
BP-XACML
an authorisation policy language for business

processes

Khalid Alissa1,2 <Khalid.alissa>, Jason Reid1<jf.reid>, Ed
Dawson1<e.dawson>, and Farzad Salim1<f.salim>

1 Institute of Future Environment, Queensland University of Technology, Brisbane,
QLD, Australia <@qut.edu.au>

2 King Abdulaziz City for Science & Technology (KACST), Riyadh, Saudi Arabia

Abstract. XACML has become the defacto standard for enterprise-
wide, policy-based access control. It is a structured, extensible language
that can express and enforce complex access control policies. There have
been several efforts to extend XACML to support specific authorisation
models, such as the OASIS RBAC profile to support Role Based Access
Control. A number of proposals for authorisation models that support
business processes and workflow systems have also appeared in the lit-
erature. However, there is no published work describing an extension to
allow XACML to be used as a policy language with these models. This
paper analyses the specific requirements of a policy language to express
and enforce business process authorisation policies. It then introduces
BP-XACML, a new profile that extends the RBAC profile for XACML
so it can support business process authorisation policies. In particular,
BP-XACML supports the notion of tasks, and constraints at the level of
a task instance, which are important requirements in enforcing business
process authorisation policies.

Keywords: XACML, BPM, Workflow, Authorisation management, Authorisa-
tion policy language.

1 Introduction

The domain of ‘Business Process Management (BPM)’ is an important and ma-
turing domain. A survey by Gartner [6] showed that BPM is the number one
concern of many senior executives. This increasing interest in BPM has prompted
research in a variety of directions, including the domain of access control. Several
access control models designed specifically for the business process environment
have been presented in the literature including [3], [11], and [16]. Most of these
proposals focus on the authorisation model itself, and do not specify an autho-
risation policy language, which is an important aspect of authorisation man-
agement. One of the most accepted and widely discussed authorisation policy
languages is the eXtensible Access Control Markup Language (XACML) [8].

XACML is an XML defined standard language for access control policies.
XACML uses rules, which are defined in policies, in conjunction with a standard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33500104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

component called a Policy Decision Point (PDP). The PDP evaluates access
requests against the policies to decide whether to allow or deny the request [9].

The XACML RBAC Profile [2] was proposed to extend the initial version
of XACML. It supports the notion of roles to be able to support role-based
access control policies [2]. The RBAC profile supports both core and hierarchical
RBAC, but it explicitly states that it does not support separation of duty (SoD)
constraints [2], although an earlier draft of the profile [1] did mention SoD, but it
was removed in the final release. To the best of the author’s knowledge, currently
there is no published work that aims to extend the XACML language to support
authorisation policies for business processes.

This paper proposes BP-XACML, an extension to XACML to express au-
thorisation policies for business processes. The proposed extension builds on the
RBAC profile to support the notion of tasks and task instances, to support
instance level restrictions, and separation of duty (SoD) constraints. The pa-
per identifies the features that the language should support, defines the needed
extension, and describes the new XACML profile, BP-XACML. The paper in-
troduces a new function called ‘performers list’ along with new authorities to
support the history-based instance-level restrictions. It also proposes a new pol-
icy set to support tasks, and a new attribute to recognise the task instances.
It introduces new conditions and functions to support SoD. Figure 1 shows the
complete framework of BP-XACML showing all ‘policy-sets’ and authorities.
Elements shaded in white are from the XACML standard. Those with dotted
background are added in the RBAC-XACML profile, while the ones with dark
background are introduced in this paper (BP-XACML).

TA

PDP

PAP

PL

TPL Environment, Resource,
Subject

Context handler

REA

PIP

Session

PEP

Workflow
system

Role
PolicySet

Permission
PolicySet

SoD
PolicySet

RoleAssignment
PolicySet

IR
PolicySet

RoleTask
PolicySet

Task PolicySet

Fig. 1: BP-XACML Authorities and policy sets

The rest of the paper is organized as follows. Section 2 provides an example
scenario to illustrate the need for a new policy language. Section 3 discusses the
characteristics of the language. The structure of the policy language is explained
in section 4. Section 5 discusses the policy model. The language semantics are
explained in section 6. Section 7 provides a review of related works. Finally,
section 8 concludes the paper.

2 Example Scenario

In order to illustrate the various policy language requirements for an access
control system for business processes, this section will consider the access control
policies for a hypothetical business process that runs across a number of systems.
The example scenario is of a process of fixing a pump malfunction in an air-
conditioning system in a high-security facility such as an airport.

Fig. 2: Business process model for fixing pump malfunction

As can be seen in Figure 2, no one can perform a ‘soft reset’ on the pump
unless a malfunction notification was received, and it has to be done by someone
with the role ‘coordinator’. If both ‘soft reset’ and ‘hard reset’ fail to solve the
problem, a work order is issued. Only users with the role ‘coordinator’ can issue
the work order. The approval of that work order should be done by a different
user with the role ‘Manager’. A user with the role ‘contractor’ needs to show the
work order to gain access to the pump room. Once the issue has been resolved the
user who fixed the problem will notify the user who issued the work order. This
notification will result in revoking the access rights granted to the coordinator.
The user who created the work order is the only one allowed to close it, and will
only be able to do so after receiving the notification and the invoice.

The policy language must support the definition of policies that reflect these
access control restrictions and conditions. Some of these access control policies
cannot be expressed directly in XACML.

3 Business process authorisation policy requirements

With its focus on tasks and their controlled, sequenced execution, an authori-
sation model for business processes introduces a range of capabilities not found
in the standard RBAC model [15]. Similarly, an authorisation policy language
for business processes requires more than what RBAC-XACML currently pro-
vides. This section will identify the important concepts and constraints that

such a policy language should be able to express by describing the significant
functionalities that business process authorisation models support.

