

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Cejka, Jiri, Sejkora, Jiří, Macek, Ivo, Malíková, Radana, Wang, Lina, Scholz, Ricardo, Xi, Yunfei, & Frost, Ray L. (2015) Raman and infrared spectroscopic study of turquoise minerals. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, *149*, pp. 173-182.

This file was downloaded from: https://eprints.qut.edu.au/84515/

© Copyright 2015 Elsevier

Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International: 10.1016/j.saa.2015.04.029

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

https://doi.org/10.1016/j.saa.2015.04.029

1	Raman and infrared spectroscopic study of turquoise minerals
2	
3	
4	Jiří Čejka, ^{1,2} Jiří Sejkora, ¹ Ivo Macek, ¹ Radana Malíková, ¹ Lina Wang, ² Ricardo
5	Scholz, ³ Yunfei Xi, ² Ray L. Frost ^{2•}
6	
7	¹ Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193
8	00, Praha 9, Czech Republic.
9	
10	² School of Chemistry, Physics and Mechanical Engineering, Science and Engineering
11	Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland
12	4001, Australia.
13	
14	³ Geology Department, School of Mines, Federal University of Ouro Preto, Campus
15	Morro do Cruzeiro, Ouro Preto, MG, 35,400-00, Brazil
16	
17	
18	ABSTRACT
19	
20	Raman and infrared spectra of three well-defined turquoise samples,
21	CuAl ₆ (PO ₄) ₄ (OH) ₈ .4H ₂ O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko
22	mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and
23	compared. Observed Raman and infrared bands were assigned to the stretching and bending
24	vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H…O
25	hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and
26	infrared bands attributable to the stretching and bending vibrations of (PO ₃ OH) ²⁻ units were
27	observed.
28	
29	KEYWORDS: turquoise, phosphate, hydroxyl ions, Raman spectroscopy, infrared
30	spectroscopy
31	

[•] Author to whom correspondence should be addressed (r.frost@qut.edu.au)

32 INTRODUCTION

33

34 The mineral turquoise is one of the oldest gem materials known. Its use in jewellery 35 and for personal decoration can be traced back 70 centuries, to ancient Egypt [1,2]. Today, 36 turquoise is popular in fine jewellery as well as in various cultures, most notably among 37 Native Americans in the south-western United States [1,2]. The first orientation of turquoise 38 studies allows archaeologists to investigate pre-Colombian turquoise trade structures in North 39 America and identify or authenticate the natural sources of turquoise worldwide [3-7]. 40 Various physico-chemical characteristics of turquoise were studied together with questions of 41 turquoise provenance especially with regard to its wealth of colours (blue, green in various 42 shades) and further properties important for its use in jewellery [8-15]. The sources of high-43 quality gem turquoise are limited and because this material (due to porosity characteristic for 44 massive aggregates) easily accepts many treatments, the majority of gem turquoise are 45 adulterated [2, 16,17]. Detection of the extent and character of these treatments, inclusive 46 impregnation with polymers, is a very important job especially for use of non-destructive 47 methods [18-21].

48

Turquoise was one of the first gem materials to be simulated by synthetics like glass, plastic, pressed turquoise powder bonded by resin, coloured gelmagnesite or howlite [22]. At the present time, synthetic turquoise is produced by the method of Gilson [23]. A set of analytical methods, such as PXRD and EDS analysis or ATR-IR, UV-VIS-NIR and Raman spectra are used for distinguishing these artificial replacements from natural turquoise [24]. Last, but not least, turquoise affected by extended exposure to sunlight and water weathered to chalky white minerals; this alteration processes are as yet, poorly understood [3-4].

57 Most of as yet published papers on turquoise (as mentioned above) are, however, 58 usually, based only on one or several research methods; especially in the case of papers 59 focused to infrared or Raman spectroscopy the data on chemical composition or values of 60 unit-cell parameters of studied mineral phases are mostly missing. The main aim of this paper 61 is to report the Raman and infrared spectra of three well-defined natural untreated turquoise 62 samples from three different occurrences, and to relate the spectra to its molecular and crystal 63 structure. Further aim of the paper is also to certify the possibility to use Raman data for the provenance of turquoise samples; this is the reason why three samples from various localities 64 65 differing in morphology, colour and details in chemical composition were studied. The paper

- 66 follows the systematic research of the large group of oxyanions containing minerals [25-29],
- and especially their molecular structure using IR and Raman spectroscopy [30-36].
- 68
- 69 BACKGROUND INFORMATION
- 70

71 Triclinic mineral turquoise belongs to a turquoise group; general formula for minerals 72 of this group may be written as $A_{0-1}B_6(PO_4)_4(OH)_8.4H_2O$. Most common substituents at the *A* 73 position are Cu²⁺, Fe²⁺ Zn²⁺ or vacancy; at the B position then Al³⁺ or Fe³⁺ [4,37-39].

