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ABSTRACT

A family of methods is developed for the numerical solution of fourth
order parabolic partial differential equations in one- and two-space
variables. The methods are seen to evolve from multiderivative methods

for second order ordinary differential equations.

The methods are tested on three model problems, with constant
coefficients and variable coefficients, which have appeared in the

literature.



1. ONE SPACE DIMENSION
1.1 Introduction

The fourth order parabolic partial differential equation in one space

variable given by
82u+ o*u
o o

arises in the study of the transverse vibrations of a uniform flexible

=0, u>0, 0<x<x, t>0

beam (see, for example, Gorman [11]). The term pu is the ratio of the

flexural rigidity of the beam to its mass per unit length.
The initial conditions associated with (1) are of the form

u(x,0)=g0(x); 0<x<x,
%(X,O):gl(x); 0<x<x,

and the boundary conditions are given by
u(0,t)-fo, u(x,t)=f;;t>0
2 2
2 0.9=pp 25 (5 t)=py 1150
In (2), (3) the functions g (x), g1 (x) are continuous and in (4), (5)
the terms fy ,f; ,po ,p: are real constants.

To compute the solution of (1) with (2), (3), (4), (5), explicit and
implicit finite difference schemes have been proposed by Albrecht [1],
Collatz [3], Conte [4], Conte and Royster [5], and Crandall [6]. Evans [9]
derived finite difference methods by first writing (1) as two simultaneous
second order parabolic partial differential equations (see also Du Fort
and Frankel [8], and Richtmyer [16]). Explicit and implicit finite diff-
erence methods based on the semi-explicit method of Lees [14] and the high
order method of Douglas [7] for second order parabolic equations, have been
formulated for the numerical solution of (1) with (2), (3), (4), (5) by
Fairweather and Gourlay [10].

The explicit method of Collatz [3] frequently needs a large number of

time steps to compute the solution in view of the stability restriction on

(1

)

3)

4
)



the method. The difference scheme given by Albrecht [1] overcomes the
stability problem but uses the value of the solution at four time levels
to compute the solution at a fifth time level, hence requiring a com-
plicated starting procedure. The work of Fairweather and Gourlay [10]
gives superior numerical results to the methods of Evans [9] and Richtmyer
[16], but more CPU time is required.

In the present paper a family of novel finite difference schemes is
developed for the numerical solution of (1) with (2), (3), (4), (5); a
related procedure was adopted by Lawson and Morris [13] for second order
parabolic equations, by Khaliq and Twizell [12] for first hyperbolic
equations and by Twizell [17] for second order hyperbolic equations. The
methods developed are shown to have high accuracy and good stability pro-
perties and are tested on problems discussed in the literature by Andrade

and McKee [2] and Fairweather and Gourlay [10].

1.2  Arecurrence relation

The interval 0<x <X will be divided into N+1 subintervals each of width
h so that (N+1)h = X and the time variable t is discretized in steps of
length /. The open regionR =[0 < x < X] x [t > 0] and its boundary 0R
consisting of the lines x = 0, x = X, t = 0 are thus covered by a rectangular
mesh, the mesh points having coordinates (mh,n/) where m = 0,1,...,N+1 and
n =0,1,2,... . The theoretical solution of a difference scheme approx-
imating (1) will be denoted by U} at the mesh point (mh,n?).
Superimposing this grid, and assuming that u is sufficiently often
differentiable, allows the space derivative in (1) to be approximated by
the finite difference replacement
o*u
o'

for x = mh (m =1,2,...,N). For m =1 and m = N, equation (6) introduces

=h*{u(x—2h,t) - 4u(x—h,t) + 6u(x,t) — 4u(x+h,t) + u(x +2h,t)} + 0(h*) (6)

the points (-h,t) and (X+h,t) at time t, which are outside the region R.



However, the values of u at these points may be written in terms of function

values in R and on R by using (4), (5).

