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ABSTRACT 

ALYAFEI, HUDA, F., Doctorate : January : 2020, 

Doctorate of Philosophy in Materials Science and E 

Title: Tribo-Mechanical, Biocompatibility, and Corrosion Properties Investigation of 

Zirconium and SST 304 by Application of Hydroxyapatite/Reduced Graphene 

Oxide/Palladium-Platinium Nanocomposite Coatings 

Supervisor of Dissertation: Prof. Abdel Magid, Hamouda. 

This thesis describes the synthesis of HA/rGO/Pd and HA/rGO/Pt nanocomposite thin film 

coatings on stainless steel 304 and pure zirconium applied via an electrodeposition method. 

The corrosion and biocompatibility characteristics of HA/rGO/Pd and HA/rGO/Pt 

nanocomposite thin films are investigated here. Biocompatibility tests were carried out on 

uncoated, HA-coated, HA/rGO-coated, HA/rGO/Pd-coated, and HA/rGO/Pt-coated 

substrates using the human cell line MDA-MB-231, which had a green fluorescent protein 

to report the presence of living cells. Experiments revealed that the biocompatibility of the 

SST 304 surface showed the best cell spreading and proliferation when coated with the 

HA/rGO/Pd nanocomposite. The zirconium substrate coated with HA/rGO/Pt showed 

decreased cell proliferation and adhesion compared with HA/rGO, showing that Pt did not 

improve the biocompatibility. 

A synthetic medium was used to conduct corrosion tests, which confirmed that the 

HA/rGO/Pd-coated SST 304 had a significantly higher corrosion resistance than the 

uncoated, HA-coated, and HA/rGO-coated SST 304 samples. In addition, the HA/rGO/Pd-

coated SST 304 and the HA/rGO/Pt-coated zirconium substrates were annealed at different 

temperatures (200, 300, 400, and 600 oC) to investigate their corrosion and wear behaviors.  
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The HA/rGO/Pd-coated substrate annealed at 600 °C showed better wear resistance 

compared with the other samples. The wear tests result of bare and electrodeposited 

specimens before and after heat treatment for the HA/rGO/Pt showed that the coated 

samples heated at 300 °C had superior resistance against wear compared with bare and 

electrodeposited substrates at other annealing temperatures.  
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Chapter 1 : Introduction 

1.1 Research Background 

Many different implants (bone plates, ligaments, joint replacements, heart valves, 

intraocular lenses, vascular grafts, dental implants, and sutures) and devices (blood tubes, 

artificial hearts, biosensors, and pacemakers) are currently used in the medical field. 

Medical devices and implants are made of biomaterials to restore and/or replace the 

function of degenerated or traumatized organs or tissues to correct abnormalities, improve 

function, assist in healing, and consequently improve the quality of life of patients [1]. 

Today, one of the most challenging tasks in materials science is the development of new 

biomaterials for medical applications. The need for better implants is obvious, and thus the 

capability to manufacture artificial tissues is highly demanded [2]. 

One of the most vital factors that differentiate biomedical materials from other materials is 

that they must be biocompatible and non-toxic in a manner that does not harm human 

tissues. The development of sustainable biomaterials that coexist with tissues in a mutually 

acceptable manner has long been of interest in the field of biomaterials and to medical 

device users [3].  

The high concentrations of interstitial fluid and chloride ions in serum creates an extremely 

corrosive environment for bio-metallic materials. Body fluid (containing electrolytes) 

contains numerous proteins and amino acids that corrode metallic materials. Furthermore, 

the dissolved oxygen concentration in the bodily fluid is low, which delays the regeneration 

of oxide layers on metallic biomaterials, and when the film is detached, many metal ions 

are released [4, 5].  



  
   

2 
 

Hence, to improve the performance of implants in vitro and in vivo, it is essential to control 

the interfacial behaviors between the implant and host. Surface treatments can successfully 

change the chemical and physical properties of the surface of biomaterials to extend and 

enhance the functionalities and properties of the original materials. Such treatments can 

decrease the undesirable interfacial interactions between implants and their surrounding 

biological environment. For decades, many surface treatment techniques have been 

developed to eventually upgrade the hemocompatibility and biocompatibility of 

zirconium-based alloys. These techniques include the deposition of polymer coatings or 

inorganic thin films (zirconium nitride, diamond-like carbon, zirconium oxide, etc.), and 

the fabrication of a multifunctional layer to immobilize biomolecules via wet chemical 

methods [6-9]. Due in part to these advances, considerable progress has been made in the 

areas of blood compatibility and biocompatibility. 

In this study, hydroxyapatite (HA)-based composite coatings, reduced graphene oxide 

(rGO), and pure platinum (Pt) and palladium (Pd) were deposited on zirconium (Zr) and 

SST 304 substrates via electrodeposition. The overall goal of this research was to produce 

a biocompatible hybrid ceramic-metal coating, reinforced with graphene oxide, to 

simultaneously enhance the biomaterial’s corrosion and wear resistance. The tribo-

biomechanical properties and corrosion resistance of the composite-coated substrates were 

evaluated. Structural and morphological analysis and characterizations were performed 

using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-

ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. 
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1.2 Research Problem Statement 

Materials and alloys made from titanium, zirconium, and stainless steel have a desirable 

combination of good mechanical properties and high biocompatibility, making them ideal 

materials for applications that require them to come in contact with hard and/or soft tissue, 

such as in implants [10, 11]. The low elastic modulus (close to the bone) and high fatigue 

strength of these alloys has made them the preferred choice, particularly in the replacement 

of hard tissue, e.g., as anchoring parts in total hip and knee arthroplasty [12]. Titanium high 

biocompatibility and the body does not recognize it as foreign material in cellular 

environments [13, 14]. However, shortly after implantation, aseptic loosening of titanium-

based prostheses may occur, resulting in relative movement between hard tissue/bone 

cement which may potentially form debris from the prosthesis surface whose particles form 

a native oxide layer that is only a few nanometers thick with low mechanical stabilities 

[15]. These generated small abrasive particles cause an inflammatory reaction of the 

surrounding tissue, which eventually causes bone loss [1-17]. Various methods have been 

researched to improve the surface tribological properties of titanium in several reports.  

1.3 Importance of Study 

To describe the benefits of the currently proposed research project, it is necessary to 

consider both the economic and technological justification for using a nanocomposite thin 

layer coating atop the aforementioned alloys. In this regard, the following key points will 

be considered to assess the merits of the proposed project:  

 Vast application of stainless steel and zirconium alloys in marine, aviation, and 

biomedical applications. 
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 Superior mechanical and physical properties of stainless steel and zirconium.  

 The role of HA/rGO/Pt and HA/rGO/Pd nanocomposites in enhancing the tribo-

mechanical, corrosion, biocompatibility, and physical properties of stainless 

steel and zirconium (implants) by a combination of electrodeposition and heat 

treatment techniques.  

Stainless steel and zirconium play leading roles in energy, aviation, biomedical, and marine 

industries due to the superior mechanical and physical properties. In early research and 

applications, the focus of stainless steel and zirconium was on their high specific strength, 

impact strength, creep resistance, and high fatigue life, even at elevated temperatures. 

Attention was later given to the unique corrosion resistance and non-magnetic properties 

of stainless steel and zirconium. Currently, the use of stainless steel and zirconium in 

different engineering structures has become more prominent.    

The design and manufacture of medical devices must be precise, especially in a world 

progressively fixated on retribution claims and lawsuits for damage or injury incurred 

through medical negligence. Thus, any material coming into contact with or being 

surgically implanted inside the body must be accomplished without fail, making this one 

of the most challenging engineering problems facing the medical industry. Medical devices 

must be created in a variety of sizes and shapes to suit their wide range of applications. 

This has led to the development and use of many different materials to ensure precise 

design specifications.  

HA has often been used because of its high biocompatibility, but it has a low fracture 

toughness which leads to failure in the body due to cracking and fracture. The mechanical 
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properties of these unique materials (HA) can be enhanced by making a composite of 

HA/rGO/Pd and HA/rGO/Pt. Furthermore, a study on the nanostructured morphology of 

nanocomposites is becoming increasingly necessary since these properties rely on the 

morphology of a material.  

1.4 Objectives of the Study 

The purpose of this research is to develop and characterize the properties of stainless steel 

and zirconium alloys coated with reduced graphene oxide-hydroxyapatite-palladium 

(HA/rGO/Pd) and reduced graphene oxide-hydroxyapatite-platinum (HA/rGO/Pt) nano-

composites. Specifically, the research aims are to achieve the following objectives:              

i. To characterize and analyze the structure and morphology of HA/rGO/Pd and 

HA/rGO/Pt nanocomposites. 

ii. To examine the wear resistance of the HA/rGO/Pd and HA/rGO/Pt 

nanocomposites. 

iii. To investigate the corrosion behavior of the substrates coated by HA/rGO/Pd 

and HA/rGO/Pt nanocomposites. 

iv. To study the biocompatibility of HA/rGO/Pd and HA/rGO/Pt nanocomposites.  

1.5 Research Methodology 

The substrates were purchased commercially as plates, which were cleaned and polished 

using silicon carbide papers with grade sizes of up to 2400. The plates were washed using 

ultrasonication in a beaker containing acetone and were finally rinsed using distilled water 

to remove any surface suspensions.  

HA/rGO/Pd and HA/rGO/Pt nanocomposite thin films were deposited using 

electrodeposition and heat treatment techniques. The rGO, palladium, platinum, and HA 
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were mixed at different weight percent (wt%) to determine the optimal loading for the best 

surface integrity and higher biocompatibility. Several samples were prepared for corrosion 

and wear resistance and biocompatibility tests.  
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Chapter 2 : Literature Review 

2.1 Introduction 

The history biomaterials as a professionally-recognized field of study can be traced to 1969 

when the first conference on biomaterials was held at Clemson University, South Carolina, 

USA. Since then, the field has continued to command substantial attention on different 

societal fronts. By definition, biomaterials are natural or manmade materials that are 

utilized to make structures or implants used in the human body as replacements to lost or 

compromised biological structures to restore functionality. As a result, biomaterials play 

critical roles in either enhancing the quality of life or prolonging the life of human beings. 

This is true given the significance of these materials in replacing lost or impaired body 

parts or organs. As the aging population continues to increase, the demand for biomaterials 

is rapidly growing, which has caused the popularity and research and development in this 

field to increase. Applications of biomaterials on the human body are numerous and range 

from artificial heart valves and installations of stents in blood vessels to a number of 

replacement implants such as knees, oral dental structures, and shoulders, as well as hips 

and ears [18-20]. Biomaterials have also seen use as cardiac simulators and as construction 

for compromised urinary tracts.  

However, of the various applications, the use of biomaterials as replacement implants on 

the spinal cord, hip, and knee are increasingly common in modern society. This trend is 

likely occurring because of the naturally high vulnerability of human joints which are 

affected by degenerative health complications such as arthritis, which are not only highly 

painful but also a common cause of loss of function. An estimated 90% of adults aged 40 
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years and above are afflicted by one or more degenerative diseases [21]. This is a major 

public health concern given the rapidly increasing percentage of the aging population, a 

trend that is expected to continue or even worsen in the foreseeable future. Estimated to 

cost society about $125 billion every year, musculoskeletal disorders are among the most 

common health complications in modern society [22]. Biomaterials are increasingly 

proving to be the ultimate solution to treat these and other disabilities and health problems 

since implants can conveniently restore the functional health of otherwise compromised 

body parts. Figure 2.1 provides examples of implants on the hip and knee joints using 

biomaterials. Available statistics show that demand for long-lasting implants has been 

increasing, and by 2030, it is estimated that the number of hip replacement implant 

procedures will increase by 174%, and knee implants by more than 670% [23].  
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Figure 2.1. Total hip and knee implants replacements (THR and TKR) [23]. 

 

 

In addition to an increasing number of replacement implants, there is a growing trend in 

the number of revision surgeries on hip and knee implants. However, revision surgeries are 

not only painful and expensive but also generally have poor success rates. Despite these 

concerns, the number of revision surgeries is expected by an increase of 137 percent and 

607 percent for hip and knee implants respectively by 2030 [24]. This implies great future 

business prospects for the implant manufacturing industry and a need to accelerate the 

research and development of biomaterials for enhanced efficacy in meeting the specific 

needs of a rapidly growing market. For example, biomaterials for use in orthopedic 

implants should be biocompatible, corrosion-resistant in bodily settings, and have high 

strength [25]. In addition, these materials should have low moduli, no cytotoxicity, and 
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should be highly resistant to fatigue and wear [26]. Currently, common materials used for 

orthopedic implants include 316L stainless steel and different alloys of cobalt, chromium, 

and titanium, which all have high failure tendencies in long-term use. This problem has 

been blamed on the fact that these materials generally have high moduli, poor 

biocompatibility, and poor resistance to wear and corrosion. Figure 2.2 shows some of the 

common causes for revision surgery.  

However, the increasing number of revision surgeries has also risen with longer life 

expectancies. For example, THR has traditionally been used on individuals 65 years and 

older, with expected life longevity of about another 15 years [27]. However, as medical 

technology advances, people are living longer than before, which increases the likelihood 

of requiring additional revision surgeries. The problem of earlier implants has also been 

increased by modern high-impact sporting activities and an ever-growing problem of fatal 

accidents from different sources. This implies that implants have increased expectations to 

last longer than before, hence the need for continued investment of resources and concerted 

efforts in R&D to develop new reliable biomaterials.  
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Figure 2.2. Various causes for failure of implants leading to revision surgery [27]. 