Role-Based access control (RBAC) [5] is a widely used authorisation con-
cept. It assigns access privileges to ‘roles’ instead of directly assigning them to
users, which reduces management overhead [13]. Users indirectly acquire per-
missions through their membership of roles. RBAC is an important concept to
be supported in business process authorisation [7]. Support for RBAC among
the published business process authorisation models including [16] and [11] is
widespread. For a policy language to be able to support the RBAC concept
it should support the notion of user, role, and permission. Moreover, the pol-
icy language should have the ability to represent Separation of Duties (SoD)
constraints to assist in preventing fraud [5].

Tasks are a fundamental concept in business process management. They are
the building blocks of business processes, so business process authorisation mod-
els such as [11] and [16] typically focus on extending RBAC with the notion of
tasks. Reflecting this, authorisation policy language for business processes should
support the notion of ‘tasks’ as a group of permissions. The example in Section 2
shows that requests are to perform a ‘task’, rather than to acquire a permission.
So, it is important to be able to deal with tasks as well as permissions.

An important functionality that is supported by the more expressive business
process authorisation models such as [16] is history-based restrictions between
tasks on the instance-level, which we will refer to as ‘Instance-level Restrictions
(IR)’. These are restrictions that apply only within a unique execution instance
of a process [16]. For example, consider the policy from section 2, which states
that the person who closes a ‘work order’ must be the same user who issued it. So,
a user will only be allowed to close the work order if he previously performed the
issue function within the same process instance. This is an example of Binding of
Duty (BoD) at the instance level. Separation of duty (SoD) on an instance-level
requires that two tasks within an execution instance of a process, be performed
by different users.

A first step to support instance-level restrictions is to be able to distinguish
between instances. Some authorisation models such as [16] and [17] support the
notion of ‘task instance’, which allows different execution instances to be distin-
guished. So, a policy language should be able to represent a ‘task instance’. The
language should also have the ability to represent the ‘instance-level restrictions’
themselves by specifying a separation or binding of duty relation between two
tasks. Moreover, in order to enforce this condition (an instance-level restriction)
the language should have the ability to retrieve history based information on an
instance level [17], such as, who issued a specific ‘work order’.

The key concepts that an authorisation policy language for business processes
should be able to represent are: Users, Roles, Operations, Tasks, Task instance,
Instance-level restrictions, and SoD. The RBAC profile of XACML supports
representation of the first three characteristics. The proposed policy language
extends RBAC-XACML to provide support for representation of tasks, task
instances, SoD, and instance-level restrictions.

4 BP-XACML: Policy Structure

BP-XACML is based on XACML which implements rule-based access control
[12]. An authorisation policy may contain multiple authorisation rules (AR),
which are the basic building blocks for stating authorisation restrictions. Each
AR consists of four elements: Subject, Object, Action, and Condition, the eval-
uation of which results in a Allow or Deny decision. AR = {S,O,A,C} →
{Allow,Deny}.

Action (A) is implementation specific. Condition (C) is a boolean expression
that is evaluated based on the value of variables determined at run time as either
true or false. Conditions can be used to represent complex constraints. The rule
has its specified effect (allow or deny) if the condition evaluates as true. Rules
are grouped together in ‘policies’, which may contain a target that limits the
applicability of rules to requests which match the target’s subject, object and
action [9]. Policies also specify a rule-combining algorithm, which resolves poten-
tial conflicts when more than one rule is applicable [9]. Policies can be grouped
together in a ‘policySet’ that also contains a target, and a policy-combining
algorithm. It may also contain other policy sets included by reference[9].

4.1 Request and Decision

An XACML request message is sent to the PDP when a user tries to access
a controlled resource. The PDP identifies matching policies and evaluates the
request against them to arrive at an authorisation decision. The Request (RQ) is
in the form of {S,O,A}. In BP-XACML there are three types of resource whose
related policies are defined in three different policy sets (see Section 4.2). In the
context of the request, the interpretation of S, O and A is different for each
type. Because of this, each type of request is processed by a different authority.
Firstly, in the case of a user requesting to perform a workflow task, the subject
(S), will be the identifier for the specific user making the request. The object
(O), is the task that the user wants to perform. Since a task explicitly defines its
associated permissions (object, action pair), they are not separately identified in
the request. The Action (A), is simply the request to ‘perform’. In the second
case a user requests access to a resource object that is not a workflow ‘task’, for
example, to access the ‘pump room’. In this case, O will be the ‘pump room’,
and A will be ‘access’. The third type of request is to activate a role, for example,
‘Adam’ wants to activate the role ‘coordinator’. In such requests, S is ‘Adam’,
O is the role ‘coordinator’, and A is ‘activate’. The decision (DS) will be either
{Allow}, {Deny}, or {Not applicable} if no matching policies are found.

4.2 Policy Sets

In XACML ‘Policy sets’ are used to group related policies, which contain, groups
of related access control rules. The RBAC profile of XACML predefines some
policy sets and makes use of them to determine the access control decision.
For example, a RoleAssignment<PolicySet> will include all policies and rules
related to role assignment. In this extended profile we will make use of these
policy sets and introduce new policy sets.

BP-XACML includes seven types of access control policy sets. The PDP will
use two policy sets, the Role<PolicySet>, and the Permission<PolicySet>

to make decisions on the requests directed to the PDP. The task<PolicySet>,
and RoleTask<PolicySet> are used to state the tasks that a role is allowed
to perform. IR<PolicySet> is used to state instance-level restrictions. The SoD

<PolicySet>, and RoleAssignment<PolicySet>, are used for stating and acti-
vating roles of each user. The Role<PolicySet>, Permission<PolicySet>, and
RoleAssignment<PolicySet> are adopted from the XACML RBAC profile [9].
The rest of the PolicySets are newly introduced in this paper, and will be dis-
cussed in this section. The mechanism and application of these policy sets will
be discussed in more detail in section 6. Figure 3 shows the relation between
IRPS, RTPS, and TPS, and gives a summary of the structure of each policy set.

