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Abstract

For future planetary robot missions, multi-robot-
systems can be considered as a suitable platform to
perform space mission faster and more reliable. In
heterogeneous robot teams, each robot can have dif-
ferent abilities and sensor equipment. In this paper
we describe a lunar demonstration scenario where a
team of mobile robots explores an unknown area and
identifies a set of objects belonging to a lunar infras-
tructure. Our robot team consists of two exploring
scout robots and a mobile manipulator. The mission
goal is to locate the objects within a certain area, to
identify the objects, and to transport the objects to
a base station. The robots have a different sensor
setup and different capabilities. In order to classify
parts of the lunar infrastructure, the robots have to
share the knowledge about the objects. Based on
the different sensing capabilities, several information
modalities have to be shared and combined by the
robots. In this work we propose an approach using
spatial features and a fuzzy logic based reasoning for
distributed object classification.

1 Introduction

In this paper we present our latest results of the
project IMPERA (Integrated mission planning using
heterogeneous robots). The main goal of the project
is the development of a planning and a plan execu-
tion architecture using a team of robots within a lu-
nar scenario. For future lunar and other planetary
missions, system autonomy becomes more and more
mandatory. Current NASA missions (e.g. Mars Ex-
ploration Rover1 and Mars Science Lab2) are dealing
mainly with the exploration of the Mars surface and
the analysis of the surface. The systems Spirit, Op-
portunity, and Curiosity work thereby as individual
systems. Looking into the future, it is a likely scenario

1www.nasa.gov/mission pages/mer/index.html
2www.nasa.gov/mission pages/msl/index.html

to install infrastructure and other scientific compo-
nents on Mars or on the Moon. This infrastructure
can consist of small stations measuring environmental
conditions, units used for providing drill cores for sub-
surface analysis, or modules for communication and
energy supply. In order to perform a mission coopera-
tively, the robots have to share a common knowledge
about the environment, such as the type of objects
and modules the robots have to identify, or the loca-
tion of these objects.

Figure 1. : Left: The mobile manipulator robot
AMPARO. Right: The scout robot used for visual
detection of infrastructure modules.

In our scenario, the robot team consists of three
robots having different sensing abilities. The robot
AMPARO (cf. Figure 1, left) uses a tilting 3D laser
range finder to generate 3D point clouds of the envi-
ronment. These data are used to detect three dimen-
sional objects during a fetch and transport phase of
the mission. Two scout robots, based on the Pioneer
AT robot (cf. Figure 1, right), are used for coop-
erative map building and object candidate detection
using monocular color images during the exploration
phase of mission. The objects used during our demon-
stration scenario are shown in Figure 2. The mission
consists of the sequentially executed tasks of explor-



Figure 2. : The three objects which need to be de-
tected by the robot team during the mission: battery
pack (yellow), soil sample containers (blue), base sta-
tion (red).

ing an unknown environment while simultaneously lo-
cating three distinct objects. The objects consists of
a battery pack, a soil sample container and a base
station to which the other two objects have to be
transported. The described scenario is an extension
to the scenario described in [3] where only cylindrical
sample containers are regarded. In this work, we ex-
tended the concept to other regular shaped objects,
such as battery packs and the base station. In our
approach we use spatio-semantic knowledge about
the environment in order to classify the objects [2].
Spatio-semantic description is based on the concepts
that objects can be described how they “look like” in
terms of shape features (e.g. planar, cubical, cylin-
drical), spatial features (e.g. size, extension, orien-
tation), spatial relations, and color. Spatio-semantic
definitions can be extracted directly from the sen-
sor data (e.g. using point cloud processing in com-
bination with segmentation and cluster analysis) and
are describable in a spatio-semantic ontology, such as
“The soil sample container is a blue cylinder and is
perpendicular to the ground” or “The battery pack is
a yellow box and the battery pack has an edge length
of 20 cm”.

