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en opción al grado de
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nieŕıa con orientación en Sistemas.

El Comité de Tesis
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Chapter 1

Introduction

Concrete is a basic building material used in the construction of commercial and in-

dustrial buildings, bridges, roadways, sidewalks, houses, dams, and other structures

, for this reason, it has an important role in the construction industry.

Production and dispatch of concrete is a key factor to assure the presence of

this product whenever is needed. The coordination of these activities in a network,

to guarantee timely delivery to customers is one of the most relevant aspects of

the supply chain management (SCM) of concrete. The aim is to achieve the best

synchronization in the activities of the actors, in order to reduce operative cost and

improve customer service. Furthermore, from the logistic viewpoint, SCM involves a

set of complex and interdependent combinatorial problems (i.e. scheduling, vehicle

routing, assignments, etc.)

The distribution of concrete is a complex problem in logistics due that this is

a perishable product given that it can be in the concrete mixer for a certain amount

of time before it loses quality and hardens. Another factor is that a maximum time

lag must be considered to assure the correct bonding of the concrete, which is the

maximum delay between two consecutive deliveries to the same customer. Besides,

failures to deliver concrete on time can result in construction delays or loss of the

product if the time threshold for concrete hardening has exceeded. Also, in some

cases, when too many truck mixers simultaneously queued up to be unloaded on-site,

it can result in wasted time for the operation.

1
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This work focuses on the Concrete Delivery Problem (CDP). The CDP consists

in satisfy a set of orders to customers by a fleet of vehicles within a time window.

1.1 Objective

The main objective of this work is to study mathematical formulations for the CDP.

It is desired to present them based on the information available and gather in the

literature about this problem. A particularly objective is to propose Mixed Integer

Programming (MIP) models for the CDP. These models will be tested on a set of

instances from the literature to evaluate their performance.

1.2 Scope

This work contributes to the field of rich vehicle problems and their solution proce-

dure. It considers aspects such as time windows, resource capacity, among others;

nevertheless is one of a few works that deal with maximum time-lag constraints,

which state the delay between two successive operations is bounded by a maximum

value.

1.3 Hypothesis

A reformulation of the problem will allow us to solve to optimality more instances

than the mathematical models that have been presented in the literature. With a

more compact formulation, it is expected that the models find more optimal solutions

under the same conditions than others.

1.4 Metodology

In order to develop this work the next methodology will be followed:
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1. Literature review related to the CDP.

2. Study of Mathematical formulations of the CDP.

3. Study of different reformulations of the problem.

4. Computational Test with instances from the literature.

5. Analysis of the results.



Chapter 2

Literature Review

2.1 The Vehicle Routing Problem

The CDP is a variant of the well-known Vehicle Routing Problem (VRP). The VRP

is defined by a set of vehicles which have to deliver goods to a group of customers;

the problem consists in the design of a set of vehicle routes where the customers

should be visited exactly once by one vehicle and also these routes must start and

end at a depot [18]. The objective is to minimize the total traveling cost which can

be achieved by reducing the total traveled distance and/or the number of required

vehicles.

Dantzig and Ramser introduced the VRP in [7], and from this seminal work,

many variations have been studied inspired by real world problems. These studies

tackles new constraints such as vehicle capacity [21, 23, 32], time windows [8, 34],

split deliveries [2, 9], backhauls [12, 37], multiple depots [19, 29], stochastic demands

[4, 20] among others.

The VRP and its variants are NP-hard combinatorial optimization problems.

Hence heuristics are a practical approach to find a solution to the problem, in con-

trast with exact algorithms that can solve only small instances within a reasonable

computational time [6]. According to Golden et al. [13] since the 1990s there have

been more researches focused on metaheuristics to solve these problems for their

efficiency in finding high-quality solutions.

4
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2.2 The Concrete Delivery Problem

Kinable et al. [17] states the CDP has a certain similarity with the Capacitated

Vehicle Routing Problem with Time Windows and Split Deliveries. Asbach et al.

[3] also shows that it can be seen as a type of VRP and introduces new combina-

torial challenges because of the characteristic of the material itself. Aspects of the

production and delivery of concrete can be found in [36].

2.2.1 Exact Solution Methods

To solve this problem, both exact methods and heuristic algorithms have been used.

Hertz et al. [14] formulated the problem as a Mixed Integer Linear Programming

problem, in a two-phase solution method. In the first phase, vehicles are assigned

in a set of deliveries to each vehicle of the fleet and the second phase determines

the sequence of the deliveries in order to build the vehicle routes. The second

phase reaches the optimal solution with the cost of high computing time. Here the

authors treat those phases as two subproblems, formulating them as integer linear

programming problems, and then combine both phases in a single integer linear

program as well.

Lin et al. [22] proposed a Mixed Integer Programming (MIP) model. In this

paper, the problem is formulated as a job shop problem [1]. Each delivery repre-

sents a job, carried out by the trucks that correspond to the machines. Another

characteristic of the model is its multiobjective nature, that is to say, the minimiza-

tion of lateness in orders, the minimization of the vehicle usage, and balancing the

utilization rate of trucks.

Zhang y Zeng [38] also define a MIP model based on a network flow model

representing each possible delivery to customers, each possible reload of vehicles at

the depot, and the starting and end points as a node. Here the objective is to

minimize the total transportation costs.
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Kinable et al. [17] provide a fundamental version of CDP as well as a MIP and

a Constraint Programming (CP) model. They modeled the problem as a directed

weighted graph which combines two models: the Capacitated Vehicle Routing Prob-

lem with Time Windows and Split Deliveries, and the Parallel Machine Scheduling

Problem with Time Windows and Maximum Time Lags. With this MIP model, the

authors propose a core problem to promote further investigation and provide a set

of test instances. Hence, we base our study on the CDP as defined by these authors.

2.2.2 Heuristic Approaches

In order to respond to the dynamic factors in deliveries of concrete [10] i.e, uncer-

tainties in transportation times, the demand of the customers, the emergence of new

customer demands, vehicle and depot malfunctions, weather variations, traffic con-

ditions, etc. fast algorithms are demanded so they can be used for constant revisions.

Here heuristics can work as an important decision tool.

Liu et al. [25] developed a heuristic that integrates the Ready Mixed Concrete

production scheduling with dispatching of vehicles. Here the model deals with three

kinds of vehicles (trucks, pumps, and mixers) each of them with a different function

in the process. In order to plan the sequence of visited construction sites, the authors

follow a set of priority rules. The first one is to schedule the visits according to the

smallest starting time of the time window associated with the unvisited sites and the

second rule is based on the smallest ending time of the time window among unvisited

sites. The rules for truck dispatching consist in selecting the available truck which

capacity is the nearest to the unsatisfied demand of the site, in case all trucks are

busy, the earliest available is selected. In order to select the mixer, the first rule is to

pick the one with the highest mix rate, and second, the selection is done according

to the lowest production cost per cubic meter.

Matsatsinis [27] also presents a heuristic algorithm to schedule the routes of

pumps to construction sites. This algorithm consists of an initial assignment of
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pumps that have been established as a starting point depending on the pump, the

customer, and the departure time from the depot. For each route, the earliest work-

ing time is determined according to the pumps availability and customer readiness

and depending on the execution ability each route is designed as valid or non-valid

for the cycle. Then from the valid routes, the one with the minimum working time is

chosen. If in the current solution there is an unserved customer by a pump the last

routing of the first cycle and first routing of the second cycle are canceled. However,

when a route is canceled, all the valid combinations of the pump-route assignment is

checked in order to find a feasible one. The algorithm is executed sequentially until

all the orders are satisfied.

Kinable et al. [17] also propose a constructive procedure, which schedules the

visits to customers, following a best-fit policy. The heuristic algorithm schedules

customers one-by-one, according to the starting time of the visits and the vehicle

capacity. It iterates over all customers and fixes the starting time of the visits

according to the travel time, the maximum time lag to the previous visit, and the

customers’ deadline and assigns it to the earliest available vehicle. For this strategy

3 ordered selection steps are followed. First, the earliest available vehicle is selected.

Second, the vehicle has to minimize the surplus amount of concrete, respect to the

demand of the client, that it will deliver. Last, in the case of a draw, the vehicle is

selected according to the higher capacity.

As a result, different solutions can be found for different permutation of cus-

tomers when this procedure is executed several times, hence the authors propose

a Steepest Descent heuristic as a local search procedure to modify the customer’s

vector. The criteria of the initial ordering are by the customer’s earliest deadline,

the highest demand, and the earliest release time of the customer date. All possible

shifts of a position of a customer within the sequence are considered (full neighbor-

hood search) at each iteration. With this Steepest Descend heuristic, the authors

required notable less time to solve instances in comparison to other solution methods

applied.
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Also, a local search approach is used by Asbach et al. [3], which starts with

an incumbent solution and a neighborhood operator which destroys partially the

solution and repairs it using a black-box solver. Here the authors consider the

canceled demand due to insufficient resources as a key factor in the quality of a

solution.

Evolutionary Algorithms

Within the heuristic approaches in the literature Genetic Algorithms (GA) have

been widely used to solve the CDP, although the representation of the problem

has several differences. Naso et al. [30] used the GA to perform the assignment of

demand-to-production center, and the production sequencing at each center, while

the remaining part of the scheduling problem is handled by constructive heuristic

algorithms.

In this paper, the chromosome encoding contains the number of demands (re-

quests), which are the chromosome elements. It is performed in two parts: the first

one defines the depot to which request is assigned, where each gene is an integer

between 1 and the number of depots. So in this part, it is decided if the order i is

produced at the depot d. The second part indicates the order in which the requests

will be considered in the scheduling, with integers representing the number of the

request. Then a heuristic procedure is used to decode the chromosome which assigns

iteratively the orders to nearby clients. Computational results were obtained using

data provided by a concrete supplier company. In order to test this algorithm, the

authors compare it with four different assignment criteria, suggested by the experts,

which lead to different schedules. In every cases, the total cost of the proposed GA

could be diminished in ranges of 22-48% compared to the other four policies.

Liu et al. [24] presented a MIP model to formulate the problem, and a GA

is proposed to solve the integrated scheduling model. In this GA the chromosomes

contain three parts: the first part is characterized by the sequence of clients IDs
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served by the plant, the second part is the sequence of the accumulative number of

vehicles to the client, and the third part is the permutation of vehicles IDs dispatched

to the corresponding client of the first part. In order to evaluate the performance of

the proposed algorithm, the authors applied different combinations of priority rules

for production and vehicles and recorded the respective traveling costs. In all cases,

the GA outperforms costs of these combinations in ranges of 4.7-6.7%.

Maghrebi et al. [26] also used a GA for the solution of a CDP. The proposed

structure of the solution consists of two parts. The first part consists of the depot

allocation where a sequence of integers indicates the depot where a client will be

served from. The second part concerns the truck allocation and is characterized by

integers k that will serve the client i. In order to evaluate their algorithm, they

compare it with a random solution over a large number of iterations and adjusting

the other genetic operators. The author reports average improvements in their GA

by reducing operation costs in 39,28% respect to their generated random solution.

Mayteekrieangkrai y Wongthatsanekorn [28] uses a bee algorithm (BA) to op-

timize the scheduling of trucks from a single plant to multiple sized customers in

a large search space using uncertain factors. The solution structure has a length

defined by the total number of trucks to be dispatched and shows its dispatching

sequence. For example, an instance of three construction sites requiring three, four,

and five trucks, would have a solution length of twelve. Then an array of random

numbers is generated alongside its corresponding construction site ID, representing

each bit of the dispatching sequence. For the decoding process, this array is ordered

in ascending order indicating the sequence in which each site ID will be visited. This

BA is compared to a GA and showed that the proposed approach outperforms the

GA. The authors resume their results with 12 instances with an average of 91,94%

for the BA and 55% for the GA respect to the optimal values.
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Variable Neighbourhood Search

A Variable Neighbourhood Search (VNS) [11] has been applied by Payr y Schmid

[31]. Vehicles are assigned at random at first, as a biased solution. With a shaking

operation, an order of the vehicles is replaced according to the random solution.

Then the neighborhoods are constructed by increasing the number of disrupted or-

ders and by a replacement strategy of the vehicles not being used. The local search

includes moving and swapping vehicles between orders. This approach was applied

in a real-world scenario within a period of 12 days with an average improvement in

the operation costs of 23.63%.