In (5), 0*u/0x” is approximated by the usual second order replacement;

this gives

o0’u
ox >

=h 2 {u(=h,t) - 2u(0,t) + u(h,t)} + o(h? )

at the boundary points (0,t) and
% b u(X —hyt) = 2u(x,0) + u(X+h,t)} + 0(n?)
at the boundary points (X,t). Using (4), (5), equations (7), (8) give
u(-h,t) = - u(h,t) + 2fy + h? po + O(h?),
u(X+h,t)= -u(X-h,t) + 2f; + h?*p,; + O(h?"),
respectively, and it is these expressions which will be used when (6)
is used with x = h and x = (N-1)h.
Consider now the time level t = n/ and apply (1) with (6) to the
N mesh points at this time level. This leads to the system of second
order ordinary differential equations given by

d’u

o - rault)-aw,
where INJ(t):[Ul(t),Uz(t),....,Un(t)]T, T denoting transpose, is the

vector of computed solutions at the N mesh points at time t, A is the

square matrix of order N given by

5 -4 1
—4 6 -4 1 0
1 —4 6 —4 1
A=h"
1 —4 6 —4 1
0 1 —4 6 —4
i 1 -4 5 ]

(7

®)

)
(10)

(1)

(12)



with eigenvalues

A, =16h~*sin*[sn/2(N+1)}} s=12,..,N (13)
and w is the vector of boundary values of order N given by
w=h"* [h?py - 2y, 0, 0,...,0 , f; , h* p;- 2£;]" . (14)

Solving (11) subject to the initial conditions (2), (3) gives
the analytical solution

g(t): ~A™ v~v+%exp(ivtB){go +(ivB)71 g +A" vy}

(15)
1 . N 4
+Eexp(—1vtB){g0—(1vB) g+A vy},
in which i=V-1, Y=+ and B is a matrix such that B> = A. It is
easy to show that (15) satisfies the recurrence relation
U(t+ ¢)— (exp(iv/B) + exp(~iv/B)U(t)- U(t - /)
(16)

= {exp(iv/B)+exp(~iv/BJ A" w—2A"'w

witht= ¢,2/,.... and it is this relation which will be used in the
development of the family of algorithms for solving (1) with (2), (3),
(4), (5). In view of the approximants to the matrix exponential functions
which will be used in (16), it will not be necessary to compute v,B or
A directly.

1.3 Solution at the first time step
It is clear that, using (15) with t = /7 requires knowledge of U(ﬁ) which,

Unlike U(0), is not contained explicitly in the initial conditions.

Writing t =/ in (15) and replacing the matrix exponential functions with
their (0,3) Padé approximants leads to

U(0) = (I—%usz}go + E(I—%MZAJ& —%szy +o(r) (17)

replacing the matrix exponential functions with their (0,5) Padé
approximants leads to

u(r)=a —lpsz +€Lu2€4A2)gO+E(I—lM2A MLM“Az)g1
2 24 6 120 (18)

1 1
——pl(I——pl’A)w+0(¢°
SREA=ulA)y @
and using the (0,7) Padé approximants leads to



I I 1
U(l)=(T-=pl?A+0—p* 0*A* ——— ' 1°A°
U(()=(1-Zn i A,
I 1 I
P T= 2P A+ —— P AT = — P OOA
( 6" " 120" 5040 " ng o)
I I 1
— P I ——plA +—p* A (w o+ 0(e%).
o ( 12" T 360" ) ()

In. problems having time dependent boundary conditions fy, fi, po, p1 in
(4), (5) are functions of t and the vector w in (17), (18), (19) is

evaluated using t = / in the equation
w =h*[hp, (t)=2f, (6)F, (£)0,....0,F, (1), h*p, (6) - 2£, (¢)] - (20)

The complete algorithm for computing the numerical solution of
(1) with (2), (3), (4), (5) may thus be listed as follows:
| | v)=g |
(i) the starting vector ~ is obtained from equation (2);
U
(i1) the starting vector ~( ) is obtained using (17), (18) or (19)
depending on the required accuracy;

Lo Ulewe), . . .
(111) with t :E, 2€,..., is obtained from the recurrence relation

(16) in which the matrix exponential functions are replaced by
suitable approximants.
It is these matrix functions which will be replaced by Padé approx-
imants in §2; in this way the novel family of methods will evolve.