74

Turquoise usually occurs as apple-green, bluish green, sky-blue or greenish gray fine granular, dense massive to cryptocrystalline aggregates, nodules, crusts or veinlets; small short columnar crystals are rare [1,40]. It has dozens of occurrences but only few produce commercial gem material or contain well-formed crystals [1,40]. Turquoise is uncommon supergene mineral formed in the oxidized zone (mainly in arid climates) of phosphorus-rich aluminous rocks (volcanic, phosphate-rich sediments, hydrothermal porphyry deposits etc.) in the presence of Cu minerals [1,40].

82

83 The unit-cell parameters of turquoise were determined by Graham [41], the first 84 solution of its crystal structure was published by Cid-Dresdner [42]. Recently, the crystal 85 structure of turquoise refined by Kolitsch and Giester [43]. Turquoise contains in its crystal structure Cu Φ_6 octahedra, with $\Phi = 2 H_2O$ and $4 OH^-$, two Al Φ_6 octahedra with $3 OH^-$, $1 H_2O$ 86 and 2 O^{2-} and one Al Φ_6 octahedron with 4 O^{2-} and 2 OH⁻, and two symmetrically distinct 87 $(PO_4)^{3-}$ tetrahedra [42,43]. No $(PO_3OH)^{2-}$ units were observed in its crystal structure [4, 88 89 42,43]. Only in the case of planerite, Al₆(PO₄)₂(PO₃OH)₂.4H₂O, the charge balance should be 90 maintained by the protonation, connected with Cu-site occupancy decrease [37]. However, 91 according to Kolitsch and Giester [43], the charge balance might be also achieved by introducing additional Cu^{2+} or other cations in the partially occupied site at (1/2, 0, $\frac{1}{2}$). 92 93 94 **EXPERIMENTAL**

95

96 Minerals

98 The studied samples of the mineral turquoise originated from three different 99 occurrences: Lavender Pit, Bisbee, Cochise county, Arizona (labelled as A) - little greenish 100 cryptocrystalline aggregates up to some cm in size (Fig. 1); Kouroudaiko mine, Faleme river, 101 Senegal (labelled as S) - light greenish blue globular aggregates up to 3 mm in size in 102 association with tiny transparent senegalite crystals (Fig. 2); Lynch Station, Virginia (labelled 103 as V) - rich groups of transparent dark sky-blue well-formed crystals up to 2 mm in size on 104 quartz gangue (Fig. 3).

105

106 Carefully hand-picked samples were used for X-ray powder diffraction experiments. 107 To minimize the complicated shape of background, the samples studied were placed on a flat 108 low-background silicon wafer. Powder XRD measurements were carried out with CuKa 109 radiation at a Bruker D8 Advance diffractometer (40 kV, 40 mA) in the range 4-70° 20 in the 110 step-scan mode $0.01^{\circ}/8$ s. The position and intensities of reflections were calculated using the 111 Pearson VII profile shape function in the ZDS program package [44]. The measured patterns 112 were indexed using unit-cell parameters and space group proposed by Kolitsch and Giester 113 [43]. The unit-cell parameters refined from measured powder XRD using the program of 114 Burnham [45] are compared with published data in the Table 1.

115

116 All turquoise samples were quantitatively analysed by Cameca SX 100 electron 117 microprobe system in wavelength dispersion mode for chemical composition (Table 2). Studied sample was mounted into the epoxide resin and polished. The polished surface was 118 coated with carbon layer 250 Å. An acceleration voltage of 15 kV, a specimen current of 10 119 120 nA, and a beam diameter of 5 µm were used. Well-defined natural and synthetic compounds 121 were used as standards. The raw intensities were converted to the concentrations using 122 automatic *PAP* matrix correction software package. On the basis of P+Si = 4 apfu, empirical 123 formula of turquoise from Arizona may be expressed as $(Cu_{0.90}Fe_{0.10}Zn_{0.01})_{\Sigma 1.01}Al_{6.08}$ 124 $[(PO_4)_{3,99}(SiO_4)_{0,01}]_{\Sigma 4,00}(OH)_{8,24} \cdot 4H_2O$; from Senegal as $(Cu_{0,63} \square_{0,29}Fe_{0,05}Zn_{0,02}Ba_{0,01})_{\Sigma 1,00}$ 125 $(Al_{5,99}Fe_{0,01})_{\Sigma 6,00}[(PO_4)_{3,71}(PO_3OH)_{0,29}]_{\Sigma 4,00}(OH)_{7,71} \cdot 4H_2O$ and from Virginia as 126 $(Cu_{1.03}Fe_{0.11}Ba_{0.02}Zn_{0.01}Ca_{0.01})_{\Sigma 1.18} (Al_{5.84}Fe_{0.16})_{\Sigma 6.00} (PO_4)_{4.00} (OH)_{8.36} \cdot 4H_2O.$ 127 128 129 **Raman and infrared spectroscopy** 130