 

 

Recently, there has been increased recognition and activity of nanotechnology as an 

interdisciplinary field that merges nanoelectronics with biomaterials. Currently, there are 

three main areas of nanotechnology that are used in biomedicine: diagnostic techniques, 
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drugs, and prostheses and implants. However, there is a growing interest in developing and 

utilizing external biomedical applications. This is evident with developments such as 

diagnostic sensors and “lab-on-a-chip” techniques and their use in blood analysis and other 

body samples as well as continued growth in the number of analytical instruments used for 

R&D activities on medical drugs. Some applications of nanotechnology inside the human 

body include the development of anticancer drugs and insulin pump implants. This is 

complemented by the potential application of nanotechnology in tissue engineering and 

their associated benefits in securing reliable solutions for restoring functional health to 

people who have lost or compromised body parts [28, 29]. The list of nanotechnology 

application devices is extensive, but this study is limited to orthopedic joint prostheses and 

hip and knee arthroplasty.  

Many factors impact the survivability or expected longevity of arthroplasty, and key among 

these is the age of the individual. To put this into perspective, the failure rate of arthroplasty 

within 10 years in patients over 65 years in around seven percent, but in patients below 65 

years, the failure rate is estimated above 15 percent on average. This implies that continual 

increases in the number of replacement implants result in a subsequent increase in the 

number of revision surgeries, which makes the quality of implants a priority public health 

concern. Thus, R&D on more reliable implants and biomaterials is critical to improving 

societal health, as well as psychological and socioeconomic problems associated with 

revision surgeries. The widespread adoption and use of nanoscience and engineering is a 

promising development to increase the R&D of highly biocompatible biomaterials for use 

within humans [30-33]. In biomaterials R&D, emphasis should be placed on the 
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mechanical properties of the material such as it relates to the material-biological interface 

[34]. 

Furthermore, it is imperative that manipulation of the mechanical properties of biomaterials 

using technology should be informed by great care to mitigate undue effects on the 

response of body cells and associated effects on physiological responses [35]. Carbon 

nanotubes (CNTs) have been used in materials over the past several decades due to their 

high strength, making them ideal candidates for different applications. However, the 

successful adoption of these materials in vivo has been compromised by physiological 

issues. For example, the introduction of pristine nano-functionalized CNTs in polymer 

matrixes continues to be inhibited by this nanomaterial being insoluble, which allows it to 

accumulate in the body and cause adverse health effects [36]. The solution to this has been 

to chemically alter the surfaces of the CNTs to improve their solubility in common solvents 

and polymers [37]. 

However, the main issue of concern is that the expected life of joint implants is currently 

only 10 to 15 years, beyond which the risk of failure and the risk of seeking revision surgery 

is high. A core reason for these failures is the loosening of the implant aseptic from 

juxtaposed bone, which has seen increased use of polymethyl methacrylate (PMMA) in 

orthopedics as a better option to enhance the bonding of the implant-bone interface. 

Nevertheless, the use of PMMA cement has also been associated with disadvantages in 

terms of compromising the efficacy of implant replacements, including strong exothermic 

reactions and negated radiopacity and fatigue strength. Overall, as society expects to 

witness future increases in the demand for orthopedic implants, the expected lifespan of 
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current implants cannot be assumed to be reliable as they are increasingly subject to the 

pain and cost of revision surgeries. This requires increased R&D investments for more 

innovative biomaterials that are reliable, biocompatible, and durable, which calls for the 

informed usage of nanotechnology principles and capabilities in the development of 

biomaterials [38-40]. 

There are a variety of composite materials available that can be used to develop a 

biologically-informed composite system, including bone cement-like PMMA which 

continues to be extensively used in orthopedic surgeries. In particular, PMMA is used here 

as a biomaterial to enhance the fixing of an artificial joint to a bone, and also serves as filler 

material for bone defects [41]. There is also evidence that PMMA is used as a platform for 

facilitating drug delivery into and between joined areas. However, it is well documented 

that the ultimate efficacy of PMMA cement in fixing implants to bones depends on the 

primary mechanical properties of both the PMMA and the implant. The primary solution 

used to address this challenge is the use of hydroxyapatite (HA), a complementary material 

to PMMA used to improve the mechanical properties [42]. HA has many benefits such as 

being able to chemically bonding with bone which reduces the chances of joint loosening 

over time. However, this chemical bonding has been blamed for the intrinsic brittleness of 

the bone near the joint area which compromises the strength of the joint [43]. 

2.2 Requirements of a Biomaterial 

It is important that the proper material is chosen for a certain application since different 

biomaterials have different physical and mechanical properties, and hence different 

suitability for different medical applications. To successfully develop new biomaterials, a 
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multidisciplinary effort and collaboration are required to ensure informed consideration of 

different concerns from different perspectives.  

2.2.1 Mechanical properties 

To ensure that a best-fit material is selected for a specific application, the consideration of 

a material’s mechanical properties, including its hardness, tensile strength, modulus, and 

elongation, is critical. The fatigue strength of a material is important as it informs the 

response behavior of a material when exposed to repeated loading cycles. Implants should 

be made to specifications to ensure their biomechanical compatibility for use in a specific 

application. Concerning the modulus, the general rule is that the modulus of material 

should be the same or similar to that of the bone it will be used on, whose modulus values 

depend on the type of the bone and the measurement direction [44, 45]. Implants with a 

modulus higher than that of the bone are more vulnerable to failures due to biomechanical 

incompatibility and risks causing the death of bone cells [46]. Thus, an excellent implant 

material should have the highest possible strengths and a modulus as similar to that of the 

bone as possible. 

2.2.2 Biocompatibility 

Biocompatibility is critical to define the quality of biomaterials for implants. To be deemed 

high-quality, material should be non-toxic, nor should it cause any form of allergic 

reactions in the human body. This requires that the selection of the implant material is well 

informed to mitigate undue reactions with body cells and tissues [47]. Two of the core 

factors that impact the biocompatibility of a material are its degradation rate (or the risk of 

the material within the body environment) and the material-induced response by the body 
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or the host. Table 2.1 shows the general classification of biomaterials based on the body’s 

response. An important point here is the fact that bioactive materials are generally preferred 

for use as biomaterials because they increase the chances of smooth integration into a body 

near the joint area. Some of the main issues of concern in determining biocompatibility 

include thrombosis and fibrous tissue encapsulation of biomaterials implanted in soft 

tissues. 
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Table 2.1: Classification of biomaterials based on interaction with surrounding 

tissues[47] 

 

 

2.2.3 High corrosion and wear resistance 

Poor resistance to wear and corrosion when interacting bodily fluid prompts the release of 

non-compatible substances, especially metal ions from the implants into the body, which 

increases the risk that the implant will cause an inflammatory reaction in the body [48]. As 

a result, the expected lifespan of an implant depends to some extent on the resistance it has 

to abrasion and wear. Materials with low wear resistance are more vulnerable to loosening 

within a short duration after the procedure, and debris from the wear can have undue effects 

on body tissues [49]. Thus, ensuring high resistance to wear and corrosion is one of the 

best practices in enhancing the safety and longevity of implants.  

2.2.4 Osseointegration 

An implant’s failure to integrate well with not only the target bone but also the adjacent 

bones and tissues is an indication of a poor-quality biomaterial or implant material because 

such risks subsequently loosen the implant [49]. This is an especially major concern given 
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that poor integration forms a fibrous tissue between the bone and the implant [50]. As a 

result, the selection of an implant material should consider the appropriateness of the 

surface of the implant to allow for integration with adjacent bones and tissues. Some factors 

to consider here include surface chemistry, surface roughness, and surface topography.  

2.3 Currently Used Metallic Biomedical Materials and Their Limitations 

The biomaterials in use include 316L stainless steel (316LSS), cobalt-chromium (Co–Cr) 

alloys, and titanium and its alloys. More details on the suitability of common elements in 

these materials are given in Table 2.1. Biotolerant materials are typically used to form thin 

connective tissue capsules (0.1–10 µm), but in general, the capsule does not adhere to the 

implant surface poly(tetrafluoroethylene) (PTFE), (PMMA), Ti, or Co–Cr or other 

biomaterials. This, in turn, leads the body to reject the implant, causing it to fail 

prematurely. Bioactive materials are particularly important as they enhance the formation 

of bony tissues around the implant in the body, and ensure strong integration of the implant 

into the body.    

Bioglass, or synthetic calcium phosphate materials, is another common form of metallic 

biomedical materials currently used with hydroxylapatite (HAP). The acceptance of an 

implant using this group of biomaterials is generally associated with a high implantation 

success rate. On the other hand, there are also bioabsorbable materials which function by 

being replaced by minerals and tissues or being absorbed by bodily chemicals. The main 

advantage of these materials is that their acceptance by the body makes excellent 

integration of the implant into the body. M. Geetha et al. argued the need to negate the use 

of stainless steel and cobalt-chromium alloys because these metallic biomaterials suffered 
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from undue corrosion in the body [51]. Wapner, on the other hand, compared the toxic 

effects of metallic implants and non-metallic implants such as Ni, Co, and Cr [52]. An 

important point here is that the toxicity of Ni implants was found to cause skin-related 

diseases, especially dermatitis, and a close link was found between Co implants and the 

carcinogenicity [53].  

The use of Zr as or in biomaterials is relatively a new concept. However, from the few 

research studies available, Zr implants have been shown to achieve an 86 percent bone-

implant contact value (BICV) within 8 weeks after the procedure. Other research studies 

have, however, shown a BICV of between 45 and 65 percent. According to a research study 

by Stanic et al., the average BICV was 56 percent within 60 days after the implant. Using 

a rat model, Scerano et al. argued that there is an actual bone-implant contact for Zr 

implants, which secured a BICV of 68 percent within 4 weeks. Based on the same 

assumptions, Aldini et al. only found a BICV of 55 percent (± 27%) 60 days after the 

procedure. However, the BICV varied significantly depending on the implant location, 

implying a similarity between the osseointegration attributes of zirconium implants and 

those of titanium implants.  

Sennerby et al. compared the osseointegration characteristics of different groups of Zr and 

Ti implants using different surface modifications and showed that both categories of 

implants had relatively good osseointegration. In terms of surface modification, it was 

challenging to modify the surface of zirconium implants to suit situational requirements, 

but it was comparatively easy for titanium implants using methods such as sand-blasting 

and acid-etching. To ensure the competitive use of zirconium implants, it is imperative to 
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identify reliable techniques to modify its surface, and the use of a thin film nanocomposite 

metal-ceramic coating is one possible technique [54-56]. Other attributes of Zr implant 

(treated with different techniques) such as their bioactivity and resistance to corrosion have 

been studied. These techniques include sol-gel processes, anodization and plasma 

electrolytic oxidation, as well as the use of physical vapor deposition and thermal oxidation 

[57, 58].  

Another biomaterial currently in use is hydroxyapatite (HA) which is the main mineral 

component of human bones and teeth, making it a suitable material for use as a bioceramic 

[59]. It boasts excellent biocompatibility properties and can bond to the bone to form 

unions that are impossible to differentiate from natural bonds, allowing it to be readily 

integrated into the human body [60]. There are numerous studies exploring various human 

body systems based on graphene oxide, hydroxyapatite, and other composites as potential 

biomaterials [61-67].  

Platinum is another commonly-used biomaterial which boasts high biocompatibility, 

electrochemical stability, and excellent mechanical attributes relative to the body tissue. 

Minev et al. argued that combining composite coatings and elastomer-based 

microelectrode arrays (MEAs) could enhance MEA compatibility with highly-deformable 

substrates [68]. Negrete et al., on the other hand, explored the use of magnesium- and 

platinum-doped hydroxyapatite nanoparticles as multifunctional biocompatible 

bactericidal composites [69]. Overall, they suggested the possible use of HA/Mg/Pt 

nanoparticles as antimicrobial agents. 

Research on biomedical applications has attracted an increasing amount of attention among 
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scholars, a trend that is closely associated with the implication of this field to human health 

[70]. Of particular importance, R&D efforts on innovative solutions to the world of medical 

devices are becoming a priority research interest in this field. This is because medical 

devices interact and directly contact the human body, which requires precision in design 

and manufacturing to ensure safety and efficacy. In terms of materials currently used in 

medical devices, stainless steel 304 (SST 304) is the most common because it has excellent 

corrosion resistance and a native surface passive layer. However, SST 304 has been 

reported to corrode when exposed to fluids containing halide ions, which limits its 

application scope as a biomaterial [71-74].  

On the other hand, calcium phosphate bioceramics such as those based on HA and β-

tricalcium phosphate (β-TCP), have recently gained popularity in biomedical applications 

not only because of their competitive biocompatibility but also due to their excellent 

osteoconductivity. In particular, HA has been recognized for its excellent rapid integration 

with the body to form an indistinguishable union. However, when used in its pure form, 

the mechanical attributes of HA are quite poor, especially as they relate to the lack of 

toughness and its poor resistance to wear. The widespread suitability of HA in biomedical 

applications has also been limited by its intrinsic brittleness. There is continued interest in 

exploring the possibility of overcoming the mechanical limitations of HA using techniques 

such as synthesis of graphene-reinforced hydroxyapatite nanocomposites.  

