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ABSTRACT 
 

A fami ly  of  methods  i s  deve loped  for  the  numer ica l  so lu t ion  of  four th   

o rde r  pa rabo l i c  pa r t i a l  d i f fe ren t i a l  equa t ions  in  one-  and  two-space   

var iables .   The methods are  seen to  evolve from mult ider ivat ive methods  

for second order ordinary differential equations. 

 

        T h e  me t h o d s  a r e  t e s t e d  o n  t h r e e  mo d e l  p r o b l e ms ,  w i t h  c o n s t a n t   

c o e f f i c i e n t s  a n d  v a r i a b l e  c o e f f i c i e n t s ,  w h i c h  h a v e  a p p e a r e d  i n  t h e  

l i t e r a t u r e .  
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1.   ONE   SPACE  DIMENSION 
 
1.1    Introduction 
 
The fourth order parabolic partial differential equation in one space 

variable given by 

0t,xx0,0;0
x
u

t
u

4

4

2

2

><<>μ=
∂
∂

μ+
∂
∂      (1) 

arises in the study of the transverse vibrations of a uniform flexible  

beam (see, for example, Gorman [11]).   The term μ  is the ratio of the  

flexural rigidity of the beam to its mass per unit  length. 

The initial conditions associated with (1) are of the form 

( ) ,xx0;xg)0,x(u 0 ≤≤=       (2) 

                                 ( ) ,xx0;xg)0,x(
t
u

1 ≤≤=
∂
∂              (3) 

and the boundary conditions are given by 

 u(0,t)-f0 ,   u(x,t)=f1; t > 0                     (4) 

        ( ) ( ) 0t:pt,x
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u,pt,0
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u
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∂                           (5) 

In (2),  (3) the functions g0 (x),  g1 (x) are continuous and in (4),  (5)  

the terms f0 ,f1  ,p0 ,p1 are real constants.  

To compute the solution of (1) with (2),  (3),  (4),  (5),  explicit  and  

implicit  finite difference schemes have been proposed by Albrecht [1],   

Collatz [3],  Conte [4], Conte and Royster [5],  and Crandall  [6].  Evans [9]  

derived finite difference methods by first  writing (1) as two simultaneous  

second order parabolic partial differential equations (see also Du Fort  

and Frankel [8],  and Richtmyer [16]).   Explicit  and implicit  finite diff- 

erence methods based on the semi-explicit method of Lees [14] and the high  

order method of Douglas [7] for second order parabolic equations, have been 

formulated for the numerical solution of (1) with (2),  (3),  (4),  (5) by  

Fairweather and Gourlay [10]. 

The explicit method of Collatz [3] frequently needs a large number of  

t ime steps to compute the solution in view of the stabil i ty restriction on 
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the method.  The difference scheme given by Albrecht [1] overcomes the  

stability problem but uses the value of the solution at four time levels  

to compute the solution at a fifth time level,  hence requiring a com-  

plicated starting procedure.  The work of Fairweather and Gourlay [10]  

gives superior numerical results to the methods of Evans [9] and Richtmyer 

[16], but more CPU time is required.  

         In the present paper a family of novel finite difference schemes is  

deve loped  for  the  numer ica l  so lu t ion  of  (1)  wi th  (2) ,  (3) ,  (4) ,  (5) ;  a   

related procedure was adopted by Lawson and Morris [13] for second order 

parabolic equations, by Khaliq and Twizell [12] for first  hyperbolic  

equations and by Twizell [17] for second order hyperbolic equations.  The 

methods developed are shown to have high accuracy and good stability pro-

perties and are tested on problems discussed in the literature by Andrade  

and McKee [2] and Fairweather and Gourlay [10]. 

 

1.2      A recurrence relation 

 

The interval  will  be divided into N+1 subintervals each of width  Xx0 ≤≤

h so that (N+1)h = X and the time variable t  is discretized in steps of  

length  The open regionR =[0 < x < X] .l ×  [t  > 0] and its boundary ∂ R  

consisting of the lines x = 0, x = X, t = 0 are thus covered by a rectangular 

mesh, the mesh points having coordinates (mh,n ) where m = 0,1,...,N+1 and 

n = 0,1,2,. . .  .   The theoretical solution of a difference scheme approx- 

l

imating (1) will  be denoted by  at the mesh point (mh,n ).  n
mU l

Superimposing this grid, and assuming that u is sufficiently often  

differentiable, allows the space derivative in (1) to be approximated by  

the finite difference replacement 

( ) ( ) ( ) ( ) ( ){ } ( )44
4

4

h0t,h2xut,hxu4t,xu6t,hxu4t,h2xuh
x
u

++++−+−−−=
∂
∂ −   (6) 

for x = mh (m = 1,2,. . . ,N).  For m = 1 and m = N, equation (6) introduces  

the points (-h,t)  and (X+h,t) at t ime t,  which are outside the region R. 
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However, the values of u at these points may be written in terms of function 

values in R and on R by using (4),  (5).  

In (5),  is approximated by the usual second order replacement; 

this gives 

22 x/u ∂∂

 

( ) ( ) ( ){ ( 22
2

2

h0t,hut,0u2t,huh
x
u

++−−=
∂
∂ − } )    (7) 

            

at  the boundary points (0,t) and 

( ) ( ) ( ){ ( 22
2

2

h0t,hXut,xu2t,hXuh
x
u

+++−−=
∂
∂ − } )   (8) 

at the boundary points (X,t).   Using (4),  (5),  equations (7),  (8) give 

u(-h,t) =  -  u(h,t) + 2f0 + h2 p0 + O(h4) ,           (9) 

u(X+h,t)= -u(X-h,t) + 2f1  + h2 p1 + O(h4) ,                          (10) 

respectively, and it  is these expressions which will  be used when (6) 

is used with x = h and x = (N-1)h. 
      Consider now the time level t  = n  and apply (1) with (6) to the l

N mesh points at this time level.   This leads to the system of second 

order ordinary differential equations given by 

( ) ,wtua
dt

ud
~~2

~

2

μμ −=         (11) 

w h e r e   T  d e n o t i n g  t r a n s p o s e ,  i s  t h e  

v e c t o r  o f  computed solutions at the N mesh points at t ime t,  A is the  

( ) ( ) ( ) ( ) ,]tU,....,tU,tU[tU T
n21~

=

square matrix of order N given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

−−
−−

−

= −

541
46410

14641
.....