A VNS is also proposed by Schmid et al. [33]. In this case, after an initial

feasible solution is found using this metaheuristic, it is improved using a Very Large

Neighbourhood Search. A solution consists of a sequence of trucks per order. These

sequences are modified in the shaking process and improved in iterative steps. The

authors tested their approaches in real case scenario of a concrete company, high-

lighting the strength of the VLNS in medium-sized real-world test instances, with

values of 12% of average gap respect to the computed lower bounds.
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Article Vehicle Fleet Objective Solution method Time Windows Outsourcing

Matsatsinis [27] Heterogenous Minimize the distribution cost. Heuristic Soft Not considered

Asbach et al. [3] Heterogenous

Minimizes simultaneously the total sum of travel

costs of edges used by any vehicle and penalty costs

for customers whose demand is not fully satisfied.

Heuristic,

Local Search
Hard Not considered

Naso et al. [30] Homogenous Minimize distribution cost
Metaheuristic

(Genetic Algorithm)
Soft Considered

Payr y Schmid [31] Heterogenous Minimize distribution cost

Metaheuristic

(Variable

Neighbourhood Search)

Soft Considered

Schmid et al. [33] Heterogenous
Minimize total cost, and penalties for delays

between any two consecutive unloading perations

Metaheuristic

(Variable

Neighbourhood Search)

Soft Not considered

Lin et al. [22] Homogenous Minimize the total lateness of RMC Goal programming Hard Not considered

Hertz et al. [14] Heterogenous Minimize the used vehicles
Integer Linear

programming
Soft Not considered

Maghrebi et al. [26] Homogenous Minimize travel distance Metaheuristic (Genetic Algorithm) Hard Not considered

Liu et al. [24] Heterogenous Minimize the total cost of plants and construction sites
Metaheuristic

(Genetic Algorithm)
Hard Not considered

Zhang y Zeng [38] Homogenous Minimizing the operating cost of each vehicle.

Hybrid

(Heuristic algorithm

with Mixed Integer

Programming)

Hard Not considered

Kinable et al. [17] Heterogenous Maximize number of satisfied customers.
Constraint Programming,

Heuristic
Hard Not Considered

Table 2.1: Summary of the CDP revised models.

The term outsourcing is indicating if it considered hiring new trucks in case

an increase in fleet capacity is needed due to unsatisfied customers. A hard time

window is defined when deliveries to the customers cannot be performed outside the

interval limited by the starting and ending times. On the other hand, the presence

of a soft time window implies violation in the intervals is permitted but it has to be

charged as a penalty in the objective function.

As shown in Table 2.1, mostly metaheuristic has been used to solve the CDP

ant its variants.

Indeed the main advantages of metaheuristics are the reasonable computation

times they spend in reaching feasible solutions which may draw near-optimal results.

This benefits the response to industrial real-world scenarios that requires providing

good solutions in relatively short times satisfying technical constraints.

This work focuses on the CDP defined by Kinable et al. [17]. Indeed, to the
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best of our knowledge, it is the variant of the problem that contains most-real world

constraints (see Table 2.1). Besides the instances of this paper are available online

and can be used to evaluate the performance of our models.



Chapter 3

Mathematical models

From the literature review, the model proposed by Kinable et al. [17] is the one that

describes the problem in a more general way than the others. Nevertheless, it could

be possible to incorporate new restrictions if needed. This model is based on Mixed

Integer Programming and it is described in this chapter. For clarity, we will use the

same notation of Kinable et al. [17].

In the CDP, each construction site (customer) i ∈ C requests di amount of

concrete. The material is transported by a heterogeneous set of trucks K, each one

with a capacity of qk, k ∈ K. The trucks start their trips at a source depot and at

the end of a day they return to a sink depot which may or may not be the same as

the start.

Each construction site has a time window [ai, bi] associated, this is the time

interval the concrete must be delivered. There is also a maximum time lag between

consecutive deliveries to the same customer, and it can be defined as the maximum

time a client can wait before its next delivery is performed. The parameters which

define the CDP are shown in Table 3.1

13
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3.1 Mixed Integer Programming Model for the

CDP

3.1.1 Parameters of the CDP

Parameter Description

P Set of concrete production sites

C Set of customers

K Set of Vehicles

di Requested amount of concrete by customer i ∈ C

qk Capacity of truck k ∈ K

pk Time required to empty the vehicle k ∈ K

[ai, bi]
Time window during which the amount of concrete may be delivered to

customer i ∈ C

tij Time to travel from i to j

γ Maximum time lag between consecutive deliveries.

0, n+ 1 start and end depots of the trucks respectively

V Vertex set V = P ∪ C ∪ {n+ 1}

Table 3.1: Parameters defining the CDP

The following model is proposed by Kinable et al. [17]. It was taken as a guideline

in order to understand the problem. To model the CDP, the authors define for each

customer i ∈ C an ordered set, consisting of deliveries, Ci = {1, ..., n(i)}. Here

n(i) =
di

min
k∈K

(qk)
will determine the maximum number of deliveries to customer i.

Also, cji will denote delivery j for customer i. Each delivery u ∈ Ci, i ∈ C has an

associated time window [au, bu]. Furthermore, D = ∪
i∈C
Ci constitutes the union of

all deliveries.
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The problem is modeled on a directed weighted graph G(V,A), with the vertex

set defined as V = {0} ∪ D ∪ {n+ 1}. Vertices 0 and n+ 1 are the initial and final

depots respectively.

The arc set A is defined as:

• The initial and final depots have outgoing and incoming edges respectively

to/from all other vertices.

• A delivery cih has a directed edge to a delivery node cij if h < j, i ∈ C, h, j ∈ Ci.

• There is a directed edge from ciu to cjv, i 6= j except if, cjv needs to be scheduled

earlier than ciu

The arc costs are:

• c0,cij = min
p∈P

t0,p + tp,i ∀ cij ∈ D.

• cciu,cjv = min
p∈P

ti,p + tp,j ∀ ciu, cjv ∈ D,ciu 6= cjv.

• ccij ,n+1 = ti,n+1.

• c0,n+1 = 0.

δ− and δ+ are the incoming and outgoing neighborhood sets respectively.

Besides, the authors use the following decision variables:

• yi is a binary variable, indicating whether customer i ∈ C is serviced.

• xijk is a binary variable, indicating whether the vehicle k ∈ K, travels from i

to j, i, j ∈ V .

• Ci record the time that a delivery i ∈ D is completed.

• Cn+1 records the total makespan.
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The model proposed by Kinable et al. [17] is then defined as follows::

max
∑
i∈C

diyi

∑
j∈δ+(0)

x0jk =
∑

i∈δ−(n+1)

xi,n+1,k = 1 ∀k ∈ K (3.1)

∑
j∈δ−(i)

xjik =
∑

j∈δ+(i)

xi,j,k ∀i ∈ D, k ∈ K (3.2)

S(i, 1) ≤ 1 ∀i ∈ D (3.3)

S(j + 1, 1) ≤ S(j, 1) ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.4)

∑
j∈Ci

S(j, qk) ≥ diyi ∀i ∈ C (3.5)

Ci −M(1− xijk) ≤ Cj − pk − cij ∀(i, j) ∈ A, i 6= 0, k ∈ K (3.6)

Ci −M(1− xijk) ≤ Cj − cij ∀(0, j) ∈ A, k ∈ K (3.7)

Ci − S(i, pk) ≥ ai ∀i ∈ D (3.8)

Cj+1 − S(j + 1, pk)− Cj ≤ γ ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.9)

Cj+1 ≥ Cj + S(j, pk) ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.10)
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ai ≤ Ci ≤ bi ∀i ∈ V (3.11)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.12)

yi ∈ {0, 1} ∀i ∈ C (3.13)

Where S(i,α) =
∑
k∈K

∑
j∈δ+(i)

αxijk for all i ∈ D.

Constraints (3.1) specifies the starting and ending location of a tour. Con-

straints (3.2) assures flow preservation and Constraint (3.3) indicates a node should

be visited at most once. In addition, Constraints (3.4) and (3.9) establishes the

maximum time lag between two consecutive deliveries. Constraints (3.4) indicates

precedence relationship between consecutive visits to a customer. Constraints (3.5)

guarantee that the customer should be satisfied if visited. Constraints (3.6-3.11)

assure time consistency and time windows satisfaction.

3.2 The Compact Model

A new formulation of the problem is proposed as follows, seeking to reduce the

number of variables involved in the problem. The main idea of this new model is to

discretize the flow by vehicle type instead of by vehicle as in the model Kinable et

al. [17]. Hence, we define the set of types of vehicles T = {1, 2, ..., t} where a group

of vehicles with the same unloading time and capacity fall in the same type.

Here xijt is a binary variable, indicating whether the vehicle type t, travels

from i to j, i, j ∈ V .

gt is the number of vehicles of type t, t ∈ T
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With this new set and P,C and V defined as before the previous model can be

modified, resulting in a more compact model keeping the same objective function.

The Compact model obtained is:

max
∑
i∈C

diyi

∑
j∈δ+(0)

x0jt = gt ∀t ∈ T (3.14)

∑
i∈δ−(n+1)

xi,n+1,t = gt ∀t ∈ T (3.15)

∑
j∈δ−(i)

xjit =
∑

j∈δ+(i)

xijt ∀i ∈ D, t ∈ T (3.16)

∑
t∈T

∑
j∈δ+(i)

xijt = yi ∀i ∈ C (3.17)

∑
t∈T

∑
j+1∈δ+(i)

xi,j+1,t ≤
∑
t∈T

∑
j∈δ+(i)

xijt ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.18)

∑
t∈T

∑
j∈δ+(i)

qtxijt ≥ diyi ∀i ∈ C (3.19)

Ci −M(1− xijt) ≤ Cj − pt − cij ∀(i, j) ∈ A, t ∈ T (3.20)

Ci −
∑
t∈T

∑
j∈δ+(i)

ptxijt ≥ ai ∀i ∈ D (3.21)

Cj+1 −
∑
t∈T

∑
j∈δ+(j+1)

ptxj+1,l,t − Cj ≤ γ ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.22)
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Cj+1 ≥ Cj +
∑
t∈T

∑
l∈δ+(j)

ptxjlt ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.23)

ai ≤ Ci ≤ bi ∀i ∈ V (3.24)

xijt ∈ {0, 1} ∀(i, j) ∈ A, t ∈ T (3.25)

yi ∈ {0, 1} ∀i ∈ C (3.26)

Constraints (3.14) and Constraints (3.15) specify the starting location of a tour

and the ending location for vehicles type t respectively. Constraints (3.16) stands

for flow preservation. Constraints (3.17) state that nodes most be visited once.

Constraints (3.18) assure visit order. Constraints (3.19) indicate customers demand

must be covered. Constraints (3.20) maintain time consistency for every travel.

Constraints (3.21) and (3.24) assure the time window satisfaction. Constraints (3.22)

denote the maximum time lag for consecutive deliveries to the same customer and

Constraints (3.23) assure that succesive deliveries to the same customer does not

overlap in time. Constraints (3.25) and (3.26) represent the variable domains.

3.3 The Compact Model Modified

The Compact model is sensitive to a few more changes that may directly impact its

performance because the solver can take advantage of modifying the restriction of

flow preservation, dividing it into two clique type constraints. This is considered the

second proposed model in this work.

This strategy consists of modeling this routing problem introducing the new

variable wti to the compact model, which is a binary variable indicating if the vehicle

of type t travels to customer node i.
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The model obtained is:

max
∑
i∈C

diyi

subject to Constraints 3.14 - 3.15 and:

∑
j∈δ−(i)

xjit = wti ∀i ∈ D, t ∈ T (3.27)

∑
j∈δ+(i)

xijt = wtj ∀i ∈ D, t ∈ T (3.28)

∑
t∈T

∑
j∈δ+(i)

qkwti ≥ diyi ∀i ∈ C (3.29)

Ci −M(1− xijt) ≤ Cj − pt − cij ∀(i, j) ∈ A, t ∈ T (3.30)

Ci −
∑
t∈T

∑
j∈δ+(i)

ptwti ≥ ai ∀i ∈ D (3.31)

Ci −
∑
t∈T

∑
j∈δ+(i)

ptwtj − Cj ≤ γ ∀i ∈ C, j ∈ {1, ..., n(i)− 1} (3.32)

wt,i+1 ≥ wti ∀t ∈ T, i ∈ {1, ..., n(i)} (3.33)

xijt ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.34)

yi ∈ {0, 1} ∀i ∈ C (3.35)
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wti ∈ {0, 1} ∀i ∈ C, t ∈ T (3.36)

Constraints (3.27) and (3.28) stands for flow preservation. Customer’s demand

must be covered by the sum of capacities of the trucks that will perform the deliveries

to a customer Constraints (3.29). The time consistency is expressed in Constraints

(3.30). Furthermore, Constraints (3.31) ensures a delivery must be made within the

time window. Constraints (3.32) implement the maximum time lag. Constraints

(3.33) prevent the overlap in time for deliveries to the same customer. In addition,

Constraints (3.34 - 3.36) define the nature of the variables.