2. THE NUMERICAL METHODS
2.1 Development and analyses of the novel methods

Using the (1,1) Padé approximants to the matrix exponential functions
in (16) leads to a difference scheme written in matrix form as

1 1 1
(14 nCAV U (t+0) = QL= A UM ~ (LA U (=0 —pf* wro(r), - (21)
for problems with time dependent boundary conditions this becomes

1 1
[+—ul’A) U+—ul’w
( s ) U s

~ t+l
1 2 1 2 1 2 1 2 4
= (21—5|u€ A)U(t)-EM woo- (I+ZM A)U(t—f)-zuﬁ w_, +0(7). (22)

The principal part of the local truncation error of the method
based on the (1,1) Padé approximant is given by

1 hzgzaé_u_lg“ﬁ
6 oxb 6 ott

(23)
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The component %uhzﬁzgx—l: of (23) is related to the space discretization

and the use of (6) in (1); this component will be present in all methods
derived by using Padé approximants to the matrix exponential function in
(16). The other component of (23) is related only to the Pade approximant
chosen for use in (16). The principal part of the local truncation error
of any method arising from the use of the (m,k) Padé approximant in (16)

will thus have the form
1 . ,,0" o'u
guh ! o +Cq€q e

where the Cqy (q = m+k+1 for m+k odd, and q = m+k+2 for m+k even) are

; (24)

error constants and were derived by the authors in [18]; these error
constants are reproduced in Table I. All Padé approximants except the

(0,1), (1,0) approximants lead to consistent methods.

Stability, in the conventional sense of a perturbation of the initial
data not growing in magnitude as time increases, is analyzed by recourse

to the stability equation of the method.

Noting that the (m,k) Padé approximant to the matrix exponential

function exp (iv/B) has the form

exp (iv/B) =[Q,, (iv/B)]"' P, (iv/B)+0(¢£™™*") (25)
where Py, Qn are polynomials of degrees k, m, respectively, with
P, (iv/B) =1 and Q.(iv/B) =1 (I is the identity matrix of order N), the

stability equation has the form
1 1 1 1 1 1

Q.. (ivia2)Q,, (ivia2)e? —{P (ivIA2)Q, (=ivIA2 )+ P, (—iviA2)Q, (ivIA2)}E
1 1
+Q, (iv/A?) Q, (-iviA2) =0. (26)
In (26), A is an eigenvalue of A and & is the amplification factor of

the method. The non-Neumann necessary condition for stability |&|< 1

hence requires
1 1 1 1

P, (iv/A2)Q, (—iviA2) + P (—iv/A2)Q. (iv/A2)

1 1

<2(Q. (—ivia2)Q, (—ivir2) . (27)
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In the case of the method based on the (1,1) Padé approximant, the
stability equation is
(1+iu€27»)§—(2—%u£27m)§+(1+%u€27x):0 (28)
and it easy to show that |§| <1 for any r=//h>> Osince u >0,

A>0. the scheme is therefore unconditionally stable and hance convergent.

Other Padé approximants are now used in the recurrence relation given
by (16). Using the (0,2) Padé approximants the resulting finite difference
method for problem with time dependent boundary condition may be written
in vector form as

U(t+/) = (ZI—HEZA)U(t) —ulw, +ut=10) .

This is the explicit scheme of Collatz [3] for which Cy4 Zé.This method

has an error constant which is the same order as that of (22)and, since

it is explicit, it would appear to be a more desirable method to use. It

is, however, stable only for rSLland may thus be used only with small

2u?
time steps.

Turning now to the (1,2) Padé approximant, its use in (16) yields the
method

4

(I+éu£2A)[j(t + £)+éu£2 W,

= QU TREAUO - L - (MU0 - i o (30)

From Table I it is seen that C4 = -1/36, so that method enjoys better
accuracy than (22) or (29). It’s first drawback is that it is an implicit

method; furthermore, its stability eqation
(1+l m)az—(z—l m)ml(nl 7’2 =0
9" 9" 9" o™

yields the restriction p/’A< 36/5 which, since A < 16h* , leads to the
stability condition r < 3V5/(10Vp). Thus, although it may be used with

slightly bigger time steps than (29), its gain in accuracy and the fact
that it is implicit, do not make this method more attractive than (29),

or (22) which, though implicit, is unconditionally stable.



A notable improvement in the accuracy in time is obtained by using
the (2,2) Padé approximant to the matrix exponential functions in (16).
This approximant gives the method

1 1 1 1
I+ —ul?A+— 2 ADHUG+ ) + (—pl T+ — P A)w
( T Vs YU(t+1) (12“ Vs )~t+4

5 1 5 1
= QI+ZplPA+— AU - (Gl T+—p A w
( oM ot )U(t) (6u ot W

1 1 1 1
- (I+—ulPA+—u ' AHUE =) = (—pl T+—u* i A)w 31
I+ 2 YUt=0) - (ZriT+ i AW (1)

for which C¢ = ﬁ (from Table I). The stability equation is

1 2 1 29442 \g2 5 | I 1 2 1 29482
(1+EM k+mp CPA)E” — (2 EM k+7—2u CPA)E + (1+EM k+mu ") =0
from which it is easily verified that the method is unconditionally stable.