Another material with promising potential in biomedical applications is graphene, which 

has competitive mechanical and thermoelectric properties and a large specific surface area. 

As a result, graphene has found use in electrochemical sensors, [75], superabsorbents [76], 
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and interfacial catalysis [77]. Furthermore, graphene has increasingly become one of the 

most common materials used in modern energy technology [78] and has also found use as 

a reinforcement in composites, especially those using metals and polymers, as well as 

ceramics. Specific biomedical applications include the use of graphene as part of the 

materials in the design and manufacture of biomedical technologies like drug delivery and 

neural regeneration [79]. It is also a common component in bioimaging and bone tissue 

engineering applications [80]. 

Using spark plasma sintering, Liu et al. [81] explored the modulus, toughness, and related 

biological properties of composites with differing amounts of graphene by characterizing 

a hydroxyapatite–reduced graphene oxide (HA/rGO) composite. Li et al. [82] reported 

improved cytocompatibility in composites which had been enhanced or modified using 

graphene oxide. Zhao et al. explored and reported the effects of graphene nanostructures 

on the mechanical and biological properties and the biocompatibility of composites [83, 

84, 85]. 

Implants in the human body are subjected to a variety of extracellular bodily fluids, which 

have chloride ions at concentrations sufficient to corrode any metallic materials they come 

into contact with [86]. This is the primary reason why corrosion resistance is a priority 

consideration in selecting materials for human body implants. Furthermore, bodily fluids 

contain substantial levels of amino acids and proteins, which are well-documented to 

quickly corrode metallic implants in the body [87, 88]. However, the effect of changes in 

body pH has been shown to be negligible. For example, when the pH decreased to 5.2 in 

hard tissues after implantation, the corrosive effect decreased because tissues recorded pH 



  
   

23 
 

values as high as 7.4 within few weeks [89].  

However, regardless of the extent of corrosion caused by bodily fluids on metallic implants, 

it is important to note that corroded materials are a common cause of allergic reactions 

following an implant procedure. They can also lead to the release of metallic ions into 

bodily fluids, thus increasing the risk of inflammatory reactions. Overall, the need for 

having materials with high corrosion resistance in the design and manufacture of implants 

cannot be overemphasized. Due to the shortcomings in the corrosion resistance of most of 

the common biomaterials, palladium has been identified as a potential alternative to address 

the corrosion of biomaterials. In particular, this material is lauded for its excellent corrosion 

resistance rating in moist air, but more importantly, it has been found to have fewer risks 

to the human body compared with other biomaterials such as nickel and silver [90]. As 

such, the use of palladium can be an excellent choice for modifying surfaces of metallic 

implants to enhance their corrosion resistance. 

Jiang et al. [91] showed that the presence of self-assembled monolayers (SAMs) on Pd 

enhanced its resistance to nonspecific adsorption of proteins, which can compromise 

adhesion efficacy in mammalian cells. Using ellipsometry and surface plasmon resonance 

spectroscopy, adsorption of any form of proteins in bovine serum was significantly 

inhibited by these SAMs. In addition, there is evidence that Pd(II) compounds are highly 

cytotoxic to a variety of cell lines [92-94], implying the potential value of Pd in enhancing 

the antibacterial activity of implants in the human body [95]. In particular, Pd(II) 

complexes exhibit excellent activity in fighting bacterial strains, and their antibacterial 

effects have been equated to that of standard drugs [96]. Polívková et al. [97] found that 
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increasing the thickness of the palladium film layer in biomaterials greatly improved the 

antibacterial effect of the materials relative to those with thin Pd film layers. Anselme et 

al. [98] used surface engineering to show that coating biomaterial with a nanometric gold-

palladium film significantly improved the adhesion of the long-term osteoblast. This 

suggested that a gold-palladium film could improve both cell and tissue adhesion, 

especially in biomaterials with low inherent biocompatibility, including polished stainless 

steel and other metallic substrates [99]. 

2.4 Wear-In Biomedical Alloys 

The loosening of joint placements is one of the biggest challenges in biomaterials, and it is 

estimated that this is the cause for revision surgery in 10–20 percent of patients with a 

metal head and polymer cup type total joint replacements [100–102]. This is a major 

concern given the number of people who undergo total joint replacements in the United 

States every year [103]. The longevity of replacement implants is increasingly becoming a 

major R&D interest as the number of youths in modern society diagnosed with 

osteoarthritis continues to increase. Thus, measures to improve the fixation and resistance 

to wear of replacement implants continue to be a priority focus of orthopedic research. The 

main reason for the failure of most implants is their corrosion and releasing of wear debris 

into the surrounding body tissues which prompt bone resorption, followed by the loosening 

of the implant as shown in Figure 2.3.  

In addition to the cost and high risk of failure of revision surgeries, poor wear resistance 

properties of implants commonly expose the human body to toxic foreign particles, such 

as cement particles due to bone resorption of wear debris into the bodily fluids. Post-
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mortem studies on patients who had received replacement implants have consistently and 

commonly shown the accumulation of wear debris, especially from the surface coatings of 

implants in the liver, as well as in the spleen or abdominal lymph nodes. The lack of wear 

resistance is a particular issue for implant replacements involving high-impact joints which 

are prone to dynamic load-bearing on a day-to-day base, such as knees and hips. The 

dynamic load-bearing, the functioning of these body joints implies that the implants are 

constantly subjected to high and dynamic frictional forces. For knee joints, implant 

materials usually have coefficients of friction ranging from 0.16 to 0.05. This variation is 

mainly due to differences in the materials that are in contact with the body and the type of 

testing lubricant used to determine the coefficients.  

For hip joint replacements, implants include femoral head and ultra-high-molecular-weight 

polyethylene (UHMWPE) acetabular cup, and the femoral head ideally articulates against 

the UHMWPE acetabular cup. Based on numerous studies investigating the risk of failure 

of these implants due to aseptic loosening, femoral heads made from titanium alloys 

showed the greatest wear (at 74.3%) when compared with the UHMWPE acetabular cup 

component of the composite system. Femoral heads made from Co–Cr alloys showed less 

wear, while the wear resistance of stainless steel was found to be between those of Co–Cr 

and Ti alloys. This is complemented by the fact that higher levels of metallic particles 

accumulated on tissues surrounding the Ti alloy prostheses. Levels of wear debris were 

found to be the lowest on tissues surrounding the Co-Cr alloy and SS prostheses [104]. In 

a move to mitigate this wear-related problem and the risks associated with revision surgery, 

numerous efforts have been made to facilitate R&D focused on replacing the polymeric 
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material used in the cup with a metal or ceramic as a more reliable option for long-term 

fixation.  

Of particular significance, replacing the cup material with metal is based on results that 

show that metal-to-metal prostheses can reduce the production of wear debris in hip 

replacements by 20–100 times in terms of volume compared with metal-to-polymer 

prostheses [105]. Furthermore, it has been established that metal debris has a lower risk of 

causing inflammatory reactions compared with UHMWPE debris [106]. Nevertheless, the 

perceived benefits of using a metal cup are limited by the fact that metal-to-metal 

prostheses have demonstrated higher frictional torques compared with metal-to-polymer 

prostheses [107]. There are also concerns over the so-claimed low wear volumes produced 

by the long-term presence of metal-on-metal prostheses in the body. Based on studies of in 

vivo and in vitro implants, it has been consistently shown that Co-Cr alloy particles have 

toxic effects on different body cells and tissues. Historical concerns over the wear problems 

of polymer-on-metal, and ceramic-on-ceramic (alumina) were voiced 20 years ago when it 

was noted they exhibited lower levels of wear compared with Co-Cr alloys, metal-on-

polymer, and metal-on-metal.  

However, the practical relevance of ceramic-to-ceramic implants has been lost by concern 

over the high risk of fracture of these implants and the health implications of the release of 

debris. In addition, however, when tested for its cytocompatibility, the toxicity of CoCr 

wear particles at the nanometer scale showed high toxicity compared with ceramic wear 

debris from an alumina implant [108]. Another common material used in making ceramic 

implants is zirconia, which is generally considered to have better biomechanical properties 



  
   

27 
 

compared with alumina, especially in relation to brittleness. Zirconia exhibits high crack 

propagation resistance and low levels of brittleness. Indeed, it is due to these properties 

that this ceramic material continues to command a significant share of the total number of 

replacement implants in society, with 6,00,000 zirconia head implants having been fixed, 

especially in the US and Europe. However, cases of early implant failure have been 

documented in the use of zirconia. These claims are, however, difficult to verify given the 

fact that the implantation of zirconia implants includes various techniques, and the effect 

of individual methods on the microstructure of the implant, and hence the mechanical 

properties, cannot be ignored.  

There is a growing trend towards developing alumina-zirconia composites to exploit the 

toughness of alumina and the high crack propagation resistance and low levels of the 

brittleness of zirconia. Out of the various combinations that have been tested to date, a ratio 

of 4:1 for zirconia and alumina, respectively, and maintaining high bending strength (2000 

MPa) has shown great promise. The same results have been found using a combination 

ratio of 3:1 for alumina and zirconia, respectively while controlling for high strength (1150 

MPa) and toughness (8.5 MPa.m1/2). Despite this success, however, the effectiveness of a 

new implant can only be quantified based on its effect on patients after long-term 

implantation. As a result, more research is needed before these implants can be 

commissioned for widespread application. There are also notable interests in the 

development of ceramic composites with low coefficients of friction and high wear rate 

resistance [109].  

In addition to the challenge of material selection, implant surgery is also faced with the 
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challenge of in vitro tests on the wear resistance properties of materials. Of particular 

significance here, there remain wide variations between the wear rates determined in vivo 

(1–5 mm3 per annum) and in vitro (0.01–0.1 mm3 /million cycles) [110]. Various factors 

have been associated with causing or contributing to these differences, including 

differences in the type of lubrication used and kind of motion of concern to the mating pair. 

More importantly, the angle of inclination of the acetabular cup has been blamed for being 

a risk factor to the observed differences, and movements by patients involving very limited 

separation between the head and the cup during the swing phase of walking. When micro 

separation is introduced in in-vitro wear tests, it was shown that the wear rates observed 

clinically on in vivo tests could be observed in-vitro as well. By introducing harsh 

environments to induce the micro separation for in-vitro to wear testing of the ceramic-on-

ceramic implants, Tipper et al. showed that these implants had very low wear rates relative 

to metal-to-polymer implants. Other studies have investigated the absence of lubrication 

for in vivo wear testing [111,112–114].  



  
   

29 
 

 

Figure 2.3. Wear of implant [113]. 

 

2.5 Corrosion Behavior of Biomedical Titanium Alloys 

Regardless of the type of the metal or metal alloy, all metal-related materials are subject to 

some level of corrosion within the human body due to the inherently high presence of 

chloride ions, amino acids, and proteins in almost all bodily fluids. Once in the body, there 

are various chemical reactions that can occur on an implant. In particular, the metallic 

components of the alloy are subject to oxidation which then releases oxygen and forms 

their ionic components. The oxygen is dissolved into the bodily fluid where it is reduced 

to produce hydroxide ions. Although different forms of corrosion have been documented, 

it has been reported that the rate of corrosion is generally low due to the presence of passive 

surface films in most metal alloy implants in use. 316L stainless steel and other passive 

alloys in the presence of chlorides have been shown to suffer from high corrosive damage 

due to crevice attack or corrosion of shielded sites such as the screw-plate interface, as well 
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as corrosion under the washers. In practice, however, mechanically-assisted crevice 

corrosion has also been shown to exist and is mainly observed on modular total hip 

arthroplasty components and has been blamed on serum cobalt and urine chromium [114].  

Another common problem is pitting corrosion, especially for 304 SS implants, which is 

mainly documented for implants of the oral cavity. This can be explained by the high levels 

of oxygen and acidic foodstuffs within oral cavity environments. In practice, this problem 

has been overcome by incorporating ultra-high clean grades such as 316LVM and nitrogen 

additions on the surface of the implants. On cobalt-based alloys, pitting corrosion has been 

associated with the release of carcinogens into the body [115–117]. Despite that titanium 

and its alloys are lauded for their high resistance to pitting corrosion under a variety of in 

vivo conditions, they are generally highly susceptible to corrosion in the presence of high 

fluoride solutions such as those involved in conventional dental cleaning procedures [118]. 

More commonly, fatigue corrosion occurs, which is generally associated with the majority 

of medical implants being exposed to low-frequency loads. As such, they are highly 

vulnerable to corrosion fatigue due to these poor levels of load frequency. For Ti, resistance 

to fatigue corrosion has been shown to be independent of the pH value to a larger extent. 

For stainless steel, however, fatigue corrosion resistance has been found to decline 

significantly at body pH levels below 4. Yu et al. suggested that pitting corrosion is a risk 

factor for the initiation of corrosion fatigue in stainless steel [119]. In particular, these 

authors reported a general improvement in the corrosion fatigue resistance properties when 

implants were treated through nitrogen implantation and heat treatment procedures, 

especially for a Ti64 alloy. The study found a direct relationship between the level of 



  
   

31 
 

resistance to corrosion fatigue and the size of plates, where large plates were more resistant 

than smaller ones. On a comparative basis, Ti64 has been shown to possess better resistance 

to corrosion fatigue compared with 316L SS alloys.  