.....
.....

14641
01464

145

hA 4            (12) 
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with eigenvalues 
 

( ){ }[ ] N,...,2,1s;1N2/ssinh16 44
s =+π=λ −                                        (13) 

and  is the vector of boundary values of order N given by ~w

~
w = h- 4 [h2p0 - 2f0 ,  f0  ,  0, . . . ,0 ,  f1  ,  h2 p1- 2f1]T .     (14) 

       Solving (11)  subject  to  the  in i t ia l  condi t ions  (2) ,  (3)  g ives   
the  analyt ica l  so lu t ion   

( ) ( ) ( )

( ) ( ) ,wAgBigtBiexp
2
1

wAgBigBtiexp
2
1wAtu

~
1

~ 1
1

~ 0

~
1

~ 1
1

~ 0~
1

~

⎭
⎬
⎫

⎩
⎨
⎧ +ν−ν−+

⎭
⎬
⎫

⎩
⎨
⎧ +ν+ν+−=

−−

−−−

    (15) 

= √ μ  and B is a matrix such that B2 = A.  It  is  in which √-1,=i ٧
easy to show that (15) satisfies the recurrence relation  

( ) ( ) ( ) ( ) ( )

( ) ( ) ~
1

~
1

~~~

wA2wA}BiexpBi{exp

tUtUBiexpBi(exptU

−− −ν−+ν=

−−ν−+ν−+

ll

llll
                             (16) 

with t  = ,2 ,…. and it  is this relation which will  be used in the  l l
development of the family of algorithms for solving (1) with (2),  (3),   
(4),  (5).   In view of the approximants to the matrix exponential functions 
which will  be used in (16), i t  will  not be necessary to compute ν ,B or 
A- 1 directly. 
 
1.3  Solution at the first  t ime  step  
It  is clear that,  using (15) with t  =  requires knowledge of  which, l ( )l~U

Unlike ,  is not contained explicitly in the initial conditions.  ( )0U~
Writing t  =   in (15) and replacing the matrix exponential functions with  l
their (0,3) Padé approximants leads to 

( ) ( );0w
2
1gA

6
1IgA

2
1IU 4

~
2

~ 1
2

~ 0
2

~ llllll +μ−⎟
⎠
⎞

⎜
⎝
⎛ μ−+⎟

⎠
⎞

⎜
⎝
⎛ μ−=    (17) 

replacing the matrix exponential functions with their (0,5) Padé  
approximants leads to         

( )

( )6
~

22

~ 1
242

~ 0
2422

0w)A
12
1I(

2
1

g)A
120

1A
6
1I(g)A

24
1A

2
1I(U~

lll

llllllll

+μ−μ−

μ+μ−+μ+μ−=
  (18)  

and using the (0,7) Padé approximants leads to 
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( )
~ 0

3632422
~ g)A

720
1A

24
1A

2
1I(U lllll μ−μ+μ−=  

         
( ).0wA

360
1A

12
1I

2
1

gA
5040

1A
120

1A
6
1I

8
~

24222

~ 1
3632422

llll

llll

+⎟
⎠
⎞

⎜
⎝
⎛ μ+μ−μ−

⎟
⎠
⎞

⎜
⎝
⎛ μ−μ+μ−+

   (19) 

 
In. problems having time dependent boundary conditions f0,  f1 ,  p0,  p1 in  
( 4 ) ,  ( 5 )  a r e  f u n c t i o n s  o f  t  a n d  t h e  v e c t o r   i n  ( 1 7 ) ,  ( 1 8 ) ,  ( 1 9 )  i s   

~
w

evaluated using t =  in the equation l

( ) ( ) ( ) ( ) ( ) ( )[ ] .tf2tph,tf,0,....,0,tf,tf2tphhw T
11

2
1000

24
t~

−−= −    (20) 

The complete algorithm for computing the numerical solution of  
(1) with (2),  (3),  (4),  (5) may thus be listed as follows:  

(i)   the starting vector  is obtained from equation (2);  
( )

~
0~

g0U =

(ii)   the starting vector  is obtained using (17), (18) or (19) 
( )l

~
U

      depending on the required accuracy;  

(i i i)  with t  = l ,    2 l , . . . ,  is obtained from the recurrence relation  
( ),tU~ l+

        (16) in which the matrix exponential functions are replaced by  
         suitable approximants.  
       It  is these matrix functions which will  be replaced by Padé approx- 
imants in  §2;  in this way the novel family of methods will  evolve. 
 
2.   THE NUMERICAL METHODS 
 
2.1     Development and analyses of the novel methods 
 
Using the (1,1) Padé approximants to the matrix exponential functions 
in (16) leads to a difference scheme written in matrix form as 

  )A
4
1I( 2lμ+ ~U −μ−=+ )t(U)A

2
1I2()t( ~

2ll )A
4
1I( 2lμ+ ~U );(ow)t( 4

~
2 lll +μ−−  (21)      

for problems with time dependent boundary conditions this becomes 

)A
4
1I( 2lμ+ ~U + 2

4
1

lμ
l+t~w  

          = )A
2
1I2( 2lμ− ~U (t)- 2

2
1

lμ   w
t~ - )A

4
1I( 2lμ+ ~U )t( l− - .)(Ow

4
1 4

t~
2 ll

l
+μ

−
 (22) 

The principal part of the local truncation error of the method  
based on the (1,1) Padé approximant is given by 

   .
t
u

6
1

x
uh

6
1

4

4
4

6

6
22

∂
∂

−
∂
∂

μ ll       (23) 
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T h e  c o m p o n e n t  6

6
22

x
uh

6
1

∂
∂

μ l  o f  ( 2 3 )  i s  r e l a t e d  t o  t h e  s p a c e  d i s c r e t i z a t i o n  

a n d  t h e  u s e  o f  ( 6 )  i n  ( 1 ) ;  t h i s  c o m p o n e n t  w i l l  b e  p r e s e n t  i n  a l l  m e t h o d s  

der ived  by  us ing  Padé  approximants  to  the  mat r ix  exponent ia l  func t ion  in  

(16) .  The  o the r  componen t  o f  (23)  i s  r e la ted  on ly  to  the  Pade  approx imant  

c h o s e n  f o r  u s e  i n  ( 1 6 ) .  T h e  p r i n c i p a l  p a r t  o f  t h e  l o c a l  t r u n c a t i o n  e r r o r  