Squaring the matrix A involves an increase in the number of mesh
points at each time level used in the computation. This notion of using
a greater number of points at each time level was used by the authors for
first order hyperbolic equations in [12] and by Twizell [17] for second
order hyperbolic equations ; Mitchell and Griffiths[15] discussed
the concept briefly for second order parabolic equations.
The same order of accuracy in time may be achieved by deleting the
terms in A* from (31); this gives
1 [
(I+EM A)INJ(t+€)+EM W

~ t+/
=(21+§u€2A)U(t)—§u£2w —(1+iu£2A)U(t—£)—iu£2A)w (31a)
6 ~ 6 ~t 12 ~ 12 ~ t—t

for which Cs = "'/240. Equation (31a) is, in fact, an application of
Numerov's linear multistep method for the numerical solution of second order

ordinary systems and the finite difference scheme resulting from it for the
1

solution of (1) is stable only for r S{3/8,u}5. Equation (31a) is clearly
very useful when small time steps may be taken.
The (2, 1) Padé approximant leads to the implicit method

1 1 1 1
[+—pul?A+—u AU+ D)+ (=l T+—u’ A )w
( oM i YU(t+0) (9u Vi )NM

= (21—1M2A)U(t)—lu£2 w
9 - 9" -~

1 1 1 1
- (I+=ulPA+—p* ' AHUGR =) — (=l T+—u 0 A)w . 32
( oM via YU(t—1) (9u Tis ) (32)

~ (t=0)



This method has C4 = % and is unconditionally stable. Its theoretical

accuracy near the boundary is not second order in time: however, this
does not diminish the overall accuracy of the difference scheme (Mitchell
and Griffiths [15;pp.112-116,121-125] ). Provided sufficiently small time
steps may be taken, it may be advisable to delete the terms in A” from
(32). The method then becomes identical to (30), which has error constant
the same magnitude as (32) and which is obviously more economical than (32)
in relation to storage requirements.

Using the (2,0) Padé approximant to the matrix exponential functions
in (16) gives the implicit scheme

(I+%u2€2A2)U(t+€)+%u2£4 Aw

~ t—{
= QI-p* AU -l w —(I+iu2€4A2)U(t—K)—iuzﬁ“Aw (33)
~ ~t ~ ~ =t

which has error constant C4 = '7/12. The method is unconditionally stable

but its less favourable error constant and the fact that it requires A? ,
suggest that the method based on the (1,1) Padé approximant is to be preferred.
It will be seen in subsection 2.2, however, to give generally better numerical
results than (22) for the problems tested.

2.2 Numerical results

In order that the behaviour of the schemes in §2.1 might be observed, they
were tested on two problems from the literature, as follows:
Problem 2.1 (Fairweather and Gourlay [10])
2 4
a‘j+a—f=0 . 0<x<l
ot~ 0Ox
with initial conditions

u(x,O):%(2x2—x3—l) . 0< x

A
[

74
bl
A
—_

du
—(x,0)=0 ;0
o 0

and boundary conditions
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u(0,t)=u(l,t)=0 ; t>0,
0’u 0’u
—(0,t)=—1,t) =0 ; t>0,
axz( ) 6x2( )

The theoretical solution of the problem is

o0
u(x,t) = Y a sin mx cos s’m’t

s=1
where a, = -8sin’ Esn/(ssns). Here, u(x,t) is infinitely, often differentiable

with respect to both x and t and the methods developed in §2 may be used.

Following Fairweather and Gourlay [10], the increments h,/ were given
the values h = 0.05, /= 0.00125 (giving r = %) and the solution computed

for t = 0.02. The errors using the methods based on the (1,1), (2,0), (2,1),
(2,2) Pad¢ approximants are shown in Table II for x = 0.1(0.1)0.5, the
results for x = 0.6(0.1)0.9 being symmetrical to those for x = 0.4(-0.1)0.1.
The increments h, / were also given the values h = 0.05, / = 0.005 (giving
r=2)and h=0.1, /=0.02 (giving r = 2). The errors using the same four
methods for x = 0.1(0.1)0.5 at time t = 1.0 are shown in Tables III, IV.
Comparison of Tables II, III, IV with Tables I, III of Fairweather and
Gourlay [10] shows that the new methods based on the (1,1), (2,0), (2,1)
Padé approximants give comparable accuracy to the high order correct method
of Douglas (adapted and used in Fairweather and Gourlay [10]) while the new
method based on the (2,2) Padé approximant gives better accuracy. All the
new methods were found to give much better results than the methods of Evans
[9], Richtmyer [16] and the semi-explicit method [10;p.9] because of their
superior local trunction errors. The numerical results given by the method
based on the (2,2) Padé approximant were found to improve as the mesh ratio
r increased. This is due to the fact that the component of the principal
part of the local truncation error due to the (2,2) Padé approximant is much
smaller than the component due to the space discretization. Thus, the best