Fretting corrosion, on the other hand, is a form of corrosion that is predominant in all load-

bearing metallic orthopedic implants that mainly occurs at the bone-stems interface or at 

the stem-cement interface. It is also common at the interfaces of modular connections 

between implant components and has been closely linked to the generation of both ionic 

and particulate wear debris into the surrounding bone tissues. This leads to continued 

fracturing and abrasion of the metal oxide protective layers, and hence continued 

deposition of wear debris into the surrounding tissues. As a result, fretting is a major 

clinical concern for the long-term use of implants. This can be explained by the fact there 

are several known potential toxins that have been associated with wear debris in bodily 

tissues, including the association of wear debris with inflammatory and/or allergic 

reactions. In total hip implants, despite the presence of a perfect interlocking mechanism 

between the head and stem, it is not uncommon for body fluids to penetrate the junction, 

which risks fretting corrosion. Cabrera and Mott [120] showed that fretting corrosion can 

be significantly reduced by pre-treating implants to form a protective oxide layer on the 

surface. 

2.6 Surface Modification of Titanium Alloys for Biomedical Applications 

2.6.1 Coatings for enhanced wear and corrosion resistance 

One of the main obstacles to the long-term performance of surgical implants is the 

limitations posed by their surface properties. For example, the poor tribological properties 
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of titanium and its alloys negatively impact the durability of the resulting implants upon 

fixation. This includes poor resistance to wear which implies the vulnerability of the 

implants or the joints to loosening due to wear, and hence reducing the service life of the 

implants. A general measure to overcome this problem is coating the implant surface with 

a suitable material. In addition, surface engineering has also proven to be a promising 

solution to extend the service life, and hence the performance of orthopedic devices made 

of titanium and its related alloys. There are numerous surface treatment techniques that 

have been used to address the tribological properties of titanium and its alloys, including 

surface modification techniques such as dipping, spraying, electron-beams, and pulsed 

lasers, as well as chemical surface treatments [121, 122, 123]. Other techniques include 

carburization and boriding which have been used to improve the hardness of the surface of 

titanium alloys.  

However, the physical deposition techniques are prone to interfacial separation, especially 

when subjected to repeated loading, and chemical methods suffer from requiring high 

temperatures and the associated risk of causing torsional or twist of the substrate. It has 

been shown that TiN-coated hip and knee implants have high wear resistance and extended 

compatibility [124]. In addition, in vitro studies by Sundarajan et al. reported that nitrogen 

ion-implanted Ti-Modified 316SS display excellent corrosion resistance characteristics 

when implanted with a dose of 11 017 ions/cm2 [125]. The use of surface hardening 

methods such as PVD, CVD, or plasma nitriding and ion nitriding to form TiN may lead 

to the formation of various non-stoichiometric compounds with a high hardness on the 

surface [126, 127]. Although the corrosion resistance of ion-implanted surfaces is generally 
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very high, the layer of the ion implants has been shown to wear off with time [128]. This 

problem associated with nitriding is usually overcome by using high-energy electron-beam 

irradiation which enhances the hardness and wear-resistance by promoting the 

development of Ti-based surface composites [129]. The use of oxygen diffusion hardening 

(ODH) has also been shown to help improve the resistance of Ti alloys to abrasion wear.  

2.6.2 Coatings for high osseointegration 

In its most basic form, osseointegration can be defined as the process through which the 

bone heals after an implant. On the other hand, it is the primary goal of the implant surgery 

that this healing process will involve the successful formation of a new bone, and the 

process involves the initial adsorption of water molecules and proteins as its first step. This 

is followed by one of three possible processes:  

 The adsorption of water molecules and proteins may lead to the formation of new 

bone cells around the implant joint or surface, followed by proliferation and 

differentiation of the cells and osseointegration. This sequence of events is 

indicative of the acceptance of the implant by the body.  

 The human body might prompt an inflammatory response, an indication that the 

implant has been rejected.  

 Micromotions of the implant can also occur, prompting fibrous tissue to form on 

the surface of the bone, as opposed to forming a bone-implant interface. The end 

effect of this is the inhibition of osseointegration.  

The surface properties of the implant are the main factor of concern in determining the 



  
   

34 
 

process that will occur because these properties define the surface energy, the bone-implant 

reaction, and the integration process [130]. Details on the classification of the different 

biomaterials and associated tissue responses are shown in Table 2.1. In general, the success 

of implant surgery in orthopedic and trauma surgeries remains subject to the integration of 

the implant and the adjacent bones and tissues. A higher degree of osseointegration implies 

a higher level of mechanical stability of the bone-implant interface, and hence a reduction 

in the risk of failure. This can only be achieved if there is no fibrin adhesion and 

micromotions and blood vessels are not allowed to grow.   

On one hand, the fundamental consideration in enhancing cell adhesion and mitigating 

micromotions is to ensure that the surface of the implant is tailored appropriately to fit with 

the bone and surrounding tissues. This dictates informed consideration of the surface 

chemistry, but more importantly, the topographies of the surface at the nanometer and 

micrometer scales. There are many strategies currently being examined to enhance the 

chances of bone integration with titanium-based implant biomaterials. In these strategies, 

surface roughness has a direct influence on cell morphology and growth, while changes in 

the topography of the surface are associated with altering the orientation and attachment of 

the cells [131,132, 133].  

Numerous methodologies are available to increase the likelihood of biomechanical 

compatibility, including securing porous and coating surfaces with nano-ceramic particles, 

HAP, and oxides. Surface grit blasting and surface polishing enhances the growth of cells 

and increases the interlocking surface area to improve implant fixation [134,135–138]. 

More importantly, this type of surface treatment also improves the thickness of the oxide, 
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which in turn implies an improvement in the biocompatibility of titanium implants because 

of the general association of such properties with the thickness of oxide on the surface. 

Heat treating of biomaterials in oxygen or air appropriately enhances their biocompatibility 

by changing the oxygen composition in the biomaterial, especially on the surface. 

MacDonald et al. found heat-treating biomaterials at low temperatures to be effective in 

enriching the surface with Ti and Al, and hence enhancing cell attachment [139].  

Moreover, bone integration has also been found to be significantly influenced by the 

waviness and porosity of the implant. In-growth of bone into a porous surface enhances 

interlocking of the implant with surrounding bone tissue, and hence improves the 

biomechanical compatibility and fatigue loading resistance [140–142]. There is also the 

practice of remodeling bone on a porous surface. In particular, available literature shows 

that porous-coated anatomic femoral components are more reliable and have a lower risk 

of failure due to loosening or osteolysis in the long-term than cemented stems [143]. In a 

study by Zinger et al., it was established that cavities of the same size or larger than the 

cell on the implant surface-enhanced cell attachment [144,145]. Wennberg et al. suggested 

that a grooved surface of 11.6 lm average wavelength and 1.4 lm provided an optimal 

implant surface for assured integration [146]. In addition, based on rat models, it was found 

that bone remodeling is more effective when using implants with more porous surfaces 

[147]. In their study, Hulbert et al. found a direct relationship between porous surfaces and 

increased osteons. Li et al. suggested 140 lm pore size as the best pore size for optimal 

bone growth [149], however, Gotz et al. claimed that the presence of different pore sizes 

on the surface was the best for enhancing bone remodeling [150].  



  
   

36 
 

However, Gotz et al. also found that the bone growth rate on 300 lm pores was significantly 

slower compared with the rate on a surface with 200 lm pores. This finding suggests 

differences between the rate of osseointegration and the size of pores on the surface. 

Accordingly, available literature reports seem to suggest that the best size of surface pores 

for optimal bone remodeling should be within the range of 100–200 lm. The use of porous 

biomaterials is expected to enhance osseointegration, and hence the prospects of long-term 

fixation of implants. Porous biomaterials are also helping to improve the modulus of 

implants, and hence their ability to overcome the stress shielding effect. Vamsi et al. found 

that varying the porosity can enhance the modulus of biomaterials by simply determining 

the number and sizes of pores necessary to achieve modulus value for a specific 

implantation scenario [151].  

Based on the above reasons, the idea behind enhancing bone-implant integration is rooted 

in securing implant surfaces which are as close to the surface of the bone as possible, which 

continues to be a major challenge in the field of biomaterials. Furthermore, securing alloys 

that will guarantee chemical bonding between implants and bones is a major problem that 

must be solved to define the future prospects of biomaterials used to restore and/or enhance 

the quality of life of humans. At the core of the problem, there is a need to secure implants 

with a sufficiently thick layer of biocompatible calcium phosphate on the surface, which is 

currently accomplished by using dipping, spraying, electron-beam, and pulsed laser to 

deposit biocompatible calcium phosphate on the surface [152]. Synthetic hydroxyapatite is 

one of the biocompatible calcium phosphate constituents currently in use. Surface coatings 

with this material have been found to significantly enhance osteoconductivity [153–156]. 
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In addition, these coatings have been linked with enhancing early fixation and associated 

bone-implant integration regardless of shortcomings in the biomechanical compatibility of 

the implant [157,158]. Using a micro-arc oxidation treatment to modify the surface of 

titanium implants has been shown to greatly improve osseointegration.  

Improved osseointegration of treated titanium implants was associated with the effect of 

the treatment process in incorporating Ca and P in the surface to form a rough porous oxide 

layer. The activity of alkaline phosphate (ALP) has been shown to be directly related to the 

thickness of both the oxide and Ca and phosphor layers on the surface of the implant [159]. 

To enhance the deposition efficiency of Ca and phosphor layers, a variety of chemical 

methods are currently under investigation since chemical methods are more economical 

and provide a more efficient coating of implants with complex shapes. A method designed 

by Li et al. has been shown to enhance the osseointegration of materials that have been 

highly oxidized [160]. This was achieved by the initial heat treating of the alloys at low 

temperatures before treating them in an alkaline medium using a method devised by Kim 

et al. [161]. Following the alkaline treatment, the implant was immersed in protein-free 

body fluid mimicking the human body fluid for two weeks. This enhanced the thickness of 

the oxide layer while the alkali layer enhanced the formation of Ca-P on the surface. This 

method has been shown to greatly improve the wear resistance properties of implants by 

providing an oxide layer and enhancing bio-conductivity due to the alkali treatment.  

In addition, there is ongoing research on the possible development of nano-surface 

topographies due to the general understanding that nano-surfaces closely mimic bones in 

the human body. In a study by Thomas et al., it was suggested that the possible use of 
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carbon fibers with nanometer dimensions in creating a novel surface topography to enhance 

the osteoblast adhesion properties of implants [162] by providing nanometer surface 

roughness properties. However, although nanocrystalline titanium surfaces have been 

found to improve cell growth and wear resistance, the effect of this corrosion resistance 

and the electrochemical behavior of these implants are yet to be investigated [163]. Studies 

on the cell compatibility of nano-sized ceramic particles have, however, been sown to 

improve osteoblast adhesion, and hence enhance Ca deposition [164]. Furthermore, wear 

debris from nanophase ceramics such as alumina and titania are less harmful to bone cells 

relative to wear particles from conventional ceramics [165]. This implies the great potential 

that nanotechnology promises in enhancing the biocompatibility and biomechanical 

compatibility of biomaterials. 

2.7 Biocompatibility of Titanium and its Alloys 

Upon implantation of artificial implants in vivo, there are numerous cascade reactions that 

take place within the human body when the implanted biomaterial starts interacting with 

body fluids, amino acids, and proteins as well as body tissues and cells in general [166]. 
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Figure 2.4. Various reactions occurring during cell attachment and the response of the 

human bone to an implant at different time intervals [167]. 

 

 

However, it is worth noting that the human body, particularly the bone response to an 

implant in different ways at different times. This results in different reactions on the surface 

of the bone as shown in Fig. 2.4. In general, this sequence of localized body responses to 

the implant or foreign materials in the body prompts the typical foreign body response 

mechanism, and which commonly prompts the formation of fibrous tissue capsule around 

the implant. One of the main factors behind this unfavorable body-implant reaction is the 

nature of the surface of the biomaterial used since the surface of a biomaterial is the first 

area of contact with the body. As a result, the nature of the contact surface determines the 

healing process following implantation, as well as the long-term integration of the implant 

into the body. This underpins the importance of both the chemical composition and 
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topology of the surface of the biomaterial in securing successful and long-lasting 

implantation by influencing the nature of the bone-implant interface. Regardless of the 

quality, however, no implant can be assumed to be completely free from adverse effects 

[167-170]. 
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Chapter 3 : Methodology 

3.1 Experimental Details 

3.1.1 Materials 

The stainless steel 304 (SST 304) and pure zirconium foils used in this project were 

purchased from Alfa Aesar (Korea). The chemical composition (wt %) of stainless steel 

304 is 70% Fe, 19% Cr, and 11% Ni. Calcium chloride dihydrate (CaCl2·2H2O, ≥99%), 

sodium chloride (NaCl, ≥99.5%), ammonium dihydrogen phosphate (NH4H2PO4, 

99.999%), sodium phosphate monobasic monohydrate (NaH2PO4·H2O, ≥98%), and 

sodium phosphate dibasic (Na2HPO4) were all obtained from Sigma-Aldrich, while the 

graphite powder was purchased from Sinopharm Chemical Reagent Co. Ltd. Sodium 

hydroxide powder (NaOH) was purchased from Daejung Chemical Co. (Korea). 