IR<PolicySet>

RoleTask<PolicySet>
 • RTPS
• One only per system.
• Combining algorithm: Permit override.
• Target: not restricted.

• Contains: One policySet for each Role.

- Target: restricted by subject role match.
- Combining algorithm: Permit override.
- Points to the corresponding TPS.

• Another policySet for another Role.

- Target: restricted by subject role match.
- Combining algorithm: Permit override.
- Points to the corresponding TPS.

• IRPS
• One only per system.
• Combining algorithm: Deny

override.
• Target: not restricted.

• Contains: One policy for each task

that has an IR.
- Target: restricted by resource match on
task name.
- Combining algorithm: Deny override.
- Has a Rule that will returns ‘deny’ if IR
violated.

• At the end it has a pointer that

points to the RTPS.

• TPS
• One per role.
• Combining algorithm: Permit override.
• Target: not restricted.
• Contains: One policy for all allowed tasks for

this role.
o Target: not restricted
o Combining algorithm: Deny override.
o Contains: Rule for each task the role can

perform.
 Effect: permit
 Target: restricted by resource match to

task name.
• Deny if no rule permits.
• TPS can point to a TPS of a junior role.

Task<PolicySet>

Task
.
.

Task

Task<PolicySet>

Fig. 3: New Policy Sets

Task<PolicySet> (TPS) is a <PolicySet> that contains the actual tasks au-
thorised for a given role. The <Target> element of a TPS, should not limit the ap-
plicability of the <PolicySet> as the IR<PolicySet> and the RoleTask<Policy
Set> restrict access (see Figure 3). To achieve role hierarchy, a TPS associated
with a senior role may also contain references to TPSs associated with junior
roles, thereby allowing the senior role to inherit all access to tasks associated
with the junior roles. In a TPS, (S) refers to user’s role, and (O) refers to task.

RoleTask<PolicySet> (RTPS) is a <PolicySet> that contains the Roles,
and for each role it points to the corresponding Task<PolicySet> (i.e. the TPS
is included in the RTPS by reference). The <Target> element of a RTPS, should
not restrict the applicability of the <PolicySet>, but the <PolicySet>s for each
role (that are included within the RTPS) has a target restricting applicability
for the specified role only. The RTPS is used to achieve role hierarchy. In the
RTPS Subject (S) refers to the user’s role, and Object (O) refers to the task.

IR<PolicySet> (IRPS) is a <PolicySet> that describes instance-level re-
strictions. The RTPS and TPS can only be reached through the IRPS where
they are included by reference. The Task Authority will first access this policy
set to check if there is no violation of an IR constraint, then it will be pointed

via the RoleTask<PolicySet> to the related Task<PolicySet>. Section 6.3 ex-
plains this in more detail. In the IRPS, the subject (S) is not restricted because
IR constraints deal with task instances regardless of the subject. The object (O)
is the task, and the action (A) is ‘perform’. For example, no user is allowed to
perform both ‘issue work order’ and ‘approve work order’. In this case the IRPS
will have both tasks in one policy making sure that the user does not perform
both for the same instance.

SoD<PolicySet> (SoDPS) is a <PolicySet> that describes separation of du-
ties constraints. It restricts access to the RoleAssignment<PolicySet>. The
Role Enablement Authority will first access this policy set to check if there is
no violation of SoD constraint, then it will be pointed to the RoleAssignment

<PolicySet>. In a SoDPS, the subject (S) is not restricted because SoD con-
straints deal with roles regardless of the subject. The object (O) is a role. Each
policy in the SoD<PolicySet> includes a pair of conflicting roles.

4.3 Conditions

A condition is specified as a Boolean expression that is evaluated at runtime.
There are two main types of policy conditions of interest in specifying access
restrictions in this policy model. The first one is dynamic Separation of Duties
(SoD) conditions on role level. The other one is instance-level restrictions (IR).

A dynamic SoD condition is an expression that can be evaluated for user-role
relation by testing the current active roles for this user. It is used to prevent a
user from activating two conflicting roles by the same user at the same time.
They are defined as policies in the SoD<PolicySet>. SoD : (Role1, Role2). The
Role enablement authority (REA) will be able to know the SoD restriction before
enabling a role. It will use the ‘session‘ component to check the current status of
role enablement for a user requesting role activation. Session maintains the list
of active roles for each user.

An ‘instance-level restriction’ (IR) condition is an expression that can be eval-
uated to check the relation between two objects within the same instance. They
are defined as policies within the IR<PolicySet>. IR : ({Task1, Task2}, type).
IR is a type of SoD (or BoD) restriction on a task level that only applies within
the same instance. It makes sure that the restriction is met within the same
instance. For example, the task of ‘closing work order’ should have a restriction
that it can be only done by the same user who performed ‘issue work order’ for
this same instance.

5 BP-XACML: Policy Model

BP-XACML is designed to be backward-compatible with the RBAC-XACML
policy structure. This has an important benefit: It means that role-based au-
thorisation policies can be defined and managed independently of the workflow
authorisation system. These policies will still be applied when a user requires
access to a controlled resource to execute an instance of a business process. This
design approach introduces some complexity, most notably in the inclusion of
the Task Authority as a separate PDP to authorise task activation. But it is

necessary because the role-based authorisation policies that control access to an
organisation’s valuable resources, (e.g. customer records, financial records etc.)
are typically created and maintained independently of the business processes.
They will often exist before a workflow is created that uses the controlled re-
sources. These policies still need to be applied in the context of the workflow
but we argue that this should not be done by a parallel and duplicated workflow
authorisation system, since this would be inefficient and difficult to maintain.
Accordingly, we have designed the BP-XACML policy structure to work with an
existing RBAC-XACML policy set. This results in an integrated system which
can handle both workflow and non-workflow requests from a single (and therefore
consistent) set of policies.