Extracted spatial features cannot be matched
against a discrete ontology (due to sensor noise, oc-
clusions, etc.), therefore an imprecise (fuzzy) knowl-
edge base has to be modeled to estimate the best
model match. A constraint network is one way for
object classification [2]. Most of the basic perception
approaches extract and analyze clusters within the
point cloud prior to object classification. Some 2D
and 3D shape extraction algorithms are given in [11]
for 2D shapes and in [10] for 3D shapes. Semantic
perception methods, which also take semantics into
account, are presented in [5]. The authors describe
in their work the bridging between the spatial domain

and the semantic domain which they call S-Box (spa-
tial box) and T-Box (taxonomy box). The semantic
interpretation of physical objects is done by optical
marker identification but not directly on spatial inter-
pretation of point cloud data. In approach described
in [7], a constraint network is used to identify spatial
entities such as walls, floors or doors.

2 System Overview

The system architecture presented in this work
consists of several independent modules which are
running on distinct robots. On each robot we use
the Robot Operating System (ROS) as a communi-
cation backbone between the modules [9]. The over-
all architecture and its components are depicted in
Figure 3. In order to establish the communication
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Figure 3. : System architecture of the robot compo-
nents.

between the systems, we make use of a reliable, cloud
based communication interface based on a commer-
cial version of the Data Distribution Service (DDS)
[8]. DDS is based on the loosely coupled publish sub-
scribe paradigm and provides several QoS options like
automatic re-connection and data buffering in case
of communication loss. More details about the inter-
robot communication framework is given in Section 3.
The DDS cloud ensures that each robot has the same
knowledge about the internal status of each individ-
ual robot. Some information, which is distributed
via DDS has to be stored persistent in order to en-
able the robots to perform actions, based on the com-
mon knowledge base about the mission and the en-
vironment. This information is taken directly from
the DDS cloud and stored as a local copy on each



individual robot. The DDS cloud itself stores only
information needed by other robots for coordination,
especially during the exploration and mapping phase.
Some information has to be stored persistently, such
as the poses and the IDs of detected sample contain-
ers.

3 Cloud-Based Multi-Robot
Communication

All participating robots in the team have to ex-
change data constantly in order to achieving a com-
mon goal. One challenge in the multi-robot commu-
nication is the limited resource and the availability
of the network. In a large area, a robot can lose the
connection with the other robots due to the distance.
However, all messages from one robot to the other
systems have to be maintained and have to be guar-
anteed to be delivered. Having a limited resource
or bandwidth, it is not possible to have a communi-
cation protocol which allows request of certain mes-
sages, e.g., based on the sequence IDs or time in-
terval. This kind of communication can introduce
huge network traffic, depending on the number of in-
volved robots. In [3, 6], a transparent communication
network based on publish/subscribe paradigm using
Data Distribution Service [8] (DDS) is described in
detail. The advantages of this approach are trans-
parency and robustness. All messages will be deliv-
ered successfully from the publisher to the subscribers
without any explicit commands. Thus, this approach
is resource efficient as each message will be delivered
only once from the source to the destinations. The
messages are guaranteed to be delivered to all sub-
scribers, even on a temporarily network outage.

Another important aspect of the cloud-based
communication is the modeling of the messages for-
mat. A well defined message format can mini-
mize the required bandwidth for communicating them
among the agents and reduce further post-processing
tasks. Two message formats are used for sharing ob-
jects information between robots. The first message,
“candidate-object”, is used by the scouts for publish-
ing the detected object candidates with respect to
the map. The second message, “identified-object”, is
used by the AMPARO for publishing the identified
object with their properties.

The scout robots detect the object candidates us-
ing a monocular color camera, thus the position of the
object cannot be extracted from the camera data due
to the missing depth information. However, the posi-
tion while detecting the candidate can be used by the
AMPARO later on for the identification of the ob-
jects. Depending on the size and position of the color

blob on the camera data, a probability function can
be calculated based by other agents from the shared
information. The candidate-object (CO) message is
modeled as a 5-tuple as follows:

CO = (RID, Oprop, PRID
, ORID

, C)

where: RID is the ID of the robot who detects
the object candidate, e.g. scout1. Oprop is is the
color property of the object, e.g. yellow, blue, or
red. PRID

and ORID
are the position in cartesian

coordinate (px, py, pz) and orientation in quaternion
(ox, oy, oz, ow) of the robot while detecting the ob-
ject candidate. C is the two-dimensional covariance
(cx, cy) defining the certainty of the object candidate,
depending on the size and position of the color blob
on the camera data.