131 Fragments of aggregates and crystals of turquoise were placed on a polished metal surface on the stage of an Olympus BHSM microscope, which is equipped with 10x, 20x, and 132 133 50x objectives. The microscope is part of a Renishaw 1000 Raman microscope system, which 134 also includes a monochromator, a filter system and a CCD detector (1024 pixels). The Raman 135 spectra were excited by a Spectra-Physics model 127 He-Ne laser producing highly polarised light at 633 nm and collected at a nominal resolution of 2 cm⁻¹ and a precision of ± 1 cm⁻¹ in 136 the range between 200 and 4000 cm⁻¹. Repeated acquisition on the crystals using the highest 137 138 magnification (50x) were accumulated to improve the signal to noise ratio in the spectra. Spectra were calibrated using the 520.5 cm⁻¹ line of a silicon wafer. Previous studies by the 139 authors provide more details of the experimental technique. Alignment of all samples in a 140 141 similar orientation has been attempted and achieved. However, differences in intensity may 142 be observed due to minor differences in the crystal orientation.

143

Infrared spectra was recorded by micro diffuse reflectance method (DRIFTS) on a
Nicolet Magna 760 FTIR spectrometer (range 4000-600 cm⁻¹, resolution 4 cm⁻¹, 128 scans, 2
level zero-filtering, Happ-Genzel apodization), equipped with Spectra Tech InspectIR micro
FTIR accessory. Sample of amount less than 0.050 mg was mixed without using pressure
with KBr. Samples were immediately recorded together with the same KBr as a reference.

150 Spectral manipulation such as baseline correction/adjustment and smoothing were performed using the Spectracalc software package GRAMS (Galactic Industries Corporation, 151 152 NH, USA). Band component analysis was undertaken using the Jandel 'Peakfit' software 153 package that enabled the type of fitting function to be selected and allows specific parameters 154 to be fixed or varied accordingly. Band fitting was done using a Lorentzian-Gaussian cross-155 product function with the minimum number of component bands used for the fitting process. The Lorentzian- Gaussian ratio was maintained at values greater than 0.7 and fitting was 156 undertaken until reproducible results were obtained with squared correlations of r^2 greater 157 158 than 0.995.

159

160 **RESULTS AND DISCUSSION**

161

162 Crystal symmetry and vibrational spectra of turquoise

- 164 Turquoise, $CuAl_6(PO_4)_4(OH)_8 \cdot 4H_2O$, is triclinic, space group $P-1 C_i^1$, Z = 1. The 165 structure consists of distorted CuO_6 polyhedra, AlO_6 octahedra and PO_4 tetrahedra. By edge-166 and corner-sharing of these polyhedra a fairly dense three-dimensional framework is formed 167 which is further strengthened by a system of hydrogen bonds [43].
- 168

169 In the crystal structure of turquoise there are one symmetrically distinct CuO₆ 170 octahedron, three structurally distinct AlO₆ octahedra, two symmetrically distinct PO₄ 171 tetrahedra, two structurally unequivalent water molecules and four structurally unequivalent 172 OH units [42,43]. Tentative interpretation of infrared and Raman spectra of turquoise studied 173 is based on factor group analysis of phosphates and water in turquoise published by Frost et 174 al.[13] and publications by Nakamoto [46], Čejka et al. [36], Keller [47-50], Pechkovskii et 175 al. [51], Goldsmith and Ross [52], Devamani and Alagar [53], Aguirre et al. [54], Frost et al. 176 [13, 55] and Reddy et al. [14].