After explaining the structure of the BP-XACML policy language, this sec-
tion will describe the BP-XACML policy model. It shows how access decisions
are made using the defined ‘policy sets’, describes the needed authorities and
repositories, and explains the policy model framework.

5.1 Authorities and Repositories

In this policy model we are introducing a new authority and two repositories
that are needed to fulfill the requirements. They are the Task authority (TA),
Performers list (PL), and Task-permissions list (TPL). We also include the ‘Role
Enablement Authority (REA)’, and ‘session’ concept from the XACML RBAC
profile, and we elaborate on how to use them, as the RBAC profile does not
provide these details.

It might appear unnecessarily complex to add these authorities, where some
of them are essentially a specialised PDP. One might argue that one PDP should
be enough. However, the RBAC-XACML profile [2], which is proposed by OA-
SIS, adopts this approach in introducing the REA. The RBAC profile shows
that role enablement should be out of the scope of the PDP, that is why REA
was introduced to be responsible for role assignment and enablement [2]. The
justification for having a specialised PDP for role enablement can be understood
by looking at the basic request concept of XACML, where each request contains
a subject and an object. The PDP is designed to deal with one interpretation
of each aspect of the request (subject, object, action). For example, in RBAC-
XACML if the PDP receives a request it will look at the subject as the user’s
role, and the object as the resource that the user wants to perform an action on.
Adam, who is a manager, wants to read file2. The PDP will use the permission
policy to determine if managers are allowed to read file2. A request to activate
a role has the subject as the user ID, and the object as the role that needs to be
activated. That is why it was necessary to have a specialised PDP called REA.
This REA is designed to look at the subject as the user’s ID, and the object is
the role that the user wants to activate. Therefore it will be able to deal with
activation requests.

BP-XACML deals with three different type of requests, where each type of
request has a different interpretation of subject and object. The change in subject
and object interpretation, makes it necessary to have a different authority to deal
with each different type of request. The request to perform a task has the user’s

role as the subject and the task ID as the object. Therefore, the authorisation
of task performance is out of the scope of the PDP. TA is introduced in this
model to be the specialised PDP responsible for making a task performance
decisions. It permits backward compatibility with the role and permission policy
sets defined in RBAC-XACML. TA deals with requests on the basis that the
subject is the user’s role and the object as the task ID. Therefore, it is able to
deal with requests to perform a task.

	

Ge
t	 r
el
at
ed
	

po
lic
ie
s	

SoD	 <PolicySet>	

Role	 activation	
request	

Decision	
(Allow/Deny)	

Session	

Role	 Enablement	
Authority	 (REA)	

Update	

Receive	 	 Send	 	

RoleAssignment	
<PolicySet>	

Fig. 4: Role Enablement Authority

Role Enablement Authority (REA) uses the SoD<PolicySet>, and Role

Assignment<PolicySet> to either allow or deny activation of a specific role for
a specific user.
Session provides a quarryable service, which maintains and continuously re-
freshes the state of user role enablement relations.

Figure 4 shows how REA uses the RoleAssignment<PolicySet> to know if
the user is allowed to enable a role or not. Before reaching the RoleAssignment

<PolicySet>, REA checks the SoD<PolicySet> to check if a SoD policy is avail-
able for this role. If such a policy exists, REA needs to know the status of the
user’s activated roles. This information can be retrieved from the user’s session.
The information allows REA to evaluate if the condition is met or not. Based
on that REA will send the final decision on the role enablement request.

	

Ge
t	 r
el
at
ed
	 	

po
lic
ie
s	

IR	
<PolicySet>	

Task	 performance	
request	

Decision	
(Allow/Deny)	

	

Task	 Authority	
(TA)	

Receive	 	 Send	 	

RoleTask	
<PolicySet>	 Task	

<PolicySet>	

Task	
<PolicySet>	

Task	
<PolicySet>	

Fig. 5: Task Authority

Task Authority (TA) uses the IR<PolicySet>, and Task<Policy Set> to
either allow or deny a user’s request to perform a specific task.

Performers list is introduced to provide a quarryable service to report the user
that performed a completed task instance. It maintains the state of user ‘task
instance’ performance relations, and continuously refreshes the state.

As can be seen in Figure 5, TA uses Task<PolicySet> to check if the role
is allowed to perform the task or not. Before checking the Task<PolicySet>,
TA first checks the IR<PolicySet> to determine if there are any instance-level
restrictions on such task. If a restriction is found TA needs to retrieve extra
information to assess the restriction. This information can be found through the
‘Performers list (PL)’. It is important to be able to check IR restrictions. In
order for an IR condition to be evaluated, it is necessary to know the performer
of a given task instance.

Task-permissions list (TPL) is a new proposal. It maintains the state of
task-permission relations. TPL is used by the context handler (CH) to determine
the permissions associated with each task. TPL provides a list of permissions for
each task, where a permission is an action on a resource.

5.2 Access Control

BP-XACML model controls three types of access control requests: activating
a role (controlled by the REA), performing a task (controlled by the TA), and
performing action on a resource (controlled by the PDP). The context handler is
responsible for forwarding the request to the corresponding authority depending
on its type.

A single SoD<PolicySet> is defined in the system, which contains all SoD
restrictions. The policy set itself is not limited (i.e. the target is empty and
therefore does not restrict the applicability of the included policies), but each
policy is limited to a specific role. It contains a single <PolicySetIdReference>

element, which refers to the RoleAssignment<PolicySet> (RAPS). There is a
single RAPS in a system, which contains the information on whether to allow
or deny the role activation for a specific user.

	 RoleAssignment	
<PolicySet>	

SoD	 <PolicySet>	
	

User	 ..	 Role	
.	
.	
.	