Palladium-(II) nitrate hydrate (Pd(NO3)2·xH2O, 99.8%) was purchased from Alfa Aesar. 

Distilled water was used to prepare all aqueous solutions. 

3.2. Preparation of materials 

3.2.1 Preparation of SST 304  

SiC sandpapers (800-2000 grit) were used to polish SST 304 samples (with dimensions of 

32 mm × 8 mm × 0.2 mm). Then, the samples were cleaned with acetone in an ultrasonic 

bath and rinsed with distilled water prior to electrodeposition. Afterward, the SST 304 

substrates were etched by submerging them in an H2SO4 solution for 5 minutes.  

3.2.2 Preparation of pure zirconium substrate 

Commercially-available zirconium substrates (99.5% purity, Alfa Aesar, Heysham, 

England) with dimensions of 40×10×0.127 mm3 were used as substrates for 
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electrodeposition. The zirconium foil surface was ground and polished with silicon carbide 

sandpapers (grit range of 800-1500) and etched in an HF solution (48%) for 1 h. Then, it 

was ultrasonically (Daihan Ultrasonic Bath Set WUC-A02H) cleaned in ethyl alcohol, 

acetone, and deionized water for 15 min, and lastly dried in a vacuum oven at 70 °C. To 

avoid an edge effect during electrochemical deposition (ECD), the zirconium substrates’ 

edges were rounded. 

3.2.3 GO fabrication 

The Hummers’ method was used to prepare graphene oxide (GO) by oxidizing natural 

graphite powder [171]. Graphite powder (10 g) was added to concentrated H2SO4 (230 ml) 

in an ice bath with stirring. KMnO4 (40 g) was added slowly under strong agitation to 

prevent the suspension temperature from exceeding 20 oC. The reaction was then 

transferred to a 40 ℃ oil bath and vigorously stirred for approximately 30 minutes, after 

which time 150 ml distilled water was added to the solution, and the mixture was stirred 

for an additional 15 minutes at 95 °C. More deionized water (500 ml) was added to the 

mixture, followed by 15 ml H2O2 (5% solution), after which the solution turned yellow. To 

remove metal ions, the solution was filtered and HCl (1:10, 250 ml) was used to wash the 

solution. Then, the filtered product was dried and diluted to 600 ml to obtain an aqueous 

graphite oxide dispersion. To eliminate residual metal species, the solution was purified 

for one week using a dialysis membrane (molecular weight cut-off of 8,000−14,000 g/mol). 

The diluted graphite oxide aqueous dispersion (1.2 L) was stirred for 12 hours and then 

sonicated for 30 min to exfoliate it and obtain GO. Finally, to remove any un-exfoliated 

graphite, the GO dispersion was centrifuged (Avanti HP-301, Beckman Coulter, USA) at 
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12 000 rpm for 40 min. 

The graphene oxide dispersion (20 ml) was mixed thoroughly with 100 ml deionized water. 

To stabilize the suspension and ensure that graphene oxide was well-dispersed in ultrapure 

water, the dispersion was subjected to ultrasonication at 570 W for 2 h, to finally obtain a 

transparent golden GO suspension. 

3.2.4 Preparation of hydroxyapatite solution 

First, 2.45 g CaCl2 (Sigma-Aldrich, 223506-500G ACS reagent, ≥99%) and 0.58 g NaCl (Sigma-

Aldrich Company, S7653-250G BioXtra, ≥99.5%) were added into 50 ml of distilled water and 

mixed using a magnetic stirrer (Daihan MSH-20D). Then, 1.150 g NaH2H2PO4 (Sigma-Aldrich, 

255793-10G 99.5% trace metals basis) and 50 ml of distilled water were separately mixed by a 

magnetic stirrer. Then, the two solutions were mixed and stirred to obtain the hydroxyapatite 

solution. 

3.2.5 Preparation of HA/GO/Pd Electrolyte 

CaCl2 (0.167 mol L-1), 0.1 mol L-1 NH4H2PO4 with a Ca/P ratio of 1.67 were dissolved in 

100 ml distilled water to prepare the electrolyte, and a NaCl solution (0.1 mol L-1) was also 

added to the electrolyte to improve the conductivity. Later, 20 ml of an aqueous suspension 

of GO and 25 ml of an aqueous suspension of Pd(NO3)2·xH2O (0.001 mol L-1) were added. 

A NaOH solution was used to adjust the pH of the electrolyte to 6.  

3.2.6 Preparation of HA/GO/Pt Electrolyte 

To prepare 0.001 mol/L Pt solution, 0.01 g K2PtCl4 powder was added to 25 ml 

distilled water in an opaque flask to obtain a 0.001 mol/L Pt solution. 40 ml hydroxyapatite, 

file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///D:/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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40 ml graphene oxide, and 25 ml Pt solutions were mixed and stirred for 15 min. Then, the 

pH of the resulting solution was adjusted to 6 using 1 M NaOH in a water-bath at 80 °C. 

3.2.7 Deposition Parameters for HA/GO/Pd 

Figure 3.1 and Figure 3.2 show the electrochemical workstation equipped with a typical 

three-cell system that was used to perform deposition (PARSTAT 3000A, Princeton 

Applied Research). The working electrode consisted of polished and etched SST 304 

sheets, while the platinum wire was used as the counter electrode, and silver chloride (Ag-

AgCl) was used as the reference electrode. Chronoamperometry was used to perform the 

deposition whose process parameters were as follows: a constant voltage of -2 V vs. Ag-

AgCl; an electrolyte temperature of 80 °C; a distance between the working electrode and 

the counter electrode of 2 cm; and a deposition time of 1500 s. Magnetic stirring was 

conducted at 115 rpm was used to ensure particles were homogeneously dispersed for the 

entire electrodeposition process. Finally, coated samples were carefully rinsed with water 

and dried in an oven at 60 °C. 
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Figure 3.1. Schematic of 3-electrode cell 

 

 

 

Figure 3.2. Electrodeposition workstation 
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3.2.8 Deposition Parameters for HA/GO/Pt 

The electrodeposition (Potentiostat/Galvanostat/Impedance Analyzer, PARSTAT300) was 

performed in a standard three-electrode cell using a chronoamperometry cycle in which 

pure zirconium foil, a graphite rod, and a saturated calomel electrode SCE were the 

working electrode, counter electrode, and reference electrode, respectively. The electrolyte 

was stirred at 70 rpm during electrodeposition, and the applied potential was kept at −2 V 

for 7200 s (time per point was 2 s with 3600 total points). Finally, the electrodeposited 

samples were washed with deionized water and dried in an oven at 60 °C (Jeio Tech VO-

10X).  

3.3 Thermal Treatment of HA/rGO/Pd and HA/rGO/Pt Coating 

The tube furnace shown in Figure 3.3 was used to perform thermal treatment at four 

annealing temperatures: 200, 300, 400, and 600 °C. The chamber was firstly pumped to 

<1.0 x 10-3 torr and then Ar (200 sccm) was used throughout the whole process. A heating 

rate of 5 °C min-1 was used to reach the target temperature, where the specimens were held 

for 1 hour (Figure 3.4). Finally, the samples were cooled naturally by leaving them on the 

surface.  
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Figure 3.3. Tube furnace 

 

 

 

Figure 3.4. Heating and cooling process 

 

 

3.4 Characterization 

Field-emission scanning electron microscopy (FESEM) was used to examine the surface 

morphology of electrodeposited coatings using an FEI Nova NanoSEM 450 (FEI, USA) at 

a 15 kV acceleration voltage (Figure 3.5). The elemental composition and morphology of 

samples were examined by transmission electron microscopy (JEM-2010 TEM, JEOL, 
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Japan) (Figure 3.6). The elemental composition of the coated samples was studied using 

energy-dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) spectra were 

measured using the scan-step technique (2θ = 5–90), with a step width of 0.02 and an 

exposure time of 50 s per step using a high-resolution XRD (HR-XRD, Figure 3.7) 

instrument (Smart Lab, Rigaku). EVA V.9.0 software was used to perform phase analysis. 

Functional groups present in the coated samples were identified by Fourier-transform 

infrared spectroscopy (FTIR, Figure 3.8), using KBr pellets in a Nicolet iS50 FT-IR 

Spectrometer (Nicolet, USA) with a 450–4000 cm-1 scan range and a 0.5 cm-1 spectral 

resolution. 

 

 

 

Figure 3.5. FESEM 

 



  
   

49 
 

 

Figure 3.6. TEM 

 

 

 

 

Figure 3.7. XRD 
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Figure 3.8. FTIR 

 

 

3.5 Biocompatibility Tests 

The biocompatibilities of uncoated SST 304 and pure zirconium, with different coatings 

including HA, HA/rGO, HA/rGO/Pd, and HA/rGO/Pt were investigated using the human 

cell line MDA-MB-231 equipped with a green fluorescent protein (GFP) to identify the 

presence of living cells. This method served to evaluate the surfaces’ ability to support cell 

attachment and permit the growth and proliferation of cells. Dulbecco's Modified Eagle's 

Medium (DMEM) solution (Sigma-Aldrich), complemented with Newborn Calf Serum 

(NBCS) (Life Technologies, Thermo Fisher Scientific), 100 U mL-1 penicillin and 100 µg 

ml-1 streptomycin at 37 °C in a CO2 incubator with a CO2 concentration of 5% was used to 

grow the cells. A Nikon Eclipse Ti-E inverted fluorescence microscope (Nikon, Japan) was 

used to perform 1-day post-culture proliferation tests. 
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3.6 Electrochemical Tests for HA/GO/Pd 

The anticorrosive characteristics of the coatings were evaluated via anodic polarization 

experiments conducted in CaCl2 with a PARSTAT 3000A electrochemical workstation. 

Synthetic serum with the chemical composition listed in Table 3.1 was the medium in 

which all electrochemical tests were performed. The counter, working, and reference 

electrodes were a platinum wire, SST 304 samples, and a saturated calomel electrode 

(SCE), respectively. Samples were immersed in synthetic serum for 2 days to stabilize prior 

to testing. A 0.167 mV/s scan rate in a potential range between -0.25 and 0.25 V was used 

throughout all electrochemical measurements.  

 

 

Table 3.1: The chemical composition of synthetic serum 

 

 

  

Rp is the polarization resistance calculated using the following formula [172]: 

 

where β is a constant determined by the following equation: 
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where βc and βa are the Tafel slopes. 

P.E. was also calculated to assess the effectiveness of corrosion protection using the 

following formula [173],  

 

 

where Icorr
0 and Icorr

c are the corrosion currents of the SST 304 in the absence and presence 

of thin-film layers, respectively. 

3.7 Electrochemical corrosion test for HA/GO Pt 

The electrochemical behavior of the uncoated, HA-, rGO-, HA/rGO-, and HA/rGO/Pt-

coated samples was studied in a CaCl2 solution. A conventional three-electrode 

electrochemical cell using a platinum wire as the counter-electrode, a saturated calomel as 

the reference electrode was used, along with the specimen, which was used as the working 

electrode. To allow the open circuit potential (OCP) to stabilize, samples were kept in the 

solution for 2 h before electrochemical corrosion tests. Potentiodynamic polarization tests 

were carried out, starting at −250 mV with reference to the OCP at a sweep rate of 0.5 

mV−1 to a final current density of 0.1 mAcm−2. Electrochemical impedance spectroscopy 

(EIS) was conducted at the OCP with an AC amplitude of 10 mV over the frequency range 

of 10,000–0.01 Hz.  

3.8 Wear Tests 

A reciprocating ball-on-disc wear tester apparatus was used to evaluate the wear properties 

of annealed HA/rGO/Pd and HA/rGO/Pt coatings by sliding a stainless-steel ball (6 mm in 
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diameter) against the specimens at room temperature. The test was performed at a sliding 

speed of 1 cm/s on a track with a 5 mm diameter at a normal load of 4 N. The COF of 

coated substrates were determined by repeating this wear three times. Figure 3.9 shows the 

reciprocating wear test machine. 

 

 

 

 

 Figure 9.9. Reciprocating wear test machine. 
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Chapter 4 : Results and Discussion 

4.1. Reaction Mechanism of Electrodeposition for HA/GO/Pd 

Figure 4.1 is a chronoamperometry plot showing that the electrochemical reaction was 

initiated at 2 minutes by the electroactive species present in the electrolyte. Between 2 and 

6 minutes, a gradual decrease in the current density was observed, indicating particle 

nucleation on the SST 304 surface and that this process was controlled by electron transfer. 

Between 6 and 10 minutes, a large decrease in the current density was observed because 

particles were deposited due to a mixture of mass transport and electron transfer. Between 

10 to 30 minutes, the current density plateaued due to mass transport-controlled processes. 

After 30 minutes, the hydrogen evolution reaction formed many bubbles on the SST 304 

surface during scanning. Accordingly, to ensure that hydrogen evolution did not interfere 

with the formation of coatings on the SST 304 substrate, a 25-minute deposition time was 

used for electrodeposition on the SST 304 substrate. 
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Figure 4.1. Chronoamperometry plot of electrodeposition coatings. 