177

178 According to Nakamoto [46], octahedral units XY₆ exhibit six normal vibrations, 179 from which $v_1(A_{1g})$ and $v_2(E_g)$ stretching and $v_5(F_{2g})$ bending vibrations are Raman active, while only v_3 (F_{1u}) stretching and v_4 (F_{1u}) bending vibrations are infrared active. Symmetry 180 lowering in the case of XY4Z2 may cause Raman and infrared activation of corresponding 181 vibrations and also splitting of degenerate vibrations. Free $(PO_4)^{3-}$ anion exhibits tetrahedral 182 $T_{\rm d}$ symmetry. In the case of a free ion of $T_{\rm d}$ symmetry, there are 9 normal vibrations 183 184 characterized by four distinguishable modes of vibrations: v_1 (A_1) symmetric stretching 185 vibration, Raman active, $v_2(\delta)(E)$ doubly degenerate bending vibration, Raman active, v_3 186 (F_2) triply degenerate antisymmetric stretching vibration, Raman and infrared active, v_4 (δ) (F_2) triply degenerate bending vibration, Raman and infrared active. T_d symmetry lowering 187 may cause infrared activation of the v_1 and v_2 vibrations and splitting of the doubly 188 189 degenerate v_2 and triply degenerate v_3 and v_4 vibrations [36]. 190 191 **Raman and infrared spectroscopy** 192

Full range Raman and infrared spectra of the studied minerals from Arizona (A),
Senegal (S) and Virginia (V) are given in Figs. 4a-f and their tentative assignments in Table
These spectra show the position of the bands and their relative intensities. It is obvious that

196 there are large parts of the spectra where little or no intensity is observed. Therefore, the

197 spectra are subdivided into sections according to the type of vibration is being investigated.

198 In this way the precise position of the bands can be detailed. Observed wavenumbers of the

199 Raman bands of the studied turquoise samples are close to the approximate wavenumbers

200 inferred from the Raman spectra of RRUFF's three turquois samples R50225, R50418 and

- 201 R50554.
- 202

Raman and infrared spectral regions of v OH stretching vibrations are presented in 203 Figs. 5a-f. Raman bands et 3544, 3502, 3473 and 3450 cm⁻¹ (A), 3527, 3506, 3471 and 3453 204 cm⁻¹ (S) and 3499, 3473 and 3451 cm⁻¹ (V) and infrared bands at 3509, 3465 and 3451 cm⁻¹ 205 (A), 3607, 3506, 3464, 3450 and 3447 cm⁻¹ (S) and 3505, 3465 and 3451 cm⁻¹ (V) are 206 assigned to the v OH stretching vibrations and assigned to the hydrogen bonded, 207 symmetrically distinct hydroxyls OH⁻. Raman bands at 3397, 3279 and 3077 cm⁻¹ (A), 3419, 208 3290 and 3092 cm⁻¹ (S), 3410, 3273 and 3085 cm⁻¹ (V), and infrared spectra at 3431, 3269, 209 3075 and 3067 cm⁻¹ (A), 3276, 3072 and 3051 cm⁻¹ (S) and 3417, 3288 and 3058 cm⁻¹ (V) are 210 211 attributed to the v OH stretching vibrations of symmetrically distinct hydrogen bonded water molecules. Very weak Raman and infrared bands at 2932, 2920 and 2934 cm⁻¹ are probably 212 213 connected with organic impurities.

214

Libowitzky's empirical relation [56] enables to infer from the wavenumbers of
Raman and infrared bands of minerals assigned to the v OH stretching vibrations
approximate O-H…O hydrogen bond lengths. In the case of studied turquoise samples
inferred hydrogen bond lengths vary from 2.98 to 2.67 Å. This agrees very well with X-ray
single crystal structure data 2.970-2.670 Å [42] and 3.020-2.685 Å [43].

220

Broad Raman bands at 1609 cm⁻¹ (A), 1614 cm⁻¹ (S) and 1632 cm⁻¹ (V) and infrared bands at 1646 and 1595 cm⁻¹ (A), 1654 and 1587 cm⁻¹ (S) and 1622 cm⁻¹ (V) are attributed to the v_2 (δ) H₂O bending vibrations of the symmetrically distinct differently hydrogen bonded water molecules (Figs. 6a-f). Observed infrared bands at 1474 cm⁻¹ (A), 1467 cm⁻¹ (S) and 1513 cm⁻¹ (V) are assigned to overtones or combination bands.