User	 ..	 Role	

REA	

SoD	 rules	

(a) REA can only access SoD PolicySet

	
RoleTask<PolicySet>	
	

IR<PolicySet>	
	

Role	 à	 TPS	
.	
.	
.	

Role	 à	 TPS	

TA	

IR	 rules	

Task	
.	
.	
.	

Task	
	

Task<PolicySet>	
	

Task	
.	
.	
.	

Task	

Task<PolicySet>	
	

(b) TA can only access IR PolicySet

Fig. 6: New PDPs access

As shown in Figure 6-a, the RAPS must be stored in a policy repository
in such a way that it can never be reached directly by the REA; RAPS must
be reachable only through the SoDPS. This is because, in order to support
separation of duties, it is important that the SoD policies are satisfied before
reaching the RAPS. For REA to achieve a decision on role activation request it
accesses the SoDPS and only check the RAPS if the SoD rules were satisfied.

A single IR<PolicySet> is defined in the system, which contains all IR re-
strictions. The policy set itself is not limited, as the policy set target is empty,
but each policy is limited to a specific task. The policy set contains a single
<PolicySetIdReference> element, which refers to the RoleTask<PolicySet>.
For the system there is a single RoleTask<Policy Set>, which contains a <Poli-

cySet> for each role, which points to the corresponding Task<PolicySet>. A
user will be authorised to perform a task if there is a permit rule for the task in
the TPS for a role that the user has active.

As shown in Figure 6-b, TPS instances, and the RTPS must be stored in a
policy repository in such a way that they can never be reached directly by the
TA. RTPS must be reachable only through the IRPS. This is because, in order
to support ‘role hierarchy’, the TPS depends on the RTPS to ensure that only
subjects holding the corresponding role attribute (or senior role) will gain access
to perform tasks in the given TPS. For TA to achieve a decision on a request to
‘perform a task’, it first must access the IRPS, and check if there are any related
IR policies. IRPS will then point to RTPS. Using the user’s role, RTPS points to
the corresponding TPS, which contains rules stating whether this role is allowed
to perform a task or not. These <PolicySet> relationships and constrains are
summarised in Figure 3.

5.3 Policy Framework

Figure 7 shows the complete BP-XACML framework without the ‘policy sets’. It
includes all the authorities, components, and repositories. As explained earlier,
the policy model should be unified and deal with all authorisation requests,
regardless of whether or not they arise in the context of a workflow. For this
reason, the BP-XACML policy model is designed to deal with several types of
requests. It could be either a request to activate a role for a user, a request to
perform a task, or a standard RBAC request to perform an action on a resource.
In this section we will discuss each type of request by it self, and show how it is
handled within the framework.

	

Context	 handler	

PDP	

PAP	 REA	

PIP	

Session	

PEP	

PL	 Workflow	
system	

TA	

Environment,	 Resource,	
Subject	

	

TPL

Fig. 7: BP-XACML framework

The role activation requests are directed to the ‘role enablement authority
(REA)’ by the context handler. The REA will use theSoD<PolicySet> to check
for any SoD restrictions on this role. Then it will point to the RAPS to decide
if this user is allowed to activate this role or not. If there was an SoD constraint
on the role, REA will require extra information. For example, if there is a SoD
condition on activating this role, REA needs to make sure that activating this
role will not breach the SoD condition. Information about the activated roles of
this user will be obtained from the ‘session’ through the CH. Figure 8 shows the
steps related to this type of request.

	

7.
	 R
ol
e	
at
tr
ib
ut
e	
&
	 st
at
us
	

8.
	 R
ol
e	
en
ab
lin
g	
de
ci
si
on
	 	

Context	 handler	

PAP	 REA	

PIP	

Session	

PEP	

1.	 Load	 SoD<PolicySet>	

2.	 Role	 activation	 request	

Workflow	
system	

3.
	 R
ol
e	
ac
tiv
at
io
n	
qu
er
y	

4.
	 R
ol
e	
at
tr
ib
ut
e	
qu
er
y	

5.	 User	 session	 query	

9.	 Response	

6.	 Role	 enabling	 state	

10.	 Updates	 role	 session	 status	 	

Environment,	 Resource,	
Subject	

	

Fig. 8: Activating a role request

The standard RBAC request is a request to perform an action on a re-
source, where the resource is not a role or a task (e.g. read a file). This type
of request is directed to the PDP, and will be handled exactly how access re-
quests are handled in the RBAC-XACML profile [9] using the Role<PolicySet>
and permission<PolicySet>. For more information please refer to [9]. In BP-
XACML, a request to perform a task, will produce a set of one or more requests
of this type (standard request).

If the request was to perform a specific task, the context handler will forward
the requests to the TA. The TA will use the IRPS to check if there are any IR
restrictions on this task. Violation of an IR results in a deny decision. Then it will
use the user’s role to identify the proper TPS through the RTPS. TPS identifies
the tasks that this user is allowed to perform based on the role activated at the
request time. If an IR is restricting the assigning of a task, the TA will obtain
extra information from the ‘performers list (PL)’ through the CH to evaluate

the IR condition. If the TA allows the user to perform the task, CH will use

	

12.	 Query

15.	 Attributes	 	 	
17.	 Response	

13.	 Query

14.	 Attributes	 	 	

10.	 Task’s	 permissions	 list	 	

9.	 Task’s	 permissions	 query	 	
TPL	

Context	
handler	

PDP	

PAP	

PIP	

PEP	

1.	 Load	
Role	

<PolicySet>	

PL	

Workflow	
system	

11.	 Access	 Request	

4.	 IR	 query	

2.	 Task	 performance	 request	

7.	 IR	 status	 	

16.	 Decision	

18.	 Updates	 task	 performers	 list	 	

5.	 Task	 performer	 query	

6.	 Task	 performers	

TA	

1.
b.
	 L
oa
d	

IR
	 <
Po
lic
yS
et
>	

3.	 Request	 to	 perform	 a	 task	

8.	 Decision	

Fig. 9: A request to perform a task

the Task Permissions List (TPL) to retrieve all permissions associated with the
task. Each permission is a pair of an action and a resource. CH will create a
request for each permission, with requests containing the user’s role, action, and
resource. These requests will be sent to the PDP and dealt with as standard
requests to perform an action on a resource. PDP will send back each decision
individually. CH will combine the decisions, where deny over rides. So, if one
request was denied, the whole request to perform the task will be denied. If all
requests were allowed, the CH will then send back to the PEP that this user is
allowed to perform the task. Figure 9 shows the steps for this type of request.