improvement is obtained using this method with large mesh ratios.
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Problem 2.2 (Andrade and McKee [2])
This is a variable coefficient problem and is given by

0’u 0*u 1
+ wx,t =0 : xt) >0, —<x<1,t>20

v u(x,t) o w(x,t) 5

1 x*

X,t) =— + ——

HO ) X 120

with initial conditions

u(x,0)=0 ; % < x <1,

5

ot 120 2

and boundary conditions

u(%,t):{1+(%)5/120} sint ; t >0,
u(l,t) :{1+($) sin 't ;t >0,
g;‘j (%,t) = é (%)3 sin t .t >0,
2;1 Lty = % sin t ;t >0,

The theoretical solution is
5
u(x,t) = 1+ | sin t
120

In order to provide a comparison with Andrade and McKee [2], the
maximum absolute relative errors were obtained at time t = 0.01 using
(i) h=0.05, ¢ =0.000125 (80 time steps) giving r = 0.05,
(ii) h=0.05, ¢ =0.00025 (40 time steps) giving r = 0.1,
(ii1) h=0.05, ¢ = 0.000625 (16 time steps) giving r = 0.25;
the results are given in Table V.

It is clear from Table V that the novel methods maintain the same order
of accuracy, and their stability properties, for variable coefficient problems
as well as constant coefficient problems (see Mitchell and Griffiths [15]).
The novel methods of §2 all show an improvement on the method of Andrade
and McKee [2] for this problem. It is noticed that the numerical results
reported by Andrade and McKee [2] relating to the usual explicit method for
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fourth order parabolic equations can be considerably improved. This explicit
method is, in fact, the method based on the (0,2) Padé approximant and is,
therefore, a member of the family of methods discussed in the present paper.
The numerical results relating to this explicit method are contained in
Table V and are actually better than the results obtained by Andrade and
McKee [2] for their method (denoted by AM in Table V). The numerical results
obtained by the present authors using the (0,2) explicit method are better
than those for the method based on the (1,1) Padé approximant. This is in
accordance with the magnitudes of the time components of the principal parts
of the local truncation errors listed in Table I. None of the three mesh
ratios used in the numerical experiments violated the stability criteria of

the methods based on the (0,2), (1,2) approximants.

3. TWO SPACE DIMENSIONS

3,1 Arrecurrence relation

It was seen in §2 that the method based on the (2,2) Padé approximant gives
rise to accurate numerical results for problems in one space dimension. It
is, therefore, worthwhile developing the method for use with problems in two
space dimensions.

To that end, consider the test problem

2 2 2
U viu=0, v»=2 1% 0<x,y<L, t>0 (34)
ot ox”~ 0oy
with initial conditions
u(xayao):go(xay) 7 (Xay) € Qa (35)
Ju
E(X,yao):& (Xay) 5 (X7Y) € Qa (36)

where Q is the interior of the square bounded by the lines x =0,y =0,
x =L,y =L and go(x, y), g1 (X, y) are continuous functions of x, y; the
associated boundary conditions are taken to be of the form
u©0,y,t) =ulL,y,t) =0 ; 0y <L, t>0, (37)
u(x,y,t) = ux,L,t) =0 ; 0<x <L, t>20, (38)
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2 2

Z—S(X,O,t)z%(x,L,t):O; 0<x <L, t>0, (39)
X
2 2

Zf(x,y,t)=gx‘;‘(L,y,t)=o; 0<y<L, t>0, (40)
X

This problem arises in the transverse vibration of a simply supported
uniform square plate with each side of length L.

Both intervals 0 < x <L and 0 <y < L are divided into N+1 sub-
intervals each of width h, so that (N+1)h = L, and the time variable
t is incremented in steps of length /. At each time level t = n/
(n=0,1,2,...) the square Q together with its boundary 0Q have been super-
imposed by a square mesh with N> points within Q and N+2 equally spaced
points along each edge of 0Q.