of any method arising from the use of the (m,k) Padé approximant in ( 1 6 )  
w i l l  t h u s  h a v e  the form 

    ,
t
uC

x
μh

6
1

q

q
q

q6

6u
22

∂
∂

+
∂
∂

ll      (24) 

where  the  C q   (q  =  m+k+1 for  m+k odd,  and  q  =  m+k+2 for  m+k even)  a re  

e r r o r  c o n s t a n t s  a n d  w e r e  d e r i v e d  b y  t h e  a u t h o r s  i n  [ 1 8 ] ;   t h e s e  e r r o r  

c o n s t a n t s  a r e  r e p r o d u c e d  i n  T a b l e  I .  A l l  P a d é  a p p r o x i m a n t s  e x c e p t  t h e  

(0 ,1 ) ,  (1 ,0 )  approx imants  l ead  to  cons i s t en t  methods .  

 

S t a b i l i t y ,  i n  t h e  c o n v e n t i o n a l  s e n s e  o f  a  p e r t u r b a t i o n  o f  t h e  i n i t i a l  

da ta  no t  growing  in  magni tude  as  t ime increases ,  i s  ana lyzed  by  r e c o u r s e  

t o  t h e  s t a b i l i t y  e q u a t i o n  o f  t h e  m e t h o d .  

 

Not ing  tha t  the  (m,k)  Padé  approx imant  to  the  mat r ix  exponen t ia l  
func t ion  exp )Bi( lν  has  the  fo rm 

      (25) )(0)Bi(P)]Bi(Q[)Bi(exp 1km
k

1
m

++− +νν=ν llll

where Pk ,  Qm are  polynomials  of  degrees  k ,  m,  respect ively,  with   

Po  ( lνi B)   I  and Q≡ o ( lνi B)  = I  ( I  is  the  ident i ty  matr ix  of  order  N),  t h e  

s t a b i l i t y  e q u a t i o n  h a s  t h e  f o r m  

m
2
1

m Q)i(Q λνl ξλνλν−+λν−λν−ξλν )}i(Q)i(P)i(Q)i(P{)i( 2
1

m
2
1

k
2
1

m
2
1

k
22

1

lllll  

         + )i(Q 2
1

m λνl .0)i(Q 2
1

m =λν− l      (26) 

I n  ( 2 6 ) ,  λ  i s  a n  e i g e n v a l u e  o f  A  a n d  ξ  i s  t h e  a m p l i f i c a t i o n  f a c t o r  o f   

t h e  m e t h o d .  T h e  n o n - N e u m a n n  n e c e s s a r y  c o n d i t i o n  f o r  s t a b i l i t y  | ξ | ≤  1  

h e n c e  r e q u i r e s  

.)i(Q)i(Q2)i(Q)i(P)i(Q)i(P 2
1

m
2
1

m
2
1

m
2
1

k
2
1

m
2
1

k λν−λν−≤λνλν−+λν−λν llllll    (27) 
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In  the  case  of  the  method based  on  the  (1 ,1)  Padé  approximant ,  the  
s t a b i l i t y  e q u a t i o n  i s  

 0)
4
11()

2
12()

4
11( 222 =λμ++ξλμ−−ξλμ+ lll     ( 2 8 )  

a n d  i t  e a s y  t o  s h o w  t h a t  ≤ξ  1  f o r  a n y  r =  0 s i n c e  ≥2h/l ,0>μ  
.0>λ  the scheme is therefore unconditionally stable and hance c o n v e r g e n t .  

 Other Padé approximants are now used in the recurrence relation given 
by (16) .  Using the (0 ,2)  Padé approximants  the resul t ing f ini te  difference 
method for problem with time dependent boundary condition may be written 
i n  v e c t o r  f o r m a s  

   .)t(uw)t(U)AI2()t(U ~ t
2

~
2

~ llll −+μ−μ−=+

T h i s  i s  t h e  e x p l i c i t  s c h e me  o f  C o l l a t z  [3 ]  fo r  w h i c h  C 4  =
12
1 . T h i s  me t h o d  

h a s  a n  e r r o r  c o n s t a n t  w h i c h  i s  t h e  s a me  o r d e r  a s  t h a t  o f  ( 2 2 ) a n d ,  s i n c e  

i t  i s  e x p l i c i t ,  i t  w o u l d  a p p e a r  t o  b e  a  mor e  d e s i r a b l e  me t h o d  t o  u s e .  I t  

i s ,  however ,  s tab le  on ly  for  r
2
1

2

1

μ
≤ and may thus  be  used  only  wi th  smal l  

t i me  s t e p s .  

 Turning now to the (1 ,2)  Padé approximant ,  i t s  use  in  (16)  yields  the 

method 

  
l

lll
+

μ++μ+
t~

2
~

2 w
9
1)t(U)A

9
1I(  

         =  .w
9
1)t(U)A

9
1I( w

9
7)t(U)A

9
7I2(

t~
2

~
2

t~
2

~
2

l
lllll

−
μ−−μ+−μ−μ+  (30)  

F r o m T a b l e  I  i t  i s  s e e n  t h a t  C 4  =  - 1 / 3 6 ,  s o  t h a t  me t h o d  e n j o y s  b e t t e r  

a c c u r a c y  t h a n  ( 2 2 )  o r  ( 2 9 ) .  I t ’ s  f i r s t  d r a w b a c k  i s  t h a t  i t  i s  a n  i mp l i c i t  

me t h o d ;  f u r t h e r mo r e ,  i t s  s t a b i l i t y  e q a t i o n  

  0)
9
11(

9
1)

9
72()

9
11( 2222 =λμ++ξλμ−−ξλμ+ lll  

y i e l d s  t h e  r e s t r i c t i o n   3 6 / 5  w h i c h ,  s i n c e  ≤λμ 2l λ  <  1 6 h - 4  ,  l e a d s  t o  t h e  

s tab i l i ty  condi t ion  r   3√5/ (10√≤ μ ) .  Thus ,  a l though i t  may be used wi th  

s l i g h t l y  b i g g e r  t i m e  s t e p s  t h a n  ( 2 9 ) ,  i t s  g a i n  i n  a c c u r a c y  a n d  t h e  f a c t  

t h a t  i t  i s  i mp l i c i t ,  d o  n o t  ma k e  t h i s  me t h o d  mor e  a t t r a c t i v e  t h a n  ( 2 9 ) ,   

o r  ( 2 2 )  w h i c h ,  t h o u g h  i mp l i c i t ,  i s  u n c o n d i t i o n a l l y  s t a b l e .  
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A  no tab le  improvement  in  the  accuracy  in  t ime  i s  ob ta ined  by  us ing  