6 BP-XACML: Policy Semantics

In this section, we will refine the previously described policy structure with spe-
cific data and language representations. Users, roles, operations and permission
are all part of the RBAC profile of XACML. In this paper we adopt these en-
tities and the way they are expressed from the RBAC-XACML [2]. Refer to [2]
for information on the representation of users, roles, operation, and permissions.

6.1 Task and Task instances

Task and task instances are new features that are not supported in RBAC-
XACML. In BP-XACML tasks are expressed as an XACML Resource. Listing
1 shows an example Task<PolicySet> showing the task as a resource.

<PolicySet ... PolicySetId ="TPS:coordinator:role" PolicyCombiningAlgId ="& policy -combine;permit -overrides">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Policy PolicyId =" Allowed tasks" RuleCombiningAlgId ="& policy -combine;permit -overrides">

<Target >

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Rule Effect =" Permit" RuleId ="issue:work:order:task">

<Subjects ><AnySubject/></Subjects >

<Resources >

<ResourceMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string"> issue work order </ AttributeValue >

<ResourceAttributeDesignator AttributeId ="& resource;resource -id" DataType ="&xml;string"/>

</ResourceMatch > </Resources >

<Actions >

<ActionMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string">perform </ AttributeValue >

<ActionAttributeDesignator AttributeId ="& action;action -id" DataType ="& xml;string"/>

</ActionMatch > </Actions > </Target > </Rule >

<Rule Effect ="Deny" RuleId =" DenyRule"/>

</Policy > </PolicySet >

Listing 1: Task Policy set

In listing 1 task was represented as an object in the policy, because TPSs
are linking the user’s role to the task, so the task is the object. To be able
to represent ‘Task instance’ a new object attribute is introduced, it is called
‘instance’. It is similar to the ‘role’ attribute from the RBAC-XACML profile.
In section 6.3 an example listing showing instance-level restriction will show how
to make use of the new attribute ‘instance”.

As it can be seen the Task<PolicySet> will include a policy for each task
the role is allowed to perform. The example includes a policy for the task ‘issue
work order’ as a part of the policy set. The policy says if someone wants to
perform the action ‘perform’ on the object ‘task: issue work order’ they will be
allowed. As can be seen in the listing, the policy set target is not limiting the
applicability of the policy set. RoleTask<PolicySet> will limit the applicability
to users with the role ‘coordinator’ and then point to this policySet. Listing 2 is
an example RoleTask<PolicySet> for the role ‘coordinator’.

<PolicySet ... PolicySetId ="RTPS" PolicyCombiningAlgId ="&policy -combine;permit -overrides">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction/></

Actions > </Target >

<Policy PolicyId =" Coordinator:Role" RuleCombiningAlgId ="&rule -combine;permit -overrides">

<Target >

<Subjects >

<SubjectMatch MatchId ="& function:any -of">

<Apply FunctionId ="urn:oasis:names:tc:xacml :3.0: function;string -equal"

<AttributeValue DataType ="&xml;string">coordinator </ AttributeValue >

<SubjectAttributeDesignator AttributeId ="urn:someapp:attributes:role" DataType ="&xml;string"/>

</Apply > </SubjectMatch > </Subjects >

<Resources ><AnyResource/></Resources >

<Actions ><AnyAction/></Actions >

</Target >

<!-- Use tasks associated with the "coordinator" role -->

<PolicySetIdReference > TPS:coordinator:role </PolicySetIdReference >

</policy > </PolicySet >

Listing 2: The Role Task Policy Set

6.2 SoD on a role level

In BP-XACML SoD is expressed as policies in the SoD<PolicySet>. SoD refers
to the dynamic role level separation of duties, which is used to make sure that
no one user activates two conflicting roles at the same time. Listing 3 shows an
example SoD policy set. The policy set includes policies stating conflicting roles.
For example, the policy set in listing 3 includes a policy stating that in order to
activate the role ‘coordinator, the role ‘manager’ should not be in the activated
roles of the same user.

The function ‘Session’ is a new function that helps to check that the given
role is not available in the activated roles of the given user. This function takes
one argument of data-type ”..#string”, which is the user’s ID. It returns a list of

all roles currently activated for this user. Then the predefined function “any-of”
will compare the given string with the list retrieved by the session function. If
the role was found the function will return the result ‘true’, and if it was not
found, it will return ‘false’. If the condition was true the rule will return ‘deny’
and the request will be denied. If the condition returns false, the rule will not
do anything and continue to the RoleAssignment<PolicySet>.