226

The Raman spectra in the 800 to 1400 cm⁻¹ spectral range and infrared spectra in the 500 to 1300 cm⁻¹ spectral range are reported in Figs. 7a-f. Raman bands at 1173, 1160 and 1105 cm⁻¹ (A), 1184, 1161 and 1104 cm⁻¹ (S), and 1185, 1162 and 1105 cm⁻¹ (V) and infrared bands and shoulders at 1195, 1158, 1103 and 1084 cm⁻¹ (A), 1194, 1143, 1104 and 1082 cm⁻¹ (S), and 1192, 1142, 1110 and 1092 cm⁻¹ (V) are connected with split triply degenerate v_3

232 $(PO_4)^{3-}$ antisymmetric stretching vibrations.

Very intense Raman bands at 1042 cm^{-1} (A), 1041 cm^{-1} (S), 1042 cm^{-1} (V) and 233 infrared bands at 1055 cm⁻¹ (A), 1056 cm⁻¹ (S), 1042 cm⁻¹ (V) are assigned to the $v_1 (PO_4)^{3-1}$ 234 symmetric stretching vibrations. Raman bands at 1065 cm⁻¹ (A), 1064 cm⁻¹ (S) and 1065 cm⁻¹ 235 (V) are also related to the $v_1 (PO_4)^{3-}$ vibrations. Some of the Raman bands and shoulders at 236 1004, 985 and 931 cm⁻¹ (A), 1031, 991, 935 cm⁻¹ (S), 1020, 985, 942, 889 cm⁻¹ (V) and 237 infrared bands and shoulders 1034, 1011, 990, 964, 899 cm⁻¹ (A), 1035, 1002, 948, 897 cm⁻¹ 238 (S), 1008, 991, 956, 897 cm⁻¹ (V) may also be related to these vibrations, however more 239 probably may be attributed to the δ Al-OH and δ Cu-OH bending vibrations together with the 240 Raman bands at 815 cm⁻¹ (A), 836 and 815 cm⁻¹ (S), 811 cm⁻¹ (V) and infrared bands at 835 241 cm⁻¹ (A), 835 cm⁻¹ (S), 835 cm⁻¹ (V), while the infrared bands at 785 and 727 cm⁻¹ (A), 786 242 and 722 cm⁻¹ (S), 784, 723 cm⁻¹ (V) are assigned to the librational modes of water molecules. 243 Because the character of the Raman spectra of all three studied turquoise samples in 244 the region from 1200 to 900 cm⁻¹ is practically identical, it is very improbable that in the

the region from 1200 to 900 cm⁻¹ is practically identical, it is very improbable that in the
structure of the turquoise sample from Senegal could be present the (PO₃OH)²⁻ units, as
expected from the mechanism of planerite substitution proposed by Foord and Taggart [37].
More distinctive is therefore the explanation of vacancy given by Kolitsch and Giester [43].

The Raman spectra of turquoise in the 300 to 800 cm⁻¹ spectral range are displayed in 250 Figs. 8a-c. Raman bands and shoulders at 643, 593, 571 and 550 cm⁻¹ (A), 642, 592, 571 and 251 548 cm⁻¹ (S), 663, 644, 629, 611, 593, 571 and 551 cm⁻¹ (V) are assigned to the split out-of-252 plane triply degenerate v_4 (δ) (PO₄)³⁻ bending vibrations. Some of observed bands, however, 253 254 may be also connected with the Al(O,OH) bending vibrations and Cu-O stretching vibrations. 255 Coincidence (an overlap) of the mentioned vibrations is supposed. Raman bands and shoulders at 506, 485, 471, 457, 438, 426, 417 and 387 cm⁻¹ (A), 511, 483, 469, 460, 437, 256 423, 417 and 385 cm⁻¹ (S), 511, 498, 486, 469, 449, 437, 425, 417, 409 and 385 cm⁻¹ (V) are 257 related to the split doubly degenerate v_2 (δ) (PO₄)³⁻ bending vibrations. These bands may 258 259 partly overlap with bands of Cu-O stretching vibrations and bending vibrations. 260

261 Raman bands at 337, 321 and 303 cm⁻¹ (A), 335, 320 and 301 cm⁻¹ (S), 367, 339, 319 262 and 303 cm⁻¹ (V).- these bands may probably be related to the stretching and bending

