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Abstract
Knowledge Graph Mining with Latent Shape Graphs

Knowledge graphs are graph-structured knowledge bases that have shown to be of great
value in many Artificial Intelligence applications in academia and industry alike. They are
typically generated automatically from un-/semi- structured data sources. The increasing
popularity of knowledge graphs has been limited by multiple challenges given the size and
quality of the information they contain. This thesis explores the relationship between the
quality of knowledge graphs and machine learning technologies used to discover and ex-
tract knowledge from them. We focus on quality in terms of completeness and consistency.

Knowledge graphs provide the flexibility required for representing knowledge at differ-
ent scales in open environments such as the Web. However, their versatility makes them
have an ever-changing schema, which also makes them hard to summarize and under-
stand their content. Moreover, they are typically never complete—even in very specific
domains—and their consistency with respect to a given schema or ontology cannot be guar-
anteed without the corresponding validation. That lack of an accurate schema has shown
to be problematic in use cases where applications might need to rely on the fact that data
satisfy a set of constraints.

The contribution of this thesis is twofold. Firstly, we propose a scalable data-driven
method to exhibit the actual (latent) shape of graph data. We introduce an algorithm for
mining relation cardinality bounds and building so-called shapes that exhibit important as-
pects of the structure (or topological information) of entities and relations in a knowledge
graph. Latent shapes also allow us to formalise an approximate algorithm for validating
the structure of knowledge graphs. Secondly, we exploit the latent shapes of entities and
relations to enhance the performance of machine learning models aimed to predict missing
links and complete knowledge graphs. We use local patterns information and graph-based
feature models in the Bioinformatics domain for improving the prediction of adverse drug
reactions achieving new state-of-the-art results. Finally, we extend latent feature models by
encoding the cardinality of relations as a regularisation term used to learn semantic embed-
dings that improve the precision of downstream prediction tasks in benchmark datasets.
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(Nov. 2016). Apparatus and a system for calculating similarities between drugs and using the
similarities to extrapolate side effects. US Patent App. 15/087,902

• Roger Menday, Luca Costabello, Jürgen Umbrich, Pierre-Yves Vandenbussche, Emir
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1.1 Motivation

T HE functioning of the human brain is still largely mysterious for scientists. Our brain
allows us to store (an enormous amount of) data and perform fast reasoning on top

of it in almost no time. Thanks to our brain we are able to recognise entities (e.g., people,
locations, objects) in images and text, and identify the relationships that can exist between
entities according to our domains of knowledge. Although our knowledge about how the
brain works is highly incomplete, we have developed several technologies that try, to some
extent, to emulate its operation.

Artificial intelligence (AI) is a cross-disciplinary approach to understanding, modelling,
and creating intelligent machines (systems). The aim of AI research and applications is,
e.g., to understand speech or images, automate routine tasks (reducing chances of human
error), speed up medicine and basic scientific research. These problems may be easy for
(expert) people but hard for computers. First approaches in AI projects tried to hard-code
the informal knowledge that a person has on any topic. However, such knowledge must
be painstakingly handcrafted from scratch and it is mostly subjective and intuitive, which
makes it difficult to formalise. These approaches are known as knowledge base approaches to
artificial intelligence (Firebaugh, 1988).

Decades after with the added factor of massification of the Internet and the Web, we
have an increasing number of knowledge bases created in academia and industry alike,
generated automatically or manually, and comprising general or domain-specific knowl-
edge. The availability of such a large amount of knowledge has attracted the attention of

1
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AI researchers towards training machines to acquire their own knowledge, by generalising
from experience, what is known as machine learning. Machine learning became an answer to
the problem of requiring people to manually encode rules to make decisions. With machine
learning those rules can be extracted automatically from a pile of data. In machine learning
algorithms, objects are represented by features and mapped to an output, e.g., mapping the
well-known Iris flowers to their specie (setosa, versicolor, virginica) using their representa-
tion in terms of sepal and petal length, and width (Fisher, 1936).

While the popularity and use cases in which knowledge bases can be used are increasing
in both academic and industrial environments, creating or maintaining complete knowl-
edge bases is still one of the main challenges for users and the community. Knowledge
bases are never complete for large and open domains—and rarely complete even for very
specific domains—making them error-prone and hard to exploit, let alone to reason with
them (Motro, 1989; Drumond, Rendle, and Schmidt-Thieme, 2012; Razniewski, Suchanek,
and Nutt, 2016). Since knowledge bases find wide applications in areas of life sciences,
natural language processing, and financial sector, among others, the task of completion of
knowledge bases has attracted much attention recently in the literature (Socher, D. Chen,
Manning, et al., 2013; Gardner and Mitchell, 2015; Q. Wang, B. Wang, and L. Guo, 2015;
Q. Wang, J. Liu, Y. Luo, et al., 2016). In this thesis, we focus on designing and applying
machine learning techniques to deal with certain knowledge bases completion tasks.

Methods to help the exploitation of knowledge bases usually represent them as graphs,
where entities are nodes connected by edges that represent relationships between entities,
resulting in a so-called knowledge graph (Nickel, K. Murphy, Tresp, et al., 2016; Paulheim,
2017; Q. Wang, Mao, B. Wang, et al., 2017). While it is easy in some cases to identify relevant
features in relational data and use them to apply machine learning algorithms, in knowl-
edge graphs it becomes difficult to do the same due to the graph topology. Say you have a
knowledge graph that contains information about articles and authors, you can easily think
of relations such as title, authors, publisher and year of publication to be used as features.
However, if a knowledge graph contains information about more abstract or complex do-
mains such as life sciences, e.g., describing drugs and adverse drug reactions, it is harder
to think in relevant features if one is not a domain expert. Nevertheless, even if one does
not have an explicit schema at hand, there is always a latent schema inherently satisfied by
the data (Hogan, 2018). An example is the cardinality information, which has shown to be
a powerful tool to understand the data and its structure (Liddle, Embley, and Woodfield,
1993) even by non-expert users, but this information is almost never explicit in knowledge
graphs (Mirza, Razniewski, Darari, et al., 2017; Muñoz and Nickles, 2017).

Approaches applying machine learning over knowledge graphs roughly fall into two
categories: (a) observed feature models, and (b) latent feature models. Observed fea-
ture models generate graph-based features from a knowledge graph, such as subgraphs,
connecting paths and neighbourhood information, which can be easily interpretable (Lao,
Mitchell, and Cohen, 2011; Gardner and Mitchell, 2015; Ristoski and Paulheim, 2016b). On
the other hand, latent feature models embed entities and relations into a latent vector space
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learnt by minimising a loss function, and perform inference in that space (Bordes, Weston,
Collobert, et al., 2011; Nickel, Tresp, and Kriegel, 2011). The former category of models
is more suited for use cases that require interpretability of the predictions (e.g., in life sci-
ences), while the latter models are seen as black boxes usually harder to interpret (Ribeiro,
S. Singh, and Guestrin, 2016; Zilke, Loza Mencía, and Janssen, 2016). Yet latent feature mod-
els for knowledge graphs have shown to be more effective than observed feature models in
several tasks (Nickel, K. Murphy, Tresp, et al., 2016; Q. Wang, Mao, B. Wang, et al., 2017),
despite the fact that their assumption of a “complete” knowledge graph is never met.

Recent works in knowledge representation using symbolic logic and automated reason-
ing in knowledge graphs (Bordes, Usunier, García-Durán, et al., 2013; B. Yang, Yih, X. He,
et al., 2015; Nickel, K. Murphy, Tresp, et al., 2016; Trouillon, Welbl, Riedel, et al., 2016) have
proposed approaches where deep learning (Goodfellow, Bengio, and Courville, 2016), a
subset of machine learning, is used to discover the mapping from representation to output
along with the representation itself. In other words, the representation of the entities and re-
lations in a knowledge graph is learnt during the training process. This approach is known
as representation learning (Goodfellow, Bengio, and Courville, 2016). Thus, AI systems using
knowledge graphs require little intervention and easily adapt to new tasks. Representation
learning methods achieve remarkable better performance results than handcrafted features,
but they usually require much larger amount of annotated data for training. They learn
low-dimensional representations—so-called vector representations or embeddings—of entities
and relations from the relational information contained in the knowledge graph.

Although the representation learning methods are trained to preserve as much informa-
tion as possible compared with the input knowledge graph, the resulting embeddings are
known to break some expected properties (Rocktäschel, S. Singh, and Riedel, 2015; Min-
ervini, Costabello, Muñoz, et al., 2017). Latent feature approaches require of large datasets
to learn good representations about entities and relations in a knowledge graph, and they
tend to be inaccurate for relations with sparse data. Rocktäschel, S. Singh, and Riedel (2015)
introduce a novel training paradigm for learning embeddings that combine matrix factori-
sation with first-order logic formulæ, thus, learning embeddings that satisfy logical back-
ground knowledge. Likewise, other works have proposed approaches to enhance embed-
dings learning by introducing logical rules (S. Guo, Q. Wang, L. Wang, et al., 2016), con-
straints (Minervini, Costabello, Muñoz, et al., 2017; Ding, Q. Wang, B. Wang, et al., 2018),
and neighbourhoods information (D. Q. Nguyen, Sirts, L. Qu, et al., 2016), among others.
(We refer the reader to Q. Wang, Mao, B. Wang, et al. (2017) for a survey of approaches
learning knowledge graph embeddings with background knowledge.) However, there are
still missing approaches that consider structural elements of knowledge graphs like the car-
dinality of relations.

To summarise, knowledge graphs are graph-structured knowledge bases, rich in infor-
mation, where relationships or connections between entities are first-class citizens. The
structure of knowledge graphs is not always explicitly stated and, thus, most machine
learning algorithms ignore and do not considered the topology of data. Therefore, there
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is a primary need for methods that expose the structure or shape that knowledge graphs
data naturally exhibit in order to inform and bootstrap learning methods in novel areas
such as Bioinformatics. If available such kind of information could be incorporated during
the learning of distributed representations and used to improve the quality of downstream
tasks over knowledge graphs (e.g., the completion task). Consequently, one would like to
develop methods that incorporate the structure factors found in knowledge graphs to im-
proving their completeness and representation of knowledge in real-world scenarios.

In the following, we formulate the research questions that we find are key to address
current gaps in the state-of-the-art of knowledge graphs mining, namely, how to expose
their schema structure and how to use such information in machine learning.

1.2 Research questions

The research carried out in this thesis is guided by four research questions defined around
the study of consistency and completeness quality dimensions in knowledge graphs. The
problem that we seek to address in this thesis is how to automatically extract structural
information (shapes) from knowledge graphs, which can then be used to improve the per-
formance of machine learning algorithms trying to complete the knowledge graph itself.
More specifically, in this thesis we investigate the following research questions:

Research Question 1 What type of patterns are able to expose the inherent shape information
(topology) of a given knowledge graph, and how these patterns can be extracted efficiently when no
schema or ontology is available?

One of the oldest knowledge graphs is Cyc (Lenat, 1995) (started in 1984), attempting
to assemble a comprehensive ontology for common sense knowledge describing how the
world works, and thus enabling AI applications with human-like common sense reason-
ing. The level of description and curation required to build Cyc is enormous and hard to
mimic—the initial estimated build time of Cyc was 5 years (350 person-years), but the effort
has been prolonged and estimated already to be over 900 person-years back in 2009 (Sar-
jant, Legg, Robinson, et al., 2009). As this example shows, knowledge graphs are naturally
schema-less giving them huge flexibility, but creating them requires a huge effort for defin-
ing their structure and constraints. To assess consistency, data generators only state basic
and simple constraints that roughly cover entity types, possible relationships between enti-
ties, and their data types. Other type of constraints are rarely stated and left to be defined
by the end-users (data consumers) depending on their specific use cases. Thus, it is hard
for data consumers to know what is the shape of the information contained in a knowledge
graph beforehand.

The most simple and effective way to understand the structure of a knowledge graph
is analysing the relationships between entities, that is, edges or links in the graph (Hayes
and Gutiérrez, 2004; Lao and Cohen, 2010; Gutiérrez, Hurtado, Mendelzon, et al., 2011;
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Fernández, Martínez-Prieto, Fuente Redondo, et al., 2018). Although understanding the
constraints at a relationship level is a critical aspect of data and knowledge modelling, the
extraction of such constraints has not received much attention in knowledge graphs, mainly
due to the complex structure and the semantics used to interpret the data (as we will se
in Section 2.1.3). Therefore, there is a clear need for methods that unveil the structural pat-
terns that entities and relationships naturally follow in a knowledge graph. We hypothesise
that a notion of relation cardinality could help unveiling the structure of entities in the data.
Such patterns could then be easily encoded using popular constraint languages and used
by data consumers to determine the suitability of a knowledge graph for a given use case.
This question focuses on finding scalable approaches for extracting cardinality constraint
patterns in different sized datasets.

Research Question 2 How to validate large-scale and noisy knowledge graphs using an ap-
proximate and more granular approach?

RQ (1) assumes that no schema is provided for a knowledge graph, and thus its quality
is most likely unknown. However, once a schema is defined, data consumers may require
to know whether all the input data in a knowledge graph satisfies the given schema. This
becomes challenging for large-scale knowledge graphs considering that, in practice, most of
the validations are done using inference engines and ontology languages (such as the Web
Ontology Language, OWL (Motik, Peter F. Patel-Schneider, and Parsia, 2012)), which have
scalability issues. Traditionally, validation requires to take the closed-world and unique
name assumptions; however, OWL is arguably not meant for that. The W3C community
has been working on a few option to tackle this gap, and in 2017 released two popular alter-
natives: Shapes Constraint Language (SHACL) and Shape Expressions (ShEx). Even after
data users define schemas using a constraint language, the consistency of knowledge graphs
it is not static (i.e., cannot be ensured all the time), considering that knowledge graphs are
dynamic and constantly enriched with new information. The only route to ensure that the
data actually satisfy the restrictions is validating the data against a schema.

Strict and full validation of a knowledge graph is expensive and approximate solutions
could help users to save a considerable amount of resources, i.e., computing time and mem-
ory. Assuming that knowledge graphs contain several link patterns, it may be argued that
by knowing the validity of a small set of entities, the in-/ validity value can be passed to
other entities with similar local patterns—directly related to the constraints in a schema.
For instance, if one knows that entity e1 is valid against a schema S, then we may assume
that a very similar entity e2 should also be valid w.r.t. S. As the structure of knowledge
graphs may be quite complex, it has to be ensured that whatever are the patterns used for
validation, they have to be (a) easy to extract in large graphs, and (b) dynamic to adapt to
new triples that may be added in the future.

Research Question 3 How to influence the performance of machine learning algorithms try-
ing to complete a knowledge graph using cardinality and subgraph patterns present in the same
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knowledge graph?

Knowledge graphs are largely sparse and contain only positive information. The knowl-
edge graph completion task deals with the automatic understanding of the structure of
knowledge graphs to predict missing relationships or links. Due to the many applications
of this task it has quickly become one of the main research areas in statistical relational learn-
ing (Getoor and Taskar, 2007). As we have mentioned previously, several large-scale open
domain knowledge graphs are available on the Web such as Wikidata, DBpedia, NELL,
among others (Vrandecic and Krötzsch, 2014; Mitchell, Cohen, Jr., et al., 2018). Among
them, there is a good number of domain-specific knowledge graphs that aim to achieve a
better completeness in a more bounded domain of knowledge like Bioinformatics (Dumon-
tier, Callahan, Cruz-Toledo, et al., 2014; Law, Knox, Djoumbou, et al., 2014; Kim, Thiessen,
Bolton, et al., 2015; Banda, Evans, Vanguri, et al., 2016). Knowledge graphs have different
characteristics (e.g., size, license, etc.) and complex structure. Because of the previous and
knowledge graphs’ schema-less nature it is not trivial for machine learning models to ex-
ploit their content. Here we expect to build upon RQs (1) and (2) and naturally think of
using the latent shapes in a knowledge graph to improve the performance of data mining
and knowledge discovery algorithms, which are usually fed with relational data.

The challenge is then how to encode heterogeneous and complex graph data into fea-
tures for machine learning. A few approaches have been proposed for combining semantic
data and machine learning (Ristoski and Paulheim, 2016b). Features generated from the
structure of knowledge graphs are easy to interpret by humans and help to validate predic-
tion results. In particular, we would like to explore the Bioinformatics domain and discover
missing links between drugs and side effects.

Research Question 4 How to incorporate cardinality constraints as additional structural in-
formation into the process of learning latent representations from knowledge graphs?

Link patterns studied in the above research questions can be categorised as observable
patterns in the graph data, e.g., a path connecting two entities (Lao and Cohen, 2010). Re-
cent works have shown, however, that latent feature models have the ability to learn better
representations for entities and relations in a knowledge graph yielding better prediction
results, but at the cost of interpretability (Nickel, Tresp, and Kriegel, 2012). The derived la-
tent representations (a.k.a. vectors or embeddings) cannot be directly mapped to observable
patterns in the data, thus, may not have a direct meaning for end users.

Knowledge graphs express data as a directed graph with labelled edges (relations) be-
tween nodes (entities). However, since entities and relations do not have their own embed-
dings, the core potential of reasoning and inference in knowledge graphs cannot be fully
exploited (Socher, D. Chen, Manning, et al., 2013; S. Guo, Q. Wang, L. Wang, et al., 2016;
Minervini, Costabello, Muñoz, et al., 2017; W. Chen, Xiong, Yan, et al., 2018). In addition to
our contributions to traditional machine learning, we also aim to identify the benefits of us-
ing structural information in the learning of latent representations for a knowledge graph.
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Figure 1.1: Overview of the proposed research and contributions of this thesis.

More specifically, we will attempt to enforce constraints satisfied by the knowledge graphs
over the learnt embeddings. For example, if in the knowledge graph an entity has a relation
of cardinality n, we expect this constraint to be satisfied by the embeddings.

Given the applicability of representation learning in knowledge graphs, contributions
towards the improvement of latent representations become very relevant and applicable to
different downstream tasks. This raises a sub-question, that aims to measure the effects of
constraining the embeddings in the link prediction task over benchmark datasets.

4.1 What are the effects in the performance of the link prediction task when using cardinality
constraints as regularisation in knowledge graph embedding models?

1.3 Contributions

Through this thesis, we combine several concepts from Graph Theory (e.g., paths, sub-
graphs), Databases (e.g., constraints, validation), and Machine Learning (e.g., classification,
link prediction). We combine these concepts and define important aspects of the structure
of knowledge graphs that can then be used in data mining and knowledge discovery. Fig-
ure 1.1 provides an overview of the concepts, research questions, and contributions made.

From our study of the four research questions stated above, we do a set of technical
contributions. In particular, this thesis makes the following technical contributions:

• We provide an up-to-date overview of languages to define schemas for knowledge
graphs (Section 3.1).



8 | Chapter 1. Introduction

• We review approaches to inferring schema information from knowledge graphs (Sec-
tion 3.2).

• We present an extensive review of the knowledge graph completion problem (Sec-
tion 3.3) and the statistical relational learning models applied to the completion
problem: graph-based feature approaches (Section 3.4.1) and latent feature ap-
proaches (Section 3.4.2).

• We introduce a principled approach using SPARQL query language for mining cardi-
nality bounds from knowledge graphs, where cardinalities unveil the inherent struc-
ture of data, and show how to boost its performance by up to 40x using Apache
Spark (Section 4.3).

• We show that local patterns for entities in the form of subgraphs or neighbourhoods
can be efficient to extract and used to propose a novel approximate validation for large
knowledge graphs using machine learning (Section 5.3).

• We present a novel approach to discovering adverse drug reactions using knowledge
graphs and machine learning (Section 6.3).

• We empirically show the benefits of considering knowledge graphs for knowledge
discovery in Bioinformatics obtaining new state-of-the-art results (Section 6.6).

• We present a novel regularisation term to encode cardinality information of relations
into loss functions used to train knowledge graph embedding models (Section 7.3).

• We empirically analyse the benefits of our novel cardinality regulariser on state-of-
the-art knowledge graph embedding models and benchmark datasets (Section 7.4).

1.4 Thesis structure

The content of this thesis is organised in four sequential parts that we illustrate in Figure 1.2
and summarise as follows.

Part I: Background. We dedicate the first part to present all fundamentals required to un-
derstand the content of this thesis. First, due to the different fields where knowledge bases,
and most recently knowledge graphs, have been used we differentiate between semantic
and non-semantic knowledge graphs from a data modelling perspective.

Following the scope defined in this introduction, in Chapter 2 we will review the fun-
damentals of machine learning and problems related to the quality analysis of knowledge
graphs. We discuss the related work on two important quality dimensions for knowledge
graphs, namely, consistency and completeness. Both of these dimensions have huge impli-
cations in tasks related to data mining and knowledge discovery in knowledge graphs.

Both consistency and completeness have their own challenges, but they are intertwined
with one another in knowledge graphs. In Chapter 3, we explore the aspects related to
knowledge graph mining and its connections with these quality dimensions. We review the
main problems and approaches studied in literature around the topics of schema languages
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Part III: Knowledge Graphs Mining Applications

Part IV: Conclusions

Part II: Latent Shapes in Knowledge Graphs

Part I: Background

Chapter 1. 
Introduction

Chapter 2. 
Fundamentals
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Chapter 4. 
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Chapter 5. 
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Summary and Outlook
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Figure 1.2: Thesis structure by parts and chapters.
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and schema inference in knowledge graphs. We then review existing approaches for com-
pletion of knowledge graphs using statistical relational learning models.

Part II: Latent Shapes in Knowledge Graph. In this part, we address RQ (1) and the prob-
lem of missing schema for knowledge graphs, and propose data-driven approaches to mine
patterns that could be used to build a schema for a given knowledge graph. To this end,
in Chapter 4 we push forward the use of cardinality constraints to exhibit the natural struc-
ture of knowledge graphs, and propose a mining algorithm using the SPARQL query lan-
guage. However, our SPARQL approach has some limitations that we overcome by propos-
ing an efficient mining algorithm based on the well-known divide-and-conquer method,
which delivers equivalent results in a more efficient way—using less time and memory.
Once the important parts of the structure of a knowledge graph are made explicit, they can
be used to define latent shapes (shapes graphs), and to check consistency of new content.

In Chapter 5, we address our RQ (2) and propose a novel approximate solution for
validating the content of a knowledge graph using machine learning algorithms, when
accuracy-efficiency trade-offs are allowed—errors are accepted in order to speed up vali-
dation. We follow the assumption that entities following similar structural patterns should
share the validity state w.r.t. a given shapes graph. We test our assumption and approach
using knowledge graphs from the Web Data Commons project, which contain noisy triples.

Part III: Knowledge Graph Mining Applications. This part is dedicated to the applications
of structural patterns learnt from knowledge graphs in two areas. First, in Chapter 6 we
address RQ (3) and present an application in the Bioinformatics domain, encoding entity
patterns as observable features used to boost the performance of classical machine learn-
ing algorithms. More specifically, we validate a cardinality based propositionalisation for
entities that can be used to feed information from knowledge graphs to different learning
algorithms. The specific problem we target is the prediction of adverse drug reactions using
a knowledge graph that we build by merging information about drugs, proteins, and side
effects from different sources. We evaluate our approach using existing benchmarks and
compare against several machine learning models obtaining new state-of-the-art results.

Second, in Chapter 7, we study the use of cardinality information in recently introduced
neural representation learning models for knowledge graphs. Neural link prediction mod-
els aim to jointly learn a scoring function to score facts and the distributional representa-
tion (a.k.a. embeddings) of entities and relations in the knowledge graph by minimising a
loss function. Since the learnt embeddings do not respect schema information—cardinality
more specifically—we propose a regularisation term to enforce these patterns during train-
ing; hence, addressing RQ (4). For the evaluation of RQ (4.1), we use standard benchmark
datasets derived from Freebase, YAGO, and WordNet databases to predict missing link.

Part IV: Conclusion. We dedicate the last part, consisting of Chapter 8, to conclude this
thesis by summarising our findings from the previous three parts. We then list the limita-
tions of the proposed approaches and discuss possible research avenues for the future of
knowledge graph mining.
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In this chapter, we will lay out the main concepts used throughout this thesis, namely,
knowledge bases and knowledge graphs. We pay special attention to the quality dimen-
sions of completeness and consistency that have attracted considerable attention given the
applicability of knowledge graphs in artificial intelligence problems. We review the defini-
tion of Semantic Web knowledge bases and how they have been interpreted by practitioners
and researchers. We then review the recent concept of relational knowledge graphs, which
correspond to a recently popular view over knowledge bases under the lenses of graph the-
ory. The graph view is maybe the most important characteristic of knowledge graphs that
provides great flexibility and has been welcomed by different communities that found hard
to adopt the previous Semantic Web solutions. Despite the fact that knowledge graphs are
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interpreted as graphs, they have certain particularities that make their interpretation even
more complex than simple graphs. We identify some of these particularities and discuss
their relation with the completeness and consistency dimensions of data quality. These two
dimensions of quality have been tackled using machine learning techniques that provide
high-performance solutions and opportunities for dealing with the uncertainty found in
most knowledge graphs. Finally, we present a brief overview of machine learning and deep
learning frameworks relevant in the context of this thesis.

2.1 Knowledge bases

A knowledge base (KB) is a set of statements that describe the knowledge about the truths of
the actual world plus a set of constraints that describe statements that must be true in all
possible worlds and statements that ought to be true (in all possible worlds) (Reiter, 1986;
Dignum and Riet, 1991). This definition assumes that the knowledge of the world may be
incomplete and that knowledge bases may contain temporal information. A knowledge
base differentiates between facts and constraints. Sometimes facts are also seen as con-
straints, e.g., the following statement “all Irish citizens live in Ireland” may seem to be a
general fact, but that does not make it a constraint. Some day an Irish citizen might decide
to move outside of Ireland, which would make the statement false. On the other hand, there
are constraints that are always true and constraints that ought to be true (Dignum and Riet,
1991). Dignum and van de Riet provide a clear example for this:

(a) All people have an age which is non-negative, and

(b) All people that borrow a book must return it (within 3 weeks).

The first constraint is clearly always true, whilst the second may be violated.
Together knowledge bases and inference engines were originally considered as the build-

ing blocks of expert systems, which are known as the first knowledge-based systems in
Artificial Intelligence. A knowledge base stores structured and unstructured data using
a flexible schema—and thus differs from the more common term database—to represent
facts about the world. The facts in a knowledge base are fed to an inference engine that
can reason about those facts applying logical rules for deducing new facts (information) or
identifying inconsistencies (Hayes-Roth, 1983). Unlike databases, the structure of a knowl-
edge base is richer and equivalent to a theory in First-Order logic or an ontology, and de-
fines the concepts and relationships used to describe and represent a domain. A Descrip-
tion Logics knowledge base is a pair (T ,A), where T (or T-Box) is the set alignments of
classes and properties (i.e., schema), similar to object-oriented classes, and A (or A-Box)
is the set of instances (materialised types) of those classes (i.e., data). Knowledge bases
focus mainly on the A-Box than on the T-Box, henceforth, we regard them as A-Box and
ontologies as T-Box. Knowledge bases are one of the most (if not the most) important
component of the Semantic Web (Berners-Lee, J. Hendler, and Lassila, 2001) providing the
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knowledge exchange part.1 “The Semantic Web provides a common framework that allows
data to be shared and reused across application, enterprise, and community boundaries”
(https://www.w3.org/2001/sw/). The vision of the Semantic Web is to convert the tradi-
tional Web from a Web of Document into a Web of Data, where we do not only have docu-
ments and links between them, but typed entities (e.g., Alan_Turing of type Person, Galway
of type Location) and relations between entities (e.g., bornIn, studiedAt) available on the Web.
One of the main ideas behind the Semantic Web was to bring the structure and provide a
well-defined meaning to Web pages. Such “meaning” could then be used by software appli-
cations to enable computers and people to cooperate and unleash endless possibilities—the
data in Web pages would not only be visible but could also be understood.

This framework builds upon several technologies interconnected in what is called the
Semantic Web Stack. At the bottom of this stack we find one of the fundamental standards for
data modelling in the Semantic Web, the Resource Description Framework (RDF) (Cyganiak,
Wood, and Lanthaler, 2014) used for describing Web resources and their relationships. RDF
allows to make statements about resources using expressions of the form subject–predicate–
object, known as triples. The subject denotes the resource, and the predicate expresses the
relationship between the subject and the object. Objects can be resources or string literals.

An ontology defines the vocabulary of concepts and relations in a knowledge base. On-
tologies consist of: (i) a set of properties, which are binary relations between subject resources
and object resources; (ii) a set of classes, where elements of a class are known as instances
of that class; and (iii) the possible constraints on the properties and classes. For instance,
rdfs:subClassOf, rdfs:domain, rdfs:range, and rdf:type are properties in Item i; while
schema:Country, foaf:Person, and dbo:SportsClub are classes in Item ii that can be used
to state the class of an instance using the rdf:type property, e.g., (Chile, rdf:type, schema
:Country) (Arenas, Gutiérrez, and Pérez, 2009).2 Additionally, one could state constraints
like “an instance of the class Parent is who has at least one relation hasChild with an instance
of class Person.”

Next, we present a more formal definition of Semantic Web knowledge bases, and the
common assumptions adopted for their interpretation either locally (e.g., by agents) or glob-
ally (e.g., in the World Wide Web). For a thorough description of the Semantic Web Stack,
we refer the readers to the W3C standards documentation (https://www.w3.org/2001/sw/).

2.1.1 Semantic Web knowledge bases

Knowledge bases in the Semantic Web are represented using the Resource Description
Framework (RDF) data model, therefore they are also called RDF graphs. We define a Se-
mantic Web Knowledge Base following Arenas, Gutiérrez, and Pérez (2009).

1http://bit.ly/TheSemWeb Archived version of the Scientific American article, May 2001 by Tim Berners-
Lee, James Hendler and Ora Lassila.

2Henceforth, we will use abbreviations such as rdfs, rdf, schema, foaf, or dbo to refer to vocabulary
namespaces. A full list of these mappings is available at http://prefix.cc/.

https://www.w3.org/2001/sw/
https://www.w3.org/2001/sw/
http://bit.ly/TheSemWeb
http://prefix.cc/
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Definition 2.1

Let R be the set of entities (resources), B the set of blank nodes, P the set of predicates,
and L the set of literals. A finite knowledge baseK is a set of triples, sayK = {(s, r, o)i}mi=1,
where each (s, r, o) ∈ (R∪B)×P × (R∪B ∪L). In each (s, r, o), s denotes the subject, r
denotes the relation predicate, and o denotes the object. The setsR, B, and L are infinite
and pair-wise disjoint.

Figure 2.1 presents an small example of a Semantic Web knowledge base with the separation
between ontology and instance data. Graphically, each triple (s, r, o) is represented by a
labelled edge s r−−→o. In the definition of RDF, the set of edge labels can be a non-empty
intersection with the set of node labels. This differentiates a Semantic Web knowledge base
from a graph in the classical sense (Arenas, Gutiérrez, and Pérez, 2009).

We also define some auxiliary functions as follows:

• pred(K, τ) = {r | ∃s, o (s, r, o) ∈ K ∧ (s, rdf:type, τ) ∈ K} returns the set of predicates
appearing with instances of entity type τ ;

• proj (K, s, r) = {(s, r, o) | ∃o (s, r, o) ∈ K} returns the triples in K whose projected
subject is s and predicate is r; and

• sameAsPairs(K) = {(s, o) | ∃ s, o (s, owl:sameAs, o) ∈ K} as the function that returns
all pairs of equivalent entities but defined using a different naming, e.g., U.S. and
United_States_of_America.

Note that the predicate owl:sameAs is used in most cases to represent equality, but other
predicates could also be used for the same purpose.

Among the most popular Semantic Web knowledge bases are: DBpedia (Auer, Bizer,
Kobilarov, et al., 2007) project that extracts structured content from articles in Wikipedia;
Freebase (Bollacker, R. P. Cook, and Tufts, 2007) a collaborative and community generated
knowledge base comprising structured data from different sources; Wikidata (Vrandecic,
2012) a collaborative knowledge base supporting Wikipedia with factual information; and
YAGO (Suchanek, Kasneci, and Weikum, 2007), an open source knowledge base automati-
cally generated from Wikipedia and other sources.

Semantic Web knowledge bases require of certain characteristics that make them suit-
able for open environments such the Web. They inherit two main characteristics from on-
tology languages and description logics, namely, the non-unique name assumption and the
open-world assumption, which influence how we can interpret and imply knowledge.

2.1.2 Unique name assumption

The unique name assumption (UNA) is a simplifying assumption made in some ontology
languages and description logics. It entails that two different names always refer to differ-
ent entities in the world (Russell and Norvig, 2010). On the one hand, the Web Ontology
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UCC

rdf:typerdf:type

swrc:studiesAt
schema:address

Figure 2.1: Example Semantic Web knowledge base with basic information about people.

Language (OWL) (Motik, Peter F. Patel-Schneider, and Parsia, 2012) default semantics does
not adopt the UNA, thus two different constants can refer to the same individual (entity
resource). This is a desirable behaviour in an environment such as the Web, where reach-
ing an agreement for labelling entities is infeasible (Horrocks and Tessaris, 2002). On the
other hand, validation checking approaches in RDF usually adopt a closed-world assumption
(CWA) with UNA, i.e., inferring a statement to be false on the basis of failure to prove it,
and if two entities are named differently they are assumed to be different entities (Bosch,
Acar, Nolle, et al., 2015).

To deal with this, the Shape Constraint Language (SHACL) defines the so-called UNA 2.0,
which is a simple workaround where all entities are treated as different, unless explicitly
stated otherwise by owl:sameAs (or equivalent) property. From a practical point of view, the
CWA is also a desirable feature for data mining algorithms when considering the semantics
of Semantic Web knowledge bases, avoiding misinterpretations of the data.

Some properties and patterns in knowledge graphs are highly sensible to the adoption
of UNA, e.g., cardinality. Figure 2.2 (left) shows an example where the adoption of classical
UNA will lead to a count of five different entities (i.e., ex:A, ex:B, ex:C, ex:D, ex:E), and
ex:A would have cardinality one for the property ex:p1. While when adopting UNA 2.0
(Figure 2.2, right) these counts change: now we have four different entities (i.e., ex:A, ex:B,
ex:C, ex:E), and the cardinality of ex:p1 in ex:A increases to 2. Here, we call rewriting the
process of applying UNA 2.0 to a previously unnormalised knowledge base.
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owl:sameAs

ex:p1 ex:p2 ex:p1 ex:p1
ex:p2

ex:p1

rdf:type
ex:Aex:C1 ex:D

ex:Eex:Cex:B

rdf:type

ex:C1

ex:Eex:Cex:B

ex:A

rdf:type

Rewriting

Figure 2.2: Example of UNA 2.0 as defined in SHACL.

2.1.3 Interpretation of knowledge bases

In knowledge representation, there are a few ways to interpret what it is known to be true
or what not. In general, no single person or agent can have complete knowledge about
the world. Only in cases where the person or agent has complete control over the infor-
mation (e.g., the domain is very constrained) we may say that everything can be known.
This shows a direct relationship between the interpretation of a knowledge base and its
completeness. A knowledge base can be interpreted in different ways according to their
completeness (Reiter, 1977; Minker, 1982; Levy, 1996; L. A. Galárraga, Teflioudi, Hose, et
al., 2013; X. Dong, Gabrilovich, Heitz, et al., 2014; Razniewski and Nutt, 2014; Razniewski,
Suchanek, and Nutt, 2016). In the following, we describe the most common assumptions to
interpret a knowledge base.

Open-World Assumption (OWA). This assumption says that the truth value of a statement
may be true irrespective of whether or not it is in the knowledge base. Commonly, knowl-
edge bases are interpreted under the OWA because they miss facts that hold in the real
world, thus are incomplete (Reiter, 1977). It is also a desirable behaviour for collabora-
tive environments to support the creation and addition of new knowledge as statements,
e.g., when adding a new entity or integrating two or more knowledge bases. Because of
OWA, we cannot tell whether a knowledge base is complete or not given a query. For in-
stance, if we only know the facts (Aidan, bornIn, Ireland) and (Aidan, fatherOf , Aoife), it is
unknown whether Aoife was also born in Ireland even though her father was. A complete-
ness statement for knowledge bases under OWA could only be possible if we have access
to a hypothetical-ideal knowledge base which allows to infer all true statements.

Closed-World Assumption (CWA). This assumption is the opposite of the OWA and says
that statements that are true are also known to be true, and statements not present in the
knowledge base (and that cannot be inferred from it) are false (Reiter, 1977). Under this
assumption, a knowledge base is complete and contains all the facts that it attempts to
model, usually within a fixed world such a specific topic or domain. By interpreting a
knowledge base under CWA we can ensure that the knowledge base is always complete
for all queries. For instance, if we only know the facts (Aidan, bornIn, Ireland) and (Aidan,
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fatherOf , Aoife), we also know that Aoife was not born in Ireland because that fact is not in
the knowledge base. Compared with OWA, CWA is too restrictive and used only when
the knowledge base is known to be complete (e.g., small domain), or when the knowledge
base is known to be incomplete but that is enough to answer queries. Some authors have
proposed extending the framework of the Semantic Web to get the benefits of Semantic
Web but still allow forms of CWA and negation as failure (NAF) (see Grimm and Motik
(2005), Horrocks, Parsia, Patel-Schneider, et al. (2005), Sengupta, Krisnadhi, and Hitzler
(2011), and Patel-Schneider (2015), among others). However, adding CWA and NFA poses
new issues and requirements, such as more powerful query languages and modifications
to the original framework, that do not nicely fit the goal of the Semantic Web. Yet the
CWA assumption is partially favourable and desirable for use cases such as data validation
and knowledge discovery. Since in such cases, approaches require to have access to all the
knowledge available.

However, in practice, a knowledge base can be complete for some entities/relations,
while it is known to be incomplete for others.

Partial Closed-World Assumption (PCWA). This is an intermediate ground between OWA
and CWA. PCWA was first introduced in Motro (1989), where queries were used to de-
scribe the complete parts of a database introducing what is known as partially complete
databases.3 This assumption says that if a knowledge base contains one value for a subject–
relation pair, then we fall into CWA and the knowledge base contains all values for that
given subject and relation (Motro, 1989; Levy, 1996; L. A. Galárraga, Teflioudi, Hose, et al.,
2013; Razniewski and Nutt, 2014; Razniewski, Savkovic, and Nutt, 2016). However, if it
is not known any value for the subject–relation pair, we cannot say anything—we fall into
OWA. Clearly, CWA and PCWA look similar; however, PCWA is more cautious making
judgements only if an entity has a value for a given relation. Intuitively, PCWA is espe-
cially well suited for functional relations, where an entity can have at most one object (e.g.,
identifiers).

In L. A. Galárraga, Teflioudi, Hose, et al. (2013), PCWA is used to generate negative
examples for a rule mining system, but they refer to it as Partial Completeness Assumption
(PCA). Likewise, in X. Dong, Gabrilovich, Heitz, et al. (2014), PCWA is used to generate neg-
ative examples during the development of Google’s Knowledge Vault project—a Web-scale
system for probabilistic knowledge fusion, but still the authors refer to it as Local Closed-
World Assumption (LCWA).

Example 2.1 shows examples of interpreting a knowledge base using the different as-
sumptions just introduced.

3Motro (1989) also introduced the notion of incorrect databases which contain facts that do not hold in the
real world.
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Example 2.1

Clearly, each one of the assumptions have direct implications on the interpretation of
a knowledge base. Considering the knowledge base in Figure 2.1 and the statement
(Anthony, swrc:studiesAt, NUI Galway), we have:

• OWA: the fact is unknown, and it may or may not be true.
• CWA: the fact is unknown, and false because it is not in the KB.
• PCWA: the fact is unknown, and false because we know at least one swrc:

studiesAt property for Anthony, then we know all of them.

Another example would be considering the fact (Anthony, schema:address, _:bnode2):

• OWA: the fact is unknown, but it may or may not be true.
• CWA: the fact is unknown, and false because it is not in the KB.
• PCWA: the fact is unknown, and we cannot say whether is true or false because

we do not know any address for Anthony yet.

2.2 Knowledge graphs

Semantic Web knowledge bases usually represent the knowledge using a graph (RDF
graphs), where entities are nodes of the graph and relations are the edges connecting those
nodes. In such a graph, entities can also be linked to different types, e.g., Chile is an entity of
type Country. Sometimes one can also find an accompanying schema or ontology defined us-
ing schema or ontology languages, containing entity and relation types, their connections
and restrictions according to a given domain. However, not all graph-based knowledge
repositories use RDF (graphs) or Semantic Web technologies to manage data.

The YAGO (Suchanek, Kasneci, and Weikum, 2007) project uses a simple triple-based
representation using tab-separated values (TSV), where entities and relations are not repre-
sented by IRIs or blank nodes but using (locally) unique labels. Similarly, the Never-Ending
Language Learning (a.k.a. NELL) (Carlson, Betteridge, Kisiel, et al., 2010) project forms part
of the ‘Read the web’ research project4, which looks to visit Web pages iteratively and ex-
tracts knowledge out of unstructured data in the source pages. The goal of these projects
is to extract facts from different sources and build ever-growing knowledge bases. Yet the
output of these projects share some characteristics with Semantic Web knowledge bases that
we will review below.

The term Knowledge Graph was coined by Google in May 2012 for naming their Google
Knowledge Graph Search API5 and Knowledge Vault (X. Dong, Gabrilovich, Heitz, et al.,
2014) projects that aim to augment search results and to enhance smart assistance services

4http://rtw.ml.cmu.edu/rtw/
5https://developers.google.com/knowledge-graph/

http://rtw.ml.cmu.edu/rtw/
https://developers.google.com/knowledge-graph/
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like Google Assistant and Google Home. Rapidly, the attention over Google’s works made
people from both academia and research to adopt and reuse the term ‘knowledge graph’
when referring to Semantic Web knowledge bases (or RDF graphs) such as DBpedia (Auer,
Bizer, Kobilarov, et al., 2007) and Freebase (Bollacker, R. P. Cook, and Tufts, 2007), but also
for referring to other knowledge networks such as WordNet (Miller, 1995), NELL (Carlson,
Betteridge, Kisiel, et al., 2010), and GeoNames6. This term is now a popular wildcard used
to refer to any graph-based knowledge repository.

Knowledge graphs are closely related to knowledge bases, but usually are considered
to have a more limited scope to serve particular a particular purpose. The restricted scope
gives a more practical foundation to knowledge graphs that drifts from the universal notion
of Semantic Web knowledge bases. Paulheim (2017) argues that actually there is no formal
definition for knowledge graphs, and he provides four characteristics that a knowledge
graphs should have:

(i) it mainly describes real world entities and their interrelations, organised as a graph;

(ii) it defines possible classes and relations of entities in a schema;

(iii) it allows for potentially interrelating arbitrary entities with each other; and

(iv) it covers various topical domains.

Criterion (i) defines the actual instances or triples of a knowledge graph Criterion (ii) de-
fines the schema information Criterion (iii) talks about the possibility to define arbitrary
relations between instances without restrictions such as domain/range, and finally crite-
rion (iv) states that knowledge graphs are supposed to cover at least a major portion of the
domains in the real world, and are not supposed to be restricted to a single one.

We agree with most of the criteria introduced by Paulheim (2017) but (ii) and (iv). For
the case of criterion (ii), we differentiate between instance data and schema and argue that
a schema (or ontology) is not always provided along the instances. Moreover, it is not
guaranteed that the instance data will be compliant to the schema, specially, considering
the flexible nature of knowledge graphs that makes them have an ever changing schema.
The absence of schema is relatively common in research areas outside the Semantic Web like
Machine Learning with relational data, where the graph structure is the most relevant part
exploited for discoveries. Furthermore, we do not consider criterion (iv) to be a required
characteristic but an optional or nice to have. We believe that knowledge in sources like
GeoNames—with purely geographic entities—are as valuable and rich as in DBpedia or
Freebase. Everything depends on the context of the problem one is addressing with the
knowledge graph. However, we acknowledge that a cross-domain knowledge graph would
be more interesting and potentially more valuable for discoveries than one focused just in
one domain. We will validate this in Chapter 6, where we join different data sources from
Bioinformatics.

6http://www.geonames.org/

http://www.geonames.org/
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2.2.1 Definitions

In this thesis, we adopt the term knowledge graph to refer to Semantic Web knowledge
bases and other graph-based knowledge that do not necessarily follow the semantics of
RDF. We follow a commonly used mathematical notation for knowledge graphs, which is
based on graphs definition. They are also known as heterogeneous information networks (Y.
Sun and J. Han, 2012; Shi, Y. Li, Jiawei Zhang, et al., 2017) or simply labelled graphs.7 There
is no widely agreed definition on what a knowledge graph is (Ehrlinger and Wöß, 2016).
Henceforth, in this thesis we define a knowledge graph as follows:

Definition 2.2

A knowledge graph is a quintuple G = (E ,R,ΣE ,ΣR, `) representing an edge-labelled
directed multi-graph, where E is the set of entities, R ⊆ E × ΣR × E is the set of
directed labelled edges (relations) between two entities, ΣE ⊆ Σ∗ is a finite set denoted
as the node vocabulary, ΣR ⊆ Σ∗ is the finite set denoted as the edge vocabulary, and ` is
the labelling function that assigns a label in ΣE to a node in E , and a label in ΣR to a
relation in R. Each node v ∈ E represents an entity, and each edge e = (v1, r, v2) ∈ R
represents a r-labelled relationship between entities v1 and v2 (endpoints), where v1 is
the domain of e, and v2 is the range of e, denoted Dom(e) and Ran(e), respectively.
We also denote by Ne = |E| and Nr = |R| the sizes of the sets of entities and relations,
respectively. We denote by G the infinite set of all possible knowledge graphs.

Alternative notations also say that a knowledge graph G comprises a set of facts or triples
(h, r, t) (similar to the (s, r, o) notation in knowledge bases), where h, t ∈ E are the head
and tail of the relation r ∈ R. In such cases, it is considered that the edges carry the labels
information: subject, relation and object labels, thus, the vocabularies ΣE and ΣR are usually
omitted. Thus, we may also sometimes refer to the set of edges R as knowledge graph,
assuming that the set E can be inferred from R. For exploring a knowledge graph, we
would like to navigate the nodes and edges sequentially, using what is called a path.

Definition 2.3

A path P in a knowledge graph G is a sequence of edges 〈e1, . . . , ek〉, where for 1 ≤
i ≤ k, ei = (vi−1, ai, vi) is an edge in G with label ai and endpoints vi−1 and vi. The
domain of a path Dom(P ) is the domain of the first edge in the path Dom(e1), while
the range of a path Ran(P ) is the range of the last edge in the path Ran(ek). The
integer k is called the length of P , denoted by |P |. A path label, `(P ), is defined as
`(v0)`(e1) . . . `(vk−1)`(ek)`(vk), i.e., the concatenation of all node and edge labels on the
path P . When only the relations in the path are relevant, a path is called relation path.
A relation path R = 〈r1, . . . , rk〉 represents k different relations or hops in a graph.

7The term label and type in this case are used interchangeably.
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We use P (u;v) to denote a variable-length path whose first node is u and last node is v,
where u and v are known as endpoints.

Example 2.2

For instance, in our running example of Figure 2.1, we can have the following two
paths: P1 =〈Anthony,swrc:studiesAt,UCC〉 and P2 =〈Anthony,schema:knows−1,Rosa〉.