<PolicySet ... PolicySetId ="SoD" PolicyCombiningAlgId ="&policy -combine;deny -overrides">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Policy PolicyId =" Coordinator:Role" RuleCombiningAlgId ="&rule -combine;deny -overrides">

<Target > <Subjects ><AnySubject/></Subjects >

<Resources >

<ResourceMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string"> Coordinator </AttributeValue >

<ResourceAttributeDesignator AttributeId ="& resource;resource -id" DataType ="&xml;string"/>

</ResourceMatch > </Resources >

<Actions > activate </Actions >

</Target >

<Rule RuleId ="role:manager:not:active" Effect ="Deny">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Condition FunctionId ="urn:oasis:names:tc:xacml :3.0: function:any -of">

<AttributeValue DataType =&xml;string"> manager </AttributeValue >

<Apply FunctionId ="http :// localhost/BPXACML/function#function;Session">

<SubjectAttributeDesignator AttributeId ="urn:someapp:attributes:role" DataType ="&xml;string"/>

</Apply > </Condition > </Rule > </Policy >

<PolicySetIdReference > Role:Assignment </PolicySetIdReference >

</PolicySet >

Listing 3: SoD policy set example

Listing 4 shows an example RoleAssignment<PolicySet>. The <PolicySet>
contains a policy for each user, which contains rules for each role the user can
activate. The policy set in listing 4 includes an example policy for the user Adam,
which includes an example rule for activating the role ‘coordinator’.

<PolicySet ... PolicySetId ="Role:Assignment" PolicyCombiningAlgId ="& policy -combine;deny -overrides">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Policy PolicyId ="Roles:For:user:Adam" RuleCombiningAlgId ="&rule -combine;deny -overrides">

<Target >

<Subjects >

<SubjectMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string"> Adam </AttributeValue >

<SubjectAttributeDesignator AttributeId ="& subject;subject -id" DataType ="& xml;string"/>

</SubjectMatch > </Subjects >

<Resources ><AnyResource/></Resources >

<Actions ><AnyAction/></Actions >

</Target >

<Rule RuleId =" Permission:to:activate:coordinator:role" Effect =" Permit">

<Target >

<Subjects ><AnySubject/></Subjects >

<Resources >

<ResourceMatch MatchId ="& function;string -equal">

<AttributeValue DataType ="&xml;string"> Coordinator </AttributeValue >

<ResourcesAttributeDesignator AttributeId ="& resource;resource -id" DataType ="&xml;string"/>

</ResourcetMatch > </Resources >

<Actions > Activate </Actions > </Target > </Rule > </Policy > </PolicySet >

Listing 4: Role Assignment policy set example

6.3 Instance-level Restrictions (IR)

Instance-level restrictions (IR) are used to fulfill the need to apply history based
restrictions within the same instance. For example, the scenario states that the
user who close the ‘work order’ should be the same user who issued it. So, for the
same ‘work order’ (same instance), the user to perform ‘close work order’ must
be the same user who performed ‘issue work order’. IR restrictions are written
as policies in the IR policy set.

Listing 5 is an example IR<PolicySet> that includes instance-level restric-
tion using the BP-XACML language. The IR policy set has a policy for the task
‘close work order’. The policy has a rule stating that the user must be the same
user who issued the work order for the same instance.

The function ‘PL’ is a new function that retrieves the performers list of a
specific task for a specific instance. This function takes two arguments of data-
type ”..#string”, which are a task name and an instance number. It returns a
list of all users who performed the task for this instance. Then the predefined
function “any-of” will compare the given string, which is the username of the
user who requests to perform the task, with the list retrieved by the PL function.
The function “any-of” will return ‘true’ if the user was in the performers list,
and it will return ‘false’ if it was not found in the performers list. If it was a
SoD-IR then this condition will be satisfied and the user will be denied if he was
part of the list. Because it is a binding of duties constraint in this case, we want
the rule to deny only if the user was not found in the list (i.e. the function ‘any-
of’ returned false), and permit it if he was in the list (i.e. the function ‘any-of’
returned true). For this reason the function “not” has been added to reverse the
output of the function.

<PolicySet ... PolicySetId ="IR" PolicyCombiningAlgId ="& policy -combine;deny -overrides">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction

/></Actions > </Target >

<Policy PolicyId ="close:work:order:task RuleCombiningAlgId ="&rule -combine;deny -overrides ""

<Target > <Subjects ><AnySubject/></Subjects >

<Resources >

<ResourceMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string"> close work order </ AttributeValue >

<ResourceAttributeDesignator AttributeId ="& resource;resource -id" DataType ="&xml;string"/>

</ResourceMatch > </Resources >

<Actions >

<ActionMatch MatchId ="& function;string -match">

<AttributeValue DataType ="&xml;string"> perform </AttributeValue >

<ActionAttributeDesignator AttributeId ="& action;action -id" DataType ="& xml;string"/>

</ActionMatch > </Actions > </Target >

<Rule RuleId ="Must:be:who:issued:work:order" Effect ="Deny">

<Target > <Subjects ><AnySubject/></Subjects > <Resources ><AnyResource/></Resources > <Actions ><AnyAction/></

Actions > </Target >

<Condition FunctionId=urn:oasis:names:tc:xacml :1.0: function:not >

<Apply FunctionId ="urn:oasis:names:tc:xacml :3.0: function:any -of">

<SubjectAttributeDesignator AttributeId ="& subject;subject -id" DataType ="&xml;string"/>

<Apply FunctionId ="http :// localhost/BPXACML/function#function;PL">

<AttributeValue DataType =&xml;string"> issue work order </AttributeValue >

<ResourceAttributeDesignator AttributeId ="urn:someapp:attributes:instance" DataType ="&xml;string"/>

</Apply > </Apply > </Condition > </Policy >

<!-- Point to the RoleTask policy set -->

<PolicySetIdReference > RoleTask:PolicSet </PolicySetIdReference >

</PolicySet >

Listing 5: Example IR Policy set

7 Related Literature

To the best of the authors’ knowledge, currently there is no published work that
aims to extend XACML to support business process authorisation policies. There
are several published works that extend XACML to support different models but
none of them focus on ‘business processes’. For example, Wolter et. al. in [19]
developed a XACML customised profile that supports RBAC concept, manda-
tory access control, and permission-based separation of duty policies. The work
does not take into consideration the special requirements that ‘business process’
authorisation policies need such as ‘tasks’, and it does not extend XACML to
support business process authorisation policies.