The solution u(x, y, t) of (34) is to be determined at each. grid point
(kh,mh,n/) in Q x [t>0] where k, m = 1,2,...,N and n = 0,1,2,.... The
theoretical solution of the novel method, to be based on the (2,2) Padé

approximant, at the mesh point (kh,mh,n/) will be denoted by U" ; the
vector U" of such solutions will be ordered in the form

n - _ n n n . n n n .. n n n T
U =(U, Ub ey Ulys UL, Ul Uloses UM, Ul ULY)

(41)
where T denotes transpose.
Replacing the space derivatives in (34) with the usual central diff-

erence replacements, V*'u becomes
V4u=h'4[u(x+2h,y,t) + u(x,y+2h,t) + u(x-2h,y,t) +u(x,y-2h,t)

+ 2 {u (x+th, y+h, t) + u (x-h, y+h, t) + u (x-h, y-h, t) + u (x+h, y-h, t)}

- 8 {u (xt+h, y,t) + u (x,y+h,t) + u (x-h, y,t) + u (x ,y-h, t) }

+20u (x,y, t)] +0(h?) . (42)
Then, applying (34) with (42) to each of the N? interior mesh point
in the order indicated by (41), and using the boundary conditions (37),
(38)—and (39), (40) to eliminate exterior mesh points as in §2—Ileads

to a system of second order ordinary differential equations of the form
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d> U(t)
—— =—sU(t 43
= (1) (43)
where S is a sparse, square matrix of order N* given by
C D E ]
D C D E Q
E D C D E
- . . . . . , (44)
Q E D C D E
i E D C D |
and C,D.E are square matrices of order N such that
19 -8 1
-8 20 -8 1 0
1 -8 20 -8 1
1 -8 20 -8 1
1 -8 20 -8
0
1 -8 19
fq _ - _
2 - 2 0 1 N
D= , E=
2 -8 2 1
0 0
L 2 -8 | L 1]
The eigenvalues of S are given by
Y., =16h™{sin® ——+sin® ———* ; rs=12..,N. (45)

2(N+1) 2(N+1)
Solving (43), the solution is seen to satisfy the recurrence relation
U(t+/4) — {exp (ilF) + exp(-i/F)} U(t) + U(t+/¢) =0 (46)
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where i = +V-1 and F is a matrix such that F?> =S. The starting vectors
U(0), U(/) are required for (46); U(0) = go is obtained from (35), and

U(/) is obtained from (17), (18) or (19) with A replaced by S, w= 0 and
g g obtained from (35), (36). For the method based on the (2,2) Padé¢

~0 ~1

approximant, which has an 0(/°) component in the local truncation error
(see Table I), the starting vector U(/) is obtained from (18).

3.2 The novel algorithm and its analysis
Using the (2,2) Padé approximant in (46) leads to the algorithm written

in vector form as

1 1

[+—0*S+—r'SHYU(t+/

( 12 144 YUt+0)
5

—(2I—g€ S+72£ $*)U(t) - (HEZ S+144£ SHU(t-1) . (47)

The principal part of the local truncation error of (46) is

6
Lppryoyy L o8
6 360 at° )

at the grid point (kh,mh,nf) and the stability equation is given by

| 2 5 5 | R 1, |
1+ —K + V4 - 2—=0"y+ —Y4 + (I+—/ly+—/4 =0
I+ Y 144v)§ ( LTt o 7)) &+ ( TR 1447)

wherey is an eigenvalue of S. The method is thus unconditionally stable,
since y > 0 from (45).

Implementing the algorithm in the form (46) requires the square of
the matrix S. An alternative approach is to use complex arithmetic and
to implement the method by using the complex splitting

{%(14\/5)1 + %KZS}[NJ* = {(N21+5)1 - %ﬁZS}g(t)

1 . 1 2 _ l _ _ i 2 *
{5(1-1\/5)1 + SOSIUtHD) = V21+5) 1 S 0Siu

1. 1,
{5(1+1\/§)I+E€ SIUt-0) . (48)

This splitting preserves the accuracy and stability of the algorithm but
requires more computer time to implement.

The need to square the matrix S is also obviated by writing (46) in the
abbreviated form
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(4= P+ = Q==09)0) + 1+ LU= =0

which has local truncation error with principal part

6 n
Lpprgey - L pe 00
6 240 at* )

at the mesh point (kh,mh,n /) and stability interval 0 < r Si\/g This

implicit, abbreviated form of the novel method has the same order of

accuracy as (46) and may be used with small mesh ratios.