t h e  ( 2 , 2 )  P a d é  a p p r o x i m a n t  t o  t h e  m a t r i x  e x p o n e n t i a l  f u n c t i o n s  i n  ( 1 6 ) .  
T h i s  a p p r o x i m a n t  g i v e s  t h e  m e t h o d  

 

  
l

lllll
+

μ+μ++μ+μ+
t~

222

~

2422 w)A
144

1I
12
1()t(U)A

144
1A

12
1I(  

  = 
t~

422

~

2422 w)A
72
1I

6
5()t(U)A

72
1A

6
5I2( llll μ+μ−μ+μ+  

  -   
l

lllll
−

μ+μ−−μ+μ+
t~

422

~

2422 w)A
144

1I
12
1()t(U)A

144
1A

12
1I(  (31) 

for which C6   = 
360
1   (from Table  I).  The stability equation is 

0)
144

1
12
11()

72
1

6
52()

144
1

12
11( 2422242222422 =λμ+λμ++ξλμ+λμ−−ξλμ+λμ+ llllll

from which i t  is  easily verified that  the method is unconditionally stable.  
Squaring the matrix A involves an increase in the number of mesh  

points  a t  each t ime level  used in  the  computa t ion.  This  not ion of  us ing  
a greater number of points at each time level was used by the authors for 
first  order hyperbolic equations in [12] and by Twizell [17] for second  
order  hyperbol ic  equat ions        ;  Mitchel l  and Griff i ths[15]  discussed 
 the concept briefly for second order parabolic equations. 

The same order of accuracy in time may be achieved by deleting the 
t e rms  in  A 2  f rom (31) ;  th i s  g ives  

 
l

lll
+

μ++μ+
t~

2

~

2 w
12
1)t(U)A

12
1I(  

=
l

lllll
−

μ−−μ+−μ−μ+
t~

2

~

2

t~

2

~

2 w)A
12
1)t(U)A

12
1I(w

6
5)t(U)A

6
5I2(  (31a) 

fo r  which  C 6  =  - 1 /240 .  Equa t ion  (31a)  i s ,  in  fac t ,  an  app l ica t ion  o f  
Numerov's linear multistep method for the numerical solution of second order 
ordinary systems and the finite difference scheme result ing from it  for the 

so lu t ion  o f  (1 )  i s  s t ab le  on ly  fo r  r  2
1

}8/3{ μ≤ .   Equa t ion  (31a)  i s  c l ea r ly  
ve ry  use fu l  when  small time steps may be taken. 

The (2, 1) Padé approximant leads to the implicit method 

      
)t(~

422

~

2422 w)A
36
1I

9
1()t(U)A

36
1A

9
1I(

l
lllll

+
μ+μ++μ+μ+  

   = 
t~

2

~

2 w
9
7)t(U)A

9
7I2( ll μ−μ−  

   -  
)t(~

422

~

2422 w)A
36
1I

9
1()t(U)A

36
1A

9
1I(

l
lllll

−
μ+μ−−μ+μ+ .  (32) 
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T h i s  m e t h o d  h a s  C 4  =  
36
1  a n d  i s  u n c o n d i t i o n a l l y  s t a b l e .  I t s  t h e o r e t i c a l  

accuracy  near  the  boundary  i s  no t  second  o rder  in  t ime :   however ,  th i s  
does  no t  d iminish  the  overa l l  accuracy  of  the  d i f fe rence  scheme (Mi tche l l  
and Griff i ths  [15;pp.112-116,121-125]  ) .  Provided suff ic ient ly  small  t ime 
s teps  may  be  t aken ,  i t  may  be  adv i sab le  to  de le te  the  t e rms  in  A 2  f rom 
(32) .  The method then becomes ident ical  to  (30) ,  which has  error  constant  
the same magnitude as (32) and which is obviously more economical than (32) 
i n  r e l a t i o n  t o  s t o r a g e  r e q u i r e m e n t s .  
 

Using the (2,0) Padé approximant to the matrix exponential  functions 
in (16) gives the implicit scheme 
 

 
l

lll
−

μ++μ+
t~

42222 wA
4
1)t(U)A

4
1I(  

  = 
l

lllll
−

μ−−μ+−μ−μ−
t~

42

~

242

t~

2

~

22 wA
4
1)t(U)A

4
1I(w)t(U)AI2(  (33) 

which has error constant C4  = '7/12. The method is unconditionally stable 
bu t  i t s  l e s s  f avourab le  e r ro r  cons tan t  and  the  fac t  tha t  i t  r equ i res  A 2  ,  
suggest that the method based on the (1,1) Padé approximant is to be preferred. 
I t  will  be seen in subsection 2.2,  however,  to give generally better numerical  
resul ts  than (22)  for  the  problems tes ted.  
 
 
 
2.2 Numerical  resul ts  
 
In order that  the behaviour of the schemes in §2.1 might be observed, they 
were  tes ted  on  two problems f rom the  l i t e ra ture ,  as  fo l lows:  
Problem 2.1      (Fairweather and Gourlay [10]) 

    1x0;0
x
u

t
u

4

4

2

2

<<=
∂
∂

+
∂
∂  

w i th  in i t i a l  cond i t ions  

   1,x0;1)x(2x
12
xu(x,0) 32

−− <<−−=  

 

   1x0;0)0,x(
t
u

−− <<=
∂
∂  

 
a n d  b o u n d a r y  c o n d i t i o n s  
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u(0,t) = u(1,t) = 0   ;    t > 0 , 

   , 0 t ;0)t,1(
x
u)t,0(

x
u

2

2

2

2

>=
∂
∂

=
∂
∂  

T h e  t h e o r e t i c a l  s o l u t i o n  o f  t h e  p r o b l e m  i s  

   sin  cos  ∑
∞

=

=
1s

sat)u(x, πx tπs 22

where as  = -8sin2 
2
1 s /(sπ 5π5) .  Here,  u(x,t)  is  infinitely,  often differentiable 

with respect to both x and t  and the methods developed in §2 may be used. 

Following Fairweather and Gourlay [10], the increments h, l  were given 

the values h = 0.05, l = 0.00125 (giving r = 
2
1 ) and the solution computed  