To fully navigate a knowledge graph, we would like to walk through the graph in both
directions, meaning that an edge can be traversed in its inverse direction as well. Such nav-
igation is also known as two-way regular path queries (Calvanese, De Giacomo, Lenzerini,
et al., 2000; Baeza, 2013), where the set of edges is extended with the inverted edges. This
is to avoid the problem of getting stuck in sink nodes with no outgoing edges. For this,
we assume that for every edge e ∈ R with label `(e) = l there is an auxiliary inverse edge
e−1 with label `(e−1) = l−1 to preserve the semantics of the original directed relations and
model cases such as parentOf and hasParent or childOf −1.

Given a knowledge graph G, we would also like to extract small portions of the graph
centred on one of the nodes. For that we define the notion of subgraph. Intuitively, a sub-
graph represents the local patterns or neighbourhood of a node v, which contains all reach-
able nodes from v following paths of variable length.

Definition 2.4

Let Graphd(G, v) be the subgraph function that extracts G′ = (E ′,R′, `′) around a node
v ∈ E from G up to depth d. The set of nodes E ′ ⊆ E in G′ contains all nodes that are
reachable in G from v following paths of length≤ d. Similarly, the set of edgesR′ ⊆ R,
where if (v1, a, v2) ∈ R′ then v1, v2 ∈ E ′. Note that when d = 0, Graphd(G, v) extracts
only the node v with no edges.

2.3 Completeness and consistency in knowledge graphs

Despite all the effort made to build (large-scale) knowledge graphs, they are still far from
perfect and usually present problems such as missing information and schema inconsis-
tencies, among others. In this dissertation, we mainly focus on two relevant Data Quality
dimensions (R. Y. Wang and Strong, 1996): (1) completeness: data do not leave any open
questions; and (2) consistency: data must be valid according to a set of defined rules or
constraints.

Generally, in the context of knowledge graphs—or any knowledge repository—we
should assume two things: (a) they are pretty incomplete; and (b) they are pretty complete.
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Although these assumptions seem contradictory, in practice, they are actually not. Every-
thing depends on what we are requesting from a specific knowledge graph. For instance,
given a knowledge graph about geography such as Geonames, we have some certainty that
it will contain at least all seven continents8; however, it might not contain all cities in the
world. So, we may say that Geonames is complete when answering questions about conti-
nents, but incomplete when answering questions about cities.

In terms of data quality, knowledge graphs suffer similar problems to traditional
databases (Abiteboul, Hull, and Vianu, 1995). Some information may be unknown. For
instance, in a patients medical database, someone’s blood type may be missing. This is
called incomplete information (usually denoted by NULL entries). On the other hand, infor-
mation may also be inconsistent. For example, in the same database someone might have
two different blood types. A database can contain few cases of patients with two different
blood types. In that case, we say that that database has little inconsistency compared with
other databases where this is more frequent. In fact, it is considered that there are different
levels of inconsistency for data (Grant and Hunter, 2006). Moreover, relational databases
do not contain negative information, thus, there is no information about what blood types
a patient does not have. All these cases are also valid for knowledge graphs: they comprise
only true statements and do not explicitly say what statements do not hold in reality.

In this dissertation, we aim to study the dimensions of consistency and completeness
separately, but also how they interact and benefit from each other in the context of knowl-
edge graphs. Next, we describe the related work on both dimensions in more detail.

2.3.1 Consistency

Consistency is a relevant dimension of data quality, and many researchers have investigated
the checking and handling of inconsistencies in databases. In the context of knowledge
graphs, we define consistency as the requirement that a knowledge graph must be valid ac-
cording to a set of defined rules or constraints (T. A. Nguyen, Perkins, Laffey, et al., 1985).
Herein we define a constraint as a rule (prescriptive pattern) created at design time that
data must satisfy all the time to maintain the consistency of it. Such a set of rules and/or
constraints is usually presented as an ontology. An ontology mainly defines entity types
and their relationships, but can also explicitly state the domain and range of relations, e.g.,
an instance of type Person can have a relation name with a literal value. Ontologies are
mostly handcrafted and their construction requires of huge effort. For instance, Cyc is a
curated knowledge graph developed back in the 1980s (Lenat, 1995) that contains hundreds
of thousands of terms in the domain of human knowledge for supporting Artificial Intelli-
gence tasks. It is estimated that more than 900 person-years of effort have been invested in
its creation (Sarjant, Legg, Robinson, et al., 2009). Yet Cyc is far from complete.

8Here, we consider the main land divisions as continents: Asia, Africa, North America, South America,
Antarctica, Europe, and Australia.
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Ontologies are good because of their interoperability and reusability in various applica-
tions, and there are also numerous languages, standards and software for processing them
(see Noy, Sintek, Decker, et al. (2001)). However, one of the main criticism against on-
tologies is that they are usually too complex and not intuitive for general public, limiting
their use only to specialized users. The large computational resources and time required for
checking facts against an ontology are also concerns for real applications and practitioners.
Still for practitioners, ontologies were, for a long time, the only way to express constraints
and validate the consistency of knowledge graphs (knowledge bases). In principle, such
practice is wrong because ontology languages, such as OWL (based on description logics),
adopt the OWA and they should not be interpreted under a CWA just for checking the con-
sistency of data. To overcome this limitation, Tao, Sirin, Bao, et al. (2010) proposed to use
OWL expressions with CWA and a weak variant of UNA to express integrity constraints.
In Section 5.2, we will discuss other approaches that have been proposed for validating
knowledge graphs.

On 9th January 2018, the World Wide Web Consortium (W3C) published the SHACL
Shapes Constraint Language, a standard generated by the RDF Data Shapes Working
Group9 for validating RDF graphs against a set of conditions. SHACL proposes to express
these conditions as shapes (also called “shape graphs”) that can be used to validate whether
or not data graphs satisfy a set of conditions. Previous to SHACL, in 2013, Shape Expres-
sions (ShEx) was proposed to provide a human-readable syntax for declaring shapes (E.
Prud’hommeaux, Labra Gayo, and Solbrig, 2014). ShEx language is based on regular ex-
pressions and RelaxNG (a schema language for XML) and it was submitted as a W3C mem-
ber submission in 2014.10 (SHACL and ShEX are the two most adopted constraint languages
for knowledge graphs, and we will review them later on in Section 3.1.2.)

The goal of shape graphs (expressed using SHACL, ShEx or another language) is to ac-
cept and represent data which is valid with respect to a schema. Such schema information
is valuable, among other things for communicating data structures to interfaces, generat-
ing or validating data, or driving user interface generation and navigation (Labra Gayo, E.
Prud’hommeaux, Boneva, et al., 2018). Shape-aware applications can benefit from knowing
that the instance data conforms with a given schema.

2.3.2 Completeness

In their seminal paper, R. Y. Wang and Strong (1996) describe completeness as “the extend
to which data are of sufficient breadth, depth, and scope for a task at hand.” Although this
definition has been widely adopted in industry, it is still not very well-suited for knowledge
bases. Here, we use an adaptation of the definition of completeness for a query according
to Razniewski, Suchanek, and Nutt (2016) and Lajus and Suchanek (2018), which is based

9https://www.w3.org/2014/data-shapes/ (Accessed on June 5th, 2018)
10http://www.w3.org/Submission/shex-defn/ (Accessed on June 5th, 2018)

https://www.w3.org/2014/data-shapes/
http://www.w3.org/Submission/shex-defn/
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on the work in databases (Motro, 1989; Levy, 1996; Razniewski, Korn, Nutt, et al., 2015).
Completeness is the extend to which a given knowledge base contains all true statements.

Completeness is defined by help of a hypothetical ideal knowledge base K∗, which is the
instance of all true statements, i.e., “the real world”. Next, we build upon Motro (1989) to
give a more concrete definition of completeness for knowledge bases. Let K be the instance
of all stored facts, i.e., “the knowledge base” as a database. Figure 2.3 illustrates these sets
using a Venn diagram. Using the set difference operator, we have that: (1) K \ K∗ is the set
of facts that are false; and (2) K∗ \ K is the set of true facts not included in the knowledge
base. Formally, we say that a knowledge base K is complete (with respect to K∗) iff K∗ \
K = ∅. Because it is practically impossible to construct such a knowledge base K = K∗,
even for a very small domain of knowledge, completeness is usually bound to a particular
query (Razniewski, Suchanek, and Nutt, 2016). We can thus think that a particular query is
the scope mentioned by Wang’s definition of completeness in R. Y. Wang and Strong (1996).

Empirical studies on knowledge bases have found that most of them are actually incom-
plete and with a large number of missing triples. For instance, in Suchanek, Gross-Amblard,
and Abiteboul (2011) and Min, Grishman, Wan, et al. (2013) authors found that between 69–
99% of instances in popular knowledge bases lack at least one relation that other entities
of the same type have. They found that DBpedia v9 contains only 6 out of 35 Dijkstra
Price winners, and in YAGO the average number of children per person is 0.02. In Wiki-
data (Vrandecic, 2012) (as of 2016) it is known the father for only 2% of all people. Similarly,
Google reports that 71% of people in Freebase have unknown place of birth and 75% have
unknown nationality (X. Dong, Gabrilovich, Heitz, et al., 2014).

A search for completeness of knowledge bases is hard labour in practice due to the
OWA that says that facts that are not in the knowledge base are unknown and may or not
be true (see Section 2.1.3). Several approaches adopt the more flexible PCWA and aim for
the completion of knowledge bases (graphs) by targeting missing links between the already
observed entities and relations. This problem is known as the Link Prediction problem and we
will review some methods in Chapter 3 that learn link patterns to predict relationships be-
tween entities. Link prediction is one of the research problems that has attracted increasing
attention largely due to its application in Natural Language Processing (NLP) tasks (Nickel,
K. Murphy, Tresp, et al., 2016).

Following Lajus and Suchanek (2018), we can define the three interpretations of knowl-
edge bases that we have reviewed in Section 2.1.3. Similarly, the same interpretations are
applicable and extensible to knowledge graphs. OWA states that nothing follows from the
absence of a fact in the knowledge base, i.e., the absence of evidence is not evidence of ab-
sence. Although most knowledge bases are interpreted under OWA, this assumption does
not help when trying to check consistency, mine or discover patterns from knowledge bases.
Therefore, often the CWA is adopted assuming that the knowledge base is complete. The
CWA can be formally expressed as follows:

∀s, r, o : (s, r, o) /∈ K =⇒ (s, r, o) /∈ K∗. (2.1)
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Figure 2.3: Venn diagram explaining the completeness of a knowledge base.

Because the CWA is a strong assumption in practice, the PCWA was proposed to deal with
this. The PCWA can be formally expressed as:

∀s, r, o, o′ : (s, r, o) ∈ K ∧ (s, r, o′) /∈ K =⇒ (s, r, o′) /∈ K∗. (2.2)

While OWA semantics is appropriate when using OWL, it is not suitable for completion.
On the other hand, the more restrictive CWA does not allow the addition of new facts that
can yield inconsistency of the knowledge. We argue that only under more flexible assump-
tions such as PCWA it is possible to aim for the completion of knowledge bases. This is
supported by good experimental results in several cases (L. A. Galárraga, Teflioudi, Hose,
et al., 2013; X. Dong, Gabrilovich, Heitz, et al., 2014). Later in Chapter 3, we will discuss
the use of PCWA for the generation of negative examples to train knowledge graph embed-
dings models that learn scoring functions to differentiate true vs false triples in a knowledge
graph. Knowledge graph embedding models are popular solutions to tackle the link pre-
diction and knowledge graph completion tasks.

Next, we give an overview and present the fundamentals of machine learning and deep
learning frameworks used to discover missing links and complete knowledge graphs.

2.4 Machine learning: A brief overview

As mentioned earlier, machine learning has been used by the most popular approaches
tackling the knowledge graph completion task. In this section, we provide a very brief
overview on general machine learning and the types of machine learning algorithms that
relate to our contributions.

Machine Learning is the science (and art) of programming computers so they can learn
from data. A general machine learning process consist of three core variables: (i) a task T ;
(ii) a performance measure P ; and (iii) an experience E. A formal definition is as follows:
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Definition 2.5

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E. (Mitchell, 1997)

To illustrate this definition we follow our Iris flowers example, where determining the
specie of Iris flowers (i.e., setosa, versicolor, virginica) is the task T , a neural network with
normalised squared error loss can be the performance measure P , and a set of feature vec-
tors for a sample of flowers the experienceE. Figure 2.4 shows a general framework for ma-
chine learning, where examples from an input space (experience) are mapped into points of
an output space (task) of labels. A prediction is then evaluated w.r.t. the ground truth and
the loss function (performance measure) is computed using both values. Then the learn-
ing process consist of finding the best hypothesis (also known as model) that optimises the
performance measure and reduces the prediction error a.k.a. loss or cost.

Formally, we define a domain D that consists of two components: (1) a feature space X ;
and (2) a marginal probability distribution Pr(X), where X = {x1, . . . ,xn} ∈ X . Given
a specific domain D = {X ,Pr(X)}, a task, denoted as T = {Y, f(·, ·)}, consists of two
components: (1) a label space Y ; and (2) an objective function f(·, ·), which is not observed
but can be learnt from the training data. In supervised machine learning, training data
consists of pairs {xi, yi}, where xi ∈ X and yi ∈ Y . From a probabilistic point of view,
f(x, y) can be written as the conditional probability Pr(y | x).

Machine learning systems can be classified based on different categories such as level
of human supervision, incremental or on-the-fly learning, and instance-based vs. model-
based learning. In the following, we present a common classification based on the amount
of supervision used during training. For an overview of other classifications, we refer the
reader to Mitchell (1997), Chapelle, Schölkopf, and Zien (2006), K. P. Murphy (2012), and
Goodfellow, Bengio, and Courville (2016).

Supervised machine learning. In supervised learning, the training data consist of a set of
pairs (xi, yi), where xi is an input object (typically a vector called feature vector) and yi is the
associated target or label (Mitchell, 1997). A typical supervised learning task is classification
that consists of a learning algorithm that seeks a function h : X → Y , where X is the input
space and Y is the output (or label) space. Such function h in an element of some space
of possible functions H, which is usually called hypothesis space. Another task is regression
which consists in predicting a target numeric value from the input example (e.g., predicting
the price of a house in a given area). In classification, the label yi belongs to one of a finite
number of classes, whilst in regression, yi is a continuous number. Formally, h can be rep-
resented using a scoring function f : X ×Y → R such that h returns a ŷ value that gives the
highest score: h(x) = arg maxy f(x, y). We denote by F the space of scoring functions. A
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Figure 2.4: Machine learning general framework (adapted from T. Liu (2011)).

classical example of this type of learning is the spam identification in emails.

Unsupervised machine learning. In unsupervised learning, the task is to infer a function
that describes the structure of “unlabelled” data, i.e., data that have not been classified or
categorised (Mitchell, 1997). The lack of labels makes this type of task more challenging
to evaluate than the supervised one. Algorithms for clustering, dimensionality reduction,
anomaly detection, and association rule learning belong to this machine learning category.
An example of this type of learning is the market basket analysis, where rules can be ex-
tracted from analysing what supermarket shoppers buy each time and identifying patterns
of products bough together at a given time. While supervised learning intends to infer a
conditional probability Pr(y | x), unsupervised learning intends to infer an a priori proba-
bility distribution Pr(X = x).11

Semi-supervised machine learning. Semi-supervised learning is a class of supervised learn-
ing, where the training data contains labelled and unlabelled data (Chapelle, Schölkopf, and
Zien, 2006). Usually, the amount of labelled data is smaller than the amount of unlabelled
data, mainly because the former is usually more expensive to obtain. A semi-supervised
algorithm is given a set of m i.i.d. examples x1, . . . ,xm ∈ X with their corresponding labels
y1, . . . , ym ∈ Y that compose the labelled part of data, plus additional u unlabelled examples
xm+1, . . . ,xm+u ∈ X . The goal of semi-supervised learning is to make use of the combined
information to obtain a better performance measure than what could be obtained either by
discarding the unlabelled data (falling into supervised learning) or by discarding the labels
(falling into unsupervised learning). An example of this learning is Google Photos12, where
faces of people are recognised and clustered in an unsupervised manner, but the user could
tag these people so the system can then be able to name everyone in every photo.

Reinforcement learning. Reinforcement learning is a different type of learning inspired by
behaviourist psychology (Goodfellow, Bengio, and Courville, 2016). The learning system,

11Pr(X = x) indicates the probability of X taking on the value x.
12A photo sharing and storage announced in May 2015 by Google (https://photos.google.com/).

https://photos.google.com/
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also called an agent, selects and performs actions in an observed environment to get rewards
in return (or penalties as a form of negative rewards). The goal for the agent is to learn by
itself the best strategy, called a policy, that maximises the reward over time. A policy defines
the actions that the agent should follow in a given situation. An example of this learning
is Google DeepMind’s AlphaGo program that became famous world wide after beating the
world champion Lee Sedol at the game of Go in 2016.13 For that a software learnt a policy
by analysing millions of games and then playing many times against itself.

What machine learning offers is to find rules that are probably correct about most mem-
bers of the set they concern (Goodfellow, Bengio, and Courville, 2016). These rules are not
entirely certain (as in logics) and do not hold for every member of a set. The no free lunch
theorem (Wolpert, 1996; Wolpert and Macready, 1997) states that every classification algo-
rithm has the same error rate when classifying previously unknown points. Therefore, there
is no machine learning algorithm that is universally better than any other. When applying
machine learning, our goal is to understand what kind of distributions or relations are most
relevant in the data and bias the algorithm towards that distributions to design algorithms
that perform well on a specific task.

2.4.1 Regularisation

Based on the no free lunch theorem for supervised learning (Wolpert, 1996), when design-
ing our machine learning algorithms we must use bias or encode a set of preferences into
the learning algorithm to obtain a better performance on the task at hands. There are many
ways to express such preferences for different solutions in machine learning. One way
of setting preferences in an algorithm is to restrict its hypothesis space and the functions
allowed in there. Another solution can involve adding preferences to one solution over
another in the hypothesis space. Approaches to express such preferences are known as reg-
ularisation and can be explicit or implicit modifications we make to a learning algorithm.
More formally, a regularisation term is a function R(Θ) applied to the model parameters
Θ, which can be added to a loss function J(Θ) (that encodes a performance metric P ) in a
learning algorithm:

J(Θ) = P + λR(Θ),

where P is a performance metric such as mean squared error (for regression) or binary loss
(for classification), λ is the factor that controls the strength of the regularisation. When λ = 0

means that no preference is added, and the larger λ the stronger the preference we impose
into the learning algorithm.

The no free lunch theorem also applies to regularisation, i.e., there is no best form of
regularisation as there is no best machine learning algorithm (Goodfellow, Bengio, and
Courville, 2016). In Chapter 7, we will design a regularisation term for incorporating cardi-
nality restrictions to representation learning algorithms for knowledge graphs.

13AlphaGo versus Lee Sedol, Wikipedia (https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol).

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
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Figure 2.5: Deep learning general framework versus traditional machine learning.

2.5 Deep learning: A brief overview

Deep learning (a.k.a. hierarchical learning) is a particular category of machine learning
based on artificial neural networks (e.g., Ivakhnenko (1971), Bengio, Cardin, Mori, et al.
(1988), LeCun, Boser, Denker, et al. (1989), LeCun, Bengio, and G. E. Hinton (2015), Schmid-
huber (2015), and Goodfellow, Bengio, and Courville (2016), among others). Artificial neu-
ral networks, or connectionist systems, are computing systems inspired by the biological
neural networks in the human brain. Deep neural networks are multi-layered models that
can learn representations of data with multiple levels of abstraction, in other words, a hi-
erarchy of features. By learning representations deep neural networks dramatically reduce
the need for feature engineering and human intervention. They have shown to deliver state-
of-the-art results in many challenging tasks for humans such as speech recognition, natural
language processing, visual object recognition, and in other domains such as drug discov-
ery. Figure 2.5 shows a parallel comparison between deep learning and traditional machine
learning.

Artificial neural networks (more precisely, feedforward neural networks) are the build-
ing block of deep learning, where neural networks are composed of several layers. A neural
network is used to approximate some target function f∗. In supervised learning setting, a
classifier y = f∗(x) maps an input x to a category y, in deep learning a neural network
defines a mapping y = f(x; Θ) that can also learn the values of the parameters Θ that yield
the best function approximation or model. (Note that other methods for feature (represen-
tation) learning exist in literature. See Bengio, Courville, and Vincent (2012) for a review.)
Thus a learning algorithm will aim at adapting the initial parameters Θ to make f as similar
as possible to f∗. The parameters Θ is what we refer to as trainable features in Figure 2.5.



32 | Chapter 2. Fundamentals

The network characteristic comes from the fact that many different functions are composed
in the design of a neural network, usually represented by a directed acyclic graph (see Fig-
ure 2.6). For example, a composition of functions f and g in a chain forms g(f(x)), where f
is called the first layer of the network, and g is called the second layer. The chain structure is
the most commonly used design structure, but several works have recently proposed tech-
niques to automatically discover the design of neural networks (Elsken, Metzen, and Hutter,
2019). Note that many more functions could be stacked following the same logic, giving a
“depth” component to the network and the name to deep learning (Krizhevsky, Sutskever,
and G. E. Hinton, 2012).

A classical neural network is known as the multilayer percentron (MLP) that is com-
posed of at least three layers of nodes, namely, an input layer, a hidden layer, and an output
layer. Figure 2.6 shows a one-layer MLP model with fully connected layers, where the nodes
of a layer are connected to all the nodes of the next layer. Let x = {xi}di=1 be an input exam-
ple of dimension d with label y ≈ f∗(x), f(·) an activation function in a hidden layer, and
g(·) an activation function in the output layer. We can specify a one-layer MLP model as:

hj = f(

N∑
i=1

wijxi + bj)

yk = g(
M∑
j=1

wjkhj + bk),

(2.3)

where wij are the weight of the hidden layer, wjk the weights of the output layer, and bj

and bk the corresponding bias. The weights wij are given to the connections between the
i-th input node and the j-th hidden layer node (hj). Similarly, the weights wjk are for the
connections between the j-th hidden layer node and the k-th output layer node. We can
also use a matrix notation to specify the model:

h = f(W1x + b1)

y = g(W2h + b2),
(2.4)

where each layer has its own weight matrix W and bias vector b. Activation functions
are typically chosen to be element-wise functions such as sofmax, sigmoid, and the rectified
linear unit (ReLU) (Nair and G. E. Hinton, 2010). The flow of information and computations
through the network, e.g., from obtaining h and passing it to the subsequent layers, is called
forward propagation.

Although convexity is a desirable property for loss functions, most of the time in arti-
ficial neural networks they are non-convex due to the use of non-linearity activation func-
tions in these models. To address this issue, gradient-based optimisers are used to train
neural networks in iterations taking batches of data in each iteration. Gradient descent is
a first-order iterative optimisation algorithm for finding the minimum of a (loss) function.
To find a local minimum, the algorithm takes steps proportional to the negative of the gra-
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Figure 2.6: Neural network architecture with one hidden layer.

dient (or approximate gradient) of the function at the current point (Goodfellow, Bengio,
and Courville, 2016). Thus, it travels down the slope of the function in steps until it reaches
the lowest point. However, the number of iterations in gradient descent depends on the
number of samples and features, thus, it may become very slow to compute. A solution
is to replaces the actual gradient (calculated over the entire data) by an estimate (calcu-
lated from a randomly selected subset of the data). This is known as stochastic gradient
descent (SGD) (Robbins and Monro, 1951). SGD has been successfully applied to train arti-
ficial neural networks and together with the back-propagation algorithm (Rumelhart, G. E.
Hinton, and Williams, 1986) form one of the most popular gradient-based optimiser in lit-
erature (Goodfellow, Bengio, and Courville, 2016). Back-propagation provides an efficient
method for computing gradients to SGD. Unlike convex optimisation, the use of stochastic
gradient descent to non-convex loss functions does not have guaranties of convergence to a
global minimum, and the output is sensitive to the values of the initial parameters (Glorot
and Bengio, 2010).

In this dissertation, we mostly focus on solutions using supervised machine learning
to learn functions from training data generated from knowledge graphs. Next, we de-
scribe two common learning frameworks for supervised learning based on the output space,
namely, learning to rank and multi-label learning, and the performance metrics we will use
for each one.

2.6 Learning problems

Even when a problem is considered as a supervised learning problem one could be stating
it in different ways depending on the output space. For instance, one could learn different
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objects appearing in an image or assigning a relevant title to an image. The former we say
is a multi-label problem (multiple objects can be found in a given image), whilst the latter
is known as a ranking problem (only the title with highest probability is selected). Here,
we refer to these different ways as learning problems. Specifically, we focus on two of these
frameworks, namely, learning to rank and multi-label learning, which are commonly used
in different domains and problems.

2.6.1 Learning to rank

Given the large amount of data available in some environments such as the Web, several ap-
proaches have been proposed in Information Retrieval to create ranking models for learning
what content is relevant to users (T. Liu, 2011). Recently, given the availability of potential
training data, it has become possible to leverage machine learning methods to build effec-
tive ranking models. Methods that learn how to combine features for ranking by means of
discriminative learning are called learning-to-rank methods. Learning to rank methods are
feature based, i.e., they require a function that builds vector representation of the examples;
and have a discriminative training, meaning that the learning process is based on training
data and they have their own input, output, hypothesis space, and loss function (T. Liu,
2011).

In classification tasks such as the knowledge graph completion, it is common to choose a
threshold θ to separate true (positive) values from false (negative) ones.14 However, sparse-
ness on the data might cause a strong bias pushing most values towards zero, which difficult
the selection of a good value for θ. In cases like these, and whenever it is not necessary to
determine the truth value of an element, it is recommended to use the likelihood returned
by the model and consider a better alternative to rank the outputs. That is how learning to
rank becomes a relevant part of models tackling knowledge graph completion tasks.

Formally, let X = {x1,x2, . . . ,xn} be a set of n elements in Rd, and let l : X → N be a
labelling function, where l(x) is the label of object x. For instance, l : X → {0, 1}would be a
binary labelling where 1 (true) and 0 (false) are the labels, or an arbitrary integer in the case
of multi-label problems. Let f : X → R be a scoring function, where f aims to score a set
of examples X such that positive examples are scored higher than negative ones. Formally,
∀xi,xj ∈ X : l(xi) > l(xj) ⇒ f(xi) > f(xj). We also use rankf (xi) to denote the rank
position of object xi according to the scoring function f , i.e., the position of score f(xi) in a
descending order of all scores f(x) ∀x ∈ X .

Usually, for the link prediction task a pairwise ranking algorithm is used as the loss
function. More specifically, the so-called hinge loss (Rosasco, Vito, Caponnetto, et al., 2004)
is used to subtract positive from negative score values in order to penalise cases where
positive triples are given scores lower than negative triples. The hinge loss is a convex
function used for training classifiers. For a binary classifier with output t ∈ {−1,+1}, and

14Usually a θ = 0.5 is selected to separate positives from negatives in classification problems.



2.6 Learning problems | 35

classifier prediction y, the hinge loss of y is defined as:

`(y) = max(0, 1− t · y).

Note that y is the probability returned by the classifier and not the predicted class label.

2.6.2 Multi-label learning

When the output space for an object x is a set of labels, we say that the problem is a
multi-label learning problem. In the following, we formalise the learning framework with
q-labels as in M.-L. Zhang and Z.-H. Zhou (2006) and Zha, Mei, J. Wang, et al. (2009).
Let X = {x1,x2, . . . ,xm} be the input space of m different data points in Rd, and let
Y = {y1, y2, . . . , yq} be the finite set of labels. Given a training set D = {(xi, Yi)}mi=1, where
xi ∈ X is a d-dimensional feature vector [xi1, xi2, . . . , xid]

> and Yi ∈ 2Y is a vector of la-
bels associated with xi, the goal of the learning system is to output a multi-label classifier
h : X → 2Y which optimises some specific evaluation metric. In most cases, however,
the learning system will not output a multi-label classifier, but instead will produce a real-
valued function (regressor) of the form f : X ×Y → R, where f(x, y) can be regarded as the
confidence of y ∈ Y being the proper label of x. It is expected that for a given instance x and
its associated label set Y , a successful learning system will tend to output larger values for
relevant labels yi ∈ Y , and smaller values for irrelevant labels yk /∈ Y , i.e., f(x, yi) > f(x, yk)

for any yi ∈ Y and yk /∈ Y . In other words, the model should consistently be more “confi-
dent” about true positives (actual labels) than about false positives.

Intuitively, the regressor f(·, ·) can be transformed into a ranking function rankf (·, ·),
which maps the outputs of f(x, y) for any y ∈ Y to {y1, y2, . . . , yq} such that if f(x, yi) >

f(x, yk) then rankf (x, yi) < rankf (x, yk). The ranking function can naturally be used for
instance for selecting top-k predictions for any given example, which can be very useful in
cases where only limited numbers of prediction candidates can be further analysed by the
experts.

2.6.3 Evaluation metrics

Evaluation metrics or performance measures help us to quantitatively measure the be-
haviour of a model. They evaluate how well a model performs in different dimensions
over a previously unseen test set. In this section, we present the most common evaluation
metrics for the two learning frameworks we reviewed.

2.6.3.1 Learning to rank

To evaluate the performance of learning to rank models, we can use most of the metrics
available in Information Retrieval. The following is a list of evaluation metrics from (Man-
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ning, Raghavan, and Schütze, 2008; M. Zhang and Z. Zhou, 2014), which are frequently
used to evaluate learning-to-rank models over a test set S with p examples.

Mean rank, MR: Evaluates the average of predicted ranks. MR is sensitive to outliers.

MR =
1

p

p∑
i=1

rankf (xi).

Mean reciprocal rank, MRR: Evaluates the average of reciprocal ranks, which is the in-
verse position of the first relevant answer, and is therefore well-suited for applications
where only the first result matters. MRR is less sensitive to outliers than MR.

MRR =
1

p

p∑
i=1

1

rankf (xi)
,

where xi is the highest ranked relevant item for a query qi.

Hits@k: Measures the number of elements retrieved among the k elements with the highest
score. Since this metric is per example, we report its average dividing by the number
of examples. We usually extract this score for k ∈ {1, 3, 5, 10}.

Hits@k =

p∑
i=1

l(xi),

where l is the labelling function that returns 1 when xi is positive and 0 otherwise.

P@k: P@k stands for the precision at k, i.e. precision computed only among top-k ranking
labels per example. We usually extract this score for k ∈ {3, 5, 10}.

P@k =
|{relevant results in the top k positions}|

k
.

2.6.3.2 Multi-label learning

To evaluate the performance of multi-label learning models, we use specific evaluation met-
rics that are different from the ones used in traditional supervised learning (M.-L. Zhang
and Z.-H. Zhou, 2014). Let S be multi-label test set comprising p multi-label examples
{(xi, Yi)}pi=1, where xi ∈ X , Yi ∈ Y = {0, 1}q, L is a label set, and |L| = q, i.e., the total
number of labels. Here, f(·, ·) represents the multi-label regressor and f(x, Y ) = {0, 1}q

is the set of label memberships predicted by f for the example x. We compute the fol-
lowing example-based ranking metrics for evaluating the results of the predictions over
S (Tsoumakas, Katakis, and Vlahavas, 2010; M.-L. Zhang and Z.-H. Zhou, 2014):
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One error: Evaluates the fraction of examples whose top-ranked label is not in the set of
relevant labels of the instance.

One − Error(f) =
1

p

p∑
i=1

I(arg max
y∈Y

f(xi, y) /∈ Yi),

where, I is an indicator function and f(xi, y) is the score of label y for an instance xi.

Coverage error: Evaluates how far we need, on average, to move down the ranked list of
labels in order to cover all the relevant labels of the instance.

Cov − Error(f) =
1

p

p∑
i=1

max
y∈Yi

rankf (xi, y)− 1.

Ranking loss: Evaluates the fraction of reversely ordered label pairs, i.e. an irrelevant label
is ranked higher than a relevant label.

R − Loss(f) =
1

p

p∑
i=1

1

|Yi||Yi|
∣∣{(y′, y′′) : rankf (xi, y

′) > rankf (xi, y
′′), (y′, y′′) ∈ Yi ×Yi

}∣∣,
whereYi is the complementary set of Yi in Y .

Average precision: Evaluates the average fraction of relevant labels ranked higher than a
particular label y ∈ Yi which actually are in Yi.

AP(f) =
1

p

p∑
i=1

1

|Yi|
∑
y∈Y i

∣∣{y′ : rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi

}∣∣
rankf (xi, y)

Area under the precision-recall curve (AUC-PR): PR curves summarise the trade-off be-
tween the true positive rate (TPR) and the positive predictive value (PPV) for a pre-
dictive model using different probability thresholds. The values of AUC-PR range
from 0 to 1, and the higher the better.

Prec(t) = PPV (t) =
TP

TP + FP

Rec(t) = TPR(t) =
TP

TP + FN

AUC − PR =

∫ 1

x=0
Prec(Rec−1(x)) dx,

where x is the variable that defines a decision threshold used as cut-off for positives
and negatives in the functions Prec(·) and Rec(·).

Area under the receiver operating characteristic curve (AUC-ROC):
ROC curves summarise the trade-off between the true positive rate (TPR) and false
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positive rate (FPR) for a predictive model using different probability thresholds. Low-
ering the classification threshold classifies more items as positive, thus increasing both
False Positives and True Positives. The values of AUC-ROC range from 0 to 1, and the
higher the better.

AUC-ROC stands for “area under the ROC Curve.” That is, AUC measures the entire
two-dimensional area underneath the ROC curve from (0,0) to (1,1).

TPR(t) =
TP

TP + FN

FPR(t) =
FP

FP + TN

AUC − ROC =

∫ 1

x=0
TPR(FPR−1(x)) dx,

where x is the variable that defines a decision threshold used as cut-off for positives
and negatives in the functions TPR(·) and FPR(·).

For One-Error, Coverage and Ranking Loss, the smaller the metric value the better the
system’s performance, with optimal value of 1

m

∑m
i=1 |Yi| − 1 for Coverage and 0 for One-

Error and Ranking Loss. For Average Precision metric, the larger the metric value the better
the system’s performance, with optimal value of 1.

When dealing with skewed data—as in most of this thesis—AUC-PR provides a more in-
formative picture of the model’s performance than AUC-ROC (Davis and Goadrich, 2006),
because it ignores true negatives (TN). Both AUC-PR and AUC-ROC are usually computed
using the trapezoidal rule.15

2.7 Summary

In this chapter, we have introduced the fundamentals required to understand the contri-
butions of this thesis. We have recapitulated the background and definitions associated
with knowledge bases, knowledge graphs, and overviewed relevant machine learning ap-
proaches that focus on the completion task of these resources. In Section 2.1, we reviewed
the concept of knowledge bases and focus on their interpretation in the Semantic Web com-
munity. Two of the assumptions made for Semantic knowledge bases are the non-UNA and
OWA. These properties seem highly desirable for open environments like the Web, but they
pose a number challenges for many tasks that require a closed view of the data.

While knowledge bases have long been used in formal logic and the Semantic Web, the
concept of knowledge graphs (Section 2.2) has been gaining momentum and is beginning to
replace the former as a wildcard for any graph-structured knowledge repository. However,

15Trapezoidal rule is a technique to approximate an integral (https://en.wikipedia.org/wiki/Trapezoidal_
rule).

https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/Trapezoidal_rule
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despite the recent interchangeable use of the terms, there are many gaps on the approaches
trying to complete their content. Completeness (Section 2.3) is presented as one of the tasks
with growing interest from both academia and industry due to its practical applications. We
have discussed how the consistency and completeness dimensions of a knowledge graph
are tightly correlated. These two quality dimensions have proven to be very challenging
given the size and flexibility allowed by graph-structured data—and they are not easy to
handle in their most general case. Given the centrality of these dimensions for the area of
knowledge graph mining, we will discuss them separately in more details in Chapter 3.

We have also introduced relevant concepts related to machine learning (Section 2.4) and
deep learning (Section 2.5) that will help us later to present the contributions of this thesis.
Finally, the learning tasks and a set of evaluation metrics is presented in Section 2.6), which
will help us to assess the performance of a model in a given task.
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Knowledge graphs are a rich source of information that can be exploited in many dif-
ferent scenarios. To exploit them, traditionally, graph structural features have been used
for tasks such as label propagation, link prediction, and recommendation systems, among
others. Recently, representation learning techniques have become popular given their abil-
ity to learn functions and generic representations for knowledge graphs. In this chapter,
we provide an overview of knowledge graph mining focusing on two tasks: (a) mining of
structural patterns, and (b) link prediction as a form of knowledge graph completion.

Producers and consumers of knowledge graphs have different conceptualisations that
are hard to share with each other; however, both require means for knowing what is the
structure of data to perform mining. Knowledge graphs differ significantly from traditional

40
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relational databases, since they are modelled as schema-free graphs. Given the need for
structure, in task (a), we study the languages that can be used to define the structure of
knowledge graphs and several structural patterns. We review the most popular proposals
for constraint languages that allow to define schemas for knowledge graphs. And moti-
vated by the idea that structure is closely tied to the completion of knowledge graphs, in
task (b), we study the so-called knowledge graph embedding models. Knowledge graph em-
bedding models capture some of the structural patterns of links that can be used in the
link prediction task, which has become one of the most relevant research areas in statistical
relational learning (Getoor and Taskar, 2007).

3.1 Schema in knowledge graphs

In database management, a database schema is the logical organisation of all or part of a
relational database (Codd, 1970; Abiteboul, Hull, and Vianu, 1995). A database schema in-
dicates the structure of data, i.e., how the entities (tables or relations) relate to one another
and what are the fields (properties) included on each entity. All this is described in a data
definition language such as the structured query language (SQL). A database schema can be
represented in a visual way or as a set of formulas called integrity constraints imposed on a
database. Schemas are created in a process known as data modelling and have as design goal
helping programmers and data engineers to interact with the database. The data modelling
process comes before any population of the database—since the schema is required to add
any instance data. Schema diagrams, also known as entity-relationship (ER) diagrams (P. P.
Chen, 1976), can help to visualise the entity types and relationships that can exist between
instances of those entity types. Schema information has a number of benefits for data man-
agement, such as helping indexing schemes, query optimisation techniques, access control
schemes, validation, among others (Abiteboul, Hull, and Vianu, 1995).

In Semantic Web knowledge bases (and knowledge graphs), the term schema is usually
understood as the set of classes and relations. The RDF Schema (RDFS) (Brickley, R. Guha,
and McBride, 2014) standard is an extension of RDF that provides a data-modelling vocab-
ulary for RDF data. It allows to describe groups of related resources and the relationships
between them. For instance, we could define the relation schema:author, whose subjects
must be a schema:CreativeWork (the domain), and objects must be a schema:Person (the
range). RDFS allows to describe a reasoning like: “If Victor Vianu is an author of the book
Foundations of Databases, then Vianu is a Person ”—considering that a book is a type of cre-
ative work. In fact, RDFS is not much of a schema as the one in databases, since it does
not allow the definition of data constraints. RDFS is property oriented, which differs from
the classical object oriented modelling where the class schema:CreativeWork would be de-
fined first with all its attributes. Conversely, using RDFS classes can be extended and new
properties can be added without the need to re-define the original class.

A richer representation of knowledge can be achieved with the definition of a so-called
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ontology in Computer Science.1 This should not be confused with the term “Ontology”
(with uppercase initial) that refers to a branch of philosophy which deals with the nature
and structure of “reality.”2 (We redirect the reader to Guarino, Oberle, and Staab (2009)
for a deeper introduction to the topic of ontologies.) In a nutshell, an ontology formally
models the structure of a system stating the relevant concepts (entities) and relations that
can formally exist for an AI system—what exists is what can be represented (Gruber, 1995).
The goal of ontologies is to describe a specific domain shared by a community of users
and do not necessarily represent the structure of the instance data. The most prevalent
and common definition for ontology is given by Studer, Benjamins, and Fensel (1998): “An
ontology is a formal, explicit specification of a shared conceptualisation.”

The Web Ontology Language (OWL) (Motik, Peter F. Patel-Schneider, and Parsia, 2012)
is the standard language for defining ontologies in the Semantic Web, typically defined as
a taxonomy and set of inference rules. OWL extends the expressibility of RDFS and allows
to describe the required information for instances and classes. For instance, it could de-
tect typing errors such as "3.14159265359"^^xsd:integer, where the datatype xsd:integer

is wrongly used instead of xsd:double to define the number π. OWL allows to express
schemas that should be interpreted under the standard first-order semantics and not as
checks (Motik, Horrocks, and Sattler, 2009). As a World Wide Web language, OWL’s formal
semantics—based on Description Logic—uses the open world assumption (OWA) (cf. Sec-
tion 2.1.3) and does not use the unique name assumption (nUNA). Meaning that the conclu-
sions that one can draw from such ontologies differ from the ones that the users intuitively
expect. Assuming the OWA, it will not give any conclusion based on the absence of data:
The absence of evidence is not evidence of absence. For instance, a hospital ontology could spec-
ify that each person has a blood type, but a person could be added without a blood type to
the knowledge graph and this will not raise any error. Under OWL’s semantics, the data
can be incomplete, but incomplete is different from inconsistent. This is one of the central
ideas in our work that will be studied and evaluated in the chapters to come.

Recently, an alternative to describe and validate the structure of a knowledge graph has
been proposed by the W3C standard Shapes Constraint Language (SHACL) (Knublauch
and Kontokostas, 2017). SHACL allows to define the constraints that an RDF knowledge
graph (data graph) should follow in a so-called shapes graph. A SHACL shapes graph de-
scribes the structure and conditions that the instance data (or data graph in SHACL termi-
nology) satisfy. These shapes can be used for validating instance data, building user inter-
faces, and data integration, among others (Labra Gayo, E. Prud’hommeaux, Boneva, et al.,
2018). Likewise, Shape Expressions (ShEx) (E. Prud’hommeaux, Boneva, Labra Gayo, et al.,
2018) is a grammar-based language coming from a W3C community group that similarly
to SHACL allows the definition of shapes that RDF knowledge graphs should satisfy. We

1Herein, we consider the term ontology for defining schema data and different from instance data. And we
disagree with the use of ontology as synonym of knowledge graph.

2In philosophy, the first studies of Ontology are attributed to Aristotles for his book Metaphysics (ca. 985)
and Parmenides.
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OWL
Ontology

Shapes
Graph

(Constraints)

Data Graph
(instance data)

:Rosa schema:name "Rosa"@en ;
schema:knows :Anthony .

<Person> IRI {
schema:name xsd:string ;
schema:knows IRI

}

schema:knows a owl:ObjectProperty ;
rdfs:domain schema:Person ;
rdfs:range schema:Person .

A person must have only two properties:
- schema:name of value xsd:string
- schema:knows with an IRI value

Figure 3.1: Comparison between ontology and shapes graph definition (adapted from Labra
Gayo, E. Prud’hommeaux, Boneva, et al. (2018)).

describe SHACL and ShEx with more detail in Section 3.1.2. Figure 3.1 shows a comparison
between the definitions of an ontology and a shapes graph based on the example data graph
presented previously in Figure 2.1.

The main goal for a schema is to facilitate the understanding of the semantics of data,
and provide the structure of the data. This can, for example, make more effective and effi-
cient the job of programmers and data engineers when producing or consuming data.

3.1.1 Dynamic schema problem

Although there are several options for describing the schema of a knowledge graph, all of
them (including the ones discussed above) present an issue, which is that they do not de-
scribe the current structure of data. For instance, a schema could state that a customer entity
must have between one and three last names, but in reality all instances have only one. In
that scenario, all customers are valid and properly satisfy the constraint, but they exhibit
a slightly different structure from what the knowledge engineers envisioned. The standards
presented above allow users to describe upfront the structure of the data, indicating what is
allowed and valid on the eyes of knowledge engineers; however, one of the core features of
the RDF language is the schema-less notion, one can say anything about anything. Knowl-
edge graphs allow to add new information, relationships and entities, a posteriori. This
feature allows the definition of new entities and facts (relations between the entities) in a
free way, without having to comply with rigorous schemas (see Example 3.1).

In other words, we can say that knowledge graphs expressed in RDF have a dynamic
schema (Muñoz, 2016; González and Hogan, 2018; Hogan, 2018). Ontologies as in OWL and
RDFS are focused on ‘real-world things’ in a given domain, and have the goal of reasoning
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where inference can be applied on top of rules they allow users to define. Since the value
of ontologies is on the level of details in which they describe the real-world, they usually
tend to be very complex and hard to understand by most. Although ontologies are used by
knowledge practitioners to define constraints, in terms of data validation, ontologies should
never be used for validating instance data. Because OWL, RDFS and RDF adopt the OWA, it
cannot be ensured whether the instance data really complies with all the conditions stated
during the data modelling process. SHACL and ShEx are good alternatives to deal with
this, since they are aimed for rigorous data validation and use a CWA (cf. Section 2.1.3).

Example 3.1

In an RDF knowledge graph, we can insert new facts without having an entity type
definition. Let us say we start with few triples containing information about a hospital
patient:

1 @prefix ex: <http://www.example.org/> .

2 @prefix schema: <http://www.schema.org/> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4

5 ex:Bianca rdf:type schema:Patient ;

6 schema:name "Bianca" ;

7 schema:gender schema:Female ;

8 schema:birthDate "1987-09-09"^^xsd:date .

Then we can add more information about this patient:

1 ex:Bianca schema:spouse ex:Fernando ;

2 schema:healthCondition ex:Condition_A .

3 ex:Condition_A rdf:type schema:MedicalCondition ;

4 schema:name "PhD Stress" ;

5 schema:signOrSymptom [

6 rdf:type schema:MedicalSignOrSymptom ;

7 schema:name "feeling of procrastination"

8 ] .

And later define the classes:

1 schema:Patient schema:diagnosis schema:MedicalCondition ;

2 schema:drug schema:Drug ;

3 schema:healthCondition schema:MedicalCondition .

As a result, the schema of an RDF knowledge graph is not priorly fixed but dynamic
and ever-changing.

A proposed solution to deal with the dynamic schema of graphs is to infer a data-driven
schema. Hogan (2018) gives some example desiderata for such approach that we reproduce
in the following:

Scalability: Given that some knowledge graphs are in the order of millions of
nodes and edges, a suitable notion of schema should be computable from
graphs of that size.
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Stability: A minor change in the underlying graph should not be able to affect
a major change in the corresponding schema.

Conciseness: The schema should be significantly smaller than the graph that it
describes.

Connectivity: The schema should not simply describe the nodes in the graph,
but should capture information on how the graph is connected.

Readability: The schema should be human-interpretable, meaning that its
structure can be directly understood rather than representing abstract ob-
jects without direct significance.

The desiderata proposed in Hogan (2018) is presented as a guide towards a general no-
tion of schema for graphs. In this dissertation, we consider the desiderata proposed by
Hogan in our contribution in Chapter 4 when extracting cardinality information to uncover
the structure of knowledge graphs. And in Chapter 5 when defining an approximate algo-
rithm for knowledge graphs validation.

Next, we review the languages proposed in literature to describe constraints and vali-
date knowledge graphs.

3.1.2 Validation approaches for knowledge graph

To check whether instance data satisfy a given set of constraints (i.e., ensure data consis-
tency) is a very important requirement for any structured data model. This process is also
known as data validation and is commonly achieved using constraint languages. A few
examples of constraint languages are: SQL for relational databases; XML Schema, DTD,
Schematron, and RelaxNG for XML; JSON Schema for JSON; and CSV Schema for CSV.
These languages provide means for describing schema structure and constraints to data.