 

 

4.2. Reaction Mechanism of Electrodeposition of HA/GO/Pt 

Figure 4.2 shows how the current varies with time during the coating process. It can be 

seen from the figure that the electrolyte within the active material began to participate in 

electrochemical reactions within 2 minutes. Between 2 and 4 min, the current density was 

slightly reduced, indicating that particles nucleated on the zirconium surface, and that 

process is controlled by electron transfer. Note that the current density was reduced 

between 4 minutes to 10 minutes, indicating that the deposited particles coated the 

zirconium surface by both mass transfer and electron transfer processes. From 10 to 30 

minutes, due to a good transportation process, the current density remained stable. After 

30 minutes, many bubbles were observed on the zirconium surface, due to the hydrogen 

ions in the solution. Hydrogen spills in the electrodeposition synthesis would affect the 
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adhesion of the coating and the substrate, causing an uneven coating. Therefore, to 

synthesize an excellent coating that is not disturbed by hydrogen on the zirconium surface, 

the deposition time should be between 10 to 30 minutes, and so an 18-minute deposition 

time was selected as an optimum time for getting a coating with good quality. 

 

 

 

Figure 4.2. Chronoamperometry plot of the electrodeposition of three different coatings 

 

 

4.3. Coating Morphology and Microstructure Analysis for HA/rGO/Pd 

The HA/rGO/Pd thin film nanocomposite electrodeposited on SST 304 was characterized 

by TEM, SEM, and EDS elemental analysis, whose results are shown in Figure 4.3. SEM 

images of the morphology and structure at different magnifications of the HA/rGO/Pd 

nanocomposite in Figures 4.3a and b show that nanoneedle- and nanoplate-like structures 

of HA and Pd are observed. The surface of the whole substrate was covered with HA nano-
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flowers (as a group of needles), and graphene oxide nanosheets that cover the HA 

nanoneedles and Pd nanoplates are represented by the darker areas of the images. Graphene 

oxide was expected to behave as a nano-reinforcement filler which inhibited the formation 

and propagation of cracks via crack deflection at the matrix-GO interface, as well as crack 

bridging by GO nanosheets [174]. These observations indicate that a continuous and 

homogeneous coating covered the entire SST 304 surface.  
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Figure 4.3. HA/rGO/Pd thin film nanocomposite electrodeposited on SST 304 analyzed 

by SEM (a,b), TEM (c,d), and EDS elemental analysis (e). 

 

 

The TEM images of the morphology and structure of HA/rGO/Pd in Figures 4.3c and d 

show that the synthesized HA/rGO/Pd particles aggregated to form isolated sheets (Figure 
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4.3c). Needlelike shapes with lengths of 150 ± 25 nm and diameters of 25 ± 5 nm were 

formed by the HA particles on the GO sheets (Figure 4.3d). Prior to TEM analysis, 

ultrasonication was performed on an HA/rGO/Pd sample, and nearly no HA or Pd particles 

were scattered out of the matrix. These results suggest that the HA and Pd particles had 

strong interactions with the GO. 

EDS (Figure 4.3e) was performed to determine the elemental composition to provide 

further evidence that the HA and Pd particles had been successfully formed. The spectra 

showed two distinct Pd and Ca peaks, C and O peaks, as well as a large percentage of C 

and Cu due to the GO sheets and the TEM copper grid. EDS showed that the Ca/P ratio of 

HA formed in HA/rGO/Pd was about 1.65. While this value is slightly less than the 

stoichiometric ratio of Ca/P in HA (~1.67), it is similar to the ratio in natural bone [175]. 

The HA/rGO/Pd nanocomposite coating had an average thickness of around 1 µm, as 

measured by the cross-sectional FESEM image in Figure 4.4a, and no three-dimensional 

macroscopic or bulk defects were detected in the dense and uniform film. The EDS cross-

sectional line scan and overlaid elemental profile plot in Figure 4.4b show that the 

HA/rGO/Pd nanocomposite coating was successfully formed on the SST 304 substrate.  

 



  
   

60 
 

 

Figure 4.4. HA/rGO/Pd coating analysis: cross-sectional FESEM micrographs (a) and 

elemental profile plot (b). 

 

 

HA/GO and HA/GO/Pd coatings were analyzed by XRD (Figure 4.5a) to obtain their phase 

analysis. The obtained spectra perfectly matched the pure synthesized HA (PDF# 09-0432) 

at 2θ values of 25.9°, 31.8°, 39.8°,46.7°, 49.5°, and 53.2°, which were indexed to be (002), 

(211), (310), (222), (213), and (004) planes, respectively. Nanocrystallites of the HA 

particles were indicated by the presence of broad diffraction peaks. Such structures have 

been reported to have superior osseointegration properties towards micro HA [176]. 
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Furthermore, the crystallite size and the interplanar distance of (002), (211), (310), (222), 

(213), and (004) planes were 54.78, 45.42, 37.31, 32.85, 31.45, and 29.875 nm, and 0.1453, 

0.1777, 0.2210, 0.2573, 0.2716, and 0.2904 nm, respectively. Due to its ability to act as a 

reinforcing filler in biomaterial-based composites, graphene is an ideal material when used 

to modify biomaterials [177-180], and it also forms van der Waals interactions with HA, 

further strengthening the composites [178,181,182].  

The successful reduction of GO is indicated by the broad (002) peak at 24.85°. Although 

the FESEM and TEM images in Figure 4.3 confirm their presence, no other traces of 

graphite peaks were observed due to the strong HA peaks in the vicinity and their low GO 

content. The absence of rGO peaks is probably due to the layered structure of rGO which 

contains three-dimensional irregular arrays of atoms [183]. New diffraction peaks of the 

(111) plane at 2θ = 40.12°, (200) plane at 2θ=46.66°, and (220) plane at 2q ¼ 68.12 

appeared in the XRD spectra of HA/GO/Pd compared with HA/rGO. These peaks were 

attributed to the face-centered cubic (fcc) structure (Fm3m) of palladium with a preferred 

orientation of (111). Additionally, the (111), (200), and (220) planes had interplanar 

distances and crystallite sizes of 0.2226, 0.2571, and 0.3635 nm, and 37.99, 33.65, and 

26.38 nm, respectively. 

The results of the FTIR analysis of HA, HA/rGO, and HA/rGO/Pd are shown in Figure 

4.5b. The peak due to the P-(OH) stretching vibration in HPO4
2− was observed at 875 cm-1 

[184,185]. The peaks at 962, 1022, and 1085 cm-1 were attributed to the PO4
3− group due 

to the O-P-O phosphate ions present at hydroxyl locations [186,187], while the C=O group 

stretch in the amide I band was located at 1642 cm-1. 
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The stretch of the structural OH- groups in the hydroxyapatite lattice were located at 3567 

cm-1 [188]. The presence of a majority of B-type hydroxyapatite was suggested by the 

presence of bands at 1420 and 1456 cm-1, which were attributed to the v3 asymmetrical 

stretching vibrations of CO3
2− ions [184,189,190]. Due to its good bioactivity and 

osteoconductivity, this material is an ideal substitute in human bone [189]. The skeletal 

vibration of graphene nanosheets was observed as a band located at 1577 cm-1 in the 

spectrum of HA/rGO FT-IR [191,192]. The presence of graphene oxide sheets was further 

verified by the appearance of absorption bands of methylene groups (CH2) near 2855 and 

2924 cm-1 in the spectrum of the HA/rGO/Pd coating [174,175,186]. These spectral results 

indicate that the HA/rGO/Pd nanocomposite coatings were successfully co-deposited. 

Due to the use of different annealing temperatures, the presence of rGO in the composites 

needs to be determined. To this end, changes in the crystallinity and structure of rGO in 

the coatings were examined using Raman spectroscopy, and the results confirmed that rGO 

was present (Figure 4.5c 1 and 2). In the HA/rGO/Pd sample annealed at 600oC, the rGO 

characteristic peaks were successfully detected both before and after annealing. The G band 

at 1580 cm-1 and the D band at 1330 cm-1 suggest the first-order spectrum of graphene, 

while the 2D band refers to the second-order (two-photon) spectrum at 2647 cm-1 [193]. 

Raman spectra are often employed when it is necessary to measure the quality of graphene 

and the number of graphene sheets by the position of the 2D peak [194]. If the 2D peak 

shifts to lower wavenumbers, there is most likely a thinner rGO layer on the coating, and 

the rGO features were retained. 
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Figure 4.5. HA/GO and HA/GO/Pd coatings phase analysis (a), HA, HA/rGO, and 

HA/rGO/Pd FTIR spectra (b), HA/rGO/Pd-BA (1), and HA/rGO/Pd-AA 600 °C (c) 

Raman spectra. BA and AA represent before annealing and after annealing, respectively. 

 

 

4.4 Coating Morphology and Microstructure Analysis (HA/GO/Pt) 

HA, HA/GO, and HA/GO/Pt composite coating XRD patterns are presented in Figure 4.6. 
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The XRD diffraction peaks of the three samples were located at (002), (211), (103), (401), 

and (213) which represent the typical structure of hydroxyapatite (JCPDS 09-0432). The 

(111), (220), and (200) diffraction peaks in the HA/GO/Pt sample indicate that the 

HA/GO/Pt composite was successfully synthesized (JCPDS 04-0802). In addition, the 

diffraction peaks of HA decreased after the addition of GO and GO/Pt. The three most 

intense peaks of (300), (103), and (401) between 30° and 45° (2θ) in the standard 

diffraction curve were not obvious, possibly due to the low crystallinity or nanometer scale 

distribution. Clearly, the crystal size of hydroxyapatite is small from the sharp diffraction 

peaks [195, 196].  

The FT-IR spectra of GO, HA/GO, and HA/GO/Pt coatings are shown in Figure 4.7, and 

the characteristic absorption bands and corresponding wavenumbers are labeled. A 

hydroxyl group stretch appeared in the form of mutual absorbance bands near 3285 cm-1. 

Phosphate bending and stretching appeared as bands at 1018.42, 981.17, and 560.48 cm-1 

[197]. The band at 601.55 cm-1 is attributed to the vibrational mode of the OH- group in 

the HA structure [198,199]. The band at 871.42 cm-1 is assigned to the P-(OH) stretching 

vibration in the HPO4
2− phosphate group [200, 201]. The bands at 1653 cm-1 and 1456 cm-

1 are assigned to the stretching vibrations of the carboxyl group (COOH-) on the edge of 

the basal planes or in conjugated carbonyl groups (C=O) and the sp2 hybridized C=C 

vibration stretching, respectively [202]. The methylene groups (CH2) absorption bands, 

which are inherent in the GO, appeared at approximately 2959 cm-1 and 2928 cm-1. The O-

H deformation indicated by the peak at 1425 cm-1 [174]. In contrast, the peaks at 1750 cm-

1 and 1425 m-1 in the FT-IR spectrum of the HA/GO composite are no longer visible, which 
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indicates the reduction of GO.  

Structural analysis and surface morphology of electrodeposited thin films of HA/GO/Pt 

over a zirconium substrate were performed using SEM and TEM. Figure 4.8a-f show SEM 

micrographs of HA/GO/Pt coatings at different magnifications. The entire surface of the 

pure zirconium substrate is covered by hydroxyapatite particles, Pt nanowalls, and 

graphene nanosheets, and the surface of the coating is porous. An SEM micrograph of the 

composite coating (Figure 4.8a) shows the characteristic morphology for HA agglomerates 

with different sizes. The SEM micrograph of the HA/GO/Pt composite coating (Figure 

4.8c) shows HA particles and nanowalls wrapped by reduced graphene oxide nanosheets. 

The composite coating’s morphology was significantly changed after graphene was 

incorporated. Figure 4.8e shows wave-like graphene sheets, well-dispersed in a broccoli-

looking HA/Pt. In addition, HA/GO/Pt showed a distribution of HA particles in the 

Pt/graphene matrix. HA and graphene are bound by Van der Waals interactions [181]. 

Therefore, the nucleation of HA crystals perhaps occurs on either the cross-section of 

graphene multi-sheets or the graphene wall, followed by crystal growth perpendicular or 

along the graphene sheet’s surface. Figures 4.8g and h show the TEM at different 

magnifications, and Figure 4.8i shows the EDS elemental analysis of HA/GO/Pt 

composite. According to the EDX results, the composite coating consists of Ca, P, Pt, and 

C, indicating the presence of Pt, HA nanowalls, and graphene oxide nanosheets.   

Figure 4.9 shows a cross-sectional FESEM micrograph of the HA/GO/Pt coating on the 

zirconium substrate which had a thickness of around 1.1 µm. A uniform coating was 

formed, without the presence of three-dimensional macroscopic or bulk defects.  
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Figure 4.6. X-ray diffraction patterns of the synthesized HA, HA/GO, and HA/GO/Pt. 
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Figure 4.7. FT-IR spectra of GO, HA/GO, and HA/GO/Pt coatings on zirconium.  
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Figure 4.8. Top-down FESEM images (a-f), TEM (g and h), and EDS (i) of HA/GO/Pt. 
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Figure 4.9. Cross-sectional FESEM micrographs overlaid with the elemental profile plot 

of HA/GO/Pt. 

 

 

4.5 Biocompatibility Tests (HA/GO/Pd) 

In order for it to proliferate and form mineral deposits, and osteoblast must adequately 

adhere to the surface of an implant [203,204], and this phenomenon also plays an important 

role in osseointegration which ultimately determines the lifetime of biomedical implants 

[205]. The cell viability results in Figure 4.10 show that the uncoated SST 304 surface 

provided insufficient cell attachment and growth. However, the bright fluorescent signal 

from the green fluorescent protein (GFP) produced within the viable MDA-MB-231 cells 

indicated good cell attachment and proliferation on the surface of the HA-coated SST 304. 