263	vibrations of Cu-(O,OH,H ₂ O) and Al-(O,OH,H ₂ O). Raman bands observed in the region from
264	300 to 100 cm ⁻¹ (Figs. 9a-c) may be assigned to OCuO bending vibrations, OAlO bending
265	vibrations and lattice vibrations.
266	
267	CONCLUSIONS
268	
269	1. Raman and infrared spectra of three well defined turquoise samples were recorded.
270	
271	2. Observed Raman and infrared bands are tentatively interpreted and assigned to the
272	stretching and bending vibrations of $(PO_4)^{3-}$ tetrahedra and of vibrations of hydrogen bonded
273	water molecules and hydroxyl ions. No Raman and infrared bands which could be
274	unambiguously attributed to the stretching and bending vibrations (PO ₃ OH) ²⁻ were observed.
275	
276	3. Approximate O-H…O hydrogen bond lengths are inferred from observed Raman and
277	infrared bands connected with the ν OH stretching vibrations of water molecules and
278	hydroxyl ions.
279	
280	4. Observed Raman and infrared spectra of studied turquoise samples are very similar and
281	comparable. From the results may be inferred that Raman spectroscopy may be very well
282	used to distinguish natural turquoise samples from possible imitations including
283	impregnations of natural material. Vibrational spectra of natural turquoise samples from
284	various localities possessing different morphology, colours etc. are very close. Vibrational
285	spectroscopy cannot be therefore offer reliable data for the provenance determination of
286	natural turquoise.
287	
288	Acknowledgements
289	
290	The financial and infra-structure support of the Discipline of Nanotechnology and
291	Molecular Science, Science and Engineering Faculty of the Queensland University of
292	Technology, is gratefully acknowledged. The Australian Research Council (ARC) is thanked
293	for funding the instrumentation. This work was financially supported by the long-term project
294	DKRVO 2014/02-2015/02 of the Ministry of Culture of the Czech Republic (National

- 295 Museum, 00023272). The downloading of the Raman spectra of turquoise from the RRUFF
- 296 web site is acknowledged.
- 297
- 298

299	References
300	
301	[1] O. T. Branson, Turquoise, the gem of the centuries, Treasure Chest Publication, Tucson,
302	Arizona, 1975. 62 pp.
303	
304	[2] E. Fritsch, S.F. McClure, M. Ostrooumov, Y. Andres, T. Moses, J.I. Koivula, R.C.
305	Kammerling, Gems Gemol. 35 (1999) 4-16.
306	
307	[3] S. Hull, M. Fayek, F.J. Mathien, P. Shelley, K. Roler Durand, J. Archaeological Sci. 35
308	(2008) 1355-1369.
309	
310	[4] Y.A. Abdu, S.K. Hull, M. Fayek, F.C. Hawthorne, Amer. Min. 96 (2011) 1433-1442.
311	
312	[5] Q. Chen, L. Qi, J. Chen, Spectrosc. Spectral Anal. 29 (2009), 406-409.
313	
314	[6] L. She, Y. Qin, M. Feng, Z. Mao, C. Xu, F. Huang, Guang pu, 28 (2008), 2107-2110.
315	
316	[7] Q. Chen, Z. Yin, L. Qi, Y. Xiong, Gems Gemol. 48 (2012) 198-204.
317	
318	[8] Q. Chen, L. Qi, J. Mineral. Petrol. 27 (2007) 30-35.
319	
320	[9] Z. Jiang, D. Chen, W. Wang, W. Li, X. Cao, Q. Wu, Acta Mineral. Sinica (1983) 198-
321	206.
322	
323	[10] X.A. Li, Y.F. Wang, H.F. Zhang, Acta Mineral. Sinica (1984) 78-83.
324	
325	[11] L.J. Luan, Z.X. Han, C.Y. Wang, Y.W. Zhang, Northwestern Geol. 37 (2004) 77-82.
326	
327	[12] H.F. Zhang, C.Y. Lin, Z.W. Ma, Z.G. Yang, Acta Mineral. Sinica (1982) 254-261.
328	
329	[13] R.L. Frost, B.J. Reddy, W. N. Martens, M. Weier, J. Mol. Struc. 788 (2006) 224-231.
330	
331	[14] B.J.Reddy, R.L. Frost, M.L. Weier, W.N. Martens. J. Near Infrared Spectrosc. 14 (2006)
332	241-250.