Due to the latent need for constraint languages in applications dealing with RDF knowl-
edge graphs, several initiatives have been proposed in recent years. In this section, we
briefly describe the most representative approaches that have been used for validating RDF
knowledge graphs. Figure 3.2 shows a categorisation of RDF knowledge graph validation
approaches using four categories (Meester, Heyvaert, Dörthe Arndt, et al., 2019). Below we
present the four categories of validation approaches and their description in the following
sub-sections:

• Hard-coded approaches (Section 3.1.2.1),

• Integrity constraint approaches (Section 3.1.2.2),

• Query-based approaches (Section 3.1.2.3), and

• High-level languages (Section 3.1.2.4).

For more details on the practical side and examples of validation languages for RDF
knowledge graphs, we encourage the reader to consult the book “Validating RDF Data”
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Figure 3.2: Classification of RDF knowledge graph approaches (Meester, Heyvaert, Dörthe
Arndt, et al., 2019).

by Labra Gayo, E. Prud’hommeaux, Boneva, et al. (2018). This books introduces data val-
idation in a practical way and focuses mainly on high-level languages, namely, ShEx and
SHACL, presenting their design and a comparison.

3.1.2.1 Hard-coded approaches

This is one of the first approaches taken for data validation, where both description and vali-
dation of constraints is embedded in the source code of software systems. These hard-coded
systems contain the business rules and the routines to evaluate them. They are usually seen
as black box approaches.3 Early in the adoption of RDF, Hogan, Harth, Passant, et al. (2010)
analysed the quality of the Semantic Web and provided a list of frequently observed prob-
lems in RDF publishing. Later in Hogan, Umbrich, Harth, et al. (2012), the authors analysed
again RDF data crawled from the Web (ca. 1.106 billion of unique N-Quads from May 2010),
and provide some of the first guidelines in the form of best practices for RDF data providers.
Among the conclusions of Hogan et al., we highlight the statement: “universal notions of
quality are inherently difficult to pinpoint and measure”, which we relate to the definition
of data quality given by R. Y. Wang and Strong (1996) in which quality is associated with
the concept of “fitness for use”. Thus, we can say that quality is dependant of use cases and
context where the data is intended to be used.

3A black box approach is that where only the input and output are known, but how the internals work is
unknown.
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3.1.2.2 Integrity constraint approaches

There are two main limitations against the use of RDFS and OWL for validating RDF knowl-
edge graphs, namely, the OWA and nUNA. This makes hard to evaluate consistency, and
even inappropriate, when some of the relations are not explicitly stated. Some validation
approaches interpret the axioms found in ontologies as integrity constraints, which are used
to validate RDF knowledge graphs (Motik, Horrocks, and Sattler, 2009; Tao, Sirin, Bao, et al.,
2010; Patel-Schneider, 2015). In literature, there are two of these approaches:

Description Logic-based reasoners. OWL axioms can be interpreted using Description
Logics. Motik, Horrocks, and Sattler (2009) compared the approaches in OWL and re-
lational databases for schema modelling, schema and data reasoning problems, and con-
straint checking. They presented algorithms for checking integrity constraints satisfaction
for different kinds of ontologies. In relational data, integrity constraints satisfaction check-
ing correspond to model checking, whereas in Description Logics this does not hold. In
Description Logics, the only form of constraints checking is checking the satisfiability of
an A-Box (data) w.r.t. a T-Box (schema), which is a different problem not concerned with
the shape of data. Their approach extended OWL using general Description Logics and
propose to differentiate between regular axioms and other T-Box axioms to be designated
as integrity constraints. Moreover, they propose algorithms for checking (validating) data
against these newly defined integrity constraints.

SPARQL endpoint. Tao, Sirin, Bao, et al. (2010) showed that the expressiveness allowed by
OWL is limited to express integrity constraints and proposed a different semantics for the
interpretation of ontology axioms: to adopt a CWA with a weak variant of the UNA for that.
Such alternative semantics of OWL provides knowledge practitioners with the capability
to combine open-world reasoning and closed-world constraint validation. They showed
that integrity constraints validation can be reduced to answering SPARQL queries under
certain conditions. More specifically, Tao et al. described RDF, RDFS, and OWL axioms
using SPARQL queries designed with property paths that simulate the rdfs:subClassOf

entailment. Their work was implemented in Stardog ICV4, a commercial knowledge graph
management platform (see Example 3.2). SPARQL 1.1 query language is used to translate
this kind of constraints and identify violations whenever a non-empty result is returned.

Recently, Patel-Schneider (2015) draws our attention to how most use cases using OWL
to express integrity constraints tend to adopt the OWA without the UNA for the parts of the
knowledge graph that are known to be incomplete, whereas the CWA with the UNA can be
adopted otherwise (when the data is complete). Thus, inference will be applied only over
OWL axioms following the OWA, while the integrity constraints will be used for validation
with the CWA. In his setting, validation is separated into integrity constraints and closed
world recognition, and similarly to Tao, Sirin, Bao, et al. (2010), a translation of RDF and
RDFS axioms to SPARQL queries is proposed.

4https://www.stardog.com (Accessed on June 9th, 2018)

https://www.stardog.com
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1 ASK {
2 { SELECT ?Person {
3 ?Person rdf:type schema:Person .
4 ?Person schema:name ?o .
5 } GROUP BY ?Person HAVING (COUNT(*) = 1)
6 }
7 { SELECT ?Person {
8 ?Person rdf:type schema:Person .
9 ?Person schema:name ?o .

10 FILTER (isLiteral(?o) && datatype(?o) = xsd:string)
11 } GROUP BY ?Person HAVING (COUNT(*) = 1)
12 }
13 }

Figure 3.3: SPARQL query to check whether a person has one name of type literal.

Example 3.2

In the snippet below, we show some integrity constraints using Stardog ICV notation
to declare that instances of schema:Person type must have exactly one value for the
(functional) property schema:name, which must be a xsd:string literal.

1 schema:Person a owl:class ;

2 rdfs:subClassOf [ owl:onProperty schema:name ;

3 owl:minCardinality 1 ] .

4 schema:name a owl:DatatypeProperty , owl:FunctionalProperty ;

5 rdfs:domain schema:Person ;

6 rdfs:range xsd:string .

3.1.2.3 Query-based approaches

This group of approaches performs validation of RDF knowledge graph using queries de-
scribed and executed similarly to the SPARQL query language (S. Harris, Seaborne, and E.
Prud’hommeaux, 2013). Using SPARQL, constraints are defined as queries that can be exe-
cuted against the data graph in an SPARQL endpoint: only the pieces of the RDF knowledge
graph that are compatible with the structure defined by the queries are returned to the user.
SPARQL provides with a good level of expressiveness that allows to describe test patterns as
queries (Kontokostas, Westphal, Auer, et al., 2014). Such patterns can be knowledge graph
and ontology agnostic or tailored to specific use cases. For instance, to validate the data of
a person one could use a SPARQL query like in Figure 3.3 to check that a person has only
one name and this is a literal. The query in Figure 3.3 will return a simple true value if all
?Person entities of type schema:Person have only one property schema:name and this prop-
erty is a xsd:string literal. This category covers more generic approaches when compared
with the previously mentioned implementation of integrity constraints using SPARQL (e.g.,
Tao, Sirin, Bao, et al. (2010)).

Similarly, other kinds of logical constraints can also be defined following the semantics
of SPARQL. In Labra Gayo, E. Prud’hommeaux, Boneva, et al. (2018), the pros and cons of
using SPARQL for data validation are analysed. On the one hand, we have the benefits that
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SPARQL is:

(a) very expressive and can handle most RDF validation needs; and

(b) ubiquitous since most RDF products support it.

On the other hand, there are also some problems because SPARQL is:

(c) very expensive to compute and also very verbose (making difficult to write and debug
by non-experts);

(d) non-deterministic in the sense that the same constraint can be expressed in different
ways; and

(e) complex to exhaustively write queries which accept all valid permutations and reject
all incorrect structures.

SPARQL has been adopted in other validation initiatives such as SPARQL Inferencing
Notation (SPIN) (Knublauch, J. A. Hendler, and Idehen, 2011). SPIN is a low-level language
that allows users to define templates and user-defined functions using SPARQL to validate
RDF knowledge graphs. In Fürber and Hepp (2010), the authors propose to use SPIN for
identifying data quality problems in the Semantic Web data (a.k.a. Web of Data). In the
same vein, Kontokostas, Westphal, Auer, et al. (2014) define so-called Data Quality Test
Patterns (DQTP), which are tuples (V, S), where V a set of typed pattern variables and S is
a SPARQL query template with placeholders for the variables from V .

Example 3.3

An example DQTP is as follows, where we test for the cardinality of a relation P1

comparing it with a value V1 using operator OP (e.g., <,<=, >,>=,=, ! =). Note that
here V = {P1, V1, OP}.

1 SELECT DISTINCT ?s WHERE { ?s P1 ?c }

2 GROUP BY ?s HAVING count(?c) OP V1

An instantiation of this DQTP could be defined using P1=schema:birthDate, OP=>,
and V1=1 to assess entities that have more than one date of birth.

Kontokostas et al. developed a validation framework for their DQTP called RDFUnit5,
which recently in 2017 also added support for constraints defined in SHACL.

3.1.2.4 High-level languages

Although core languages of the Semantic Web, namely, SPARQL and OWL with CWA have
been used for RDF validation, they are considered to be too complex and inappropriate for
the validation task. Technically, their goal is to support inferences in a reasoner software,
which significantly differs from what a validation software does. Thus, several proposals

5Project web site at http://aksw.org/Projects/RDFUnit.html.

http://aksw.org/Projects/RDFUnit.html
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for new high-level and declarative languages were proposed in recent years for defining
constraints for RDF knowledge graphs.

So far we have mentioned validation approaches that are tied to some technologies and
implementations. High-level languages are specifically defined to describe constraints in
a technology and implementation agnostic manner (Coyle and Tom Baker, 2013; Fokoue
and A. Ryman, 2013; T. Hartmann, 2016; Labra Gayo, E. Prud’hommeaux, Boneva, et al.,
2018). Several proposal of such languages have been presented in the recent years, but only
few of them have been widely adopted by the community. Next, we present some of these
proposals.

Resource description languages. The first of these languages we review is the Descrip-
tion Set Profiles (DSP) (Nilsson, 2008), which describes the structure of a description set6 by
using templates and constraints. In DSP, templates are used to express structures, while
constraints are used to limit those structures. DSP was proposed as a formal representation
of constraints of a Dublin Core Application Profile (Coyle and Tom Baker, 2013).

Example 3.4

The following DSP example matches descriptions with a single resource, which must
be an instance of the class foaf:Person.

1 <?xml version="1.0" ?>

2 <DescriptionSetTemplate xmlns="http://dublincore.org/xml/dc-dsp/2008/03/31" >

3 <DescriptionTemplate ID="person" minOccurs="1" maxOccurs="1" standalone="yes">

4 <ResourceClass>http://xmlns.com/foaf/0.1/Person</ResourceClass>

5 </DescriptionTemplate>

6 </DescriptionSetTemplate>

Later, the RDF Data Descriptions (RDD) (Schmidt and Lausen, 2013) was proposed
in COLD workshop 2013. An RDD allows to specify instance-level data constraints over
RDF—akin to DTDs for XML—using First-order Logics, which facilitated their translation
to SPARQL. The language also allows to specify which semantics to use at different scopes,
i.e., one can validate some classes using the CWA and others using the OWA. The RDD
language provides a user-readable and machine-processable way to describe constraints,
which differs from the previous SPARQL and OWL approaches.

6A set of one or more descriptions (or statements) that describe a single resource.
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Example 3.5

An example RDF Data Description is as follows, specifying that the name of a person
is the identifier of the person, and the range of schema:knows is a IRI.

1 CWA CLASSES {

2 OWA CLASS schema:Person {

3 KEY schema:name : LITERAL ;

4 RANGE(schema:Person) schema:knows : IRI ;

5 }

6 }

Also proposed in 2013, are the languages Open Services for Lifecycle Collaboration
(OSLC) Resource Shapes (Fokoue and A. Ryman, 2013; A. G. Ryman, Hors, and Speicher,
2013) by IBM and the Dublin Core Application Profiles (Coyle and Tom Baker, 2013). These
languages were presented and discussed in the W3C/MIT hosted workshop of RDF val-
idation in September 2013.7 A Resource Shape is an RDF vocabulary for specifying and
validating constraints on RDF knowledge graphs.

Example 3.6

Example on how to represent the constraints on range and cardinality of the schema:

name property in OSLC.

1 :customer a oslc:ResourceShape ;

2 oslc:property [

3 dcterms:title "name" ;

4 oslc:propertyDefinition schema:name ;

5 oslc:valueType xsd:string ;

6 oslc:occurs oslc:Exactly-one

7 ] .

Languages for describing the structure of knowledge graphs have been well received in
the community, but most importantly, they showed to be a powerful alternative to SPARQL
and OWL with the potential to become an standard. In the next two sub-sections, we review
Shape Expressions and SHACL, two of the latest languages coming out of W3C groups
that have been inspired somehow by OSCL, Dublin Core Application Profiles, RDF Data
Descriptions, and SPIN.

Shape expressions. Shape Expressions (ShEx) is intended to be an RDF constraint lan-
guage, which allows to describe the structure or “shape” of RDF knowledge graphs in a
human-readable syntax (E. Prud’hommeaux, Labra Gayo, and Solbrig, 2014). It is based
on RELAX NG8 Compact Syntax with conventions similar to Turtle or SPARQL. We fol-
low Boneva, Labra Gayo, and E. G. Prud’hommeaux (2017) for describing a subset of ShEx

7RDF validation workshop (https://www.w3.org/2012/12/rdf-val/).
8REgular LAnguage for XML Next Generation was defined by a committee specification of the OASIS RE-

LAX NG technical committee in 2001 and 2002.

https://www.w3.org/2012/12/rdf-val/
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shape schemas. A shapes schema S defines a set of named shapes, where a shape is a de-
scription of the graph structure that can be visited starting from a particular node. Shapes
are expressed using shape expressions, where (Boolean combinations of) other shapes and
recursion is allowed.

Formally, a shapes schema S is a pair (L, def ), where L denotes a set of shape labels used
as names of shapes and def is a function that maps a shape label with a shape expression.
L → S is used as a short for def (L) = S, where a shape label L is associated with a shape
expression S. A shape expression is a Boolean combination of two atomic components: value
description and neighbourhood description. A value description is a set that declares the
admissible values for a node: IRIs, literals and blank nodes. While a neighbourhood descrip-
tion defines the expected neighbourhood of a node and is given by a triple expression. A
triple expression is a group of expressions that describes the expected neighbourhood of a
node likewise DTDs and XML Schema in XML. A triple expression is composed of each-of
(separated by the semicolor operator ‘;’), some-of (separated by the pipe ‘|’) and repeti-
tion operator is satisfied if some distribution of the triples in the neighbourhood of a node
exactly satisfies the expression.

Example 3.7

To illustrate these definitions, we consider the shape schema S0 below comprising two
shape definitions (enclosed by curly braces {}) with shape labels ex:PersonShape and
ex:PatientShape, respectively. Everything what is between the curly braces is known
as a shape, and contain triple expressions making use of all operators: each-of (;),
some-of (|), and repetition. In the def ( ex:PersonShape) shape, there is one triple
expression, which in turn contains five triple constraints separated by ‘;’.

1 ex:PersonShape {

2 schema:name xsd:string {1} ;

3 schema:address schema:PostalAddress {1, 3} ;

4 schema:age xsd:integer MinInclusive 18 MaxInclusive 99 ;

5 schema:email IRI * ;

6 ^schema:knows @ex:PersonShape ?

7 }

8 ex:PatientShape {

9 ex:patientNumber xsd:integer | schema:identifier IRI

10 }

The shape expression ex:PersonShape → schema:name xsd:string {1} ; schema

:address schema:PostalAddress {1, 3} ... is a shape, where schema:name xsd:

string {1} is one of the five constraints in the triple expression.

A ShEx schema is a collection of expressions that describe the constraints that a given
RDF graph should meet to be considered valid. It contains the allowed values for the pred-
icates of an entity, directionality of the relations, and cardinality constraints for the number
of allowed occurrences of a predicate. In our example 3.7, the ShEx schema constrains in-
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stances of the ex:PersonShape entity type9 as follows: a single name of type literal; one to
three addresses of type schema:PostalAddress; an age between 18 and 99 years; zero or
more (* in regular expressions) e-mail addresses for contact; and at least one (? in regular
expressions) contact (defined recursively by the same shape indicated by the ‘@’ symbol).

Note that a ShEx schema can be serialised in three different ways, namely, ShExC for
Shape Expressions Compact Syntax, ShExJ for JSON-LD (JavasSript) syntax, and ShExR
for RDF Turtle syntax. In this work, we use ShExC because of its human-friendly syntax.
For more details, we refer readers to the ShEx Primer (Bake and E. Prud’hommeaux, 2017).

Example 3.8

In the SHACL shape below, we specify that the target node ex:Alice should have
one schema:name value of type literal, one to three addresses, the gender should be
either schema:Male or schema:Female, and the values of schema:knows should be of
type schema:Person.

1 ex:Person a sh:NodeShape ;

2 sh:targetNode ex:Alice ;

3 sh:property [ sh:path schema:name ;

4 sh:minCount 1 ;

5 sh:maxCount 1 ;

6 sh:datatype xsd:string ;

7 ] ;

8 sh:property [ sh:path schema:address ;

9 sh:minCount 1 ;

10 sh:maxCount 3 ;

11 sh:nodeKind sh:IRI ;

12 ] ;

13 sh:property [ sh:path schema:gender ;

14 sh:in (schema:Male schema:Female) ;

15 ] ;

16 sh:property [ sh:path schema:knows ;

17 sh:class schema:Person ;

18 ] .

Shapes constraint language. Shapes constraint language (SHACL) is a W3C recommenda-
tion released in 2017. SHACL has a lot in common with ShEx, specially the goal to become
the de facto constraint language for RDF knowledge graphs. Likewise, SHACL also allows
to define shapes that nodes in the graph must satisfy (see Example 3.8). It was influenced
mainly by SPIN, but also from OSLC Resource Shapes and ShEx.

The grammars of SHACL and ShEx are different; however, their expressivity is very
similar (Labra Gayo, García-González, Fernández-Alvarez, et al., 2019). In SHACL, there are
two main types of shapes: node shapes and property shapes. Node shapes allow to declare
constraints over a node, whilst property shapes allow to declare constraints on the values

9However, there is no functional relation between entity types and shapes. A node can have zero or more
rdf:type relations, and different applications can apply different shapes to the nodes, i.e., a node can have
different meaning and different structure depending on the context.
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associated with a node through a path. A node shape usually contains several property
shapes declared using the sh:property relation. While property shapes use sh:path to
declare the path—usually a single relation IRI—that goes from the focus node to the value
they describe.

Unlike ShEx, there are very few scientific publications studying the SHACL language
formalisation and semantics. Corman, Reutter, and Savkovic (2018b) propose a formal se-
mantics for the SHACL core, which can handle the arbitrary recursion proposed in the spec-
ification of SHACL but explicitly left undefined. Due to the status of recommendation and
the growing interest in SHACL, it is to expect that more works like this will appear in the
coming years.

Another important part of SHACL are the validation reports. A validation report, repre-
sented by sh:ValidationReport, is the value returned by a SHACL processor after valida-
tion. If the RDF knowledge graph conforms to the shapes graph, then the report returns a
sh:conforms declaration with value true; and false and a set of validation errors otherwise.
A user can define the result message returned in each validation component. For more de-
tails, we refer readers to the SHACL recommendation (Knublauch and Kontokostas, 2017).

3.2 Schema inference approaches

A data constraint is a pattern that must be present in data. If such patterns are known, they
are grouped in a so-called schema—probably declared using a language like the ones we
have reviewed in Section 3.1.2. But clearly, there will be times when such patterns will not
be explicit during the production/consumption of data. There will be cases in which the
patterns will not be fully enumerated, and cases where the patterns will not be intuitive
even for the data producers. We have mentioned, however, that even when the patterns
are fully enumerated the instance data might not follow them. Thus, it becomes relevant to
have methods for enumerating patterns fully and for inferring the schema.

In relational databases, data producers must follow a schema-first approach (Pham and
Boncz, 2016), where the schema is defined upfront. And all instances of a database are
ensured to follow the pre-defined schema. Similarly, the schema-first approach has been
traditionally adopted by the Semantic Web community; however, this contradicts the OWA
present in RDF and OWL. Following a semantic approach (under the OWA), one should
not assume any upfront schema, which is also called the schema-last approach. Such contra-
diction is perhaps one of the major issues for data consumers who require a clear schema
of the data to write queries and manage knowledge graphs (Lausen, Meier, and Schmidt,
2008).

To tackle the lack of a rigid schema, the research community has proposed several schema
inference approaches that aim to discover the schema and constraints that data naturally sat-
isfy. Several techniques have been proposed to infer a schema from RDF knowledge graphs
using so-called bottom-up or data-driven approaches that take the instance data as input
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Figure 3.4: Classification of schema inference approaches from knowledge graphs.

and return a schema. In this section, we briefly describe the most representative approaches
that have been used for inferring schemas from knowledge graphs. Figure 3.4 shows a cat-
egorisation of approaches for schema inference from knowledge graph using three main
categories. Below we present the three categories and describe them in the following sub-
sections:

• Statistical metadata extraction approaches (Section 3.2.1),

• Rule mining approaches (Section 3.2.2), and

• Complex structural inference approaches (Section 3.2.3).

3.2.1 Statistical metadata extraction

Statistical approaches focus on the statistical distribution of classes and properties across a
knowledge graph, which is also known as dataset profiling. They usually compile dataset
metadata and aggregated statistics such as triple count, number of (incoming/outgoing)
links, among others (Fernández, Martínez-Prieto, Fuente Redondo, et al., 2018). Several
tools have been built and published to profile and mine RDF knowledge graphs and expose
their characteristics. ExpLOD (Khatchadourian and Consens, 2010) analyses the Linked
Open Data (LOD) cloud, which is a set of RDF graphs available on the Web with links
among them. ProLOD++ (Abedjan, Grütze, Jentzsch, et al., 2014) does a similar profile
of LOD datasets and provides association rule discovery to uncover synonymous predi-
cates, and uniqueness discovery along ontology hierarchies. Loupe (Mihindukulasooriya,
Poveda-Villalón, García-Castro, et al., 2015) is another tool that exposes the main character-
istics of RDF knowledge graphs and allows to explore the classes and properties, similar to
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Laundromat (Beek, Rietveld, Bazoobandi, et al., 2014), LODstats (Ermilov, Lehmann, Mar-
tin, et al., 2016), ABSTAT (Spahiu, Porrini, Palmonari, et al., 2016) and LODAtlas (Pietriga,
Gözükan, Appert, et al., 2018). Recently, in Rietveld, Beek, Hoekstra, et al. (2017), the au-
thors developed LOD Laundromat Meta Dataset, which exposes metadata of most LOD
datasets on the Web in a uniform way. RDF knowledge graphs can also be available as
online services. SPORTAL (Hasnain, Mehmood, Zainab, et al., 2016) is a tool that submits
queries to SPARQL endpoints to obtain detailed profiles of the content in the endpoint. The
output description of the datasets is then published in an online catalogue. Because sub-
mitting aggregate queries to SPARQL endpoints may be too expensive and therefore not
feasible (most of the time), in Soulet and Suchanek (2019) the authors study re-writing tech-
niques for profiling queries. For a recent survey, we refer the reader to Ellefi, Bellahsene,
Breslin, et al. (2018) that proposes a taxonomy of dataset profiling approaches.

3.2.2 Rule mining

Rule mining approaches extract frequent rule-form patterns hidden in the data. The usual
requirements for methods that extract rules from knowledge graphs are:

(a) scalability to learn from large-scale knowledge graphs comprising billions of triples;

(b) robustness to tolerate a certain number of incorrect facts present in the knowledge
graph; and

(c) the ability to cope with uncertainty to generate certainty values for the inferred rules
or axioms.

Völker and Niepert (2011) introduced a statistical approach to the mining of association
rules of the form X ⇒ Y , where the confidence (conf (·)) of a rule is defined based on the
support (supp(·)) of its constituents as follows:

supp(X) =
|{ti ∈ D : X ⊆ ti}|

|D|
, and

conf (X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
,

where the item setX ⊆ I = {i1, i2, . . . , in},D = {t1, t2, . . . , tm} is a set ofm transactions, and
each transaction is a subset of items (binary attributes), i.e., ti ⊆ I . These association rules
are used to generate OWL 2 EL ontology axioms from an RDF knowledge graph without
requiring negative examples. For instance, the association rule {Ci} → {Cj} is translated
into the axiom C v D, e.g., ∃ birthPlace.PopulatedPlace v Person (Völker and Niepert,
2011).

ProLOD++ (Abedjan, Grütze, Jentzsch, et al., 2014) computes statistical metadata of
datasets, but also applies the FP-Growth algorithm to mine both positive and negative asso-
ciation rules, and performs data cleansing. Such rules could help ontology re-engineering
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by, for example, identifying underspecified and overspecified classes. In an underspecified
class certain properties frequently present in real-world data are not specified in the vocab-
ulary, while in an overspecified class one or more properties are declared for the class in
the ontology, but are rarely (if ever) used for real-world data. ProLOD++ can also be used
to discover synonymous predicates or relations (r1 = r2 or r1 = r2

−1) such as dbp:author

and dbp:writer. In Mohamed, Muñoz, Nováček, et al. (2017), we have presented a method
to identify equivalence rules as P1 ≡ P2, where P1 and P2 are paths in a knowledge graph.
Such path equivalence rules can also help ontology re-engineering and querying.

Inductive Logic Programming (ILP) can also be used to mine Horn clauses from knowl-
edge graphs; however, learning them requires negative examples. AMIE+ was devel-
oped to extract Horn rules from large knowledge graphs without the need for nega-
tive or counterexamples and assuming a partial closed-world assumption (PCWA) (L. A.
Galárraga, Teflioudi, Hose, et al., 2013; L. Galárraga, Teflioudi, Hose, et al., 2015). Ex-
amples of rules extracted by AMIE are: relative(y, z) ∧ sister(z, x) ⇒ relative(x, y) and
livesIn(h, p) ∧ marriedTo(h,w) ⇒ livesIn(w, p). In AMIE, the mined rules are also used to
predict new facts and complete a knowledge graph. We will review more recent knowledge
graph completion approaches in Section 3.3.

3.2.3 Complex structural inferences

Unlike previously described approaches, complex structural inference aims at the provi-
sion of schemas or topological information of a knowledge graph. Complex structures go
beyond simple statistics and association rules and aim to expose the schema that (most)
data follow.

Concept hierarchies. In Cimiano, Hotho, and Staab (2004), the authors apply cluster-
ing techniques based on context vectors and Formal Concept Analysis (FCA) to con-
struct taxonomies from textual data. Other approaches also propose the use of cluster-
ing (Maedche and Zacharias, 2002) using graph-based and ontological distances, and ILP-
based approaches (d’Amato, Fanizzi, and Esposito, 2010) to construct taxonomies from
Linked Data. Similarly, for the friend-of-a-friend (FOAF) network on the Semantic Web,
Grimnes, Edwards, and Preece (2004) apply clustering to identify classes of people and
ILP to learn descriptions of these groups. DL-Learner (Lehmann, 2009) is another ILP-
based approach successfully applied to DBpedia (Auer, Bizer, Kobilarov, et al., 2007) and
YAGO (Suchanek, Kasneci, and Weikum, 2007) is able to generate OWL class expres-
sions (Hellmann, Lehmann, and Auer, 2009).

In Kellou-Menouer and Kedad (2015), the authors extract type definitions described by
profiles, i.e., property vector where each property is associated with a probability. A further
analysis of semantic and hierarchical links between types (or classes) is done to extract a
global schema. They only consider direct relations and property paths but ignore rdf:type

triples. A hierarchical organisation of entity types (classes) is extracted in Christodoulou,
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Paton, and Fernandes (2015) using clustering analysis at instance-level grouping together
entities with similar sets of properties. Their hierarchical organisation does not take into
account any notion of cardinality of relations. They serialise the inferred schema—modelled
using UML—back to RDF triples using a vocabulary defined by themselves.

Recent applications of FCA have also been scaled to large heterogeneous knowledge
graphs to identify hierarchical structures called formal concept lattice (González and Hogan,
2018). This new representation allows to define an algebra over lattices that unlocks the
study of dynamic knowledge graphs. For example, formal concept lattices could be used
to identifying past or future changes by looking at several snapshots in time of a knowl-
edge graph (Käfer, Umbrich, Hogan, et al., 2012). The authors evaluate their approach by
identifying changes in Wikidata (Vrandecic, 2012) over 11 weeks of data updates.

Graph summarisation. Graph summarisation aims to describe data using a small amount
of information. A summary is composed of graph patterns that can be seen as views, which
can help users to understand complex knowledge graphs easily (Song, Yinghui Wu, P. Lin,
et al., 2018). Čebirić, Goasdoué, and Manolescu (2015) define some desiderata that RDF
knowledge graph summaries should satisfy which we reproduce in the following:

Completeness: The saturation of the summary of G must be the same as the
summary of its saturation G∞10, due to the semantics of an RDF graph be-
ing its saturation.

Schema independence: It must be possible to summarize G whether or not it
has associated RDFS triples.

Compactness: The summary should be typically smaller than the RDF knowl-
edge graph, ideally by orders of magnitude.

Representativeness: The summary should not lose too much information from
G.

Accuracy: The summary should avoid, to the extent possible, reflecting data
that does not exist in G.

Different summarisation approaches can choose whether to satisfy all or part of the desider-
ata proposed by Čebirić et al. However, some trade-off exists between the compactness and
representativeness of summaries, so that no information is lost while aiming for small sum-
maries. Figure 3.5 shows one of the graph summaries that could be extracted from the
knowledge graph in Figure 2.1. For recent surveys of knowledge graph summarisation
methods we refer the reader to (Song, Yinghui Wu, P. Lin, et al., 2018; Čebirić, Goasdoué,
Kondylakis, et al., 2019).

Relational schemas. More recent approaches have been trying to extract relational schemas
that can be used for validation or checking of a knowledge graph. These approaches form

10The saturation G∞ is defined as the closure, i.e., the fixed-point graph obtained after recursively applying
entailment rules on G.
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schema:Organization

swrc:studiesAt schema:givenName

schema:knows

schema:Person

schema:Text

Class
Relation

Figure 3.5: Example graph summary from the knowledge graph in Figure 2.1.

part of a bigger research area that aims to infer schemas from different databases, e.g., XML
schema inference (Bex, Gelade, Neven, et al., 2010) and JSON schema inference (Baazizi,
Colazzo, Ghelli, et al., 2019).

Rivero, Hernández, Ruiz, et al. (2012) uses straightforward SPARQL 1.1 queries to auto-
matically discover ontological models that contain types and properties, sub-types, domain,
range, and minimum cardinalities of these properties. More recent works use statistical pat-
terns to build shape graphs from instance data Fernández-Álvarez, García-González, Frey,
et al. (2018). The profiles extracted by Fernández-Álvarez et al. are then serialised as ShEx,
which is a widely used RDF constraint language with several validation tools (see Exam-
ple 3.9).

Example 3.9

The following is a ShEx shape inferred in Fernández-Álvarez, García-González, Frey,
et al. (2018) when analysing the dbo:Country class from DBpedia.

1 :Country {

2 rdf:type [dbo:Country] ; # 100.0%

3 dbo:wikiPageID xsd:integer ; # 97.1%

4 owl:sameAs IRI + ; # 96.9%

5 foaf:name xsd:string + ; # 96.6%

6 dcterms:subject IRI + ; # 96.0%

7 dbo:dissolutionYear xsd:gYear + ; # 83.1%

8 # 82.6% have cardinality { 1 }

9 dbo:foundingYear xsd:gYear + ; # 82.0%

10 # 81.5% have cardinality { 1 }

11 dbp:continent rdf:langString + # 80.6%

12 # 80.3% have cardinality { 1 }

13 }

Each constraint pattern generated by the algorithm is associated with a trustworthiness score,
which reflects the confidence in a rule obtained from rule mining approaches.

A workflow for RDF Shape induction is proposed in Mihindukulasooriya, Rashid,
Rizzo, et al. (2018) that mixes profiling techniques and machine learning to automatically
generate SHACL shapes for RDF knowledge graphs. They evaluated their work over a sub-



60 | Chapter 3. Knowledge Graph Mining

set of DBpedia achieving 97% precision on the derived shapes and cardinality constraints.
Similarly, in Spahiu, Maurino, and Palmonari (2018), the authors use ABSTAT (Spahiu, Por-
rini, Palmonari, et al., 2016) to learn semantic profiles of a knowledge graph and convert
them into SHACL constraints that can be used to assess the quality of the data. Although
there is a growing body of literature characterizing knowledge graphs and trying to extract
structural patterns, these works focus on an obtaining a global schema for data, and are
not robust enough since the semantic of data is mostly ignored. For example, equivalence
axioms like the ones encoded by owl:sameAs statements are not accounted when computing
cardinality. Finally, their end goal is the provision of a serialised schema shape for knowl-
edge graphs and not how the found patterns could be used by other applications.

3.2.4 Elements of structure: cardinality constraints

Although many of the elements that compose a knowledge graph schema (e.g., classes, re-
lationships) have been widely studied in literature, there are still some gaps. In this thesis,
we hypothesise that elements like cardinality can be used to expose the structure that data
naturally exhibit as it does for relational databases (Thalheim, 1992; Liddle, Embley, and
Woodfield, 1993) and XML (Ferrarotti, S. Hartmann, and Link, 2013; Ferrarotti, S. Hart-
mann, Link, et al., 2013). Cardinality is present in every relation between entities. For
example, given the soccer player (entity) Alexis Sánchez and the relation playsFor, we can
expect that this relation will have at least one occurrence with a football team (many in
reality), whereas if we take the country (entity) Republic of Ireland and the relation hasPres-
ident, we can only map a single person because of the functional nature of the relation. In
knowledge graphs, especially when encoded using RDF, there may be semantic elements
that affect cardinality like the equality axioms (owl:sameAs and the like) or noise introduced
by erroneous/false facts in the data.

The notion of cardinality is crucial for the reminder of this thesis, thus, here we provide
an overview of the concept and the implications it has for the structure of data. Mathemat-
ically, the cardinality of a finite set is the number of elements it contains. In the context of
knowledge graphs, data we only consider finite sets of entities and relations. (Note that
still you can say that there are infinite combinations of characters to name or label an entity,
but not all of them are actually used in a knowledge graph instance.) Example 3.10 shows
different ways to express cardinality in a mathematical form.

Henceforth, our focus will be on relation cardinalities. Relation cardinality (also referred
to as multiplicity) covers a critical aspect of relational data modelling, referring to the num-
ber of times an instance of one entity can be related with instances of another entity though
this relation. Information about cardinalities can be useful for data users and knowledge en-
gineers when writing queries, reusing or engineering knowledge graphs (Schmidt, Meier,
and Lausen, 2010). We will in Chapter 4 show how the aforementioned problem of missing
structure, can be (partially) overcome by mining cardinality from instance data. We use re-
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lation cardinality to obtain the latent structure of a knowledge graph: The cardinality of a
relation limits the number of values that may have for a given entity. We argue that extract-
ing cardinality from knowledge graphs can help in the following ways: (i) to communicate
the structure of a given entity type (class); (ii) to measure the completeness and correctness
of a KG; and (iii) to guide knowledge graph completion methods to achieve results that bet-
ter match the knowledge graph structure. We believe that tools that capture the structure of
entities and entity types are key elements for completing a KG.

Example 3.10

Let us consider the following statements that give information about the number of
elements allowed in the domain of a structure (Grant and Hunter, 2006).

• E1 = ∃x1x2x3∀y(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3 ∧ (y = x1 ∨ y = x2 ∨ y = x3))

restricts the domain to have 3 elements.

• E2 = ∃x1x2x3∀y(y = x1 ∨ y = x2 ∨ y = x3) restricts the domain to have at most 3
elements.

• E3 = ∀y(y = a1 ∨ y = a2 ∨ y = a3) restricts the domain to the 3 elements a1, a2,
and a3.

These statements provide different ways to express cardinality and boundaries for a
domain.

No much attention has been paid to cardinality by the approaches introduced in Sec-
tion 3.2. In their approach, Völker and Niepert (2011) derive several constraints from
the knowledge graph but considered cardinality restrictions (upper bounds) only as fu-
ture work. Cardinality constraints in RDF have been defined for data validation in lan-
guages such as OWL (Motik, Peter F Patel-Schneider, and Parsia, 2012), Shape Expressions
(ShEx) (E. Prud’hommeaux, Labra Gayo, and Solbrig, 2014), OSLC Resource Shapes (A. G.
Ryman, Hors, and Speicher, 2013), and Dublin Core Description Set Profiles (DSP)11. OSLC
integrity constraints include cardinality of relations which are more similar to UML cardi-
nality for associations (i.e., exactly-one, one-or-many, zero-or-many, and zero-or-one). Mi-
hindukulasooriya, Rashid, Rizzo, et al. (2018) proposed a machine learning approach to
determine OSLC-like cardinality achieving a good precision. However, the expressivity of
OSLC is limited compared with the definitions proposed in OWL12, DSP, ShEx, Shapes Con-
straint Language (SHACL), Stardog ICV13, and SPIN Modelling Vocabulary (Knublauch,
J. A. Hendler, and Idehen, 2011). These languages define flexible boundaries for cardinal-
ity constraints: a lower bound in N, and an upper bound in N ∪ {∞}. By definition, it is
assumed that cardinality constraints are known beforehand and expressed in one of these
languages for validating knowledge graphs.

11http://dublincore.org/documents/dc-dsp/
12OWL allows to express cardinality through minCardinality, maxCardinality, and cardinality restrictions.
13http://docs.stardog.com/icv/icv-specification.html

http://dublincore.org/documents/dc-dsp/
http://docs.stardog.com/icv/icv-specification.html
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In Chapter 4, we propose an approach for mining flexible cardinality patterns in an
accurate and robust manner. Due to the bottom-up approach, we do not refer to such cardi-
nalities as constraints but as bounds (Muñoz and Nickles, 2017), which do not constrain the
data but indicate soft bounds. Where these bounds are used to impose structural restric-
tions, they are also referred to as cardinality constraints (i.e., hard bounds). They can (and
should) be considered constraints only after a user assessment and use in validation.

3.3 Completion of knowledge graph

In Section 2.3.2 we have defined the completeness of a knowledge graph14 with the help of
a hypothetical ideal knowledge graph K∗ containing all the true facts in the world. Having
such a knowledge graph would allow us to “know everything”, and to know what we do
not know by subtracting K from K∗. Given a knowledge graph about personal informa-
tion of people, we may ask the following questions: does Anthony study in other universi-
ties?, does Aidan have other nationalities?, or are all children of Anthony in the knowledge graph?
Those are questions that we cannot answer if we limit ourselves to the content stored in that
knowledge graph. And because it is practically impossible to have such an ideal (complete)
knowledge graph for every context and domain of knowledge, many works propose alter-
natives to deal with the incompleteness of a knowledge graph by, for example, discovering
missing links between known entities in the graph. We refer to the problem of finding new
links in a knowledge graph as link prediction.

Link prediction is one of the tasks that have as goal the completion of knowledge graphs.
In this section, we describe the tasks involved in knowledge graph completion, and survey
relevant approaches that address them. Particularly, we will focus on those models known
as neural link predictors (Minervini, Demeester, Rocktäschel, et al., 2017; Rocktäschel, 2018;
Muñoz, Minervini, and Nickles, 2019) that apply shallow neural networks to predict the
likelihood of triples. Most approaches are based on machine learning techniques which we
will also introduce here.

3.3.1 What is knowledge graph completion?

We begin by emphasizing the inequality between completeness and completion. Complete-
ness is an end goal for knowledge graphs which is affected by the OWA, which is the prin-
cipled reason why one cannot deem a (Web) knowledge graph as complete. There will
always be entities and relations that we do not know exist. While the completeness of a
knowledge graph dependents on the context and domain of knowledge, the completion’s
goal (assuming an incomplete knowledge graph) is based on either 1) what we already

14Without loss of generality, we use the term knowledge graphs to refer to graph-structured knowledge bases
(see Section 2.2 for details).
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know, i.e., the knowledge graph itself, or 2) external sources of knowledge (e.g., text cor-
pora or other knowledge graphs). In other words, completeness will try to answer more
global questions like does Aidan have other nationalities?, while completion deals with more
local questions like which nationalities does Aidan have?, assuming that we know Aidan and
all possible nationalities.

Knowledge graph completion (KGC)—also known as knowledge base completion (KBC) if the
KB has the form of a KG—is the task that deals with automatically understanding the struc-
ture of (large-scale15) knowledge graphs and predicting missing relationships or links, i.e.,
inferring new facts (Bordes, Usunier, García-Durán, et al., 2013; Nickel, K. Murphy, Tresp, et
al., 2016). Knowledge graph completion methods can be focused on predicting missing en-
tities, missing types of entities, and/or missing relations (links) between entities (Paulheim,
2017). The link prediction task has gained attention based on the high quality predictions
required by some applications (e.g., when predicting a side effect for a drug), which makes
it one of the main problems in statistical relational learning (Getoor and Taskar, 2007).

3.3.2 Completion tasks

The knowledge graph completion task has been approached from different viewpoints and
application contexts. In two recent reviews (Nickel, K. Murphy, Tresp, et al., 2016; Q. Wang,
Mao, B. Wang, et al., 2017), four downstream tasks have been identified as part of the com-
pletion of knowledge graphs considering solely the triples in the knowledge graph. Link
prediction, triple classification, entity resolution and entity classification are the tasks pre-
vious works have addressed. Each one presents a different problem, which usually can be
cast as a link prediction task. We review these four tasks in the following sections.

Link prediction. The link prediction task is concerned with predicting the existence (or prob-
ability of correctness) of (typed) edges in the graph, i.e., predicting triples of the form (h, r, t)

in the knowledge graph (Nickel, K. Murphy, Tresp, et al., 2016). More formally, it is the task
of predicting h given (r, t) or t given (h, r), where the former is denoted as a query (?, r,
t) and the latter as (h, r, ?). For example, an answer to the query (?, studiedAt, NUI Gal-
way) is equivalent to predicting the alumni of NUI Galway, while an answer to (Liam Neeson,
studiedAt, ?) is equivalent to predicting the college(s) attended by Liam Neeson. A similar
idea can also be applied to predict the relation type given the head and tail entities, i.e.,
predict r given the pair (h, t), or answering (h, ?, t), which is usually referred to as relation
prediction (Y. Lin, Z. Liu, Luan, et al., 2015; D. Q. Nguyen, Sirts, L. Qu, et al., 2016). Dur-
ing evaluation, each correct test triple (h, r, t) is corrupted by replacing its subject or object
entity (resp. its relation r) by each possible entity (resp. relation type), and then rank these
candidates in ascending order of their score. Because link prediction adds missing links to
the knowledge graph it is also referred to as knowledge graph completion (see Section 3.3).

Usually, the goal of link prediction is to learn a scoring function φ that given a triple

15This is not a requirement of the KGC task but of the machine learning or deep learning techniques used.
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(h, r, t) ∈ G returns its corresponding score, φ : (h, r, t) → R. Such a score can then be
used for ranking missing triples according to the likelihood that the corresponding facts
hold true, and several models have been proposed based on different assumptions (Bordes,
Usunier, García-Durán, et al., 2013; Y. Lin, Z. Liu, M. Sun, et al., 2015; Nickel, Rosasco, and
Poggio, 2016; Trouillon, Welbl, Riedel, et al., 2016).

Triple classification. The triple classification task consists in verifying whether an unseen
triple (h, r, t) holds true (is correct) or not. It was first introduced by Socher, D. Chen, Man-
ning, et al. (2013). This task can also be seen as a kind of completion of a knowledge graph,
as such it has been studied in Socher, D. Chen, Manning, et al. (2013), Z. Wang, Jianwen
Zhang, J. Feng, et al. (2014b), and Y. Lin, Z. Liu, M. Sun, et al. (2015).

Since most models output a score for each triple, which is expected to be higher for
true triples, it is a common practice to introduce thresholds δr for each relation r to set the
truth boundaries. Thus, any unseen triple, say (h, r, t), will be predicted as true if its score is
higher than δr, and inexistent (false, but there is no negation in RDF due to OWA) otherwise.
More technically, the relation-specific thresholds δr can be determined separately according
to (maximising) the classification accuracy over a small sample of observed triples for that
relation, extracted from the knowledge graph or given in a separate validation set. Usually,
a different classifier for triples is generated for each relation.

Entity resolution. The entity resolution task consists on determining whether two entities
refer to the same object. In some knowledge graphs, it is assumed that there are many nodes
which actually refer to identical objects but have different labels (e.g., an author’s name can
be written in different ways). This task is also known as record linkage, object identification,
instance matching, and de-duplication (Nickel, K. Murphy, Tresp, et al., 2016).

Bordes, Glorot, Weston, et al. (2014) consider a setting for this problem, where the knowl-
edge graph contains equivalence relations between entities. For instance, it is stated that
William J. Smith is the same person as Smith, W. J. using a triple (William J. Smith, equalsTo,
Smith, W. J.). This is encoded by the owl:sameAs relation in the Semantic Web. Therefore,
the entity resolution problem can be cast as a triple classification and how likely a triple
(h, equalsTo, t) is. Triple scores can be then used to perform this prediction. However,
knowledge graphs do not always encode the equalsTo relation as facts. Thus, a solution
using solely the entity representations (vectors) was proposed by Nickel, Tresp, and Kriegel
(2011). Given two entities x, y and their vector representations x, y, the similarity between
x and y is computed as k(x, y) = e−‖x−y‖

2
2/σ, and used to measure the likelihood that x and

y refer to the same entity.

Entity classification. The third task is entity classification. The entity classification task aims
to categorise entities into different semantic categories. For instance, NUI Galway is an Or-
ganisation, but also a University, and Emma is a Person. Generally, this relationship is en-
coded by the isA relation, and by the rdf:type relation in Semantic Web knowledge bases.
Unlike the equalsTo relationship, the isA relationship can be found more frequently in knowl-
edge bases. Thus, the classification problem can be treated as a specific link prediction task,
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answering the questions (x, isA, ?). Entity classification has been studied in Nickel, Tresp,
and Kriegel (2011) and Nickel, Tresp, and Kriegel (2012), where AUC-PR was used as eval-
uation metric.

3.3.3 Statistical properties for completion

Most completion methods over knowledge graphs make some assumptions based on sta-
tistical properties to simplify their task. Knowledge graphs typically adhere to some deter-
ministic rules, e.g., type constraints when saying that Róisín is a Researcher, or transitivity,
e.g., if we know that Aoife was born in Galway and Galway is located in Ireland, then we
know that Aoife was born in Ireland. Such assumptions also define how the (prediction)
results should be interpreted.

Homophily. Homophily or “love of the same” is the tendency of individuals to associate with
“similar” ones. McPherson, Smith-Lovin, and J. M. Cook (2001) tracked back the homophily
principle and found that it has been first mentioned in Aristotle’s Rhetoric and Nichomachean
Ethics manuscripts, where he noted that people “love those who are like themselves”, and
in Phaedrus, Plato observed that “similarity begets friendship.” For instance, if we refer
to people, this principle suggests that people are most likely to make friends with others
of similar demographic characteristics. The term homophily has also been referred to as
autocorrelation (D. D. Jensen and Neville, 2002) when dealing with multi-relational data,
i.e., graphs with more than one type of link.