A characteristic epithelial morphology was observed as cells continued to spread over 

surfaces, indicating the cells strongly adhered to the surface and that it was biocompatible. 

Previous reports have indicated that the presence of GO fillers promotes a more optimal 

surface for osteoblast adhesion than a pure HA coating [206,207]. Similarly, a bioactivity 

increase was observed in the HA/rGO coating in this study in Figure 4.10c and the 
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biocompatibility of the SST 304 surface improved the spreading of cells and proliferation 

with HA/rGO/Pd even further. Thus, the HA/rGO/Pd nanocomposite coating demonstrated 

excellent biocompatibility and has potentially promising applications in biomedical 

devices. 

 

 

 

Figure 4.10. Confocal microscopy images of the uncoated (a), HA-coated (b), HA/rGO-

coated (c), and HA/rGO/Pd coated (d) SST 304 substrate using MDA-MB-231 cells with 

GPF to indicate living cells. (The Web version of this image contains an interpretation of 

the references to color in this figure legend.) 
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4.6. hMSC in vitro Biocompatibility Assessment  

4.6.1 Enhanced proliferation of hMSC on the surface of the St/HA-rGOPd composites 

An MTT assay revealed that significantly higher cell viability was observed on cells 

located on the control grid or St/HA-rGO-Pd composite surfaces compared with cells on 

the 24-well plates (Figure 4.11; P < .001). These results indicated that the new surface grids 

exhibited had excellent biocompatibility. More importantly, the hMSC proliferation on the 

St/HA-rGO-Pd-coated surface was higher than on the control grid which also indicates that 

the synthesized powder’s crystallinity can be used to improve the proliferation and viability 

of hMSC. 

 

 

 

Figure 4.11. The proliferation of the hMSC on the surface of the St/HA-rGO-Pd and HG-

3 after 4 days. 
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4.6.2 Enhanced expression of hMSC marker on the surface of the St/ HA-rGO-Pd 

composites 

Compared with the hMSC in the well plate, the mRNA levels of MSC markers (CD44, 

CD90, and CD 105) in Figure 4.12 show a notable increase in the hMSC seeded on the 

surface of the St/HA-rGO-Pd composites or the control grid. None of the test groups 

displayed the negative MSC marker, indicating that the crystallinity of the powder 

synthesized in this study may enhance the viability and proliferation of hMSC. 

 

 

 

Figure 4.12. hMSC marker expression on the St/HA-rGO-Pd and HG-3 surfaces after 4 

days. 

 

 

4.7 Biocompatibility Tests (HA/GO/Pt) 

Figures 4.13a-d show the biocompatibility tests of uncoated and HA-, HA/GO-, and 

HA/GO/Pt- coated zirconium. When examining biocompatibility, the uncoated zirconium 
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surface did not provide extensive attachment and growth of adenocarcinoma cells. In stark 

contrast, the bright fluorescent signal from the GFP produced within the viable MDA-MB-

231 cells indicated that the HA and HA/GO-coated substrates enabled cell attachment and 

proliferation. Moreover, the coating’s strong adhesion and biocompatibility were indicated 

by the cell spreading on the surface which was indicative of a characteristic epithelial 

morphology. The biocompatibility of the HA/GO/Pt surface also permitted the spreading 

and proliferation of cells. Figures 4.13a-d show that the cell proliferation and distribution 

on the HA/GO/Pt coating was lower than on the HA and HA/GO coatings but higher than 

the bare Zr. It can be concluded that Pt may have significantly affected the biocompatibility 

and cell proliferation in the HA/GO/Pt composite. 
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Figure 4.13. Biocompatibility of the (a) uncoated and (b) HA, (c) HA/GO, and (d) 

HA/GO/Pt coated substrate using the human cell line MDA-MB-231 tagged with a green 

fluorescent protein as an indicator of living cells. 

 

 

4.8 Electrochemical Tests and Surface Characterization 

4.8.1 Electrochemical tests for HA, HA/ rGO, and HA/rGO/Pd 

Potentiodynamic polarization tests in synthetic serum were used to analyze the corrosion 
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behaviors of the uncoated SST 304, and HA, HA/ rGO, and HA/rGO/Pd coated samples, 

as shown in Figure 4.14. The corrosion current density (Icorr), corrosion potential (Ecorr), 

polarization resistance (Rp; calculated from the Stern-Geary equation), and the 

anodic/cathodic Tafel slopes (βc and βa) are summarized in Table 4.1. The corrosion 

potential of the uncoated SST 304 was calculated to be 0.129 VSCE, with a very high current 

density (3.83 x 10-6 Acm-2).  The coated specimens had a smaller Icorr value and a higher Rp 

than the uncoated SST 304, as indicated by the polarization plot, suggesting that the SST 

304 substrates were successfully protected from corrosion in synthetic serum. The addition 

of GO sheets into the suspensions may have lowered the Icorr by increasing the deposition 

rate which thickened the composite coatings [206]. Its low reactivity and molecular 

impermeability allow graphene to act as a natural diffusion barrier, giving it great potential 

for use as a highly corrosion-resistant coating on metal substrates. The corrosion behavior 

of the obtained samples was also affected by the morphology and microstructure of the 

coatings. The SEM and TEM images in Figure 4.3 indicate that GO sheets had a parallel 

orientation with respect to the surface. The synthetic serum could have been inhibited from 

penetrating the composite coatings, which would further improve the coating’s corrosion 

resistance. The corrosion of the substrate was further inhibited by the addition of Pd into 

HA/rGO, which improved the corrosion resistance when it was located at grain boundaries 

[208-210]. 
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Figure 4.14. The corrosion behaviors of the uncoated SST 304, HA, HA/rGO, and 

HA/rGO/Pd coated samples. 

 

 

Table 4.1: Electrochemical parameters during corrosion test. 

 

 

 

The polarization curves of thermal-treated HA/rGO/Pd nanocomposite coatings at 200, 

300, 400, and 600 °C are shown in Figure 4.15, and Table 4.1 shows the Ecorr, Icorr, βc, βa, 
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and Rp values. The value of the corrosion potential and current density of the untreated 

HA/rGO/Pd was determined to be near 0.045 VSCE, and 1.05E-07 Acm-2, respectively. In 

contrast, the HA/rGO/Pd-coated sample annealed at 200 oC had a more positive corrosion 

potential (around 0.33 VSCE) than the untreated coating. Moreover, the samples annealed at 

200 °C and 300 °C had lower anodic current densities compared with the untreated 

HA/rGO/Pd coating of 2.48E-08 and 9.18E-08 Acm-2, respectively. These values suggest 

that the protection provided by the HA/rGO/Pd coating was improved by thermally treating 

the coating at reduced temperatures, and the hyperbolic plot shifted to a lower current 

density. The increased annealing temperature introduced coating defects which allowed 

penetration of the electrolyte since this can severely degrade the coating’s electrochemical 

performance. 

 

 

Table 4.2: Electrochemical parameters for annealed HA/rGO/Pd specimens at different 

temperatures. 
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Figure 4.15. The corrosion behaviors of the annealed HA/rGO/Pd coated SST 304. 

 

 

The HA/rGO/Pd coatings were found to significantly enhance the P.E. in all samples 

compared with the bare substrate, even in the untreated HA/rGO/Pd coating, which had 

P.E. of 97.26%. The coating annealed at 200 °C showed the highest protection efficiency 

at 99.35% (Table 4.3). 
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Table 4.3 Evaluation of corrosion protection efficiencies (P.E.) of different HA/rGO/Pd 

coatings compared to uncoated SST 304 

 
 

 

 

4.8.2 HA/rGO/Pd Surface Characterization 

The SEM images of the surface of annealed coatings before and after corrosion tests in 

Figure 4.16 show that both the annealed coatings have good corrosion resistance because 

no significant changes to its surfaces were observed after being immersed in synthetic 

serum. Thus, annealing the HA/rGO/Pd coating notably affects its electrochemical 

behavior. 
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Figure 4.16. SEM micrographs of the surface of the heat-treated HA/rGO/Pd coatings 

before and after corrosion testing; (a,b) 200, (c,d) 300, (e,f) 400, and (g,h) 600 °C. 
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The high-intensity HA peaks in the XRD spectrum of annealed HA/rGO/Pd coatings in 

Figure 4.17 show that the crystal planes (002) and (211) (2θ = 25.8° and 32.0°) closely 

match the HA pattern (PDF# 09e0432). The (002) and (211) crystal plane diffraction angles 

shifted in samples subjected to a 2-day immersion in synthetic serum, suggesting that 

carbonated HA had formed, which should increase the biocompatibility since this is found 

in bone. Previous literature [211] has shown that growing HA on a coating surface after it 

is immersed in a biomimetic system (such as synthetic serum) is influenced by the 

availability of certain functional groups. For example, when the hydroxyl and phosphate 

ions in HA are exposed to the synthetic serum, the surface of the HA becomes negatively 

charged. Afterward, Ca2+ ions are attracted and consumed, which precipitated calcium 

phosphate. HA simultaneously dissolves, which increases the solution’s phosphate and 

calcium ion concentrations, causing HA to precipitate, which is a reversible process [209]. 

The deposition of HA is further promoted by graphene, which attracts calcium ions with 

its negative surface charge because of the abundant p electrons located in its sp2 hybrid 

orbitals [212]. These results show that coating the substrate with HA/rGO/Pd encouraged 

the nucleation and growth of HA, suggesting that such a coating can be used to promote 

the adhesion between bone and implants. 
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Figure 4.17. Heat-treated HA/RGO/Pd coatings phase analysis before (a) and after (b) 

corrosion tests. 
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4.9 Electrochemical Measurements and Surface Characterization for HA, HA/GO, 

and HA/GO/Pt 

4.9.1 Electrochemical measurements in CaCl2 solution  

EIS and PDS measurements were performed in a CaCl2 solution to evaluate the corrosion 

resistance of the materials in a simulated physiological medium. 

Nyquist plots of pure zirconium, zirconium coated with HA, HA/GO, and HA/GO/Pt after 

different immersion times in CaCl2 solution are shown in Figure 4.18a–e, respectively. The 

coating is generally responsible for the high-frequency range of the Nyquist plots, while 

the electrochemical processes on the metal surface beneath the coating are described by the 

low-frequency range. The EEC contains information about the coating pore resistance Rc, 

the electrolyte resistance Rs, and constant phase elements CPEox and CPEc, which are all 

frequency-dependent electrochemical phenomena. In addition, information is provided 

about the capacitance of the passive oxide layer just beneath the coating on the Zr surface 

Cox, and the coating capacitance Cc [213].  

To characterize the corrosion properties of the uncoated, HA-, HA/GO-, and HA/GO/Pt-

coated substrates, potentiodynamic sweep measurements were performed in CaCl2, since 

the current density and corrosion rate are proportional to one another. Potentiodynamic 

polarization curves of the uncoated, HA-, HA/GO-, and HA/GO/Pt-coated substrates after 

7 days in CaCl2 solution are plotted in Figure 4.18. The corrosion current density Icorr and 

corrosion potential Ecorr were evaluated according to Tafel extrapolation and are listed in 

Table 4.4. The Ecorr of pure zirconium (-21.699 mV) and HA coating (164.574 mV) are 

less-positive than the Ecorr of HA/GO (267.02 mV) and HA/GO/Pt (499.325 mV). 
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However, the values for Icorr of bare pure zirconium, HA, HA/GO, and HA/GO/Pt are 

279.602, 72.1, 50.044, and 27.227 nA, respectively. The Icorr of HA/GO and HA/GO/Pt 

were lower than the Icorr of HA and uncoated substrate, implying that graphene and Pt 

improved the corrosion resistance of the Zr substrate in CaCl2 solution due to the 

bioactivity of the apatite layer that formed on the HA/GO- and HA/GO/Pt-coated surfaces. 

The polarization measurement results agree with those obtained from impedance 

spectroscopy, indicating that the HA/GO and HA/GO/Pt coatings have better corrosion 

resistance. It also confirmed that the lowest corrosion rate was obtained due to the thick 

biomimetic apatite layer on the composites’ surfaces, showing that the use of graphene-

based HA/GO and HA/GO/Pt composite coatings may improve the corrosion resistance, 

decreasing the metal ion release. 
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Figure 4.18. EIS spectra of (a) pure zirconium, (b) HA, (c) HA/GO, and (d) HA/GO/Pt 

coatings on Zr substrate during a prolonged time (7 days). (e) Potentiodynamic 

polarization curves of uncoated and coated zirconium after 7 days in CaCl2 solution. 
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Table 4.4: Current density, Icorr, and corrosion potential, Ecorr, obtained from PDS 

measurements for an uncoated substrate and HA, HA/rGO, HA/rGO/Pt coatings on 

zirconium after 7 days.  