for  t  =  0 .02.  The errors  using the methods based on the (1 ,1) ,  (2 ,0) ,  (2 ,1) ,  

(2,2) Padé approximants are shown in Table II  for x = 0.1(0.1)0.5,  the  

resul ts  for  x  = 0.6(0.1)0.9 being symmetr ical  to  those for  x  = 0.4(-0.1)0.1.  

The increments h, l  were also given the values h = 0.05,   = 0.005 (giving  l

r  =  2)  and  h  =  0 .1 ,  =  0 .02  (g iv ing  r  =  2) .  The  e r rors  us ing  the  same four  

methods for x = 0.1(0.1)0.5 at time t = 1.0 are shown in Tables III, IV. 

l

Comparison of  Tables  I I ,  I I I ,  IV with Tables  I ,  I I I  of  Fairweather  and 

Gour lay  [10]  shows tha t  the  new methods  based  on  the  (1 ,1) ,  (2 ,0) ,  (2 ,1)  

Padé approximants give comparable accuracy to the high order correct method 

of Douglas (adapted and used in Fairweather and Gourlay [10]) while the new 

method based on the (2,2) Padé approximant gives better accuracy.  All  the 

new methods were found to give much better results than the methods of Evans 

[9],  Richtmyer [16] and the semi-explicit  method [10;p.9] because of their  

super ior  local  t runct ion errors .   The numerical  resul ts  given by the method 

based on the (2,2) Padé approximant were found to improve as the mesh ratio 

r  inc reased .  Th i s  i s  due  to  the  fac t  tha t  the  componen t  o f  the  p r inc ipa l  

par t  of  the  local  t runcat ion error  due to  the (2 ,2)  Padé approximant  is  much 

smaller than the component due to the space discretization.  Thus,  the best  

improvement is obtained using this method with large mesh ratios. 
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Problem 2 .2      (Andrade  and  McKee [2] )  
T h i s  i s  a  v a r i a b l e  c o e f f i c i e n t  p r o b l e m  a n d  i s  g i v e n  b y  

 0t,1x
2
1,0t)μ(x,;0

x
ut)μ(x,

t
u

4

4

2

2

><<>=
∂
∂

+
∂
∂  

  
120
x

x
1)t,x(

4

+=μ  

with initial conditions 

               ,1x
2
1;0)0,x(u ≤≤=  

  ;
120
x1)0,x(

t
u 5

+=
∂
∂ 1x

2
1

≤≤  

 
and boundary conditions 

  ,0t;tsin}120/)
2
1(1{)t,

2
1(u 5 >+=  

  ,0t;tsin)
120

1(1{)t,1(u >+=  

 ,0t;tsin)
2
1(

6
1)t,

2
1(

x
u 3
2

2

>=
∂
∂  

 ,0t;tsin
6
1)t,1(

x
u
2

2

>=
∂
∂  

The theoretical solution is 

   .tsin
120
x1)t,x(u

5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  

In  o rder  to  p rov ide  a  compar i son  wi th  Andrade  and  McKee  [2 ] ,  the  
m a x i m u m  a b s o l u t e  r e l a t i v e  e r r o r s  w e r e  o b t a i n e d  a t  t i m e  t  =  0 . 0 1  u s i n g   

  ( i )   h  =  0 .05  ,  l   =  0 .000125  (80  t ime  s teps )  g iv ing  r  =  0 .05 ,  
 ( i i )   h  =  0 .05  ,  l   =  0 .00025  (40  t ime  s teps )  g iv ing  r  =  0 .1 ,   
( i i i )   h  =  0 .05  ,  l   =   0 .000625  (16  t ime  s teps )  g iv ing  r  =  0 .25 ;   

t h e  r e s u l t s  a r e  g i v e n  i n  T a b l e  V .  
 
It is clear from Table V that the novel methods maintain the same order  

o f  accuracy ,  and  the i r  s tab i l i ty  proper t ies ,  fo r  var iab le  coef f ic ien t  p roblems 
as  wel l  as  cons tan t  coef f ic ien t  p roblems (see  Mi tche l l  and  Gr i f f i ths  [15] ) .  
The novel methods of §2 all show an improvement on the method of Andrade  
and McKee [2]  for  this  problem. I t  i s  not iced that  the  numerical  resul ts  
reported by Andrade and McKee [2] relating to the usual explicit  method for 
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fourth order parabolic equations can be considerably improved.  This explicit  

method is,  in fact ,  the method based on the (0,2) Padé approximant and is,  

therefore ,  a  member of  the family of  methods discussed in  the present  paper .  

The  numer ica l  resu l t s  re la t ing  to  th i s  expl ic i t  method  are  conta ined  in  

Table  V and  are  ac tua l ly  be t te r  than  the  resu l t s  ob ta ined  by  Andrade  and  

McKee [2] for their method (denoted by AM in Table V). The numerical resu l t s  

obtained by the present  authors  using the (0 ,2)  expl ic i t  method are  bet ter  

than those for the method based on the (1,1) Padé approximant.  This is  in 

accordance with the magnitudes of the time components of the principal par t s  

o f  the  loca l  t runca t ion  e r rors  l i s ted  in  Table  I .  None  of  the  th ree  mesh  

rat ios  used in  the numerical  experiments  violated the s tabi l i ty  cr i ter ia  of   

the  methods based on the (0 ,2) ,  (1 ,2)  approximants .  

 

3.   TWO SPACE DIMENSIONS 

3,1    A recurrence relation 

It  was seen in §2 that  the method based on the (2,2) Padé approximant gives 