3.3 Numerical results

To examine the behaviour of the new method, it was tested on the following
variable coefficient problem given in Andrade and McKee [2].

Problem 3.1

o’ o o*u

u u
—+a(x,y,t) —+b(x,y,t) —=0; 0 <x,y, <1, t>0,
pve (Y)ax“ x,y,1) — y

where
1 X2 y2 t2
aXa 9t = 1__+—+— )
(X, ¥,t) 2n2( St 8)
1 X2 y2 t2
bX, 7t = l__+—+— N
(3.9 2712( 2 8 8)
with initial conditions
u(XaY9O) = 0 ) OSX,y Sl ,
@(X,y,,0)=n sinmi sinmi 5 0<x,y <1,

ot
and boundary conditions given by (37), (38), (39), (40) with L =1. The
theoretical solution is
u(x,y,t) = sinmi sinmi sinmi .
The solution was computed at time t = 0.05 using
(i) h= 0.1, ¢=0.0005 (100 time steps) giving r = 0.05,
(i) h= 0.1, ¢=0.001 (50 time steps), givingr = 0.1,
(i) h= 0.1 , ¢=0.0025 (20 time steps), giving r = 0.25;

the maximum relative errors at time t = 0.05 are given in Table VI.
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The results were determined using the new algorithm in the form (46)
and also in its complex factor form (47). The results were the same for
the two formulations, but the complex factor form used three times as much
CPU time as the real form (46). The matrix S was augmented in an
obvious way to accommodate the functions a(x,y,t), b(x,y,t) and to take
account of the missing mixed derivative.

The numerical results show that the new algorithm performs well with
variable coefficient problems, maintaining the predicted accuracy and
stability properties. Like the one dimensional case discussed in §2, the
new algorithm shows an improvement over the method of Andrade and McKee [2]

for problems in two dimensions.

4. CONCLUSIONS

In this paper, families of numerical methods have been developed for the
solution of fourth order parabolic partial differential equations in one-
and two-space variables.

In developing the methods, the space derivatives in the differential
equations were replaced by the familiar finite difference replacements,
thus reducing the partial differential equations to systems of second order
ordinary differential equations.

The theoretical solution of each system of second order ordinary diff-
erential equations was seen to satisfy a recurrence relation involving matrix
exponential functions which were replaced by Padé approximants. In this way,
the new methods evolved. Analyses showed the methods to be accurate and to
possess good stability properties.

The methods were tested on problems from the literature and were seen

to improve on results which had been reported in other papers.
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Table I: Error constants Cq for the methods developed in §2
Method q Cq
(Padé)
(1,1) 4 -1/6
(0,2) 4 1/12
(1,2) 4 -1/36
(2,2) 6 1/360
2,1 4 1/36
(2,0) 4 7/12
Table II: Maximum errors at time t = 0.02 for Problem 2.1
with h = 0.05, ¢ = 0.00125, r = %
Method X
(Pade¢) 0.1 0.2 0.3 0.4 0.5
(1,1) 0.20(-5) 0.36(-5) 0.60(-5) -0.77(-5) -0.33(-5)
(2,0) 0.18(-5) 0.39(-5) 0.38(-5) -0.30(-5) -0.16(-5)
(2,1) 0.17(-5) 0.35(-5) 0.53(-5) -0.43(-5) -0.10(-5)
(2,2) 0.16(-5) 0.27(-5) 0.49(-5) -0.42(-5) -0.29(-5)
Table I11: Maximum errors at time t = 1.0 f or Problem 2.1
with h = 0.05, =0.005, r=2
Method X
(Padé) 0.1 0.2 0.3 0.4 0.5
(1,1) -0.18(-3) -0.26(-3) -0.24(-3) -0.16(-3) -0.12(-3)
(2,0) -0.17(-3) -0.24(-3) -0.18(-3) -0.45(-4) -0.23(-4)
(2,1) -0.55(-4) -0.11(-3) -0.17(-3) -0.12(-3) -0.84(-4)
(2,2) -0.59(-4) -0.13(-4) -0.18(-4) -0.26(-4) -0.32(-4)
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Table I'V: Maximum errors at time t = 1.0 for Problem 2.1