In their seminal paper, McPherson, Smith-Lovin, and J. M. Cook (2001) study homophily
in social networks, an environment where it has been strongly observed and where friends
will usually share common interests such as movies, work, games, hobbies. This principle
also says that related individuals influence each other, which has been studies in social net-
works (McPherson, Smith-Lovin, and J. M. Cook, 2001). For instance, if a cinephile person
likes the 2006 movie Dreamgirls it is very probable that she will suggest it to friends, and
since her friends (very likely) have a similar taste, they will also like the movie. Bischoff
(2012) was able to predict real-life friendships by examining online interactions in the social
music platform Last.fm, analysing similarities of taste as well as demographic attributes and
geographical locations.

Global and long-range statistical dependencies. These are dependencies that can span
paths in a knowledge graph, involving several triples and types of relationships (Nickel,
K. Murphy, Tresp, et al., 2016). For instance, the Irish citizenship of Aoife depends statisti-
cally on the city where she was born (Galway), which involves the triples: (i) (Aoife, bornIn,
Galway), (ii) (Galway, locatedIn, Ireland), and (iii) (Aoife, citizenOf , Ireland). Relational learning
has the capability to learn better representations by exploiting such patterns, yielding more
accurate models. In Mohamed, Muñoz, Nováček, et al. (2017), we investigate the equiva-
lence between relation paths. Two paths are called equivalent if they have the same path
extension, given by the nodes that can be reached following the relation path. For example,
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the following relation paths are equivalent: 〈livesIn〉 ≡ 〈worksIn, locatedIn〉. Path equivalence
resembles the topological notion of homotopy, where the entities and relations in the mid-
dle of a path can be different but the start and end nodes must be the same. For example,
we can say that the following paths are homotopic or equivalent: 〈Aoife,hasPartner,Eoin〉 ≡
〈Aoife,hasChild,Peter,hasChild −1,Eoin〉.

3.4 Statistical relational learning

Statistical relational learning (SRL) is concerned with the creation of statistical models for
relational data (Getoor and Taskar, 2007). Recently, SRL has been applied to knowledge
graphs with success, delivering new state-of-the-art results in several tasks (Nickel, K. Mur-
phy, Tresp, et al., 2016; Q. Wang, Mao, B. Wang, et al., 2017). For the completion task, it is
required to answer the question whether a triple (h, r, t) is true or false. This is a canonical
relational machine learning task, where the problem is to find a function φr such that for
every possible triple (h, r, t):

p((h, r, t) = 1) = φr(z),

where a classifier (function φ) is built for each relation type r. It is unknown at this point,
however, what is the input z. First, we can assume z to be a vector of known features for
both subject and object entities, where the features can be derived from a neighbourhood of
the entities in the knowledge graph. For instance, we can have the k-dimensional vectors
[ai1, ai2, . . . , aik]

> and [aj1, aj2, . . . , ajk]
> assigned to entities h and t, respectively, and build

the input z using concatenation: z = [ai1, ai2, . . . , aik, aj1, aj2, . . . , ajk]
>. Classifiers such as

fixed basis functions, kernels or neural networks could be applied over the input z to answer
the initial question. Second, one could treat the features as latent (unknown) variables,
where k-dimensional vectors are build for each entity. Latent features in graphs usually are
a kind of collective learning, where information can globally be propagated in a network of
random variables. For instance, in a propagation one can learn that book A is a likely best
selling because the author’s publisher is known to have many best sellers. In this section,
we review statistical relational learning approaches that have become very popular in the
recent years due to their ability to handle noisy, inconsistent, incomplete, and uncertain
data.

Given the wide spectrum of tasks and knowledge graphs of different domain, size, level
of incompleteness, there is no such one-fits-all solution. Initial approaches considered sim-
ple structural patterns such as paths and sub-graphs, which are known as graph-based feature
approaches. Rettinger, Lösch, Tresp, et al. (2012) studied how graph-based features can be ex-
tracted from Semantic Web knowledge bases for several machine learning tasks. In the past
years, more tasks (Section 3.3.2) and techniques have appeared in the domain of knowl-
edge graphs and deep learning. The latter are known as latent feature approaches and can
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Figure 3.6: Classification of knowledge graph completion approaches.

be roughly classified into two groups: transitional distance models and semantic match-
ing models (Q. Wang, Mao, B. Wang, et al., 2017). Figure 3.6 shows a classification of the
approaches that we describe in the following.

3.4.1 Graph-based feature approaches

Graph-based feature approaches assume that links between entities could be predicted by
features extracted from the observed links in the knowledge graph. For example, we can
assume that if you have the triples (Mark, livesIn, Vienna) and (Greta, marriedTo, Mark), then
since usually couples live in the same city we could predict that (Greta, livesIn, Vienna) as
well. The predictions made by approaches in this category are easy to explain since the
features could be directly mapped to observed triples (links or edges in the graph). This
is a huge difference when compared with latent feature models that we will review in Sec-
tion 3.4.2.

One set of approaches in this classification are rule mining approaches that we already
reviewed in Section 3.2.2. Rules extracted from graph data can be used to infer new links.
Works such as AMIE (L. A. Galárraga, Teflioudi, Hose, et al., 2013; L. Galárraga, Teflioudi,
Hose, et al., 2015) can be used to extract rules like

livesIn(h, p) ∧marriedTo(h,w)⇒ livesIn(w, p),

which can be used to infer missing livesIn relationships between married people in
the knowledge graph. Similarly, logic oriented approaches proposed in the Semantic
Web (Lehmann, 2009; d’Amato, Fanizzi, and Esposito, 2010; Lisi, 2010) can be applied to
learn logic rules from instance data. Additionally, in the Semantic Web, several approaches
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use graph-based features with machine learning for tasks such as class prediction or link
prediction (Rettinger, Lösch, Tresp, et al., 2012; Ristoski and Paulheim, 2016a). Lösch, Bloe-
hdorn, and Rettinger (2012) studied two families of graph kernels obtaining competitive
results compared with Support Vector Machines (SVMs) in the tasks of entity classification
and link prediction. A deeper study of graph kernels was done by Vries and Rooij (2015),
where kernels that count subtrees outperform all the studies kernels in classification tasks.
An interesting contribution by de Vries and de Rooji is the adaptation of Weisfeiler-Lehman
graph kernel (Shervashidze, Schweitzer, Leeuwen, et al., 2011) for subtree counting kernels
in RDF knowledge graphs.

More recent works have tried to mix graph-based features with representation learning.
In Ristoski and Paulheim (2016a), the Weisfeiler-Lehman graph kernel algorithm proposed
in Vries and Rooij (2015) and graph walks are fed to Word2Vec—a method to learning word
embeddings. Weisfeiler-Lehman graph kernel and graph walks are used to build sequences
that are then passed to Word2Vec for learning embeddings of entities and relations appear-
ing in the sequences. Because the embedding approach was originally created for words,
RDF2Vec (Ristoski and Paulheim, 2016a) does not consider the directionality of relations or
the complex structure of the graph (limiting to local information only). Other word em-
bedding techniques like Global Vectors (GloVe) (Pennington, Socher, and Manning, 2014)
were also tested with the sequences generated in RDF2Vec (Cochez, Ristoski, Ponzetto, et
al., 2017) to consider global patterns for creating the vector space.

The Path Ranking Algorithm (PRA) (Lao and Cohen, 2010; Lao, Mitchell, and Cohen,
2011) uses directed paths generated by random walks of bounded length in the graph to
predict links in multi-relational knowledge graphs. The paths connecting two entities are
used to compute path probabilities that support a given relation. For example, the relation
teamHomeStadium is supported by the path c teamPlaysInCity−−−−−−−−−−−→ c cityStadiums−−−−−−−−→ c (where c repre-
sents a concept), which can be read as “the stadiums located in the same city with the query
team.” PRA shows significant improvements over NELL compared with a previous rule-
based (Horn-clause) inference approach (Lao, Mitchell, and Cohen, 2011). Extensions to
PRA consider sub-graphs and connecting paths. Gardner and Mitchell (2015) show that the
path probabilities computed in PRA are not really needed and propose a simpler sub-graph
feature approach that allows to obtain a richer set of features. PRA and SFE are considered
single-task approaches and a multi-task learning PRA, referred to as coupled PRA or CPRA,
is proposed in Q. Wang, J. Liu, Y. Luo, et al. (2016). The main idea of CPRA is to identify
highly correlated relationships using agglomerative clustering and couple the prediction of
such relations using multi-task learning. Recently, Mohamed, Nováček, and Vandenbuss-
che (2018) builds on top of SFE and PRA and proposes an approach that deals with cases
where there are non-connected sub-graph paths by extracting so-called distinct sub-graph
paths as features.

Although graph-based feature approaches have shown to outperform previous ILP
methods (e.g., FOIL (Quinlan, 1990)) for link prediction, recent research has been focused
mainly on latent feature approaches that learn distributed representations of entities and
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relations in the knowledge graph. As observed in (Toutanova and D. Chen, 2015; Nickel,
K. Murphy, Tresp, et al., 2016), graph-based features such as PRA paths and latent features
are often complementary for the knowledge graph completion problem.

3.4.2 Latent feature approaches

Traditional statistical learning such as Markov-logic networks (Richardson and Domingos,
2006) suffer from scalability issues when dealing with large networks. Similar problem is at-
tributed to graph-based feature when the length of the sub-graphs or random walks is large
yielding a large number of features. This has been addressed by methods that embed multi-
relational data into low-dimensional representations of entities and relations. Latent feature
approaches are also known as knowledge graph embedding in literature, and their key idea
is to embed knowledge graph elements (i.e., entities and relations) into a continuous vec-
tor space that allows algebraic operations while preserving the structure of the knowledge
graph. These approaches have been successfully applied in natural language processing
(NLP) tasks like semantic parsing (Berant, Chou, Frostig, et al., 2013) and named entity dis-
ambiguation (Hakimov, Oto, and Dogdu, 2012), question answering (Bordes, Chopra, and
Weston, 2014; Bordes, Weston, and Usunier, 2014), recommender systems (Yu, Ren, Y. Sun,
et al., 2014; F. Zhang, Yuan, Lian, et al., 2016), among others. We refer the reader to recent
survey papers Nickel, K. Murphy, Tresp, et al. (2016) and Q. Wang, Mao, B. Wang, et al.
(2017) for a detailed comparison of the approaches. Table 3.1 summarises the scoring func-
tions reviewed in this section and the different constraints imposed by each model (Trouil-
lon, Dance, Gaussier, et al., 2017; Q. Wang, Mao, B. Wang, et al., 2017).

Latent feature approaches are also known as neural link predictors because they can be in-
terpreted as simple multi-layer neural networks consisting of an encoding layer and a scoring
layer. Given a triple (h, r, t), the encoding layer maps entities h, t ∈ E to their k-dimensional
distributed representations h and t. Then, the scoring layer computes the likelihood of
the triple based on a relation-dependent function φr. Henceforth, the scoring function φ

is defined as φ(h, r, t) = φr(h, t), where φr : Rk × Rk → R that obtains the head and tail
embeddings h, t ∈ Rk based on the relation r ∈ R.

A neural link predictor with parameters Θ defines a conditional probability distribution
over the truth value of a triple (h, r, t) (Nickel, K. Murphy, Tresp, et al., 2016):

Pr(yhrt = 1 | Θ) = σ(φr(h, t)), (3.1)

where yhrt ∈ {0, 1} is the truth label of the triple, Θ = {ei}Ne
i=1∪{rj}

Nr
j=1 denotes the set of all

entity and relation embeddings, σ(x) = 1/(1 + exp(−x)) is the standard logistic function,
and φr denotes the model’s scoring function (cf. Table 3.1). Most models consider the k-
dimensional embeddings as real-valued h, t, r ∈ Rk with the exception of ComplEx (Trouil-
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Figure 3.7: Illustration of a fact according to the interpretation of TransE.

lon, Welbl, Riedel, et al., 2016), where h, t, r ∈ Ck.

Translational distance models. These models exploit distance-based scoring functions. The
score of a triple is usually given by the distance between the two entities (subject and object)
after a translation promoted by the relation. The most representative model of this class is
TransE (Bordes, Usunier, García-Durán, et al., 2013). TransE represents both entities and
relations in the same vector space, say Rd. Given a triple (h, r, t), a relation specific latent
feature vector indicates a translation between the embedded entities h and t, such that h +

r ≈ t, when (h, r, t) is true. Figure 3.7 illustrates the translation proposed in TransE to model
true facts in the knowledge graph. TransE model is inspired by the results in Mikolov, K.
Chen, Corrado, et al. (2013), where the authors propose continuous vector representations
for words in what is now known as Word2Vec. Mikolov et al. showed that some linguistic
regularities between words could be computed by their vector difference in the embedding
space, wKing − wMan + wWoman ≈ wQueen is an example. In particular, a triple (h, r, t) is
scored using the function:

φr(h, t) = −‖h + r − t‖ρ,

where ρ ∈ {1, 2} indicates the norm, and the score φr(h, t) is expected to be large if (h, r, t)

holds.

A simplified version of TranE is the Unstructured model (UM) (Bordes, Glorot, Weston,
et al., 2012) that do not takes the relation into account, i.e., r = 0. In UM, the scoring
function is defined as:

φr(h, t) = −‖h− t‖22.

This model clearly cannot distinguish between relations. Another work by the same au-
thors, proposed Structured embedding (SE) (Bordes, Weston, Collobert, et al., 2011), where
two matrices are used to represent the relation r when projected against the head or tail:

φr(h, t) = −‖M1
rh−M2

r t‖1.

Finally, several other extensions to TransE have been proposed to overcome the problem
dealing with 1-to-N, N-to-N, and N-to-N relations. These new models include TransH (Z.
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Wang, Jianwen Zhang, J. Feng, et al., 2014b) that adds relation-specific hyperplanes for the
embeddings, TransR (Y. Lin, Z. Liu, M. Sun, et al., 2015) that introduces relation-specific
spaces, among others.

Semantic matching models. On the other hand, semantic matching models exploit
similarity-based scoring functions to score triples. The first model we review is
RESCAL (Nickel, Tresp, and Kriegel, 2011, 2012), a.k.a. bilinear model (Jenatton, Roux, Bor-
des, et al., 2012). RESCAL explains triples via pairwise interactions of latent features, and
its score function is defined as:

φr(h, t) = h>Mrt =

d−1∑
i=0

d−1∑
j=0

[Mr]ij · [h]i · [t]j ,

where [x]i denotes the i-th entry of the vector, [M ]ij the ij-th entry of a matrix, h, t ∈ Rd

are vector representations of the subject and object entities, and Mr ∈ Rd×d is a weight
matrix associated with the relation defined as a set of rank-1 matrices, Mr =

∑
i π

i
ruiv

>
i .

Because RESCAL’s scoring function computes the pairwise interactions between all ele-
ments of h and t, it requires O(d2) parameters per relation, making it very expensive for
large knowledge graphs. In García-Durán, Bordes, and Usunier (2014), the authors pro-
pose a model that merges two- and three-way interactions. In addition to RESCAL other
tensor factorisation models have been proposed for knowledge graphs: CANDECOMP/-
PARAFAC decomposition (Carroll and Chang, 1970), Tucker decomposition (Tucker, 1966),
and A. P. Singh and Gordon (2008), Drumond, Rendle, and Schmidt-Thieme (2012), and
Rendle (2013), among others.

Some of the most popular and scalable neural link predictors are DistMult (B. Yang,
Yih, X. He, et al., 2015), ComplEx (Trouillon, Welbl, Riedel, et al., 2016), and HolE (Nickel,
Rosasco, and Poggio, 2016). DistMult uses a simplification of RESCAL, where Mr is re-
stricted to diagonal matrices, thus reducing the number of parameters to O(d). The scoring
function of DistMult is defined as:

φr(h, t) = h>diag(r)t =

d−1∑
i=0

[r]i · [h]i · [t]i,

where r ∈ Rd, and Mr = diag(r). One of the shortcomings of DistMult is that it can only
deal with symmetric relations due to the equality h>diag(r)t = t>diag(r)h. ComplEx
proposes to solve DistMult’s shortcoming by introducing complex-valued embeddings to
better capture the asymmetry of relations. The scoring function of ComplEx is defined as:

φr(h, t) = Re(h>diag(r)t̄) = Re

(
d−1∑
i=0

[r]i · [h]i · [t̄]i

)
,

where t̄ is the conjugate of t and Re(·) represents the real part of a complex number.

Another model extending RESCAL is Holographic Embeddings (HolE) that uses circu-
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lar correlation (computed using fast Fourier transforms):

[h ? t]i =

d−1∑
k=0

[h]k · [t](k+i) mod d,

where h ? t ∈ Rd. HolE defines a scoring function for a triple as follows:

φr(h, t) = r>(h ? t) =

d−1∑
i=0

[r]i

d−1∑
k=0

[h]k · [t](k+i) mod d.

As per the not commutativity of the circular correlation, HolE also can model asymmetric
relations like RESCAL and ComplEX but using O(d) parameters. Despite the different for-
mulations of ComplEx and HolE, Hayashi and Shimbo (2017) actually showed the that the
scoring functions of these two models are equivalent. This was later corroborated by the
original authors of the corresponding models (Trouillon and Nickel, 2017).

Many other models have been proposed to embed entities and relations in knowledge
graphs based neural networks. Multi-layer perceptron (MLP) (X. Dong, Gabrilovich, Heitz,
et al., 2014) is an approach that uses a simple neural network with one hidden layer. This
approach was used in Google’s knowledge vault project, and its score function is:

φr(h, t) = w>tanh(M1h + M2r + M3t),

where M1,M2,M3 ∈ Rd×d are the first layer weights, and w ∈ Rd the second layer
weights, shared across different relations. Neural association model (NAM) (Q. Liu, Jiang,
Ling, et al., 2016) is the last model we review, which uses a deep architecture. For
a triple (h, r, t), the head and relation embeddings are concatenated in the input layer,
z(0) = [h; r] ∈ R2d. The deep architecture is composed of L rectified linear hidden lay-
ers fed with z(0):

a(`) = M (`)z(`−1) + b(`), ` = 1, . . . , L,

z(`) = ReLU(a(`)), ` = 1, . . . , L,

where M (`) and b(`) are the weight matrix and bias for the `-th layer, respectively. The score
in NAM is given by multiplying the output of the last hidden layer with the embedding of
the tail entity as follows:

φr(h, t) = t>z(L).

3.4.3 Model training and negatives generation

A latent feature model is trained by minimising a loss function defined over a target graph
G using stochastic gradient descent (SGD) (cf. Algorithm 1). The open world assumption
states that knowledge graphs only contain positive examples (i.e. facts); however, negative
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examples are also needed to train any of the models previously presented. A solution—
motivated by the Local Closed World Assumption (LCWA) (X. Dong, Gabrilovich, Heitz,
et al., 2014)—is to generate negative examples by corrupting the triples in the graph (Rendle,
Freudenthaler, Gantner, et al., 2009; Bordes, Usunier, García-Durán, et al., 2013; Nickel, K.
Murphy, Tresp, et al., 2016). Given a positive triple (h, r, t) ∈ G, corrupted triples (nega-
tive examples) can be generated by replacing either the head or tail with a random entity
sampled uniformly from E (Bordes, Weston, Collobert, et al., 2011). More formally, negative
examples for a triple are generated by a function:

C(h, r, t) = {(h′, r, t) | h′ ∈ E} ∪ {(h, r, t′) | t′ ∈ E}. (3.2)

Let D+ be the set of positive examples, and D− the set of negatives generated accord-
ingly with function C. The training consists of learning the embeddings of entities and
relations (parameters Θ) that best explain D+ and D− according to Equation (3.1). For that,
models such as TransE (Bordes, Usunier, García-Durán, et al., 2013), DistMult (B. Yang,
Yih, X. He, et al., 2015) and HolE (Nickel, Rosasco, and Poggio, 2016) minimise a pairwise
ranking loss:

Lhinge = min
Θ

∑
τ+∈D+

∑
τ−∈D−

[
γ − σ(φr(h, t)) + σ(φr(h

′, t′))
]
+
, (3.3)

where τ+ = (h, r, t) is a positive example, τ− = (h′, r, t′) a negative one, [x]+ = max(0, x),
and γ is the margin hyperparameter separating positives from negatives. This loss make
the scores of positive triples higher than those of negative ones. The entity embeddings are
also constrained to unit norm: ∀h, t ∈ E : ‖h‖2 = 1, ‖t‖2 = 1. Whereas other models like
ComplEx (Trouillon, Welbl, Riedel, et al., 2016) minimise the logistic loss:

Llogistic = min
Θ

∑
τ∈D+∪D−

log(1 + exp(−yτ · φr(h, t))) (3.4)

where τ = (h, r, t) is a training example in D+ ∪D− (i.e. triple), and yτ ∈ {−1, 1} is the label
(negative or positive) associated with the example.

It worth pointing out that by minimising the pairwise ranking loss we do not assume
that negative examples are necessarily false, just that they are more invalid than positive
ones (Nickel, K. Murphy, Tresp, et al., 2016). Trouillon, Welbl, Riedel, et al. (2016) also
showed that the logistic loss generally yields better results for compositional models such
as DistMult or ComplEx, whilst the pairwise ranking loss is more suitable for translational
models like TransE. In Mohamed, Nováček, Vandenbussche, and Muñoz (2019), we stud-
ied the behaviour of different latent feature models over WordNet, Freebase, and NELL
datasets, when using different pointwise and pairwise versions of the loss functions re-
viewed. Our experiments validate that the selection of a loss function does have a consider-
able impact in the performance of knowledge graph embedding models. Moreover, we ob-
served that there are strong relationships between the loss functions and evaluation metrics,
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Algorithm 1 Learning the model parameters Θ via Projected SGD

Input: D+, epochs τ , initial learning rate η ∈ R
Output: Optimal model parameters Θ

1: Initialise embeddings e and r
2: for i = 1, . . . , τ do
3: e← e/||e||, ∀e ∈ E
4: gi ← ∇L(Θ) / Compute the gradient of the loss function L on examples
5: Θ← Θ− ηigi / Update the model parameters via gradient descent
6: Apply additional constraints or regularisation terms
7: end for
8: return Θ

which can assist practitioners when choosing a loss. This is an improvement over state-of-
the-art approaches where loss functions have been selected in a rather non-systematic way.

The optimisation of Equations (3.3) and (3.4) can be done by stochastic gradient descent
(SGD) (Robbins and Monro, 1951) in mini-batch mode as in Algorithm 1. In each iteration,
a subset of positive triples is sampled from D+ and the negative examples are generated
accordingly for each positive. Both positives and negatives are used during training to
compute the loss function in each mini-batch. After the mini-batch, the embeddings are
updated via gradient descent with constant or adaptive learning rates. In knowledge graph
embeddings, AdaGrad (Duchi, Hazan, and Singer, 2011) is commonly used to tune the
learning rate.

3.5 Summary

In this chapter, we have presented the state of the art for schema languages (Section 3.1),
schema inference (Section 3.2), and knowledge graph completion approaches (Section 3.3).
Because of the dynamic schema of most knowledge graphs, several schema inference and
schema validation approaches have been proposed to provide certain consistency assur-
ances to data consumers. However, validation is still an open problem and there are no
scalable (or approximated) solutions able to deal with noisy input data (Labra Gayo, García-
González, Fernández-Alvarez, et al., 2019). We provide a definition and describe existing
tasks in the completion of knowledge graphs. Building upon existing work from databases,
we pointed out the relevance of cardinality to expose the inherent structure of knowledge
graphs, and how they can be used to give a sense of the completeness of relationships.
Because cardinality is typically not found in knowledge graphs, in Chapter 4, we will intro-
duce an approach that mines cardinality constraints from instance data—such cardinalities
can be easily encoded in schema languages.

We reviewed completion approaches based on statistical relational learning that can
scale to fairly large knowledge graphs (Section 3.4). Completion approaches can be roughly
divided between graph-based feature and latent feature models. There are no conclusive ex-
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periments that show a superiority of graph-based over latent feature models or vice versa
for learning from knowledge graphs (Toutanova and D. Chen, 2015; Nickel, K. Murphy,
Tresp, et al., 2016). On the other hand it has been shown that they are often complemen-
tary for tackling knowledge graph completion tasks. Therefore, we will use algorithms from
both approaches in two different problems. In Chapter 6, we will evaluate how graph-based
features can be used to improve the completeness of Biomedical knowledge graphs. And
finally, in Chapter 7 we will propose an algorithm to embed cardinality as a background
knowledge to guide knowledge graph embeddings to deliver more accurate predictions.
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There is an increasing number of knowledge graphs available on the Web, generated in
academia and industry alike. In this chapter, we address the problem of lack of structure
in these knowledge graphs due to their schema-free nature required for open environments
such as the Web. This problem was stated in our RQ (1), and here we address it with the use
of cardinality constraints (Section 3.2.4) to extract and exhibit the structure of knowledge
graphs. We propose a definition for relation cardinality bounds, and a data-driven method
to extract such bounds from instance data in a bottom-up approach. These bounds can be
used to unveil the structure that knowledge graphs data naturally exhibit, independently
from any ontological information provided. Furthermore, we also show how these bounds
can be used to assess two relevant data quality dimensions: consistency and completeness.
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4.1 Problem statement

Cardinality (also known as multiplicity) covers a critical aspect of relational data modelling,
referring to the number of times an instance of one entity can be related with instances of
another entity. A cardinality bound is a restriction on the number of elements in the rela-
tion. In particular, knowledge graphs have relationships between entities (of a given type)
connected by property types, and we want to specify bounds for such relationships. For
example, we would like to express that a drug has only one molecular formula, but can be
associated to a finite set (of known or unknown size, the latter denoted as ∞) of adverse
drug reactions.

In practice, most knowledge graphs use multiple—sometimes overlapping—
vocabularies (Polleres, Scharffe, and Schindlauer, 2007; Vandenbussche, Atemezing,
Poveda-Villalón, et al., 2017) (e.g., SKOS, FOAF, DCAT) and avoid to include domain, range
or cardinality restrictions because of the contradictions they can generate (Glimm, Hogan,
Krötzsch, et al., 2012; Rivero, Hernández, Ruiz, et al., 2012). To illustrate this, let us consider
a knowledge graph about countries with two different properties: gov:hasPopulation and
dbpedia-owl:populationTotal.1 These properties come from different ontologies/vocabu-
laries and represent the same thing, i.e., population of a country; however, their semantics
might not be the same or the expected domain/range values could be different. Similarly,
two or more labels can be used to refer to the same entity: e.g., http://www.geonames.org/
2963597/ireland.html and http://dbpedia.org/resource/Ireland. If one of these ontolo-
gies/vocabularies defines a constraint over the resources, this constraint might contradict
the definition(s) made somewhere else producing an inconsistency and harming the reason-
ing capabilities over the data.

On the other hand, the lack of a central schema can cause a series of difficulties in the
reusability of such data (Lausen, Meier, and Schmidt, 2008; Motik, Horrocks, and Sattler,
2009; Bosch and Eckert, 2015; Muñoz, 2016), where applications might need to rely on the
fact that data satisfy a set of constraints. A schema indicates what are valid relations for
an entity according to its type, what are the allowed values for the properties, and other
constraints that instance data should satisfy. For instance, let us consider a software de-
veloper building a graphical user interface (GUI) that displays information about countries
to end users. For that the developer must query the knowledge graph, in other words,
she must write queries using the SPARQL query language to fill every property of every
country in the GUI. However, when building the query to retrieve the population of Ireland
she finds that, unexpectedly, the knowledge graph contains two mismatching population
numbers for that country. These properties come from different vocabularies and their val-
ues, i.e., the populations, do not match. This inconsistency could have been avoided if
she knew that some countries have more than one value for the relation population. Such
situations—sometimes rare, sometimes very abundant—show a gap between the expected

1Henceforth, we use prefixes to replace namespaces according to http://prefix.cc/ to shorten the length
of URLs.

http://www.geonames.org/2963597/ireland.html
http://www.geonames.org/2963597/ireland.html
http://dbpedia.org/resource/Ireland
http://prefix.cc/
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and real structure of knowledge graphs. Data users and knowledge engineers would bene-
fit from having an understanding of what information is available to write queries, and to
reuse or manage KBs (Neumann and Moerkotte, 2011; Schmidt and Lausen, 2013).

We deal with the problem of identifying relation cardinality bounds such as “a person
has two parents” or “a book has minimum one author and maximum eleven”. We call this
problem the relation cardinality mining problem that we define as follows:

Relation cardinality mining problem

Input: a knowledge base G and optional context (entity type) τ .

Output: a set Σ of relation cardinality bounds that are satisfied by G.

It is important to notice that unlike traditional databases, RDF and OWL assume the
open-world semantics (OWA), and absence of the unique name assumption (nUNA). This
makes the problem of extracting relation cardinality more complex than a naïve application
of SPARQL queries using the COUNT operator. Take as example the constraint “a person must
have two parents”: if the data contain an entity of Person type with only one parent, this
does not cause a logical inconsistency, it just means it is incomplete, and in RDF/OWL incomplete
is different from inconsistent. To deal with these specifics, we propose a method which tackles
two important challenges:

(1) KG equality normalisation, meaning that we must deal with owl:sameAs (or equivalent)
axioms representing equality between entities to discover accurate cardinalities, and

(2) outliers filtering, where we should account for the probability of noise in the data, in
order to discover robust cardinalities.

By doing so, the result of this work can provide users with ‘shapes’ of data that serve them to
analyse completeness and consistency, and thus, contribute towards higher levels of qual-
ity in knowledge graphs (Hogan, Harth, Passant, et al., 2010; Schmidt and Lausen, 2013;
Paulheim, 2017).

4.2 Notion of cardinality bounds

Different languages have their own notion of cardinality (see Section 3.2.4). Here, we pro-
pose a definition of relation cardinality for knowledge graphs that generalises the semantics
of previous definitions.

Definition 4.1

The predicate count of r with respect to h, denoted count(r, h), is defined as the number
of triples in G with h as subject and r as relation:

count(r, h) = |{(h, r, t) | ∃t, (h, r, t) ∈ G}| . (4.1)
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Considering that the count function counts the number of different objects appearing with
a given subject–relation pair, it is easy to see how the output of the function is directly
affected by the rewriting of the knowledge graph G. (We introduced rewriting of knowledge
graphs in Section 2.1.2, where sameAs-axioms are used to normalise the knowledge graph
on equality.)

To illustrate the definition above, let us consider a knowledge graph about
books and say that the book Foundations of Databases has three authors (Serge Abite-
boul, Richard Hull and Victor Vianu) and one publisher (Addison-Wesley). This
can be represented by the constraints count(author,Foundations of Databases) = 3 and
count(publisher,Foundations of Databases) = 1.

Definition 4.2

A relation cardinality bound in knowledge graphs restricts the number of relation values
associated with an entity in a given context. Such context could be a particular entity
type or the whole knowledge graph. Formally, a cardinality bound ϕ is an expression
of the form card(P, τ) = (min,max) where P ⊆ P , τ is a context entity type, and
where min ∈ N and max ∈ N ∪ {∞} with min ≤ max. Here |P | denotes the number
of relations in ϕ, min is called the lower bound, and max the upper bound of ϕ. If τ is
defined (τ 6= ε), we say that ϕ is qualified; otherwise we say that ϕ is unqualified.

The semantics of this definition of relation cardinality bounds limits the maximum and
minimum counts that a given set of relations can have in a given context—as in SHACL,
DSP, ICV and OWL. The lower bound of a cardinality may take on values in N, whilst up-
per bounds can be∞ to represent that there is an unknown upper limit. In fact, each RDF
constraint language has different default values for the minimum and maximum cardinal-
ities. For instance, ShEx assigns a default cardinality of one to a predicate appearing in a
shape without any explicit cardinality. On the other hand, SHACL assumes a lower car-
dinality of zero and upper of ∞. A constraint with such default values (i.e., zero and ∞)
will always be satisfied by the data, thus it may be omitted from some data shapes leav-
ing a gap in the explicitness of the shape and the structure of data. We deal with that gap
in Section 4.3, where we introduce an algorithm to mine relation cardinality bounds from
knowledge graphs.

An unqualified bound is independent of a type/context, i.e., it holds for a set of rela-
tions independent of its context, whereas a qualified bound holds only for a set of relations
in combination with subject entities of a same given type. Herein, we focus on qualified
constraints given their interestingness and relevance for structural analyses of knowledge
graphs.
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1 SELECT $this
2 WHERE {
3 $this $PROPERTY ?value .
4 } GROUP BY $this
5 HAVING (COUNT(?value) <= $minCount)

Figure 4.1: SPARQL 1.1 definition of a minimum cardinality constraint.

Definition 4.3

Consider a knowledge graph G. We say that ϕ is a cardinality bound in G or G satisfies
ϕ for a set of properties Pϕ ⊆ P , a lower bound minϕ, and upper bound maxϕ defined
in ϕ, denoted by G |= ϕ, if

∀h ∈ (R∪ B), r ∈ Pϕ (minϕ ≤ count(r, h) ≤ maxϕ).

If ϕ is qualified to τ then to satisfy ϕ, G also needs to satisfy the condition that ∀h ∈
(R∪ B) (h, rdf:type, τ) ∈ G.

Although the mining approach that we will present in Section 4.3 is able to compute an
upper bound cardinality, such limit is uncertain when considering RDF’s OWA. A cardi-
nality is an expression (lower, upper) associated to the observed cardinality of a relation,
which is likely to disagree with the expectation of users. For instance, even when the data
show that an entity of type Person has at most two children, this might be wrong when con-
sidering other unseen same type instances. More certain cardinality bounds can be mined
from reliable or complete knowledge graphs, rarely present on the Web and usually existent
within specific domains. Therefore, we refer to relation cardinality bounds as descriptive
patterns when they are automatically extracted from knowledge graphs, and as constraints
(prescriptive patterns) when normatively assessed by a user and applied in order to restrict
a knowledge graph.

In practice, cardinality bounds can be used to validate knowledge graphs using SPARQL
1.1 queries. For instance, Figure 4.1 shows the SPARQL query with aggregation proposed to
validate a lower bound minϕ ($minCount). The query represents restrictions on the number
of values, ?value nodes, that the $this node may have for the given property. A valida-
tion result must be produced if the number of value nodes is more than $minCount, thus
indicating that the data do not conform to the shape. Likewise, to validate an upper bound
(maxϕ) restriction for a property, we change the HAVING condition to ‘>=’, and return a val-
idation result if the number of values is less than $maxCount. Note that SHACL, ShEx, and
other constraint languages only allow the definition of one condition at a time per prop-
erty. Therefore, to validate our cardinalities with multiple properties, one must apply an
SPARQL 1.1 query like the one in Figure 4.1 independently for each entity and property
pair with a single bound (upper or lower). In Section 4.3 we will show how a single, but
much more complex, SPARQL 1.1 query can be used to extract both minimum and maxi-
mum bounds at once.
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Example 4.1

The following expressions define cardinality bounds for different entity types in dif-
ferent domains. Abusing of notation, we may write card(p, τ) = (min,max) when the
constraint applies to a single relation.

1. card({mondial:name,mondial:elevation}, mondial:Volcano) = (1, 1),

2. card(mondial:hasCity, mondial:Country) = (1,∞),

3. card(dcterms:contributor, bibo:Book) = (0,∞),

4. card(dcterms:language, bibo:Book) = (1, 2).

5. card({lmdb:editor,lmdb:filmid}, lmdb:Film) = (1, 9).

As suggested in the previous examples, when the upper bound is unclear we can use∞ in
the cardinality bound to express that uncertainty.

4.3 Cardinality mining algorithm

In this section, we introduce an algorithm for mining relation cardinality patterns from
knowledge graphs. We also present two different implementations: one based on SPARQL
1.1 that uses a graph databases approach to normalise and extract cardinalities; and an-
other based on Apache Spark2 that applies a MapReduce or divide-and-conquer strategy to
divide the data and run the normalisation step in parallel.

4.3.1 Algorithm

We present Algorithm 2 as an efficient and domain-agnostic solution to mine accurate and
robust cardinality patterns from any knowledge graph. This algorithm is designed to mine
qualified cardinalities, i.e., a context type is given; however, it can be easily adapted to mine
unqualified cardinalities. From a data quality perspective, it is desirable that the mined rela-
tion cardinality bounds (see Section 4.1) are accurate and robust. Algorithm 2 outputs a set
of relation cardinality patterns, which are called accurate because it considers the semantics
of equality axioms (expressed by owl:sameAs and equivalent predicates), and robust because
we perform an outliers detection and filtering over noisy cardinality counts.

Our mining algorithm (see Algorithm 2) has three main steps:

(1) KG normalisation: represented by the function normalise : G → G , receives an un-
normalised knowledge graph (with possibly multiple equal entities) and applies an
on-the-fly (in memory) rewriting process to consider the semantics of the relation owl

:sameAs (or other equivalent relation). We address the normalisation by querying all

2http://spark.apache.org/ (version 2.1.0)

http://spark.apache.org/
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Algorithm 2 Extraction of cardinality bounds

Input: a knowledge base G; and a context τ
Output: a set Σ of cardinality bounds

1: G′ ← normalise (G)
2: E ← {h | (h, rdf:type, τ) ∈ G′}
3: P ← pred(G′, τ) / predicates for entities of type τ
4: for all r ∈ P do
5: G′′ ← triples(G′, E, r) / triples with entity type τ and relation r
6: M 〈u, v〉 ← cardPatterns (G′′) / map: u is an entity, and v a cardinality
7: Θ← filterOutliers (M) / set of inlier cardinalities
8: Σ.add(card({r}, τ) = (min(Θ), max(Θ)))
9: end for

Table 4.1: An axiomatisation for reduction on equality

(h, r, t) ∧ (h′, r′, t′) ∧
(h′, owl:sameAs, h)

(h, r, t), (h, r′, t′)

(h, r, t) ∧ (h′, r′, t′) ∧
(t′, owl:sameAs, t)

(h, r, t), (h′, r′, t)
(subject-equality) (object-equality)

equal entities and building graphs connecting these nodes, which builds so-called
cliques where all equal nodes are connected to each other. The cliques are used to
normalise the whole KB with replacements. This step could be considered optional
in cases where users want information about unnormalised bounds—at the cost of
accuracy.

(2) Cardinalities extraction: performed by the function cardPatterns : G → E × N, it is
called to retrieve (entity=cardinality) pairs from the passed set of triples in the context
of a given relation. The cardinalities for all relations are stored in a map, which either
filtered from noisy values or returned directly to extract the constraints.

(3) Outliers filtering: represented by the filterOutliers : E × N → N ∪ ∅ function, receives
a map of (entity=cardinality) pairs and applies grouping and unsupervised univari-
ate statistical methods to identify and remove noisy or outside of a range values to
ensure robustness. It returns an empty set when the (entity=cardinality) pair is fil-
tered out and the cardinality otherwise. Similarly to normalisation, this step could be
considered optional at the cost of robustness though.

Next, we present an example for the application of Algorithm 2, and describe each of its
part in more details in Sections 4.3.2 to 4.3.4.
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Example 4.2

Let us consider a KB with entities ex:s1, ex:s2, and ex:s3, and properties ex:p1 and
ex:p2. First, we apply the normalise function that replaces entities by one represen-
tative element equivalence type induced according to the sameAs-cliques. Then, for
each property we extract the (entity, cardinality) pairs using the function cardPatterns .
For instance, we obtain {ex:s1 = 1, ex:s2 = 1, ex:s3 = 2} for property ex:p1,
and {ex:s1 = 3, ex:s2 = 25, ex:s3 = 3} for property ex:p2. Next, the function
filterOutliers tries to identify outliers and determines that there are no outliers for prop-
erty ex:p1, but that a cardinality of 25 is an outlier for ex:p2. Thus, 25 is removed from
the patterns leaving {ex:s1 = 3, ex:s3 = 3} as robust cardinalities for ex:p2. Finally,
the cardinality bounds (min, max) are extracted from the remaining inlier cardinalities
by using simple min and max functions.

4.3.2 Knowledge graph normalisation: rewriting approaches

Knowledge bases contain different types of axioms, being owl:sameAs and equivalent-
semantic relations the most important when computing cardinalities. Regardless of the
approach, by not considering these axioms a method loses its accuracy and cannot ensure
that the relation cardinality bounds are consistent with the data and domain of knowledge.
Unlike Rivero, Hernández, Ruiz, et al. (2012), we perform an on-the-fly normalisation of
the graph in order to capture the semantics of sameAs-axioms without having to modify
the underlying data. A naïve approach using a SPARQL query with COUNT operator will
wrongly return two instances of ex:C1 instead of the expected count of 1 for the example in
Figure 2.2 (left).

To overcome this issue we propose an axiomatisation with two rules (see Table 4.1),
namely, subject-equality and object-equality. The axiomatisation imposes that duplicated ele-
ments are replaced by a representative element of equivalent type induced by owl:sameAs

or similar predicates. This normalisation can be done replacing the underlying data (Motik,
Nenov, Piro, et al., 2015) or on-the-fly (without modification) when needed. However, if
the underlying data is modified, the links to other knowledge graphs stated by the sameAs-
axioms are overwritten and lost.

Instead, here we follow an on-the-fly rewrite (line 1 of Algorithm 2) which performs the
modifications in memory. A similar approach was previously used by Schenner, Bischof,
Polleres, et al. (2014). In this rewriting approach, all the so-called sameAs-cliques are re-
placed by a selected representative entity (Motik, Nenov, Piro, et al., 2015). sameAs-cliques
are built by connecting the triples returned by the sameAsPairs function, generating com-
plete graphs3 with entities as nodes all of which are equal to each other. For each clique,
all nodes (entities) are connected to each other, and a representative node can be chosen

3Any complete graph is its own maximal clique.
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randomly. The representative is then used to rewrite the knowledge graph: replacing all
the appearances of the equal entities in the clique by the representative everywhere in the
knowledge graph. Note that for doing an on-the-fly rewriting, it is assumed that all cliques
either fit in memory or are stored in an external fast-access index. This could be considered
a limitation of our approach; however, in our experiments we did not find any case where
these cliques did not fit in main memory.

In practice, the axiomatisation of Table 4.1 can be implemented on-the-fly either by using
SPARQL 1.1 or programmatically. Next, we briefly introduce these two options:

4.3.2.1 SPARQL rewriting

The SPARQL query language has the limitation that it is unaware of the special semantics
of owl:sameAs when evaluating triple patterns. This is a serious problem, especially when
using the language to count the cardinality of properties. However, one can make use of
several constructs in the language to overcome such limitation. We make use of a nested
SPARQL 1.1 query with sub-selects (Polleres, Reutter, and Kostylev, 2016) as shown in Fig-
ure 4.2, which contains three sub-queries (SQ-1, SQ-2 and SQ-3) with a wrapping query that
aims to obtain the (entity=cardinality) pairs for a given property and entity type (Line 3).
Under SQ-1 are SQ-2 and SQ-3, which perform the sameAs-clique generations for subjects
and objects, respectively. Sub-query SQ-2 implements the subject-equality rule, whereas
sub-query SQ-3 implements the object-equality rule. During the clique generation, a graph
search to find equal entities is performed in all directions from a starting node using the
property path (owl:sameAs|^owl:sameAs)*, which is a complex and resource-demanding
query (check (Arenas, Conca, and Pérez, 2012; Kostylev, Reutter, Romero, et al., 2015) for a
more detailed study on property paths in RDF). For each clique found, a representative is
selected, and all “clone” entities are rewritten with the representative.

Clearly, the query used here is complex and resource demanding when executed with
medium and large KBs. In terms of complexity, the evaluation of SPARQL queries can be
solved in O(|P | · |G|), where |P | is the number of graph patterns in the query and |G| the
number of triples in the knowledge base (Arenas, Gutiérrez, and Pérez, 2009). SPARQL is
known to be in PSPACE-complete in general (Arenas, Gutiérrez, and Pérez, 2009). Hence,
we also propose a more efficient and faster solution that works outside of a SPARQL end-
point.

4.3.2.2 Programmatic rewriting

Because of the complexity of the SPARQL solution, we propose a second rewriting approach
that promises to be more time- and space-efficient. We thus frame the extraction of relation
cardinality patterns as the well-known words count problem from linguistics. This problem
has been one of the first to be addressed by modern parallelisation paradigms and frame-
works. Thus, we can easily parallelise the algorithm using frameworks such as Apache
Spark. By using Spark and the filter and map operations, we implemented a parallel and



88 | Chapter 4. Approaches for Mining Cardinality

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3

4 SELECT ?first_sub (COUNT(DISTINCT ?first_obj) AS ?nbValue)
5 WHERE {
6 {
7 SELECT DISTINCT ?first_sub ?first_obj % (SQ-1)
8 WHERE {
9 ?sub $relation ?obj .

10 {
11 SELECT ?sub ?first_sub % (SQ-2)
12 WHERE {
13 ?sub a $type .
14 ?sub ((owl:sameAs|^owl:sameAs)*) ?first_sub .
15 OPTIONAL {
16 ?notfirst ((owl:sameAs|^owl:sameAs)*) ?first_sub .
17 FILTER (STR(?notfirst) < STR(?first_sub))
18 }
19 FILTER (!BOUND(?notfirst))
20 }
21 }
22 {
23 SELECT ?obj ?first_obj % (SQ-3)
24 WHERE {
25 ?obj ((owl:sameAs|^owl:sameAs)*) ?first_obj .
26 OPTIONAL {
27 ?notfirst ((owl:sameAs|^owl:sameAs)*) ?first_obj .
28 FILTER (STR(?notfirst) < STR(?first_obj))
29 }
30 FILTER (!BOUND(?notfirst))
31 }
32 }
33 }
34 }
35 } GROUP BY ?first_sub

Figure 4.2: Query the cardinality of a relation ($relation variable) for every entity of a given
type ($type variable).

efficient rewrite, where the sameAs-cliques are generated and used to normalise the knowl-
edge graph triple by triple (see Figure 4.3, left). We generate the sameAs-cliques as follows:
for each (h, owl:sameAs, t) triple we lexically compare h and t and select the minimum (say
h), which becomes the representative; add a mapping from the representative entity to the
other (say from h to t); if the non-representative (say t) in this axiom was the representative
of other entities, then we update their mappings in cascade with the newly found repre-
sentative (say h). We then apply a map operation over each initial triple in G and rewrite it
according to the sameAs-cliques to obtain G′ in O(1).

4.3.3 Detection of cardinality patterns

After the normalisation step is finished, cardinalities can be collected for each relation (Al-
gorithm 2, line 6). This ensures their accuracy, which is a major difference w.r.t. previous
approaches such a Rivero, Hernández, Ruiz, et al. (2012). In the SPARQL-based approach,
Figure 4.2 shows a query which performs both the normalisation of G and the detection of
cardinality patterns in one place. However, complex SPARQL queries are hard to evaluate
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Figure 4.3: Cardinality patterns extraction using MapReduce approach.

and optimise, making this approach very inefficient and poorly scalable (Schmidt, Meier,
and Lausen, 2010). On the other hand, the Spark-based approach can make use of multiple
machines to scale and process large knowledge graphs in splits. We show a comparison be-
tween the two approaches in Section 4.4. Regardless of the rewriting approach, the output
of the cardinality extraction is a map of (entity=cardinality) pairs for a given relation and
entity type.

Users could take these cardinalities as patterns at this stage; however, several works
have shown that knowledge graphs frequently contain noise and outliers (e.g., Hogan,
Harth, Passant, et al. (2010), Paulheim and Bizer (2014), and Paulheim (2017)). In order
to address this, we carry out a filtering of outliers from the cardinalities, which is described
in the next section.