3.4 Bounds

Upper bounds are obtained by solving the LP relaxation of the models. Moreover,

a number of cuts are added in order to improve the convergence to the optimal

solution. Kinable et al. [17] propose to use the following cuts:

1. For every pair of customers i, j ∈ C, i 6= j, set yi = yj = 1 and yv = 0, ∀

v ∈ C,v /∈ {i, j}

2. Solve the MIP model and whenever it turns out infeasible the inequality yi +

yj ≤ 1 may be added to the model, meaning both customers i and j could not

be satisfied with no schedule.

As mentioned by Kinable et al. [17], cuts can be generated with greater car-

dinality instead of pairs, however, for the cardinality of the subsets greater than

3, the generation of these cuts are computationally intractable. IBM’s Ilog Cplex

Solver version 12.8 is used to compute the LP relaxation once the cuts were added,

strengthening bounds of the resulting model. Here, cuts are limited to two and three

as suggested by Kinable et al. [17].



Chapter 4

Experimental Results

4.1 Instances description

The benchmark data that will be used are available at J. Kinable [15]. There are

two data sets. Data Set A contains instances with 10-20 customers and 2-5 vehicles,

being the smaller ones. Data Set B has up to 50 customers and 20 vehicles. The

authors give their computational results in [17], and provides an upper bound on

the optimal solution values, the objective value, the gap between the objective value

and the bound for the solution methods they proposed.

In order to evaluate the effectiveness of the proposed Compact Models of this

work, a comparison of the results for each instance will be given, with the objective

of decrease the existing gap between the upper bound and the objective value.

4.2 Results of the Compact Models

First of all, it is important to highlight that the MIP results shown in Kinable et al.

[17] are influenced by taking an initial solution of their heuristics and by cuts added.

Besides, the best results reported by the authors were achieved by our proposed

Compact Models (Compact Model and Compact Model Modified) described in the

previous chapter.

The CP Model of Kinable et al. [17] was not modeled, consequently, it is not

22
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analyzed respect to our proposed Compact Models neither in terms of computation

times nor the number of used variables and restrictions.

4.2.1 Results from Dataset A

In the considered aspects in which the Compact Models were compared, experiments

were performed by testing the proposed models with the best results presented in

Kinable et al. [17] which corresponds to their Constraint Programming (CP) Model.

A boxplot of the effect of the number of customers in the objective value is

presented in Figure 4.1. The horizontal axis represents the number of customers and

the vertical one represents the corresponding best solution found. For every instance,

a time of 300 seconds was set as stopping criteria. For 5 customers the optimal value

is obtained for every instance in the three models. For the group of 10 customers,

and especially in the case of 4 vehicles, there is a slight difference for the models,

imperceptible in the figure. This is because of an Instance in which the first of our

Compact Models could not reach the optimal value. In the case of customers of size

15 and 20, a better performance is clearly observed in the CP Model of Kinable et

al. [17].
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Figure 4.1: Boxplot of objective values respect to the number of customers in all

models

Within the instances of 5 customers, a difference in the proposed models is

observed in computation times. Although for these small instances, both models

achieved optimality, Compact Model Modified converge faster than the Compact

Model with an average of 0,021 sec respect to 0,030 sec. In Figure 4.2, one can

see a graphical representation of how the Compact Model Modified is able to solve

instances in shorter computational time. In this lineplot, the horizontal axis repre-

sents the instances of 5 customers and the vertical one the computation time when

both models reach optimal values.

Figure 4.2: Execution times of Instances of 5 customers

Table 4.1 shows average values of computation time for the other class of

instancees within this Dataset.
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Compact Model Compact Modified

Customers AVG time (sec) AVG time (sec)

10 57.303 16.964

15 184.872 140.636

20 236.155 195.329

Table 4.1: Average execution times for Instance with 10, 15 and 20 customers

Another important characteristic to analyze is the impact of the number of

variables and restrictions. The number of used variables and restrictions of both

models are compared and shown in Figure 4.3. The horizontal axis represents each

group of customers and the vertical one the number of used variables and restrictions

for (a) and (b) respectively.

Compact Models show an overall performance for the number of variables and

restrictions as the group of Customers grows, respect to the MIP Model of Kinable

et al. [17], but differences are clearly seen for the group of 20 customers in both

characteristics, and for the group of 15 customers is only appreciable differences in

the number of used restrictions.
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(a) Boxplot of Number of Variables

(b) Boxplot of Number of Restrictions

Figure 4.3: Boxplots of Number of Variables and Restrictions of the models

Further analysis is shown in Figure 4.4, which allows us to see the relationship

between these characteristics. The number of used restrictions in the model are in

the horizontal axis whereas the number of used variables are in the vertical one. It

can be concluded than in Compact Models although the number of variables grows

rapidly with the size of Instances the number of restrictions does not increase as fast

as its size, contributing to its overall performance on the largest instances.
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Figure 4.4: Relation of the Number of Variables and Restrictions in all Models with

Dataset A

Figure 4.5 represents the number of optimal values reached by each model

out of the 64 instances of this dataset. The Compact Model is able to achieve 41

optimal values with an average gap of 17,39%. The CP Model of Kinable et al. [17]

reached 40 optimal values with an average gap of 4.15% and the Compact Model

Modified is capable of reaching 47 optimal values with an average gap of 10.81%.

Those contrasting results in gaps are due to differences in the upper bounds of the

different models.
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Figure 4.5: Number of reached optimal values by models in Dataset A

Adding cuts

Both proposed models were tested by adding cuts of size two and three and solving

the respective MIP Models, in order to strengthen the bounds; then they were

compared again with the method which shows best results in Kinable et al. [17],

the CP Method. This results are shown in Figure 4.6. In this boxplot horizontal

axis represents the number of customers and the vertical one represents the obtained

objective values of models after the bounds being strengthened.
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Figure 4.6: Bounds of the strenghten models with Dataset A

The Compact Model is strengthened by adding cuts of size two and three at

the same time, and the Compact Model Modified is strengthened by adding cuts of

size two because performs slightly better than with cuts of size three (see Appendix

A.2).

With cuts being added the Compact Model reaches 48 optimal values. The

impact of this strategy represents an increase of 11% in the instances solved to

optimality compared to the previous results. The average gap was also improved by

decreasing it to 6.11% from 17.39%.

This action also had enhancements in these factors for the Compact Model

Modified. A slight increase in instances solved to optimality from 47 to 50 and the

average gap had improvements from 10.81% to a 5.53%.

As a conclusion in the group of instances of 15 and 20 customers, the Compact

Model Modified show better results than the Compact Model. On the other hand,

they still shows slightly worse results than the CP Model of Kinable et al. [17].

Compact Model fell 1.96 % as an average of matching at least the CP Model, whereas

this difference is of 1.38% as an average for the Compact Model Modified.
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4.2.2 Results from Dataset B

In this section as well as in the previous one all considered aspects in which three

models were compared, it is taken as a basis the best results among the solution

methods in Kinable et al. [17]. It is also important to highlight that these authors do

not present MIP results for this class in their paper, claiming that it is ineffective in

solving this larger instances. Bounds of the proposed models were compared respect

to the best bounds presented by the authors, corresponding to their Constraint

Programming method.

There are a total of 128 instances for this Dataset. The results of all models

are shown in Figure 4.7. The horizontal axis represents the number of customers

and the vertical one represents the corresponding best solution found.

Here the time limit of the solver was increased to 600 seconds due to the

increasing size of the instance and to match the stopping criteria of Kinable et al.

[17].

Figure 4.7: Boxplot of objective values respect to the number of customers in the

models
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Here the Compact model shows low-quality results, especially in instances of

40 and 50 customers, and in 84 cases no customers were visited for this proposed

model. Compact Model Modified performs better for this Dataset, being able to

achieve greater values of the objective function, meaning more delivered concrete or

served customers.

The number of variables and restrictions involved in the proposed models were

also analyzed. Results are shown in Figure 4.8. Horizontal axes represent in both

subfigures the groups of customers. In (a) the vertical axis represents the number

of variables used in both models and in case of (b) the number of restrictions used.

Similar overall behavior in these characteristics is obtained for the Compact Model

as well as in Dataset A. For the group of Instances of 30, 40 and 50 customers, the

Compact Model Modified uses a little less amount of variables and restrictions than

the Compact Model. For 20 customers hardly any difference can be perceived.
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(a) Boxplot of Number of Variables

(b) Boxplot of Number of Restrictions

Figure 4.8: Boxplots of Number of Variables and Restrictions of both models
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Computational time is another factor of interest. Results are shown in Table

4.2. As conclusion it can be said that Compact Model takes almost the entire

stopping criteria of 600 seconds to solve the instances as average, on the other hand,

Compact Model Modified reaches its results in lower computational times especially

for instances of 20 and 30 customers.

Compact Model Compact Model Modified

AVG time (sec) AVG time (sec)

20 customers 504.97 181.06

30 customers 557.97 386.38

40 customers 592.06 512.22

50 customers 581.75 581.44

Table 4.2: Average computation time to solve instances for both models

The similar following Table 4.3 shows another resume of computation times,

but with the difference of taking into account only the instances with that, the

proposed Models found feasible tours.

Notice that there for the Compact Model there are significant variations. The

decreasing average times in every group of customers are due to all the missing

instances in which the model took all the stopping criteria of time trying to solve

those instances. In the case of the Compact Model Modified, differences are only

in the group of 20 and 30 customers. This is because of the absence of only one of

these instances in these groups respectively.
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Compact Model Compact Model Modified

AVG time (sec) AVG time (sec)

20 customers 467.68 167.55

30 customers 477.72 379.48

40 customers 548.60 512.22

50 customers 480.6 581.44

Table 4.3: Average computation time to solve instances for both models

Adding cuts

A final comparison is made between both proposed models with strengthen bounds

by the action of adding cuts and the model proposed in Kinable et al. [17] based on

CP. In their paper, the CP Model performed better than their heuristic procedure

for this dataset, so it will be compared the best obtained bounds for the problem in

this section as mentioned before.

Regarding these obtained bounds a boxplot is shown in Figure 4.9. The hori-

zontal axis represents the group of Instances with the respective amount of customers

and the vertical one represents the corresponding objective values (bounds) obtained.
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Figure 4.9: Results of the Compact models using cuts of size two and three and the

CP Model of Kinable et al. [17] with Dataset B

As a result, the Compact Model Modified performs better than the Compact

Model especially in the larger Instances of 40 and 50 customers. But Kinable et al.

[17] CP Model still shows better results in general.

Adding these cuts allow Compact Model to reach 38 optimal values with an

average gap of 34.79% in comparison with a figure of 11 optimal values and a higher

average gap of 82.7% without the influence of cuts, these because this model could

not find any tour in 82 cases out of 128, this evidences why this action causes a high

improvement in results of this model.

In the case of the Compact Model Modified small enhancements were also

evidenced. A total of 41 optimal values and an average gap of 2.43% were reached in

comparison to 36 optimal values and an average gap of 3.40% without this influence.

Further analysis is carried out comparing the obtained Bound with the Upper

Bound of the CPLEX Solver, this is considered a measure of the existing GAP

for each instance of the Dataset. Figure 4.10 show a boxplot with these values.

The horizontal axis represents the group of Instances with the respective amount
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of customers and the vertical one represents the corresponding value of the GAP in

percent.

Figure 4.10: Gap of the Compact model using cuts of size two and three with Dataset

B

There are remarkable breaches in all groups of customers, with greater differ-

ences as the size of instance grows. In this boxplot, the distinction between the two

models seems fairly straightforward, reporting the Compact Model Modified better

quality results. For the Compact Model Modified which uses slightly fewer variables

and restrictions, it seems these are critical in terms of the contribution in finding

solutions, helping this model to find better tours than the Compact Model in a total

of 85 cases of this dataset.
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Conclusions and Future Work

In this chapter general conclusions of the work are presented as well as the future

work to develop in order to continue the study of this routing problem and its areas

for improvement.

5.1 Conclusions

The CDP is one of the several variants of rich vehicle routing problems and it is NP-

Hard [17]. In the literature, multiple solution approaches have been proposed for

the Concrete Delivery Problem, either exact methods, and heuristics. Our objective

with this work is the contribution to methodological purposes, although the problem

has been studied in real-case scenarios.

In this work, two Mixed Integer Programming formulations were proposed to

solve the CDP. A MIP Model presented in Kinable et al. [17] was used as a guideline

in order to understand the problem. Then, based on a graph representation, more

compact formulations were proposed. These formulations reduce the number of

variables and restrictions involved in the problem with overall performance as the

instance size grows and present more efficient results in finding solutions.

