jB signaling [24]. On the
other hand, BV inhibition of LPS-induced C5aR was partially
mitigated in the presence of rapamycin, suggesting that BV inhibits
C5aR in part via activation of the mTOR pathway.

The C5a-C5aR axis cross-talks with TLR-4 [11] and C5a via C5aR
concentration-dependently increases LPS-induced secretion of
pro-inflammatory cytokines, including IL-6 and TNF-a in human
monocytes [25]. Therefore, the effects of BV on TNF-a and IL-6
were also explored. While BV significantly downregulated
LPS-induced mRNA expression of both cytokines at 24 h, only
IL-6 and not TNF-a protein levels were reduced by BV. TNF-a gene
expression and synthesis/release are regulated via different
pathways [26]. Activation of macrophages with LPS leads to rapid
Fig. 4. Biliverdin attenuates complement associated pro-inflammatory cytokines. mRNA
(D) were analyzed in RAW 264.7 macrophages, incubated with BV ± LPS for 24 h. The da
n = 3/group, ⁄P < 0.05 vs. no LPS control (0.01% DMSO) and &P < 0.05 vs. LPS control.
cytosolic accumulation of TNF-a mRNA via activation of the
NF-jB pathway [27]. However, TNF-a is initially expressed as
pro-TNF-a and release of mature TNF-a from leukocytes relies on
matrix metalloproteinase (MMP) activation, which promotes
cleavage of mature TNF-a from pro-TNF-a [28]. Furthermore,
TNF-a mRNA is short-lived (�46 min) and does not contribute to
rapid increases in TNF-a release by RAW macrophages upon LPS
activation [26]. Therefore, it is likely that BV inhibits TNF-a
transcription, via inhibition of NF-jB [6,29], yet does not prevent
activation of MMP-induced cleavage and release of TNF-a. These
data and conclusions are consistent with reported in vivo findings,
which show that BV only decreases mRNA expression of TNF-a and
does not influence serum levels of TNF-a in endotoxin/transplanta-
tion challenged animals [6,7]. However, BV significantly decreased
IL-6 expression and secretion. We suggest that BV may decrease
IL-6 by inhibiting activation of C5aR since C5aR antagonists report-
edly decrease LPS-mediated release of cytokines including IL-6 by
monocytes, macrophages and thymocytes [25,30].

Both LPS and BV induce BVR, which rapidly converts BV to BR
[1]. Both in vitro and in vivo studies show rapid conversion of BV
to BR over time [1,6]. Furthermore, in vivo studies suggest that
BV may inhibit LPS-induced responses via BR generation [6]. How-
ever, BR may heighten inflammation at higher concentrations
(>17.1 lM) [31,32]. Whether BV’s anti-inflammatory effects are
influenced by BR are still debated and require further investigation.
In this study, 50 lM BV consistently inhibited effects of LPS on
C5aR gene expression after 24 h of incubation, with effects of
50 lM BV statistically significant. These effects are consistent with
inhibition of C5aR protein expression at 24 and 48 h. We speculate
that the lower 10 lM concentration of BV is more rapidly reduced
to BR [1], reducing BV availability for BVR activity/signaling. At the
higher 50 lM concentration, BV induces prolonged S6 phosphory-
lation and modulation of C5aR expression. These data suggest a
threshold concentration of BV of 50 lM is necessary to activate
kinase signaling and evoke changes in protein synthesis [1,33].

In conclusion, this is the first report to show that BV signifi-
cantly inhibits LPS-induced C5aR expression in primary and
expression of TNF-a (A) and IL-6 (B) and protein concentration of TNF-a (C) and IL-6
ta are representative of two independent experiments. Value represents mean ± S.E.
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immortalized macrophage cell lines, an effect that is partially med-
iated via mTOR signaling. Biliverdin also reduced pro-inflamma-
tory cytokine expression, which may be related to C5aR
inhibition. We propose that inhibition of C5aR by BV provides a
previously unknown anti-inflammatory mechanism, supporting
BV’s role as an endogenous anti-inflammatory molecule that serves
to re-establish homeostasis and protect against transplant rejec-
tion and endotoxic shock. Taken together, we propose that BV
may offer unique therapeutic avenues for treating sepsis and
shock.
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