r ise  to  accurate  numerical  resul ts  for  problems in  one space dimension.   I t  

is,  therefore, worthwhile developing the method for use with problems in two 

space dimensions.  

To that end, consider the test problem 

  0t,Ly,x0;
yx

V,0uV
t
U

2

2

2

2
24

2

2

><<
∂
∂

+
∂
∂

==+
∂
∂   (34) 

w i t h  i n i t i a l  c o n d i t i o n s  

,),(;),()0,,( 0 Ω∈= yxyxgyxu     ( 3 5 )     

        ,Ωy)(x,;y)(x,gy,0)(x,
t
u

1 ∈=
∂
∂     ( 3 6 )  

where   i s  the  in te r ior  of  the  square  bounded  by  the  l ines  x  =  0 ,  y   =  0 ,  Ω

x = L, y = L and g0(x,  y),  g1  (x,  y) are continuous functions of x,  y;    the 

associated boundary condi t ions are  taken to  be of  the form 

,0t,Ly0;0)t,y,L(u)t,y,0(u >≤≤==   (37)   

,0t,Lx0;0)t,L,x(u)t,y,x(u >≤≤==   (38)   
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,0t,Lx0;0)t,L,x(
x
u)t,0,x(

x
u

2

2

2

2

>≤≤=
∂
∂

=
∂
∂   (39) 

  ,0t,Ly0;0)t,y,L(
x
u)t,y,x(

x
u

2

2

2

2

>≤≤=
∂
∂

=
∂
∂

  (40) 

T h i s  p r o b l e m  a r i s e s  i n  t h e  t r a n s v e r s e  v i b r a t i o n  o f  a  s i m p l y  s u p p o r t e d  

un i fo rm square  p la te  wi th  each  s ide  o f  l eng th  L .  

Both intervals  0   L  and 0 ≤≤ x ≤≤ y  L are  divided into N+1 sub-  

i n t e r v a l s  e a c h  o f  w i d t h  h ,  s o  t h a t  ( N + 1 ) h  =  L ,  a n d  t h e  t i m e  v a r i a b l e  

t  i s  i n c r e m e n t e d  i n  s t e p s  o f  l e n g t h  l .   A t  e a c h  t i m e  l e v e l  t  =  n  l

(n = 0,1,2, . . . )  the square Ω  together with i ts  boundary Ω∂  have been super- 

imposed by a square mesh with N2  points within Ω   and N+2 equally spaced 

points along each edge of ∂ .  Ω

The  so lu t ion  u (x ,  y ,  t )  o f  (34)  i s  to  be  de te rmined  a t  each .  g r id  po in t  

( k h , m h , n )  i n   x  [ t > 0 ]  w h e r e  k ,  m  =  1 , 2 , . . . , N  a n d  n  =  0 , 1 , 2 , . . . .  T h e  

t h e o r e t i c a l  s o l u t i o n  o f  t h e  n o v e l  me t h o d ,  t o  b e  b a s e d  o n  t h e  ( 2 , 2 )  P a d é  

approx imant ,  a t  the  mesh  po in t  (kh ,mh,n l )  wi l l  be  deno ted  by   ;   t he  

l Ω

n

~
U

vec to r   of  such  so lu t ions  wi l l  be  o rdered  in  the  fo rm n

~
U

n

~
U  =     

                                                                               ( 41 )  

Tn
N,N

n
,N,2

n
N,1

n
2,N

n
2,2

n
2,1

n
1,N

n
1,2

n
1 )U....,U,U;...;U,....,U,U;U,...,U,U(

where T denotes transpose. 

Rep lac ing  the  space  de r iva t ives  in  (34)  wi th  the  usua l  cen t ra l  d i f f -

e r e n c e  r e p l a c e m e n t s ,   b e c o m e s  u4∇

u4∇ = h - 4 [ u ( x + 2 h , y , t )  +  u ( x , y + 2 h , t )  +  u (x-2h ,y , t )  + u(x,y-2h,t) 

       + 2 {u (x+h, y+h, t) + u (x-h, y+h, t) + u (x-h, y-h, t) + u (x+h, y-h, t)} 

-  8 { u (x+h, y,t) + u (x,y+h,t) + u (x-h, y,t) + u (x ,y-h, t) } 

+ 20 u (x, y, t)] + 0(h2) .        (42) 

T h e n ,  a p p l y i n g  ( 3 4 )  w i t h  ( 4 2 )  t o  e a c h  o f  t h e  N 2  i n t e r i o r  m e s h  p o i n t   

i n  t h e  o r d e r  i n d i c a t e d  b y  ( 4 1 ) ,  a n d  u s i n g  t h e  b o u n d a r y  c o n d i t i o n s  ( 3 7 ) ,  

( 3 8 ) — a n d  ( 3 9 ) ,  ( 4 0 )  t o  e l i m i n a t e  e x t e r i o r  m e s h  p o i n t s  a s  i n  § 2 — l e a d s  

t o  a  s y s t e m  o f  s e c o n d  o r d e r  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  o f  t h e  f o r m  
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    )t(Us
dt

)t(Ud
~2

~

2

−=       (43) 

where S is a sparse, square matrix of order N2 given by  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

DCDE
EDCDE

EDCDE
EDCD

EDC

hs

.....
.....

.....4    ,         (44) 

 
and C,D,E are square matrices  of order N such that 

  

,

1981
0

82081

182081

....

.....

.....

182081

018208

1819

c

⎥
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⎢
⎢

⎣
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−

−−

−−

−−

−−

−
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⎦
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⎣

⎡
∩

=

⎥
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⎥
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⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢

⎣

⎡

−

−

−
−

=

1
0

1
.

.
.

1
1

E,

82
0

282
...

...
...

0282
28

D
. 

 
The eigenvalues of S are given by 

.N1,2,...,sr,;}
1)2(N

sπsin
1)2(N

rπ{sin16hγ 2224
s r, =

+
+

+
= −     (45) 

S o l v i n g  ( 4 3 ) ,  t h e  s o l u t i o n  i s  s e e n  t o  s a t i s f y  t h e  r e c u r r e n c e  relation  
 