In addition, the Compact Model Modified is the only one capable of finding

solutions for the larger instances (40 and 50 customers) without the influence of cuts,

although the Compact Model is able to tackle more of these instances when bounds

37
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are strengthened.

In general, the main contribution of this thesis is the analysis of the best

formulations proposed in other relevant works for the CDP, and based on that, two

more compact MIP models are proposed, showing encouraging results.

5.2 Future Work

As future work, we plan to implement and test the MIP model proposed by Kinable

et al. [17] under the same condition as our compact models. Indeed, in their paper,

the authors present results obtained with their model only on instances of dataset

A, using the solution of their heuristic as an initial solution. In our study, we are

interested in the performance of the models to find a feasible solution without a

starting point. Besides, even on dataset B, our compact model can find a feasible

solution contrary to what Kinable et al. [17] claim about their formulation. Recently

Sulaman et al. [35] also propose a new set of larger instances for the CDP. Hence, we

are considering carrying out further experimentation with these instances in order

to have a better evaluation of the performance of our models.

Finally, we consider studying efficient heuristic approaches to tackle efficiently

such problems. In particular, we would like to design specific local searches for

routing problems with maximum time lag constraints. Such constraints are generally

difficult to handle since even a small move in a solution yields most of the time to

infeasible solutions. These local searches may be in the future extended to other

classes of optimization problems.



Appendix A

Results of the Models from

Dataset A

A.1 Tables

Table A.1: Comparison between all models without the influence of cuts in Dataset

A

Kinable’s Model Compact Model Compact Model Modified

Instance Clientes UB Bound Gap UB Bound Gap UB Bound Gap

A 2 5 1.rmc 5 85 85 0.0 85 85 0.0 85 85 0

A 2 5 2.rmc 5 160 160 0.0 160 160 0.0 160 160 0

A 2 5 3.rmc 5 105 105 0.0 105 105 0.0 105 105 0

A 2 5 4.rmc 5 105 105 0.0 105 105 0.0 105 105 0

A 3 5 1.rmc 5 205 205 0.0 205 205 0.0 205 205 0

A 3 5 2.rmc 5 115 115 0.0 115 115 0.0 115 115 0

A 3 5 3.rmc 5 125 125 0.0 125 125 0.0 125 125 0

A 3 5 4.rmc 5 190 190 0.0 190 190 0.0 190 190 0

A 4 5 1.rmc 5 140 140 0.0 140 140 0.0 140 140 0

A 4 5 2.rmc 5 150 150 0.0 150 150 0.0 150 150 0

A 4 5 3.rmc 5 165 165 0.0 165 165 0.0 165 165 0

A 4 5 4.rmc 5 230 230 0.0 230 230 0.0 230 230 0

A 5 5 1.rmc 5 200 200 0.0 200 200 0.0 200 200 0

A 5 5 2.rmc 5 200 200 0.0 200 200 0.0 200 200 0

A 5 5 3.rmc 5 220 220 0.0 220 220 0.0 220 220 0

A 5 5 4.rmc 5 175 175 0.0 175 175 0.0 175 175 0

A 2 10 1.rmc 10 50 50 0.0 50 50 0.0 50 50 0

A 2 10 2.rmc 10 150 150 0.0 150 150 0.0 150 150 0

A 2 10 3.rmc 10 220 220 0.0 220 220 0.0 220 220 0

A 2 10 4.rmc 10 150 150 0.0 150 150 0.0 150 150 0

A 3 10 1.rmc 10 205 205 0.0 205 205 0.0 205 205 0

A 3 10 2.rmc 10 230 230 0.0 230 230 0.0 230 230 0

A 3 10 3.rmc 10 480 305 36.5 305 305 0.0 305 305 0

A 3 10 4.rmc 10 300 300 0.0 300 300 0.0 300 300 0

A 4 10 1.rmc 10 440 170 61.4 360 270 25.0 310 310 0

A 4 10 2.rmc 10 370 370 0.0 370 370 0.0 370 370 0
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Table A.1 continued from previous page

Kinable’s Model Compact Model Compact Model Modified

A 4 10 3.rmc 10 470 340 27.7 410 370 9.8 375 375 0

A 4 10 4.rmc 10 285 285 0.0 285 285 0.0 285 285 0

A 5 10 1.rmc 10 350 350 0.0 350 350 0.0 350 350 0

A 5 10 2.rmc 10 345 345 0.0 345 345 0.0 345 345 0

A 5 10 3.rmc 10 285 285 0.0 285 285 0.0 285 285 0

A 5 10 4.rmc 10 380 380 0.0 380 380 0.0 380 380 0

A 2 15 1.rmc 15 215 215 0.0 215 215 0.0 215 215 0

A 2 15 2.rmc 15 360 220 38.9 447.76 290 35.2 450 290 36

A 2 15 3.rmc 15 415 190 54.2 315 205 34.9 205 205 0

A 2 15 4.rmc 15 255 255 0.0 255 255 0.0 255 255 0

A 3 15 1.rmc 15 605 0 100.0 330 330 0.0 330 330 0

A 3 15 2.rmc 15 395 395 0.0 395 395 0.0 395 395 0

A 3 15 3.rmc 15 465 240 48.4 290 290 0.0 290 290 0

A 3 15 4.rmc 15 740 370 50.0 440 440 0.0 440 440 0

A 4 15 1.rmc 15 655 0 100.0 655 0 100.0 625 295 53

A 4 15 2.rmc 15 650 120 81.5 650 305 53.1 650 330 49

A 4 15 3.rmc 15 580 395 31.9 430 430 0.0 430 430 0

A 4 15 4.rmc 15 725 10 98.6 550 415 24.5 570 455 20

A 5 15 1.rmc 15 630 0 100.0 590 455 22.9 590 430 27

A 5 15 2.rmc 15 695 0 100.0 695 360 48.2 695 510 27

A 5 15 3.rmc 15 465 315 32.3 350 350 0.0 350 350 0

A 5 15 4.rmc 15 600 60 90.0 600 415 30.8 555 480 14

A 2 20 1.rmc 20 920 15 98.4 920 0 100.0 895 20 98

A 2 20 2.rmc 20 735 35 95.2 270 270 0.0 270 270 0

A 2 20 3.rmc 20 850 35 95.9 260 260 0.0 260 260 0

A 2 20 4.rmc 20 770 240 68.8 587.81 335 43.0 355 355 0

A 3 20 1.rmc 20 830 0 100.0 415 290 30.1 340 340 0

A 3 20 2.rmc 20 845 0 100.0 820 0 100.0 730 200 73

A 3 20 3.rmc 20 695 0 100.0 695 110 84.2 645 225 65

A 3 20 4.rmc 20 819 165 79.9 760 440 42.1 637 435 32

A 4 20 1.rmc 20 660 35 94.7 660 255 61.4 635 380 40

A 4 20 2.rmc 20 575 355 38.3 425 425 0.0 425 425 0

A 4 20 3.rmc 20 815 25 96.9 755 95 87.4 690 220 68

A 4 20 4.rmc 20 735 355 51.7 640.83 455 29.0 465 465 0

A 5 20 1.rmc 20 900 395 56.1 875 645 26.3 800 665 17

A 5 20 2.rmc 20 925 0 100.0 925 145 84.3 925 415 55

A 5 20 3.rmc 20 750 375 50.0 595 590 1.0 600 595 1

A 5 20 4.rmc 20 735 205 72.1 710 430 39.4 594 495 17
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Table A.2: Comparison between all models with bounds strengthen in Dataset A

Kinable’s Model Compact Model Compact Model Modified

Instance Clientes UB Bound Gap UB Bound Gap UB Bound Gap

A 2 5 1.rmc 5 85 85 0.0 85 85 0.00 85 85 0

A 2 5 2.rmc 5 160 160 0.0 160 160 0.00 160 160 0

A 2 5 3.rmc 5 105 105 0.0 105 105 0.00 105 105 0

A 2 5 4.rmc 5 105 105 0.0 105 105 0.00 105 105 0

A 3 5 1.rmc 5 205 205 0.0 205 205 0.00 205 205 0

A 3 5 2.rmc 5 115 115 0.0 115 115 0.00 115 115 0

A 3 5 3.rmc 5 125 125 0.0 125 125 0.00 125 125 0

A 3 5 4.rmc 5 190 190 0.0 190 190 0.00 190 190 0

A 4 5 1.rmc 5 140 140 0.0 140 140 0.00 140 140 0

A 4 5 2.rmc 5 150 150 0.0 150 150 0.00 150 150 0

A 4 5 3.rmc 5 165 165 0.0 165 165 0.00 165 165 0

A 4 5 4.rmc 5 230 230 0.0 230 230 0.00 230 230 0

A 5 5 1.rmc 5 200 200 0.0 200 200 0.00 200 200 0

A 5 5 2.rmc 5 200 200 0.0 200 200 0.00 200 200 0

A 5 5 3.rmc 5 220 220 0.0 220 220 0.00 220 220 0

A 5 5 4.rmc 5 175 175 0.0 175 175 0.00 175 175 0

A 2 10 1.rmc 10 50 50 0.0 50 50 0.00 50 50 0

A 2 10 2.rmc 10 150 150 0.0 150 150 0.00 150 150 0

A 2 10 3.rmc 10 220 220 0.0 220 220 0.00 220 220 0

A 2 10 4.rmc 10 150 150 0.0 150 150 0.00 150 150 0

A 3 10 1.rmc 10 205 205 0.0 205 205 0.00 205 205 0

A 3 10 2.rmc 10 230 230 0.0 230 230 0.00 230 230 0

A 3 10 3.rmc 10 305 305 0.0 305 305 0.00 305 305 0

A 3 10 4.rmc 10 300 300 0.0 300 300 0.00 300 300 0

A 4 10 1.rmc 10 310 240 22.6 310 300 3.23 310 310 0

A 4 10 2.rmc 10 370 370 0.0 370 370 0.00 370 370 0

A 4 10 3.rmc 10 445 350 21.3 385 375 2.60 375 375 0

A 4 10 4.rmc 10 285 285 0.0 285 285 0.00 285 285 0

A 5 10 1.rmc 10 350 350 0.0 350 350 0.00 350 350 0

A 5 10 2.rmc 10 345 345 0.0 345 345 0.00 345 345 0

A 5 10 3.rmc 10 285 285 0.0 285 285 0.00 285 285 0

A 5 10 4.rmc 10 380 380 0.0 380 380 0.00 380 380 0

A 2 15 1.rmc 15 215 215 0.0 215 215 0.00 215 215 0

A 2 15 2.rmc 15 320 275 14.1 290 290 0.00 290 290 0

A 2 15 3.rmc 15 205 205 0.0 205 205 0.00 205 205 0

A 2 15 4.rmc 15 255 255 0.0 255 255 0.00 255 255 0

A 3 15 1.rmc 15 330 330 0.0 330 330 0.00 330 330 0

A 3 15 2.rmc 15 425 395 7.1 395 395 0.00 395 395 0

A 3 15 3.rmc 15 330 280 15.2 290 290 0.00 290 290 0

A 3 15 4.rmc 15 475 420 11.6 440 440 0.00 440 440 0

A 4 15 1.rmc 15 545 415 23.9 545 225 58.72 545 345 37

A 4 15 2.rmc 15 610 455 25.4 555 395 28.83 555 445 20

A 4 15 3.rmc 15 450 410 8.9 430 430 0.00 430 430 0

A 4 15 4.rmc 15 515 435 15.5 490 490 0.00 490 490 0

A 5 15 1.rmc 15 590 445 24.6 530 410 22.64 530 420 21

A 5 15 2.rmc 15 695 495 28.8 695 330 52.52 695 535 23

A 5 15 3.rmc 15 395 335 15.2 350 350 0.00 350 350 0

A 5 15 4.rmc 15 520 500 3.8 520 445 14.42 520 500 4

A 2 20 1.rmc 20 255 255 0.0 255 255 0.00 255 255 0

A 2 20 2.rmc 20 270 270 0.0 270 270 0.00 270 270 0

A 2 20 3.rmc 20 260 260 0.0 260 260 0.00 260 260 0

A 2 20 4.rmc 20 380 345 9.2 355 355 0.00 355 355 0

A 3 20 1.rmc 20 345 280 18.8 340 340 0.00 340 340 0
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Table A.2 continued from previous page