Once the candidate object message is published
to the cloud, all participating robots will receive the
shared information. The candidate object message
enables the agents to calculate the two-dimensional
probability density function on their map. The func-
tion is defined as follows:

f(map, µ,Σ) =
1√

|Σ|(2π)2
e−

1
2 (map−µ)Σ−1(map−µ)′

Σ = R ∗
[
cx 0
0 cy

]
∗R′

µ =

[
px
py

]
where: map is two-dimensional map of the environ-
ment and R is the rotation matrix extracted from the
yaw angle of the ORID

.

AMPARO can use the probability density func-
tion (PDF) from the candidate object message for
calculating a pose where it can start identifying the
object. Sometimes, an object can be found by differ-
ent robots, thus multiple candidate object messages
referring to the same object are broadcasted through
the cloud. Processing these PDFs could infer the po-
sition of the object itself instead of the location where
the scouts detected it. As a result, AMPARO could
also compute the ideal pose for identifying the object
from the inferred object pose.

Once the object is successfully identified, the in-
formation about the identified object is shared to all
participating robots through the cloud. The identi-
fied object message is modeled as such for enabling
further tasks by other agent, e.g. object manipula-
tion. The identified object (IO) message is defined
as 8-tuple, as follows:



ID = (OID, Otype, Ocolor, Obbox, Olikelihood,

POID
, OOID

, COID
)

where: OID is the ID of the identified object that
uniquely generated for the overall mission. Otype is
the object type from the enumerated value, e.g. bat-
tery, soil-sampled, etc. Ocolor is the color of the iden-
tified object. Obbox is the dimension of the identified
object represented in bounding box, which later on
be used for calculating the grasping pose. Olikelihood
is the likelihood of the perception module that telling
how good the object is being identified as a type
Otype. POID

and OOID
are the position and orien-

tation of the identified object in cartesian coordinate
and quaternion. COID

is the covariance of the iden-
tified object on the map.

4 Semantic Perception

4.1 Spatial Feature Description and
Extraction

In our demonstration scenario, the team of robots
has to classify the objects shown in Figure 2. The
objects are first roughly located as candidates using
the faster scout robots, using only monocular sens-
ing capabilities. The robots can detect the approx-
imate position within the map but no information
about the accurate 3D pose of the objects. Once
the candidates are identified, the robot AMPARO
moves to the estimated location of the objects and
uses the tilting 3D laser range finder for object lo-
calization and classification. For the detection pro-
cess, we introduce a perception pipeline, depicted in
Figure 4. To extract the spatial features from the
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Figure 4. : Perception Pipeline

3D point cloud, we use a RanSaC-based segmenta-
tion approach described in [10]. The estimation of
the spatial relationship between the objects and the
ground plane is fundamental in our approach, there-
fore the ground plane is segmented and classified first.

This is achieved using a region growing algorithm, de-
scribed in [2]. The remaining points, not belonging
to the ground plane, are clusterized. In the follow-
ing step, the spatial features are extracted from these
remaining clusters. The objects (cf. Figure 2) are ba-
sically cylindrical shapes (the soil sample container)
and cuboids (base station and battery pack). The
base station is a cuboid which has a vertical slot on
one side and a switch on the other opposide side. The
detection of the soil sample containers using spatial
features is described in detail in [3]. The spatial fea-
tures we use for the detection are summarized below:

Φ1 = CylinderModelF it |Φ1 ∈ R, 0 ≤ Φ1 ≤ 1

Φ2 = Radius |Φ2 ∈ R
Φ3 = Height |Φ3 ∈ R
Φ4 = Orientation |Φ4 ∈ R3

Φ5 = Position |Φ5 ∈ R3

Φ6 = HeighTo |Φ6 ∈ R
Φ7 = OrthoTo |Φ7 ∈ R, 0 ≤ Φ7 ≤ 1

Φ8 = ParallelTo |Φ8 ∈ R, 0 ≤ Φ8 ≤ 1

For the cuboids used in our scenario (i.e. the base sta-
tion and the battery pack), additional features have
to be extracted from the 3D point clusters. Instead
of searching directly for cuboids in the point cloud, a
more general approach has been selected, based on a
divide and conquer strategy. In this approach, only
planar (2D based) planes have to be extracted. The
planar features used are have been selected based on
the following observation of the objects. These obser-
vations can be described using an informal description
logic representation: a) The base station is a cuboid
and the base station has a vertical, rectangular slot
on the rear side. b) The battery is a cuboid. c) The
box has three planes which are orthogonal to each
other. d) In a cuboid model, three orthogonal planes
share a common edge. e) The base station has planar
components named “panels”. f) All side panels are
rectangular.