4.3.4 Outlier detection and filtering

Considering the adverse effects that outliers could cause in the method described so far,
we now present techniques that can be used to detect and remove outliers from knowledge
graphs (see Algorithm 2, line 7). Several supervised and unsupervised approaches can be
used for the detection of outliers in numerical data (see Pearson (2005) for details); however,
we did not find any labelled dataset for valid cardinality values. Therefore, we only con-
sider unsupervised approaches for univariate data. We address the detection of outliers in
a sequence of numbers as a statistical problem. Statistical outlier detection methods define
rules for identifying points that do not respect the nominal behaviour of the data (i.e., ap-
pear to be anomalous) but they cannot explain the reason(s). Usually, the interpretation of
outliers depends on the domain of knowledge and the nature of the data, thus, there are no
universal rules for that. Interestingly, outlier detection approaches determine a lower and
upper bound on the range of data, similarly to the semantics of a cardinality bound.

We studied three of the most commonly used methods for identifying outliers in univari-
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ate data: ESD, Hampel and Bloxplot. The extreme studentized deviation (ESD) identifier (Ros-
ner, 1983) is one of the most popular approaches. It computes the mean µ and standard de-
viation σ values and considers as outlier any value outside of the interval [µ− t ·σ, µ+ t ·σ],
where t = 3 is usually used. The problem with ESD is that both the mean and the standard
deviation are themselves sensitive to the presence of outliers in the data. Hampel identi-
fier (Pearson, 2005) appears as an option, where the mean is replaced by the median med,
and the standard deviation by the median absolute deviation (MAD). The range for outliers
is defined as [med − t ·MAD,med + t ·MAD]. Since the median and MAD are more resis-
tant to the influence of outliers than the mean and standard deviation, Hampel identifier is
generally more effective than ESD. However, Hampel sometimes could be considered too
aggressive, declaring too many outliers (Pearson, 2005). Box plot appears as a third option,
and defines the range: [Q1 − c · IQD,Q3 + c · IQD], where Q1 and Q3 are the lower and
upper quartiles, respectively, and IQD = Q3−Q1 is the interquartile distance—a measure
similar to the standard deviation. The parameter c is similar to t in Hampel and ESD, and
is commonly set to c = 1.5. Box plot is better suited for distributions that are moderately
asymmetric, because it does not depend on an estimated “centre” of the data. Thus, in our
evaluation we use the box plot rule to determine cardinality outliers.

Under the open-world assumption, we can expect that any cardinality mining and out-
lier detection algorithm will not be 100% accurate on the bounds. For example, if the prop-
erty birthDate is missing for 80% of the entities, our algorithm will predict a lower bound
of 0, even though every person should have a birth date. Similarly, if the knowledge graph
contains only one parent for most people in it, the algorithm will infer a lower bound of 1
when the true value should be 2 (same logic applies for the upper bounds). On the other
hand, if a property (e.g., wonAward) is present for 80% of the entities, our mining algorithm
has more accurate data to work with and extract more realistic cardinality bounds. For
this case, our algorithm will output a cardinality bound (0, 1) for the wonAward property in
entities of type Actor. This bound shows that not all actors have the property, but those
who have it, have it at most once. External knowledge or reasoning capabilities could be
integrated with our approach for dealing with such cases; however, this is left as future
work.

4.4 Experimental settings

We evaluate the application of our mining algorithm in its two variants against several real-
world and synthetic knowledge graphs. These experiments aim to explore the usability of
the mined cardinality bounds.

In our experiments, we distinguish between real-world and synthetic datasets. Com-
monly, real-world datasets are more heterogeneous in nature and not all relations appear
for a given entity type. However, synthetic datasets are usually generated automatically
by programs that randomly create instance data from an input ontology, thus, the resulting
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Table 4.2: Datasets characteristics.

Dataset № triples № types № relations № sameAs

LinkedMDB 3,579,532 41 148 92,589
OpenCyc 2,413,894 7,613 165 360,014
UOBM 2,217,286 40 29 0
British National Library 210,820 24 45 14,761
Mondial 186,534 27 60 0
New York Times People 103,496 1 20 14,884
SWDF 101,321 62 132 759

instance data are more homogeneous. We hypothesise that these differences have twofold
implications:

(a) synthetic knowledge graphs are usually more complete and consistent than real-
world ones; and

(b) data shapes of incomplete entity types tend to have default bound values, i.e., cardi-
nality bounds are usually 0 and∞.

To evaluate these hypotheses, we perform an experiment in which we use the cardinality
bounds to assess completeness and consistency of entity types in the knowledge graphs.

4.4.1 Datasets

We used seven datasets with different characteristics such as number of triples and sameAs-
axioms. They are diverse in domain of knowledge, features, and represent both real-world
and synthetic data. We present their characteristics in Table 4.2 and describe them as fol-
lows:

• LinkedMDB4 is an open repository that describes movies, actors, directors, and so
forth from the IMDB database.

• OpenCyc5 is a large general KB released in 2012 that contains hundreds of thousands
of terms in the domain of human knowledge covering places, organisations, business-
related terms and people among others.

• UOBM6 is a synthetic dataset that extends the Lehigh University Benchmark (LUMB),
a university domain ontology, that contains information about faculties and students.

• British National Library7 (BNL) is a dataset published by the National Library of the
UK (second largest library in the world) about books and serials.

4http://data.linkedmdb.org/
5http://www.cyc.com/platform/opencyc
6https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
7http://www.bl.uk/bibliographic/download.html

http://data.linkedmdb.org/
http://www.cyc.com/platform/opencyc
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
http://www.bl.uk/bibliographic/download.html
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• Mondial8 is a database compiled from geographical Web data sources such as CIA
World Factbook, and Wikipedia.

• New York Times People9 is a compilation of the most authoritative people mentioned
in news of the New York Times newspaper since 2009.

• SWDF10 is a small dataset containing information related to several semantic web
related conferences and workshops.

4.4.2 Test settings

We implemented our cardinality mining Algorithm 2 using Python 3.5 and Apache Spark
2.1.0. We use an Intel Core i7 4.0 GHz machine with 32 GB of RAM running Linux kernel
3.2 to run experiments on different knowledge graphs. Although Spark can run on multiple
machines, we only tested it on a single machine using multiple parallel processes—one per
core using 8 cores in total.

4.5 Results and discussion

In this section, we evaluate the proposed approaches in quantitative and qualitative terms.

4.5.1 Quantitative evaluation

Intuitively, based on the scalability of Spark, one can foresee that the parallelised variant
of our algorithm (see Figure 4.3) should outperform the other using SPARQL. To test this
we ran both implementations over two selected datasets, the British National Library and
Mondial datasets, where only the former contains owl:sameAs axioms. The times corre-
spond only to the extraction of the cardinality bounds and do not include the loading of
data in memory or in the RDF store (triplestore).

For the BNL dataset, we fix the entity type to τ = Book, which co-occurs with 7 relations.
We ran the code 10 times and obtained an average runtime of 253.908±0.351 sec for the
SPARQL implementation, and 15.634±0.118 sec for the Spark one. This shows that the Spark
implementation is 16x faster than the SPARQL implementation while performing the same
task on the BNL dataset.

We repeat the same experiment over the Mondial dataset fixing the entity type τ = River,
which co-occurs with 8 relations. We ran again the code 10 times and obtained an average
runtime of 117.739±0.651 sec for the SPARQL implementation, and 2.948±0.087 sec for the
Spark one. This shows that the Spark implementation is 40x faster than using SPARQL,

8http://www.dbis.informatik.uni-goettingen.de/Mondial/
9https://datahub.io/dataset/nytimes-linked-open-data

10http://data.semanticweb.org/

http://www.dbis.informatik.uni-goettingen.de/Mondial/
https://datahub.io/dataset/nytimes-linked-open-data
http://data.semanticweb.org/


4.5 Results and discussion | 93

Table 4.3: Evaluation of completeness and consistency per dataset: one type and five ran-
dom properties per type.

Entity type
№ sameAs-

cliques
№ triples

before/after
Completeness

ratio
Consistency

ratio

Actor 92589 3579532/3536905 4/5 5/5
Fashion Model 118 1060/928 2/5 5/5
Research Assistant 0 135197/135197 4/5 5/5
Book 4515 97101/83556 2/5 3/5
Country 0 21766/21766 1/5 4/5
Concept 4979 58685/48780 2/5 5/5
InProceedings 759 101321/101302 0/5 5/5

while performing the same task with the Mondial dataset. The differences in the factors,
40x with the Mondial dataset and 16x with the BNL dataset, are due to the lower number
of instances and the absence of sameAs-axioms in the data. These results show that the
runtimes of the algorithm in either implementation are still small for two different but rel-
atively small datasets. When dealing with much larger datasets such as DBpedia with 9.5
billion triples in its 2016-04 release, we can expect the runtimes to increase with the number
of triples. Large datasets such as DBpedia grow in terms of entity types, triples per type, but
also in terms of sameAs-axioms, where it will be interesting to test the performance of both
implementations of Algorithm 2. Moreover, we believe that our Spark version will require
several machines and run in its distributed manner. We leave such evaluations and other
further optimisation as future work.

Finally, our experiments also show that the outlier detection method (i.e., box plot) does
not add a significant overhead to the whole process and scales well (with the number of
relations) for different data sizes.

4.5.2 Qualitative evaluation

After showing that the mining of cardinality bounds is efficient in time, and to show the
benefits of studying cardinality constraints derived from automatically discovered bounds
in knowledge graphs, we bring to the fore their use on the assessment of data quality.
Specifically, we evaluate each entity type in the dimensions of completeness and consis-
tency from a common sense point of view. Because the consideration of cardinality bounds
is application-dependent, here we try to abstract (without loss of generality) from individ-
ual use cases. The cardinalities presented herein are considered robust bounds assessed to
be a constraint by a knowledge engineer.

The characteristics of the studied datasets range between 1 up to 7,613 types and 20 up
to 165 relations. To keep our study manageable, we selected randomly one entity type per
dataset (7 in total) and five relations per type (35 in total). For each type, we show (see
Table 4.3) the number of sameAs-cliques generated, and the number of triples before and
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after the rewriting process.

We consider that a relation r in the context of a type τ is complete given a cardinality
constraint if every entity h of type τ has the “right number” of triples (h, r, t); and incomplete
otherwise. For example, a constraint might be that all books must have at least one relation
title, but the same is not true for relation comment. Also, we consider that a relation r in the
context of a type τ is consistent if the triples with predicate r and subject h (of type τ ) comply
with the cardinality bounds; and inconsistent otherwise. For example, a constraint might be
that all books must have always one title; however, we found five books which violate
this constraint having two titles. Based on a set of verified discovered robust bounds, in
Table 4.3 we show the ratios of completeness and consistency found in the five relations
per type. For example, 2/5 completeness ratio in the entity type Book indicates that 2 out
of 5 relations presented complete data, and the rest was incomplete. We did the same to
measure consistency. In general, we noticed a strong consistency and higher completeness
on synthetic and curated datasets, where it is normal to define an ontology in which all
instances are satisfied.

To further study the distribution of outliers in the cardinality bounds of each relation, we
selected three entity types, namely, foaf:Person, c4dm:Event and swrc:InProceedings from
the SWDF dataset. We plot the corresponding box plots for all relations in these entity types
in Figures 4.4 to 4.6, respectively. These box plots provide us with the following insights:

(1) foaf:Person: In this entity type we can see that the box plots are quite flat (i.e. they
have small width). This suggests that overall the relation cardinalities have a high
level of uniformity (agreement among them). Their values are centred around 1, thus,
the mean cardinality is usually one. However, several probable outliers (denoted
by black dots) are present in most of the relations. For instance, the relation swc:

holdsRole is the one with more of them, going up to 22. swc:holdsRole records the
roles of a person (e.g., PC member, chair, speaker, keynote) in a given event (e.g., con-
ference, workshop), and shows that there is a huge variation of the cardinalities for
different entities. Some people repeat more as organisers of events than others. A sim-
ilar behaviour can be seen in the relation foaf:made used to state when a person is the
author of a paper or a proceeding editor. Regarding the consistency of data, we can
mention that two similar ontologies swc and swrc are used in entity instances of this
type; however, equivalent relations in these ontologies do not match in the instance
data. For instance, this can be seen in the swrc:affiliation and swc:affiliation

relations, where the latter contains more variability than the former, but the former
has more outliers.

(2) c4dm:Event: In this entity type, we can also see quite flat box plots, mostly around
the value 1, and with little outliers. Differences are observed in the relations swc

:isSuperEventOf (used to state sub-events of a conference/workshop, such as cof-
fee/lunch breaks or talks) and dce:subject (used to state the topics of an event). The
box plot of these two relations is larger in width meaning that the cardinalities are
different but still within some low boundaries. Moreover, two other interesting cases
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Figure 4.4: Box plot figures for each relation in the entity type foaf:Person of the SWDF
KG.
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Figure 4.5: Box plot figures for each relation in the entity type c4dm:Event of the SWDF KG.
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Figure 4.6: Box plot figures for each relation in the entity type swrc:InProceedings of the
SWDF KG.
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1 card(mondial:name, mondial:Volcano)=(1,1)
2 card(mondial:elevation, mondial:Volcano)=(1,1)
3 card(mondial:longitude, mondial:Volcano)=(1,1)
4 card(mondial:latitude, mondial:Volcano)=(1,1)
5 card(mondial:locatedIn, mondial:Volcano)=(1,3)
6 card(mondial:lastEruption, mondial:Volcano)=(0,1)

Figure 4.7: Subset of relation cardinality bounds for type mondial:Volcano.

are seen in the rdf:type and swc:isSubEventOf box plots, which present some out-
liers below the box plot. This is due to entities of this type have two values (e.g.,
swc:TalkEvent, c4dm:Event) for these relations in average, but few cases have only
one.

(3) swrc:InProceedings: This entity type has more relations with wider box plots com-
pared to the previous two and it also contains more outliers, indicating that cardinali-
ties have high variability among entities. Some insights that we can collect by looking
at the box plots are: (a) more than one relation coming from different ontologies is
used to express the same attribute; and (b) box plots for relations that express the
same attribute do not match in most cases. For instance, to illustrate (a) we have the
case of the relations dce:creator, dcterms:creator, swrc:author, and foaf:maker that
are used to represent the authors of a paper. However, some sets of entities contain
only a subset of these relations. We believe that this depends on the metadata pro-
vided (when provided) by the conferences and workshops, which is not always the
same. Likewise, the relations dce:subject and dcterms:subject show discordance in
their data across entities.

The information collected from the box plots and cardinality bounds could be used to
complete missing relations or spot inconsistencies in the data. Furthermore, we argue that
by detecting cardinality inconsistencies and incompleteness we can determine structural
problems at instance level. For example, if the knowledge graph is being automatically
generated from a textual source, e.g., PubMed articles, structural problems such as missing
labels could indicate issues in the pipeline generating the knowledge graph. In turn, this
can be used to guide repair methods and move towards better quality of knowledge graphs.

4.6 Summary

Cardinality bounds turned out to be a powerful tool to expose the inherent structure or
shape of knowledge graphs. In this chapter, we provided a definition of cardinality bounds
that builds upon similar research done in XML and relational databases Section 4.2. With
a definition in place, in Section 4.3 we proposed an algorithm for mining accurate and ro-
bust cardinality bounds from instance data. We identified that two factor can significantly
impact the mining of cardinality: the unique name assumption and outliers. To deal with
UNA, we proposed a normalisation that removes duplicated entities and edges in the graph
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according to their declaration as semantically equal. Moreover, we applied statistical outlier
detection and removal methods to obtain robust cardinality bounds. Two implementations
of this algorithm are compared using real-world and synthetic datasets. Our experimen-
tal results (Section 4.4) show that the use of Apache Spark can be up to 40x faster than
using SPARQL for collecting the cardinality patterns (Section 4.5). We believe that cardinal-
ity bounds can play an important role in applications such as query re-writing, validation,
and representation learning. In Chapter 5, we will study how cardinality could be used
with machine learning models to propose an approximated validation algorithm. Similarly,
cardinality can be used to build graph-based feature models to complete Biomedical knowl-
edge graphs (Chapter 6). Finally, in Chapter 7 we will test the use of cardinality bounds to
encode common sense in distributed representations learnt from knowledge graphs.
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Knowledge graphs are a rich representation of information that provide a huge deal of
flexibility to users. That flexibility, however, comes at a price when data consumers require
to validate the data consistency. For example, a business use case could require to verify that
all customers have a contact email, or it may be required that customers have at least one
contact phone number and address for billing. Validation is usage dependant — R. Y. Wang
and Strong (1996) highlighted the importance of the concept “fitness for use” when measur-
ing data quality. However, validation of knowledge graphs at scale is an open problem that
remains unresolved. Current validation approaches have two main shortcomings: (1) their
output of validation is a Boolean value, in some cases accompanied by a report pointing
the sources of inconsistency (error); and (2) they rely on technologies that do not scale well,
such as SPARQL and regular expressions. Therefore, it becomes impractical to validate large
knowledge graphs. These shortcomings make the validation problem of knowledge graphs
daunting, let alone the cases dealing with numerous sources of inconsistency such as Web
data. In this chapter, we tackle the problem of validation using heuristics or approximate
algorithms to help when accuracy-efficiency trade-offs can be taken.

100
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5.1 Problem statement

In the last decade, knowledge base construction (KBC) systems have facilitated the auto-
matic creation of very large knowledge graphs. For example, the never-ending language
learning (NELL) (Carlson, Betteridge, Kisiel, et al., 2010; Mitchell, Cohen, Jr., et al., 2018)
knowledge graph comprises over 50 million facts1; Wikidata (Erxleben, Günther, Krötzsch,
et al., 2014; Tanon, Vrandecic, Schaffert, et al., 2016), a shared knowledge graph providing
structured data to the Wikipedias in different languages, keeps growing continuously and
has ca. 57 million facts2; or the Google’s Knowledge Graph, introduced in May 2012 and
built automatically with information from multiple sources, as of October 2016 it was esti-
mated to contain over 70 billion facts. Validating knowledge graphs of such magnitude is a
complex and resource demanding task that has not received enough attention thus far from
the research community. We believe that in scenarios like that, data consumers are willing
to exploit accuracy-efficiency trade-offs to achieving the validation. In other words, users
would be willing to gain efficiency by allowing occasional errors in the data.

Data consumers pose different requirements for the characteristics that a knowledge
graph must have to be used depending on their their use cases, but currently there are few
tools or solutions to assist them determining the suitability of a given knowledge graph.
R. Y. Wang and Strong (1996) highlighted the importance of the concept “fitness for use”
when measuring data quality: There is no one-fits-all solution and the selection of a data
source depends on the specific use case at hands. In Chapter 4, we introduced a bottom-
up approach to extract the cardinality constraints that data naturally exhibits, helping data
consumers to understand the shape and characteristics their data have and analyse whether
these are acceptable or not for their use case(s). Conversely, in this chapter, we address a
top-down approach a.k.a. knowledge graph validation, where a data consumer has a set of
restrictions the data must satisfy and she wants to check whether a given knowledge graph
adheres to this set of constraints (Kontokostas, Westphal, Auer, et al., 2014; Labra Gayo, E.
Prud’hommeaux, Boneva, et al., 2018).

In the area of database management systems, this problem is well known as consistency
checking, where a relational database is checked against a set of integrity constraints (Abite-
boul, Hull, and Vianu, 1995) — which are limitations imposed on the data that are supposed
to be satisfied all the time by instances of the database. For a knowledge graph G, this prob-
lem has been translated (Boneva, Labra Gayo, Hym, et al., 2014; Kontokostas, Westphal,
Auer, et al., 2014) as the process of determining whether G is deemed valid w.r.t. a “shape”
S if all relations in G match the structural model defined in S, denoted by S |= G, analogous
to the processes in relational and XML databases. Shapes indicate the structure of entities:
allowed relations, their data types, and cardinalities; however, they can (and usually are)
overloaded with more complex constraints defined using SPARQL query language (Labra
Gayo, E. Prud’hommeaux, Boneva, et al., 2018).

1As of June 2019, http://rtw.ml.cmu.edu/rtw/
2As of June 2019, https://www.wikidata.org/wiki/Wikidata:Statistics

http://rtw.ml.cmu.edu/rtw/
https://www.wikidata.org/wiki/Wikidata:Statistics
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The S |= G notion of validation is strict and its strictness is often required in many use
cases; however, some users may have more flexible needs in terms of accuracy in favour
of a better validation time and scalability. For example, consider a case where the size of
the knowledge graph is very large (as in the example of KBC mentioned above) and strict
validation is impractical.

A few approaches have been proposed for strict validation of knowledge graphs (see our
review of the most popular constraint languages for knowledge graphs in Section 3.1.2),
among them SHACL is the W3C recommendation for validating RDF knowledge graphs
against a set of constraints. Although SHACL is the current W3C recommendation, Cor-
man, Reutter, and Savkovic (2018a) have shown that validating RDF knowledge graphs
against SHACL constraints is NP-hard in the size of the graph, thus, intractable for large
Web-scale knowledge graphs. When the optimal solution cannot be reached, or if an op-
timal solution is not necessary, or it is highly expensive, researcher and practitioners have
exploited approximate approaches that provide a “good” solution at a lower cost. Such ap-
proaches are known as “approximation algorithms” (Johnson, 1974) that are polynomial by
relaxing the need for accuracy guarantees. In this work, we introduce the problem of approx-
imate structure validation that aims to apply approximate and scalable methods to validate a
knowledge graph without the need for 100% accuracy.

Definition 5.1

We define approximate structure validation given a knowledge graph G and a shapes
graph S, as the process of determining the level σ in which the structure of an entity e
can be mapped from some input shape in S whose target node is e. For each e ∈ E in G,

σi ∈ [0, 1] is computed and G is deemed valid w.r.t. S with a σ =
1

|E|
∑

i∈|E| σi, denoted

by S |≈σ G. We refer to σ as the global conformance score that refers to the aggregated
level of conformity w.r.t. the schema S.

Henceforth, we will define an approach for computing the conformance score as the
probability of a knowledge graph G to comply with a schema S.

We can thus state the approximate graph validation problem as follows:

Approximate structure validation problem

Input: a knowledge graph G and a shapes graph S.

Output: Whether S |≈σ G with a conformance score σ.

A σ value close to 0 indicates that G does not satisfy most (or none) of the structure
defined by S, whilst a value of σ closer to 1 indicates that G satisfy most (or all) of the
structure defined by S. Intuitively, we can notice that when σ = 1, the knowledge graph G
is deemed to be valid for all structure constraints, i.e., S |= G.3 To that end, we hypothesise

3Note that the |= notation used here is borrowed from databases area and does not mean entailment or
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that an approximate solution for validation can use machine learning approaches to learn
the structure of knowledge graphs and entity types. The validity of a knowledge graph G is
the implication of the validity of all entities in G. Using the learnt models we can predict the
probability Pr(y = 1 | e), where e is the latent shape representation of an unseen entity e.
This probability represents the level to which e satisfies the constraints in a given schema.
An entity that follows all constraints will get a probability closer to 1, while an entity that
does not will get a lower probability. (Note that one of the challenges we tackle in this
chapter is the definition of such latent shape representations.)

Henceforth, we focus on the approximate structure validation problem for knowledge
graphs that covers cases where users may prefer a faster but approximate solution that
fulfils their validation requirements.

5.2 Related work

Although, the research stream on the validation problem in knowledge graphs is fairly new,
the interest on it has been growing due to the relevance of knowledge graphs in artificial
intelligence use cases. In this section, we cover the work done validating knowledge graphs,
and the approximate approaches for validation proposed in the field of databases.

Knowledge graph validation. The validation of knowledge graphs is a much sought-after
feature that has attracted increasing attention due to its critical role in the quality assessment
of the information they contain (Labra Gayo, E. Prud’hommeaux, Boneva, et al., 2018). Data
consumers are more and more in need of means to check whether a knowledge graph con-
form to some intended structure. In Chapter 3, we have already reviewed the most relevant
constraint languages and how they are used for validating knowledge graphs. When com-
pared to previous approaches, we noticed that there are no works studying approximate
solutions to the validation problem on knowledge graphs. However, the idea of approxi-
mate validation is not new. For instance, Labra Gayo, García-González, Fernández-Alvarez,
et al. (2019) mentions the possibility of using probabilistic reasoning as an approach to de-
fine approximate validation algorithms for knowledge graphs, although no further details
are provided.

The purpose of constraint languages is to define the structure and constraints that a
given knowledge graph is expected to conform. Current approaches for validation make
use of so-called shapes graphs, usually defined using grammars (e.g., ShEx) (Boneva, Labra
Gayo, and E. G. Prud’hommeaux, 2017) or SPARQL queries (e.g., SPIN) (Kontokostas, West-
phal, Auer, et al., 2014), to check the consistency (veracity) of knowledge graphs. The ex-
pressiveness of shapes graphs is bounded by the expressiveness of the constraint language
they are written on, i.e., the constraints that conform a given shapes graph may be varied.
T. Hartmann (2016) compiled a set of use cases from the Dublin Core Metadata Initiative

semantic consequence.
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Table 5.1: Coverage of validation approaches w.r.t. constraint types (T. Hartmann, 2016).

DSP ReSH ShEx SHACL OWL 2 SPIN
(SPARQL)

17.3% (14) 25.9% (21) 29.6% (24) 51.9% (42) 67.9% (55) 100% (81)

(DCMI) Application Profiles Task Group, the W3C RDF Data Shapes working group, and
the W3C Shapes Constraint Language (SHACL) working group, and identified 81 types of
constraints required by various stakeholders. These constraints should be expressible by
constraints languages in order to meet the requirements imposed over knowledge graphs.
Using this set of 81 constraints, T. Hartmann (2016) evaluated the expressiveness of the
most common constraint languages and concluded that SPARQL (E. Prud’hommeaux and
Seaborne, 2008) and SPARQL Inferencing Notation (SPIN) (Knublauch, J. A. Hendler, and
Idehen, 2011) are the two most powerful and widely used languages for constraints for-
mulation and validation (Fürber and Hepp, 2010). Table 5.1 table shows the coverage of
validation languages w.r.t. the 81 constraint types. (Note that the SHACL specification was
still not finished at the time when Hartmann’s work was completed, and its coverage may
be considerably different.)

To generate our ground-truth, we will use SHACL as validation language given it is
the current W3C recommendation. Furthermore, following the initial motivation of shapes
graphs, in this chapter and thesis, we restrict the scope of shapes to just structure definitions
for a set of entities. That is, we focus on the presence and cardinality of relations for entities.
For example, saying that a person must have a birth date and/or can have zero or more
children indicates structure, whilst checking the format of her birth date (e.g., YYYY-MM-DD)
does not, under our definition.

Approximate validation in databases. While no concrete approach has been proposed thus
far for RDF knowledge graphs, approximate validation methods have been studied for
other data models. In databases, I |= Σ denotes that a relation I satisfies a set of integrity
constraints Σ, if I |= σ for each σ ∈ Σ (Abiteboul, Hull, and Vianu, 1995). This definition
results in a Boolean result for the validation operation (true or false) indicating whether the
whole document is valid or not w.r.t. the set of constraints. A relaxation to this definition
has been proposed for XML. In Tekli, Chbeir, Traina, et al. (2015), the authors propose an
approximate XML structure validation between an XML document (tree) D and an XML
(regular tree) grammar G, denoted by G |≈σD. Tekli et al. use a similarity score σ to denote
that D approximately conforms to G with a similarity score σ obtained by computing the
XML document/grammar similarity using a tree edit distance. In particular, σ underlines
the degree of membership of documentD to the grammar language L(G), which represents
the set of all the possible XML documents that can be generated using the XML grammar
G. Their approach is the most similar to ours in terms of their goal, but they solve a very
different problem dealing with the tree structure of XML documents.

Approximation algorithms are efficient algorithms to find approximate solutions to NP-
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hard problems (Williamson and Shmoys, 2011). In this thesis work, we hypothesise that an
approximate solution to the validation problem can use machine learning approaches that
learn the structure of knowledge graphs and entity types. In the next section, we propose
our method for approximate structure validation of knowledge graphs using graph features
for learning structure representations.

5.3 An algorithm for approximate structure validation

With scalability in mind, our approximate validation approach uses a divide-and-conquer
technique, where: (a) the knowledge graph is split into smaller units (e.g., subgraphs); (b) a
machine learning model is build to determine the validity of an entity w.r.t. a given class
T ; (c) and finally, the validation is achieved by passing each unit to the corresponding class
model mT and getting its prediction probability Pr(y = 1 | e) based on the extracted latent
shape for entity e. We now describe the details of our approximate structure validation
algorithm for knowledge graphs.

5.3.1 Approximate validation

Although popular approaches for validating knowledge graphs use SPARQL to express
data constraints or perform reasoning to fully capture the semantics of data (Bosch, Acar,
Nolle, et al., 2015), in this dissertation, we consider knowledge graphs as a data model not
limited to RDF only. Additionally, knowledge graphs can be built at Web scale from differ-
ent sources and not necessarily follow an OWL ontology. Thus, we consider that validation
of knowledge graphs should not be restricted to Semantic Web technologies in all cases. In
this chapter, we introduce an approximate approach that relaxes the strict notion of valida-
tion based on machine learning.

As we have already pointed out before, current approaches use a “binary” view of val-
idation, where the validity is measured over the whole knowledge graph, disregarding the
size and type of the structural issues that cause violations. Another shortcoming is scala-
bility that stems from this binary view, where knowledge graphs are atomically validated,
making validation unfeasible for large knowledge graphs. In our approach, we first di-
vide a knowledge graph into smaller units, create machine learning models to classify these
units w.r.t. the classes in the knowledge graph, and run the validation for each one of these
units by passing them to their respective model. Henceforth, we consider a subgraph as a
unit structure extracted around a target entity. Let Graphd(G, e) be the subgraph of depth
d around an entity (node) e. Note that if we merge all n subgraphs extracted from G, the
output is the original knowledge graph G, i.e., G =

⋃n
i=1 Graph

d(G, e). Building upon this
equality, we can claim that S |≈σ G is equivalent to S |≈σ Graph

d(G, e), ∀e ∈ E . Intuitively,
this assumption will allow us to implement more efficient approaches by, for example, val-
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idating each subgraph against its corresponding shape graph in parallel.

Example 5.1

Example shapes graph S1 containing two shapes and their corresponding property
shapes:
1 @prefix schema: <http://schema.org/> .

2 @prefix sh: <http://www.w3.org/ns/shacl#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

5

6 schema:Hotel

7 a sh:NodeShape ;

8 sh:targetClass schema:Hotel ;

9 sh:property [ sh:path schema:name ;

10 sh:datatype xsd:string ;

11 ] ;

12 sh:property [ sh:path schema:url ;

13 sh:minCount 1 ;

14 sh:maxCount 3 ;

15 ] ;

16 sh:property [ sh:path schema:priceRange ;

17 sh:in ( "€" "€€" "€€€" ) ;

18 ] ;

19 sh:property [ sh:path schema:address ;

20 sh:node schema:AddressShape ;

21 ] .

22

23 schema:AddressShape

24 a sh:NodeShape ;

25 sh:closed true ;

26 sh:property [ sh:path schema:streetAddress ;

27 sh:datatype rdf:langString ;

28 ] ;

29 sh:property [ sh:path schema:addressRegion ;

30 sh:datatype xsd:string ;

31 ] ;

32 sh:property [ sh:path schema:postalCode ;

33 sh:or ( [ sh:datatype xsd:string ] [ sh:datatype xsd:integer ] ) ;

34 ] .

In this chapter we propose an agnostic validation algorithm that propagates the validity
from one entity to its closest neighbours. For this, we make the following assumptions:

1. entities used in the training of our machine learning models are correctly typed, i.e., if
the statement (A, rdf:type, C, i, s) in the knowledge graph, entity A belongs to class
C in reality;

2. structure validity can be captured by similarity functions, i.e., if entity A is valid and
entity B has a high similarity score with A, then B is said to be valid with that similarity
score.

Example 5.1 shows a shapes graph S1 that contains two node shapes schema:Hotel and
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schema:AddressShape for validating entities of the target type schema:Hotel. This is a com-
mon shapes graph that allows to validate Web content generated using Schema.org (R. V.
Guha, Brickley, and Macbeth, 2016), which is a set of vocabularies that allow application
developers to exchange structured data on the Web.

Schema.org allows Web developers to use structured data markup embedded in Web
pages to annotate entities (e.g., people, places, events, products, offers) and relationships
between entities and actions.4 Annotations embedded in web pages are then extracted to
generate knowledge graphs with data from many different sites. Such is the adoption and
value of schema.org annotations that they serve as data sources for Google’s Knowledge
Graph project, providing background information, e.g., logos, contact, and social informa-
tion (R. V. Guha, Brickley, and Macbeth, 2016). Example 5.2 shows a subset of the triples
extracted by The Web Data Commons project (Meusel, Petrovski, and Bizer, 2014) runs
large-scale processes to extract structured data from the Common Web Crawl and makes
the datasets publicly available.5

Example 5.2

Below an extract of a knowledge graph G1 retrieved from the 2018-12 Common Web
Crawl and encoded in Turtle:
1 @prefix schema: <http://schema.org/> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3 @prefix ex: <http://example.com/> .

4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

5

6 ex:HotelElCiervo

7 a schema:Hotel ;

8 schema:name "Hotel El Ciervo" ;

9 schema:url <http://hotelsambencant.cat/europa/espanya/catalunya/vielha/hotel_el_ciervo.html> ;

10 schema:priceRange "€" ;

11 schema:address [ schema:streetAddress "Passeig Sant Oren\u00E7, 3"@es ;

12 schema:postalCode 25530

13 ] .

14

15 ex:MonteParadiso

16 a schema:Hotel ;

17 schema:name "Monte del Paradiso" ;

18 schema:priceRange "€€" ;

19 schema:address [ schema:streetAddress "Localita Costa di Monte Acuto"@it ;

20 schema:addressRegion "Umbria"@it ;

21 schema:postalCode "06019"

22 ] .

In Example 5.2, we can see two focus nodes in the data graph G1, namely, ex:

HotelElCiervo and ex:MonteParadiso, which belong to the class schema:Hotel defined
in Example 5.1. When validating these focus nodes against the shapes graph S1, we have
that S1 6|= G1 because ex:MonteParadiso does not comply with two of the constraints in S1:

4https://schema.org/ (Accessed May 11, 2019)
5http://webdatacommons.org/structureddata/ (Accessed Feb 13, 2019)

https://schema.org/
http://webdatacommons.org/structureddata/
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(1) it does not have at least one value for the relation schema:url; and
(2) it uses a language tag @it for the schema:addressRegion relation (Line 22), which is

supposed to have a datatype xsd:string, thus, not accepting a language tag.

Note that even though the entity ex:MonteParadiso is not valid w.r.t. the defined schema
S1, it does have all the relations required in the structure of schema:Hotel. One could say
that even when the strict validation is not satisfied (Boolean value), the entity does conform
with most of the structure satisfying 5 out of 7 property shapes (∼71.4%) defined in the
schema:Hotel shapes graph.

Therefore, for achieving our goal of approximate validation, we follow the validation
strategy of ShEx that defines associations between nodes and shapes as input to the val-
idation process. The ShapeMap Language (E. Prud’hommeaux and Thomas Baker, 2019)
divides the validation of a knowledge graph into node@shape pairs, such as

ex:HotelElCiervo@schema:Hotel, ex:MonteParadiso@schema:Hotel,

where the shape map determines that validation is performed over each pair: entity (node)
validated against the given shape. This strategy has several advantages when compared to
other approaches that will stop after the first error is found and return a binary value. Shape
maps assume certain independence between the validation of individual entities that allows
us to formalise Claim 5.1.

Claim 5.1

Let S be a schema (shapes graph), G a knowledge graph (data graph), then S |≈σ G is
equivalent to S |≈σ Graph

d(G, e), ∀e ∈ E , where d represents the depth of the paths in
the subgraph.

Proof. Let G = (E ,R, `) be a knowledge graph. By definition, each Graphd(G, e) generates
a graph G′ = (E ′,R′, `′), where E ′ ⊆ E and R′ ⊆ R. For a large enough depth d, a sub-
graph could contain all the entities (nodes) in E if the graph is connected, meaning that
G ≡ G′. If the graph is not connected, then by covering all entities in E , one should reach the
equivalence between both graphs at some point.

It is clear from our definition in claim 5.1 that to capture hierarchical or composite rela-
tionships, such as great-grand-father, it is required a value of d > 1. For example, let’s assume
a knowledge graph containing only triples with the hasFather relation and we want to cap-
ture the relationship hasGreatGrandFather. To achieve this, we should at least use a value
d = 3 to capture such cases, e.g., (Bart Simpson, hasGreatGrandFather, Orville J. Simpson) can
be represented by the following path:

(Bart Simpson, hasFather,Homer Simpson) ∧

(Homer Simpson, hasFather,Abraham Jedediah Simpson II) ∧

(Abraham Jedediah Simpson II, hasFather,Orville J. Simpson).
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Figure 5.1: Approximate structure validation model with machine learning.

Note that here we focus on the problem of structural validation of RDF. Although the
schema.org vocabulary introduced by Google can potentially generate an infinite number
of constraints using existing standards and serialised using RDF, not all of these constraints
are considered structural in this work.6 For example, we will not validate that cycle-free re-
lations such as schema:children (i.e., children must be born after their parents) or irreflexive
relations such as schema:children, schema:knows, etc., are satisfied. Our proposed approach
is non-deterministic and unaware of everything but the paths included in the subgraphs
Graphd(G, e,). Similarly, we do not validate cases like relation schema:deathDate must be
after schema:birthDate or that the schema:email must match a certain regular expression.
We do not consider these cases as part of the structural validation of RDF.

Because of how we frame the problem and task, we do not validate specific constraints
one by one, but many structural constraints at the same time. We refer to these structural
constraints as the latent shape of entities. We cast the validation problem as a similarity
problem between entities, and say that if entity A is valid w.r.t. a shape S with target class
C, then every entity X whose similarity to A is close to 1 should also be valid w.r.t. S with a
conformance score σ.

5.3.2 Machine learning framework

To actually provide a fast and scalable approximate validation, we use machine learning
algorithms to infer the conformance score given a knowledge graph and a shapes graph.
Our goal is then to find the best model to obtain S |≈σ G, as shown in Figure 5.1.

Following a probabilistic approach, we define a function fS : Rk → [0, 1], where k is
the length of the vector representation of entities. Given an entity e and its vector repre-
sentation denoted e, fS(e) returns the probability with which entity e satisfy the shapes
graph S, i.e., its conformance score. The design of fS depends on the input shapes graph
S and can be learnt from sample data using a range of alternative machine learning ap-
proaches, such as supervised decision tree or semi-supervised label propagation. Building
upon our Claim 5.1, we say that S |≈σ=1 G (or S |= G) if fS(ei) = 1 for every entity ei ∈ E .
In other words, the knowledge graph G is said to satisfy or be valid w.r.t. S, because every

6We refer the reader to https://w3c.github.io/data-shapes/data-shapes-ucr/ for more details.

https://w3c.github.io/data-shapes/data-shapes-ucr/
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entity in G conforms with the schema.

We define a domainD that consists of two components: a feature space X and a marginal
probability distribution Pr(X), where X = {e1, . . . , en} ∈ X . Henceforth, ei is a vector
representation of the i-th entity, X is the space of all entity vectors, and X is a particular
learning sample of size n. We will later discuss methods to obtain a vector representation
of entities in a knowledge graph in Section 5.3.3.

Given a specific domain D = {X ,Pr(X)}, a task consists of two components: a label
space Y and an objective predictive function fS(·). The task is denoted T = {Y, fS(·)}.
fS(·) is not observed but can be learnt from the training data, which consists of pairs {ei, yi}
where ei ∈ X and yi ∈ Y . Also note that, in the semi-supervised setup, the label y will
be known only for a subset of the entities, while in the unsupervised setup y will be un-
known for every entity in the knowledge graph. The function fS can be used to predict the
corresponding label, fS(e), for a given entity e with vector representation e. Therefore, the
conformance score σ is equals to fS(e).

To tackle this task, we can actually use different types of learning, namely, supervised,
semi-supervised and unsupervised. We provided a brief overview of each of these types
in Section 2.4. Here, we focus on analysing how these types deal (or not) with the nuances
of the validation problem we are trying to solve.

(1) Unsupervised learning: Assumes that we do not actually know the labels of any exam-
ple and that data can be clustered instead given their feature vectors and a similarity
metric. Evaluation in this case is more challenging since we depend on a manual re-
view of the results. We could use this type of learning to identify whether the proxim-
ity of vector representations of semantically close entities is reflected in the clustering.

(2) Supervised learning: Assumes we have a large number of labelled samples that can be
used to learn good models that allow to identify the correctness of an entity w.r.t. a
shapes graph. If we knew the validity of a large number of entities, it would be easy
to learn a model per class or a multi-class model.

(3) Semi-supervised learning: This type of learning assumes that we have a limited set of
labelled samples and the rest of the training data is unlabelled. The number of un-
labelled samples is usually larger than the number of labelled ones. In practice, this
means that we can know the conformity of few entities w.r.t. the schema, and unla-
belled data can be added to help improve learning. For example, we could propagate
labels based on similarity, a labelled node will propagate its valid/invalid label to all
its closest neighbours (according to a given similarity metric).

Independent of the learning type, we are able to learn a function fS that provides a
conformance score given an entity vector e. fS could also be used to provide a binary
classifier by setting a threshold on the probabilities returned. For instance, if fS(e) ≥ 0.5,
we say that entity e is valid, and invalid otherwise.
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5.3.3 Feature vectors extraction

For our machine learning framework, we need to represent entities using k-dimensional
vectors, so that models can be trained based on the entity features and validation labels.
The following are the criteria we define for choosing an approach to extract feature vectors
from a knowledge graph:

(a) to capture structural patterns in the neighbourhood of entities;

(b) to generate a k-dimensional vector for any entity;

(c) to provide an interpretable representation for any entity;

(d) to be efficient to compute vectors for entities.

Several approaches have been proposed for vectorisation (also referred to as proposition-
alisation) of entities and relations in a RDF knowledge graph (Nickel, Tresp, and Kriegel,
2012; Ristoski and Paulheim, 2014, 2016a,b). In Section 3.4, we reviewed the most common
approaches, which we have divided into two groups: (i) graph-based feature models, and
(ii) latent feature models. From these groups, we observe that both types of approaches
exploit link patterns in the graph structure; however, latent feature models require to know
beforehand the whole sets of entities and relations in order to obtain vector representations
for them. Latent approaches by design do not provide interpretable features. This limitation
does not satisfy our criterion (c). Therefore, for our approximate validation experiments we
decided to use algorithms that provide graph-based (observable) features.

Distributional Semantics (Z. S. Harris, 1954) proposes to represent the meaning of a
word by its context or usage. The the so-called Distributional hypothesis states that “lin-
guistic items with similar distributions have similar meanings.” Based of the idea of Dis-
tributional Semantics, we have decided to represent an entity based on its subgraph or
neighbourhood around the entity. A subgraph Graphd(G, u) contains all nodes and edges
reachable from u following paths of length≤ d (see Definition 2.4). Because the subgraph of
a node u could be very large, we bound a subgraph using a sampling strategyH and denote
it by Graphd(G, u)H . The problem of sampling subgraphs has been well studied (Cormen,
Leiserson, Rivest, et al., 2009). Sampling a subgraphs for an entity u is a form of local search
in the graph. Generally, two types of sampling strategies H are available for generating a
subgraph Graphd(G, u)H : Breadth-First Strategy (BFS) and Depth-First Strategy (DFS) (Cor-
men, Leiserson, Rivest, et al., 2009). We define them extending the definitions in Grover and
Leskovec (2016) to labelled graphs.

Breadth-first Strategy In BFS, the neighbourhood Graphd(G, u)BFS consists of edges which
can be reached immediately from the source node u. And repeats the traversal process
from those neighbours.

Depth-first Strategy In DFS, the neighbourhood Graphd(G, u)DFS consists of edges sequen-
tially sampled at increasing distance from the source node u.
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A subgraph of depth d is generated using a mix between DFS and BFS from a node. It
is easy to see that the subgraph generation step also suffers from scalability issues on large-
scale knowledge graphs, where a simple DFS or BFS search can become very expensive, and
return non-representative subgraphs if taken separately. Applying only DFS would lead to
very deep subgraphs which might not consider all neighbour relations; and applying only
BFS would lead to very wide subgraphs with not enough depth. To cope with the prob-
lem of incomplete search, we apply a DFS with BFS flavour by considering the following
two restrictions: (1) from a given node, we extract a maximum of 10 instances for any same
relation, to avoid neglecting under represented relations in nodes with highly common rela-
tions; and (2) in each iteration of DFS, we take a sample of 100 edges, to keep a manageable
final size for a subgraph. Note that such parameters are implementation decisions that can
be tuned by users. In this way, we try to keep instances for all neighbour relations (even the
under-represented ones, such as one-to-one relations that otherwise could be discarded),
and we try to keep a representative enough subgraph while keeping an adequate size.

Formally, the previous strategy can be simulated by a random walk of fixed length ` (Lao
and Cohen, 2010). For any relation path P = 〈r1, . . . , r`〉 and a seed node s ∈ Dom(P ),
a path constrained random walk defines a distribution hs,P recursively as follows. If P is the
empty path, then define

hs,P =

{
1 , if u = s

0 , otherwise
(5.1)

If P = 〈r1, . . . , r`〉 is non empty, then let P ′ = 〈r1, . . . , r`−1〉, and define

hs,P =
∑

u′∈Ran(P ′)

hs,P ′(u
′) · Pr(u | u′; r`), (5.2)

where Pr(u | u′; r`) =
r`(u

′, u)

|r`(u′, ·)|
is the probability of reaching node u from node u′ with a

one step random walk with edge type r`. r`(u′, u) indicates whether there exists an edge
with type r ∈ R that connect u′ to u. Using these random walks we are able to build
neighbourhood subgraphs Graphd(G, u) for every entity u ∈ E . Subgraphs in this case play
the role of latent shapes graph that expose the inherent structure of entities. We hypothesise
that these latent shapes graph are similar for entities that belong to the same entity type
(class), thus, they can be used for validating a knowledge graph.

Next, we assume that there exists a subgraph Graphd(G, u) for a given entity u, and we
want to obtain a k-dimensional vector representation out of all subgraphs. We use a simple
approach for vectorising subgraphs, we list all paths P in Graphd(G, u) obtained during
the random walks for every entity u ∈ E . To perform better random walks, we can also
assume that the traversal of the knowledge graph can be done considering inverse edges
as discussed in Section 2.2.1. Each path is then considered as an individual feature-value
mapping with a clear interpretation. The value of a feature in such mapping can be defined
in two ways:
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(1) binary value encoding the existence or not of a given path, and

(2) cardinality or number of occurrences of a given path in the subgraph.

We then are able to obtain a vector for each entity in the graph based on subgraphs. In
this case, the length k of the vector representations is equals to the maximum number of
distinct paths found across all subgraphs. It could be possible to apply filtering techniques
to the paths in a way that we obtain fixed length vectors, but we leave that as future work.
We will test dimensionality reduction techniques for visualising the entities later in our
experiments.

5.4 Experimental settings

Herein, we evaluate our approach on real-world datasets extracted from the Web. These are
noisy and not previously validated datasets to show the effectiveness of our approach.

5.4.1 Datasets

To test our approach, we selected three datasets of different size from the Web Data Com-
mons Microdata corpus.7 These datasets are extracted directly from Web annotations gener-
ated by Web developers using the Schema.org vocabulary. Schema.org data contains anno-
tations like product data, event data, or address data using a vocabulary agreed by big ven-
dors in the search engine business, namely, Google, Microsoft, Yahoo, and Yandex.8 Since its
definition, Schema.org has been adopted by many organisations and websites (R. V. Guha,
Brickley, and Macbeth, 2016).