Kinable’s Model Compact Model Compact Model Modified

A 3 20 2.rmc 20 415 310 25.3 435 370 15.02 415 415 0

A 3 20 3.rmc 20 360 325 9.7 360 320 11.11 360 360 0

A 3 20 4.rmc 20 480 435 9.4 485 470 3.09 480 480 0

A 4 20 1.rmc 20 585 480 17.9 585 335 42.74 585 390 33

A 4 20 2.rmc 20 440 405 8.0 425 425 0.00 425 425 0

A 4 20 3.rmc 20 425 300 29.4 440 325 26.14 440 330 25

A 4 20 4.rmc 20 500 445 11.0 465 465 0.00 465 465 0

A 5 20 1.rmc 20 760 635 16.4 760 605 20.39 760 690 9

A 5 20 2.rmc 20 645 460 28.7 635 195 69.29 635 410 35

A 5 20 3.rmc 20 645 565 12.4 596 590 0.97 595 590 1

A 5 20 4.rmc 20 560 485 13.4 560 450 19.64 555 500 10

Table A.3: Comparison of all models in terms of used variables and restrictions in

Dataset A

Kinable’s Model Compact Model Compact Model Modified

Instance nCustomers # Var # Rest # Var # Rest # Var # Rest

A 2 5 1.rmc 5 357 416 98 82 110 84

A 2 5 2.rmc 5 306 359 89 70 99 71

A 2 5 3.rmc 5 259 306 76 66 85 68

A 2 5 4.rmc 5 1182 1307 323 247 329 233

A 3 5 1.rmc 5 1480 1616 494 223 535 252

A 3 5 2.rmc 5 890 991 371 172 415 212

A 3 5 3.rmc 5 380 439 74 73 86 72

A 3 5 4.rmc 5 790 884 146 109 162 113

A 4 5 1.rmc 5 501 572 141 87 161 100

A 4 5 2.rmc 5 1179 1298 319 174 344 198

A 4 5 3.rmc 5 695 782 175 91 197 108

A 4 5 4.rmc 5 1179 1298 310 152 334 175

A 5 5 1.rmc 5 738 830 87 89 100 91

A 5 5 2.rmc 5 1302 1430 258 118 287 138

A 5 5 3.rmc 5 1302 1430 283 139 298 152

A 5 5 4.rmc 5 2232 2405 225 167 246 156

A 2 10 1.rmc 10 1286 1402 299 257 298 222

A 2 10 2.rmc 10 3752 3976 1890 611 1941 642

A 2 10 3.rmc 10 1496 1624 405 240 412 210

A 2 10 4.rmc 10 3581 3799 1779 622 1836 659

A 3 10 1.rmc 10 2391 2554 416 299 417 263

A 3 10 2.rmc 10 3115 3306 1545 419 1594 489

A 3 10 3.rmc 10 7561 7878 2568 779 2596 817

A 3 10 4.rmc 10 3935 4154 681 407 671 335

A 4 10 1.rmc 10 8156 8484 2186 939 2162 923

A 4 10 2.rmc 10 4139 4363 1030 381 1036 374

A 4 10 3.rmc 10 5231 5487 1384 675 1370 650

A 4 10 4.rmc 10 2536 2704 582 212 627 243

A 5 10 1.rmc 10 7269 7580 2102 461 2188 544

A 5 10 2.rmc 10 3959 4180 752 261 796 286

A 5 10 3.rmc 10 5489 5755 1455 345 1538 424

A 5 10 4.rmc 10 4541 4780 920 371 948 387

A 2 15 1.rmc 15 3097 3282 794 458 772 371

A 2 15 2.rmc 15 8272 8607 4190 1286 4199 1272

A 2 15 3.rmc 15 8531 8872 4287 1595 4275 1561

A 2 15 4.rmc 15 4672 4911 2344 804 2269 771

A 3 15 1.rmc 15 13550 13971 2342 1179 2263 870

A 3 15 2.rmc 15 3726 3923 643 409 656 372
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Table A.3 continued from previous page

Kinable’s Model Compact Model Compact Model Modified

A 3 15 3.rmc 15 6136 6403 1968 817 1947 789

A 3 15 4.rmc 15 9146 9483 1650 1103 1531 849

A 4 15 1.rmc 15 20251 20772 5846 2508 5690 2378

A 4 15 2.rmc 15 20251 20772 5249 1816 5266 1844

A 4 15 3.rmc 15 8899 9228 2059 600 2065 590

A 4 15 4.rmc 15 24430 25007 3379 1912 3155 1438

A 5 15 1.rmc 15 22528 23085 4654 1366 4610 1351

A 5 15 2.rmc 15 27470 28090 6075 2048 5967 1927

A 5 15 3.rmc 15 7274 7570 785 453 744 384

A 5 15 4.rmc 15 20560 21090 4200 1241 4171 1201

A 2 20 1.rmc 20 20121 20657 10883 3683 10560 3317

A 2 20 2.rmc 20 14899 15351 3992 2012 3694 1476

A 2 20 3.rmc 20 8799 9131 2428 1498 2281 1141

A 2 20 4.rmc 20 7281 7577 3834 1212 3784 1144

A 3 20 1.rmc 20 23873 24433 4302 2621 3998 1864

A 3 20 2.rmc 20 25505 26086 8555 2616 8548 2598

A 3 20 3.rmc 20 18823 19313 6471 2127 6290 2017

A 3 20 4.rmc 20 11991 12369 4106 1328 4006 1216

A 4 20 1.rmc 20 20829 21343 8332 1764 8373 1874

A 4 20 2.rmc 20 12176 12554 1410 782 1363 611

A 4 20 3.rmc 20 29006 29624 7231 2551 7020 2367

A 4 20 4.rmc 20 12176 12554 2933 871 2878 839

A 5 20 1.rmc 20 23209 23760 4618 1281 4520 1201

A 5 20 2.rmc 20 46197 47000 13210 2712 13138 2787

A 5 20 3.rmc 20 18687 19175 1851 939 1788 706

A 5 20 4.rmc 20 31305 31955 5855 1537 5920 1580

Table A.4: Comparison of all models in terms of CPU time in Dataset A

Instance Customers Kinable’s Model Compact Model Compact Model Modified

A 2 5 1.rmc 5 0.05 0.01 0.01

A 2 5 2.rmc 5 0.03 0.01 0.01

A 2 5 3.rmc 5 0.01 0.01 0.01

A 2 5 4.rmc 5 0.46 0.05 0.01

A 3 5 1.rmc 5 0.55 0.09 0.08

A 3 5 2.rmc 5 0.33 0.07 0.07

A 3 5 3.rmc 5 0.04 0.01 0.01

A 3 5 4.rmc 5 0.08 0.01 0.01

A 4 5 1.rmc 5 0.03 0.01 0.01

A 4 5 2.rmc 5 0.34 0.06 0.03

A 4 5 3.rmc 5 0.1 0.01 0.01

A 4 5 4.rmc 5 0.15 0.06 0.03

A 5 5 1.rmc 5 0.07 0.01 0.01

A 5 5 2.rmc 5 0.15 0.03 0.01

A 5 5 3.rmc 5 0.17 0.03 0.02

A 5 5 4.rmc 5 0.34 0.02 0.01

A 2 10 1.rmc 10 0.39 0.03 0.01

A 2 10 2.rmc 10 79.01 21.58 1.02

A 2 10 3.rmc 10 1.41 0.06 0.03

A 2 10 4.rmc 10 11.91 2.18 0.38

A 3 10 1.rmc 10 11.09 0.1 0.03

A 3 10 2.rmc 10 217.2 139.03 9.03

A 3 10 3.rmc 10 300 148.43 58.03

A 3 10 4.rmc 10 23.2 0.06 0.04

A 4 10 1.rmc 10 300 300 127.56
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Table A.4 continued from previous page

Instance Customers Kinable’s Model Compact Model Compact Model Modified

A 4 10 2.rmc 10 53.19 3.56 0.37

A 4 10 3.rmc 10 300 300 74.15

A 4 10 4.rmc 10 0.92 0.06 0.03

A 5 10 1.rmc 10 12.2 0.55 0.22

A 5 10 2.rmc 10 1.51 0.12 0.08

A 5 10 3.rmc 10 17.07 0.63 0.33

A 5 10 4.rmc 10 16.73 0.46 0.12

A 2 15 1.rmc 15 7.45 0.29 0.09

A 2 15 2.rmc 15 300 300 300

A 2 15 3.rmc 15 300 300 57.71

A 2 15 4.rmc 15 125.2 25.71 1.17

A 3 15 1.rmc 15 300 6.8 0.67

A 3 15 2.rmc 15 274.15 3.11 0.54

A 3 15 3.rmc 15 300 231.52 79.16

A 3 15 4.rmc 15 300 87.28 2

A 4 15 1.rmc 15 300.04 300 300

A 4 15 2.rmc 15 300 300 300

A 4 15 3.rmc 15 300 192.35 8.62

A 4 15 4.rmc 15 300.01 300 300

A 5 15 1.rmc 15 300 300 300

A 5 15 2.rmc 15 300.01 300 300

A 5 15 3.rmc 15 300 10.9 0.21

A 5 15 4.rmc 15 300.01 300 300

A 2 20 1.rmc 20 300.01 300 300

A 2 20 2.rmc 20 300 75.99 1.6

A 2 20 3.rmc 20 300 41.78 1.73

A 2 20 4.rmc 20 300 300 93.19

A 3 20 1.rmc 20 300.01 300 298.65

A 3 20 2.rmc 20 300.01 300 300

A 3 20 3.rmc 20 300.01 300 300

A 3 20 4.rmc 20 300.01 300 300

A 4 20 1.rmc 20 300.01 300 300

A 4 20 2.rmc 20 300 5.02 0.35

A 4 20 3.rmc 20 300.01 300 300

A 4 20 4.rmc 20 300 300 24.41

A 5 20 1.rmc 20 300.01 300 300

A 5 20 2.rmc 20 300.01 300 300

A 5 20 3.rmc 20 300.01 55.69 5.33

A 5 20 4.rmc 20 300.01 300 300
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A.2 Figures

Figure A.1: Effect of applying cuts of size two and three to Compact Model Modified

with Dataset A



Appendix B

Results of the Models from

Dataset B

B.1 Tables

Table B.1: Comparison between all models without the influence of cuts in Dataset

B

Kinable’s Model Compact Model Compact Model Modified

Instance Customers UB Bound Gap (%) UB Bound Gap (%) UB Bound Gap (%)

B 6 20 1.rmc 20 805 460 42.85714286 760 660 13.16 750 685 8.67

B 6 20 2.rmc 20 855 0 100 835 560 32.93 810 470 41.98

B 6 20 3.rmc 20 760 45 94.07894737 760 485 36.18 730 625 14.38

B 6 20 4.rmc 20 705 485 31.20567376 621 615 0.99 621 615 0.99

B 8 20 1.rmc 20 935 15 98.39572193 935 875 6.42 935 920 1.60

B 8 20 2.rmc 20 865 0 100 865 335 61.27 865 735 15.03

B 8 20 3.rmc 20 655 515 21.3740458 655 655 0.00 655 655 0.00

B 8 20 4.rmc 20 820 20 97.56097561 820 820 0.00 820 820 0.00

B 10 20 1.rmc 20 805 60 92.54658385 805 805 0.00 805 805 0.00

B 10 20 2.rmc 20 825 260 68.48484848 825 825 0.00 825 810 1.82

B 10 20 3.rmc 20 730 0 100 730 730 0.00 730 730 0.00

B 10 20 4.rmc 20 765 10 98.69281046 765 765 0.00 765 765 0.00

B 12 20 1.rmc 20 770 770 0 770 770 0.00 770 770 0.00

B 12 20 2.rmc 20 770 0 100 770 770 0.00 770 770 0.00

B 12 20 3.rmc 20 945 0 100 945 0 100.00 945 775 17.99

B 12 20 4.rmc 20 850 0 100 850 810 4.71 850 850 0.00

B 14 20 1.rmc 20 830 15 98.19277108 830 830 0.00 830 830 0.00

B 14 20 2.rmc 20 695 695 0 695 695 0.00 695 695 0.00

B 14 20 3.rmc 20 840 15 98.21428571 840 670 20.24 840 840 0.00

B 14 20 4.rmc 20 755 20 97.35099338 755 755 0.00 755 755 0.00

B 16 20 1.rmc 20 905 0 100 905 905 0.00 905 905 0.00

B 16 20 2.rmc 20 805 0 100 805 805 0.00 805 805 0.00

B 16 20 3.rmc 20 915 0 100 915 225 75.41 915 915 0.00

B 16 20 4.rmc 20 875 0 100 875 875 0.00 875 875 0.00

B 18 20 1.rmc 20 820 0 100 820 820 0.00 820 820 0.00

B 18 20 2.rmc 20 740 15 97.97297297 740 740 0.00 740 740 0.00

B 18 20 3.rmc 20 775 115 85.16129032 775 775 0.00 775 775 0.00

46
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Table B.1 continued from previous page