 

Time/day Uncoated 

substrate 

HA 

coating 

HA/rGO 

coating 

HA/rGO/Pt 

coating 

Icorr/nA     

7 279.602 72.1 50.044 27.227 

Ecorr/mV     

7 -21.699 164.574 267.02 499.325 

 

 

4.9.2 Corrosion behavior and surface morphology of the thermal-treated HA/GO/Pt 

coated zirconium 

Figure 4.19 shows the polarization curves of HA/GO/Pt nanocomposites heat-treated at 

200, 300, 400, and 600 ℃. Table 4.5 summarizes their respective Ecorr and Icorr. The 

corrosion potential, Ecorr, of HA/GO/Pt-coated samples annealed at 200, 300, 400, and 

600 °C were 1.731, 232.858, 379.096, and 309.423 mV, respectively. The results showed 

that the HA/GO/Pt-coated substrates annealed at different temperatures have lower Ecorr 

compared to the untreated HA/GO/Pt coating, indicating that the heat treatment 

significantly affects the corrosion potential of composite coatings. The current densities of 

the HA/GO/Pt coatings heat-treated at 200 and 300 ℃ were 16.269 nA and 17.035 nA, 

respectively, which were also lower than the current density of the untreated HA/GO/Pt 

coatings (27.227 nA). This indicated that the corrosion resistance of HA/GO/Pt coatings 

was enhanced by the annealing. The higher corrosion potential (Ecorr) and the lower 

corrosion current density (Icorr) indicate that the material has better corrosion resistance. 
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The sample heat-treated at 400 ℃ (Ecorr 379.096 mV and Icorr 1.521 nA) achieved the best 

corrosion resistance. As the annealing temperature was increased from 200 to 400 °C, Icorr 

decreased, indicating a superior corrosion resistance, which was caused by the diffusion of 

coatings into the substrate and integration of the composite materials during heat treatment. 

Further increasing the temperature to 600 °C increased Icorr to 14.15, indicating a decrease 

in the corrosion resistance due to cracks in the coatings or coating detachment because of 

the different modulus of elasticity between the coating and the substrate. This can be 

explained in the way that as the temperature increases the metal substrate expands more 

than the ceramic layer due to their different expansion coefficient and as the coating cannot 

expand as much as the substrate then nano/micro cracks will be created. 

 

 

 

Figure 4.19. The corrosion behaviors of the thermal-treated HA/GO/Pt coated zirconium. 
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Table 4.5: Corrosion current density, Icorr, and corrosion potential, Ecorr, obtained from 

PDS measurements for corrosion behaviors of the thermal-treated HA/rGO/Pt coated 

zirconium. 

Time/day HT200 HT300 HT400 HT600 

Icorr/nA 

2 16.269 17.035 1.521   14.15 

Ecorr/mV 

2 1.731 232.858 379.096   309.423 

Figures 4.20a and b present the SEM micrographs of the surface of the non-annealed bare 

and HA/GO/Pt-coated zirconium substrates immersed in CaCl2 solution for 7 days. The 

coated samples contained fewer corrosion spots than the bare samples, indicating that the 

coating effectively improved the corrosion resistance. The SEM morphologies of the 

HA/GO/Pt coating annealed at 200 and 600 °C before and after corrosion tests are shown 

in Figure 4.21a-d. As shown in Figure 4.21c, when the annealing temperature was 

increased to 600 °C, cracks formed over the entire coating due to the elastic moduli 

mismatch between the coatings and the substrate. This decreased the corrosion resistance 

as the corrosion solution penetrated the substrate through the cracks. Thus, it can be 

concluded that a high annealing temperature such as 400 °C may be a better option to 

improve the corrosion resistance of the HA/GO/Pt composite. 
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Figure 4.20. SEM micrographs of (a) bare and (b) HA/GO/Pt-coated samples before and 

after corrosion tests.  

 

 

 

Figure 4.21. SEM micrographs of HA/GO/Pt coatings before and after corrosion tests (a, 

b) annealed at 200 °C and (c, d) annealed at 600 °C. 
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Figure 4.22 shows the XRD spectrum of annealed HA/GO/Pt coatings, both before and 

after corrosion tests.  High-intensity HA peaks at crystal planes (002) and (211), 2θ = 25.8° 

and 32.0°, match the HA pattern of PDF# 09-0432. After being immersed in synthetic 

serum for 7 days, a shift was observed in the diffraction angles of (002) and (211) crystal 

planes, which suggested that carbonated HA had formed, which is a promising result since 

this substance is present in bone. The growth of hydroxyapatite on top of the deposited 

layer surface after being soaked in a biomimetic system (synthetic serum) depends on how 

accessible the surface’s functional groups are [214]. Exposure of the HA’s hydroxyl and 

phosphate ions to the synthetic serum made the HA surface to become negatively-charged 

and attract and consume Ca2+ ions, which ultimately resulted in the precipitation of calcium 

phosphates. When hydroxyapatite dissolves, the concentration of calcium and phosphate 

ions is increased in solution, which causes HA to precipitate. This process of the dissolution 

and precipitation of calcium phosphates in serum is reversible [215]. The deposition of HA 

is further promoted by graphene, which attracts calcium ions with its negative surface 

charge because of the abundant p electrons located in its sp2 hybrid orbitals [209].  
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Figure 4.22. Phase analysis via XRD of the heat-treated HA/GO/Pt coatings before (a) 

and after (b) corrosion tests. 

 

 

4.10 Wear Test 

4.10.1 Wear test for HA/rGO/Pd 

Figure 4.23 shows the friction coefficient of annealed HA/rGO/Pd-coated substrates as a 

(a) 

(b) 
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function of their annealing temperature, which significantly affected the coefficient of 

friction in these materials. For coatings annealed at 200, 300, 400, and 600 °C, the 

coefficients of friction were 0.702, 0.82, 0.846, and 0.581, respectively. The average 

coefficient of friction of the coating annealed at 600 °C was much lower than all other 

samples. When the annealing temperature was increased from 200 to 400 oC, as shown in 

Figure 4.23, the COF increased but began to decrease when the annealing temperature was 

further increased to 600 °C. These results are because the composites have a higher surface 

hardness, which increased the resistance to mass removal, increasing in the lateral 

(transverse) force. As the lateral force increased at a constant normal force, the COF of the 

composites increased as well [216]. 

Figure 4.24 shows the top-down optical micrographs after wear tests were conducted on 

the Ha/rGO/Pd-coated substrate annealed at different temperatures. Large aggregated 

particles generated from the coating particles or chipping flakes accounted for most of the 

debris. Figure 4.24 a-d shows that increasing the annealing temperature from 200 to 600 

°C increased the composite’s wear resistance because the thin film adhered more strongly 

to the substrate. Ar in the tube furnace during sintering (heat treatment) allowed the coating 

to diffuse to the substrate, improving the coating’s adhesion. According to the literature, 

under physiological conditions, the HA could form a lubricating film with sufficient wear 

resistance on the surface because the phosphate anions in the coating were hydrated. This 

formed a large hydration layer, which essentially became molecular ball-bearings capable 

of lubricating contact and increasing the coating’s antifriction properties [217]. The 

uniform dispersion and high surface area of GO have been suggested to impart uniform 

sites that contribute to the energy release and high fracture toughness of the coating, which 
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increases its wear resistance [218]. Kvetkova et al. also reported that the crack deflection 

was increased by using graphene, which reduced the rate of crack propagation, crack 

bridging, and dissipated crack energy [219]. These results suggest that a continuous GO 

layer significantly increases the wear resistance of HA/rGO/Pd coatings. 

 

 

 

Figure 4.23. The friction coefficient of HA/rGO/Pd coatings vs. annealing temperature. 
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Figure 4.24. Optical micrographs of HA/rGO/Pd coatings thermal treated at 200 (a), 300 

(b), 400 (c) and 600 (d) after wear test. 

 

 

4.10.2 Wear test for HA/GO/Pt 

Figure 4.25 showed the friction coefficient and wear loss of the bare substrate, HA/GO/Pt 
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(before annealing), and annealed HA/GO/Pt coated substrates with respect to annealing 

temperature. The coefficient of friction is significantly affected by the thermal treatment 

of HA/GO/Pt coatings. The average COFs of the bare substrate, HA/GO/Pt (before 

annealing), and annealed HA/GO/Pt coated substrates at 200, 300, 400, and 600 °C were 

0.84, 0.75, 0.66, 0.54, 0.57, and 0.59, respectively. By far, the coating annealed at 300 ºC 

showed a much lower average friction coefficient than the other samples. 

The wear rates of the pure substrate, HA/GO/Pt (before annealing), and heat-treated 

HA/GO/Pt coated substrate at 200, 300, 400, and 600 °C were 3.45, 3.12, 2.23, 2.02, 2.68, 

and 2.73 mm3/m, respectively (Figure 4.25). The zirconium substrate had a higher wear 

rate than the composite coatings, indicating that the composite coatings significantly 

improved the wear resistance of the Zr substrate. HA/GO/Pt annealed at 300 °C showed a 

better wear resistance compared with the other samples.  

Figure 4.25 (embedded pictures) shows top-down optical micrographs of the Ha/GO/Pt-

coated substrate annealed at different temperatures after wear tests. The majority of the 

debris generated from the coatings were large aggregated particles or chipped flakes. When 

the annealing temperature was increased from 200 to 300 °C, the composite’s wear 

resistance increased due to an improvement in the adhesion between the substrate and the 

thin coating. During annealing, the thin film was able to diffuse into the substrate which 

enhanced the adhesion of the composite coating [220]. The presence of HA in the deposited 

layer forms a lubricating film with adequate wear resistance on the surface under 

physiological conditions, due to the hydration of the phosphate anions in the coating, which 

turn into a large hydration layer. This forms molecular ball-bearings which act as a 

lubricating layer that enhances the antifriction property of the deposited layer. Other studies 
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have suggested that GO’s uniform dispersion and high surface area ensures that the coating 

has uniform energy release sites and high fracture toughness, both of which improve its 

wear resistance. Another study reported that using graphene improved crack deflection, 

which slowed crack propagation, cracks bridging, and dissipated crack energy. Thus, the 

formation of a continuous GO layer significantly contributed to the high wear resistance of 

HA/GO/Pt coatings. 

 

 

 
 

Figure 4.25. The friction coefficients and wear loss of substrate, HA/GO/Pt coating 

(before annealing), and HA/GO/Pt coatings after heat treatment at different temperatures 

along with their wear scars microstructure appearance. 
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Chapter 5 : Conclusion and future work 

 
The tribo-mechanical properties, electrochemical behavior, and biocompatibility of 

SST/HA/rGO/Pd and Zr/HA/rGO/Pt were investigated in this study. To evaluate the effect 

of annealing on properties of the composite coatings, the HA/GO/Pt and HA/GO/Pt coated 

zirconium and SST were heated at different annealing temperatures. 

These surface coatings were shown to improve cell attachment and proliferation in 

biocompatibility experiments, which the HA/rGO/Pd-coated SST 304 showing the highest 

proliferation, cell attachment, and spreading as indicated by the fluorescence and 

morphology of the GFP-labelled adenocarcinoma cells. The surface of the uncoated SST 

304 surface showed only a small number of cells with the poor spread. The 

biocompatibility result showed that only a small number of cells with poor distribution was 

observed on the uncoated zirconium surface and HA/rGO coated Zr substrate showed to 

have better biocompatibility compared to HA/rGO/Pt. This indicates that Pt may not be a 

suitable element in the composite for biocompatibility enhancement, although its presence 

improved the corrosion behavior of the substrate. 

The corrosion resistance of the Zr and SST substrates coated with an HA/rGO/Pd and 

HA/rGO/Pt nanocomposite thin films were higher compared with other samples after being 

immersed in synthetic serum. These results indicated that the HA/rGO/Pd-coated SST 304 

surface notably enhanced the corrosion resistance of the substrate. Moreover, specimens 

annealed at 200 oC and 300 oC had lower anodic current densities compared with the 

untreated HA/rGO/Pd coating. A P.E. increase of 99.35% was observed in the coating 

annealed at 200 oC compared with that of the bare substrate, which suggests that the 
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HA/rGO/Pd coating could lower the risk of corrosion-induced implant failure. Moreover, 

the best corrosion result was achieved at 400 °C with Icorr and Ecorr values of 1.521 Na 

and 379.096 mV, clearly suggesting that using HA/GO/Pt and heat treatment reduces the 

risk of corrosion-induced failure. 

At a normal loading of 4 N, the wear resistance of the HA/rGO/Pd coating annealed at 

600 °C had superior performance.  The coefficient of friction and wear rate of the 

HA/GO/Pt-coated substrate annealed at 300 °C were 0.54 and 2.02 mm3/m, respectively, 

which were greater than the other samples heated at 200, 400, and 600 °C.  

Future work 

In this thesis, different composite coatings were deposited on Zr and SST substrates. The 

surface characterization depicted the existence of the coating in the mechanical and 

electrochemical properties. Further research on the mechanical (nanoindentation and 

fracture toughness) and surface properties (surface tension and wettability) and the long-

term stability of the coatings (adhesion) should be performed in order to evaluate the 

appropriate performance of the thin film composite coatings in clinical applications. The 

in vitro characterization performed in this study presented the good performance of the thin 

film coatings. Although the cell culture test performed in this thesis is considered a good 

approach to mimic the clinical conditions, an in vivo study would be determining to achieve 

an insight into the performance of the coating in a complex biological environment. Further 

in vitro studies would also be helpful, such as dynamic bacterial adhesion assays or 

dynamic protein adsorption assays and cytotoxicity.  
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