Note that no data validation has been applied to the data generated by Web Data Com-
mons, thus, they are likely to contain noise and errors. (Although some syntactic validation
for Schema.org usage could have been applied.) With our Web scope in mind, we selected
a subset of three Schema.org classes used in domains and comprising different numbers of
triples: RiverBodyOfWater from the JSON-LD corpus, and Library and Continent from the
Microdata corpus.9 Each subset contains all instances of a specific class (and associated
classes) as generated by the extraction tool (Meusel, Petrovski, and Bizer, 2014). Therefore,
multiple classes can be found in a single dataset, where a relation exists with instances of
the main class in the Schema.org annotations.

It is worth to point out that initially we analysed a couple of these classes, but many were
left out of our analysis because their N-Quads10 were ill-formed and could not be parsed
properly. The errors we came across were mostly about ill-formed URIs used for naming

7http://webdatacommons.org/structureddata/
8https://schema.org/
9http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html

10N-Quads is a line-based, plain text format for encoding an RDF dataset.

http://webdatacommons.org/structureddata/
https://schema.org/
http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html
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Table 5.2: Schema.org Microdata datasets used for approximate validation experiments. We
omit the http://schema.org/ prefix from the class names. In parentheses, the values after
filtering classes with more than 10 entities.

Class name № Triples № Classes № Typed Entities Top-5 classes (Entity Count)

RiverBodyOfWater 37,265 (35,920) 24 (13) 7,646 (7,601)

ImageObject (1,615)
ListItem (1,614)
Organization (1,036)
RiverBodyOfWater (556)
GeoCoordinates (546)

Library 545,264 (459,377) 213 (139) 110,798 (110,574)

Library (19,523)
PostalAddress (14,132)
Book (7,306)
WebPage (6,089)
Offer (5,655)

Continent 2,198,788 (1,679,553) 48 (27) 535,828 (535,787)

City (298,536)
AdministrativeArea (175,391)
Place (28,904)
Country (10,303)
Continent (8,155)

Note: The entity count in the top-5 classes represents the number of distinct URIs found per each class type (without removing
duplicated triples) and not the number of real world entities.

resources. Table 5.2 shows the characteristics of the selected datasets covering different sizes
to test the scalability of our approach.

5.4.2 Test Settings

In this section we describe the experiments we have performed to demonstrate the potential
of our approach.

Dataset Labelling. For labelling the entities and determine their correctness, we validated
them against the Schema.org SHACL shapes graph. SHACL vocabulary (containing the
shapes graph) is available for download as Turtle file from https://schema.org/docs/

developers.html and http://datashapes.org/schema.ttl. To obtain a label of an entity
e in a knowledge graph we have two options to frame the problem:

(a) Consider the probability of entity e being valid w.r.t. the whole Schema.org shapes
graph. Such probabilities lie in the range [0, 1]. This will only tell us whether e is
valid or not giving the conformance score σ for that. This is known as classical binary
classification.

(b) Consider the probability of entity e being valid w.r.t. any of the shapes graphs in the
Schema.org vocabulary. This will provide us a probability for e, Pr(label(e) = Class),
with the likelihood of e to belong to a class in the Schema.org vocabulary. This is
known as multi-class classification.

For our experiments, we decided to combine these two options. That is, we will validate the
whole knowledge graph against the SHACL shapes graph of Schema.org and validate that

http://schema.org/
https://schema.org/docs/developers.html
https://schema.org/docs/developers.html
http://datashapes.org/schema.ttl
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Table 5.3: Feature extraction for the different datasets. We use X and X for “no” and “yes”
answers.

Class name Length Binary/Cardinality Inverse № Features Time (H:M:S)

RiverBodyOfWater 1 Cardinality X 50 0:00:01.230082
RiverBodyOfWater 1 Binary X 50 0:00:01.204800
RiverBodyOfWater 1 Cardinality X 62 0:00:01.256128
RiverBodyOfWater 1 Binary X 62 0:00:01.330430
RiverBodyOfWater 2 Cardinality X 119 0:00:01.451450
RiverBodyOfWater 2 Binary X 119 0:00:01.382525
RiverBodyOfWater 2 Cardinality X 1,256 1:51:04.558503
RiverBodyOfWater 2 Binary X 1,256 1:51:09.186025
RiverBodyOfWater 3 Cardinality X 176 0:00:01.433272
RiverBodyOfWater 3 Binary X 176 0:00:01.444603
Library 1 Cardinality X 684 0:00:22.755177
Library 1 Binary X 684 0:00:21.936524
Library 1 Cardinality X 850 0:00:24.536830
Library 1 Binary X 850 0:00:23.407407
Library 2 Cardinality X 1,413 0:00:27.455912
Library 2 Binary X 1,413 0:00:27.758297
Library 3 Cardinality X 1,629 0:00:29.973990
Library 3 Binary X 1,629 0:00:29.628192
Continent 1 Cardinality X 62 0:01:07.296898
Continent 1 Binary X 62 0:01:08.496949
Continent 1 Cardinality X 73 0:01:19.823801
Continent 1 Binary X 73 0:01:09.588959
Continent 2 Cardinality X 73 0:01:09.588959
Continent 2 Binary X 73 0:01:10.888404
Continent 3 Cardinality X 111 0:01:09.059367
Continent 3 Binary X 111 0:01:08.520166

Note: Feature extraction for the Library and Continent classes using paths of length longer than 2 with inverse are not reported
due to time out after 12 hours.

all entities are valid, and we will determine the probability of validity (conformance score)
of entity e against every shape graph of a class.

We use pySHACL11 one of the most complete SHACL implementations that passes
119/121 (98%) of the validation tests12 to validate each knowledge graph and obtain its
correctness. We did not find any invalid entities in our three selected datasets. However,
we have noticed that the SHACL shapes graph for Schema.org contains mostly domain and
range constraints, and constraints such as cardinality are not included. Here is where our
latent shapes graphs obtained during the feature engineering part will play an important
role for capturing cardinality and providing a better similarity of an entity w.r.t. other enti-
ties of the same class. Thus, if an entity e belongs to class xi, then we expect to have a high
probability on the i-th dimension. Similarly, if e does not belong to any of the classes in G,
then its predictions will be close to zero for every dimension. Given the classification na-
ture of the problem, we would like to test the three different types of learning we mentioned
in Section 5.3.2, namely, unsupervised, semi-supervised, and supervised learning.

Unsupervised learning. The purpose of unsupervised learning here is to demonstrate the

11https://github.com/RDFLib/pySHACL
12https://w3c.github.io/data-shapes/data-shapes-test-suite/

https://github.com/RDFLib/pySHACL
https://w3c.github.io/data-shapes/data-shapes-test-suite/
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“goodness” of the features extracted for each entity. We would like to test two state-of-the-
art methods to visualise vector representations, t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) (Maaten and G. Hinton, 2008) and UMAP (McInnes, Healy, Saul, et al., 2018).
t-SNE and UMAP are dimensionality reduction techniques that can be used for visualisa-
tion of higher dimensionality vectors. They search for a low dimensional projection (em-
beddings) of the data that keeps similar entities as close as possible. They do not require
any labelled data and remove all triples (A, rdf:type, B), thus, we treat them as unsuper-
vised learning. Our aim here is to identify whether entities with similar latent shapes and
validity are close to each other in the low dimensional space.

Semi-supervised learning. Once we are able to identify that entities with similar latent
shape are well captured by our proposionalisation, we would like to use a semi-supervised
algorithm known as Label Propagation. A label propagation algorithm takes previously
known labels (entity types in our case) and propagates them to unlabelled points based on a
diffusion function. The set of labelled samples is generally considered to be small compared
to the set of unlabelled samples. This is a desirable characteristic if we think of propagating
validation (or compliance against a schema), where we only need to know the true value
for a few samples initially. We compare the performance of four algorithms (decision tree,
kNN, label propagation, and naïve Bayes) when given different portions of labelled data.

Supervised learning. Here, we would like to compare the performance of a supervised
learning algorithm when trained using feature vectors generated by different path config-
urations. We test the Decision Tree algorithm for that, which is frequently used to classify
datasets with a low number of variables building interpretable classification rules for that.
The generation of latent shapes proposed here has the following input: (a) the length of the
paths, (b) whether to count or mark the existence of paths, (c) whether to use inverse edges
in the walks or not. And the output are vectors of dimension k, where k is determined by
the distinct number of paths found in the random walks.

5.5 Results and discussion

Feature extraction. For feature extraction, we tested combinations of three parameters fol-
lowing our criteria defined in Section 5.3.3:

(1) binary vs. cardinality of paths (generating binary or continuous vectors),

(2) length of the paths (generating paths of a length d), and

(3) inclusion of inverse edges in the paths (considering inverse relations in the path nav-
igation).

In terms of runtime, we did not notice major differences in extraction for the cardinality
parameter (1) when extracting binary or cardinality features. Since paths were already enu-
merated, the decision of counting a path or applying an indicator function did not add any
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overhead. Table 5.3 shows the different combinations of features and their runtime. For
parameter (2), we have noticed some minor differences in runtime when computing longer
paths in the setting that does not consider inverse relations. However, when adding inverse
relations in parameter (3), we have noticed a considerable overhead due to the inverse edges
when compared with the same configurations (length and count) without inverse edges.
This is directly related to the depth of the graphs and the number of incoming edges for en-
tities, which are only considered if inverse edges are added. Inverse edges add complexity
to the random walks, making the process of paths enumeration very expensive. In our ex-
periments, we passed from just above one second to almost two hours when adding inverse
relations to the RiverBodyOfWater class. Not only runtime increased, but also the number of
features went from 119 (without inverse edges) to 1,256 when considering paths of length 2
with inverse edges.

The complexity added by inverse edges is also associated to the number of relations in
a knowledge graph. The Library knowledge graph has 975 different relationship, the River-
BodyOfWater knowledge graph has 62 different relationships, and the Continent knowledge
graph has 95 different relationships. We observed that even by applying our pruning of
relations from a given entity, it becomes time demanding to get path features using paths of
length> 2 with inverse. In such a scenario, the dimensionality of the feature space increases
too fast compared to the number of observed entities in a knowledge graph. The previous
makes available data very sparse, since some features will only have a few training exam-
ples, making it hard for machine learning algorithms to capture any pattern. This is known
as the curse of dimensionality (Goodfellow, Bengio, and Courville, 2016). To deal with this,
we do not generate features with paths of length > 2 with inverse relations. We use unsu-
pervised learning to identify how useful are the features we can generate for each class in a
knowledge graph when limiting our extraction to paths of length ≤ 2. Future work, could
go into the pre-processing of the generated dataset with the following goals: (a) filter out
poorly-defined entities, whose features are mostly null because they do not have edges that
allow a good classification; and (b) filter out features or paths that are rare and not present
in many entities. These measures could help cleaning and improving the quality of training
data, and helping to alleviate the curse of dimensionality.

Unsupervised learning. We evaluated the representation power of the latent shapes graphs
using unsupervised learning techniques to reduce the dimensionality of the feature vectors.
Using t-SNE and UMAP and the Euclidean distance, we reduced the dimensionality of our
feature vectors to two. We apply these techniques to feature vectors obtained from paths of
length 1 with inverse relations. In our experiments, UMAP scaled to the two larger datasets
without problems, but t-SNE ran out of the limit time of 1 hour. Even though both methods
require to compute a pairwise similarity between every two types entity in the knowledge
graph, we found the UMAP implementation13 to be much faster than the scikit-learn im-

13https://umap-learn.readthedocs.io/

https://umap-learn.readthedocs.io/
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(a) t-SNE embeddings visualisation

(b) UMAP embeddings visualisation

Figure 5.2: Plotting the 2D embeddings generated by t-SNE and UMAP for the RiverBody-
OfWater class.

plementation of t-SNE14. Figure 5.2 shows a comparison between the embeddings obtained
from t-SNE and UMAP for the RiverBodyOfWater class. For the larger classes Library and
Continent, we only present the results from UMAP.

We can observe that the different classes present in each one of the datasets are
clearly distinguishable in the RiverBodyOfWater dataset that contains the smaller number
of classes. Whereas for the other two datasets, some classes are well clustered in the low-
dimensionality space and other are smaller clusters distributed in different areas. In Fig-
ure 5.2, it is nice to see how related classes are close to each other in the 2D space, for
example, schema:LocalBusiness is close to schema:Organization and schema:State is close
to schema:City. We can then assume that the features are good representations of the enti-

14https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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(a) UMAP embeddings visualisation for Library

(b) UMAP embeddings visualisation for Continent

Figure 5.3: Plotting the 2D embeddings generated by UMAP for the Library and Continent
classes. Note that only the first 19 classes are displayed in the legend.

ties in each class. This is a clear example of the latent schema graphs concept we analyse in
this thesis.

Supervised learning. We use the previously extracted feature vectors in each dataset to
classify entities in each class. Overall, the model training part took much less time than
the feature generation that we stored after computing them. (This is mainly because of the
complexity added by the random walks.) For this, we apply the decision tree classification
algorithm to the data and obtain the corresponding confusion matrix. We divided the data
using a 80–20% split, where 80% is for training and 20% is left for testing. Figure 5.4 shows
the confusion matrix obtained by evaluating the decision tree model in the Library dataset
using feature vectors with length 3, no inverse edges, and cardinality features. Similar re-
sults were obtained using the other feature vectors—we obtained similar results even using
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Figure 5.4: Confusion matrix with the results of paths of length 3, no inverse edges, and
cardinality features over Library dataset.

the simpler configurations with paths of length 1, no inverse edges, and binary features.
The worst results were observed in entities predicted as schema:WebPage, which originally
only contains 3,044 entities. Most entities that do not appear with any differentiator fea-
ture were then predicted as Web pages. We observed that the definition of schema:WebPage
instances is skewed, because relations in this class such as schema:WebPage:url, schema:

WebPage:mainContentOfPage, and schema:WebPage:name are only defined for less than 23%
of the instances, making it a default class for instances not well defined. Thus, the model
wrongly classified most of these instances. Likewise, for the Continent dataset, instances of
not well-defined classes were misclassified as schema:City.

Furthermore, we analysed the effects of the different configurations for feature extrac-
tion. We used the RiverBodyOfWater dataset, which contains a small number of classes to
visually these effects. Figure 5.5 shows the confusion matrices obtained by different config-
urations using paths of length 1. The best macro-F1 of 0.9066 is given by the feature vectors
using cardinality paths and inverse edges. The second best macro-F1 of 0.8699 is given
using cardinality features and no-inverse edges. These results highlight the importance of
cardinality for generating features for entities in a knowledge graph. Cardinality provides
a better representation in the cases observed here. The two classes with most misclassi-
fied examples were schema:State and schema:City, which were classified by the models as
schema:WebPage and schema:RiverBodyOfWater. That is an effect of poorly described state
and city entities in the dataset.

Semi-supervised learning. In a real scenario, we can assume that the labels would be avail-
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(a) Boolean=False, inverse=False
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(b) Boolean=True, inverse=False
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(c) Boolean=False, inverse=True
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(d) Boolean=True, inverse=True

Figure 5.5: Confusion matrices given by the decision tree over the RiverBodyOfWater dataset
with paths of length 1 and different settings of inverse and cardinality features.

able for a small number of cases. Here, we emulate the effects of having different ratios of
unlabelled data on the classification problem. For that we measured macro-F1 metric using
incremental ratios of unlabelled data between 0.1 and 0.9. Figure 5.6 shows the results of
four machine learning algorithms (decision tree, kNN, label propagation, and naïve Bayes)
when given limited labelled data. As expected, the performance decreases when the size of
unlabelled examples increases. However, we also observed that the drop in performance
was not very severe—at 90% of unlabelled data we still obtain macro-F1 above 0.75. These
results demonstrate the predictive power of the feature vectors based on latent shapes.

These experimental results using Schema.org data showed that our approach is signifi-
cantly more efficient than traditional validation, allowing users to validate noisy knowledge
graphs. We found that the feature extraction part could still be improved to make it more
scalable. A possibility is to extend the parallelisation proposed by Kyrola (2013) to labelled
graphs. For scenarios like this, it would also be interesting to test latent feature models to
obtain the feature vector representations as future work.
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Figure 5.6: Macro-F1 measured over different percentages of unlabelled data for the River-
BodyOfWater dataset.

5.6 Summary

The idea of approximated approaches to measure the (in-)consistency of a knowledge graph
has been already mentioned in Labra Gayo, García-González, Fernández-Alvarez, et al.
(2019). In this chapter, we have demonstrated some initial results of an approximate so-
lution for validating the structure of knowledge graphs (Section 5.1), based on path expres-
sions and relation cardinality. We have taken inspiration from the cardinality patterns and
shapes analysis reviewed in Chapter 3 to propose the use of multi-class machine learning
to tackle the approximate validation task introduced here. In Section 5.2, we have reviewed
the related work for this problem and we have described the details of our approach in Sec-
tion 5.3. We developed a solution that extracts local patterns for each node and give a vector
representation that can then be used to train machine learning models. We evaluated differ-
ent approaches to extract such vector representation and identified that features generated
from short paths of length 1 considering cardinality and inverse relations provide some of
the best performance results for the classification task (Section 5.4). We discuss our results
in Section 5.5 and conclude that the use of machine learning algorithms and vector represen-
tations of entities in knowledge graphs facilitate the development of more efficient solutions
for mining tasks. The problem of validating entities that belong to multiple classes is still
open and we think multi-label learning approaches could provide new possibilities to reach
a full validation.
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Knowledge Graphs to Improve Adverse
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In this chapter, we study the use of knowledge graphs to train prediction models in
the Bioinformatics domain. This study will help us answering the RQ (3) of this thesis.
More specifically, we address the problem of predicting adverse drug reactions (ADRs)—
also known as side effects—using machine learning models that are trained with feature
vectors extracted from a knowledge graph. ADRs can cause significant clinical problems
and represent a major challenge for public health and the pharmaceutical industry. Early
discovery of potential ADRs can limit their effect on patient lives and also make drug de-
velopment pipelines more robust and efficient. Reliable in silico (performed on computer)
predictions of ADRs can be helpful in this context, and thus, it has been intensely studied.
Recent works using machine learning have achieved promising results using relational data
sources, but we believe knowledge graphs can provide more interesting features never used
before. We review the most relevant works and propose a multi-label approach that benefits
from knowledge graph link features, achieving new state-of-the-art results.
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6.1 Problem statement

Timely identification of adverse drug reactions (ADRs) is highly important in the domains
of public health and pharmaceutical industry. It can substantially limit the detrimental
effect of the adverse reactions on patient lives. Discovering potential adverse reactions in
the early stages of research can also make the drug development pipelines more robust
and efficient. Therefore a reliable automated prediction of adverse drug reactions is much
desired and has become an intensely studied research topic in the last fifteen years.

During a drug development process, pharmacology profiling leads to the identification
of potential drug-induced biological system perturbations including primary effects (in-
tended drug target interactions) as well as secondary effects (off-target drug interactions)
mainly responsible for ADRs (Bowes, Brown, Hamon, et al., 2012). Computational (a.k.a.
in silico) prediction of ADRs during the development cycle of a drug (before the drug is
licensed for use) can reduce the cost of drug development and provide a safer therapy for
patients. However, current state-of-the-art methods suffer from limitations: They work with
datasets that have been manually pre-processed, and the prediction methods are adapted
to the experimental data in a very focused manner.

Several KGs have been made available to represent data in the life sciences domain,
including biological interaction-based features for drugs such as drug target, pathways,
enzymes, transporters or protein-protein interactions (Mizutani, Pauwels, Stoven, et al.,
2012; Yamanishi, Pauwels, and Kotera, 2012; L.-C. Huang, X. Wu, and J. Y. Chen, 2013).
Although biomedical KGs are abundant nowadays, they also suffer from quality issues such
as incompleteness. In Muñoz, Nováček, and Vandenbussche (2016, 2019), we investigated
the use of knowledge graphs as a convenient uniform representation of relevant biomedical
data. We use the notion of neighbourhood mixtures in a knowledge graph to generate
feature vectors for drugs, which are used to learn multi-label models. Casting the problem
as multi-label learning, we are able to account that one drug can have multiple ADRs at the
same time. We hypothesise that the information provided by neighbourhood mixtures can
help to improve completeness of the side_effect relation between drugs and ADRs.

We follow a drug profile approach and state the prediction problem as follows:

Adverse drug reactions prediction

Input: a set D = {(xi, Yi)}Ni=1, where xi ∈ X are drugs feature vector and Yi ∈ Y are
adverse drug reactions

Output: a model f : X × Y → R that predicts the side_effect relation between drugs
and ADRs

The representation of drugs usually consist of different feature sets, such as chemical,
biological, and phenotypic spaces. Additionally, in this work, we consider drug representa-
tions obtained from a knowledge graph and compare the prediction results.



6.2 Related work | 127

6.2 Related work

Generally, a drug can have multiple adverse reactions, thus, the ADR prediction problem
can be naturally formulated as a multi-label learning problem (Tsoumakas and Katakis,
2006). Multi-label learning addresses a special variant of classification in machine learning
where multiple labels (i.e., ADRs) are assigned to each example (i.e., drug).

The ADR prediction problem can then be solved either by transforming it into a set of
binary classification problems, or by adapting existing machine learning techniques to their
multi-label setting.1 Most of the current ADR prediction methods, however, do not fully ex-
ploit the convenient multi-label formulation, as they simply convert the main problem into
a set of binary classification problems (M. Zhang and Z. Zhou, 2014). This is problematic
for two main reasons. Firstly, transforming the multi-label problem into a set of binary clas-
sification problems is typically very computationally expensive for large numbers of labels
(which is the case in ADR prediction). Secondly, using binary classifiers does not accurately
model the inherently multi-label nature of the main problem.

W. Zhang, F. Liu, L. Luo, et al. (2015) proposed a multi-label learning method called FS-
MLKNN that integrates feature selection and k-nearest neighbours. Unlike most previous
works, W. Zhang, F. Liu, L. Luo, et al. (2015) method does not generate binary classifiers
per label, but uses an ensemble learning instead. They performs an iterative feature selec-
tion using an expensive evolutionary algorithm to filter out irrelevant features. Different to
them, we do not perform feature selection to modify the train data; and we use standard
multi-label learning models. We follow the philosophy of algorithm adaptation: fit algo-
rithms to data (M. Zhang and Z. Zhou, 2014). Table 6.1 lists the reviewed approaches along
with the features they use.

6.3 ADRs prediction using knowledge graphs

We model the prediction of ADRs for a drug as a multi-label learning problem, and use
knowledge graphs to build feature matrices that can be passed to the learning methods.
Our drug centric approach aims to compute a similarity graph represented as an adjacency
matrix, which can serve to compute drug-drug similarity. Using the assumption that similar
drugs share similar sets of ADRs, we use the similarity between drugs to propagate ADRs
between very similar drugs. To build the adjacency matrix from a knowledge graph, we use
the previously introduced definition of neighbourhood mixture and compute similarity as
follows: Given a knowledge graph G, let π←(G, u) =

{
(r, v−1) | ∃r ∈ R∃v ∈ E , (v, r, u) ∈ G

}
be the function that extracts the finite set of incoming relations r from v to u, and let
π→(G, u) = {(r, v) | ∃r ∈ R∃v ∈ E , (u, r, v) ∈ G} be the function that extracts the finite set
of outgoing relations r from u to v. Hence, we can define the function to extract the neigh-

1See https://en.wikipedia.org/wiki/Multi-label_classification for more details and a list of examples.

https://en.wikipedia.org/wiki/Multi-label_classification
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Table 6.1: Multi-source feature sets used by state-of-the-art methods.
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Chemical space
Drug compound sub-
structure

3 3 3 3 3 3 3 3 3

Biological space
Drug target 3 3 3 3 3 3

Pathway 3 3 3 3

Enzymes 3 3 3

Transporters 3 3 3

PPi 3 3

Phenotypic space
Indication 3 3 3

Cell line response 3

bourhood mixture for an entity u in the knowledge graph G as:

Nu = π←(G, u) ∪ π→(G, u). (6.1)

Example 6.1

Consider the example knowledge graph in Figure 6.1(a) consisting of three drugs and
their relationships with other entities. The neighbourhood mixture for Drug A is given
by a set—depicted as a subgraph of G in Figure 6.1(b):

NDrugA ={(ADR A, side_effect −1), (ADR B, side_effect −1),

(Disease A, treats), (Disease B, treats),

(Small_molecule, type), (Transporter T, transporter)}
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side_effectside_effectside_effect side_effect

treatstreatstreats

target
type

type

Drug A Drug B

Disease A Disease B

Drug C

Small-molecule Enzyme E

ADR A ADR B ADR C ADR D

Disease C

Pathway PTransporter T Target M

transporter
enzymepathway

transporter

treats

(a) Knowledge graph.

side_effect side_effect

treats

treats

type

Drug A

Disease A

ADR A ADR B

transporter

Disease B

Small-molecule Transporter T

(b) Neighbourhood mixture for
Drug A.

Figure 6.1: Example knowledge graph and neighbourhood mixture with drug-related enti-
ties and their relations.

Example 6.2

Consider the KG in Figure 6.1(a), and the three drugs Drug A, Drug B, and Drug C,
with corresponding neighbourhood mixtures NDrugA, NDrugB , and NDrugC , extracted
as shown in Example 6.1 for NDrugA. We have 12 unique pairs in the mixtures, which
are then interpreted as 12 different features. The design matrix is then, Drug A 1 1 1 1 1 1 0 0 0 0 0 0

Drug B 0 1 0 1 1 1 1 0 0 0 0 0

Drug C 0 0 0 0 0 0 0 1 1 1 1 1

 .

Intuitively, the more features two entities have in common, the more similar they are.
This is the motivation of our algorithm KG-SIM-PROP (Muñoz, Nováček, and Vandenbuss-
che, 2016), which is a similarity-based method that propagates the labels of the k nearest
neighbours to a drug using the 3w-Jaccard similarity metric. Similarly to kNN, KG-SIM-
PROP requires a similarity matrix to work. For all other algorithms, we can feed directly
the design matrix. KG-SIM-PROP obtains prediction scores for each drug using a weighted
average of the labels coming from the nearest neighbours. Let xi be a drug, k be the number
of neighbours considered, s the similarity vector of xi to each of the k neighbours, and t the
vector of labels assigned to neighbour drugs. We compute the vector of ADRs predictions
for xi as follows:

p(xi) =
s · t∑
i si

. (6.2)
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To construct a similarity matrix, we apply pairwise similarity between the feature vector
of one drug and the feature vector of all other drugs—this can be computed in parallel. 3w-
Jaccard (Choi, Cha, and Tappert, 2010) similarity is used since it assigns higher weight to
common features, and lower weight to discriminant features, i.e., those only present in one
drug. The 3w-Jaccard between two drugs xi, and xj is defined as:

S3W-JACCARD(xi,xj) =
3a

3a+ b+ c
, (6.3)

where a =
∣∣Nxi ∩Nxj

∣∣, b =
∣∣Nxi −Nxj

∣∣, and c = |Nxj − Nxi |, with 0 ≤ S3W-JACCARD ≤ 1.
We construct the W similarity matrix using the 3w-Jaccard similarity between every pair of
drugs: the similarity graph is represented as an adjacency matrix W ∈ RN×N with wij =

wji = S3W-JACCARD(xi,xj), wii = 0.
Now, our learning problem can be formally stated as: Given a drug x and a finite-size

vector Y with its initially known adverse reactions (i.e., labels), seek to find a discriminant
function f(x, Y ) = Ŷ , where Ŷ is a finite-size vector representation of the labelling function
Ŷ = [f(x, y1), . . . , f(x, yQ)]> for yi ∈ Y .

6.4 Biomedical knowledge graphs

Various publicly available data sources can be used to extract drug profiles, and define sim-
ilarity between drugs (Tan, Y. Hu, X. Liu, et al., 2016). Each data source describes a specific
aspect of the pharmacological space of a drug such as its chemical, biological or pheno-
type properties. For instance, SIDER database (Kuhn, Letunic, L. J. Jensen, et al., 2015)
presents information of side effects and indication for marketed drugs. PubChem Com-
pound data (Kim, Thiessen, Bolton, et al., 2015) contains chemical structure description of
drugs. DrugBank (Law, Knox, Djoumbou, et al., 2014) provides detailed information about
drugs such as their binding proteins and targets, enzymes or transporters thus informing on
drugs’ mechanism of action and metabolism. KEGG Genes, Drug, Compound and Disease
databases (Kanehisa, Furumichi, Tanabe, et al., 2017) describe further information about
molecular interaction of drugs and their signalling pathways.

Several state-of-the-art methods have published the results of their data integration ac-
tivity using multiple data sources, including the ones already mentioned. Table 6.2 de-
scribes the characteristics of datasets used by previous works in the ADR prediction task,
namely, Liu’s (M. Liu, Yonghui Wu, Yukun Chen, et al., 2012), Bio2RDF (Muñoz, Nováček,
and Vandenbussche, 2016), and SIDER 4 (W. Zhang, F. Liu, L. Luo, et al., 2015) datasets.
Liu’s and SIDER 4 datasets are a collection of matrices with features in the chemical, biolog-
ical and phenotypic spaces of drugs, combined with information on their associated ADRs.
Additionally, we extracted the most recent ADRs for newly marketed drugs from Aeolus,
which is a curated and annotated machine-readable version of FAERS database meant to fa-
cilitate research in drug safety (Banda, Evans, Vanguri, et al., 2016). In particular, the cases
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Table 6.2: Characteristics of datasets used in the ADR prediction task.

Dataset № drugs № side effects

Liu’s dataset 832 1,385
Bio2RDF dataset 1,824 5,880
SIDER 4 dataset 1,080 5,579
Aeolus dataset 750 181

Table 6.3: Number of triples in the Bio2RDF datasets used in our experiment.

Knowledge Graph Content № triples

DrugBank Drug types, chemical information 5,151,999
SIDER Side effects of drugs 5,578,286
KEGG Drugs, genes and pathway maps 4,387,541

(i.e., ADR events) in the FAERS reports are deduplicated and the drug and outcome (i.e. ef-
fect) concepts are mapped to standard vocabulary identifiers (RxNorm and SNOMED-CT,
respectively). We use Aeolus to generate an updated version of the SIDER 4 dataset that
includes also the latest ADRs as observed in the population

The Bio2RDF project aims to make available biomedical databases in the form of
RDF (Belleau, Nolin, Tourigny, et al., 2008; Dumontier, Callahan, Cruz-Toledo, et al., 2014).
Bio2RDF makes available over 30 databases including PubChem, DrugBank, SIDER and
KEGG. Here, we use the release 4 of Bio2RDF and represent its data using a knowledge
graph. Figure 6.2 shows a fragment of the Bio2RDF knowledge graph that integrates three
databases, namely, DrugBank, SIDER and KEGG. Usually, connections between databases
are made using identifiers such as PubChem compound or Chemical Abstracts Service
(CAS) number.

Table 6.3 shows the characteristics of the Bio2RDF datasets considered to build knowl-
edge graphs. Using the method described in Section 6.3, we can build design matrices from
Bio2RDF datasets, which are similar to the ones provided in Liu’s and SIDER 4 datasets.

6.5 Experimental settings

To test the use of neighbourhood mixtures and knowledge graphs for predicting ADRs,
we select different multi-label learning models. These models learn how to assign sets of
ADRs (labels) to each drug (example). We investigate state-of-the-art multi-label learning
models that accept multiple labels, namely, Decision Trees, Random Forests, Nearest Neigh-
bours (kNN), Multi-Layer Perceptron, and KG-SIM-PROP which we proposed in Muñoz,
Nováček, and Vandenbussche (2016). The above models inherently support multi-labels,
however, other models such as Logistic Regression can be adopted following the one-vs-all
strategy, where the system builds as many binary classifiers as input labels and samples
having label y are considered as positive or negative otherwise.
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Figure 6.2: A Bio2RDF fragment around the cyclophosphamide drug, showing the connec-
tions between three main (colour-coded) databases: DrugBank, SIDER and KEGG.

We perform a comparison between the above models in terms of performance based on
several multi-label ranking evaluation metrics (see Section 2.6.2). The performance of all
models is evaluated using a 5-fold cross-validation (CV). First, all drugs are randomly split
into five 5 equal sized subsets. Then, for each of the k folds, one part is held-out for testing
and the learning algorithm is trained on the remaining four parts. In this way, all parts are
used exactly once as validation data. The selection of best hyperparameters for each model
is performed in each fold on the training set during the 5-fold CV, and the best model is
applied over the test set for validation. The five validation results are then averaged over
all rounds. We use the average precision (AP), area under the curve (AUC-ROC), and the
area under the precision-recall curve (AUC-PR) to evaluate the models, because they can
be used to evaluate models regardless of any threshold. However, because of the existing
unbalance of the labels (i.e., an ADR is more commonly found as a negative value than as
a positive one among drugs), the AUC-PR gives a more informative picture of the models
performance (Davis and Goadrich, 2006). Thus, we set AUC-PR as our target metric (in
the grid searches) for each of the rounds. Additionally, we compute other label-based met-
rics (M.-L. Zhang and Z.-H. Zhou, 2006; Tsoumakas, Katakis, and Vlahavas, 2010), namely,
one-error, coverage, and ranking loss. The last type of measures we use are the general rank-
ing evaluation metrics hits at K (Hits@K), and precision at K (P@K). Among the measures
we used, the Hits@K and P@K are arguably the most accurate scores in terms of evaluating
the benefit of ADR discovery for certain types of end-users like clinical practitioners.

In Figure 6.3, we show a typical flow chart for the processes of training, testing and
evaluating machine learning models. For a given model, its output is used to generate ADR
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Figure 6.3: Machine learning flow chart for training and testing of a model.

predictions. These predictions are evaluated using Liu’s, SIDER 4, Bio2RDF, and Aeolus
datasets as gold standard.

6.6 Results and discussion

All models are implemented using the Scikit-Learn Python package (Pedregosa, Varoquaux,
Gramfort, et al., 2011). We compare the models with the state-of-the-art results in four
different settings, involving the different datasets.

6.6.1 Comparison on Liu’s dataset

Liu’s dataset was proposed in T. Liu (2011), includes multi-source data with different types
of features about drugs, and has been considered as a benchmark in W. Zhang, F. Liu, L. Luo,
et al. (2015) and W. Zhang, Yanlin Chen, Tu, et al. (2016). We compare the results reported
in W. Zhang, Yanlin Chen, Tu, et al. (2016) for four existing methods (Liu’s method, FS-
MLKNN, LNSM-SMI, and LNSM-CMI) with six multi-label learning models selected by
us. This comparison aims to demonstrate the flexibility and potential of using knowledge
graphs with neighbourhood mixture for the link prediction task.

Table 6.4 shows the values of evaluation metrics for each model. We found out that the
methods FS-MLKNN, LNSM-SMI and LNSM-CMI recently proposed by Zhang et al. (W.
Zhang, F. Liu, L. Luo, et al., 2015; W. Zhang, Yanlin Chen, Tu, et al., 2016) perform best on
the Liu’s dataset; the multi-layer perceptron, however, comes second by rather small margin
in all but one metric. The FS-MLKNN, LNSM-SMI and LNSM-CMI methods require large
numbers of neighbours to work properly (400 as reported). The KG-SIM-PROP and kNN
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Table 6.4: Comparison of the models’ performance on the Liu’s dataset. (?) is our model
proposed in Muñoz, Nováček, and Vandenbussche (2016) and (†) are traditional models
with default parameters.

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

Liu’s method 0.2610 0.2514 0.8850 0.0927 0.9291 837.4579
FS-MLKNN 0.5134 0.4802 0.9034 0.0703 0.1202 795.9435
LNSM-SMI 0.5476 0.5053 0.8986 0.0670 0.1154 789.8486
LNSM-CMI 0.5329 0.4909 0.9091 0.0652 0.1250 776.3053

KG-SIM-PROP ? 0.4895±0.0058 0.4295±0.0078 0.8860±0.0075 0.1120±0.0139 0.1610±0.0164 1100.9985±65.8834
kNN† 0.5020±0.0078 0.4417±0.0081 0.8892±0.0085 0.1073±0.0053 0.1538±0.0181 1102.3548±41.4641
Decision Trees† 0.2252±0.0137 0.1989±0.0181 0.6634±0.0316 0.6519±0.0242 0.5493±0.0374 1377.1316±8.3936
Random Forests† 0.4626±0.0163 0.4331±0.0261 0.8342±0.0218 0.2525±0.0176 0.2007±0.0154 1284.3111±27.0454
MLP† 0.5196±0.0069 0.4967±0.0204 0.9003±0.0057 0.0874±0.0009 0.1454±0.0166 954.0372±22.2870
Linear Regression† 0.2854±0.0088 0.2595±0.0196 0.6724±0.0232 0.6209±0.0137 0.4267±0.0103 1380.0763±4.0209

Note: For each metric, we report the standard deviation values (when available). The values for the first four models were
taken from (W. Zhang, Yanlin Chen, Tu, et al., 2016) The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-
error and Cov-error. (“↑” indicates that the higher the metric value the better, and “↓” indicates that the lower the metric
value, the better.) Coloured values represent the best performing method across a given metric.

methods can work with as little as 30 neighbours which makes them more applicable to
sparse datasets. The better results of LNSM-SMI and LNSM-CMI may be attributed to their
consideration of neighbourhood as an optimisation problem via the linear neighbourhood
similarity used. This provides them more accuracy on the similarity computation, but at the
cost of efficiency. We report that FSMLKNN was the slowest method with more than two
weeks running time on a single machine. This is mainly due to its multiple feature selection
steps based on genetic algorithms. From the multi-label ranking methods, the slowest was
kNN with 13 hours and 18 minutes, followed by linear regression with 9 hours and 26
minutes. Both multi-layer perceptron and KG-SIM-PROP took ca. 2 hours and 16 minutes,
while the decision trees were the fastest with only 16 minutes.

On the other hand, KG-SIM-PROP and kNN employ widely used off-the-shelf similar-
ity metrics between feature vectors to determine the neighbourhoods. Conversely, methods
that do not consider a similarity, namely, decision trees, random forests, and linear regres-
sion, are among the worst performing methods.

In addition to the metrics reported in previous works, we report the ranking perfor-
mance of the multi-label learning to rank methods in Table 6.5. Results show that multi-
layer perceptron gives the best rankings across all metrics. This may indicate that non-
linear methods (such as deep neural nets) are better suited to the ADR prediction problem.
Deep learning methods have shown to excel in applications, where there is an abundance
of training data, and sources such as Bio2RDF could serve for this purpose. The use of deep
learning methods for the prediction of ADRs is still an open problem.
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Table 6.5: Ranking performance of the proposed models on the Liu’s dataset.

Model Evaluation Criterion

P@3 P@5 P@10 HITS@1 HITS@3 HITS@5 HITS@10

KG-SIM-PROP 0.9333±0.1333 0.8400±0.2332 0.9200±0.1166 0.8390±0.0164 2.4351±0.0240 3.8691±0.0671 7.0734±0.0746
kNN 0.9333±0.1333 0.9200±0.0980 0.9400±0.0800 0.8450±0.0173 2.4568±0.0316 3.9027±0.0452 7.1744±0.0581
Decision Trees 0.4667±0.2667 0.4400±0.2653 0.4800±0.1470 0.4171±0.0176 1.1971±0.0570 1.9651±0.0940 3.8076±0.1941
Random Forests 0.9333±0.1333 0.9200±0.0400 0.9200±0.0400 0.8101±0.0088 2.3353±0.0594 3.7451±0.0779 6.9434±0.0982
MLP 1.0000±0.0000 0.9600±0.0800 0.9600±0.0490 0.8546±0.0166 2.4676±0.0295 3.9773±0.0544 7.3633±0.1451
Linear Regression 0.3333±0.2981 0.4000±0.1265 0.4400±0.1347 0.5745±0.0469 1.6262±0.0716 2.6394±0.0782 5.1851±0.0823

Note: The evaluation metrics are P@X (precision at 3, 5, and 10), and HITS@X (hits at 1, 3, 5, and 10). (For all metrics, the
higher the value of the metric, the better.) Coloured values represent the best performing method across a given metric.

6.6.2 Comparison on Bio2RDF dataset

Several authors have found that combining information from different sources can lead to
improve the performance of computational approaches in bioinformatics (see, among oth-
ers, Polikar (2006) and R. Yang, C. Zhang, R. Gao, et al. (2015)). We study the use of KGs
such as Bio2RDF to easily generate feature sets combining diverse data sources. In order to
test this hypothesis, we use the DrugBank, SIDER and KEGG datasets from Bio2RDF, and
build two versions: version 1 (v1) containing only DrugBank and SIDER, and version 2 (v2)
containing the previous datasets plus KEGG. Tables 6.6 and 6.7 shows the performance of
six multi-label learning methods using the set of 832 drugs and 1,385 side effects from Liu’s
dataset, but replacing the feature vectors of drugs with those extracted from the Bio2RDF
v1 (or Bio2RDF v2) dataset. Originally, Liu’s dataset contained a set of 2,892 manually inte-
grated features coming from six sources. These are replaced by 30,161 and 37,368 features
in Bio2RDF v1 and v2, respectively. In the evaluation of the models using Bio2RDF v1 KG,
we obtained slightly lower results than for Bio2RDF v2 KG, showing that the addition of
different information—including different sources such as KEGG—can help to improve the
prediction power or the models.

Results using both version of Bio2RDF show that the methods perform better with the
Bio2RDF features, than with the original Liu’s dataset features, confirming our assump-
tion that combination of various feature sources may increase the performance. This can be
explained by the fact that Bio2RDF provides a richer representation of drugs and their rela-
tionships than the traditional feature sets. This is an important finding, as the Bio2RDF fea-
tures can be constructed automatically, while the features in the Liu’s and Zhang’s datasets
require non-trivial manual efforts. Furthermore, our results also indicate that having ex-
tra information about pathways provides better performance as shown in Table 6.7, where
Bio2RDF v2 is built by adding KEGG dataset to Bio2RDF v1. To further explore the influence
of possible feature set combinations on the results, we integrated the original Liu’s dataset
features with Bio2RDF v2, leading to 40,260 features in total. Table 6.8 shows the perfor-
mance results obtained when combining feature sets from Liu’s and Bio2RDF v2 datasets.
This yields slightly better results in terms of the AP and AUC-PR metrics.
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Table 6.6: Predictive power of the proposed models using drugs in the Liu’s dataset and
features from the Bio2RDF v1 dataset (DrugBank + SIDER).

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP 0.5011±0.0106 0.4485±0.0115 0.8935±0.0096 0.1058±0.0122 0.1586±0.0177 1095.3082±55.47904
kNN 0.4977±0.0107 0.4210±0.0228 0.8848±0.0062 0.1211±0.0113 0.1658±0.0206 1127.7254±45.6342
Decision Trees 0.1964±0.0116 0.1710±0.0138 0.6301±0.0250 0.7220±0.0194 0.5673±0.0144 1377.2001±6.9189
Random Forests 0.4317±0.0107 0.3843±0.0143 0.8097±0.0102 0.3037±0.0088 0.2212±0.0139 1314.5006±17.6714
MLP 0.5099±0.0159 0.4546±0.0169 0.9010±0.0061 0.0791±0.0022 0.1430±0.0160 892.8340±20.4758
Linear Regression 0.2847±0.0083 0.2482±0.0137 0.6404±0.0248 0.6726±0.0141 0.3467±0.0238 1383.3808±3.2383

Note: The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the
higher the metric value, the better, and “↓” indicates that the lower the metric value, the better.) Coloured values represent
the best performing method across a given metric.

Table 6.7: Predictive power of the proposed models using drugs in the Liu’s dataset and
features from the Bio2RDF v2 dataset (DrugBank + SIDER + KEGG).

Model Evaluation Criterion

AP ↑ AUPR ↑ AUROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP 0.5118±0.0101 0.4604±0.0097 0.8954±0.0054 0.1051±0.0109 0.1466±0.0214 1091.9749±51.4537
kNN 0.5083±0.0124 0.4341±0.0277 0.8835±0.0086 0.1281±0.0031 0.1478±0.0027 1155.2053±36.5165
Decision Trees 0.2069±0.0176 0.1742±0.0266 0.6258±0.0242 0.7140±0.0233 0.5469±0.0385 1370.7402±7.5913
Random Forests 0.4438±0.0162 0.3993±0.0256 0.8153±0.0171 0.2883±0.0225 0.2103±0.0169 1295.7516±20.2287
MLP 0.5278±0.0106 0.4725±0.0284 0.9002±0.0074 0.0795±0.0028 0.1322±0.0298 909.7297±19.7920
Linear Regression 0.2919±0.0109 0.2587±0.0165 0.6441±0.0261 0.6665±0.0166 0.3557±0.0306 1383.3796±3.2407

Note: The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the
higher the metric value, the better, and “↓” indicates that the lower the metric value, the better.) Coloured values represent
the best performing method across a given metric.

Table 6.8: Predictive power of the proposed models using a combination of features from
both the Liu’s dataset and the Bio2RDF v2 dataset.

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP 0.5012±0.0079 0.4471±0.0097 0.8882±0.0089 0.1184±0.0139 0.1526±0.0177 1127.3234±51.2769
kNN 0.5020±0.0808 0.4482±0.0101 0.8883±0.0089 0.1184±0.0139 0.1502±0.0208 1127.1279±51.3701
Decision Trees 0.2080±0.0190 0.1728±0.0149 0.6306±0.0239 0.6944±0.0215 0.5444±0.0289 1372.1095±9.6089
Random Forests 0.4609±0.0174 0.4331±0.0127 0.8357±0.0117 0.2627±0.0134 0.1995±0.0241 1308.7285±24.9798
MLP 0.5281±0.0088 0.4870±0.0269 0.8946±0.0067 0.0835±0.0034 0.1418±0.0158 937.8773±36.9387
Linear Regression 0.3031±0.0108 0.2681±0.0169 0.6578±0.02424 0.6431±0.0147 0.3617±0.0273 1381.7218±4.0156

Note: The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the
higher the metric value, the better, and “↓” indicates that the lower the metric value, the better.) Coloured values represent
the best performing method across a given metric.

6.6.3 Comparison on SIDER 4 dataset

To further evaluate the practical applicability of the multi-label learning models, we per-
formed an experiment using the SIDER 4 dataset (W. Zhang, F. Liu, L. Luo, et al., 2015).
The intuition behind this experiment is to test the predictive power of the models under a
simple train and test set up. SIDER 4 dataset contains 771 drugs used for training, which
are also present in Liu’s dataset, and 309 newly added drugs used for testing. First, we run
all methods on the original SIDER 4 dataset features and labels, and compare them against
the results provided by W. Zhang, Yanlin Chen, Tu, et al. (2016). Table 6.9 shows the results
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Table 6.9: Comparison of the predictive power of the models on the SIDER 4 dataset.

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

Liu’s method 0.1816 0.1766 0.8772 0.1150 0.9870 1587.5663
FS-MLKNN 0.3649 0.3109 0.8722 0.1038 0.1851 1535.9223
LNSM-SMI 0.3906 0.3465 0.8786 0.0969 0.2013 1488.2977
LNSM-CMI 0.3804 0.3332 0.8852 0.0952 0.1916 1452.7184

KG-SIM-PROP 0.3375 0.2855 0.8892 0.1398 0.2233 4808.3689
kNN 0.3430 0.2898 0.8905 0.1392 0.2168 4086.0777
Random Forests 0.3004 0.2599 0.8235 0.3318 0.2848 5362.6117
MLP 0.3546 0.2899 0.8943 0.0922 0.1309 4054.0356

The values for the first four models were taken from (W. Zhang, Yanlin Chen, Tu, et al., 2016). The evaluation metrics are AP,
AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the higher the metric value the better, and “↓”
indicates that the lower the metric value the better.) Coloured values represent the best performing method across a given
metric.