Kinable’s Model Compact Model Compact Model Modified

B 18 20 4.rmc 20 840 0 100 840 840 0.00 840 840 0.00

B 20 20 1.rmc 20 875 875 0 875 875 0.00 875 875 0.00

B 20 20 2.rmc 20 770 770 0

B 20 20 3.rmc 20 980 0 100 980 980 0.00 980 980 0.00

B 20 20 4.rmc 20 765 0 100 765 765 0.00 765 765 0.00

B 6 30 1.rmc 30 1300 55 95.76923077 1300 205 84.23 1292 630 51.22

B 6 30 2.rmc 30 1140 0 100 1140 595 47.81 1092 705 35.44

B 6 30 3.rmc 30 1060 20 98.11320755 1028 275 73.26 904 415 54.09

B 6 30 4.rmc 30 1080 0 100 1045 325 68.90 965 465 51.81

B 8 30 1.rmc 30 1085 0 100 1085 0 100.00 1085 645 40.55

B 8 30 2.rmc 30 1115 0 100 1115 130 88.34 1115 890 20.18

B 8 30 3.rmc 30 1155 0 100 1155 475 58.87 1155 755 34.63

B 8 30 4.rmc 30 1320 0 100 1320 10 99.24 1320 580 56.06

B 10 30 1.rmc 30 1215 0 100 1215 10 99.18 1215 735 39.51

B 10 30 2.rmc 30 1355 0 100 1355 0 100.00 1355 775 42.80

B 10 30 3.rmc 30 1210 0 100 1210 140 88.43 1210 750 38.02

B 10 30 4.rmc 30 1235 0 100 1235 825 33.20 1235 1040 15.79

B 12 30 1.rmc 30 1320 0 100 1320 0 100.00 1320 760 42.42

B 12 30 2.rmc 30 1185 10 99.15611814 1185 1185 0.00 1185 1185 0.00

B 12 30 3.rmc 30 950 0 100 950 865 8.95 950 950 0.00

B 12 30 4.rmc 30 1185 15 98.73417722 1185 1175 0.84 1185 1165 1.69

B 14 30 1.rmc 30 1190 0 100 1190 1180 0.84 1190 1180 0.84

B 14 30 2.rmc 30 1370 0 100 1370 0 100.00 1370 990 27.74

B 14 30 3.rmc 30 1005 950 5.472636816 1005 1005 0.00 1005 1005 0.00

B 14 30 4.rmc 30 1205 0 100 1205 510 57.68 1205 1205 0.00

B 16 30 1.rmc 30 1305 0 100 1305 0 100.00 1305 1295 0.77

B 16 30 2.rmc 30 1175 0 100 1175 145 87.66 1175 1165 0.85

B 16 30 3.rmc 30 1105 0 100 1105 1105 0.00 1105 1095 0.90

B 16 30 4.rmc 30 1090 0 100 1090 990 9.17 1055 1025 2.84

B 18 30 1.rmc 30 1080 0 100 1080 1080 0.00 1080 1080 0.00

B 18 30 2.rmc 30 1205 0 100 1205 1205 0.00 1205 1205 0.00

B 18 30 3.rmc 30 1155 0 100

B 18 30 4.rmc 30 1125 0 100 1125 1125 0.00 1125 1125 0.00

B 20 30 1.rmc 30 1250 0 100 1250 20 98.40 1250 1240 0.80

B 20 30 2.rmc 30 1325 0 100 1325 0 100.00 1325 1325 0.00

B 20 30 3.rmc 30 1205 0 100 1205 545 54.77 1205 1205 0.00

B 20 30 4.rmc 30 1245 0 100 1245 1245 0.00 1245 1245 0.00

B 6 40 1.rmc 40 1545 0 100 1535 0 100.00 1505 390 74.09

B 6 40 2.rmc 40 1635 0 100 1635 0 100.00 1635 655 59.94

B 6 40 3.rmc 40 1775 0 100 1693 20 98.82 1484 565 61.94

B 6 40 4.rmc 40 1505 0 100 1505 20 98.67 1450 420 71.03

B 8 40 1.rmc 40 1665 0 100 1665 340 79.58 1665 655 60.66

B 8 40 2.rmc 40 1415 10 99.29328622 1290 1155 10.47 1210 1200 0.83

B 8 40 3.rmc 40 1495 0 100 1495 0 100.00 1495 395 73.58

B 8 40 4.rmc 40 1730 0 100 1730 0 100.00 1730 135 92.20

B 10 40 1.rmc 40 1475 0 100 1475 860 41.69 1475 1015 31.19

B 10 40 2.rmc 40 1580 0 100 1580 390 75.32 1580 1335 15.51

B 10 40 3.rmc 40 1605 30 98.13084112 1605 1200 25.23 1550 1365 11.94

B 10 40 4.rmc 40 1455 0 100 1455 405 72.16 1455 1225 15.81

B 12 40 1.rmc 40 1475 0 100 1475 970 34.24 1475 1320 10.51

B 12 40 2.rmc 40 1510 0 100 1510 0 100.00 1510 645 57.28

B 12 40 3.rmc 40 1640 0 100 1640 0 100.00 1640 600 63.41

B 12 40 4.rmc 40 1550 0 100 1550 0 100.00 1550 860 44.52

B 14 40 1.rmc 40 1395 0 100 1395 280 79.93 1395 720 48.39

B 14 40 2.rmc 40 1725 0 100 1725 195 88.70 1725 745 56.81

B 14 40 3.rmc 40 1550 0 100 1550 1360 12.26 1550 1535 0.97

B 14 40 4.rmc 40 1705 0 100 1705 0 100.00 1705 1535 9.97
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Table B.1 continued from previous page

Kinable’s Model Compact Model Compact Model Modified

B 16 40 1.rmc 40 1340 0 100 1340 1340 0.00 1340 1340 0.00

B 16 40 2.rmc 40 1580 0 100 1580 0 100.00 1580 1275 19.30

B 16 40 3.rmc 40 1600 0 100 1600 0 100.00 1600 1200 25.00

B 16 40 4.rmc 40 1615 0 100 1615 1605 0.62 1615 1600 0.93

B 18 40 1.rmc 40 1670 0 100 1670 0 100.00 1670 1360 18.56

B 18 40 2.rmc 40 1635 0 100 1635 1355 17.13 1635 1635 0.00

B 18 40 3.rmc 40 1610 0 100 1610 0 100.00 1610 1410 12.42

B 18 40 4.rmc 40 1655 0 100 1655 0 100.00 1655 1350 18.43

B 20 40 1.rmc 40 1695 0 100 1695 1370 19.17 1695 1625 4.13

B 20 40 2.rmc 40 1725 0 100 1725 0 100.00 1725 615 64.35

B 20 40 3.rmc 40 1540 0 100 1540 15 99.03 1540 1400 9.09

B 20 40 4.rmc 40 1530 0 100 1530 130 91.50 1530 1515 0.98

B 6 50 1.rmc 50 1890 0 100 1890 0 100.00 1890 515 72.75

B 6 50 2.rmc 50 2310 0 100 2310 0 100.00 2310 445 80.74

B 6 50 3.rmc 50 1795 0 100 1795 0 100.00 1765 240 86.40

B 6 50 4.rmc 50 2080 0 100 2080 0 100.00 2080 335 83.89

B 8 50 1.rmc 50 1980 0 100 1941 835 56.98 1718 895 47.89

B 8 50 2.rmc 50 1935 0 100 1935 20 98.97 1935 195 89.92

B 8 50 3.rmc 50 1960 0 100 1960 180 90.82 1960 630 67.86

B 8 50 4.rmc 50 1835 0 100 1835 0 100.00 1835 530 71.12

B 10 50 1.rmc 50 2265 0 100 2265 0 100.00 2265 65 97.13

B 10 50 2.rmc 50 1900 0 100 1866 705 62.22 1514 0 100.00

B 10 50 3.rmc 50 2005 0 100 2005 0 100.00 2005 645 67.83

B 10 50 4.rmc 50 1925 0 100 1925 30 98.44 1925 1005 47.79

B 12 50 1.rmc 50 1755 0 100 1755 25 98.58 1755 1200 31.62

B 12 50 2.rmc 50 2000 0 100 2000 0 100.00 2000 695 65.25

B 12 50 3.rmc 50 1825 0 100 1825 0 100.00 1825 685 62.47

B 12 50 4.rmc 50 1940 0 100 1940 15 99.23 1940 1395 28.09

B 14 50 1.rmc 50 2285 0 100 2285 0 100.00 2285 940 58.86

B 14 50 2.rmc 50 2015 0 100 2015 0 100.00 2015 785 61.04

B 14 50 3.rmc 50 2095 0 100 2095 0 100.00 2095 860 58.95

B 14 50 4.rmc 50 2095 0 100 2095 10 99.52 2095 590 71.84

B 16 50 1.rmc 50 2090 0 100 2090 0 100.00 2090 850 59.33

B 16 50 2.rmc 50 1930 0 100 1930 0 100.00 1930 1195 38.08

B 16 50 3.rmc 50 2010 0 100 2010 0 100.00 2010 850 57.71

B 16 50 4.rmc 50 1980 0 100 1980 25 98.74 1980 950 52.02

B 18 50 1.rmc 50 1795 0 100 1795 35 98.05 1795 1625 9.47

B 18 50 2.rmc 50 1930 0 100 1930 0 100.00 1930 1290 33.16

B 18 50 3.rmc 50 2005 0 100 2005 0 100.00 2005 1145 42.89

B 18 50 4.rmc 50 1795 0 100 1795 1660 7.52 1795 1725 3.90

B 20 50 1.rmc 50 2075 0 100 2075 15 99.28 2075 805 61.20

B 20 50 2.rmc 50 1825 0 100 1825 0 100.00 1825 1410 22.74

B 20 50 3.rmc 50 1825 0 100 1825 15 99.18 1825 1565 14.25

B 20 50 4.rmc 50 1890 0 100 1890 1890 0.00 1890 1890 0.00

Table B.2: Comparison between Compact models with the Bounds Strengthen in

Dataset B

Compact Model(cut 2 y 3) Compact Model Modified (cut 2 y 3)

Instance # Cust UB Bound Gap (%) UB Bound Gap (%)

B 6 20 1.rmc 20 760 715 5.92 750 715 0.05

B 6 20 2.rmc 20 810 590 27.16 810 600 0.35

B 6 20 3.rmc 20 730 585 19.86 730 545 0.34

B 6 20 4.rmc 20 615 615 0.00 621 615 0.01
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Compact Model(cut 2 y 3) Compact Model Modified (cut 2 y 3)