Given the observations above, the list of features
Φ1 − Φ8 is extended in order to check the extracted
features with a reasoner.

Φ9 = PlanarModelF it |Φ9 ∈ R, 0 ≤ Φ9 ≤ 1

Φ10 = Rectangular |Φ10 ∈ R, 0 ≤ Φ10 ≤ 1

Φ11 = HasCommonEdge |Φ11 ∈ R, 0 ≤ Φ11 ≤ 1

Φ12 = Area |Φ12 ∈ R
Φ13 = maxExtension |Φ13 ∈ R

The features described above are directly extractable
from the planar clusters of the point cloud. For de-



tails, see [2, 4]. Note that the features Φ9−Φ11 are im-
precise definitions and not binary true/false assump-
tions in a logical sense. The idea behind this is that
by using fuzzy sets in a logic expression, sensor noise,
measurement errors, and occlusions can be covered.
In other words, the specific features are defined by
a membership function calculating the likelihood of
how extracted features match the features given in
a knowledge base. With the definition of the spatial
features, a spatio-semantic ontology can be defined
which is described in the next section.

4.2 Spatio-Semantic Object Ontology

In this section, we introduce our method on how
perceivable features of objects and the environment
can be matched with a knowledge based system. Se-
mantic object annotation is in this case accomplished
by ontology queries. In our multi robot scenario, only
the robot AMPARO has currently the ability to per-
ceive the environment using a 3D point cloud. During
the mission the scout robots estimate the positions of
the objects based on color segmentation and based
on the robots position as described already in Sec-
tion 3. The robot AMPARO moves to the vicinity of
the estimated object poses and initiated the percep-
tion pipeline.

The knowledge about the relevant objects and the
spatial relation are defined in the T-Box (describing
the terminology of the ontology). The A-Box de-
scribes the assertion part of the ontology, i.e. the
individuals. The ontology of the domain is manually
generated using the spatial knowledge about the sam-
ple containers in scope. The geometric features are
described as concepts of the T-Box. The individuals
of the knowledge base are automatically generated by
the perception layer (cf. Figure 5). The A-Box is up-
dated after each 3D scan and the FuzzyDL reasoner
is triggered to classify the soil sample container, the
base station and the battery pack within the point
cloud, based on the spatio-semantic description of the
T-Box. In this paper, we extend the fuzzy description
logic based approach described in [3]. The key idea is
to describe the knowledge base for object classifica-
tion using an ontology which can deal with vagueness
and membership values. FuzzyDL as a knowledge
base and the corresponding reasoner was firstly in-
troduced in [1]. The language defined by FuzzyDL is
given by

C,D := >|⊥|A|C tD|C uD|¬C|∀R.C|∃R.C

where C and D are concepts, A defines the atomic
concept, and R.C the role of a concept. For our spa-
tial reasoning approach we make also use of the Gödel
t-norm and Gödel t-conorm to express FuzzyDL
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A-BoxT-Box

Reasoning

Fuzzy DL

Perception

Figure 5. : The reasoning architecture using De-
scription Logic. The A-Box is provided by the fea-
ture extractor from the perception side. The T-Box
is modeled using FuzzyDL syntax.

union and intersection (i.e. C uG D := min(C,D)
and C tG D := max(C,D) respectively. For a de-
tailed description of the FuzzyDL semantic, please
refer to [1]. In order to model the ontology of the
objects, the following concrete names are assigned to
the different DL concepts and roles (concepts start
with capital letters while roles and functionals start
with a small letters):