Table 6.10: Predictive power of the proposed models on drugs in the SIDER 4 dataset using
Bio2RDF v2 dataset features.

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP 0.3438 0.2876 0.8764 0.17460 0.2427 4969.0647
kNN 0.3416 0.2835 0.8728 0.1777 0.2395 5002.6084
Random Forests 0.2384 0.2061 0.7651 0.4567 0.4304 5440.0712
MLP 0.3529 0.2857 0.9043 0.0852 0.1909 3896.3625

Note: The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the
higher the metric value, the better, and “↓” indicates that the lower the metric value, the better.) Coloured values represent
the best performing method across a given metric.

of the different methods over the SIDER 4 dataset. The state-of-the-art method LNSM-SMI
gives the best average precision and AUC-PR, and the LNSM-CMI method the best cover-
age error. However, our multi-layer perceptron is the best performing model in AUC-ROC,
ranking loss, and one-error. These results suggest better relative suitability of some multi-
label learning methods for applications where a ranking function is required. Examples of
such applications are use cases, where experts can only review a few prediction candidates
and need the relevant ones to appear at the top of the list. Such use cases are indeed realistic,
as there are often hundreds of predictions for every single drug. The results of multi-layer
perceptron show some improvements when using features coming from the Bio2RDF v2
dataset (see Table 6.10).

6.6.4 Comparison on Aeolus dataset

We further evaluate the models considering both the SIDER 4 and Aeolus datasets (Banda,
Evans, Vanguri, et al., 2016). Aeolus dataset provides us with relations between drugs and
ADRs that were not previously known during the training or testing steps. The reason
for the SIDER 4 and Aeolus experiments is the nature of the labels. The classic approach
for validating ADR predictions follows the closed world assumption (missing predictions
are false), but the actual problem follows the open world assumption (missing predictions
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may be just unknown at the moment). Therefore there is always the possibility that those
false positive predictions become true positives in a near future. Here, we hope to reflect
this phenomenon by using the complementary Aeolus data that is frequently updated and
contains information based on manually validated reports.

To test this point, we updated the matrix Y of ADRs of the test set using a version of
Aeolus dataset generated after the release of the SIDER 4 dataset. We found 142 drugs in
the intersection of SIDER 4 testing set and Aeolus. Whenever a new drug-ADR relationship
is reported in the Aeolus dataset for any of the 309 drugs in the test set, this is reflected
by modifying the SIDER 4 dataset. Aeolus introduces 615 new ADR relations in total with
an average of 4.3 per drug. For example, Aeolus provides two new ADRs for triclosan
(DB08604), an aromatic ether widely used as a preservative and antimicrobial agent in per-
sonal care products: odynophagia and paraesthesia oral. While these changes because of the
Aeolus dataset are not crucial for drugs with many previously known ADRs (for instance,
nilotinib (DB04868) has 333 ADRs in SIDER 4, and Aeolus only adds 3 new ADRs), they can
have high impact on drugs with few known ADRs (such as triclosan or mepyramine both
with only one ADR). In total, Aeolus provides at least one new ADR for 46% of drugs in the
SIDER 4 test set. Interestingly, most of the new ADRs added by Aeolus dataset are related
to the digestive system (e.g. intestinal obstruction, gastric ulcer, etc.), which we believe is
because of the disproportionate FAERS reporting (Szarfman, Machado, and O’neill, 2002;
Harpaz, Vilar, DuMouchel, et al., 2013) frequency for this type of events.

We ran the models once more and evaluated them against the new gold standard with
the updates provided by Aeolus dataset. Table 6.11 shows the results of the updated dataset
using Aeolus data for the four best performing multi-label models, where in comparison
to Table 6.9 there are marginally lower results across all metrics. For instance, the AP of
multi-layer perceptron drops by 0.92% and AUC-ROC by 1.85%. This observation is not
consistent with our assumption that new knowledge about relations between drugs and
ADRs can increase the true-positive rate by confirming some of the previous false positives
as being true. We believe that this could be because of two reasons. (A) The added ADRs are
under represented across drugs. We observed this in SIDER 4, where 37.5% (2093 of 5579)
of ADRs are present at most once in either the training or test set. This makes those ADRs
hard to predict. (B) There is a ‘weak’ relation between the drugs and the introduced ADRs.
This weak relation comes from the original split in training and test set provided in SIDER
4 data set; we found out that 50.15% (2798 of 5579) ADRs are only present in the training set
and not in the test set, compared with a 7% (392 of 5579) of ADRs that are only present in
the test set. A proper assessment may require stratifying the experimental dataset and/or
more representative extensions, which we leave to explore as future work.
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Table 6.11: Predictive power of the proposed models on the SIDER 4 dataset with updated
ADRs from the Aeolus dataset.

Model Evaluation Criterion

AP ↑ AUC-PR ↑ AUC-ROC ↑ R-Loss ↓ One-Error ↓ Cov-Error ↓

KG-SIM-PROP 0.3272 0.2791 0.8796 0.1619 0.2233 5040.0615
kNN 0.3324 0.2834 0.8808 0.1613 0.2168 5038.6570
Random Forests 0.2883 0.2447 0.8059 0.3717 0.3366 5478.8479
MLP 0.3437 0.2836 0.8858 0.1050 0.1909 4339.7540

Note: The evaluation metrics are AP, AUC-PR curve, AUC-ROC, R-loss, one-error and Cov-error. (“↑” indicates that the
higher the metric value, the better, and “↓” indicates that the lower the metric value, the better.) Coloured values represent
the best performing method across a given metric.

6.7 Summary

In this chapter, we have shown how the structure provided by neighbourhood mixtures
can be used to tackle the problem of ADR prediction in bioinformatics. We defined the
problem in Section 6.1, were we frame the prediction of adverse drug reactions as a multi-
label learning problem. Recently, multi-label learning has been used to address many of
the classification problems in the area of bioinformatics. In Section 6.2, we reviewed pre-
vious approaches proposed to solve the ADR prediction problem. We proposed the use of
knowledge graphs as an heterogeneous data source that turned to be a rich format to obtain
feature vectors (Section 6.3). Neighbourhood mixtures allow us to combine heterogeneous
data, and straightforwardly apply and evaluate different classes of machine learning mod-
els. The biomedical knowledge graphs that we considered as data sources were presented
in Section 6.4, integrating different types of information on drugs and side effects. Our ex-
periments (described in Section 6.5) showed that our multi-label learning models provide
a simple and effective solution to predict potential side effects. Furthermore, the competi-
tive performance of our multi-layer perceptron model (Section 6.6) provides unprecedented
flexibility and scalability to provide good ranking metrics that can help experts during de-
cision making processes.
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Neural link predictors are models that learn distributed representations (embeddings)
of entities and relations in a knowledge graph. They are remarkably powerful in the link
prediction and knowledge graph completion tasks, mainly due to the learnt representations
that capture important statistical dependencies in the data. Recent works have focused on
either designing new scoring functions or incorporating extra information into the learning
process to improve the representations. Yet these representations are mostly learnt from the
observed links between entities, ignoring common sense or schema knowledge related to
the relations, such as cardinality information—a fundamental aspect of the topology of data.
In this chapter, we propose to learn better representations by incorporating a regularisation
term inspired by relation cardinality constraints, which can be added to any existing neural
link predictor without impacting their efficiency or scalability.
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7.1 Problem statement

Cognitive development of children indicates that we learn the cardinality-related question
“How many?” at 3.5 years of age (Wynn, 1990). This ability helps us to recognise physical
and abstract things by counting; for example, we all know that a hand has five fingers, a
car has four wheels or a meeting has more than two participants. This kind of background
knowledge is not obvious for machines to acquire, even in contexts where it can be useful,
such as Question Answering, Web Search, and Information Extraction (Tandon, Varde, and
Melo, 2017).

One fundamental application area for cardinalities relates to the completion of knowl-
edge graphs. For instance, consider Freebase (Bollacker, R. P. Cook, and Tufts, 2007), the core
of the Google Knowledge Graph project, where X. Dong, Gabrilovich, Heitz, et al. (2014) re-
ports that 71% of the people described in it have no known place of birth. By leveraging
cardinality information about the bornIn relationship (i.e., each person must have a place
of birth), we can quantitatively assess the degree of incompleteness in Freebase and focus
the resources on predicting a single place of birth for each person. Yet link prediction mod-
els aimed at identifying missing facts in KGs do not consider such background knowledge,
yielding potentially inconsistent and inaccurate predictions with high probability.

To tackle this problem, our RQ (4) (see Section 1.2) focuses on investigating the effects
of incorporating cardinality information as constraints during the learning of models used
to complete knowledge graphs. We aim to use cardinality constraints to impose boundaries
on the number of predictions with high probability, thus, structuring the embedding space
to respect common sense cardinality assumptions. Our experimental results on Freebase,
WordNet and YAGO show that, given suitable prior knowledge, the proposed method con-
sistently improves the predictive accuracy of downstream link prediction tasks.

In this work, we focus on a certain class of link prediction models, namely Neural Link
Predictors (Nickel, K. Murphy, Tresp, et al., 2016). Such models learn low-dimensional dis-
tributed representations—also referred to as embeddings—of all entities and relations in a
knowledge graph. Neural link predictors are currently the state of the art solution for tasks
such as link prediction (Bordes, Usunier, García-Durán, et al., 2013; B. Yang, Yih, X. He,
et al., 2015; Trouillon, Welbl, Riedel, et al., 2016), entity disambiguation and entity resolu-
tion (Bordes, Glorot, Weston, et al., 2014), taxonomy extraction (Nickel, Tresp, and Kriegel,
2012; Nickel and Kiela, 2017), and probabilistic question answering (Krompaß, Nickel, and
Tresp, 2014). Recently, the focus has been on either designing new scoring functions, or in-
corporating additional background knowledge during the learning process. We refer read-
ers to Nickel, K. Murphy, Tresp, et al. (2016) and Q. Wang, Mao, B. Wang, et al. (2017) for a
review of these models.

Neural link predictors proposed in the literature miss to leverage prior knowledge in
the form of relation cardinality information. For instance, prior knowledge encoding car-
dinality statements such as “a person should have at most two parents” or “a patient should be
taking between 1 and 5 drugs at a time” are not taken into account by neural link prediction
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Table 7.1: Top-5 predictions for parents of parent of edgar_allan_poe given by DistMult (B.
Yang, Yih, X. He, et al., 2015).

Triples Probability

(edgar_allan_poe, hasParent, edgar_allan_poe) 0.989
(edgar_allan_poe, hasParent, eliza_poe) 0.979
(edgar_allan_poe, hasParent, virginia_eliza_clemm_poe) 0.974
(edgar_allan_poe, hasParent, julia_ward_howe) 0.890
(edgar_allan_poe, hasParent, benjamin_franklin) 0.889

models. Such knowledge can be provided by domain experts, or automatically extracted
from data (L. Galárraga, Razniewski, Amarilli, et al., 2017; Muñoz and Nickles, 2017). And
it is expected that such cardinality constraints will be satisfied by both the knowledge graph
and algorithms analysing the graph (e.g., link predictors). We believe that these constraints
can impose common sense knowledge upon the structure of the embeddings space, thus,
helping us to learn better representations that boost the performance of downstream tasks.

Formally, we define the problem as follows:

Cardinality regularisation problem

Input: a neural link predictor model φr : Rk × Rk → R with parameters Θ, a set Φ of
cardinality bounds, and a knowledge graph G

Output: a cardinality-aware neural link predictor φ′r, where the link predictions over
G using Θ satisfy all cardinality constraints in Φ

Cardinality constraints are one of the most important constraints in conceptual mod-
elling (Olivé, 2007, Chapter 4) as they explicit the topology of data. However, no existing
link prediction model considers them during learning. For instance, in the prediction of
parents (relation hasParent) for the entity Edgar Allan Poe, we expect to predict at most two
parents, namely, Eliza Poe and David Poe Jr. To illustrate this, let us analyse the predic-
tions of a state-of-the-art neural link prediction model, DistMult (B. Yang, Yih, X. He, et al.,
2015), using the Freebase FB13 dataset (Bordes, Weston, Collobert, et al., 2011), containing
entities of the Freebase type deceased people and their relations. Table 7.1 shows the top-5 pre-
dicted parents for edgar_allan_poe. As we can see, most of the predictions are given a high
probability with 22 entities scored higher than 0.8 despite the fact that most predictions
are incorrect. Nevertheless, evaluation results are good due to the evaluation protocol of
link prediction models based on learning to rank, where correct predictions (e.g., eliza_poe)
should be ranked higher than incorrect of false ones (e.g., benjamin_franklin).
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7.2 Related work

Early works in neural link prediction such as TransE (Bordes, Usunier, García-Durán, et
al., 2013), RESCAL (Nickel, Tresp, and Kriegel, 2011), and DistMult (B. Yang, Yih, X. He,
et al., 2015)) learn distributed representations using simple operations (addition, multipli-
cation) to score the triples in a knowledge graph. While more recent research has focused
on either (i) generating more elaborated scoring functions that better capture the nature of
relations, or (ii) improving existing models with background knowledge. The former con-
siders models like HolE (Nickel, Rosasco, and Poggio, 2016), where the scoring function is
inspired by associative memory; ComplEx (Trouillon, Welbl, Riedel, et al., 2016) that uses
complex-valued embeddings to model asymmetric relations; and ConvE (Dettmers, Min-
ervini, Stenetorp, et al., 2018) that builds a multi-layer convolutional network to predict
links. The latter focus is characterised by the incorporation of additional information such
as entity types, relation paths, and logical rules. We refer the readers to (Nickel, K. Murphy,
Tresp, et al., 2016; Q. Wang, Mao, B. Wang, et al., 2017) for a deeper review of neural link
predictors.

Our work aligns with the second category that focuses on adding background knowl-
edge. Almost every paper incorporating background knowledge agree that such prior
knowledge improves link prediction models; however, none of them has considered in-
tegrity constraints such as cardinality so far. We build upon Muñoz and Nickles (2017),
where we proposed mining algorithms for cardinality constraints from knowledge graphs.
The use of these constraints to improve the accuracy of link prediction models is only sug-
gested as future work. In the same vein, L. Galárraga, Razniewski, Amarilli, et al. (2017)
use fine-grain cardinality information to learn rules that can be used to prune ‘unneces-
sary’ predictions; however, this is done only after the predictions are generated. Jiawei
Zhang, Jianhui Chen, Zhu, et al. (2017) propose a method where a single cardinality bound
(i.e., one-to-one, one-to-many or many-to-many) can be imposed in link prediction over
uni-relational graphs (e.g., organisational charts). However, their work cannot be directly
applied to knowledge graphs due to their more complex multi-relational nature.

7.3 Regularisation based on cardinality

In this chapter, we propose an efficient approach for incorporating the notion of cardinality
to the training of any neural link prediction model, without affecting their efficiency and
scalability. The proposed approach adjusts the embedding of entities and relations during
the learning phase using a regularisation term that penalises predictions with high proba-
bility that are above or below the imposed cardinality. By doing so, the notion of relation
cardinality will be captured during training to learn better link prediction models, i.e., that
comply with available background knowledge (Q. Wang, B. Wang, and L. Guo, 2015), pro-
ducing more accurate predictions.
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Example 7.1

Given a cardinality bound ϕhasParent = (0, 2), encoding the constraint “a person should
have at most two parents”, we would like to ensure that the embeddings learnt by a neu-
ral link predictor yield predictions for the hasParent relation within the boundaries. In
other words, we want to have the sum of probabilities over all possible parent entities
of Edgar Allan Poe precisely between zero and two.a We express this constraint over the
triple τ = (edgar_allan_poe, hasParent, t) as:

0 ≤
∑
t∈E

p(yhrt = 1 | Θ) ≤ 2, (7.1)

where t is an entity and the conditional probabilities ∀t ∈ E are given by the neural
link prediction model.

aNote that by considering a zero lower bound, we account for the possible incompleteness of the KG.

The inequality term in Example 7.1 expresses a supervision signal, not based on labelled
data, but that can be incorporated in the training of neural link prediction models. Again,
such cardinality boundaries can be provided by experts, gathered from literature (Mirza,
Razniewski, Darari, et al., 2017), or extracted from the knowledge base (L. Galárraga,
Razniewski, Amarilli, et al., 2017; Muñoz and Nickles, 2017). Specifically, we propose to
leverage cardinality bounds (e.g., the one in Equation (7.1)) to define a regularisation term
that encourages models to respect the available cardinality constraints.

Let Φ = {ϕr = (ϕ↓r , ϕ
↑
r)}r∈R be the set of cardinality constraints for each relation in a

given knowledge graph G, where ϕ↓r and ϕ↑r are the lower and upper bound for relation r,
respectively.

Given r ∈ R and h ∈ E , let Ahr[E ] , {(h, r, t) : ∀t ∈ E} be the set of all possible triples
with relation r and subject h, where the object was selected from E . For instance, r denotes
the relation hasParent, and h denotes the entity edgar_allan_poe.

Thus, we can define the following hard constraint on the conditional probability of all
triples in the set Ahr[E ]:

ϕ↓r ≤

Xhr[E ] ,
∑

xhrt∈Ahr[E]

pΘ(yhrt = 1 | Θ)

 ≤ ϕ↑r . (7.2)

Because of the hardness of Equation (7.2) it becomes impractical to incorporate directly
in neural link predictors. We propose a relaxation or soft constraint by defining a continuous
and differentiable loss function that penalises violations to such constraint. Specifically, we
define a function Ghr that is strictly positive if the cardinality constraint for a given entity h
and relation r is violated, and zero otherwise. Given a cardinality constraint ϕr, the function
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Figure 7.1: Value of the regularisation term Ghr based on the lower and upper bounds of a
cardinality constraint ϕr = (ϕ↓r , ϕ

↑
r).

Ghr[E ; Φ] (or Ghr for simplicity) is defined as follows:

Ghr[E ; Φ] = max(0, ϕ↓r −Xhr[E ]) + max(0,Xhr[E ]− ϕ↑r). (7.3)

Figure 7.1 shows the values of Ghr (see Equation (7.3)) based on Xhr[E ] and a cardinality
bound ϕr ∈ Φ. Notice that for the general case where the upper bound corresponds to∞
and lower bound to 0, the loss Ghr vanishes.

With this intuition in mind, we define a cardinality-regularised objective function, de-
noted by LC(Θ), which is applicable to any neural link prediction model:

LC(Θ) = L(Θ) + λ
∑

Φ

Ghr, (7.4)

where λ ∈ R+ weights the relative contribution of the expectation term, and L(Θ) can be
either the pairwise ranking loss or the logistic loss. This regularised loss Equation (7.4)
can be minimised using stochastic gradient descent (SGD) (Robbins and Monro, 1951) in
mini-batch mode, outlined previously in Algorithm 1.

Although our approach considers both upper and lower bounds, we noticed that the
latter cannot be meaningfully imposed in all cases. For instance, given a constraint ϕspouse =

(1, 1), the desired effects of Ghr can yield inconsistent results if the knowledge graph is
incomplete, and does not contain the spouse link of every person. In such cases, a zero lower
bound can be used to address the knowledge graph incompleteness.

Our approach is intuitive and easy to implement for any neural link prediction model.
However, its usefulness is limited by the cost of computing the sum in Equation (7.2): the
setAhr[E ] can easily be large in some KGs and become too expensive to compute the sum of
marginal probabilities. In the following sections, we propose two techniques to overcome
this problem and approximate the sum of probabilities via estimation and sampling.
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7.3.1 Lower bound estimation

Instead of dealing with the whole set of entities, we can sample a much smaller subset of all
entities S ⊆ E and obtain the following lower bound:

Xhr[S] ≤ Xhr[E ]. (7.5)

The tightness of the bound in Equation (7.5) is determined by the selection of the entities
in S. In this work, we consider uniform sampling. More specifically, a random set of indices
S ≡ {i1, . . . , iS} is taken uniformly, where is ∈ {1, . . . , |E|}, and form the following lower
bound: ∑

xhrt∈Ahr[S]

p(yhrt = 1 | Θ) ≤ Xhr[E ],

where the sum is over all elements in S with no repetitions.

7.3.2 Sum estimation

Instead of approximating a lower bound to Xhr[E ], we can also approximate its value di-
rectly by sampling.Let us consider the sum over a large collection of elements Z ,

∑
c zc.

We consider two standard methods for approximating sums via Monte Carlo estimates,
namely Importance Sampling (IS) and Bernoulli Sampling (Botev, B. Zheng, and Barber,
2017).

Importance Sampling. In Importance Sampling (IS), based on the identity Z =
∑

c
q(c)zc
q(c) ,

a set of indices S ≡ {i1, . . . , iS} is selected from a distribution q, where is ∈ {1, . . . , |E|}, and
yield the following approximation:

Z ≈
1

S

∑
s∈S

zs

q(s)
,

where q(s) defines the probability of sampling s from S.

Bernoulli Sampling. An alternative to IS is Bernoulli Sampling (BS), considering the fol-
lowing identity:

Z =
∑
c

zc = Es∼b

(∑
c

sc

bc
zc

)
,

where each independent Bernoulli variable sc ∈ {0, 1} denotes whether zc will be sampled
or not, and p(sc = 1) = bc is the probability of sampling zc. This leads to the following
approximation:

Z ≈
∑
c:sc=1

zc

bc
,
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where the sum is computed over the components with non-zero elements in the vector s.
Note that, when calculating an approximation to Z, IS relies on sampling with replacement,
while BS relies on sampling without replacement.

By using our regularisation term with sampling, we add a time complexity O(m × n),
where m is the total number of (sampled) triples in the regularisation and n the number of
triples per batch. Since m is usually much smaller than the number of triples in a batch,
we ensure that the time complexity of neural link predictors is not sensibly affected during
training, and not affected at all at test time. The proposed method does not increase the
space complexity of the models, since the proposed regulariser does not change the number
of model parameters Θ.

7.4 Experimental settings

In this section, we investigate the benefits of cardinality regularisation for the state-of-the-
art neural link prediction models. We compare the performance of original and regularised
losses in the link prediction task across different benchmark datasets, which are partitioned
into train, validation and test sets of triples (see Table 7.2 for the characteristics).

7.4.1 Evaluation protocol

The link prediction task consists of predicting a missing entity h or t when given a pair
(r, t) or (h, r), respectively. During testing, for each test triple (h, r, t), we replace the subject
or object entity with all entities in the knowledge graph as corruptions (Bordes, Usunier,
García-Durán, et al., 2013). The evaluation then ranks the entities in descending order w.r.t.
the scores calculated by a scoring function and gets the rank of the correct entity h or t.
We report results based on the ranks assigned to correct entities measured using mean re-
ciprocal rank (MRR) and Hits@n with n ∈ {1, 3, 5, 10}.1 During the ranking process some
positive test triples could be ranked after another true triples, which should not be consid-
ered a mistake. Therefore, the above metrics have two settings: raw and filtered (Bordes,
Usunier, García-Durán, et al., 2013). In the filtered setting, metrics are computed after re-
moving all true triples appearing in train, validation, or test sets from the ranking, whereas
in the raw setting they are not removed.

We highlight the fact that in our link prediction approach predicting a fact that is true
in the real world but not in the knowledge graph will be counted as an error. Because our
knowledge of the real world is often imperfect, this is true for any knowledge discovery
approach that assumes the Closed World Assumption (Motro, 1996).

1For MRR and Hits@n, the higher the better.
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Table 7.2: Datasets characteristics.

Dataset Nr Ne № train № valid № test

FB13 13 81,065 350,517 5,000 5,000
WN18 18 40,943 14,1442 5,000 5,000
WN18RR 11 40,943 86,835 3,034 3,134
YAGO3-10 37 123,182 1,079,040 5,000 5,000

Note: № represents the number of triples in the train, validation and test sets.

7.4.2 Datasets

Three widely used sources for the link prediction task are WordNet (Miller, 1995), Free-
base (Bollacker, R. P. Cook, and Tufts, 2007) and YAGO (Mahdisoltani, Biega, and Suchanek,
2015). In this work, we use four benchmark datasets generated from them: FB13, WN18,
WN18RR and YAGO3-10. The FB13 dataset (Bordes, Weston, Collobert, et al., 2011) is a
subset of Freebase containing 13 relation types and entities of type deceased_people, where
entities appear in at least 4 relations and relation types at least 5,000 times.2 We also use
two datasets derived from WordNet, namely, WN18 and WN18RR. These datasets con-
tain hyponym, hypernym, and other lexical relations of English concepts and words. It is
known that WN18 contains ca. 72% of redundant and inverse relations (e.g., hyponym ≡
hypernym −1), which have been removed to build WN18RR dataset (Dettmers, Minervini,
Stenetorp, et al., 2018). YAGO3-10 consists of entities in YAGO3 (mostly of type people)
linked with at least 10 relations, such as citizenship, gender and profession. FB13, WN18RR
and YAGO3-10 datasets were shown to have no redundant or trivial triples (Dettmers, Min-
ervini, Stenetorp, et al., 2018). In Table 7.2 we describe the characteristics of each dataset.

We mine the relation cardinality constraints from the training set of each dataset, follow-
ing the algorithm proposed by Muñoz and Nickles (2017) using the normalisation option
but without filtering outliers. Table 7.3 gives examples of the cardinality constraints mined
from each dataset. Since the source knowledge graphs of the bounds are incomplete, we
manually checked the constraints and updated some of the bounds (e.g., /people/person/gen-
der lower bound from 0 to 1).

7.5 Results and discussion

For our experiments, we re-implemented three models using the TensorFlow frame-
work (Abadi, Barham, Jianmin Chen, et al., 2016), namely, ER-MLP (X. Dong, Gabrilovich,
Heitz, et al., 2014), DistMult (B. Yang, Yih, X. He, et al., 2015) and ComplEx (Trouillon, Welbl,
Riedel, et al., 2016) (which has been proven to be equivalent to HolE (Nickel, Rosasco, and

2We use the corrected version by Socher, D. Chen, Manning, et al. (2013) that contains only positive samples.
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Table 7.3: Cardinality constraints extracted from FB13, WN18 (WN18RR) and YAGO3-10.
We also show the updated bounds after manual revision.

/people/person/place_of_birth (0, 2)→ (1, 1)
/people/person/parents (0, 2)
/people/person/gender (0, 1)→ (1, 1)

_hyponym (0, 380)
_has_part (0, 73)

_hypernym (0, 4)

livesIn (0, 12)→ (1, 12)
hasGender (0, 1)→ (1, 1)
hasChild (0, 19)

Poggio, 2016)). We compare the performance over the four benchmark datasets of each
model as originally stated by their authors and with the cardinality regularisation term
(see Equation (7.4)). As recommended by Trouillon, Welbl, Riedel, et al. (2016), we min-
imise the logistic loss to train each model using SGD and AdaGrad (Duchi, Hazan, and
Singer, 2011) to adaptively select the learning rate, which has been initialised as η0 = 0.1.
For each model and dataset, we selected hyperparameters maximising filtered Hits@10 on
the validation set using an exhaustive grid search.

The evaluation of our approach is three-fold: (i) we measure the effects of the regulariser
in the link prediction task; (ii) we measure the effects of the different sampling techniques;
and (iii) we measure the violations to the cardinality constraints before and after regularisa-
tion. To reduce the search space, during the grid search in (i) we fix the sampling technique
to uniform. In (ii), we use the best model identified in (i) to study the effect of different
sampling techniques, whilst in (iii) we use the overall best model per dataset.

7.5.1 Link prediction evaluation

We train each model for 1,000 epochs with a mini-batches approach over the training set
of each dataset, generating two negative examples per positive triple in each batch. We set
λ = 0 (see Equation (7.4)) to obtain the performance results of original models (without reg-
ularisation), and use uniform sampling with sizes µ ∈ {10, 100} and ω ∈ {10, 100, 1000} for
subjects and objects, respectively.3 Tables 7.4 and 7.5 show the link prediction results, con-
firming that our cardinality-based regularisation term helps to improve (or at least main-
tain) the performance of the original ER-MLP, DistMult and ComplEx models across all
datasets. The only exception we observed is ComplEx over YAGO3-10, where the model
without the regularisation term reaches better Hits@10 and MRR. We believe that a reason
for this is that constraining a lower bound on the sum of probabilities may not be the best
technique to use when the number of entities is very large. In our experiments, we also

3We identified via independent experiments that larger values for µ do not yield performance improve-
ments.
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Table 7.4: Link prediction results (Hits@n and Mean Reciprocal Rank, filtered setting) on
WN18 and WN18RR.

WN18 WN18RR

Hits@n
MRR

Hits@n
MRR

Method 1 3 5 10 1 3 5 10

ER-MLP 21.64 37.30 44.94 56.52 33.02 1.84 3.29 4.10 5.31 3.10
ER-MLPC 32.01 51.54 60.54 70.85 45.01 2.22 4.29 5.42 7.31 3.98

DistMult 64.46 87.47 90.66 93.49 76.62 38.93 43.49 45.93 49.63 42.46
DistMultC 65.01 87.53 90.71 93.44 76.93 39.10 44.13 46.30 49.81 42.84

ComplEx 88.33 93.05 94.14 95.07 90.96 40.87 46.25 48.55 51.15 44.52
ComplExC 88.66 93.27 94.21 95.21 91.20 41.10 46.06 48.13 51.09 44.57

Note: The evaluation metrics are MRR and Hits@n (hits at 1, 3, 5, and 10). (For all metrics, the higher the value of the
metric, the better.) In bold the best results comparing both original and cardinality loss, and highlighted is the best value per
evaluation metric across all models.

compare two alternative approaches, namely estimating the sum of probabilities via IS and
BS.

ER-MLP and DistMult models benefit the most across all datasets with improvements
of up to 36% in MRR. ComplEx shows to be the overall best performing model outperform-
ing ER-MLP (up to 20x in WN18RR) and DistMult in every dataset and evaluation metric.
Still, ComplEx benefits from the regularisation term in most of the datasets. Although, we
did not perform a thorough search of the hyperparameters space to reach state-of-the-art
performance, the results prove the advantages of our approach.

Table 7.5: Link prediction results (Hits@n and Mean Reciprocal Rank, filtered setting) on
FB13 and YAGO3-10.

FB13 YAGO3-10

Hits@n
MRR

Hits@n
MRR

Method 1 3 5 10 1 3 5 10

ER-MLP 4.40 7.55 9.14 11.82 6.94 2.22 6.09 9.59 16.01 6.83
ER-MLPC 5.13 8.36 10.29 12.75 7.78 2.33 6.16 9.65 16.54 6.95

DistMult 18.07 29.29 32.94 37.01 24.92 6.75 14.33 18.86 26.51 13.33
DistMultC 18.10 29.45 33.07 37.02 25.00 7.03 14.53 19.12 26.66 13.59

ComplEx 25.08 31.64 34.00 36.90 29.41 7.12 15.61 20.76 29.11 14.33
ComplExC 24.89 31.78 34.10 37.16 29.36 7.56 15.10 20.30 29.01 14.47

Note: The evaluation metrics are MRR and Hits@n (hits at 1, 3, 5, and 10). (For all metrics, the higher the value of the
metric, the better.) In bold the best results comparing both original and cardinality loss, and highlighted is the best value per
evaluation metric across all models.
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Table 7.6: Link prediction results (Hits@n and Mean Reciprocal Rank, filtered setting) for
the best ComplEx model using different sampling techniques.

Hits@n
MRR

Dataset Sampling 1 3 5 10

FB13
Uniform 25.84 31.85 34.19 37.26 29.89
Importance 25.17 31.36 34.36 36.18 29.18
Bernoulli 25.92 31.86 34.11 37.18 29.97

WN18
Uniform 88.98 93.66 94.84 95.98 92.12
Importance 88.97 93.64 94.73 96.08 91.10
Bernoulli 89.05 93.57 94.67 95.94 91.09

WN18RR
Uniform 41.27 46.57 48.58 51.51 44.87
Importance 41.09 46.68 48.81 51.50 44.78
Bernoulli 41.54 46.79 48.68 51.42 45.04

YAGO3-10
Uniform 8.32 15.52 20.92 29.29 15.30
Importance 8.23 15.71 20.70 29.49 15.28
Bernoulli 8.48 15.74 20.82 29.50 15.42

Note: The evaluation metrics are MRR and Hits@n (hits at 1, 3, 5, and 10). (For all metrics, the higher the value of the metric,
the better.) Coloured values represent the best performing method across a given metric.

7.5.2 Sampling techniques evaluation

To approximate the sum of probabilities we test both Importance Sampling and Bernoulli
Sampling, and consider hyperparameters µ ∈ {10, 50, 100} and ω ∈ {10, 50, 100, 500, 1000}.
Starting from the best ComplEx models learnt above, we tune the sampling technique for
each of the datasets.

Results are shown in Table 7.6. In general, all sampling techniques work well and there
is no one-size-fits-all solution: it depends on the dataset. (Information about properties of the
data that benefit one of the samplings can be used, and custom sampling is also supported.)
YAGO3-10 shows the biggest improvement of 6% in MRR using BS compared with the
results in Table 7.5. This improvement might be correlated to the advantage of BS to handle
the large number of entities in YAGO3-10. For FB13, WN18, and WN18RR we see smaller
improvements in MRR and Hits@10 compared to the results in Table 7.4. Differences in
results for uniform sampling compared to the results in Table 7.4 are also attributed to the
expanded hyperparameters space used with more sampling sizes than previously.

7.5.3 Cardinality violations evaluation

We have shown that our regulariser is beneficial for the link prediction task, but, more
importantly, the predictions that violate the cardinality constraints are significantly reduced.
Figure 7.2 shows the changes on the distribution of Xhr[E ] in four relation cases for ER-
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Figure 7.2: Changes in the distribution of Xhr[E ] without (left, in blue) and with (right, in
orange) regularisation using ER-MLP in YAGO3-10. Horizontal lines correspond to quar-
tiles.

MLP in YAGO3-10—one of the most benefited settings. Figures 7.2(a), 7.2(c) and 7.2(d)
illustrate positive impacts of the regularisation. We observed that the regulariser decreases
the median and long-tail distribution above the third quartile for (almost) every relation,
making predictions more accurate. For example, in relation imports (ϕ = (0, 6)) the mean of
Xhr[E ] is reduced by 78%, meaning less violations. Conversely, the biggest negative impact
was in relation hasWebsite (ϕ = (0, 2), Figure 7.2(b)), where violations were increased by
65%. Both constraint are equally restrictive over the number of objects but they differ on
their range. For the former, the objects are entities with links to other entities, while in the
latter objects are literals (URLs) with no further links. The prediction of literals is a known
problem for neural link predictors as there are not many links to other entities (García-
Durán and Niepert, 2018).

Following the DistMult example using the constraint ϕhasParent = (0, 2), Table 7.7 shows
the predictions for parents of Edgar Allan Poe. There are less predictions with high proba-
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Table 7.7: Predictions with probability > 0.8 for (edgar_allan_poe, hasParent, ?) by DistMult
when imposing the cardinality regulariser.

Triple Probability

(edgar_allan_poe, hasParent, eliza_poe) 0.861
(edgar_allan_poe, hasParent, maria_poe) 0.854
(edgar_allan_poe, hasParent, david_poe_jr) 0.815
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Figure 7.3: Influence of the regularisation weight over the average mean of Xhr[E ] (solid
lines) and Hits@10 (dashed lines) in WN18 with ComplEx.

bility and the correct, but previously missing, entity David Poe Jr. is now scored with a high
probability proving the effectiveness of our regularisation.

We did not note any major difference in results between tight and loose cardinal-
ity bounds, or between constraints for relations with few and many instances. Fi-
nally, Figure 7.3 shows the effects of using different regularisation weights λ ∈
{0, 0.0001, 0.001, 0.01, 0.1, 1.0} over the values of average mean ofXhr[E ] and Hits@10 across
relations in WN18RR. As λ grows, Hits@10 suffers small changes and the average mean of
Xhr[E ] decreases. This shows that the regularisation term does not affect negatively Hits@10
(a common evaluation metric) and helps to decrease the number of violations to the cardi-
nality constraints.
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7.6 Summary

In this chapter, we presented a cardinality-based regularisation term for neural link pre-
diction models. This regularisation term aims to solve a new problem (Section 7.1) created
by the distributed representation of entities and relations in a knowledge graph: they do
not follow common sense rules. The proposed regulariser (Section 7.3) incorporates back-
ground knowledge in the form of relation cardinality constraints that hitherto have been
ignored by neural link predictors (Section 7.2). A limitation is that the regulariser is expen-
sive to compute, thus, in Section 7.3.2, we proposed approximated values for it. We ob-
served that incorporating this regularisation term in the loss function significantly reduces
the number of violations produced by models at prediction time, enforcing the number of
predicted triples with high probability for each relation to satisfy cardinality bounds. Ex-
perimental results (Section 7.5) show that the regulariser consistently improves the quality
of knowledge graph embeddings, without affecting their efficiency or scalability.
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This thesis brings several contributions to the knowledge graph mining area. In this
dissertation, we have reviewed the nascent area of knowledge graph mining (Chapter 3),
we have proposed an algorithm for uncovering the structure of a knowledge graph via
cardinality bounds (Chapter 4), an approximate validation algorithm for knowledge graphs
(Chapter 5), a method that uses graph-based patterns to complete biomedical knowledge
graphs (Chapter 6), and an approach that uses a regularisation term to enhance the learnt
representations of entities and relations so they satisfy background knowledge (Chapter 7).

This chapter summarises the contributions of this thesis in Section 8.1 for each part, and
in Section 8.3 we discuss the limitations and opportunities for future work in the area of
knowledge graph mining.

8.1 Summary of contributions

In this section, we enumerate the contributions from the main three parts of this thesis as
defined in Chapter 1: (I) Background, (II) Latent shapes in knowledge graph, and (III) Knowledge
graph mining applications. Each part is composed by two chapters.

157
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8.1.1 Part I: Background

The first part of this thesis established the background required to understand the contribu-
tions made to knowledge graph mining in this thesis. Knowledge graphs themselves have
attracted the attention of researchers across academia and industry alike, mainly because
of their versatility to model large number of entities and connections (links) between them
using an easy to understand and coherent graph format. Based on the growing number of
works contributed by researchers and practitioners in the last couple of years, we argue that
knowledge graphs appear to be a more appealing solution for knowledge modelling than
previous solutions (e.g., XML). We believe that this is mainly due to two reasons:

(i) knowledge graphs have a simplified semantics that does not require people to under-
stand complex concepts as those underlying the Semantic Web or the logics behind
knowledge bases, and

(ii) there are many (business) applications where knowledge graphs have shown to be
huge factors of success (revenue), e.g., Google1, Airbnb2, LinkedIn3, Amazon (X. L.
Dong, 2019), among others.

Currently, for many applications, knowledge graphs (partially) bring to realisation the Se-
mantic Web’s vision and some of its main goals (Bollacker, R. P. Cook, and Tufts, 2007). This
is driving the adoption of graph technologies for supporting tasks like categorisation and
contextualisation in different applications. For instance, Airbnb comments4 that:

... [we] will continuously invest to use our knowledge graph to enrich our un-
derstanding of the world of travel (categorization) and deliver more travel con-
tent (contextualization) to each traveller at every step of their trip planning and
decision process.

Moreover, many new applications are powered by knowledge graphs for operation, for
example, personal assistants (Haase, Nikolov, Trame, et al., 2017; Ram, Prasad, Khatri, et
al., 2018) and chatbots (Adewale, Beatson, Buniatyan, et al., 2017; Athreya, Ngomo, and
Usbeck, 2018).

By simplifying complex requirements from the Semantic Web (e.g., formal inference),
practitioners and developers have been able to work seamlessly with knowledge graph and
semantic technologies. An example is given by R. V. Guha, Brickley, and Macbeth (2016),
who highlighted the increasing adoption and use of schema.org5 in Web pages providing
annotations about entities (e.g., products, places, events). It is easy for developers to get
started with schema.org and they can quickly obtain benefits (e.g., search engine optimisa-
tion (SEO)) from sharing and representing their specific domains using annotations that can
be later used to build large-scale (Web-scale) knowledge graphs.

1https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
2https://medium.com/airbnb-engineering/contextualizing-airbnb-by-building-knowledge-graph-b7077e268d5a
3https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
4See Footnote 2
5https://schema.org/

https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://medium.com/airbnb-engineering/contextualizing-airbnb-by-building-knowledge-graph-b7077e268d5a
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://schema.org/
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The focus of this thesis is the analysis of structure or shapes present in knowledge graphs
and its relation with two quality dimensions: consistency and completeness. Both of these
dimensions have huge implications in tasks related to data mining and knowledge discov-
ery in knowledge graphs. The first contribution of this thesis is a review and discussion
around Semantic Web knowledge bases and knowledge graphs. In Chapter 2, we have
reviewed the definitions of these concepts, their differences and similarities, and their in-
terpretations. In terms of interpretation, despite the benefits that OWA and nUNA bring
to knowledge bases—providing them with enormous versatility for open environments—
there are many use cases like data mining, where such assumptions are not desirable at all.
We believe that the UNA 2.0 proposed in SHACL and the partial closed-world assumption
(PCWA) are key players in knowledge graph mining. Recently, these assumptions have
been validated over noisy knowledge graphs in the link prediction task yielding state-of-
the-art results (Nickel, K. Murphy, Tresp, et al., 2016; Q. Wang, Mao, B. Wang, et al., 2017).

As for the consistency of knowledge graphs, as second contribution, we have reviewed
the schema languages recently proposed by the community and W3C. Knowledge graphs,
and Semantic Web in general, follow a schema-last approach, where facts can be added
as knowledge without checking against a schema. We provide an up-to-date overview of
schema languages for knowledge graphs and paid special attention to SHACL and ShEx,
which are the most popular ones. Given the schema-last approach and the lack of well-
defined schemas for many knowledge graphs, we have also reviewed several approaches
to inferring schema information from instance data. We believe that schema inference is a
problem that will receive much more attention in the near future, given the latent need for
checking and validating the content of knowledge graphs. We contribute to this problem
in Chapter 5, but there are a few limitations and future works that we describe later in this
chapter. This is still a niche problem and even the community has not decided yet what
schema language should be the standard.

Despite all the attention towards knowledge graphs, there is no agreement about which
technical approach should be adopted to knowledge graphs. Several works (including ours)
have adopted an approach that uses a simplification of RDF graphs to represent and define
knowledge graphs, but this is still not the standard in the community. We have identified
that the two main areas of application where knowledge graphs are cited are machine learn-
ing and Semantic Web. In this thesis, it was not our goal to provide yet another definition,
but we have used a definition that fits both of these areas. We have defined knowledge
graphs as generic edge-labelled graphs similar to RDF graphs but leaving out some re-
quirements such as the use of IRIs for identifying entities and relations. Moving forward,
we consider that any definition for knowledge graph (different from ours) should leave out
the following criteria:

(i) It should not be a requirement for knowledge graphs to cover various topical domains.
They are powerful tools and can still represent knowledge in a well-bounded area of
interest to support decision systems.
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(ii) They should not necessarily contain ontological information as in the Semantic Web
knowledge bases or RDF. But some sort of reasoning to extract new knowledge is
required.

(iii) They should be seen as a system comprising facts and a reasoning engine that allows
to reason and derive new knowledge (as proposed by Ehrlinger and Wöß (2016)).

(iv) They provide a common representation useful for integration, but they should not be
required to follow the RDF standard for naming entities and relations.

(v) They are dynamic, their content (statements) evolve over time and their quality is
not necessarily ensured when new statements are added. Thus, they require external
systems for validation.

The completeness and completion problems for knowledge graphs have received signif-
icant attention in the last decade. As a dimension of knowledge graph quality, completeness
is hard to measure and so far it has been defined based on an ideal knowledge graph. It is
impossible to build such knowledge graph in real life, even for a small domain one can al-
ways find new properties for an entity. Approaches to assess how complete a knowledge
graph is are much needed in areas such as Natural Language Processing and Knowledge
Representation. It is particularly relevant as well, to analyse the consistency of knowledge
graphs w.r.t. to a given shape graph. In Chapter 3, we have presented an extensive review
of the knowledge graph completion problem (Section 3.3) and statistical relational learning
models applied to the completion problem. Machine learning, and more specifically, deep
learning, approaches have been used to generate distributed representations or embeddings
for entities and relations in a knowledge graph that help to predict missing links and obtain
state-of-the-art results in several applications. Such approaches are relevant for applica-
tions that require to move away from handcrafted features, since no feature engineering is
required. In fact, features are learnt during the model training based on the optimisation
of a loss function. Although they have shown to be effective in many tasks, their results
lack of a direct interpretation. This causes that predictions made by machine learning mod-
els do not make sense or have any direct explanation from the observed data (Ribeiro, S.
Singh, and Guestrin, 2016). That is the reason why non-latent feature approaches are still
used when an interpretation of the results is required. We believe that initiatives to combine
embeddings with formal logics (e.g., embeddings that satisfy logic rules) will gather even
more attention in the future (S. Guo, Q. Wang, L. Wang, et al., 2016; Minervini, Costabello,
Muñoz, et al., 2017; Ding, Q. Wang, B. Wang, et al., 2018; García-Durán and Niepert, 2018;
S. Guo, Q. Wang, L. Wang, et al., 2018; Hamilton, Bajaj, Zitnik, et al., 2018; Liang, Z. Hu,
H. Zhang, et al., 2018; Manhaeve, Dumancic, Kimmig, et al., 2018; M. Qu and Tang, 2019)

8.1.2 Part II: Latent shapes in knowledge graph

We have started part II with Chapter 4, by defining the notion of relation cardinality and
introducing a principled approach for extracting cardinality bounds from instance data.
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In our design, we have considered noisy knowledge graphs and proposed an algorithm
able to extract accurate and robust cardinality bounds by leveraging equality axioms to
deal with the UNA, and applying statistical analysis for identifying and removing outliers.
Initially, we have implemented this approach using a complex query specified following
the SPARQL query language (from the Semantic Web stack). This complex SPARQL query
mines cardinality bounds and takes care of solving equality axioms on the fly. However,
SPARQL engines suffer from scalability issues when processing complex queries over large-
scale knowledge graphs. To overcome this issue, we have evaluated the Apache Spark scal-
able data processing framework to distribute the computation of cardinality bounds. (Note
that few works recently have tried to evaluate SPARQL queries using Apache Spark (Graux,
Jachiet, Genevès, et al., 2016; Agathangelos, Troullinou, Kondylakis, et al., 2018; Ayala, Kol-
eva, Alzogbi, et al., 2019).) Spark provides distributed computing over large volumes of
data and it was suitable for our cardinality mining algorithm. Our experiments showed
that Apache Spark outperforms the SPARQL approach by up to 40x. Therefore, we have
answered our RQ (1) by showing that it is possible to expose the structure of entity types
just by looking at the cardinality of relations, and that such cardinality can be extracted ef-
ficiently from knowledge graphs. Furthermore, we have explored the use of the extracted
cardinality bounds to measure consistency and completeness of a knowledge graph.