B 8 20 1.rmc 20 935 860 8.02 935 920 0.02

B 8 20 2.rmc 20 865 640 26.01 865 735 0.18

B 8 20 3.rmc 20 655 655 0.00 655 655 0

B 8 20 4.rmc 20 820 820 0.00 820 820 0

B 10 20 1.rmc 20 805 805 0.00 805 805 0

B 10 20 2.rmc 20 825 825 0.00 825 825 0

B 10 20 3.rmc 20 730 730 0.00 730 730 0

B 10 20 4.rmc 20 765 765 0.00 765 765 0

B 12 20 1.rmc 20 770 770 0.00 770 770 0

B 12 20 2.rmc 20 770 770 0.00 770 770 0

B 12 20 3.rmc 20 945 780 17.46 945 835 0.13

B 12 20 4.rmc 20 850 850 0.00 850 850 0

B 14 20 1.rmc 20 830 830 0.00 830 830 0

B 14 20 2.rmc 20 695 695 0.00 695 695 0

B 14 20 3.rmc 20 840 780 7.14 840 840 0

B 14 20 4.rmc 20 755 755 0.00 755 755 0

B 16 20 1.rmc 20 905 905 0.00 905 905 0

B 16 20 2.rmc 20 805 805 0.00 805 805 0

B 16 20 3.rmc 20 915 915 0.00 915 915 0

B 16 20 4.rmc 20 875 875 0.00 875 875 0

B 18 20 1.rmc 20 820 820 0.00 820 820 0

B 18 20 2.rmc 20 740 740 0.00 740 740 0

B 18 20 3.rmc 20 775 775 0.00 775 775 0

B 18 20 4.rmc 20 840 840 0.00 840 840 0

B 20 20 1.rmc 20 875 875 0.00 875 875 0

B 20 20 2.rmc 20 0 0 0

B 20 20 3.rmc 20 980 980 0.00 980 980 0

B 20 20 4.rmc 20 765 765 0.00 765 765 0

B 6 30 1.rmc 30 1240 785 36.69 1225 685 0.79

B 6 30 2.rmc 30 1105 695 37.10 1105 680 0.62

B 6 30 3.rmc 30 865 625 27.75 865 390 1.22

B 6 30 4.rmc 30 885 550 37.85 885 470 0.88

B 8 30 1.rmc 30 1085 505 53.46 1085 680 0.6

B 8 30 2.rmc 30 1115 855 23.32 1115 850 0.31

B 8 30 3.rmc 30 1155 880 23.81 1155 780 0.48

B 8 30 4.rmc 30 1320 415 68.56 1320 665 0.98

B 10 30 1.rmc 30 1215 770 36.63 1215 610 0.99

B 10 30 2.rmc 30 1355 370 72.69 1355 600 1.26

B 10 30 3.rmc 30 1210 820 32.23 1210 795 0.52

B 10 30 4.rmc 30 1235 960 22.27 1235 1075 0.15

B 12 30 1.rmc 30 1320 895 32.20 1320 720 0.83

B 12 30 2.rmc 30 1185 1175 0.84 1185 1175 0.01

B 12 30 3.rmc 30 950 940 1.05 950 950 0

B 12 30 4.rmc 30 1185 1175 0.84 1185 1185 0

B 14 30 1.rmc 30 1190 1190 0.00 1190 1180 0.01

B 14 30 2.rmc 30 1370 790 42.34 1370 1020 0.34

B 14 30 3.rmc 30 1005 1005 0.00 1005 1005 0

B 14 30 4.rmc 30 1205 1205 0.00 1205 1195 0.01

B 16 30 1.rmc 30 1305 1205 7.66 1305 1230 0.06

B 16 30 2.rmc 30 1175 1160 1.28 1175 1175 0

B 16 30 3.rmc 30 1105 1105 0.00 1105 1105 0

B 16 30 4.rmc 30 1089 1000 8.17 1055 1025 0.03

B 18 30 1.rmc 30 1080 1080 0.00 1080 1080 0

B 18 30 2.rmc 30 1205 1205 0.00 1205 1205 0

B 18 30 3.rmc 30

B 18 30 4.rmc 30 1125 1125 0.00 1125 1125 0

B 20 30 1.rmc 30 1250 1250 0.00 1250 1250 0

B 20 30 2.rmc 30 1325 1325 0.00 1325 1325 0
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Compact Model(cut 2 y 3) Compact Model Modified (cut 2 y 3)

B 20 30 3.rmc 30 1205 1205 0.00 1205 1205 0

B 20 30 4.rmc 30 1245 1245 0.00 1245 1245 0

B 6 40 1.rmc 40 1260 520 58.73 1260 620 1.03

B 6 40 2.rmc 40 1635 405 75.23 1635 825 0.98

B 6 40 3.rmc 40 1340 485 63.81 1340 485 1.76

B 6 40 4.rmc 40 1160 460 60.34 1160 530 1.19

B 8 40 1.rmc 40 1665 1010 39.34 1665 855 0.95

B 8 40 2.rmc 40 1266 1185 6.40 1212 1200 0.01

B 8 40 3.rmc 40 1495 205 86.29 1495 510 1.93

B 8 40 4.rmc 40 1730 395 77.17 1730 545 2.17

B 10 40 1.rmc 40 1475 1145 22.37 1475 890 0.66

B 10 40 2.rmc 40 1580 1390 12.03 1580 1380 0.14

B 10 40 3.rmc 40 1605 1365 14.95 1550 1325 0.17

B 10 40 4.rmc 40 1455 1205 17.18 1455 1275 0.14

B 12 40 1.rmc 40 1475 1300 11.86 1475 1225 0.2

B 12 40 2.rmc 40 1510 860 43.05 1510 695 1.17

B 12 40 3.rmc 40 1640 275 83.23 1640 930 0.76

B 12 40 4.rmc 40 1550 520 66.45 1550 915 0.69

B 14 40 1.rmc 40 1395 1130 19.00 1395 1250 0.12

B 14 40 2.rmc 40 1725 245 85.80 1725 1005 0.72

B 14 40 3.rmc 40 1550 1490 3.87 1550 1550 0

B 14 40 4.rmc 40 1705 1425 16.42 1705 1545 0.1

B 16 40 1.rmc 40 1340 1330 0.75 1340 1340 0

B 16 40 2.rmc 40 1580 855 45.89 1580 1290 0.22

B 16 40 3.rmc 40 1600 655 59.06 1600 1040 0.54

B 16 40 4.rmc 40 1615 1615 0.00 1615 1600 0.01

B 18 40 1.rmc 40 1670 1185 29.04 1670 1595 0.05

B 18 40 2.rmc 40 1635 1635 0.00 1635 1635 0

B 18 40 3.rmc 40 1610 635 60.56 1610 1475 0.09

B 18 40 4.rmc 40 1655 530 67.98 1655 1165 0.42

B 20 40 1.rmc 40 1695 1505 11.21 1695 1605 0.06

B 20 40 2.rmc 40 1725 510 70.43 1725 750 1.3

B 20 40 3.rmc 40 1540 1030 33.12 1540 1355 0.14

B 20 40 4.rmc 40 1530 1530 0.00 1530 1530 0

B 6 50 1.rmc 50 1800 245 86.39 1800 405 3.44

B 6 50 2.rmc 50 1800 210 88.33 1800 555 2.24

B 6 50 3.rmc 50 1680 410 75.60 1667 210 6.94

B 6 50 4.rmc 50 1815 0 100.00 1815 455 2.99

B 8 50 1.rmc 50 1719 840 51.13 1680 975 0.72

B 8 50 2.rmc 50 1935 245 87.34 1935 525 2.69

B 8 50 3.rmc 50 1960 230 88.27 1960 525 2.73

B 8 50 4.rmc 50 1765 270 84.70 1765 260 5.79

B 10 50 1.rmc 50 2265 210 90.73 2265 220 9.3

B 10 50 2.rmc 50 1558 860 44.80 1507 430 2.51

B 10 50 3.rmc 50 2005 205 89.78 2005 345 4.81

B 10 50 4.rmc 50 1925 450 76.62 1925 890 1.16

B 12 50 1.rmc 50 1755 1310 25.36 1755 1330 0.32

B 12 50 2.rmc 50 2000 285 85.75 2000 545 2.67

B 12 50 3.rmc 50 1825 225 87.67 1825 565 2.23

B 12 50 4.rmc 50 1940 1260 35.05 1940 1320 0.47

B 14 50 1.rmc 50 2285 200 91.25 2285 815 1.8

B 14 50 2.rmc 50 2015 410 79.65 2015 340 4.93

B 14 50 3.rmc 50 2095 485 76.85 2095 875 1.39

B 14 50 4.rmc 50 2095 270 87.11 2095 390 4.37

B 16 50 1.rmc 50 2090 280 86.60 2090 425 3.92

B 16 50 2.rmc 50 1930 385 80.05 1930 810 1.38

B 16 50 3.rmc 50 2010 450 77.61 2010 930 1.16
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Compact Model(cut 2 y 3) Compact Model Modified (cut 2 y 3)

B 16 50 4.rmc 50 1980 250 87.37 1980 250 6.92

B 18 50 1.rmc 50 1795 1035 42.34 1795 1570 0.14

B 18 50 2.rmc 50 1930 265 86.27 1930 600 2.22

B 18 50 3.rmc 50 2005 210 89.53 2005 1260 0.59

B 18 50 4.rmc 50 1795 1785 0.56 1795 1705 0.05

B 20 50 1.rmc 50 2075 345 83.37 2075 1400 0.48

B 20 50 2.rmc 50 1825 230 87.40 1825 755 1.42

B 20 50 3.rmc 50 1825 365 80.00 1825 1440 0.27

B 20 50 4.rmc 50 1890 1890 0.00 1890 1890 0

Table B.3: Comparison of all models in terms of used variables and restrictions in

Dataset B

Kinable’s Model Compact Model Compact Model Modified

Instance # Cust # Var # Rest # Var # Rest # Var # Rest

B 6 20 1.rmc 20 23147 23707 3700 1212 3637 1128

B 6 20 2.rmc 20 49798 50648 8782 2636 8650 2471

B 6 20 3.rmc 20 41438 42208 10064 1984 10161 2085

B 6 20 4.rmc 20 13322 13732 1172 790 1122 614

B 8 20 1.rmc 20 39291 40073 4981 1572 4893 1463

B 8 20 2.rmc 20 70803 71873 13508 3023 13471 3051

B 8 20 3.rmc 20 38178 38948 4415 1181 4484 1238

B 8 20 4.rmc 20 32853 33563 4071 1184 4004 1117

B 10 20 1.rmc 20 36081 36865 3528 1155 3478 1081

B 10 20 2.rmc 20 37292 38090 3626 1184 3568 1142

B 10 20 3.rmc 20 60939 61975 9176 2040 9188 2112

B 10 20 4.rmc 20 68994 70100 7038 2142 7065 2146

B 12 20 1.rmc 20 40447 41321 3367 1116 3323 1065

B 12 20 2.rmc 20 84777 86067 7085 2413 7084 2406

B 12 20 3.rmc 20 122534 124096 14920 3456 14797 3474

B 12 20 4.rmc 20 97311 98697 8548 2720 8344 2623

B 14 20 1.rmc 20 113511 115079 12865 2681 12841 2733

B 14 20 2.rmc 20 78846 80144 5400 1423 5487 1481

B 14 20 3.rmc 20 111004 112554 7884 3055 7638 2831

B 14 20 4.rmc 20 94239 95663 6988 2091 6939 2035

B 16 20 1.rmc 20 150662 152552 14558 3035 14481 3136

B 16 20 2.rmc 20 121212 122902 4112 2049 3891 1462

B 16 20 3.rmc 20 153783 155693 15322 3238 15157 3280

B 16 20 4.rmc 20 135537 137327 9010 3154 8661 2883

B 18 20 1.rmc 20 133235 135079 8012 2486 7841 2337

B 18 20 2.rmc 20 118200 119934 6518 1737 6517 1746

B 18 20 3.rmc 20 121135 122891 6809 2195 6821 2175

B 18 20 4.rmc 20 149170 151124 12879 2978 12878 3088

B 20 20 1.rmc 20 89868 91430 4621 1350 4506 1268

B 20 20 2.rmc 20 69700 71070 1781 969 1693 738

B 20 20 3.rmc 20 212304 214730 16101 3267 16086 3333

B 20 20 4.rmc 20 141225 143195 10661 2298 10707 2383

B 6 30 1.rmc 30 54276 55136 9186 2918 8906 2648

B 6 30 2.rmc 30 86551 87661 13955 3559 13964 3541

B 6 30 3.rmc 30 74068 75088 12129 3431 12059 3385

B 6 30 4.rmc 30 79496 80556 12886 3821 12878 3784

B 8 30 1.rmc 30 111541 112869 20385 3734 20325 3788

B 8 30 2.rmc 30 113438 114778 14431 3884 14332 3844

B 8 30 3.rmc 30 121186 122574 14852 4203 14516 3913
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Kinable’s Model Compact Model Compact Model Modified