Listing 1: The T-Box of the Knowledge Base

GroundPlane l i n e a r ( 0 , 1 , 0 . 7 , 0 . 5 ) )
CylinderType l i n e a r ( 0 , 1 , 0 . 7 , 0 . 5 ) )
Plane l i n e a r ( 0 , 1 , 0 . 7 , 0 . 5 ) )
Rectangular l i n e a r ( 0 , 1 , 0 . 7 , 0 . 5 ) )
S l o t l i n e a r ( 0 , 1 , 0 . 7 , 0 . 5 ) )
Red l i n e a r ( 0 , 1 , 0 . 5 , 0 . 5 ) )
Blue l i n e a r ( 0 , 1 , 0 . 5 , 0 . 5 ) )
Yellow l i n e a r ( 0 , 1 , 0 . 5 , 0 . 5 ) )

SampleContainer ( and
( some isCyl inderType CylinderType )
( some i sOrthogona l GroundPlane )
(>= hasHeight 0 . 1 )(<= hasHeight 0 . 2 )
(<= hasRadius 0 . 1 ) ( some i sB lue Blue ) )

FrontPanel ( and
( some i sP lane Plane )
( some i sRec tangu la r Rectangular )
( not S l o t )
(>= hasShortEdgeLength 0 . 15 )
(<= hasShortEdgeLength 0 . 25 )
(>= hasLongEdgeLength 0 . 25 )
(<= hasLongEdgeLength 0 . 35 ) )



RearPanel ( and
( some i sP lane Plane )
( some i sRec tangu la r Rectangular )
( some hasS lo t S l o t )
(>= hasShortEdgeLength 0 . 15 )
(<= hasShortEdgeLength 0 . 25 )
(>= hasLongEdgeLength 0 . 25 )
(<= hasLongEdgeLength 0 . 35 ) )

TopPanel ( or
( and
( some i sP lane Plane )
( some i sRec tangu la r Rectangular )
( not S l o t )
(>= hasShortEdgeLength 0 . 15 )
(<= hasShortEdgeLength 0 . 25 )
(>= hasLongEdgeLength 0 . 35 )
(<= hasLongEdgeLength 0 . 45 ) )
( some i s P a r a l l e l GroundPlane ) )

SidePanel ( and
( some i sP lane Plane )
( some i sRec tangu la r Rectangular )
( not S l o t )
(>= hasShortEdgeLength 0 . 25 )
(<= hasShortEdgeLength 0 . 35 )
(>= hasLongEdgeLength 0 . 35 )
(<= hasLongEdgeLength 0 . 45 )
( some i sOrthogona l TopPlane ) )

BaseStat ion ( and
( or
( some hasFrontPanel FrontPanel )
( some hasRearPanel RearPanel )
( some hasSidePanel SidePanel )
( some hasTopPanel TopPanel ) )
( some isRed Red) )

BatteryPack ( and
( some isSmallBoxType SmallBoxType )
( not S l o t )
(<= hasLongEdgeLength 0 . 2 )
( some i sYe l l ow Yellow ) )

The ontology depicted in Listing 1 shows the knowl-
edge base of the objects in our scenario. The fea-
tures described in the T-Box of the knowledge base
are matched with the object candidates. The color
of the candidates is identified by the scouts using the
monocular camera. The other spatial features are
extracted from the 3D point cloud, provided by AM-
PARO. For instance, the knowledge base for the base
station is interpreted as follows: The base station has
at least one visible panel and the panel is red. The
panels may be one of the type “front panel”, “rear
panel”, “top panel”, “side panel”. The side panel is
an entity which has no slot, is planar, rectangular,
and the longest edge of the panel is between 35 cm

and 45 cm (the actual model has exactly 40 cm). The
output of the reasoner in this case is the likelihood
of a perceived object belonging to a defined object
concept. Fuzzy concepts are described using spatio-
semantic features (cf. Figure 6). In the T-Box we use

1

a b c a b

11
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1

b 1
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Figure 6. : The used fuzzy concepts for the spatial
reasoning approach. The features are represented us-
ing the fuzzy concepts of triangular set (a), crisp set
(b), right shoulder (c) and the linear modifier (d).

for our experiments(cf. Listing 1), only linear con-
cepts are used. To query the knowledge base, after
the individuals are updated in the A-Box of the on-
tology, a min-instance query is executed in order to
check the satisfiability of the models for The three
objects base station, sample container and battery
pack. This is achieved by inf{n|K |= (instance objecti
BaseStation n)}, inf{n|K |= (instance objecti Sam-
pleContainer n)}, and inf{n|K |= (instance objecti
BatteryPack n)} respectively.