~~~~
0)t(U)t(U)}Fiexp()Fi({exp)t(U =++−+−+ llll     (46) 
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where  i  =  +√ -1  and  F  i s  a  mat r ix  such  tha t  F 2  =S .  The  s t a r t ing  vec to rs  

(0) ,  )  a re  requi red  for  (46) ;  (0)  =  g
~
U

~
U ( l

~
U 0  i s  ob ta ined  f rom (35) ,  and   

( )  is  obtained from (17),  (18) or (19) with A replaced by S,   and  

ob ta ined  f rom (35) ,  (36) .  For  the  method  based  on  the  (2 ,2 )  Padé  

approximant,  which has an 0( ) component in the local truncation error  

~
U l

~
w ≡

~
0

1~0~
gg

6l
( see  Table  I ) ,  the  s ta r t ing  vec tor  ( )  i s  ob ta ined  f rom (18) .  

~
U l

3.2    The novel algorithm and its analysis 
Using  the  (2 ,2)  Padé  approximant  in  (46)  leads  to  the  a lgor i thm wr i t ten  
in vector form as 

 )t(U )S
144

1S
12
1I(

~

242 lll +++  

         .)t(U)S
144

1S
12
1I()t(U)S

72
1S

6
5I2(

~

242

~

242 lllll −++−+−=   (47) 

The  p r inc ipa l  pa r t  o f  the  loca l  t runca t ion  e r ro r  o f  (46)  i s  

   
n

m,k
6

6
6622

t
u

360
1uh

6
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∇ ll  

a t  the  g r id  po in t  (kh ,mh,nℓ )  and  the  s t ab i l i ty  equa t ion  i s  g iven  by  

0)
144

1
12
11()

72
1

6
52()

144
1

12
11( 2422422242 =γ+γ++ξγ+γ−−ξγ+γ+ llllll  

where γ  i s  an  e igenva lue  o f  S .  The  method  i s  thus  uncondi t iona l ly  s t ab le ,  
since γ  > 0 from (45). 

Implement ing  the  a lgor i thm in  the  form (46)  requi res  the  square  of  
the  mat r ix  S .  An  a l t e rna t ive  approach  i s  to  use  complex  a r i thmet ic  and  
to  implement  the  method  by  us ing  the  complex  sp l i t t ing  
 

 )t(U}S
6
1I)521{(U}S

12
1I)3i1(

2
1{

~

2*

~

2 ll −+=+−  

 *

~

2

~

2 U}S
12
1I)521(

2
1{)t(U}S

12
1I)3i1(

2
1{ lll −+−=++−  

             .)t(U}S
12
1I)3i1(

2
1{

~

2 ll −++   (48) 

Th i s  sp l i t t ing  p rese rves  the  accuracy  and  s t ab i l i ty  o f  the  a lgor i thm bu t  
requires  more computer  t ime to  implement .  

The need to square the matrix S is  also obviated by writ ing (46) in the 
abbreviated form 
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 ,0)t(U)S
12
1I()t)(S

6
5I2()t(U)S

12
1I( 222 =−++−−++ lllll  

which has local truncation error with principal part 

   
n

m,k
6

6
6622

t
u

240
1uh

6
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−∇ ll  

a t  the  mesh  poin t  (kh ,mh,n l )  and  s tab i l i ty  in te rva l  0  <   r  .3
4
1

≤  This  

implicit ,  abbreviated form of the novel method has the same order of 

accuracy as (46) and may be used with small mesh ratios. 

3.3    Numerical results 

To examine  the  behaviour  of  the  new method,  i t  was  tes ted  on  the  fo l lowing  

variable coefficient problem given in Andrade and McKee [2].  

Problem 3.1 

 ,0t,1,y,x0;0
y
u)t,y,x(b

x
u)t,y,x(a

t
u

4

4

4

4

2

2

><<=
∂
∂

+
∂
∂

+
∂
∂  

where 

   ,)
8
t

8
y

2
x(1

2π
1t)y,a(x,

222

2 ++−=  

   ,)
8
t

8
y

2
x(1

2π
1t)y,b(x,

222

2 ++−=  

with  in i t i a l  condi t ions  

,1y,x0;0)0,y,x(u ≤≤=     

   ,1yx,0;sinπisinπiπ,0)y,(x,
t
u

≤≤=
∂
∂  

and boundary  conditions  given by   (37),   (38),   (39),  (40)  with L  = 1. The 
theoretical solution is 

    .sinπisinπisinπit)y,u(x, =

The  solution was  computed  at  time  t  =  0.05  using  

  (i) h =  0.1 ,    = 0.0005 (100 time steps) giving r = 0.05,  l

 (ii) h =  0.1  ,    l = 0.001    (50  time  steps), giving r  = 0.1,  

(iii) h =  0.1  ,   = 0.0025   (20 time  steps), giving  r  = 0.25; l

the maximum relative errors at time t  = 0.05 are given in Table VI. 