withh=0.1,£=0.02,r=2

Method X
(Padé) 0.1 0.2 0.3 0.4 0.5
(1,1) -0.29(-3) -0.57(-3) -0.93(-3) -0.11(-2) -0.11(-2)
(2,0) -0.84(-4) -0.22(-4) -0.24(-3) -0.38(-3) -0.40(-3)
2,1) -0.47(-3) -0.48(-3) -0.67(-3) -0.72(-3) -0.99(-4)
(2,2) -0.21(-3) -0.45(-3) -0.35(-3) -0.23(-3) -0.74(-4)
Table V: Maximum relative error moduli at time t = 0.01 for Problem 2.2
Time Method
r
Steps (L1) (0,2) (L,2) (2,0) (2,1) (2,2) AM

005 80  0.35(-6) 0.33(-6) 0.35(-6) 0.35(-6) 0.33(-6) 0.99(-7) 0.19(-5)
0.1 40  034(-6) 035(-6) 0.35(-6) 0.34(-6) 0.33(-6) 0.81(-7) 0.72(-6)
025 16  032(-6) 034(-6) 0.39(-6) 033(-6) 0.32(-6) 0.69(-7) 0.41(-6)

Table VI: Maximum relative error moduli at time t = 0.05 for Problem 3.1

Time Methods
R
Steps AM (2,2)
0.05 100 0.27(-5) 0.87(-6)
0.1 50 0.87(-6) 0.73(-6)

0.25 20 0.40(-6) 0.71(-6)




20

REFERENCES

I. J. Albrecht, "Zum Differenzenverfahren bei parabolischen Differential-
gleichungen", Z. Angew. Math. Mech., 37 (1957), 202-212.

2. C. Andrade and S. McKee, "High accuracy A.D.I, methods for fourth order
parabolic equations with variable coefficients", Int. J. Comp. App. Math.,
3 (1977), 11-14.

3. L. Collatz, "Zur Stabilitéa't des Diff erenzenverfahrens bei der Stabschwingungs
gleichung", Z. Angew. Math. Mech., 31 (1951), 392-393.

4. S.D. Conte, "A stable implicit finite difference approximation to a fourth
order parabolic equation, J. Assoc. Comp. Mach., 4 (1957),202-212.

5. S.D. Conte and W.C. Royster, "Convergence of finite difference solutions to
a solution of the equation of a vibrating rod", Proc. Amer. Math. Soc., 7
(1956), 742-749.

6. S.H. Crandall, "Numerical treatment of a fourth order partial differential
equation", J. Assoc. Comp. Mach., 1(1954), 111-118.

7. J. Douglas, Jr., "The solution of the diffusion equation by a high order
correct difference equation", J. Math. Phys., 35 (1956), 145-151.

8. E.C. Du Fort and S.P. Frankel, "Stability conditions in the numerical
treatment of parabolic partial differential equations, MTAC, 7 (1953),
135-152.

9. D.J. Evans, "A stable explicit method for the finite difference solution
of fourth order parabolic partial differential equations", Comp. J., 8
(1965), 280-287.

10.  G. Fairweather and A.R. Gourlay, "Some stable difference approximations
to a fourth order parabolic partial differential equation", Comp. Math.,
21 (1967), 1-11.

11. D.J. Gorman, Free Vibration Analysis of Beams and Shafts, John Wiley and
Sons, New York, 1975.

12.  A.Q.M. Khaliq and E.H. Twizell, "The extrapolation of stable finite difference
schemes for first order hyperbolic equations”, Intern. J. Computer Math.,

11 (1982), 155-167.

13.  J.D. Lawson and J. L1. Morris, "The extrapolation of first order methods
for parabolic partial differential equations.I", SIAM J. Numer. Anal.,
15 (1978), 1212-1224.

14. M. Lees, "Alternating direction and semi-explicit difference methods for
parabolic partial differential equations", Numer. Math., 3 (1961), 24-47.

15. A.R. Mitchell and D.F. Griffiths, The Finite Difference Method in Partial
Differential Equations, John Wiley and Sons, Chichester, 1980.

16. R.D. Richtmyer, Difference Methods for Initial Value Problems, Interscience,
New York, 1957.

17. E.H. Twizell, "An explicit difference method for the wave equation
with extended stability range, BIT, 19 (1979), 378-383.

18. E.H. Twizell and A.Q.M. Khaliq, "One-step multiderivative methods for

first order ordinary differential equations", BIT, 21 (1981), 518-527.