B 8 30 4.rmc 30 156971 158563 30303 6139 29945 6033

B 10 30 1.rmc 30 166570 168290 16883 5157 16324 4634

B 10 30 2.rmc 30 207535 209465 32077 6887 31564 6798

B 10 30 3.rmc 30 166570 168290 25759 5271 25436 5243

B 10 30 4.rmc 30 86614 87830 8498 2537 8092 2237

B 12 30 1.rmc 30 228697 230821 28248 5456 27972 5360

B 12 30 2.rmc 30 97321 98677 8326 2388 8046 2114

B 12 30 3.rmc 30 127442 129006 10964 3116 10740 2955

B 12 30 4.rmc 30 93047 94371 4040 2387 3806 1852

B 14 30 1.rmc 30 113521 115059 4173 2497 3954 1908

B 14 30 2.rmc 30 290479 292989 30822 6552 30273 6404

B 14 30 3.rmc 30 83114 84418 5578 1794 5477 1701

B 14 30 4.rmc 30 222421 224607 15730 4790 15615 4624

B 16 30 1.rmc 30 296103 298743 20055 7021 19733 6782

B 16 30 2.rmc 30 250156 252576 16145 4889 15981 4775

B 16 30 3.rmc 30 222933 225213 15236 4594 15127 4517

B 16 30 4.rmc 30 215443 217683 7002 4033 6320 2711

B 18 30 1.rmc 30 246550 249046 14149 3820 13817 3514

B 18 30 2.rmc 30 290480 293196 15964 4074 15806 3971

B 18 30 3.rmc 30 272476 275104 15548 4657 15292 4528

B 18 30 4.rmc 30 272476 275104 15100 4087 15015 4000

B 20 30 1.rmc 30 348643 351735 26993 5176 26738 5167

B 20 30 2.rmc 30 381049 384285 20163 5688 19493 5148

B 20 30 3.rmc 30 338161 341205 17634 4789 17212 4507

B 20 30 4.rmc 30 343382 346450 17778 4847 17326 4390

B 6 40 1.rmc 40 163556 165086 28748 8400 28480 8190

B 6 40 2.rmc 40 179788 181398 30983 7850 30586 7501

B 6 40 3.rmc 40 203361 205081 18177 9793 16921 7094

B 6 40 4.rmc 40 151886 153356 26434 8043 25480 7175

B 8 40 1.rmc 40 123173 124543 15529 4359 14685 3718

B 8 40 2.rmc 40 56573 57463 3515 1577 3353 1198

B 8 40 3.rmc 40 202448 204238 37976 7629 37370 7493

B 8 40 4.rmc 40 274026 276128 52221 10862 51388 10493

B 10 40 1.rmc 40 130115 131595 12622 3400 12307 3082

B 10 40 2.rmc 40 146572 148150 14252 3479 13931 3148

B 10 40 3.rmc 40 146572 148150 7670 3799 7141 2558

B 10 40 4.rmc 40 125593 127045 12242 3116 11804 2811

B 12 40 1.rmc 40 150681 152359 12454 3270 11810 2785

B 12 40 2.rmc 40 311254 313716 39766 8101 39425 8039

B 12 40 3.rmc 40 367716 370402 31916 9197 31002 8362

B 12 40 4.rmc 40 326906 329432 27502 7790 26762 7131

B 14 40 1.rmc 40 298611 301127 33207 6580 33042 6597

B 14 40 2.rmc 40 484571 487807 36709 11877 35046 10269

B 14 40 3.rmc 40 185306 187264 13348 3792 12734 3359

B 14 40 4.rmc 40 236771 238999 17491 5266 16703 4586

B 16 40 1.rmc 40 169888 171838 10477 2643 10217 2449

B 16 40 2.rmc 40 457186 460456 29632 8342 29012 7925

B 16 40 3.rmc 40 462611 465901 28816 8862 28426 8497

B 16 40 4.rmc 40 226736 229006 7433 4047 6930 2939

B 18 40 1.rmc 40 570531 574339 33701 9918 33284 9571

B 18 40 2.rmc 40 285935 288599 16295 4687 15644 4055

B 18 40 3.rmc 40 514308 517918 45079 9638 44506 9373

B 18 40 4.rmc 40 545183 548903 30532 8451 29511 7658

B 20 40 1.rmc 40 655442 659680 18403 10456 16849 7342

B 20 40 2.rmc 40 670004 674290 52532 11585 51384 11122

B 20 40 3.rmc 40 538125 541955 27477 7922 26480 7166

B 20 40 4.rmc 40 531584 535390 26118 7443 25907 7240



Appendix B. Results of the Models from Dataset B 53
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Kinable’s Model Compact Model Compact Model Modified

B 6 50 1.rmc 50 242658 244518 60801 10713 60129 10439

B 6 50 2.rmc 50 348778 351038 61115 18518 58653 16243

B 6 50 3.rmc 50 216841 218591 52731 9014 52316 8926

B 6 50 4.rmc 50 288036 290076 51849 15865 49823 13933

B 8 50 1.rmc 50 346371 348719 23324 11446 21605 7805

B 8 50 2.rmc 50 336456 338768 63984 12576 63063 12259

B 8 50 3.rmc 50 353061 355433 64243 12520 63244 12073

B 8 50 4.rmc 50 295155 297311 55880 11543 54938 11248

B 10 50 1.rmc 50 561978 565150 90742 19915 88854 19160

B 10 50 2.rmc 50 400251 402905 19942 10117 18105 6702

B 10 50 3.rmc 50 445472 448280 66277 13674 65290 13328

B 10 50 4.rmc 50 424617 427355 43480 12703 42744 12139

B 12 50 1.rmc 50 212452 214436 17793 5181 17144 4583

B 12 50 2.rmc 50 529461 532677 46166 13370 45558 12831

B 12 50 3.rmc 50 465956 468964 58370 10256 57718 10045

B 12 50 4.rmc 50 259506 261714 21058 5865 20310 5176

B 14 50 1.rmc 50 820189 824403 61988 18741 60785 17759

B 14 50 2.rmc 50 641409 645119 49252 14235 48527 13587

B 14 50 3.rmc 50 677871 681689 50621 15028 49793 14314

B 14 50 4.rmc 50 690249 694103 52692 15230 50852 13435

B 16 50 1.rmc 50 817493 821873 81897 17198 80590 16654

B 16 50 2.rmc 50 679233 683213 64456 12693 63452 12249

B 16 50 3.rmc 50 719367 723467 70562 13598 69563 13099

B 16 50 4.rmc 50 692483 696503 68364 14040 67242 13663

B 18 50 1.rmc 50 677693 681823 38080 10159 37579 9730

B 18 50 2.rmc 50 742016 746344 41233 10681 39639 9390

B 18 50 3.rmc 50 824593 829163 70259 12522 69209 12115

B 18 50 4.rmc 50 347968 350888 18497 5000 17806 4426

B 20 50 1.rmc 50 977092 982260 76346 15018 75236 14539

B 20 50 2.rmc 50 784329 788945 37248 9550 36212 8579

B 20 50 3.rmc 50 745224 749720 56593 9696 55903 9509

B 20 50 4.rmc 50 246582 249110 5955 2804 5607 1971

Table B.4: Comparison of all models in terms of CPU time in Dataset B

Instance Customers Kinable’s Model Compact Model Compact Model Modified

B 6 20 1.rmc 20 600 600 600

B 6 20 2.rmc 20 600 600 600

B 6 20 3.rmc 20 600 600 600

B 6 20 4.rmc 20 600 600 9

B 8 20 1.rmc 20 600 600 600

B 8 20 2.rmc 20 600 600 600

B 8 20 3.rmc 20 600 600 36

B 8 20 4.rmc 20 600 600 132

B 10 20 1.rmc 20 600 600 13

B 10 20 2.rmc 20 600 600 600

B 10 20 3.rmc 20 600 600 68

B 10 20 4.rmc 20 600 62 14

B 12 20 1.rmc 20 586 588 0.45

B 12 20 2.rmc 20 600 600 49

B 12 20 3.rmc 20 600 600 600

B 12 20 4.rmc 20 600 600 316

B 14 20 1.rmc 20 600 600 4

B 14 20 2.rmc 20 424 421 1

B 14 20 3.rmc 20 600 600 93

B 14 20 4.rmc 20 600 45 2
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Instance Customers Kinable’s Model Compact Model Compact Model Modified

B 16 20 1.rmc 20 600 600 101

B 16 20 2.rmc 20 600 600 0.14

B 16 20 3.rmc 20 600 600 109

B 16 20 4.rmc 20 600 600 19

B 18 20 1.rmc 20 600 600 7

B 18 20 2.rmc 20 600 600 1

B 18 20 3.rmc 20 600 600 1

B 18 20 4.rmc 20 600 238 5

B 20 20 1.rmc 20 304 295 0.44

B 20 20 2.rmc 20 90 91 0.04

B 20 20 3.rmc 20 600 600 12

B 20 20 4.rmc 20 600 19 2

B 6 30 1.rmc 30 600 600 600

B 6 30 2.rmc 30 600 600 600

B 6 30 3.rmc 30 600 600 600

B 6 30 4.rmc 30 600 600 600

B 8 30 1.rmc 30 600 600 600

B 8 30 2.rmc 30 600 600 600

B 8 30 3.rmc 30 600 600 600

B 8 30 4.rmc 30 600 600 600

B 10 30 1.rmc 30 600 600 600

B 10 30 2.rmc 30 600 600 600

B 10 30 3.rmc 30 600 600 600

B 10 30 4.rmc 30 600 600 600

B 12 30 1.rmc 30 600 600 600

B 12 30 2.rmc 30 600 600 23

B 12 30 3.rmc 30 600 600 591

B 12 30 4.rmc 30 600 116 600

B 14 30 1.rmc 30 600 600 8

B 14 30 2.rmc 30 600 600 600

B 14 30 3.rmc 30 600 600 4

B 14 30 4.rmc 30 600 600 565

B 16 30 1.rmc 30 600 600 564

B 16 30 2.rmc 30 600 600 113

B 16 30 3.rmc 30 600 600 7

B 16 30 4.rmc 30 600 600 600

B 18 30 1.rmc 30 600 600 3

B 18 30 2.rmc 30 600 600 6

B 18 30 3.rmc 30 600 600 7.21

B 18 30 4.rmc 30 600 260 11

B 20 30 1.rmc 30 600 600 20

B 20 30 2.rmc 30 600 600 193

B 20 30 3.rmc 30 600 600 51

B 20 30 4.rmc 30 600 79 5

B 6 40 1.rmc 40 600 600 600

B 6 40 2.rmc 40 600 600 600

B 6 40 3.rmc 40 600 600 600

B 6 40 4.rmc 40 600 600 600

B 8 40 1.rmc 40 600 600 600

B 8 40 2.rmc 40 600 600 149

B 8 40 3.rmc 40 600 600 600

B 8 40 4.rmc 40 600 600 600

B 10 40 1.rmc 40 600 600 600

B 10 40 2.rmc 40 600 600 600

B 10 40 3.rmc 40 600 600 600

B 10 40 4.rmc 40 600 600 600

B 12 40 1.rmc 40 600 600 600
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Instance Customers Kinable’s Model Compact Model Compact Model Modified

B 12 40 2.rmc 40 600 600 600

B 12 40 3.rmc 40 600 600 600

B 12 40 4.rmc 40 600 600 600

B 14 40 1.rmc 40 600 600 600

B 14 40 2.rmc 40 601 601 600

B 14 40 3.rmc 40 600 600 55

B 14 40 4.rmc 40 600 600 600

B 16 40 1.rmc 40 600 600 18

B 16 40 2.rmc 40 600 600 600

B 16 40 3.rmc 40 600 600 600

B 16 40 4.rmc 40 600 343 24

B 18 40 1.rmc 40 601 601 600

B 18 40 2.rmc 40 600 600 7

B 18 40 3.rmc 40 600 600 600

B 18 40 4.rmc 40 600 600 600

B 20 40 1.rmc 40 601 600 600

B 20 40 2.rmc 40 601 601 600

B 20 40 3.rmc 40 601 600 600

B 20 40 4.rmc 40 600 600 538

B 6 50 1.rmc 50 600 600 600

B 6 50 2.rmc 50 600 600 600

B 6 50 3.rmc 50 600 600 600

B 6 50 4.rmc 50 600 600 600

B 8 50 1.rmc 50 600 600 600

B 8 50 2.rmc 50 600 600 600

B 8 50 3.rmc 50 600 600 600

B 8 50 4.rmc 50 600 600 600

B 10 50 1.rmc 50 601 600 600

B 10 50 2.rmc 50 600 600 600

B 10 50 3.rmc 50 600 600 600

B 10 50 4.rmc 50 600 600 600

B 12 50 1.rmc 50 600 600 600

B 12 50 2.rmc 50 601 601 600

B 12 50 3.rmc 50 600 600 600

B 12 50 4.rmc 50 600 600 600

B 14 50 1.rmc 50 601 601 600

B 14 50 2.rmc 50 601 601 600

B 14 50 3.rmc 50 601 601 600

B 14 50 4.rmc 50 601 600 600

B 16 50 1.rmc 50 602 601 601

B 16 50 2.rmc 50 601 601 601

B 16 50 3.rmc 50 601 601 601

B 16 50 4.rmc 50 601 600 600

B 18 50 1.rmc 50 601 600 601

B 18 50 2.rmc 50 601 601 600

B 18 50 3.rmc 50 601 601 601

B 18 50 4.rmc 50 600 600 600

B 20 50 1.rmc 50 601 601 600

B 20 50 2.rmc 50 601 602 600

B 20 50 3.rmc 50 601 601 601

B 20 50 4.rmc 50 600 3 0.62
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[27] Matsatsinis, N. F. (2004), �Towards a decision support system for the ready concrete distribution system: A case of a Greek

company�, European Journal of Operational Research, 152(2), págs. 487–499.
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[32] Ralphs, T. K., L. Kopman, W. R. Pulleyblank y L. E. Trotter (2003), �On the capacitated vehicle routing problem�, Mathematical

programming, 94(2-3), págs. 343–359.
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