17 

       The resul ts  were determined using the new algori thm in the form (46)  

and  a l so  in  i t s  complex  fac to r  fo rm (47) .  The  resu l t s  were  the  same  fo r      

the  two formula t ions ,  bu t  the  complex  fac tor  form used  three  t imes  as  much 

CPU t ime  as  the  rea l  fo rm (46) .  The  mat r ix  S  was  augmented  in  an   

obv ious  way  to  accommodate  the  func t ions  a (x ,y , t ) ,  b (x ,y , t )  and  to  t ake  

account  o f  the  miss ing  mixed  der iva t ive .  

The numerical  resul ts  show that  the  new algori thm performs wel l  with  

va r iab le  coef f i c ien t  p rob lems ,  main ta in ing  the  p red ic ted  accuracy  and  

s t a b i l i t y  p r o p e r t i e s .  L i k e  t h e  o n e  d i m e n s i o n a l  c a s e  d i s c u s s e d  i n  § 2 ,  t h e    

new algorithm shows an improvement over the method of Andrade and McKee [2]   

for problems in two dimensions. 

 

4.  CONCLUSIONS 

In  th i s  paper ,  fami l ies  of  numer ica l  methods  have  been  deve loped  for  the  

s o l u t i o n  o f  f o u r t h  o r d e r  p a r a b o l i c  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  i n  o n e -  

and two-space var iables .  

In  deve loping  the  methods ,  the  space  der iva t ives  in  the  d i f fe ren t ia l  

equat ions were replaced by the famil iar  f ini te  difference replacements ,     

thus  reduc ing  the  par t ia l  d i f fe ren t ia l  equa t ions  to  sys tems of  second order   

o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  

The theoret ical  solut ion of  each system of  second order  ordinary diff-   

erent ia l  equa t ions  was  seen  to  sa t i s fy  a  recur rence  re la t ion  involv ing  mat r ix  

exponential functions which were replaced by Padé approximants.  In this way,  

the new methods evolved. Analyses showed the methods to be accurate and to  

possess  good s tab i l i ty  proper t ies .  

The methods were tested on problems from the literature and were seen 

to improve on results which had been reported in other papers. 
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T a b l e  I :   E r r o r  c o n s t a n t s  C q  f o r  t h e  m e t h o d s  d e v e l o p e d  i n  § 2  
 

Method 
(Padé) 

q Cq

(1,1) 4 -1/6 
(0,2) 4   1/12 
(1,2) 4 -1/36 

(2,2) 6    1/360 
(2,1) 4 1/36 
(2,0) 4 7/12 

 
T a b l e  I I :   M a x i m u m  e r r o r s  a t  t i m e  t  =  0 . 0 2  f o r  P r o b l e m  2 . 1  

              w i t h  h  =  0 .05 ,   =  0 . 0 0 1 2 5 ,  r  =  l
2
1  

 
Method 
(Padé) 

 
0.1 

 
0.2 

x 
0.3 

 
0.4 

 
0.5 

(1,1) 0.20(-5) 0.36(-5) 0.60(-5) -0.77(-5) -0.33(-5) 

(2,0) 0.18(-5) 0.39(-5) 0.38(-5) -0.30(-5) -0.16(-5) 

(2,1) 0.17(-5) 0.35(-5) 0.53(-5) -0.43(-5) -0.10(-5) 

(2,2) 0.16(-5) 0.27(-5) 0.49(-5) -0.42(-5) -0.29(-5) 

 
Table III: Maximum errors at  t ime t  = 1.0 f or Problem 2.1 

with h = 0.05,   = 0.005,   r  = 2 
 

Method 
(Padé) 

 
0.1 

 
0.2 

x 
0.3 

 
0.4 

 
0.5 

(1,1) -0.18(-3) -0.26(-3) -0.24(-3) -0.16(-3) -0.12(-3) 

(2,0) -0.17(-3) -0.24(-3) -0.18(-3) -0.45(-4) -0.23(-4) 

(2,1) -0.55(-4) -0.11(-3) -0.17(-3) -0.12(-3) -0.84(-4) 

(2,2) -0.59(-4) -0.13(-4) -0.18(-4) -0.26(-4) -0.32(-4) 
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Table IV: Maximum errors at t ime t = 1.0 for Problem 2.1  

                        with h = 0.1, ℓ = 0.02, r = 2 

 

Method 

(Padé) 

 

0.1 

 

0.2 

x 

0.3 

 

0.4 

 

0.5 

(1,1) -0.29(-3) -0.57(-3) -0.93(-3) -0.11(-2) -0.11(-2) 

(2,0) -0.84(-4) -0.22(-4) -0.24(-3) -0.38(-3) -0.40(-3) 

(2,1) -0.47(-3) -0.48(-3) -0.67(-3) -0.72(-3) -0.99(-4) 

(2,2) -0.21(-3) -0.45(-3) -0.35(-3) -0.23(-3) -0.74(-4) 

 

Table V: Maximum relative error moduli at t ime t = 0.01 for Problem 2.2 

 

Time 

 

  Method     

r 

Steps (1,1) (0,2) (1,2) 

 

(2,0) (2,1) 

 

(2,2) AM 

0.05 80 0.35(-6) 0.33(-6) 0.35(-6) 0.35(-6) 0.33(-6) 0.99(-7) 0.19(-5) 

0.1 40 0.34(-6) 0.35(-6) 0.35(-6) 0.34(-6) 0.33(-6) 0.81(-7) 0.72(-6) 

0.25 16 0.32(-6) 0.34(-6) 0.39(-6) 0.33(-6) 0.32(-6) 0.69(-7) 0.41(-6) 

 

 

Table VI: Maximum relative error moduli at t ime t = 0.05 for Problem 3.1 

 

Time Methods 
R 

Steps AM (2,2) 

0.05 100 0.27(-5) 0.87(-6) 

    0.1 50 0.87(-6) 0.73(-6) 

0.25 20 0.40(-6) 0.71(-6) 
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