333	
334	[15] H. Pristacz, M. Wildner, R. Škoda, F. Koller, E. Libowitzky, EMC2012 -European
335	mineralogical conference, 1 (2012) 461.
336	
337	[16] B. Cervelle, La Recherche 163 (1985) 244-247.
338	
339	[17] R.T.Jn. Liddicoat, Handbook of gem identification, 12 th ed., Gemological Institute of
340	America, Santa Monica, California.
341	
342	[18] Q. Chen, L. Qi, Y. Zhang, J. Gems Gemmol. (2006) 9-12.
343	
344	[19] K.S. Moe, T.M. Moses, P. Johnson, Gems Gemol. 43 (2007) 149-151.
345	
346	[20] A. Pavese, L. Prosperi, M. Dapiaggi, Aust. Gemol. 22 (2005) 366-371.
347	
348	[21] J. Zhou, X. Yuan, J. Gems Gemmol. (2008) 31-35.
349	
350	[22] D.Elwell, Man-made gemstones, John Wiley & Sons, New York, 1979.
351	
352	[23] J.D. Williams, D. Nassau, Gems Gemol. 15 (1976) 226-232.
353	
354	[24] H. Pristacz, M. Wildner, V.M.F. Hammer, E. Libowitzky, Corals-2013 (Conference on
355	Raman and luminiscence spectroscopy in the earth sciences (2013) 81-82.
356	
357	[25] J. Sejkora, T. Řídkošil, V. Šrein, N. Jb. Mineral. Abh. 175 (1999), 105-124.
358	
359	[26] J. Sejkora, F. C. Hawthorne, M. A. Cooper, J. D. Grice, J. Vajdak, J. L. Jambor, Can.
360	Min. 47 (2009), 159-164.
361	
362	[27] J. Sejkora, J. Plášil, B. Bureš, Bull. mineralpetrolog. Odd. Nár. muz. (Praha) 21 (2013)
363	143-156 (in Czech).
364	

lpetrolog. Odd.
Raman
2009) 1464-
09) 1546-1550.
n. Acta A Mol.
him. Acta A130
pectrochim. Acta
Praha) 19 (2011)
Mineralogy, Vol.
ona, 2000. 680

399	[41] A.R.Graham, Univ. Toronto Studies, Geo. Ser. 52 (1948) 39-53.
400	
401	[42] H. Cid-Dresdner, Zeit. Kristal. 121 (1965) 87-113.
402	
403	[43] U. Kolitsch, G. Giester, Mineral. Mag. 64 (2000) 905-913.
404	
405	[44] P. Ondruš, ZDS - software for analysis of X-ray powder diffraction patterns. Version
406	6.01. User's guide, Prague, 1995.
407	
408	[45] C.W. Burnham, Carnegie Inst. Wash., Yearb. 61 (1962) 132-135.
409	
410	[46] K. Nakamoto, Infrared and Raman spectra of inorganic coordination compounds, J.
411	Wiley and Sons New York, 1986.
412	
413	[47] P. Keller, N. Jb. Miner. Mh. 1971(H.11) 491-510.
414	
415	[48] P. Keller, N. Jb. Miner. Abh. 117 (1972) 217-252.
416	
417	[49] P. Keller , N. Jb. Miner. Abh. 119 (1973) 310-334.
418	
419	[50] P. Keller, N. Jb. Miner. Abh. 120 (1974) 229-269.
420	
421	[51] V.V. Pechkovskii, R.Ya. Mel'nikova, E.D. Dzyuba, T.I. Baranikova, M.V. Nikanovich,
422	Atlas of infrared spectra of phosphates. Orthophosphates, Nauka Moscow, 1981 (in Russian).
423	
424	[52] J.A. Goldsmith, S.D. Ross (1968), Spectrochim. Acta A24 (1968) 2131-2137.
425	
426	[53] R.H.P. Devamani, M. Alagar, Nano Biomed. Eng. 5 (2013) 116-120.
427	
428	[54] J. M. Aguirre, A. Gutiérrez, O. Giraldo, J. Braz. Chem. Soc. 22 (2011) 546-551.
429	
430	[55] R.L. Frost, W.N. Martens, L. Rintoul, E. Mahmutagic, J.T. Kloprogge, J. Raman
431	Spectrosc. 33 (2002) 252-259.
432	

433 [56] E. Libowitzky, Monatsh. Chem. 130 (1999) 1047-1059.

TABLES

439 Table 1 Unit-cell parameters of turquise samples (for triclinic space group *P*-1)

	Virginia	Senegal	Arizona	[43]	[39]
a [Å]	7.411 (3)	7.411 (5)	7.410 (5)	7.410(1)	7.426(8)
b [Å]	7.632 (3)	7.635 (6)	7.635 (6)	7.633(1)	7.634(8)
c [Å]	9.905 (4)	9.904 (7)	9.901 (7)	9.904(1)	9.91(1)
α [^o]	68.43 (3)	68.46 (5)	68.43 (5)	68.42(1)	68.67(8)
β [°]	69.65 (2)	69.64 (5)	69.63 (5)	69.65(1)	69.70(8)
γ [[°]]	65.05 (3)	65.03 (5)	65.05 (5)	65.01(1)	65.01(8)
V [Å ³]	459.9 (3)	460.0 (7)	459.7 (6)	460.3(1)	461.5(9)