The work in [4], [10], [18], and [19] all focus on proposing a model trans-
formation framework that focuses on deriving security policies from the process
model, using a form of extended BPMN as a process modeling language and
XACML as a policy language. These papers start by proposing a new extension
to the process modeling language BPMN, and then propose a model-driven ex-
traction of the policies based on a mapping between the new modeling language
and the policy language. All four proposals are limited to the BPMN extension
proposed in the corresponding paper (“seBPMN”[19], “ConstrainedBPMN”[18]
“SecureBPMN”[4], and “BPMS”[10]) and they do not extend XACML. Sinha et.
al. [14] also propose a method of translating security requirements into XACML,
by making use of the obligation feature in XACML. It does not provide an ex-
tension to XACML. A draft version of the RBAC-XACML profile [1] proposed a
policy structure to handle dynamic SoD. We use the same policy structure, but
implement the SoD restriction in a different way. We also provide more details
on the way it should be used.

8 Conclusion

This paper introduced BP-XACML, a new profile that extends the RBAC-
XACML and enables the specification of business process authorisation policies.
In addition to supporting the XACML RBAC profile, the extended language also
supports the representation of tasks and tasks instance. It proposes a new pol-
icy set called Task<PolicySet> for the incorporation of business process tasks.
BP-XACML also supports separation of duties and binding of duties constraints
at the level of process instances. It supports the representation of the instance-
level restrictions in a way that can be linked to the related tasks and can be
evaluated. The paper proposes a new policy set IR<PolicySet>. The new repos-
itory ‘performers list’ helps in evaluating the instance-level restrictions. The new
repository TPL links tasks to permissions. Finally, it supports the ‘separation
of duties’ on the role level, making use of the ‘REA’ and ‘sessions’ to find, and
evaluate the SoD restrictions.

As a future work, it is intended to do an experimental implementation to
test the efficiency, feasibility and usability of this design.

References

1. A. Anderson. Xacml profile for role based access control (rbac), committee draft
01. Standard, OASIS, February 2004.

2. A. Anderson. Core and hierarchical role based access control (rbac) profile of xacml
version 2.0, oasis standard. Standard, OASIS Open, February 2005.

3. V. Atluri and W. kuang Huang. An authorization model for workflows. In
E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors, European Sympo-
sium on Research in Computer Security, volume 1146 of Lecture Notes in Computer
Science, pages 44–64. Springer, 1996.

4. A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. Securebpmn: Modeling
and enforcing access control requirements in business processes. In Proceedings of

the 17th ACM Symposium on Access Control Models and Technologies, SACMAT
’12, pages 123–126, New York, NY, USA, 2012. ACM.

5. D. Ferraiolo and D. Kuhn. Role-Based Access Control. In 15th National Computer
Security Conference, pages 554–563, October 1992.

6. Gartner. Leading in times of transition: The 2010 CIO agenda. In Gartner EXP
CIO report, 2010.

7. M. Leitner, S. Rinderle-Ma, and J. Mangler. Aw-rbac: access control in adaptive
workflow systems. In Sixth International Conference on Availability, Reliability
and Security (ARES), pages 27–34. IEEE, 2011.

8. A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: A fast and scalable xacml policy
evaluation engine. In Proceedings of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’08, pages 265–276, New York, NY, USA, 2008. ACM.

9. T. Moses. Extensible access control markup language (xacml) version 2.0. oasis
standard. Technical report, OASIS Open, 2005.

10. J. Mülle, S. v. Stackelberg, and K. Böhm. A security language for bpmn process
models. In Karlsruhe Reports in Informatics. Karlsruhe, 2011.

11. S. Oh and S. Park. Task-role based access control (t-rbac): An improved access
control model for enterprise environment. In M. T. Ibrahim, J. Küng, and N. Revell,
editors, DEXA, volume 1873 of Lecture Notes in Computer Science, pages 264–273.
Springer, 2000.

12. P. Samarati and S. C. Vimercati. Access control: Policies, models, and mecha-
nisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis
and Design, volume 2171 of Lecture Notes in Computer Science, pages 137–196,
Berlin Heidelberg, 2001. Springer.

13. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role - based access control
models. In IEEE Computer, volume 29, pages 38–47, 1996.

14. S. Sinha, S. Sinha, and B. Purkayastha. Synchronization of authorization flow
with work object flow in a document production workflow using xacml and bpel. In
V. Das and R. Vijaykumar, editors, Information and Communication Technologies,
volume 101 of Communications in Computer and Information Science, pages 365–
370. Springer Berlin Heidelberg, 2010.

15. M. Strembeck and J. Mendling. Modeling process-related rbac models with ex-
tended uml activity models. Information & Software Technology, 53:456–483, 2011.

16. J. Wainer, A. Kumar, and P. Barthelmess. WRBAC a work-flow security model
incorporating controlled overriding of constraints. In International Journal of Co-
operative Information Systems (IJCIS), volume 4, pages 455–486, 2003.

17. J. Wainer, A. Kumar, and P. Barthelmess. DW-RBAC: A formal security model
of delegation and revocation in workflow systems. Inf. Syst., 32(3):365–384, 2007.

18. C. Wolter, A. Schaad, and C. Meinel. Deriving xacml policies from business process
models. In M. Weske, M.-S. Hacid, and C. Godart, editors, Web Information
Systems Engineering – WISE 2007 Workshops, volume 4832 of Lecture Notes in
Computer Science, pages 142–153. Springer Berlin Heidelberg, 2007.

19. C. Wolter, C. Weiss, and C. Meinel. An xacml extension for business process-centric
access control policies. In Policies for Distributed Systems and Networks, 2009.
POLICY 2009. IEEE International Symposium on, pages 166–169, July 2009.