The curation and quality assurance of large knowledge graphs is an open problem for
data consumers. In Chapter 5, we have introduced a new task, the approximate validation
of knowledge graphs to help data managers with the task of validating knowledge graphs
even when they are noisy and large. Although a solution for this task will not be exact, it
is something required for an accuracy-efficiency trade-off. Current validation approaches
take as input a schema and a knowledge graph, and they traverse or apply regular expres-
sions over the whole knowledge graph looking for inconsistencies. Inspired by the notion
of structure given by cardinality, we have developed a solution that extracts local patterns
(subgraphs) to generate a vector representation for each node. Such subgraphs can be trans-
formed into vectors in different ways. Here, we have vectorised the paths that compose a
given subgraph. We consider two approaches for this: (a) a path exists in a subgraph or not
(binary features), and (b) a path exists n times in the subgraph, where n is the cardinality
of the path. This vector representation is then used to train a multi-class machine learning
algorithm which is able to determine the validity of any given entity based on its neighbour-
hood subgraph. Our evaluation showed that if is possible to determine the right class for an
entity based on the local patterns surrounding the entity. This is what we call latent shapes
in this thesis. We have also demonstrated that by using a semi-supervised approach, we
only need to know the label (validity) of a small portion of entities. Known labels are then
extrapolate to similar entities according to the learnt patterns given by the latent shapes.

Once more, it was noted that the use of machine learning algorithms and vector repre-
sentations of entities from knowledge graphs facilitate the development of more efficient
solutions for knowledge graph mining tasks. The above results have provided enough in-
formation to answer our RQ (2). As future work (see Section 8.3), we would like to analyse
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how to include shape information encoded as SHACL, ShEx, or other schema languages
into our approach.

8.1.3 Part III: Knowledge graph mining applications

We have dedicated the whole part III to study use cases and applications of latent shape
graphs. More specifically, we have focused on two problems: (a) the prediction of adverse
drug reactions from Bioinformatics using a knowledge graph as data source, and (b) the
enhancement of knowledge graph embeddings using a regularisation term based on cardi-
nality constraints.

Biomedical data are heterogeneous, made available as different formats (mainly free-
text publications) and stored using different technologies. Addressing this shortcoming,
we build upon the Bio2RDF project (Dumontier, Callahan, Cruz-Toledo, et al., 2014), which
aims to integrate multiple Biomedical data sources using the RDF format and a fixed
schema. By doing so, this project built a large knowledge graph which homogenises the
different data sources and becomes a rich resource for the area of Bioinformatics. Taking
pieces of the Bio2RDF knowledge graph related to drugs, proteins, and side effects, we
were able to present a novel approach for discovering adverse drug reactions using graph
features and machine learning (Chapter 6). Similarly to what we did in Chapter 5, we have
used cardinality and subgraphs to build vector representations for drugs (entities).

Given the nature of the problem, where a given drug can have multiple side effects or
adverse reactions, we have treated the prediction problem as multi-label learning. We com-
pared the performance of our approach against classical machine learning algorithms that
work in the multi-learning set up using existing benchmarks and new ones that we propose
in Chapter 6. The strength of our approach is demonstrated by an empirical evaluation
against several machine learning models obtaining. We have showed the benefits of con-
sidering knowledge graphs for knowledge discovery in Bioinformatics and obtained new
state-of-the-art results for the prediction of adverse drug reactions.

Existing applications of cardinality bounds (or constraints) in knowledge graphs are
query optimisation (Papakonstantinou, Flouris, Fundulaki, et al., 2016), validation (Labra
Gayo, E. Prud’hommeaux, Boneva, et al., 2018), and query re-writing (Lausen, Meier, and
Schmidt, 2008), among others. However, during our initial study on knowledge graph
embeddings, we have noticed that although these models are remarkably powerful in the
link prediction task, they do not capture important statistical dependencies in the data. As
part of this thesis, we contribute with the first attempt for using cardinalities to “guide”
the learning process of knowledge graph embedding models. Our idea is to encode these
constraint in the learning of relation embeddings, so that predictions satisfy the underlying
cardinality as in “a person has exactly two parent”. We have defined a regularisation term
to achieve our goal. The cardinality regularisation term will penalise those parameters that
violate the cardinality of relations during the computation of the loss function. We have
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empirically analysed the benefits of our novel cardinality regulariser for several previously
proposed knowledge graph embedding models and benchmark datasets, namely, Freebase,
YAGO, and WordNet.

8.2 Limitations

The research we have carried out in this thesis has a number of limitations that we would
like to discuss here.

Firstly, we have used several knowledge graphs to test different hypotheses across this
thesis. Since many of these knowledge graphs are dynamic and evolving, we noticed that
in many cases issues present in one version did not appear in a newer version or vice versa.
For instance, the dumps we obtained from the Web Data Commons6 repository are usu-
ally updated once a year, while others like PubChem are kept up to date with the latest
discoveries in the Bioinformatics field. This is a very frequent problem that depends on
several factors, where the most relevant is the organisations or groups behind the mainte-
nance of the datasets. Knowledge graph construction is also limited by resources required
to run expensive jobs that extract, load, and transform (ETL) data. We have seen an increas-
ing interest from industry to support such activities with grants that cover hardware and
other expenses. Examples of this are Amazon Open Data portal7 and Google Cloud Public
Datasets8 that allow researchers and organisations to store and share large datasets publicly
keeping associated metadata. Thus, helping the reproducibility of research and ensuring
that data is preserved beyond the end of projects.

In terms of the limitations of our contributions, we list them per chapter.

Chapter 4. We proposed the first algorithm for mining cardinality constraints from knowl-
edge graphs with a lower and upper bound. The extraction of lower bounds can be defined
by a set of rules; however, the extraction of upper bounds is more challenging. We used
statistical outlier detection for avoiding extreme upper bounds, but that is still prone to er-
ror. In our outlier detection, we assume that cardinalities follow a normal distribution that
allows us to identify “extreme” values. Other types of distributions should be tested not
only over DBpedia but also other more noisy knowledge graphs.

Chapter 5. Validation of knowledge graphs is hard due to their complex structure and to
the infinite possible constraints that could be generated. Firstly, our proposed approximate
algorithm assumes that an entity belongs to a single class at the time of validation. In prac-
tice, this is not always true and entities can belong to multiple classes—as observed in the
case of drugs and side effects in Chapter 6. The problem of validating entities that belong to
multiple classes is still open and we think multi-label learning approaches could provide an
alternative solution to reach a more complete validation. Also, even though we tested nav-

6http://webdatacommons.org/
7https://aws.amazon.com/opendata/
8https://cloud.google.com/public-datasets/

http://webdatacommons.org/
https://aws.amazon.com/opendata/
https://cloud.google.com/public-datasets/
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igating the graph with a combination of depth-first and breath-first, and included inverse
relations, we believe optimisation approaches for random walks will provide efficiency to
get meaningful subgraphs faster. A filtering step could be introduced to clean our training
data from: (a) spurious samples that do not have a minimum number of non-null (or non-
zero) features present in their vector representations; and (b) irrelevant feature columns that
do not pass a feature selection approach or criteria because of their low entropy, for exam-
ple. Such filtering as a pre-step to training could help to generate better training data and
more accurate models.

A future direction could go into testing knowledge graph embedding approaches
(see Section 3.4) to generate the vector representations of entities. However, few considera-
tions should be taken for considering unseen entities. We will discuss this in Section 8.3. Fi-
nally, the proposed method does not provide means to validate cycle-free (schema:children
) or irreflexive (schema:knows) relations. Additional features should be extracted to teach
the machine learning algorithms how to identify and score those cases, which are more
frequently found in the Web.

Chapter 6. In our experiments to predict adverse drug reactions, we have considered graph-
based features in order to provide interpretability. Some of these features come from what
are considered functional properties, i.e., properties that can have only one (unique) value
for each resource and there are no two distinct resources with the same property value (e.g.
identifiers). We manually removed features with functional properties from our training
dataset since they do not have predictive power. We consider that an automatic feature
selection could have been done for this. It would also be nice to evaluate how knowledge
graph models perform in this task.

On the other hand, although most features are considered as categorical or numerical,
few free-text (given in plain English) features can also be found in Bio2RDF. We did not
consider them in our experiments, but it would be possible to include them by applying
algorithms like Word2Vec (Mikolov, K. Chen, Corrado, et al., 2013) or GloVe (Pennington,
Socher, and Manning, 2014). Word embeddings could be added for consideration when
computing similarity between drugs.

Finally, since the field of Bioinformatics and Pharmacology advances quite fast, models
like the ones we proposed should be trained on the evolving data. We did not consider the
effects that “new” links discovered during the predictions will have over other predictions.
Such considerations are important in sensible applications dealing of any machine learning
or statistical model. Specially, when dealing with life-or-death cases and generally when
dealing with patients.

Chapter 7. The training of knowledge graph embeddings, as any deep learning task, is not
trivial. As a limitation, we consider that even more hyperparameters could be analysed and
models to evaluate our approach. We tried to mitigate the explosive number of parameters
by following previously used grid searches and parameters. Also, when it comes to model
training, validating the convergence of our new loss (including the regularisation term) is



8.3 Future directions | 165

something that we did not carry out and leave as future work. Finally, finding new ways
to encode not only cardinality but other logical constructs is a relevant research area that
requires more attention—we say more about this in our future directions (Section 8.3).

Therefore, certainly, there is plenty of room for improvement regarding approaches to
knowledge graph mining in general and the specific challenges we have addressed here. In
the next section, we summarise possible future directions for research in the area.

8.3 Future directions

In this section, we give an outlook into the future of knowledge graph mining research. This
is divided into three topics that we believe are crucial for the advancement of the area.

8.3.1 Dynamic knowledge graphs and definition of completeness

In Chapter 3, we have described how completeness of knowledge graphs can be computed
based on an ideal (complete) knowledge graph that is impractical to obtain. Here, we focus
on a different but related problem, the dynamically evolving knowledge graphs, where new
facts become known in time. For example, consider a knowledge graph of presidents who
are elected every couple of years, where new entities will appear and replace old ones as
president of a country. The new presidents will also bring associated neighbourhoods such
as their families, alma mater, etc. For these scenarios, there is currently no link prediction
(or machine learning) model that can handle unseen entities without the need of retraining
every time a new entity (e.g., president) is added. Q. Wang, P. Huang, H. Wang, et al. (2019)
takes into account that entities and relations appear in different contexts and should not be
assigned a fixed embedding representation. Instead, they propose an approach that learns
dynamic, flexible and contextualised embeddings for entities and relations in a knowledge
graph. Note that dynamicity is a characteristic not frequently considered when defining
knowledge graphs as they are most of the time seen as static for analysis.

Completion approaches reviewed in this thesis do assume that the only missing ele-
ments are links—the link prediction problem. However, a few approaches have considered
the problem of missing entities or out-of-vocabulary entities (Z. Wang, Jianwen Zhang, J.
Feng, et al., 2014a; Hamaguchi, Oiwa, Shimbo, et al., 2017), which are entities not present
during training. Such approaches usually make use of external text describing the enti-
ties or clustering (neighbourhood comparisons) to assign an embedding representation to
previously unseen entities. To achieve their goal, they usually optimise more complex loss
functions and add extra parameters to the model. In the future, we would like to con-
sider practical applications of latent shape graphs to the problem of dynamic knowledge
graphs, as a mean to provide an idea of boundaries for what is missing akin to works such
as González and Hogan (2018).
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8.3.2 Veracity of statements

Along with dynamicity of knowledge graphs, we consider that data pollution and malicious
attacks are latent problems that will become highly relevant. Especially, knowledge graphs
with commercial purpose, e.g., Google’s Knowledge Graph could be polluted to increase the
ranking of a website. One must consider that most knowledge graph mining approaches as-
sume that statements in the knowledge graph are trustworthy. Clearly, such an assumption
is weak and it should be assumed that knowledge graphs contain noise and erroneous state-
ments, and that one of their goals is to be 100% correct (even if it is not 100% complete). We
believe that existing tools developed for fact checking could help with the identification and
protection against such malicious content. This problem has been previously highlighted in
the Semantic Web by Isele, Jentzsch, and Bizer (2010), Hasnain, Al-Bakri, Costabello, et al.
(2012), and Muñoz, Aldarra, and Costabello (2017) Moreover, new articles have appeared
proposing methods to identify the trustiness of statements in a knowledge graph (S. Liu,
d’Aquin, and Motta, 2017; Jia, Xiang, X. Chen, et al., 2019; Zhao, H. Feng, and Gallinari,
2019). As the multi-linguality of knowledge graphs increase (M. Chen, Tian, M. Yang, et al.,
2017), it will also pose challenges that will require more attention for fact validation.

The validation of new facts is also highly relevant when knowledge discovery ap-
proaches, such as the link prediction ones that we have focused in this thesis, predict triples
that are true in the real world but not in the knowledge graph. In those cases, such pre-
dictions are counted as errors since they are unknown, thus false under the closed-world
assumption. In Chapter 6, we addressed this issue by training and testing our models using
a knowledge graph with valid facts at a time t, and then validating our “novel” prediction
on a knowledge graph including known facts from time t+ 1 and thereafter.

8.3.3 Embeddings, logics, and scalability

First, we consider that more research is required for the problem of automatic extraction of
constraints from knowledge graphs at scale. We are convinced that latent schemas will play
a huge role in the consumption and creation of knowledge graphs, since fixed schemas have
limited expressibility. Moving forward, the requirements for embeddings to satisfy logical
constraints will probably become a default. Several authors (including our work in this
thesis) have already proposed ways to inject logical constraints in knowledge graph em-
beddings (Q. Wang, B. Wang, and L. Guo, 2015; Manhaeve, Dumancic, Kimmig, et al., 2018;
Rocktäschel, 2018; H. Gao, X. Zheng, W. Li, et al., 2019). But they suffer from the increas-
ing number of parameters and complexity, which is not desirable due to the demanding
computing power and time required to train these models.

However, other research areas in machine learning could provide a solution to the previ-
ously mentioned scalability issues. Many scoring functions have been proposed to account
for nuances in knowledge graphs, and no idea seems to have been left uncovered. We
believe that treating knowledge graph embedding models as neural networks and testing



8.3 Future directions | 167

different architectures will help. Thus, the completion problem can be transformed in a
Neural Architecture Search (NAS) problem (Zoph and Le, 2017). NAS is considered a sub-
field of Automatic Machine Learning (AutoML) (Feurer, Klein, Eggensperger, et al., 2015).
NAS can help to find the best embedding model for a given knowledge graph and task.

8.3.4 Automatic benchmark generation

Rigorously evaluating a knowledge graph embedding model’s performance requires access
to gold standard evaluation benchmarks. As knowledge graphs become increasingly pop-
ular, there is a need for such benchmarks to test different hypotheses. Benchmark datasets
should clearly come with attached metadata and annotations necessary for testing differ-
ent models. This is also highlighted by the reproducibility issues found in literature, when
authors test their approaches in closed access datasets it is not possible to reproduce and
validate their results. See McDermott, S. Wang, Marinsek, et al. (2019) and Mittal, Pandey,
and Kant (2019) for recent discussions about reproducibility in machine learning. (A simi-
lar situation applies for hardware requirements used in experiments.) We consider neces-
sary more work towards the systematic generation of benchmark knowledge graphs, which
posses some desired properties like the ones studied by Fernández, Martínez-Prieto, Fuente
Redondo, et al. (2018). Clearly, such activities will depend primarily on the resources avail-
able during the construction of knowledge graphs. And both the construction algorithm
and the output should be accessible and trustworthy. Only in this way, we see that aca-
demic environments will be able to increasingly adopt large scale knowledge graphs. For
example, the biggest knowledge graph reported is found in industry9, Google’s Knowledge
Graph (ca. 70 billion triples), while on the open side closer competitors are Wikidata (57 mil-
lion triples) and DBpedia (9.5 billion triples). Furthermore, research will benefit from more
clarity on the characteristics of available datasets. For example, WN18 and FB15k—some of
the most used datasets for knowledge graph completion—were long used before Dettmers,
Minervini, Stenetorp, et al. (2018) found out that they suffer from test set leakage, given that
inverse relations from the train set are present in the test set.

Finally, we believe that there is a lack of evaluation metrics that best represent the com-
pletion requirements for knowledge graphs. Standard evaluation metrics such as MR, MRR,
and Hits@k are still not enough to show the efficiency of models in real-world scenarios.

Hopefully, in this thesis we have contributed to the nascent area of knowledge graph
mining with valuable insights and algorithms for exploiting their latent shape graphs. The
use of latent shape graphs has boosted the exploitation of knowledge graphs and opened
the way for new applications in different areas (e.g., Bioinformatics). In this thesis, we have
just touched on some of the many research directions and (humbly) hope to inspire many
more approaches in the area.

9We did not find any public description for other knowledge graphs such as Bing Satori, LinkedIn, Facebook,
Amazon, among others.
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Goasdoué, and Ioana Manolescu (2018). ‘Browsing Linked Data Catalogs with LODAtlas’. In:
The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA,
October 8-12, 2018, Proceedings, Part II. Ed. by Denny Vrandecic, Kalina Bontcheva, Mari Carmen
Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena
Simperl. Vol. 11137. Lecture Notes in Computer Science. Springer, pp. 137–153.

Polikar, R. (Mar. 2006). ‘Ensemble based systems in decision making’. In: IEEE Circuits and Systems
Magazine 6.3, pp. 21–45. ISSN: 1531-636X.

https://www.dublincore.org/specifications/dublin-core/dc-dsp/


BIBLIOGRAPHY | 187

Polleres, Axel, Juan L. Reutter, and Egor V. Kostylev (2016). ‘Nested Constructs vs. Sub-Selects in
SPARQL’. In: Proceedings of the 10th Alberto Mendelzon International Workshop on Foundations of
Data Management, Panama City, Panama, May 8-10, 2016. Ed. by Reinhard Pichler and Altigran
Soares da Silva. Vol. 1644. CEUR Workshop Proceedings. CEUR-WS.org.

Polleres, Axel, François Scharffe, and Roman Schindlauer (2007). ‘SPARQL++ for Mapping Between
RDF Vocabularies’. In: On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS, OTM Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and IS
2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I. Ed. by Robert Meersman and
Zahir Tari. Vol. 4803. Lecture Notes in Computer Science. Springer, pp. 878–896.

Prud’hommeaux, Eric and Thomas Baker (2019). ShapeMap Structure and Language. https : / /

shexspec.github.io/shape-map/.
Prud’hommeaux, Eric, Iovka Boneva, José Emilio Labra Gayo, and Gregg Kellogg (2018). Shape Ex-

pressions Language 2.1. http://shex.io/shex-semantics/.
Prud’hommeaux, Eric, José Emilio Labra Gayo, and Harold R. Solbrig (2014). ‘Shape expressions: an

RDF validation and transformation language’. In: Proceedings of the 10th International Conference
on Semantic Systems, SEMANTICS 2014, Leipzig, Germany, September 4-5, 2014. Ed. by Harald Sack,
Agata Filipowska, Jens Lehmann, and Sebastian Hellmann. ACM, pp. 32–40.

Prud’hommeaux, Eric and Andy Seaborne (2008). SPARQL Query Language for RDF. https://www.
w3.org/TR/rdf-sparql-query/.

Qu, Meng and Jian Tang (2019). ‘Probabilistic Logic Neural Networks for Reasoning’. In: CoRR
abs/1906.08495.

Quinlan, J. Ross (1990). ‘Learning Logical Definitions from Relations’. In: Machine Learning 5, pp. 239–
266.

Rahmani, Hossein, Gerhard Weiss, Oscar Méndez-Lucio, and Andreas Bender (2016). ‘ARWAR: A
network approach for predicting Adverse Drug Reactions’. In: Computers in biology and medicine
68, pp. 101–108.

Ram, Ashwin, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate Bland, et al. (2018). ‘Conversa-
tional AI: The Science Behind the Alexa Prize’. In: CoRR abs/1801.03604.

Razniewski, Simon, Flip Korn, Werner Nutt, and Divesh Srivastava (2015). ‘Identifying the Extent of
Completeness of Query Answers over Partially Complete Databases’. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM, pp. 561–
576.

Razniewski, Simon and Werner Nutt (2014). ‘Databases under the Partial Closed-world Assumption:
A Survey’. In: Proceedings of the 26th GI-Workshop Grundlagen von Datenbanken, Bozen-Bolzano,
Italy, October 21st to 24th, 2014. Ed. by Friederike Klan, Günther Specht, and Hans Gamper.
Vol. 1313. CEUR Workshop Proceedings. CEUR-WS.org, pp. 59–64.

Razniewski, Simon, Ognjen Savkovic, and Werner Nutt (2016). ‘Turning The Partial-Closed World
Assumption Upside Down’. In: Proceedings of the 10th Alberto Mendelzon International Workshop on
Foundations of Data Management, Panama City, Panama, May 8-10, 2016. Ed. by Reinhard Pichler
and Altigran Soares da Silva. Vol. 1644. CEUR Workshop Proceedings. CEUR-WS.org.

Razniewski, Simon, Fabian M. Suchanek, and Werner Nutt (2016). ‘But What Do We Actually Know?’
In: Proceedings of the 5th Workshop on Automated Knowledge Base Construction, AKBC@NAACL-HLT
2016, San Diego, CA, USA, June 17, 2016. Ed. by Jay Pujara, Tim Rocktäschel, Danqi Chen, and
Sameer Singh. The Association for Computer Linguistics, pp. 40–44.

https://shexspec.github.io/shape-map/
https://shexspec.github.io/shape-map/
http://shex.io/shex-semantics/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/


188 | BIBLIOGRAPHY

Reiter, Raymond (1977). ‘On Closed World Data Bases’. In: Logic and Data Bases, Symposium on Logic
and Data Bases, Centre d’études et de recherches de Toulouse, 1977. Ed. by Hervé Gallaire and Jack
Minker. Advances in Data Base Theory. New York: Plemum Press, pp. 55–76.

Reiter, Raymond (1986). ‘Foundations for Knowledge-Based Systems (Invited Paper)’. In: Information
Processing 86, Proceedings of the IFIP 10th World Computer Congress, Dublin, Ireland, September 1-5,
1986. Ed. by Hans-Jürgen Kugler. North-Holland/IFIP, pp. 663–668.

Rendle, Steffen (2013). ‘Scaling Factorization Machines to Relational Data’. In: PVLDB 6.5, pp. 337–
348.

Rendle, Steffen, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme (2009). ‘BPR:
Bayesian Personalized Ranking from Implicit Feedback’. In: UAI 2009, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009. Ed.
by Jeff A. Bilmes and Andrew Y. Ng. AUAI Press, pp. 452–461.

Rettinger, Achim, Uta Lösch, Volker Tresp, Claudia d’Amato, and Nicola Fanizzi (2012). ‘Mining the
Semantic Web - Statistical learning for next generation knowledge bases’. In: Data Min. Knowl.
Discov. 24.3, pp. 613–662.

Ribeiro, Marco Túlio, Sameer Singh, and Carlos Guestrin (2016). ‘“Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier’. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016.
Ed. by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen,
and Rajeev Rastogi. ACM, pp. 1135–1144.

Richardson, Matthew and Pedro M. Domingos (2006). ‘Markov logic networks’. In: Machine Learning
62.1-2, pp. 107–136.

Rietveld, Laurens, Wouter Beek, Rinke Hoekstra, and Stefan Schlobach (2017). ‘Meta-data for a lot of
LOD’. In: Semantic Web 8.6, pp. 1067–1080.

Ristoski, Petar and Heiko Paulheim (2014). ‘A Comparison of Propositionalization Strategies for
Creating Features from Linked Open Data’. In: Proceedings of the 1st Workshop on Linked Data
for Knowledge Discovery co-located with European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2014), Nancy, France, September 19th,
2014. Ed. by Ilaria Tiddi, Mathieu d’Aquin, and Nicolas Jay. Vol. 1232. CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Ristoski, Petar and Heiko Paulheim (2016a). ‘RDF2Vec: RDF Graph Embeddings for Data Mining’.
In: The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October
17-21, 2016, Proceedings, Part I. Ed. by Paul T. Groth, Elena Simperl, Alasdair J. G. Gray, Marta
Sabou, Markus Krötzsch, Freddy Lécué, Fabian Flöck, and Yolanda Gil. Vol. 9981. Lecture Notes
in Computer Science, pp. 498–514.

Ristoski, Petar and Heiko Paulheim (2016b). ‘Semantic Web in data mining and knowledge discov-
ery: A comprehensive survey’. In: J. Web Semant. 36, pp. 1–22.

Rivero, Carlos R., Inma Hernández, David Ruiz, and Rafael Corchuelo (2012). ‘Towards Discovering
Ontological Models from Big RDF Data’. In: Advances in Conceptual Modeling - ER 2012 Workshops
CMS, ECDM-NoCoDA, MoDIC, MORE-BI, RIGiM, SeCoGIS, WISM, Florence, Italy, October 15-18,
2012. Proceedings. Ed. by Silvana Castano, Panos Vassiliadis, Laks V. S. Lakshmanan, and Mong-
Li Lee. Vol. 7518. Lecture Notes in Computer Science. Springer, pp. 131–140.

Robbins, Herbert and Sutton Monro (Sept. 1951). ‘A Stochastic Approximation Method’. In: Ann.
Math. Statist. 22.3, pp. 400–407.

Rocktäschel, Tim (2018). ‘Combining representation learning with logic for language processing’.
PhD thesis. University College London, UK.



BIBLIOGRAPHY | 189

Rocktäschel, Tim, Sameer Singh, and Sebastian Riedel (2015). ‘Injecting Logical Background Knowl-
edge into Embeddings for Relation Extraction’. In: NAACL HLT 2015, The 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Denver, Colorado, USA, May 31 - June 5, 2015. Ed. by Rada Mihalcea, Joyce Yue Chai, and
Anoop Sarkar. The Association for Computational Linguistics, pp. 1119–1129.

Rosasco, Lorenzo, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro Verri (2004).
‘Are Loss Functions All the Same?’ In: Neural Computation 16.5, pp. 1063–107.

Rosner, Bernard (1983). ‘Percentage Points for a Generalized ESD Many-Outlier Procedure’. In: Tech-
nometrics 25.2, pp. 165–172.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). ‘Learning representations
by back-propagating errors’. In: Nature 323.6088, pp. 533–536. ISSN: 1476-4687.

Russell, Stuart J. and Peter Norvig (2010). Artificial Intelligence - A Modern Approach (3. internat. ed.)
Pearson Education. ISBN: 978-0-13-207148-2.

Ryman, Arthur G., Arnaud Le Hors, and Steve Speicher (2013). ‘OSLC Resource Shape: A lan-
guage for defining constraints on Linked Data’. In: Proceedings of the WWW2013 Workshop on
Linked Data on the Web, Rio de Janeiro, Brazil, 14 May, 2013. Ed. by Christian Bizer, Tom Heath,
Tim Berners-Lee, Michael Hausenblas, and Sören Auer. Vol. 996. CEUR Workshop Proceedings.
CEUR-WS.org.

Sarjant, Samuel, Catherine Legg, Michael Robinson, and Olena Medelyan (2009). ‘“All You Can Eat”
Ontology-Building: Feeding Wikipedia to Cyc’. In: 2009 IEEE/WIC/ACM International Conference
on Web Intelligence, WI 2009, Milan, Italy, 15-18 September 2009, Main Conference Proceedings. IEEE
Computer Society, pp. 341–348.

Schenner, Gottfried, Stefan Bischof, Axel Polleres, and Simon Steyskal (2014). ‘Integrating Dis-
tributed Configurations With RDFS and SPARQL’. In: Proceedings of the 16th International Con-
figuration Workshop, Novi Sad, Serbia, September 25-26, 2014. Ed. by Alexander Felfernig, Cipriano
Forza, and Albert Haag. Vol. 1220. CEUR Workshop Proceedings. CEUR-WS.org, pp. 9–15.

Schmidhuber, Jürgen (2015). ‘Deep learning in neural networks: An overview’. In: Neural Networks
61, pp. 85–117.

Schmidt, Michael and Georg Lausen (2013). ‘Pleasantly Consuming Linked Data with RDF Data
Descriptions’. In: Proceedings of the Fourth International Workshop on Consuming Linked Data, COLD
2013, Sydney, Australia, October 22, 2013. Ed. by Olaf Hartig, Juan F. Sequeda, Aidan Hogan, and
Takahide Matsutsuka. Vol. 1034. CEUR Workshop Proceedings. CEUR-WS.org.

Schmidt, Michael, Michael Meier, and Georg Lausen (2010). ‘Foundations of SPARQL query opti-
mization’. In: Database Theory - ICDT 2010, 13th International Conference, Lausanne, Switzerland,
March 23-25, 2010, Proceedings. Ed. by Luc Segoufin. ACM International Conference Proceeding
Series. ACM, pp. 4–33.

Sengupta, Kunal, Adila Alfa Krisnadhi, and Pascal Hitzler (2011). ‘Local Closed World Semantics:
Grounded Circumscription for OWL’. In: The Semantic Web - ISWC 2011 - 10th International Se-
mantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. Ed. by Lora Aroyo,
Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman
Noy, and Eva Blomqvist. Vol. 7031. Lecture Notes in Computer Science. Springer, pp. 617–632.

Shervashidze, Nino, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borg-
wardt (2011). ‘Weisfeiler-Lehman Graph Kernels’. In: J. Mach. Learn. Res. 12, pp. 2539–2561.

Shi, Chuan, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu (2017). ‘A Survey of Heteroge-
neous Information Network Analysis’. In: IEEE Trans. Knowl. Data Eng. 29.1, pp. 17–37.



190 | BIBLIOGRAPHY

Singh, Ajit Paul and Geoffrey J. Gordon (2008). ‘Relational learning via collective matrix factoriza-
tion’. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008. Ed. by Ying Li, Bing Liu, and Sunita
Sarawagi. ACM, pp. 650–658.

Socher, Richard, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng (2013). ‘Reasoning With
Neural Tensor Networks for Knowledge Base Completion’. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, pp. 926–934.

Song, Qi, Yinghui Wu, Peng Lin, Xin Dong, and Hui Sun (2018). ‘Mining Summaries for Knowledge
Graph Search’. In: IEEE Trans. Knowl. Data Eng. 30.10, pp. 1887–1900.

Soulet, Arnaud and Fabian M. Suchanek (2019). ‘Anytime Large-Scale Analytics of Linked Open
Data’. In: The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part I. Ed. by Chiara Ghidini, Olaf Hartig, Maria
Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and
Fabien Gandon. Vol. 11778. Lecture Notes in Computer Science. Springer, pp. 576–592.

Spahiu, Blerina, Andrea Maurino, and Matteo Palmonari (2018). ‘Towards Improving the Quality
of Knowledge Graphs with Data-driven Ontology Patterns and SHACL’. In: Proceedings of the
9th Workshop on Ontology Design and Patterns (WOP 2018) co-located with 17th International Seman-
tic Web Conference (ISWC 2018), Monterey, USA, October 9th, 2018. Ed. by Martin G. Skjæveland,
Yingjie Hu, Karl Hammar, Vojtech Svátek, and Agnieszka Lawrynowicz. Vol. 2195. CEUR Work-
shop Proceedings. CEUR-WS.org, pp. 52–66.

Spahiu, Blerina, Riccardo Porrini, Matteo Palmonari, Anisa Rula, and Andrea Maurino (2016). ‘AB-
STAT: Ontology-driven Linked Data Summaries with Pattern Minimalization’. In: Proceedings of
the 2nd International Workshop on Summarizing and Presenting Entities and Ontologies (SumPre 2016)
co-located with the 13th Extended Semantic Web Conference (ESWC 2016), Anissaras, Greece, May 30,
2016. Ed. by Andreas Thalhammer, Gong Cheng, and Kalpa Gunaratna. Vol. 1605. CEUR Work-
shop Proceedings. CEUR-WS.org.

Studer, Rudi, V. Richard Benjamins, and Dieter Fensel (1998). ‘Knowledge Engineering: Principles
and Methods’. In: Data Knowl. Eng. 25.1-2, pp. 161–197.

Suchanek, Fabian M., David Gross-Amblard, and Serge Abiteboul (2011). ‘Watermarking for On-
tologies’. In: The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Ger-
many, October 23-27, 2011, Proceedings, Part I. Ed. by Lora Aroyo, Chris Welty, Harith Alani, Jamie
Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist. Vol. 7031.
Lecture Notes in Computer Science. Springer, pp. 697–713.

Suchanek, Fabian M., Gjergji Kasneci, and Gerhard Weikum (2007). ‘Yago: a core of semantic knowl-
edge’. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff,
Alberta, Canada, May 8-12, 2007. Ed. by Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-
Schneider, and Prashant J. Shenoy. ACM, pp. 697–706.

Sun, Yizhou and Jiawei Han (2012). ‘Mining heterogeneous information networks: a structural anal-
ysis approach’. In: SIGKDD Explorations 14.2, pp. 20–28.

Szarfman, Ana, Stella G Machado, and Robert T O’neill (2002). ‘Use of screening algorithms and
computer systems to efficiently signal higher-than-expected combinations of drugs and events
in the US FDA’s spontaneous reports database’. In: Drug Safety 25.6, pp. 381–392.



BIBLIOGRAPHY | 191

Tan, Yuxiang, Yong Hu, Xiaoxiao Liu, Zhinan Yin, Xue-wen Chen, and Mei Liu (2016). ‘Improving
drug safety: From adverse drug reaction knowledge discovery to clinical implementation’. In:
Methods.

Tandon, Niket, Aparna S. Varde, and Gerard de Melo (2017). ‘Commonsense Knowledge in Machine
Intelligence’. In: SIGMOD Record 46.4, pp. 49–52.

Tanon, Thomas Pellissier, Denny Vrandecic, Sebastian Schaffert, Thomas Steiner, and Lydia Pintscher
(2016). ‘From Freebase to Wikidata: The Great Migration’. In: Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016. Ed. by Jacqueline
Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao. ACM, pp. 1419–1428.

Tao, Jiao, Evren Sirin, Jie Bao, and Deborah L. McGuinness (2010). ‘Integrity Constraints in OWL’.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010. Ed. by Maria Fox and David Poole. AAAI Press.

Tekli, Joe, Richard Chbeir, Agma J. M. Traina, Caetano Traina Jr., and Renato Fileto (2015). ‘Approx-
imate XML structure validation based on document-grammar tree similarity’. In: Inf. Sci. 295,
pp. 258–302.

Thalheim, Bernhard (1992). ‘Fundamentals of Cardinality Constraints’. In: Entity-Relationship Ap-
proach - ER 92, 11th International Conference on the Entity-Relationship Approach, Karlsruhe, Germany,
October 7-9, 1992, Proceedings. Ed. by Günther Pernul and A Min Tjoa. Vol. 645. Lecture Notes in
Computer Science. Springer, pp. 7–23.

Toutanova, Kristina and Danqi Chen (July 2015). ‘Observed versus latent features for knowledge
base and text inference’. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality. Beijing, China: Association for Computational Linguistics, pp. 57–66.

Trouillon, Théo, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guil-
laume Bouchard (2017). ‘Knowledge Graph Completion via Complex Tensor Factorization’. In:
Journal of Machine Learning Research 18, 130:1–130:38.

Trouillon, Théo and Maximilian Nickel (2017). ‘Complex and Holographic Embeddings of Knowl-
edge Graphs: A Comparison’. In: CoRR abs/1707.01475.

Trouillon, Théo, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard (2016).
‘Complex Embeddings for Simple Link Prediction’. In: Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by Maria-
Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 2071–2080.

Tsoumakas, Grigorios and Ioannis Katakis (2006). ‘Multi-label classification: An overview’. In: Inter-
national Journal of Data Warehousing and Mining 3.3.

Tsoumakas, Grigorios, Ioannis Katakis, and Ioannis P. Vlahavas (2010). ‘Mining Multi-label Data’.
In: Data Mining and Knowledge Discovery Handbook. Springer, pp. 667–685.

Tucker, Ledyard R. (Sept. 1966). ‘Some mathematical notes on three-mode factor analysis’. In: Psy-
chometrika 31.3, pp. 279–311. ISSN: 1860-0980.

Vandenbussche, Pierre-Yves, Ghislain Atemezing, María Poveda-Villalón, and Bernard Vatant
(2017). ‘Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the
Web’. In: Semantic Web 8.3, pp. 437–452.

Völker, Johanna and Mathias Niepert (2011). ‘Statistical Schema Induction’. In: The Semantic Web:
Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,
Greece, May 29-June 2, 2011, Proceedings, Part I. Ed. by Grigoris Antoniou, Marko Grobelnik, Elena
Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan.
Vol. 6643. Lecture Notes in Computer Science. Springer, pp. 124–138.



192 | BIBLIOGRAPHY

Vrandecic, Denny (2012). ‘Wikidata: a new platform for collaborative data collection’. In: Proceedings
of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion
Volume). Ed. by Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Steffen
Staab. ACM, pp. 1063–1064.

Vrandecic, Denny and Markus Krötzsch (2014). ‘Wikidata: a free collaborative knowledgebase’. In:
Commun. ACM 57.10, pp. 78–85.

Vries, Gerben Klaas Dirk de and Steven de Rooij (2015). ‘Substructure counting graph kernels for
machine learning from RDF data’. In: J. Web Semant. 35, pp. 71–84.

Wang, Quan, Pingping Huang, Haifeng Wang, Songtai Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu,
Yong Zhu, and Hua Wu (2019). ‘CoKE: Contextualized Knowledge Graph Embedding’. In: CoRR
abs/1911.02168.

Wang, Quan, Jing Liu, Yuanfei Luo, Bin Wang, and Chin-Yew Lin (2016). ‘Knowledge Base Comple-
tion via Coupled Path Ranking’. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.
The Association for Computer Linguistics.

Wang, Quan, Zhendong Mao, Bin Wang, and Li Guo (2017). ‘Knowledge Graph Embedding: A Sur-
vey of Approaches and Applications’. In: IEEE Trans. Knowl. Data Eng. 29.12, pp. 2724–2743.

Wang, Quan, Bin Wang, and Li Guo (2015). ‘Knowledge Base Completion Using Embeddings and
Rules’. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. Ed. by Qiang Yang and Michael Wooldridge.
AAAI Press, pp. 1859–1866.

Wang, Richard Y. and Diane M. Strong (1996). ‘Beyond Accuracy: What Data Quality Means to Data
Consumers’. In: J. of Management Information Systems 12.4, pp. 5–33.

Wang, Zhen, Jianwen Zhang, Jianlin Feng, and Zheng Chen (2014a). ‘Knowledge Graph and Text
Jointly Embedding’. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL. Ed. by Alessandro Moschitti, Bo Pang, and Walter Daelemans. ACL, pp. 1591–
1601.

Wang, Zhen, Jianwen Zhang, Jianlin Feng, and Zheng Chen (2014b). ‘Knowledge Graph Embedding
by Translating on Hyperplanes’. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. Ed. by Carla E. Brodley and Peter Stone.
AAAI Press, pp. 1112–1119.

Williamson, David P. and David B. Shmoys (2011). The Design of Approximation Algorithms. Cam-
bridge University Press. ISBN: 978-0-521-19527-0.

Wolpert, David H. (1996). ‘The Lack of A Priori Distinctions Between Learning Algorithms’. In: Neu-
ral Computation 8.7, pp. 1341–1390.

Wolpert, David H. and William G. Macready (1997). ‘No free lunch theorems for optimization’. In:
IEEE Trans. Evolutionary Computation 1.1, pp. 67–82.

Wynn, Karen (Aug. 1990). ‘Childrens understanding of counting’. In: Cognition 36.2, pp. 155–193.
ISSN: 0010-0277.

Yamanishi, Yoshihiro, Edouard Pauwels, and Masaaki Kotera (2012). ‘Drug side-effect prediction
based on the integration of chemical and biological spaces’. In: Journal of chemical information and
modeling 52.12, pp. 3284–3292.

Yang, Bishan, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng (2015). ‘Embedding Entities
and Relations for Learning and Inference in Knowledge Bases’. In: International Conference on
Learning Representations.



BIBLIOGRAPHY | 193

Yang, Runtao, Chengjin Zhang, Rui Gao, and Lina Zhang (Feb. 2015). ‘An Ensemble Method with
Hybrid Features to Identify Extracellular Matrix Proteins’. In: PLOS ONE 10.2, pp. 1–21.

Yu, Xiao, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon
Norick, and Jiawei Han (2014). ‘Personalized entity recommendation: a heterogeneous informa-
tion network approach’. In: Seventh ACM International Conference on Web Search and Data Mining,
WSDM 2014, New York, NY, USA, February 24-28, 2014. Ed. by Ben Carterette, Fernando Diaz,
Carlos Castillo, and Donald Metzler. ACM, pp. 283–292.

Yumusak, Semih, Emir Muñoz, Pasquale Minervini, Erdogan Dogdu, and Halife Kodaz (2016). ‘A
Hybrid Method for Rating Prediction Using Linked Data Features and Text Reviews’. In: Joint
Proceedings of the 5th Workshop on Data Mining and Knowledge Discovery meets Linked Open Data
and the 1st International Workshop on Completing and Debugging the Semantic Web (Know@LOD-
2016, CoDeS-2016) co-located with 13th ESWC 2016, Heraklion, Greece, May 30th, 2016. Ed. by Heiko
Paulheim, Jens Lehmann, Vojtech Svátek, Craig A. Knoblock, Matthew Horridge, Patrick Lam-
brix, and Bijan Parsia. Vol. 1586. CEUR Workshop Proceedings. CEUR-WS.org.

Zha, Zheng-Jun, Tao Mei, Jingdong Wang, Zengfu Wang, and Xian-Sheng Hua (2009). ‘Graph-based
semi-supervised learning with multiple labels’. In: Journal of Visual Communication and Image Rep-
resentation 20.2. Special issue on Emerging Techniques for Multimedia Content Sharing, Search
and Understanding, pp. 97–103. ISSN: 1047-3203.

Zhang, Fuzheng, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma (2016). ‘Collabora-
tive Knowledge Base Embedding for Recommender Systems’. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. Ed. by Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Ag-
garwal, Dou Shen, and Rajeev Rastogi. ACM, pp. 353–362.

Zhang, Jiawei, Jianhui Chen, Junxing Zhu, Yi Chang, and Philip S. Yu (2017). ‘Link Prediction with
Cardinality Constraint’. In: Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6-10, 2017. Ed. by Maarten
de Rijke, Milad Shokouhi, Andrew Tomkins, and Min Zhang. ACM, pp. 121–130.

Zhang, Min-Ling and Zhi-Hua Zhou (Oct. 2006). ‘Multilabel Neural Networks with Applications
to Functional Genomics and Text Categorization’. In: IEEE Transactions on Knowledge and Data
Engineering 18.10, pp. 1338–1351. ISSN: 1041-4347.

Zhang, Min-Ling and Zhi-Hua Zhou (2014). ‘A Review on Multi-Label Learning Algorithms’. In:
IEEE Trans. Knowl. Data Eng. 26.8, pp. 1819–1837.

Zhang, Min-Ling and Zhi-Hua Zhou (Aug. 2014). ‘A Review on Multi-Label Learning Algorithms’.
In: IEEE Transactions on Knowledge and Data Engineering 26.8, pp. 1819–1837. ISSN: 1041-4347.

Zhang, Wen, Yanlin Chen, Shikui Tu, Feng Liu, and Qianlong Qu (Dec. 2016). ‘Drug side effect pre-
diction through linear neighborhoods and multiple data source integration’. In: 2016 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pp. 427–434.

Zhang, Wen, Feng Liu, Longqiang Luo, and Jingxia Zhang (2015). ‘Predicting drug side effects by
multi-label learning and ensemble learning’. In: BMC bioinformatics 16.1, p. 1.

Zhang, Wen, Hua Zou, Longqiang Luo, Qianchao Liu, Weijian Wu, and Wenyi Xiao (2016). ‘Pre-
dicting potential side effects of drugs by recommender methods and ensemble learning’. In:
Neurocomputing 173, pp. 979–987.

Zhao, Yu, Huali Feng, and Patrick Gallinari (Nov. 2019). ‘Embedding Learning with Triple Trustiness
on Noisy Knowledge Graph’. In: Entropy 21.11, p. 1083. ISSN: 1099-4300.

Zilke, Jan Ruben, Eneldo Loza Mencía, and Frederik Janssen (2016). ‘DeepRED - Rule Extraction from
Deep Neural Networks’. In: Discovery Science - 19th International Conference, DS 2016, Bari, Italy,



194 | BIBLIOGRAPHY

October 19-21, 2016, Proceedings. Ed. by Toon Calders, Michelangelo Ceci, and Donato Malerba.
Vol. 9956. Lecture Notes in Computer Science, pp. 457–473.

Zoph, Barret and Quoc V. Le (2017). ‘Neural Architecture Search with Reinforcement Learning’.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net.


	Introduction
	Motivation
	Research questions
	Contributions
	Thesis structure

	I Background
	Fundamentals
	Knowledge bases
	Semantic Web knowledge bases
	Unique name assumption
	Interpretation of knowledge bases

	Knowledge graphs
	Definitions

	Completeness and consistency in knowledge graphs
	Consistency
	Completeness

	Machine learning: A brief overview
	Regularisation

	Deep learning: A brief overview
	Learning problems
	Learning to rank
	Multi-label learning
	Evaluation metrics
	Learning to rank
	Multi-label learning


	Summary

	Knowledge Graph Mining
	Schema in knowledge graphs
	Dynamic schema problem
	Validation approaches for knowledge graph
	Hard-coded approaches
	Integrity constraint approaches
	Query-based approaches
	High-level languages


	Schema inference approaches
	Statistical metadata extraction
	Rule mining
	Complex structural inferences
	Elements of structure: cardinality constraints

	Completion of knowledge graph
	What is knowledge graph completion?
	Completion tasks
	Statistical properties for completion

	Statistical relational learning
	Graph-based feature approaches
	Latent feature approaches
	Model training and negatives generation

	Summary


	II Latent Shapes in Knowledge Graph
	Approaches for Mining Cardinality
	Problem statement
	Notion of cardinality bounds
	Cardinality mining algorithm
	Algorithm
	Knowledge graph normalisation: rewriting approaches
	SPARQL rewriting
	Programmatic rewriting

	Detection of cardinality patterns
	Outlier detection and filtering

	Experimental settings
	Datasets
	Test settings

	Results and discussion
	Quantitative evaluation
	Qualitative evaluation

	Summary

	Approximate Validation of Knowledge Graphs
	Problem statement
	Related work
	An algorithm for approximate structure validation
	Approximate validation
	Machine learning framework
	Feature vectors extraction

	Experimental settings
	Datasets
	Test Settings

	Results and discussion
	Summary


	III Knowledge Graph Mining Applications
	Knowledge Graphs to Improve Adverse Drug Reactions Prediction
	Problem statement
	Related work
	ADRs prediction using knowledge graphs
	Biomedical knowledge graphs
	Experimental settings
	Results and discussion
	Comparison on Liu's dataset
	Comparison on Bio2RDF dataset
	Comparison on SIDER 4 dataset
	Comparison on Aeolus dataset

	Summary

	Cardinality Regularisation of Neural Link Predictors
	Problem statement
	Related work
	Regularisation based on cardinality
	Lower bound estimation
	Sum estimation

	Experimental settings
	Evaluation protocol
	Datasets

	Results and discussion
	Link prediction evaluation
	Sampling techniques evaluation
	Cardinality violations evaluation

	Summary


	IV Conclusion
	Summary and Outlook
	Summary of contributions
	Part I: Background
	Part II: Latent shapes in knowledge graph
	Part III: Knowledge graph mining applications

	Limitations
	Future directions
	Dynamic knowledge graphs and definition of completeness
	Veracity of statements
	Embeddings, logics, and scalability
	Automatic benchmark generation


	Bibliography