445 Table 2 Chemical composition of studied turquoise samples (wt. 70	443	Table 2 Chemical	composition o	f studied	turquoise	samples	(wt.	%)
---	-----	------------------	---------------	-----------	-----------	---------	------	----

	Virginia	Senegal	Arizona	Ideal
CaO	0.04	0.00	0.00	
FeO*	0.92	0.42	0.83	
BaO	0.37	0.21	0.00	
CuO	9.76	6.17	8.61	9.78
ZnO	0.12	0.24	0.13	
Al_2O_3	35.37	37.92	37.33	37.60
Fe ₂ O ₃ *	1.56	0.12	0.00	
SiO ₂	0.00	0.00	0.09	
P_2O_5	33.75	35.27	34.09	34.90
H ₂ O**	17.52	17.90	17.62	17.72
total	99.41	98.25	98.69	100.00
Ca ²⁺	0.006	0.000	0.000	
Fe ²⁺	0.108	0.047	0.095	
Ba ²⁺	0.020	0.011	0.000	
Cu ²⁺	1.032	0.625	0.898	
Zn^{2+}	0.013	0.023	0.013	
ΣMe^{2+}	1.178	0.706	1.006	
	0.000	0.294	0.000	
Al ³⁺	5.835	5.987	6.078	
Fe ³⁺	0.165	0.013	0.000	

ΣMe^{3+}	6.000	6.000	6.078	
(SiO ₄)	0.000	0.000	0.012	
(PO ₄)	4.000	3.706	3.988	
(PO ₃ OH)	0.000	0.294	0.000	
ΣΤ	4.000	4.000	4.000	
OH	8.356	7.706	8.236	
H ₂ O	4.00	4.00	4.00	

446 FeO* and Fe₂O₃* contents were calculated on the basis of Me^{2+}/Me^{3+} cations; H₂O** content

447 was calculated on the basis of charge balance and ideal content of $4 H_2O$ molecules.

	Raman			Infrared			Tentative assignment
А	S	V	А	S	V		
3544	3527			3607		7	
3502	3506	3499	3509	3506	3505		
3473	3471	3473	3465	3464	3465	{	v OH stretch of (OH) ⁻
3450	3453	3451	3451	3450	3451		
				3447		A	
3397	3419	3410	3431		3417	7	
3279	3290	3273	3269	3276	3288		
3077	3092	3085	3075	3072	3058	Í	v OH stretch of water molecules
			3067	3051		l	
		1632	1646	1654	1622	1	
1609	1614		1595	1587		ĺ	δ H ₂ O bend
			1474	1467	1513		overtones of combination bands
1173	1184	1185	1195	1194	1192	7	
1160	1161	1162	1158	1143	1142		3
1105	1104	1105	1103	1104	1110	Í	$v_3 (PO_4)^{-3}$ antisymmetric stretch
			1084	1082	1092	l	
1065	1064	1065	1055	1056		1	3
1042	1041	1042			1042	ĺ	$v_1 (PO_4)^{-1}$ symmetric stretch
	1031	1020	1034	1035			
1004			1011	1002	1008	1	
985	991	985	990		991		
931	935	942	964	948	956	\	δ Al-OH and/or δ Cu-OH
	836	889	899	897	897		
815	815	811	835	835	835	,	
			785	786	784	1	
			727	722	723	ĺ	libration modes of H_2O
		663					
643	642	644				1	
		629					$v_4 (PO_4)^{3-}$ bend and/or
		611				{	Al-(O,OH) bend and/or
593	592	593					Cu-O stretch
571	571	571					
550	548	551					
506	511	511				[
		498					$v_2 (PO_4)^\circ$ bend and/or
485	483	486				\langle	Cu-O stretch and bend

449 Table 3 Tentative assignment of turquoise spectra

471	469	469	
457	460	449	
438	437	437	
426	423	425	
417	417	417	
		408	
387	385	385	
		367	
337	335	339	Cu-(O,OH,H ₂ O) and Al-(O,OH,H ₂ O) stretch and bend
321	320	319	vibrations (?)
303	301	303	
276	277		
260	259	259	
		252	
245	244	246	lattice vibrations and/or
233	231	233	$\Omega_{-}Cu_{-}\Omega$ bend and/or
219	218	218	Ω -Al- Ω bend
211	210	212	
200	196	202	
176	175	177	
155	152	156	