5 Experiments and Results

Figure 7 shows the map with the calculated PDFs
from the candidate object messages on the cloud. Ad-
ditionally, the positions of the objects are overlaid
on the map for the illustration purpose. Due to the
coordinated exploration, the exploration tasks were
distributed among the scout robots by minimizing
overlapping areas. Due to the start location and po-
sition of the object, both scouts were detecting the
red object from different viewpoints. The figure also
shows that scout1 had higher probability, smaller but
higher PDF, than scout2. This is due to the size and
position of the color blob on the camera. Table 1
shows some properties of the candidate object mes-
sages. This information was used for calculating the
PDFs in Figure 7. The second part of the exper-

Table 1. : Object candidate messages

Robot ID Color Pos (x,y) Covar. (x,y)
scout1 red (3.84, 4.65) (0.1, 0.5)
scout1 blue (18.17, 1.68) (0.3, 1.25)
scout2 yellow (-2.83, 7.30) (0.25, 1)
scout2 red (3.30, 6.52) (0.25, 2.5)

iment is dealing with the perception of the defined
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Figure 7. : Experiment map with object candidates’ messages.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. : Experimental setup for the 3D FuzzyDL perception method described in this paper. The objects
were arranged in different locations, distanced and orientations with respect to the perceiving AMPARO robot.
The corresponding detection results are given in e)-h). The detected ground plane is visualized in green and
the objects in their corresponding color including the detected bounding box.

objects using the FuzzyDL-based semantic perception
approach described in this paper. Figure 8 show the
experimental setup. To verify the approach, several
3D point cloud scans have been recorded and the ob-
ject features have been extracted using the approach
described in Section 4. The A-Box of the ontology
has been filled with the extracted spatial entities, con-
sisting of planar clusters, cylindrical clusters, and also
undefined shapes which do not match any object. Ta-
ble 2 gives the perception and the FuzzyDL reasoning
results. Table 2 gives the number of potential enti-
ties extracted from the 3D point cloud. The over-
all likelihoods are given after the reasoning is com-
pleted for the objects “base station” (BS), “sample
container” (SC) and “battery” (BAT). For the base

station, the number of detected components is given
(e.g. slot, number of matched panels). The BS and
BAT components describe how many spatial entities
do match with the object components (i.e. sides or
slot). The maximum likelihood is given after the rea-
soner matched the shape and spatial relationship with
the object ontology. Therefore the number of poten-
tial components can be large, before the reasoner fil-
ters mismatched features.

6 Conclusions

In this paper we described our approach of us-
ing a multi-robot system to identify objects within
a lunar environment. As an example, three objects



Table 2. : Perception results using spatial feature extraction and spatial reasoning based on Fuzzy Description
Logic. The scenes are corresponding to Figure 8

Scene Entities BS components BS score BAT components BAT score SC score
(a) 3 2 0.77 1 0.76 0.92
(b) 21 7 0.94 25 0.97 0.0
(c) 24 5 0.0 55 0.0 0.83
(d) 25 3 0.0 12 0.84 0.0

were provided. The spatial features of the objects are
given in a Fuzzy Description logic based ontology. A
team of mobile robots explores the area and identifies
the objects based on different sensor modalities. The
interaction between the systems and the exchange of
the knowledge base about the objects is provided by
a reliable DDS (Data Distribution Service) interface
which implicitly prevents data loss. The semantic
classification of three objects has be verified during
experiments. In a next step we will extend the seman-
tic perception approach to more basic shapes as well
as free-form shapes. The reasoner currently relies on
the fact, that the objects are compound objects con-
sisting of planes, rectangular shapes and cylindrical
objects. An upcoming research topic is the classi-
fication of free form shapes, such as NURBS (Non-
Uniform Rational B-Splines) or free form shapes con-
sisting of basic shapes and NURBS.
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